1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/Hashing.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/Analysis/AliasAnalysis.h" 59 #include "llvm/Analysis/AssumptionCache.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/BlockFrequencyInfo.h" 62 #include "llvm/Analysis/CodeMetrics.h" 63 #include "llvm/Analysis/DemandedBits.h" 64 #include "llvm/Analysis/GlobalsModRef.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Analysis/VectorUtils.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/DiagnosticInfo.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/IR/Verifier.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/BranchProbability.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/Scalar.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Transforms/Vectorize.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> TinyTripCountVectorThreshold( 123 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 124 cl::desc("Don't vectorize loops with a constant " 125 "trip count that is smaller than this " 126 "value.")); 127 128 static cl::opt<bool> MaximizeBandwidth( 129 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 130 cl::desc("Maximize bandwidth when selecting vectorization factor which " 131 "will be determined by the smallest type in loop.")); 132 133 /// This enables versioning on the strides of symbolically striding memory 134 /// accesses in code like the following. 135 /// for (i = 0; i < N; ++i) 136 /// A[i * Stride1] += B[i * Stride2] ... 137 /// 138 /// Will be roughly translated to 139 /// if (Stride1 == 1 && Stride2 == 1) { 140 /// for (i = 0; i < N; i+=4) 141 /// A[i:i+3] += ... 142 /// } else 143 /// ... 144 static cl::opt<bool> EnableMemAccessVersioning( 145 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 146 cl::desc("Enable symbolic stride memory access versioning")); 147 148 static cl::opt<bool> EnableInterleavedMemAccesses( 149 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 150 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 151 152 /// Maximum factor for an interleaved memory access. 153 static cl::opt<unsigned> MaxInterleaveGroupFactor( 154 "max-interleave-group-factor", cl::Hidden, 155 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 156 cl::init(8)); 157 158 /// We don't interleave loops with a known constant trip count below this 159 /// number. 160 static const unsigned TinyTripCountInterleaveThreshold = 128; 161 162 static cl::opt<unsigned> ForceTargetNumScalarRegs( 163 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's number of scalar registers.")); 165 166 static cl::opt<unsigned> ForceTargetNumVectorRegs( 167 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 168 cl::desc("A flag that overrides the target's number of vector registers.")); 169 170 /// Maximum vectorization interleave count. 171 static const unsigned MaxInterleaveFactor = 16; 172 173 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 174 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 175 cl::desc("A flag that overrides the target's max interleave factor for " 176 "scalar loops.")); 177 178 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 179 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's max interleave factor for " 181 "vectorized loops.")); 182 183 static cl::opt<unsigned> ForceTargetInstructionCost( 184 "force-target-instruction-cost", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's expected cost for " 186 "an instruction to a single constant value. Mostly " 187 "useful for getting consistent testing.")); 188 189 static cl::opt<unsigned> SmallLoopCost( 190 "small-loop-cost", cl::init(20), cl::Hidden, 191 cl::desc( 192 "The cost of a loop that is considered 'small' by the interleaver.")); 193 194 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 195 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 196 cl::desc("Enable the use of the block frequency analysis to access PGO " 197 "heuristics minimizing code growth in cold regions and being more " 198 "aggressive in hot regions.")); 199 200 // Runtime interleave loops for load/store throughput. 201 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 202 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 203 cl::desc( 204 "Enable runtime interleaving until load/store ports are saturated")); 205 206 /// The number of stores in a loop that are allowed to need predication. 207 static cl::opt<unsigned> NumberOfStoresToPredicate( 208 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 209 cl::desc("Max number of stores to be predicated behind an if.")); 210 211 static cl::opt<bool> EnableIndVarRegisterHeur( 212 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 213 cl::desc("Count the induction variable only once when interleaving")); 214 215 static cl::opt<bool> EnableCondStoresVectorization( 216 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 217 cl::desc("Enable if predication of stores during vectorization.")); 218 219 static cl::opt<unsigned> MaxNestedScalarReductionIC( 220 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 221 cl::desc("The maximum interleave count to use when interleaving a scalar " 222 "reduction in a nested loop.")); 223 224 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 225 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 226 cl::desc("The maximum allowed number of runtime memory checks with a " 227 "vectorize(enable) pragma.")); 228 229 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 230 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 231 cl::desc("The maximum number of SCEV checks allowed.")); 232 233 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 234 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 235 cl::desc("The maximum number of SCEV checks allowed with a " 236 "vectorize(enable) pragma")); 237 238 namespace { 239 240 // Forward declarations. 241 class LoopVectorizeHints; 242 class LoopVectorizationLegality; 243 class LoopVectorizationCostModel; 244 class LoopVectorizationRequirements; 245 246 /// \brief This modifies LoopAccessReport to initialize message with 247 /// loop-vectorizer-specific part. 248 class VectorizationReport : public LoopAccessReport { 249 public: 250 VectorizationReport(Instruction *I = nullptr) 251 : LoopAccessReport("loop not vectorized: ", I) {} 252 253 /// \brief This allows promotion of the loop-access analysis report into the 254 /// loop-vectorizer report. It modifies the message to add the 255 /// loop-vectorizer-specific part of the message. 256 explicit VectorizationReport(const LoopAccessReport &R) 257 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 258 R.getInstr()) {} 259 }; 260 261 /// A helper function for converting Scalar types to vector types. 262 /// If the incoming type is void, we return void. If the VF is 1, we return 263 /// the scalar type. 264 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 265 if (Scalar->isVoidTy() || VF == 1) 266 return Scalar; 267 return VectorType::get(Scalar, VF); 268 } 269 270 /// A helper function that returns GEP instruction and knows to skip a 271 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 272 /// pointee types of the 'bitcast' have the same size. 273 /// For example: 274 /// bitcast double** %var to i64* - can be skipped 275 /// bitcast double** %var to i8* - can not 276 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 277 278 if (isa<GetElementPtrInst>(Ptr)) 279 return cast<GetElementPtrInst>(Ptr); 280 281 if (isa<BitCastInst>(Ptr) && 282 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 283 Type *BitcastTy = Ptr->getType(); 284 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 285 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 286 return nullptr; 287 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 288 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 289 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 290 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 291 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 292 } 293 return nullptr; 294 } 295 296 /// InnerLoopVectorizer vectorizes loops which contain only one basic 297 /// block to a specified vectorization factor (VF). 298 /// This class performs the widening of scalars into vectors, or multiple 299 /// scalars. This class also implements the following features: 300 /// * It inserts an epilogue loop for handling loops that don't have iteration 301 /// counts that are known to be a multiple of the vectorization factor. 302 /// * It handles the code generation for reduction variables. 303 /// * Scalarization (implementation using scalars) of un-vectorizable 304 /// instructions. 305 /// InnerLoopVectorizer does not perform any vectorization-legality 306 /// checks, and relies on the caller to check for the different legality 307 /// aspects. The InnerLoopVectorizer relies on the 308 /// LoopVectorizationLegality class to provide information about the induction 309 /// and reduction variables that were found to a given vectorization factor. 310 class InnerLoopVectorizer { 311 public: 312 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 313 LoopInfo *LI, DominatorTree *DT, 314 const TargetLibraryInfo *TLI, 315 const TargetTransformInfo *TTI, AssumptionCache *AC, 316 unsigned VecWidth, unsigned UnrollFactor) 317 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 318 AC(AC), VF(VecWidth), UF(UnrollFactor), 319 Builder(PSE.getSE()->getContext()), Induction(nullptr), 320 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 321 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 322 323 // Perform the actual loop widening (vectorization). 324 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 325 // can be validly truncated to. The cost model has assumed this truncation 326 // will happen when vectorizing. 327 void vectorize(LoopVectorizationLegality *L, 328 MapVector<Instruction *, uint64_t> MinimumBitWidths) { 329 MinBWs = MinimumBitWidths; 330 Legal = L; 331 // Create a new empty loop. Unlink the old loop and connect the new one. 332 createEmptyLoop(); 333 // Widen each instruction in the old loop to a new one in the new loop. 334 // Use the Legality module to find the induction and reduction variables. 335 vectorizeLoop(); 336 } 337 338 // Return true if any runtime check is added. 339 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 340 341 virtual ~InnerLoopVectorizer() {} 342 343 protected: 344 /// A small list of PHINodes. 345 typedef SmallVector<PHINode *, 4> PhiVector; 346 /// When we unroll loops we have multiple vector values for each scalar. 347 /// This data structure holds the unrolled and vectorized values that 348 /// originated from one scalar instruction. 349 typedef SmallVector<Value *, 2> VectorParts; 350 351 // When we if-convert we need to create edge masks. We have to cache values 352 // so that we don't end up with exponential recursion/IR. 353 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 354 EdgeMaskCache; 355 356 /// Create an empty loop, based on the loop ranges of the old loop. 357 void createEmptyLoop(); 358 359 /// Set up the values of the IVs correctly when exiting the vector loop. 360 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 361 Value *CountRoundDown, Value *EndValue, 362 BasicBlock *MiddleBlock); 363 364 /// Create a new induction variable inside L. 365 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 366 Value *Step, Instruction *DL); 367 /// Copy and widen the instructions from the old loop. 368 virtual void vectorizeLoop(); 369 370 /// Fix a first-order recurrence. This is the second phase of vectorizing 371 /// this phi node. 372 void fixFirstOrderRecurrence(PHINode *Phi); 373 374 /// \brief The Loop exit block may have single value PHI nodes where the 375 /// incoming value is 'Undef'. While vectorizing we only handled real values 376 /// that were defined inside the loop. Here we fix the 'undef case'. 377 /// See PR14725. 378 void fixLCSSAPHIs(); 379 380 /// Shrinks vector element sizes based on information in "MinBWs". 381 void truncateToMinimalBitwidths(); 382 383 /// A helper function that computes the predicate of the block BB, assuming 384 /// that the header block of the loop is set to True. It returns the *entry* 385 /// mask for the block BB. 386 VectorParts createBlockInMask(BasicBlock *BB); 387 /// A helper function that computes the predicate of the edge between SRC 388 /// and DST. 389 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 390 391 /// A helper function to vectorize a single BB within the innermost loop. 392 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 393 394 /// Vectorize a single PHINode in a block. This method handles the induction 395 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 396 /// arbitrary length vectors. 397 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 398 unsigned VF, PhiVector *PV); 399 400 /// Insert the new loop to the loop hierarchy and pass manager 401 /// and update the analysis passes. 402 void updateAnalysis(); 403 404 /// This instruction is un-vectorizable. Implement it as a sequence 405 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 406 /// scalarized instruction behind an if block predicated on the control 407 /// dependence of the instruction. 408 virtual void scalarizeInstruction(Instruction *Instr, 409 bool IfPredicateStore = false); 410 411 /// Vectorize Load and Store instructions, 412 virtual void vectorizeMemoryInstruction(Instruction *Instr); 413 414 /// Create a broadcast instruction. This method generates a broadcast 415 /// instruction (shuffle) for loop invariant values and for the induction 416 /// value. If this is the induction variable then we extend it to N, N+1, ... 417 /// this is needed because each iteration in the loop corresponds to a SIMD 418 /// element. 419 virtual Value *getBroadcastInstrs(Value *V); 420 421 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 422 /// to each vector element of Val. The sequence starts at StartIndex. 423 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 424 425 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 426 /// to each vector element of Val. The sequence starts at StartIndex. 427 /// Step is a SCEV. In order to get StepValue it takes the existing value 428 /// from SCEV or creates a new using SCEVExpander. 429 virtual Value *getStepVector(Value *Val, int StartIdx, const SCEV *Step); 430 431 /// Create a vector induction variable based on an existing scalar one. 432 /// Currently only works for integer induction variables with a constant 433 /// step. 434 /// If TruncType is provided, instead of widening the original IV, we 435 /// widen a version of the IV truncated to TruncType. 436 void widenInductionVariable(const InductionDescriptor &II, VectorParts &Entry, 437 IntegerType *TruncType = nullptr); 438 439 /// When we go over instructions in the basic block we rely on previous 440 /// values within the current basic block or on loop invariant values. 441 /// When we widen (vectorize) values we place them in the map. If the values 442 /// are not within the map, they have to be loop invariant, so we simply 443 /// broadcast them into a vector. 444 VectorParts &getVectorValue(Value *V); 445 446 /// Try to vectorize the interleaved access group that \p Instr belongs to. 447 void vectorizeInterleaveGroup(Instruction *Instr); 448 449 /// Generate a shuffle sequence that will reverse the vector Vec. 450 virtual Value *reverseVector(Value *Vec); 451 452 /// Returns (and creates if needed) the original loop trip count. 453 Value *getOrCreateTripCount(Loop *NewLoop); 454 455 /// Returns (and creates if needed) the trip count of the widened loop. 456 Value *getOrCreateVectorTripCount(Loop *NewLoop); 457 458 /// Emit a bypass check to see if the trip count would overflow, or we 459 /// wouldn't have enough iterations to execute one vector loop. 460 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 461 /// Emit a bypass check to see if the vector trip count is nonzero. 462 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 463 /// Emit a bypass check to see if all of the SCEV assumptions we've 464 /// had to make are correct. 465 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 466 /// Emit bypass checks to check any memory assumptions we may have made. 467 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 468 469 /// Add additional metadata to \p To that was not present on \p Orig. 470 /// 471 /// Currently this is used to add the noalias annotations based on the 472 /// inserted memchecks. Use this for instructions that are *cloned* into the 473 /// vector loop. 474 void addNewMetadata(Instruction *To, const Instruction *Orig); 475 476 /// Add metadata from one instruction to another. 477 /// 478 /// This includes both the original MDs from \p From and additional ones (\see 479 /// addNewMetadata). Use this for *newly created* instructions in the vector 480 /// loop. 481 void addMetadata(Instruction *To, const Instruction *From); 482 483 /// \brief Similar to the previous function but it adds the metadata to a 484 /// vector of instructions. 485 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 486 487 /// This is a helper class that holds the vectorizer state. It maps scalar 488 /// instructions to vector instructions. When the code is 'unrolled' then 489 /// then a single scalar value is mapped to multiple vector parts. The parts 490 /// are stored in the VectorPart type. 491 struct ValueMap { 492 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 493 /// are mapped. 494 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 495 496 /// \return True if 'Key' is saved in the Value Map. 497 bool has(Value *Key) const { return MapStorage.count(Key); } 498 499 /// Initializes a new entry in the map. Sets all of the vector parts to the 500 /// save value in 'Val'. 501 /// \return A reference to a vector with splat values. 502 VectorParts &splat(Value *Key, Value *Val) { 503 VectorParts &Entry = MapStorage[Key]; 504 Entry.assign(UF, Val); 505 return Entry; 506 } 507 508 ///\return A reference to the value that is stored at 'Key'. 509 VectorParts &get(Value *Key) { 510 VectorParts &Entry = MapStorage[Key]; 511 if (Entry.empty()) 512 Entry.resize(UF); 513 assert(Entry.size() == UF); 514 return Entry; 515 } 516 517 private: 518 /// The unroll factor. Each entry in the map stores this number of vector 519 /// elements. 520 unsigned UF; 521 522 /// Map storage. We use std::map and not DenseMap because insertions to a 523 /// dense map invalidates its iterators. 524 std::map<Value *, VectorParts> MapStorage; 525 }; 526 527 /// The original loop. 528 Loop *OrigLoop; 529 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 530 /// dynamic knowledge to simplify SCEV expressions and converts them to a 531 /// more usable form. 532 PredicatedScalarEvolution &PSE; 533 /// Loop Info. 534 LoopInfo *LI; 535 /// Dominator Tree. 536 DominatorTree *DT; 537 /// Alias Analysis. 538 AliasAnalysis *AA; 539 /// Target Library Info. 540 const TargetLibraryInfo *TLI; 541 /// Target Transform Info. 542 const TargetTransformInfo *TTI; 543 /// Assumption Cache. 544 AssumptionCache *AC; 545 546 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 547 /// used. 548 /// 549 /// This is currently only used to add no-alias metadata based on the 550 /// memchecks. The actually versioning is performed manually. 551 std::unique_ptr<LoopVersioning> LVer; 552 553 /// The vectorization SIMD factor to use. Each vector will have this many 554 /// vector elements. 555 unsigned VF; 556 557 protected: 558 /// The vectorization unroll factor to use. Each scalar is vectorized to this 559 /// many different vector instructions. 560 unsigned UF; 561 562 /// The builder that we use 563 IRBuilder<> Builder; 564 565 // --- Vectorization state --- 566 567 /// The vector-loop preheader. 568 BasicBlock *LoopVectorPreHeader; 569 /// The scalar-loop preheader. 570 BasicBlock *LoopScalarPreHeader; 571 /// Middle Block between the vector and the scalar. 572 BasicBlock *LoopMiddleBlock; 573 /// The ExitBlock of the scalar loop. 574 BasicBlock *LoopExitBlock; 575 /// The vector loop body. 576 BasicBlock *LoopVectorBody; 577 /// The scalar loop body. 578 BasicBlock *LoopScalarBody; 579 /// A list of all bypass blocks. The first block is the entry of the loop. 580 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 581 582 /// The new Induction variable which was added to the new block. 583 PHINode *Induction; 584 /// The induction variable of the old basic block. 585 PHINode *OldInduction; 586 /// Maps scalars to widened vectors. 587 ValueMap WidenMap; 588 /// Store instructions that should be predicated, as a pair 589 /// <StoreInst, Predicate> 590 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores; 591 EdgeMaskCache MaskCache; 592 /// Trip count of the original loop. 593 Value *TripCount; 594 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 595 Value *VectorTripCount; 596 597 /// Map of scalar integer values to the smallest bitwidth they can be legally 598 /// represented as. The vector equivalents of these values should be truncated 599 /// to this type. 600 MapVector<Instruction *, uint64_t> MinBWs; 601 LoopVectorizationLegality *Legal; 602 603 // Record whether runtime checks are added. 604 bool AddedSafetyChecks; 605 }; 606 607 class InnerLoopUnroller : public InnerLoopVectorizer { 608 public: 609 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 610 LoopInfo *LI, DominatorTree *DT, 611 const TargetLibraryInfo *TLI, 612 const TargetTransformInfo *TTI, AssumptionCache *AC, 613 unsigned UnrollFactor) 614 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 615 UnrollFactor) {} 616 617 private: 618 void scalarizeInstruction(Instruction *Instr, 619 bool IfPredicateStore = false) override; 620 void vectorizeMemoryInstruction(Instruction *Instr) override; 621 Value *getBroadcastInstrs(Value *V) override; 622 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 623 Value *getStepVector(Value *Val, int StartIdx, const SCEV *StepSCEV) override; 624 Value *reverseVector(Value *Vec) override; 625 }; 626 627 /// \brief Look for a meaningful debug location on the instruction or it's 628 /// operands. 629 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 630 if (!I) 631 return I; 632 633 DebugLoc Empty; 634 if (I->getDebugLoc() != Empty) 635 return I; 636 637 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 638 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 639 if (OpInst->getDebugLoc() != Empty) 640 return OpInst; 641 } 642 643 return I; 644 } 645 646 /// \brief Set the debug location in the builder using the debug location in the 647 /// instruction. 648 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 649 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 650 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 651 else 652 B.SetCurrentDebugLocation(DebugLoc()); 653 } 654 655 #ifndef NDEBUG 656 /// \return string containing a file name and a line # for the given loop. 657 static std::string getDebugLocString(const Loop *L) { 658 std::string Result; 659 if (L) { 660 raw_string_ostream OS(Result); 661 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 662 LoopDbgLoc.print(OS); 663 else 664 // Just print the module name. 665 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 666 OS.flush(); 667 } 668 return Result; 669 } 670 #endif 671 672 /// \brief Propagate known metadata from one instruction to another. 673 static void propagateMetadata(Instruction *To, const Instruction *From) { 674 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 675 From->getAllMetadataOtherThanDebugLoc(Metadata); 676 677 for (auto M : Metadata) { 678 unsigned Kind = M.first; 679 680 // These are safe to transfer (this is safe for TBAA, even when we 681 // if-convert, because should that metadata have had a control dependency 682 // on the condition, and thus actually aliased with some other 683 // non-speculated memory access when the condition was false, this would be 684 // caught by the runtime overlap checks). 685 if (Kind != LLVMContext::MD_tbaa && Kind != LLVMContext::MD_alias_scope && 686 Kind != LLVMContext::MD_noalias && Kind != LLVMContext::MD_fpmath && 687 Kind != LLVMContext::MD_nontemporal) 688 continue; 689 690 To->setMetadata(Kind, M.second); 691 } 692 } 693 694 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 695 const Instruction *Orig) { 696 // If the loop was versioned with memchecks, add the corresponding no-alias 697 // metadata. 698 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 699 LVer->annotateInstWithNoAlias(To, Orig); 700 } 701 702 void InnerLoopVectorizer::addMetadata(Instruction *To, 703 const Instruction *From) { 704 propagateMetadata(To, From); 705 addNewMetadata(To, From); 706 } 707 708 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 709 const Instruction *From) { 710 for (Value *V : To) 711 if (Instruction *I = dyn_cast<Instruction>(V)) 712 addMetadata(I, From); 713 } 714 715 /// \brief The group of interleaved loads/stores sharing the same stride and 716 /// close to each other. 717 /// 718 /// Each member in this group has an index starting from 0, and the largest 719 /// index should be less than interleaved factor, which is equal to the absolute 720 /// value of the access's stride. 721 /// 722 /// E.g. An interleaved load group of factor 4: 723 /// for (unsigned i = 0; i < 1024; i+=4) { 724 /// a = A[i]; // Member of index 0 725 /// b = A[i+1]; // Member of index 1 726 /// d = A[i+3]; // Member of index 3 727 /// ... 728 /// } 729 /// 730 /// An interleaved store group of factor 4: 731 /// for (unsigned i = 0; i < 1024; i+=4) { 732 /// ... 733 /// A[i] = a; // Member of index 0 734 /// A[i+1] = b; // Member of index 1 735 /// A[i+2] = c; // Member of index 2 736 /// A[i+3] = d; // Member of index 3 737 /// } 738 /// 739 /// Note: the interleaved load group could have gaps (missing members), but 740 /// the interleaved store group doesn't allow gaps. 741 class InterleaveGroup { 742 public: 743 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 744 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 745 assert(Align && "The alignment should be non-zero"); 746 747 Factor = std::abs(Stride); 748 assert(Factor > 1 && "Invalid interleave factor"); 749 750 Reverse = Stride < 0; 751 Members[0] = Instr; 752 } 753 754 bool isReverse() const { return Reverse; } 755 unsigned getFactor() const { return Factor; } 756 unsigned getAlignment() const { return Align; } 757 unsigned getNumMembers() const { return Members.size(); } 758 759 /// \brief Try to insert a new member \p Instr with index \p Index and 760 /// alignment \p NewAlign. The index is related to the leader and it could be 761 /// negative if it is the new leader. 762 /// 763 /// \returns false if the instruction doesn't belong to the group. 764 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 765 assert(NewAlign && "The new member's alignment should be non-zero"); 766 767 int Key = Index + SmallestKey; 768 769 // Skip if there is already a member with the same index. 770 if (Members.count(Key)) 771 return false; 772 773 if (Key > LargestKey) { 774 // The largest index is always less than the interleave factor. 775 if (Index >= static_cast<int>(Factor)) 776 return false; 777 778 LargestKey = Key; 779 } else if (Key < SmallestKey) { 780 // The largest index is always less than the interleave factor. 781 if (LargestKey - Key >= static_cast<int>(Factor)) 782 return false; 783 784 SmallestKey = Key; 785 } 786 787 // It's always safe to select the minimum alignment. 788 Align = std::min(Align, NewAlign); 789 Members[Key] = Instr; 790 return true; 791 } 792 793 /// \brief Get the member with the given index \p Index 794 /// 795 /// \returns nullptr if contains no such member. 796 Instruction *getMember(unsigned Index) const { 797 int Key = SmallestKey + Index; 798 if (!Members.count(Key)) 799 return nullptr; 800 801 return Members.find(Key)->second; 802 } 803 804 /// \brief Get the index for the given member. Unlike the key in the member 805 /// map, the index starts from 0. 806 unsigned getIndex(Instruction *Instr) const { 807 for (auto I : Members) 808 if (I.second == Instr) 809 return I.first - SmallestKey; 810 811 llvm_unreachable("InterleaveGroup contains no such member"); 812 } 813 814 Instruction *getInsertPos() const { return InsertPos; } 815 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 816 817 private: 818 unsigned Factor; // Interleave Factor. 819 bool Reverse; 820 unsigned Align; 821 DenseMap<int, Instruction *> Members; 822 int SmallestKey; 823 int LargestKey; 824 825 // To avoid breaking dependences, vectorized instructions of an interleave 826 // group should be inserted at either the first load or the last store in 827 // program order. 828 // 829 // E.g. %even = load i32 // Insert Position 830 // %add = add i32 %even // Use of %even 831 // %odd = load i32 832 // 833 // store i32 %even 834 // %odd = add i32 // Def of %odd 835 // store i32 %odd // Insert Position 836 Instruction *InsertPos; 837 }; 838 839 /// \brief Drive the analysis of interleaved memory accesses in the loop. 840 /// 841 /// Use this class to analyze interleaved accesses only when we can vectorize 842 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 843 /// on interleaved accesses is unsafe. 844 /// 845 /// The analysis collects interleave groups and records the relationships 846 /// between the member and the group in a map. 847 class InterleavedAccessInfo { 848 public: 849 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 850 DominatorTree *DT) 851 : PSE(PSE), TheLoop(L), DT(DT), RequiresScalarEpilogue(false) {} 852 853 ~InterleavedAccessInfo() { 854 SmallSet<InterleaveGroup *, 4> DelSet; 855 // Avoid releasing a pointer twice. 856 for (auto &I : InterleaveGroupMap) 857 DelSet.insert(I.second); 858 for (auto *Ptr : DelSet) 859 delete Ptr; 860 } 861 862 /// \brief Analyze the interleaved accesses and collect them in interleave 863 /// groups. Substitute symbolic strides using \p Strides. 864 void analyzeInterleaving(const ValueToValueMap &Strides); 865 866 /// \brief Check if \p Instr belongs to any interleave group. 867 bool isInterleaved(Instruction *Instr) const { 868 return InterleaveGroupMap.count(Instr); 869 } 870 871 /// \brief Return the maximum interleave factor of all interleaved groups. 872 unsigned getMaxInterleaveFactor() const { 873 unsigned MaxFactor = 1; 874 for (auto &Entry : InterleaveGroupMap) 875 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 876 return MaxFactor; 877 } 878 879 /// \brief Get the interleave group that \p Instr belongs to. 880 /// 881 /// \returns nullptr if doesn't have such group. 882 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 883 if (InterleaveGroupMap.count(Instr)) 884 return InterleaveGroupMap.find(Instr)->second; 885 return nullptr; 886 } 887 888 /// \brief Returns true if an interleaved group that may access memory 889 /// out-of-bounds requires a scalar epilogue iteration for correctness. 890 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 891 892 private: 893 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 894 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 895 /// The interleaved access analysis can also add new predicates (for example 896 /// by versioning strides of pointers). 897 PredicatedScalarEvolution &PSE; 898 Loop *TheLoop; 899 DominatorTree *DT; 900 901 /// True if the loop may contain non-reversed interleaved groups with 902 /// out-of-bounds accesses. We ensure we don't speculatively access memory 903 /// out-of-bounds by executing at least one scalar epilogue iteration. 904 bool RequiresScalarEpilogue; 905 906 /// Holds the relationships between the members and the interleave group. 907 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 908 909 /// \brief The descriptor for a strided memory access. 910 struct StrideDescriptor { 911 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 912 unsigned Align) 913 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 914 915 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 916 917 int Stride; // The access's stride. It is negative for a reverse access. 918 const SCEV *Scev; // The scalar expression of this access 919 unsigned Size; // The size of the memory object. 920 unsigned Align; // The alignment of this access. 921 }; 922 923 /// \brief Create a new interleave group with the given instruction \p Instr, 924 /// stride \p Stride and alignment \p Align. 925 /// 926 /// \returns the newly created interleave group. 927 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 928 unsigned Align) { 929 assert(!InterleaveGroupMap.count(Instr) && 930 "Already in an interleaved access group"); 931 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 932 return InterleaveGroupMap[Instr]; 933 } 934 935 /// \brief Release the group and remove all the relationships. 936 void releaseGroup(InterleaveGroup *Group) { 937 for (unsigned i = 0; i < Group->getFactor(); i++) 938 if (Instruction *Member = Group->getMember(i)) 939 InterleaveGroupMap.erase(Member); 940 941 delete Group; 942 } 943 944 /// \brief Collect all the accesses with a constant stride in program order. 945 void collectConstStridedAccesses( 946 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 947 const ValueToValueMap &Strides); 948 }; 949 950 /// Utility class for getting and setting loop vectorizer hints in the form 951 /// of loop metadata. 952 /// This class keeps a number of loop annotations locally (as member variables) 953 /// and can, upon request, write them back as metadata on the loop. It will 954 /// initially scan the loop for existing metadata, and will update the local 955 /// values based on information in the loop. 956 /// We cannot write all values to metadata, as the mere presence of some info, 957 /// for example 'force', means a decision has been made. So, we need to be 958 /// careful NOT to add them if the user hasn't specifically asked so. 959 class LoopVectorizeHints { 960 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 961 962 /// Hint - associates name and validation with the hint value. 963 struct Hint { 964 const char *Name; 965 unsigned Value; // This may have to change for non-numeric values. 966 HintKind Kind; 967 968 Hint(const char *Name, unsigned Value, HintKind Kind) 969 : Name(Name), Value(Value), Kind(Kind) {} 970 971 bool validate(unsigned Val) { 972 switch (Kind) { 973 case HK_WIDTH: 974 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 975 case HK_UNROLL: 976 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 977 case HK_FORCE: 978 return (Val <= 1); 979 } 980 return false; 981 } 982 }; 983 984 /// Vectorization width. 985 Hint Width; 986 /// Vectorization interleave factor. 987 Hint Interleave; 988 /// Vectorization forced 989 Hint Force; 990 991 /// Return the loop metadata prefix. 992 static StringRef Prefix() { return "llvm.loop."; } 993 994 /// True if there is any unsafe math in the loop. 995 bool PotentiallyUnsafe; 996 997 public: 998 enum ForceKind { 999 FK_Undefined = -1, ///< Not selected. 1000 FK_Disabled = 0, ///< Forcing disabled. 1001 FK_Enabled = 1, ///< Forcing enabled. 1002 }; 1003 1004 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1005 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1006 HK_WIDTH), 1007 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1008 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1009 PotentiallyUnsafe(false), TheLoop(L) { 1010 // Populate values with existing loop metadata. 1011 getHintsFromMetadata(); 1012 1013 // force-vector-interleave overrides DisableInterleaving. 1014 if (VectorizerParams::isInterleaveForced()) 1015 Interleave.Value = VectorizerParams::VectorizationInterleave; 1016 1017 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1018 << "LV: Interleaving disabled by the pass manager\n"); 1019 } 1020 1021 /// Mark the loop L as already vectorized by setting the width to 1. 1022 void setAlreadyVectorized() { 1023 Width.Value = Interleave.Value = 1; 1024 Hint Hints[] = {Width, Interleave}; 1025 writeHintsToMetadata(Hints); 1026 } 1027 1028 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1029 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1030 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1031 emitOptimizationRemarkAnalysis(F->getContext(), 1032 vectorizeAnalysisPassName(), *F, 1033 L->getStartLoc(), emitRemark()); 1034 return false; 1035 } 1036 1037 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1038 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1039 emitOptimizationRemarkAnalysis(F->getContext(), 1040 vectorizeAnalysisPassName(), *F, 1041 L->getStartLoc(), emitRemark()); 1042 return false; 1043 } 1044 1045 if (getWidth() == 1 && getInterleave() == 1) { 1046 // FIXME: Add a separate metadata to indicate when the loop has already 1047 // been vectorized instead of setting width and count to 1. 1048 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1049 // FIXME: Add interleave.disable metadata. This will allow 1050 // vectorize.disable to be used without disabling the pass and errors 1051 // to differentiate between disabled vectorization and a width of 1. 1052 emitOptimizationRemarkAnalysis( 1053 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1054 "loop not vectorized: vectorization and interleaving are explicitly " 1055 "disabled, or vectorize width and interleave count are both set to " 1056 "1"); 1057 return false; 1058 } 1059 1060 return true; 1061 } 1062 1063 /// Dumps all the hint information. 1064 std::string emitRemark() const { 1065 VectorizationReport R; 1066 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1067 R << "vectorization is explicitly disabled"; 1068 else { 1069 R << "use -Rpass-analysis=loop-vectorize for more info"; 1070 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1071 R << " (Force=true"; 1072 if (Width.Value != 0) 1073 R << ", Vector Width=" << Width.Value; 1074 if (Interleave.Value != 0) 1075 R << ", Interleave Count=" << Interleave.Value; 1076 R << ")"; 1077 } 1078 } 1079 1080 return R.str(); 1081 } 1082 1083 unsigned getWidth() const { return Width.Value; } 1084 unsigned getInterleave() const { return Interleave.Value; } 1085 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1086 const char *vectorizeAnalysisPassName() const { 1087 // If hints are provided that don't disable vectorization use the 1088 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1089 if (getWidth() == 1) 1090 return LV_NAME; 1091 if (getForce() == LoopVectorizeHints::FK_Disabled) 1092 return LV_NAME; 1093 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1094 return LV_NAME; 1095 return DiagnosticInfo::AlwaysPrint; 1096 } 1097 1098 bool allowReordering() const { 1099 // When enabling loop hints are provided we allow the vectorizer to change 1100 // the order of operations that is given by the scalar loop. This is not 1101 // enabled by default because can be unsafe or inefficient. For example, 1102 // reordering floating-point operations will change the way round-off 1103 // error accumulates in the loop. 1104 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1105 } 1106 1107 bool isPotentiallyUnsafe() const { 1108 // Avoid FP vectorization if the target is unsure about proper support. 1109 // This may be related to the SIMD unit in the target not handling 1110 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1111 // Otherwise, a sequence of vectorized loops, even without reduction, 1112 // could lead to different end results on the destination vectors. 1113 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1114 } 1115 1116 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1117 1118 private: 1119 /// Find hints specified in the loop metadata and update local values. 1120 void getHintsFromMetadata() { 1121 MDNode *LoopID = TheLoop->getLoopID(); 1122 if (!LoopID) 1123 return; 1124 1125 // First operand should refer to the loop id itself. 1126 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1127 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1128 1129 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1130 const MDString *S = nullptr; 1131 SmallVector<Metadata *, 4> Args; 1132 1133 // The expected hint is either a MDString or a MDNode with the first 1134 // operand a MDString. 1135 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1136 if (!MD || MD->getNumOperands() == 0) 1137 continue; 1138 S = dyn_cast<MDString>(MD->getOperand(0)); 1139 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1140 Args.push_back(MD->getOperand(i)); 1141 } else { 1142 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1143 assert(Args.size() == 0 && "too many arguments for MDString"); 1144 } 1145 1146 if (!S) 1147 continue; 1148 1149 // Check if the hint starts with the loop metadata prefix. 1150 StringRef Name = S->getString(); 1151 if (Args.size() == 1) 1152 setHint(Name, Args[0]); 1153 } 1154 } 1155 1156 /// Checks string hint with one operand and set value if valid. 1157 void setHint(StringRef Name, Metadata *Arg) { 1158 if (!Name.startswith(Prefix())) 1159 return; 1160 Name = Name.substr(Prefix().size(), StringRef::npos); 1161 1162 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1163 if (!C) 1164 return; 1165 unsigned Val = C->getZExtValue(); 1166 1167 Hint *Hints[] = {&Width, &Interleave, &Force}; 1168 for (auto H : Hints) { 1169 if (Name == H->Name) { 1170 if (H->validate(Val)) 1171 H->Value = Val; 1172 else 1173 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1174 break; 1175 } 1176 } 1177 } 1178 1179 /// Create a new hint from name / value pair. 1180 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1181 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1182 Metadata *MDs[] = {MDString::get(Context, Name), 1183 ConstantAsMetadata::get( 1184 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1185 return MDNode::get(Context, MDs); 1186 } 1187 1188 /// Matches metadata with hint name. 1189 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1190 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1191 if (!Name) 1192 return false; 1193 1194 for (auto H : HintTypes) 1195 if (Name->getString().endswith(H.Name)) 1196 return true; 1197 return false; 1198 } 1199 1200 /// Sets current hints into loop metadata, keeping other values intact. 1201 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1202 if (HintTypes.size() == 0) 1203 return; 1204 1205 // Reserve the first element to LoopID (see below). 1206 SmallVector<Metadata *, 4> MDs(1); 1207 // If the loop already has metadata, then ignore the existing operands. 1208 MDNode *LoopID = TheLoop->getLoopID(); 1209 if (LoopID) { 1210 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1211 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1212 // If node in update list, ignore old value. 1213 if (!matchesHintMetadataName(Node, HintTypes)) 1214 MDs.push_back(Node); 1215 } 1216 } 1217 1218 // Now, add the missing hints. 1219 for (auto H : HintTypes) 1220 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1221 1222 // Replace current metadata node with new one. 1223 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1224 MDNode *NewLoopID = MDNode::get(Context, MDs); 1225 // Set operand 0 to refer to the loop id itself. 1226 NewLoopID->replaceOperandWith(0, NewLoopID); 1227 1228 TheLoop->setLoopID(NewLoopID); 1229 } 1230 1231 /// The loop these hints belong to. 1232 const Loop *TheLoop; 1233 }; 1234 1235 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1236 const LoopVectorizeHints &Hints, 1237 const LoopAccessReport &Message) { 1238 const char *Name = Hints.vectorizeAnalysisPassName(); 1239 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1240 } 1241 1242 static void emitMissedWarning(Function *F, Loop *L, 1243 const LoopVectorizeHints &LH) { 1244 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1245 LH.emitRemark()); 1246 1247 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1248 if (LH.getWidth() != 1) 1249 emitLoopVectorizeWarning( 1250 F->getContext(), *F, L->getStartLoc(), 1251 "failed explicitly specified loop vectorization"); 1252 else if (LH.getInterleave() != 1) 1253 emitLoopInterleaveWarning( 1254 F->getContext(), *F, L->getStartLoc(), 1255 "failed explicitly specified loop interleaving"); 1256 } 1257 } 1258 1259 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1260 /// to what vectorization factor. 1261 /// This class does not look at the profitability of vectorization, only the 1262 /// legality. This class has two main kinds of checks: 1263 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1264 /// will change the order of memory accesses in a way that will change the 1265 /// correctness of the program. 1266 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1267 /// checks for a number of different conditions, such as the availability of a 1268 /// single induction variable, that all types are supported and vectorize-able, 1269 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1270 /// This class is also used by InnerLoopVectorizer for identifying 1271 /// induction variable and the different reduction variables. 1272 class LoopVectorizationLegality { 1273 public: 1274 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1275 DominatorTree *DT, TargetLibraryInfo *TLI, 1276 AliasAnalysis *AA, Function *F, 1277 const TargetTransformInfo *TTI, 1278 LoopAccessAnalysis *LAA, 1279 LoopVectorizationRequirements *R, 1280 LoopVectorizeHints *H) 1281 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1282 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1283 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1284 Requirements(R), Hints(H) {} 1285 1286 /// ReductionList contains the reduction descriptors for all 1287 /// of the reductions that were found in the loop. 1288 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1289 1290 /// InductionList saves induction variables and maps them to the 1291 /// induction descriptor. 1292 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1293 1294 /// RecurrenceSet contains the phi nodes that are recurrences other than 1295 /// inductions and reductions. 1296 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1297 1298 /// Returns true if it is legal to vectorize this loop. 1299 /// This does not mean that it is profitable to vectorize this 1300 /// loop, only that it is legal to do so. 1301 bool canVectorize(); 1302 1303 /// Returns the Induction variable. 1304 PHINode *getInduction() { return Induction; } 1305 1306 /// Returns the reduction variables found in the loop. 1307 ReductionList *getReductionVars() { return &Reductions; } 1308 1309 /// Returns the induction variables found in the loop. 1310 InductionList *getInductionVars() { return &Inductions; } 1311 1312 /// Return the first-order recurrences found in the loop. 1313 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1314 1315 /// Returns the widest induction type. 1316 Type *getWidestInductionType() { return WidestIndTy; } 1317 1318 /// Returns True if V is an induction variable in this loop. 1319 bool isInductionVariable(const Value *V); 1320 1321 /// Returns True if PN is a reduction variable in this loop. 1322 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1323 1324 /// Returns True if Phi is a first-order recurrence in this loop. 1325 bool isFirstOrderRecurrence(const PHINode *Phi); 1326 1327 /// Return true if the block BB needs to be predicated in order for the loop 1328 /// to be vectorized. 1329 bool blockNeedsPredication(BasicBlock *BB); 1330 1331 /// Check if this pointer is consecutive when vectorizing. This happens 1332 /// when the last index of the GEP is the induction variable, or that the 1333 /// pointer itself is an induction variable. 1334 /// This check allows us to vectorize A[idx] into a wide load/store. 1335 /// Returns: 1336 /// 0 - Stride is unknown or non-consecutive. 1337 /// 1 - Address is consecutive. 1338 /// -1 - Address is consecutive, and decreasing. 1339 int isConsecutivePtr(Value *Ptr); 1340 1341 /// Returns true if the value V is uniform within the loop. 1342 bool isUniform(Value *V); 1343 1344 /// Returns true if this instruction will remain scalar after vectorization. 1345 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1346 1347 /// Returns the information that we collected about runtime memory check. 1348 const RuntimePointerChecking *getRuntimePointerChecking() const { 1349 return LAI->getRuntimePointerChecking(); 1350 } 1351 1352 const LoopAccessInfo *getLAI() const { return LAI; } 1353 1354 /// \brief Check if \p Instr belongs to any interleaved access group. 1355 bool isAccessInterleaved(Instruction *Instr) { 1356 return InterleaveInfo.isInterleaved(Instr); 1357 } 1358 1359 /// \brief Return the maximum interleave factor of all interleaved groups. 1360 unsigned getMaxInterleaveFactor() const { 1361 return InterleaveInfo.getMaxInterleaveFactor(); 1362 } 1363 1364 /// \brief Get the interleaved access group that \p Instr belongs to. 1365 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1366 return InterleaveInfo.getInterleaveGroup(Instr); 1367 } 1368 1369 /// \brief Returns true if an interleaved group requires a scalar iteration 1370 /// to handle accesses with gaps. 1371 bool requiresScalarEpilogue() const { 1372 return InterleaveInfo.requiresScalarEpilogue(); 1373 } 1374 1375 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1376 1377 bool hasStride(Value *V) { return StrideSet.count(V); } 1378 bool mustCheckStrides() { return !StrideSet.empty(); } 1379 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1380 return StrideSet.begin(); 1381 } 1382 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1383 1384 /// Returns true if the target machine supports masked store operation 1385 /// for the given \p DataType and kind of access to \p Ptr. 1386 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1387 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1388 } 1389 /// Returns true if the target machine supports masked load operation 1390 /// for the given \p DataType and kind of access to \p Ptr. 1391 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1392 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1393 } 1394 /// Returns true if the target machine supports masked scatter operation 1395 /// for the given \p DataType. 1396 bool isLegalMaskedScatter(Type *DataType) { 1397 return TTI->isLegalMaskedScatter(DataType); 1398 } 1399 /// Returns true if the target machine supports masked gather operation 1400 /// for the given \p DataType. 1401 bool isLegalMaskedGather(Type *DataType) { 1402 return TTI->isLegalMaskedGather(DataType); 1403 } 1404 1405 /// Returns true if vector representation of the instruction \p I 1406 /// requires mask. 1407 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1408 unsigned getNumStores() const { return LAI->getNumStores(); } 1409 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1410 unsigned getNumPredStores() const { return NumPredStores; } 1411 1412 private: 1413 /// Check if a single basic block loop is vectorizable. 1414 /// At this point we know that this is a loop with a constant trip count 1415 /// and we only need to check individual instructions. 1416 bool canVectorizeInstrs(); 1417 1418 /// When we vectorize loops we may change the order in which 1419 /// we read and write from memory. This method checks if it is 1420 /// legal to vectorize the code, considering only memory constrains. 1421 /// Returns true if the loop is vectorizable 1422 bool canVectorizeMemory(); 1423 1424 /// Return true if we can vectorize this loop using the IF-conversion 1425 /// transformation. 1426 bool canVectorizeWithIfConvert(); 1427 1428 /// Collect the variables that need to stay uniform after vectorization. 1429 void collectLoopUniforms(); 1430 1431 /// Return true if all of the instructions in the block can be speculatively 1432 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1433 /// and we know that we can read from them without segfault. 1434 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1435 1436 /// \brief Collect memory access with loop invariant strides. 1437 /// 1438 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1439 /// invariant. 1440 void collectStridedAccess(Value *LoadOrStoreInst); 1441 1442 /// Updates the vectorization state by adding \p Phi to the inductions list. 1443 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1444 /// better choice for the main induction than the existing one. 1445 void addInductionPhi(PHINode *Phi, InductionDescriptor ID, 1446 SmallPtrSetImpl<Value *> &AllowedExit); 1447 1448 /// Report an analysis message to assist the user in diagnosing loops that are 1449 /// not vectorized. These are handled as LoopAccessReport rather than 1450 /// VectorizationReport because the << operator of VectorizationReport returns 1451 /// LoopAccessReport. 1452 void emitAnalysis(const LoopAccessReport &Message) const { 1453 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1454 } 1455 1456 unsigned NumPredStores; 1457 1458 /// The loop that we evaluate. 1459 Loop *TheLoop; 1460 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1461 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1462 /// of existing SCEV assumptions. The analysis will also add a minimal set 1463 /// of new predicates if this is required to enable vectorization and 1464 /// unrolling. 1465 PredicatedScalarEvolution &PSE; 1466 /// Target Library Info. 1467 TargetLibraryInfo *TLI; 1468 /// Parent function 1469 Function *TheFunction; 1470 /// Target Transform Info 1471 const TargetTransformInfo *TTI; 1472 /// Dominator Tree. 1473 DominatorTree *DT; 1474 // LoopAccess analysis. 1475 LoopAccessAnalysis *LAA; 1476 // And the loop-accesses info corresponding to this loop. This pointer is 1477 // null until canVectorizeMemory sets it up. 1478 const LoopAccessInfo *LAI; 1479 1480 /// The interleave access information contains groups of interleaved accesses 1481 /// with the same stride and close to each other. 1482 InterleavedAccessInfo InterleaveInfo; 1483 1484 // --- vectorization state --- // 1485 1486 /// Holds the integer induction variable. This is the counter of the 1487 /// loop. 1488 PHINode *Induction; 1489 /// Holds the reduction variables. 1490 ReductionList Reductions; 1491 /// Holds all of the induction variables that we found in the loop. 1492 /// Notice that inductions don't need to start at zero and that induction 1493 /// variables can be pointers. 1494 InductionList Inductions; 1495 /// Holds the phi nodes that are first-order recurrences. 1496 RecurrenceSet FirstOrderRecurrences; 1497 /// Holds the widest induction type encountered. 1498 Type *WidestIndTy; 1499 1500 /// Allowed outside users. This holds the induction and reduction 1501 /// vars which can be accessed from outside the loop. 1502 SmallPtrSet<Value *, 4> AllowedExit; 1503 /// This set holds the variables which are known to be uniform after 1504 /// vectorization. 1505 SmallPtrSet<Instruction *, 4> Uniforms; 1506 1507 /// Can we assume the absence of NaNs. 1508 bool HasFunNoNaNAttr; 1509 1510 /// Vectorization requirements that will go through late-evaluation. 1511 LoopVectorizationRequirements *Requirements; 1512 1513 /// Used to emit an analysis of any legality issues. 1514 LoopVectorizeHints *Hints; 1515 1516 ValueToValueMap Strides; 1517 SmallPtrSet<Value *, 8> StrideSet; 1518 1519 /// While vectorizing these instructions we have to generate a 1520 /// call to the appropriate masked intrinsic 1521 SmallPtrSet<const Instruction *, 8> MaskedOp; 1522 }; 1523 1524 /// LoopVectorizationCostModel - estimates the expected speedups due to 1525 /// vectorization. 1526 /// In many cases vectorization is not profitable. This can happen because of 1527 /// a number of reasons. In this class we mainly attempt to predict the 1528 /// expected speedup/slowdowns due to the supported instruction set. We use the 1529 /// TargetTransformInfo to query the different backends for the cost of 1530 /// different operations. 1531 class LoopVectorizationCostModel { 1532 public: 1533 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1534 LoopInfo *LI, LoopVectorizationLegality *Legal, 1535 const TargetTransformInfo &TTI, 1536 const TargetLibraryInfo *TLI, DemandedBits *DB, 1537 AssumptionCache *AC, const Function *F, 1538 const LoopVectorizeHints *Hints) 1539 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1540 AC(AC), TheFunction(F), Hints(Hints) {} 1541 1542 /// Information about vectorization costs 1543 struct VectorizationFactor { 1544 unsigned Width; // Vector width with best cost 1545 unsigned Cost; // Cost of the loop with that width 1546 }; 1547 /// \return The most profitable vectorization factor and the cost of that VF. 1548 /// This method checks every power of two up to VF. If UserVF is not ZERO 1549 /// then this vectorization factor will be selected if vectorization is 1550 /// possible. 1551 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1552 1553 /// \return The size (in bits) of the smallest and widest types in the code 1554 /// that needs to be vectorized. We ignore values that remain scalar such as 1555 /// 64 bit loop indices. 1556 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1557 1558 /// \return The desired interleave count. 1559 /// If interleave count has been specified by metadata it will be returned. 1560 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1561 /// are the selected vectorization factor and the cost of the selected VF. 1562 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1563 unsigned LoopCost); 1564 1565 /// \return The most profitable unroll factor. 1566 /// This method finds the best unroll-factor based on register pressure and 1567 /// other parameters. VF and LoopCost are the selected vectorization factor 1568 /// and the cost of the selected VF. 1569 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1570 unsigned LoopCost); 1571 1572 /// \brief A struct that represents some properties of the register usage 1573 /// of a loop. 1574 struct RegisterUsage { 1575 /// Holds the number of loop invariant values that are used in the loop. 1576 unsigned LoopInvariantRegs; 1577 /// Holds the maximum number of concurrent live intervals in the loop. 1578 unsigned MaxLocalUsers; 1579 /// Holds the number of instructions in the loop. 1580 unsigned NumInstructions; 1581 }; 1582 1583 /// \return Returns information about the register usages of the loop for the 1584 /// given vectorization factors. 1585 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1586 1587 /// Collect values we want to ignore in the cost model. 1588 void collectValuesToIgnore(); 1589 1590 private: 1591 /// The vectorization cost is a combination of the cost itself and a boolean 1592 /// indicating whether any of the contributing operations will actually 1593 /// operate on 1594 /// vector values after type legalization in the backend. If this latter value 1595 /// is 1596 /// false, then all operations will be scalarized (i.e. no vectorization has 1597 /// actually taken place). 1598 typedef std::pair<unsigned, bool> VectorizationCostTy; 1599 1600 /// Returns the expected execution cost. The unit of the cost does 1601 /// not matter because we use the 'cost' units to compare different 1602 /// vector widths. The cost that is returned is *not* normalized by 1603 /// the factor width. 1604 VectorizationCostTy expectedCost(unsigned VF); 1605 1606 /// Returns the execution time cost of an instruction for a given vector 1607 /// width. Vector width of one means scalar. 1608 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1609 1610 /// The cost-computation logic from getInstructionCost which provides 1611 /// the vector type as an output parameter. 1612 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1613 1614 /// Returns whether the instruction is a load or store and will be a emitted 1615 /// as a vector operation. 1616 bool isConsecutiveLoadOrStore(Instruction *I); 1617 1618 /// Report an analysis message to assist the user in diagnosing loops that are 1619 /// not vectorized. These are handled as LoopAccessReport rather than 1620 /// VectorizationReport because the << operator of VectorizationReport returns 1621 /// LoopAccessReport. 1622 void emitAnalysis(const LoopAccessReport &Message) const { 1623 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1624 } 1625 1626 public: 1627 /// Map of scalar integer values to the smallest bitwidth they can be legally 1628 /// represented as. The vector equivalents of these values should be truncated 1629 /// to this type. 1630 MapVector<Instruction *, uint64_t> MinBWs; 1631 1632 /// The loop that we evaluate. 1633 Loop *TheLoop; 1634 /// Predicated scalar evolution analysis. 1635 PredicatedScalarEvolution &PSE; 1636 /// Loop Info analysis. 1637 LoopInfo *LI; 1638 /// Vectorization legality. 1639 LoopVectorizationLegality *Legal; 1640 /// Vector target information. 1641 const TargetTransformInfo &TTI; 1642 /// Target Library Info. 1643 const TargetLibraryInfo *TLI; 1644 /// Demanded bits analysis. 1645 DemandedBits *DB; 1646 /// Assumption cache. 1647 AssumptionCache *AC; 1648 const Function *TheFunction; 1649 /// Loop Vectorize Hint. 1650 const LoopVectorizeHints *Hints; 1651 /// Values to ignore in the cost model. 1652 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1653 /// Values to ignore in the cost model when VF > 1. 1654 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1655 }; 1656 1657 /// \brief This holds vectorization requirements that must be verified late in 1658 /// the process. The requirements are set by legalize and costmodel. Once 1659 /// vectorization has been determined to be possible and profitable the 1660 /// requirements can be verified by looking for metadata or compiler options. 1661 /// For example, some loops require FP commutativity which is only allowed if 1662 /// vectorization is explicitly specified or if the fast-math compiler option 1663 /// has been provided. 1664 /// Late evaluation of these requirements allows helpful diagnostics to be 1665 /// composed that tells the user what need to be done to vectorize the loop. For 1666 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1667 /// evaluation should be used only when diagnostics can generated that can be 1668 /// followed by a non-expert user. 1669 class LoopVectorizationRequirements { 1670 public: 1671 LoopVectorizationRequirements() 1672 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1673 1674 void addUnsafeAlgebraInst(Instruction *I) { 1675 // First unsafe algebra instruction. 1676 if (!UnsafeAlgebraInst) 1677 UnsafeAlgebraInst = I; 1678 } 1679 1680 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1681 1682 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1683 const char *Name = Hints.vectorizeAnalysisPassName(); 1684 bool Failed = false; 1685 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1686 emitOptimizationRemarkAnalysisFPCommute( 1687 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1688 VectorizationReport() << "cannot prove it is safe to reorder " 1689 "floating-point operations"); 1690 Failed = true; 1691 } 1692 1693 // Test if runtime memcheck thresholds are exceeded. 1694 bool PragmaThresholdReached = 1695 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1696 bool ThresholdReached = 1697 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1698 if ((ThresholdReached && !Hints.allowReordering()) || 1699 PragmaThresholdReached) { 1700 emitOptimizationRemarkAnalysisAliasing( 1701 F->getContext(), Name, *F, L->getStartLoc(), 1702 VectorizationReport() 1703 << "cannot prove it is safe to reorder memory operations"); 1704 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1705 Failed = true; 1706 } 1707 1708 return Failed; 1709 } 1710 1711 private: 1712 unsigned NumRuntimePointerChecks; 1713 Instruction *UnsafeAlgebraInst; 1714 }; 1715 1716 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1717 if (L.empty()) 1718 return V.push_back(&L); 1719 1720 for (Loop *InnerL : L) 1721 addInnerLoop(*InnerL, V); 1722 } 1723 1724 /// The LoopVectorize Pass. 1725 struct LoopVectorize : public FunctionPass { 1726 /// Pass identification, replacement for typeid 1727 static char ID; 1728 1729 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1730 : FunctionPass(ID), DisableUnrolling(NoUnrolling), 1731 AlwaysVectorize(AlwaysVectorize) { 1732 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1733 } 1734 1735 ScalarEvolution *SE; 1736 LoopInfo *LI; 1737 TargetTransformInfo *TTI; 1738 DominatorTree *DT; 1739 BlockFrequencyInfo *BFI; 1740 TargetLibraryInfo *TLI; 1741 DemandedBits *DB; 1742 AliasAnalysis *AA; 1743 AssumptionCache *AC; 1744 LoopAccessAnalysis *LAA; 1745 bool DisableUnrolling; 1746 bool AlwaysVectorize; 1747 1748 BlockFrequency ColdEntryFreq; 1749 1750 bool runOnFunction(Function &F) override { 1751 if (skipFunction(F)) 1752 return false; 1753 1754 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1755 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1756 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1757 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1758 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1759 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1760 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1761 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1762 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1763 LAA = &getAnalysis<LoopAccessAnalysis>(); 1764 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1765 1766 // Compute some weights outside of the loop over the loops. Compute this 1767 // using a BranchProbability to re-use its scaling math. 1768 const BranchProbability ColdProb(1, 5); // 20% 1769 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1770 1771 // Don't attempt if 1772 // 1. the target claims to have no vector registers, and 1773 // 2. interleaving won't help ILP. 1774 // 1775 // The second condition is necessary because, even if the target has no 1776 // vector registers, loop vectorization may still enable scalar 1777 // interleaving. 1778 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1779 return false; 1780 1781 // Build up a worklist of inner-loops to vectorize. This is necessary as 1782 // the act of vectorizing or partially unrolling a loop creates new loops 1783 // and can invalidate iterators across the loops. 1784 SmallVector<Loop *, 8> Worklist; 1785 1786 for (Loop *L : *LI) 1787 addInnerLoop(*L, Worklist); 1788 1789 LoopsAnalyzed += Worklist.size(); 1790 1791 // Now walk the identified inner loops. 1792 bool Changed = false; 1793 while (!Worklist.empty()) 1794 Changed |= processLoop(Worklist.pop_back_val()); 1795 1796 // Process each loop nest in the function. 1797 return Changed; 1798 } 1799 1800 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1801 SmallVector<Metadata *, 4> MDs; 1802 // Reserve first location for self reference to the LoopID metadata node. 1803 MDs.push_back(nullptr); 1804 bool IsUnrollMetadata = false; 1805 MDNode *LoopID = L->getLoopID(); 1806 if (LoopID) { 1807 // First find existing loop unrolling disable metadata. 1808 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1809 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1810 if (MD) { 1811 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1812 IsUnrollMetadata = 1813 S && S->getString().startswith("llvm.loop.unroll.disable"); 1814 } 1815 MDs.push_back(LoopID->getOperand(i)); 1816 } 1817 } 1818 1819 if (!IsUnrollMetadata) { 1820 // Add runtime unroll disable metadata. 1821 LLVMContext &Context = L->getHeader()->getContext(); 1822 SmallVector<Metadata *, 1> DisableOperands; 1823 DisableOperands.push_back( 1824 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1825 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1826 MDs.push_back(DisableNode); 1827 MDNode *NewLoopID = MDNode::get(Context, MDs); 1828 // Set operand 0 to refer to the loop id itself. 1829 NewLoopID->replaceOperandWith(0, NewLoopID); 1830 L->setLoopID(NewLoopID); 1831 } 1832 } 1833 1834 bool processLoop(Loop *L) { 1835 assert(L->empty() && "Only process inner loops."); 1836 1837 #ifndef NDEBUG 1838 const std::string DebugLocStr = getDebugLocString(L); 1839 #endif /* NDEBUG */ 1840 1841 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1842 << L->getHeader()->getParent()->getName() << "\" from " 1843 << DebugLocStr << "\n"); 1844 1845 LoopVectorizeHints Hints(L, DisableUnrolling); 1846 1847 DEBUG(dbgs() << "LV: Loop hints:" 1848 << " force=" 1849 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1850 ? "disabled" 1851 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1852 ? "enabled" 1853 : "?")) 1854 << " width=" << Hints.getWidth() 1855 << " unroll=" << Hints.getInterleave() << "\n"); 1856 1857 // Function containing loop 1858 Function *F = L->getHeader()->getParent(); 1859 1860 // Looking at the diagnostic output is the only way to determine if a loop 1861 // was vectorized (other than looking at the IR or machine code), so it 1862 // is important to generate an optimization remark for each loop. Most of 1863 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1864 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1865 // less verbose reporting vectorized loops and unvectorized loops that may 1866 // benefit from vectorization, respectively. 1867 1868 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1869 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1870 return false; 1871 } 1872 1873 // Check the loop for a trip count threshold: 1874 // do not vectorize loops with a tiny trip count. 1875 const unsigned TC = SE->getSmallConstantTripCount(L); 1876 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1877 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1878 << "This loop is not worth vectorizing."); 1879 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1880 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1881 else { 1882 DEBUG(dbgs() << "\n"); 1883 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1884 << "vectorization is not beneficial " 1885 "and is not explicitly forced"); 1886 return false; 1887 } 1888 } 1889 1890 PredicatedScalarEvolution PSE(*SE, *L); 1891 1892 // Check if it is legal to vectorize the loop. 1893 LoopVectorizationRequirements Requirements; 1894 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1895 &Requirements, &Hints); 1896 if (!LVL.canVectorize()) { 1897 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1898 emitMissedWarning(F, L, Hints); 1899 return false; 1900 } 1901 1902 // Use the cost model. 1903 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F, 1904 &Hints); 1905 CM.collectValuesToIgnore(); 1906 1907 // Check the function attributes to find out if this function should be 1908 // optimized for size. 1909 bool OptForSize = 1910 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 1911 1912 // Compute the weighted frequency of this loop being executed and see if it 1913 // is less than 20% of the function entry baseline frequency. Note that we 1914 // always have a canonical loop here because we think we *can* vectorize. 1915 // FIXME: This is hidden behind a flag due to pervasive problems with 1916 // exactly what block frequency models. 1917 if (LoopVectorizeWithBlockFrequency) { 1918 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1919 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1920 LoopEntryFreq < ColdEntryFreq) 1921 OptForSize = true; 1922 } 1923 1924 // Check the function attributes to see if implicit floats are allowed. 1925 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1926 // an integer loop and the vector instructions selected are purely integer 1927 // vector instructions? 1928 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1929 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1930 "attribute is used.\n"); 1931 emitAnalysisDiag( 1932 F, L, Hints, 1933 VectorizationReport() 1934 << "loop not vectorized due to NoImplicitFloat attribute"); 1935 emitMissedWarning(F, L, Hints); 1936 return false; 1937 } 1938 1939 // Check if the target supports potentially unsafe FP vectorization. 1940 // FIXME: Add a check for the type of safety issue (denormal, signaling) 1941 // for the target we're vectorizing for, to make sure none of the 1942 // additional fp-math flags can help. 1943 if (Hints.isPotentiallyUnsafe() && 1944 TTI->isFPVectorizationPotentiallyUnsafe()) { 1945 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 1946 emitAnalysisDiag(F, L, Hints, 1947 VectorizationReport() 1948 << "loop not vectorized due to unsafe FP support."); 1949 emitMissedWarning(F, L, Hints); 1950 return false; 1951 } 1952 1953 // Select the optimal vectorization factor. 1954 const LoopVectorizationCostModel::VectorizationFactor VF = 1955 CM.selectVectorizationFactor(OptForSize); 1956 1957 // Select the interleave count. 1958 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1959 1960 // Get user interleave count. 1961 unsigned UserIC = Hints.getInterleave(); 1962 1963 // Identify the diagnostic messages that should be produced. 1964 std::string VecDiagMsg, IntDiagMsg; 1965 bool VectorizeLoop = true, InterleaveLoop = true; 1966 1967 if (Requirements.doesNotMeet(F, L, Hints)) { 1968 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1969 "requirements.\n"); 1970 emitMissedWarning(F, L, Hints); 1971 return false; 1972 } 1973 1974 if (VF.Width == 1) { 1975 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1976 VecDiagMsg = 1977 "the cost-model indicates that vectorization is not beneficial"; 1978 VectorizeLoop = false; 1979 } 1980 1981 if (IC == 1 && UserIC <= 1) { 1982 // Tell the user interleaving is not beneficial. 1983 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1984 IntDiagMsg = 1985 "the cost-model indicates that interleaving is not beneficial"; 1986 InterleaveLoop = false; 1987 if (UserIC == 1) 1988 IntDiagMsg += 1989 " and is explicitly disabled or interleave count is set to 1"; 1990 } else if (IC > 1 && UserIC == 1) { 1991 // Tell the user interleaving is beneficial, but it explicitly disabled. 1992 DEBUG(dbgs() 1993 << "LV: Interleaving is beneficial but is explicitly disabled."); 1994 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1995 "but is explicitly disabled or interleave count is set to 1"; 1996 InterleaveLoop = false; 1997 } 1998 1999 // Override IC if user provided an interleave count. 2000 IC = UserIC > 0 ? UserIC : IC; 2001 2002 // Emit diagnostic messages, if any. 2003 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 2004 if (!VectorizeLoop && !InterleaveLoop) { 2005 // Do not vectorize or interleaving the loop. 2006 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2007 L->getStartLoc(), VecDiagMsg); 2008 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2009 L->getStartLoc(), IntDiagMsg); 2010 return false; 2011 } else if (!VectorizeLoop && InterleaveLoop) { 2012 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2013 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2014 L->getStartLoc(), VecDiagMsg); 2015 } else if (VectorizeLoop && !InterleaveLoop) { 2016 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2017 << DebugLocStr << '\n'); 2018 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2019 L->getStartLoc(), IntDiagMsg); 2020 } else if (VectorizeLoop && InterleaveLoop) { 2021 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2022 << DebugLocStr << '\n'); 2023 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2024 } 2025 2026 if (!VectorizeLoop) { 2027 assert(IC > 1 && "interleave count should not be 1 or 0"); 2028 // If we decided that it is not legal to vectorize the loop, then 2029 // interleave it. 2030 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 2031 Unroller.vectorize(&LVL, CM.MinBWs); 2032 2033 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2034 Twine("interleaved loop (interleaved count: ") + 2035 Twine(IC) + ")"); 2036 } else { 2037 // If we decided that it is *legal* to vectorize the loop, then do it. 2038 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2039 LB.vectorize(&LVL, CM.MinBWs); 2040 ++LoopsVectorized; 2041 2042 // Add metadata to disable runtime unrolling a scalar loop when there are 2043 // no runtime checks about strides and memory. A scalar loop that is 2044 // rarely used is not worth unrolling. 2045 if (!LB.areSafetyChecksAdded()) 2046 AddRuntimeUnrollDisableMetaData(L); 2047 2048 // Report the vectorization decision. 2049 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2050 Twine("vectorized loop (vectorization width: ") + 2051 Twine(VF.Width) + ", interleaved count: " + 2052 Twine(IC) + ")"); 2053 } 2054 2055 // Mark the loop as already vectorized to avoid vectorizing again. 2056 Hints.setAlreadyVectorized(); 2057 2058 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2059 return true; 2060 } 2061 2062 void getAnalysisUsage(AnalysisUsage &AU) const override { 2063 AU.addRequired<AssumptionCacheTracker>(); 2064 AU.addRequiredID(LoopSimplifyID); 2065 AU.addRequiredID(LCSSAID); 2066 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2067 AU.addRequired<DominatorTreeWrapperPass>(); 2068 AU.addRequired<LoopInfoWrapperPass>(); 2069 AU.addRequired<ScalarEvolutionWrapperPass>(); 2070 AU.addRequired<TargetTransformInfoWrapperPass>(); 2071 AU.addRequired<AAResultsWrapperPass>(); 2072 AU.addRequired<LoopAccessAnalysis>(); 2073 AU.addRequired<DemandedBitsWrapperPass>(); 2074 AU.addPreserved<LoopInfoWrapperPass>(); 2075 AU.addPreserved<DominatorTreeWrapperPass>(); 2076 AU.addPreserved<BasicAAWrapperPass>(); 2077 AU.addPreserved<GlobalsAAWrapperPass>(); 2078 } 2079 }; 2080 2081 } // end anonymous namespace 2082 2083 //===----------------------------------------------------------------------===// 2084 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2085 // LoopVectorizationCostModel. 2086 //===----------------------------------------------------------------------===// 2087 2088 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2089 // We need to place the broadcast of invariant variables outside the loop. 2090 Instruction *Instr = dyn_cast<Instruction>(V); 2091 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2092 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2093 2094 // Place the code for broadcasting invariant variables in the new preheader. 2095 IRBuilder<>::InsertPointGuard Guard(Builder); 2096 if (Invariant) 2097 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2098 2099 // Broadcast the scalar into all locations in the vector. 2100 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2101 2102 return Shuf; 2103 } 2104 2105 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2106 const SCEV *StepSCEV) { 2107 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2108 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2109 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 2110 &*Builder.GetInsertPoint()); 2111 return getStepVector(Val, StartIdx, StepValue); 2112 } 2113 2114 void InnerLoopVectorizer::widenInductionVariable(const InductionDescriptor &II, 2115 VectorParts &Entry, 2116 IntegerType *TruncType) { 2117 Value *Start = II.getStartValue(); 2118 ConstantInt *Step = II.getConstIntStepValue(); 2119 assert(Step && "Can not widen an IV with a non-constant step"); 2120 2121 // Construct the initial value of the vector IV in the vector loop preheader 2122 auto CurrIP = Builder.saveIP(); 2123 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2124 if (TruncType) { 2125 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2126 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2127 } 2128 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2129 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2130 Builder.restoreIP(CurrIP); 2131 2132 Value *SplatVF = 2133 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2134 VF * Step->getSExtValue())); 2135 // We may need to add the step a number of times, depending on the unroll 2136 // factor. The last of those goes into the PHI. 2137 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2138 &*LoopVectorBody->getFirstInsertionPt()); 2139 Value *LastInduction = VecInd; 2140 for (unsigned Part = 0; Part < UF; ++Part) { 2141 Entry[Part] = LastInduction; 2142 LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add"); 2143 } 2144 2145 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2146 VecInd->addIncoming(LastInduction, LoopVectorBody); 2147 } 2148 2149 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2150 Value *Step) { 2151 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2152 assert(Val->getType()->getScalarType()->isIntegerTy() && 2153 "Elem must be an integer"); 2154 assert(Step->getType() == Val->getType()->getScalarType() && 2155 "Step has wrong type"); 2156 // Create the types. 2157 Type *ITy = Val->getType()->getScalarType(); 2158 VectorType *Ty = cast<VectorType>(Val->getType()); 2159 int VLen = Ty->getNumElements(); 2160 SmallVector<Constant *, 8> Indices; 2161 2162 // Create a vector of consecutive numbers from zero to VF. 2163 for (int i = 0; i < VLen; ++i) 2164 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2165 2166 // Add the consecutive indices to the vector value. 2167 Constant *Cv = ConstantVector::get(Indices); 2168 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2169 Step = Builder.CreateVectorSplat(VLen, Step); 2170 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2171 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2172 // which can be found from the original scalar operations. 2173 Step = Builder.CreateMul(Cv, Step); 2174 return Builder.CreateAdd(Val, Step, "induction"); 2175 } 2176 2177 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2178 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2179 auto *SE = PSE.getSE(); 2180 // Make sure that the pointer does not point to structs. 2181 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2182 return 0; 2183 2184 // If this value is a pointer induction variable, we know it is consecutive. 2185 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2186 if (Phi && Inductions.count(Phi)) { 2187 InductionDescriptor II = Inductions[Phi]; 2188 return II.getConsecutiveDirection(); 2189 } 2190 2191 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2192 if (!Gep) 2193 return 0; 2194 2195 unsigned NumOperands = Gep->getNumOperands(); 2196 Value *GpPtr = Gep->getPointerOperand(); 2197 // If this GEP value is a consecutive pointer induction variable and all of 2198 // the indices are constant, then we know it is consecutive. 2199 Phi = dyn_cast<PHINode>(GpPtr); 2200 if (Phi && Inductions.count(Phi)) { 2201 2202 // Make sure that the pointer does not point to structs. 2203 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2204 if (GepPtrType->getElementType()->isAggregateType()) 2205 return 0; 2206 2207 // Make sure that all of the index operands are loop invariant. 2208 for (unsigned i = 1; i < NumOperands; ++i) 2209 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2210 return 0; 2211 2212 InductionDescriptor II = Inductions[Phi]; 2213 return II.getConsecutiveDirection(); 2214 } 2215 2216 unsigned InductionOperand = getGEPInductionOperand(Gep); 2217 2218 // Check that all of the gep indices are uniform except for our induction 2219 // operand. 2220 for (unsigned i = 0; i != NumOperands; ++i) 2221 if (i != InductionOperand && 2222 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2223 return 0; 2224 2225 // We can emit wide load/stores only if the last non-zero index is the 2226 // induction variable. 2227 const SCEV *Last = nullptr; 2228 if (!Strides.count(Gep)) 2229 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2230 else { 2231 // Because of the multiplication by a stride we can have a s/zext cast. 2232 // We are going to replace this stride by 1 so the cast is safe to ignore. 2233 // 2234 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2235 // %0 = trunc i64 %indvars.iv to i32 2236 // %mul = mul i32 %0, %Stride1 2237 // %idxprom = zext i32 %mul to i64 << Safe cast. 2238 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2239 // 2240 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2241 Gep->getOperand(InductionOperand), Gep); 2242 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2243 Last = 2244 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2245 ? C->getOperand() 2246 : Last; 2247 } 2248 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2249 const SCEV *Step = AR->getStepRecurrence(*SE); 2250 2251 // The memory is consecutive because the last index is consecutive 2252 // and all other indices are loop invariant. 2253 if (Step->isOne()) 2254 return 1; 2255 if (Step->isAllOnesValue()) 2256 return -1; 2257 } 2258 2259 return 0; 2260 } 2261 2262 bool LoopVectorizationLegality::isUniform(Value *V) { 2263 return LAI->isUniform(V); 2264 } 2265 2266 InnerLoopVectorizer::VectorParts & 2267 InnerLoopVectorizer::getVectorValue(Value *V) { 2268 assert(V != Induction && "The new induction variable should not be used."); 2269 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2270 2271 // If we have a stride that is replaced by one, do it here. 2272 if (Legal->hasStride(V)) 2273 V = ConstantInt::get(V->getType(), 1); 2274 2275 // If we have this scalar in the map, return it. 2276 if (WidenMap.has(V)) 2277 return WidenMap.get(V); 2278 2279 // If this scalar is unknown, assume that it is a constant or that it is 2280 // loop invariant. Broadcast V and save the value for future uses. 2281 Value *B = getBroadcastInstrs(V); 2282 return WidenMap.splat(V, B); 2283 } 2284 2285 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2286 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2287 SmallVector<Constant *, 8> ShuffleMask; 2288 for (unsigned i = 0; i < VF; ++i) 2289 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2290 2291 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2292 ConstantVector::get(ShuffleMask), 2293 "reverse"); 2294 } 2295 2296 // Get a mask to interleave \p NumVec vectors into a wide vector. 2297 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2298 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2299 // <0, 4, 1, 5, 2, 6, 3, 7> 2300 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2301 unsigned NumVec) { 2302 SmallVector<Constant *, 16> Mask; 2303 for (unsigned i = 0; i < VF; i++) 2304 for (unsigned j = 0; j < NumVec; j++) 2305 Mask.push_back(Builder.getInt32(j * VF + i)); 2306 2307 return ConstantVector::get(Mask); 2308 } 2309 2310 // Get the strided mask starting from index \p Start. 2311 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2312 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2313 unsigned Stride, unsigned VF) { 2314 SmallVector<Constant *, 16> Mask; 2315 for (unsigned i = 0; i < VF; i++) 2316 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2317 2318 return ConstantVector::get(Mask); 2319 } 2320 2321 // Get a mask of two parts: The first part consists of sequential integers 2322 // starting from 0, The second part consists of UNDEFs. 2323 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2324 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2325 unsigned NumUndef) { 2326 SmallVector<Constant *, 16> Mask; 2327 for (unsigned i = 0; i < NumInt; i++) 2328 Mask.push_back(Builder.getInt32(i)); 2329 2330 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2331 for (unsigned i = 0; i < NumUndef; i++) 2332 Mask.push_back(Undef); 2333 2334 return ConstantVector::get(Mask); 2335 } 2336 2337 // Concatenate two vectors with the same element type. The 2nd vector should 2338 // not have more elements than the 1st vector. If the 2nd vector has less 2339 // elements, extend it with UNDEFs. 2340 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2341 Value *V2) { 2342 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2343 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2344 assert(VecTy1 && VecTy2 && 2345 VecTy1->getScalarType() == VecTy2->getScalarType() && 2346 "Expect two vectors with the same element type"); 2347 2348 unsigned NumElts1 = VecTy1->getNumElements(); 2349 unsigned NumElts2 = VecTy2->getNumElements(); 2350 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2351 2352 if (NumElts1 > NumElts2) { 2353 // Extend with UNDEFs. 2354 Constant *ExtMask = 2355 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2356 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2357 } 2358 2359 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2360 return Builder.CreateShuffleVector(V1, V2, Mask); 2361 } 2362 2363 // Concatenate vectors in the given list. All vectors have the same type. 2364 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2365 ArrayRef<Value *> InputList) { 2366 unsigned NumVec = InputList.size(); 2367 assert(NumVec > 1 && "Should be at least two vectors"); 2368 2369 SmallVector<Value *, 8> ResList; 2370 ResList.append(InputList.begin(), InputList.end()); 2371 do { 2372 SmallVector<Value *, 8> TmpList; 2373 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2374 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2375 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2376 "Only the last vector may have a different type"); 2377 2378 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2379 } 2380 2381 // Push the last vector if the total number of vectors is odd. 2382 if (NumVec % 2 != 0) 2383 TmpList.push_back(ResList[NumVec - 1]); 2384 2385 ResList = TmpList; 2386 NumVec = ResList.size(); 2387 } while (NumVec > 1); 2388 2389 return ResList[0]; 2390 } 2391 2392 // Try to vectorize the interleave group that \p Instr belongs to. 2393 // 2394 // E.g. Translate following interleaved load group (factor = 3): 2395 // for (i = 0; i < N; i+=3) { 2396 // R = Pic[i]; // Member of index 0 2397 // G = Pic[i+1]; // Member of index 1 2398 // B = Pic[i+2]; // Member of index 2 2399 // ... // do something to R, G, B 2400 // } 2401 // To: 2402 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2403 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2404 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2405 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2406 // 2407 // Or translate following interleaved store group (factor = 3): 2408 // for (i = 0; i < N; i+=3) { 2409 // ... do something to R, G, B 2410 // Pic[i] = R; // Member of index 0 2411 // Pic[i+1] = G; // Member of index 1 2412 // Pic[i+2] = B; // Member of index 2 2413 // } 2414 // To: 2415 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2416 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2417 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2418 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2419 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2420 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2421 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2422 assert(Group && "Fail to get an interleaved access group."); 2423 2424 // Skip if current instruction is not the insert position. 2425 if (Instr != Group->getInsertPos()) 2426 return; 2427 2428 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2429 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2430 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2431 2432 // Prepare for the vector type of the interleaved load/store. 2433 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2434 unsigned InterleaveFactor = Group->getFactor(); 2435 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2436 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2437 2438 // Prepare for the new pointers. 2439 setDebugLocFromInst(Builder, Ptr); 2440 VectorParts &PtrParts = getVectorValue(Ptr); 2441 SmallVector<Value *, 2> NewPtrs; 2442 unsigned Index = Group->getIndex(Instr); 2443 for (unsigned Part = 0; Part < UF; Part++) { 2444 // Extract the pointer for current instruction from the pointer vector. A 2445 // reverse access uses the pointer in the last lane. 2446 Value *NewPtr = Builder.CreateExtractElement( 2447 PtrParts[Part], 2448 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2449 2450 // Notice current instruction could be any index. Need to adjust the address 2451 // to the member of index 0. 2452 // 2453 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2454 // b = A[i]; // Member of index 0 2455 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2456 // 2457 // E.g. A[i+1] = a; // Member of index 1 2458 // A[i] = b; // Member of index 0 2459 // A[i+2] = c; // Member of index 2 (Current instruction) 2460 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2461 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2462 2463 // Cast to the vector pointer type. 2464 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2465 } 2466 2467 setDebugLocFromInst(Builder, Instr); 2468 Value *UndefVec = UndefValue::get(VecTy); 2469 2470 // Vectorize the interleaved load group. 2471 if (LI) { 2472 for (unsigned Part = 0; Part < UF; Part++) { 2473 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2474 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2475 2476 for (unsigned i = 0; i < InterleaveFactor; i++) { 2477 Instruction *Member = Group->getMember(i); 2478 2479 // Skip the gaps in the group. 2480 if (!Member) 2481 continue; 2482 2483 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2484 Value *StridedVec = Builder.CreateShuffleVector( 2485 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2486 2487 // If this member has different type, cast the result type. 2488 if (Member->getType() != ScalarTy) { 2489 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2490 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2491 } 2492 2493 VectorParts &Entry = WidenMap.get(Member); 2494 Entry[Part] = 2495 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2496 } 2497 2498 addMetadata(NewLoadInstr, Instr); 2499 } 2500 return; 2501 } 2502 2503 // The sub vector type for current instruction. 2504 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2505 2506 // Vectorize the interleaved store group. 2507 for (unsigned Part = 0; Part < UF; Part++) { 2508 // Collect the stored vector from each member. 2509 SmallVector<Value *, 4> StoredVecs; 2510 for (unsigned i = 0; i < InterleaveFactor; i++) { 2511 // Interleaved store group doesn't allow a gap, so each index has a member 2512 Instruction *Member = Group->getMember(i); 2513 assert(Member && "Fail to get a member from an interleaved store group"); 2514 2515 Value *StoredVec = 2516 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2517 if (Group->isReverse()) 2518 StoredVec = reverseVector(StoredVec); 2519 2520 // If this member has different type, cast it to an unified type. 2521 if (StoredVec->getType() != SubVT) 2522 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2523 2524 StoredVecs.push_back(StoredVec); 2525 } 2526 2527 // Concatenate all vectors into a wide vector. 2528 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2529 2530 // Interleave the elements in the wide vector. 2531 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2532 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2533 "interleaved.vec"); 2534 2535 Instruction *NewStoreInstr = 2536 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2537 addMetadata(NewStoreInstr, Instr); 2538 } 2539 } 2540 2541 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2542 // Attempt to issue a wide load. 2543 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2544 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2545 2546 assert((LI || SI) && "Invalid Load/Store instruction"); 2547 2548 // Try to vectorize the interleave group if this access is interleaved. 2549 if (Legal->isAccessInterleaved(Instr)) 2550 return vectorizeInterleaveGroup(Instr); 2551 2552 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2553 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2554 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2555 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2556 // An alignment of 0 means target abi alignment. We need to use the scalar's 2557 // target abi alignment in such a case. 2558 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2559 if (!Alignment) 2560 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2561 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2562 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2563 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2564 2565 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2566 !Legal->isMaskRequired(SI)) 2567 return scalarizeInstruction(Instr, true); 2568 2569 if (ScalarAllocatedSize != VectorElementSize) 2570 return scalarizeInstruction(Instr); 2571 2572 // If the pointer is loop invariant scalarize the load. 2573 if (LI && Legal->isUniform(Ptr)) 2574 return scalarizeInstruction(Instr); 2575 2576 // If the pointer is non-consecutive and gather/scatter is not supported 2577 // scalarize the instruction. 2578 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2579 bool Reverse = ConsecutiveStride < 0; 2580 bool CreateGatherScatter = 2581 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2582 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2583 2584 if (!ConsecutiveStride && !CreateGatherScatter) 2585 return scalarizeInstruction(Instr); 2586 2587 Constant *Zero = Builder.getInt32(0); 2588 VectorParts &Entry = WidenMap.get(Instr); 2589 VectorParts VectorGep; 2590 2591 // Handle consecutive loads/stores. 2592 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2593 if (ConsecutiveStride) { 2594 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2595 setDebugLocFromInst(Builder, Gep); 2596 Value *PtrOperand = Gep->getPointerOperand(); 2597 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2598 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2599 2600 // Create the new GEP with the new induction variable. 2601 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2602 Gep2->setOperand(0, FirstBasePtr); 2603 Gep2->setName("gep.indvar.base"); 2604 Ptr = Builder.Insert(Gep2); 2605 } else if (Gep) { 2606 setDebugLocFromInst(Builder, Gep); 2607 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2608 OrigLoop) && 2609 "Base ptr must be invariant"); 2610 // The last index does not have to be the induction. It can be 2611 // consecutive and be a function of the index. For example A[I+1]; 2612 unsigned NumOperands = Gep->getNumOperands(); 2613 unsigned InductionOperand = getGEPInductionOperand(Gep); 2614 // Create the new GEP with the new induction variable. 2615 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2616 2617 for (unsigned i = 0; i < NumOperands; ++i) { 2618 Value *GepOperand = Gep->getOperand(i); 2619 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2620 2621 // Update last index or loop invariant instruction anchored in loop. 2622 if (i == InductionOperand || 2623 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2624 assert((i == InductionOperand || 2625 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2626 OrigLoop)) && 2627 "Must be last index or loop invariant"); 2628 2629 VectorParts &GEPParts = getVectorValue(GepOperand); 2630 Value *Index = GEPParts[0]; 2631 Index = Builder.CreateExtractElement(Index, Zero); 2632 Gep2->setOperand(i, Index); 2633 Gep2->setName("gep.indvar.idx"); 2634 } 2635 } 2636 Ptr = Builder.Insert(Gep2); 2637 } else { // No GEP 2638 // Use the induction element ptr. 2639 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2640 setDebugLocFromInst(Builder, Ptr); 2641 VectorParts &PtrVal = getVectorValue(Ptr); 2642 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2643 } 2644 } else { 2645 // At this point we should vector version of GEP for Gather or Scatter 2646 assert(CreateGatherScatter && "The instruction should be scalarized"); 2647 if (Gep) { 2648 SmallVector<VectorParts, 4> OpsV; 2649 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2650 // base or index of GEP scalar 2651 for (Value *Op : Gep->operands()) { 2652 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2653 OpsV.push_back(VectorParts(UF, Op)); 2654 else 2655 OpsV.push_back(getVectorValue(Op)); 2656 } 2657 2658 for (unsigned Part = 0; Part < UF; ++Part) { 2659 SmallVector<Value *, 4> Ops; 2660 Value *GEPBasePtr = OpsV[0][Part]; 2661 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2662 Ops.push_back(OpsV[i][Part]); 2663 Value *NewGep = 2664 Builder.CreateGEP(nullptr, GEPBasePtr, Ops, "VectorGep"); 2665 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2666 NewGep = 2667 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2668 VectorGep.push_back(NewGep); 2669 } 2670 } else 2671 VectorGep = getVectorValue(Ptr); 2672 } 2673 2674 VectorParts Mask = createBlockInMask(Instr->getParent()); 2675 // Handle Stores: 2676 if (SI) { 2677 assert(!Legal->isUniform(SI->getPointerOperand()) && 2678 "We do not allow storing to uniform addresses"); 2679 setDebugLocFromInst(Builder, SI); 2680 // We don't want to update the value in the map as it might be used in 2681 // another expression. So don't use a reference type for "StoredVal". 2682 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2683 2684 for (unsigned Part = 0; Part < UF; ++Part) { 2685 Instruction *NewSI = nullptr; 2686 if (CreateGatherScatter) { 2687 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2688 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2689 Alignment, MaskPart); 2690 } else { 2691 // Calculate the pointer for the specific unroll-part. 2692 Value *PartPtr = 2693 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2694 2695 if (Reverse) { 2696 // If we store to reverse consecutive memory locations, then we need 2697 // to reverse the order of elements in the stored value. 2698 StoredVal[Part] = reverseVector(StoredVal[Part]); 2699 // If the address is consecutive but reversed, then the 2700 // wide store needs to start at the last vector element. 2701 PartPtr = 2702 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2703 PartPtr = 2704 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2705 Mask[Part] = reverseVector(Mask[Part]); 2706 } 2707 2708 Value *VecPtr = 2709 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2710 2711 if (Legal->isMaskRequired(SI)) 2712 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2713 Mask[Part]); 2714 else 2715 NewSI = 2716 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2717 } 2718 addMetadata(NewSI, SI); 2719 } 2720 return; 2721 } 2722 2723 // Handle loads. 2724 assert(LI && "Must have a load instruction"); 2725 setDebugLocFromInst(Builder, LI); 2726 for (unsigned Part = 0; Part < UF; ++Part) { 2727 Instruction *NewLI; 2728 if (CreateGatherScatter) { 2729 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2730 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2731 0, "wide.masked.gather"); 2732 Entry[Part] = NewLI; 2733 } else { 2734 // Calculate the pointer for the specific unroll-part. 2735 Value *PartPtr = 2736 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2737 2738 if (Reverse) { 2739 // If the address is consecutive but reversed, then the 2740 // wide load needs to start at the last vector element. 2741 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2742 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2743 Mask[Part] = reverseVector(Mask[Part]); 2744 } 2745 2746 Value *VecPtr = 2747 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2748 if (Legal->isMaskRequired(LI)) 2749 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2750 UndefValue::get(DataTy), 2751 "wide.masked.load"); 2752 else 2753 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2754 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2755 } 2756 addMetadata(NewLI, LI); 2757 } 2758 } 2759 2760 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2761 bool IfPredicateStore) { 2762 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2763 // Holds vector parameters or scalars, in case of uniform vals. 2764 SmallVector<VectorParts, 4> Params; 2765 2766 setDebugLocFromInst(Builder, Instr); 2767 2768 // Find all of the vectorized parameters. 2769 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2770 Value *SrcOp = Instr->getOperand(op); 2771 2772 // If we are accessing the old induction variable, use the new one. 2773 if (SrcOp == OldInduction) { 2774 Params.push_back(getVectorValue(SrcOp)); 2775 continue; 2776 } 2777 2778 // Try using previously calculated values. 2779 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2780 2781 // If the src is an instruction that appeared earlier in the basic block, 2782 // then it should already be vectorized. 2783 if (SrcInst && OrigLoop->contains(SrcInst)) { 2784 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2785 // The parameter is a vector value from earlier. 2786 Params.push_back(WidenMap.get(SrcInst)); 2787 } else { 2788 // The parameter is a scalar from outside the loop. Maybe even a constant. 2789 VectorParts Scalars; 2790 Scalars.append(UF, SrcOp); 2791 Params.push_back(Scalars); 2792 } 2793 } 2794 2795 assert(Params.size() == Instr->getNumOperands() && 2796 "Invalid number of operands"); 2797 2798 // Does this instruction return a value ? 2799 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2800 2801 Value *UndefVec = 2802 IsVoidRetTy ? nullptr 2803 : UndefValue::get(VectorType::get(Instr->getType(), VF)); 2804 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2805 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2806 2807 VectorParts Cond; 2808 if (IfPredicateStore) { 2809 assert(Instr->getParent()->getSinglePredecessor() && 2810 "Only support single predecessor blocks"); 2811 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2812 Instr->getParent()); 2813 } 2814 2815 // For each vector unroll 'part': 2816 for (unsigned Part = 0; Part < UF; ++Part) { 2817 // For each scalar that we create: 2818 for (unsigned Width = 0; Width < VF; ++Width) { 2819 2820 // Start if-block. 2821 Value *Cmp = nullptr; 2822 if (IfPredicateStore) { 2823 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2824 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2825 ConstantInt::get(Cmp->getType(), 1)); 2826 } 2827 2828 Instruction *Cloned = Instr->clone(); 2829 if (!IsVoidRetTy) 2830 Cloned->setName(Instr->getName() + ".cloned"); 2831 // Replace the operands of the cloned instructions with extracted scalars. 2832 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2833 Value *Op = Params[op][Part]; 2834 // Param is a vector. Need to extract the right lane. 2835 if (Op->getType()->isVectorTy()) 2836 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2837 Cloned->setOperand(op, Op); 2838 } 2839 addNewMetadata(Cloned, Instr); 2840 2841 // Place the cloned scalar in the new loop. 2842 Builder.Insert(Cloned); 2843 2844 // If we just cloned a new assumption, add it the assumption cache. 2845 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2846 if (II->getIntrinsicID() == Intrinsic::assume) 2847 AC->registerAssumption(II); 2848 2849 // If the original scalar returns a value we need to place it in a vector 2850 // so that future users will be able to use it. 2851 if (!IsVoidRetTy) 2852 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2853 Builder.getInt32(Width)); 2854 // End if-block. 2855 if (IfPredicateStore) 2856 PredicatedStores.push_back( 2857 std::make_pair(cast<StoreInst>(Cloned), Cmp)); 2858 } 2859 } 2860 } 2861 2862 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2863 Value *End, Value *Step, 2864 Instruction *DL) { 2865 BasicBlock *Header = L->getHeader(); 2866 BasicBlock *Latch = L->getLoopLatch(); 2867 // As we're just creating this loop, it's possible no latch exists 2868 // yet. If so, use the header as this will be a single block loop. 2869 if (!Latch) 2870 Latch = Header; 2871 2872 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2873 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2874 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2875 2876 Builder.SetInsertPoint(Latch->getTerminator()); 2877 2878 // Create i+1 and fill the PHINode. 2879 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2880 Induction->addIncoming(Start, L->getLoopPreheader()); 2881 Induction->addIncoming(Next, Latch); 2882 // Create the compare. 2883 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2884 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2885 2886 // Now we have two terminators. Remove the old one from the block. 2887 Latch->getTerminator()->eraseFromParent(); 2888 2889 return Induction; 2890 } 2891 2892 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2893 if (TripCount) 2894 return TripCount; 2895 2896 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2897 // Find the loop boundaries. 2898 ScalarEvolution *SE = PSE.getSE(); 2899 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2900 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2901 "Invalid loop count"); 2902 2903 Type *IdxTy = Legal->getWidestInductionType(); 2904 2905 // The exit count might have the type of i64 while the phi is i32. This can 2906 // happen if we have an induction variable that is sign extended before the 2907 // compare. The only way that we get a backedge taken count is that the 2908 // induction variable was signed and as such will not overflow. In such a case 2909 // truncation is legal. 2910 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2911 IdxTy->getPrimitiveSizeInBits()) 2912 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2913 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2914 2915 // Get the total trip count from the count by adding 1. 2916 const SCEV *ExitCount = SE->getAddExpr( 2917 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2918 2919 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2920 2921 // Expand the trip count and place the new instructions in the preheader. 2922 // Notice that the pre-header does not change, only the loop body. 2923 SCEVExpander Exp(*SE, DL, "induction"); 2924 2925 // Count holds the overall loop count (N). 2926 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2927 L->getLoopPreheader()->getTerminator()); 2928 2929 if (TripCount->getType()->isPointerTy()) 2930 TripCount = 2931 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2932 L->getLoopPreheader()->getTerminator()); 2933 2934 return TripCount; 2935 } 2936 2937 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2938 if (VectorTripCount) 2939 return VectorTripCount; 2940 2941 Value *TC = getOrCreateTripCount(L); 2942 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2943 2944 // Now we need to generate the expression for the part of the loop that the 2945 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2946 // iterations are not required for correctness, or N - Step, otherwise. Step 2947 // is equal to the vectorization factor (number of SIMD elements) times the 2948 // unroll factor (number of SIMD instructions). 2949 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2950 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2951 2952 // If there is a non-reversed interleaved group that may speculatively access 2953 // memory out-of-bounds, we need to ensure that there will be at least one 2954 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2955 // the trip count, we set the remainder to be equal to the step. If the step 2956 // does not evenly divide the trip count, no adjustment is necessary since 2957 // there will already be scalar iterations. Note that the minimum iterations 2958 // check ensures that N >= Step. 2959 if (VF > 1 && Legal->requiresScalarEpilogue()) { 2960 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2961 R = Builder.CreateSelect(IsZero, Step, R); 2962 } 2963 2964 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2965 2966 return VectorTripCount; 2967 } 2968 2969 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2970 BasicBlock *Bypass) { 2971 Value *Count = getOrCreateTripCount(L); 2972 BasicBlock *BB = L->getLoopPreheader(); 2973 IRBuilder<> Builder(BB->getTerminator()); 2974 2975 // Generate code to check that the loop's trip count that we computed by 2976 // adding one to the backedge-taken count will not overflow. 2977 Value *CheckMinIters = Builder.CreateICmpULT( 2978 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2979 2980 BasicBlock *NewBB = 2981 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 2982 // Update dominator tree immediately if the generated block is a 2983 // LoopBypassBlock because SCEV expansions to generate loop bypass 2984 // checks may query it before the current function is finished. 2985 DT->addNewBlock(NewBB, BB); 2986 if (L->getParentLoop()) 2987 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2988 ReplaceInstWithInst(BB->getTerminator(), 2989 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2990 LoopBypassBlocks.push_back(BB); 2991 } 2992 2993 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2994 BasicBlock *Bypass) { 2995 Value *TC = getOrCreateVectorTripCount(L); 2996 BasicBlock *BB = L->getLoopPreheader(); 2997 IRBuilder<> Builder(BB->getTerminator()); 2998 2999 // Now, compare the new count to zero. If it is zero skip the vector loop and 3000 // jump to the scalar loop. 3001 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3002 "cmp.zero"); 3003 3004 // Generate code to check that the loop's trip count that we computed by 3005 // adding one to the backedge-taken count will not overflow. 3006 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3007 // Update dominator tree immediately if the generated block is a 3008 // LoopBypassBlock because SCEV expansions to generate loop bypass 3009 // checks may query it before the current function is finished. 3010 DT->addNewBlock(NewBB, BB); 3011 if (L->getParentLoop()) 3012 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3013 ReplaceInstWithInst(BB->getTerminator(), 3014 BranchInst::Create(Bypass, NewBB, Cmp)); 3015 LoopBypassBlocks.push_back(BB); 3016 } 3017 3018 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3019 BasicBlock *BB = L->getLoopPreheader(); 3020 3021 // Generate the code to check that the SCEV assumptions that we made. 3022 // We want the new basic block to start at the first instruction in a 3023 // sequence of instructions that form a check. 3024 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3025 "scev.check"); 3026 Value *SCEVCheck = 3027 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3028 3029 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3030 if (C->isZero()) 3031 return; 3032 3033 // Create a new block containing the stride check. 3034 BB->setName("vector.scevcheck"); 3035 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3036 // Update dominator tree immediately if the generated block is a 3037 // LoopBypassBlock because SCEV expansions to generate loop bypass 3038 // checks may query it before the current function is finished. 3039 DT->addNewBlock(NewBB, BB); 3040 if (L->getParentLoop()) 3041 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3042 ReplaceInstWithInst(BB->getTerminator(), 3043 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3044 LoopBypassBlocks.push_back(BB); 3045 AddedSafetyChecks = true; 3046 } 3047 3048 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3049 BasicBlock *BB = L->getLoopPreheader(); 3050 3051 // Generate the code that checks in runtime if arrays overlap. We put the 3052 // checks into a separate block to make the more common case of few elements 3053 // faster. 3054 Instruction *FirstCheckInst; 3055 Instruction *MemRuntimeCheck; 3056 std::tie(FirstCheckInst, MemRuntimeCheck) = 3057 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3058 if (!MemRuntimeCheck) 3059 return; 3060 3061 // Create a new block containing the memory check. 3062 BB->setName("vector.memcheck"); 3063 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3064 // Update dominator tree immediately if the generated block is a 3065 // LoopBypassBlock because SCEV expansions to generate loop bypass 3066 // checks may query it before the current function is finished. 3067 DT->addNewBlock(NewBB, BB); 3068 if (L->getParentLoop()) 3069 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3070 ReplaceInstWithInst(BB->getTerminator(), 3071 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3072 LoopBypassBlocks.push_back(BB); 3073 AddedSafetyChecks = true; 3074 3075 // We currently don't use LoopVersioning for the actual loop cloning but we 3076 // still use it to add the noalias metadata. 3077 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3078 PSE.getSE()); 3079 LVer->prepareNoAliasMetadata(); 3080 } 3081 3082 void InnerLoopVectorizer::createEmptyLoop() { 3083 /* 3084 In this function we generate a new loop. The new loop will contain 3085 the vectorized instructions while the old loop will continue to run the 3086 scalar remainder. 3087 3088 [ ] <-- loop iteration number check. 3089 / | 3090 / v 3091 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3092 | / | 3093 | / v 3094 || [ ] <-- vector pre header. 3095 |/ | 3096 | v 3097 | [ ] \ 3098 | [ ]_| <-- vector loop. 3099 | | 3100 | v 3101 | -[ ] <--- middle-block. 3102 | / | 3103 | / v 3104 -|- >[ ] <--- new preheader. 3105 | | 3106 | v 3107 | [ ] \ 3108 | [ ]_| <-- old scalar loop to handle remainder. 3109 \ | 3110 \ v 3111 >[ ] <-- exit block. 3112 ... 3113 */ 3114 3115 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3116 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3117 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3118 assert(VectorPH && "Invalid loop structure"); 3119 assert(ExitBlock && "Must have an exit block"); 3120 3121 // Some loops have a single integer induction variable, while other loops 3122 // don't. One example is c++ iterators that often have multiple pointer 3123 // induction variables. In the code below we also support a case where we 3124 // don't have a single induction variable. 3125 // 3126 // We try to obtain an induction variable from the original loop as hard 3127 // as possible. However if we don't find one that: 3128 // - is an integer 3129 // - counts from zero, stepping by one 3130 // - is the size of the widest induction variable type 3131 // then we create a new one. 3132 OldInduction = Legal->getInduction(); 3133 Type *IdxTy = Legal->getWidestInductionType(); 3134 3135 // Split the single block loop into the two loop structure described above. 3136 BasicBlock *VecBody = 3137 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3138 BasicBlock *MiddleBlock = 3139 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3140 BasicBlock *ScalarPH = 3141 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3142 3143 // Create and register the new vector loop. 3144 Loop *Lp = new Loop(); 3145 Loop *ParentLoop = OrigLoop->getParentLoop(); 3146 3147 // Insert the new loop into the loop nest and register the new basic blocks 3148 // before calling any utilities such as SCEV that require valid LoopInfo. 3149 if (ParentLoop) { 3150 ParentLoop->addChildLoop(Lp); 3151 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3152 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3153 } else { 3154 LI->addTopLevelLoop(Lp); 3155 } 3156 Lp->addBasicBlockToLoop(VecBody, *LI); 3157 3158 // Find the loop boundaries. 3159 Value *Count = getOrCreateTripCount(Lp); 3160 3161 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3162 3163 // We need to test whether the backedge-taken count is uint##_max. Adding one 3164 // to it will cause overflow and an incorrect loop trip count in the vector 3165 // body. In case of overflow we want to directly jump to the scalar remainder 3166 // loop. 3167 emitMinimumIterationCountCheck(Lp, ScalarPH); 3168 // Now, compare the new count to zero. If it is zero skip the vector loop and 3169 // jump to the scalar loop. 3170 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3171 // Generate the code to check any assumptions that we've made for SCEV 3172 // expressions. 3173 emitSCEVChecks(Lp, ScalarPH); 3174 3175 // Generate the code that checks in runtime if arrays overlap. We put the 3176 // checks into a separate block to make the more common case of few elements 3177 // faster. 3178 emitMemRuntimeChecks(Lp, ScalarPH); 3179 3180 // Generate the induction variable. 3181 // The loop step is equal to the vectorization factor (num of SIMD elements) 3182 // times the unroll factor (num of SIMD instructions). 3183 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3184 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3185 Induction = 3186 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3187 getDebugLocFromInstOrOperands(OldInduction)); 3188 3189 // We are going to resume the execution of the scalar loop. 3190 // Go over all of the induction variables that we found and fix the 3191 // PHIs that are left in the scalar version of the loop. 3192 // The starting values of PHI nodes depend on the counter of the last 3193 // iteration in the vectorized loop. 3194 // If we come from a bypass edge then we need to start from the original 3195 // start value. 3196 3197 // This variable saves the new starting index for the scalar loop. It is used 3198 // to test if there are any tail iterations left once the vector loop has 3199 // completed. 3200 LoopVectorizationLegality::InductionList::iterator I, E; 3201 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3202 for (I = List->begin(), E = List->end(); I != E; ++I) { 3203 PHINode *OrigPhi = I->first; 3204 InductionDescriptor II = I->second; 3205 3206 // Create phi nodes to merge from the backedge-taken check block. 3207 PHINode *BCResumeVal = PHINode::Create( 3208 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3209 Value *EndValue; 3210 if (OrigPhi == OldInduction) { 3211 // We know what the end value is. 3212 EndValue = CountRoundDown; 3213 } else { 3214 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3215 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3216 II.getStep()->getType(), "cast.crd"); 3217 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3218 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3219 EndValue->setName("ind.end"); 3220 } 3221 3222 // The new PHI merges the original incoming value, in case of a bypass, 3223 // or the value at the end of the vectorized loop. 3224 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3225 3226 // Fix up external users of the induction variable. 3227 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3228 3229 // Fix the scalar body counter (PHI node). 3230 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3231 3232 // The old induction's phi node in the scalar body needs the truncated 3233 // value. 3234 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3235 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3236 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3237 } 3238 3239 // Add a check in the middle block to see if we have completed 3240 // all of the iterations in the first vector loop. 3241 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3242 Value *CmpN = 3243 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3244 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3245 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3246 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3247 3248 // Get ready to start creating new instructions into the vectorized body. 3249 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3250 3251 // Save the state. 3252 LoopVectorPreHeader = Lp->getLoopPreheader(); 3253 LoopScalarPreHeader = ScalarPH; 3254 LoopMiddleBlock = MiddleBlock; 3255 LoopExitBlock = ExitBlock; 3256 LoopVectorBody = VecBody; 3257 LoopScalarBody = OldBasicBlock; 3258 3259 // Keep all loop hints from the original loop on the vector loop (we'll 3260 // replace the vectorizer-specific hints below). 3261 if (MDNode *LID = OrigLoop->getLoopID()) 3262 Lp->setLoopID(LID); 3263 3264 LoopVectorizeHints Hints(Lp, true); 3265 Hints.setAlreadyVectorized(); 3266 } 3267 3268 // Fix up external users of the induction variable. At this point, we are 3269 // in LCSSA form, with all external PHIs that use the IV having one input value, 3270 // coming from the remainder loop. We need those PHIs to also have a correct 3271 // value for the IV when arriving directly from the middle block. 3272 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3273 const InductionDescriptor &II, 3274 Value *CountRoundDown, Value *EndValue, 3275 BasicBlock *MiddleBlock) { 3276 // There are two kinds of external IV usages - those that use the value 3277 // computed in the last iteration (the PHI) and those that use the penultimate 3278 // value (the value that feeds into the phi from the loop latch). 3279 // We allow both, but they, obviously, have different values. 3280 3281 // We only expect at most one of each kind of user. This is because LCSSA will 3282 // canonicalize the users to a single PHI node per exit block, and we 3283 // currently only vectorize loops with a single exit. 3284 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3285 3286 // An external user of the last iteration's value should see the value that 3287 // the remainder loop uses to initialize its own IV. 3288 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3289 for (User *U : PostInc->users()) { 3290 Instruction *UI = cast<Instruction>(U); 3291 if (!OrigLoop->contains(UI)) { 3292 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3293 // One corner case we have to handle is two IVs "chasing" each-other, 3294 // that is %IV2 = phi [...], [ %IV1, %latch ] 3295 // In this case, if IV1 has an external use, we need to avoid adding both 3296 // "last value of IV1" and "penultimate value of IV2". Since we don't know 3297 // which IV will be handled first, check we haven't handled this user yet. 3298 PHINode *User = cast<PHINode>(UI); 3299 if (User->getBasicBlockIndex(MiddleBlock) == -1) 3300 User->addIncoming(EndValue, MiddleBlock); 3301 break; 3302 } 3303 } 3304 3305 // An external user of the penultimate value need to see EndValue - Step. 3306 // The simplest way to get this is to recompute it from the constituent SCEVs, 3307 // that is Start + (Step * (CRD - 1)). 3308 for (User *U : OrigPhi->users()) { 3309 Instruction *UI = cast<Instruction>(U); 3310 if (!OrigLoop->contains(UI)) { 3311 const DataLayout &DL = 3312 OrigLoop->getHeader()->getModule()->getDataLayout(); 3313 3314 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3315 PHINode *User = cast<PHINode>(UI); 3316 // As above, check we haven't already handled this user. 3317 if (User->getBasicBlockIndex(MiddleBlock) != -1) 3318 break; 3319 3320 IRBuilder<> B(MiddleBlock->getTerminator()); 3321 Value *CountMinusOne = B.CreateSub( 3322 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3323 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3324 "cast.cmo"); 3325 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3326 Escape->setName("ind.escape"); 3327 User->addIncoming(Escape, MiddleBlock); 3328 break; 3329 } 3330 } 3331 } 3332 3333 namespace { 3334 struct CSEDenseMapInfo { 3335 static bool canHandle(Instruction *I) { 3336 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3337 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3338 } 3339 static inline Instruction *getEmptyKey() { 3340 return DenseMapInfo<Instruction *>::getEmptyKey(); 3341 } 3342 static inline Instruction *getTombstoneKey() { 3343 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3344 } 3345 static unsigned getHashValue(Instruction *I) { 3346 assert(canHandle(I) && "Unknown instruction!"); 3347 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3348 I->value_op_end())); 3349 } 3350 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3351 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3352 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3353 return LHS == RHS; 3354 return LHS->isIdenticalTo(RHS); 3355 } 3356 }; 3357 } 3358 3359 ///\brief Perform cse of induction variable instructions. 3360 static void cse(BasicBlock *BB) { 3361 // Perform simple cse. 3362 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3363 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3364 Instruction *In = &*I++; 3365 3366 if (!CSEDenseMapInfo::canHandle(In)) 3367 continue; 3368 3369 // Check if we can replace this instruction with any of the 3370 // visited instructions. 3371 if (Instruction *V = CSEMap.lookup(In)) { 3372 In->replaceAllUsesWith(V); 3373 In->eraseFromParent(); 3374 continue; 3375 } 3376 3377 CSEMap[In] = In; 3378 } 3379 } 3380 3381 /// \brief Adds a 'fast' flag to floating point operations. 3382 static Value *addFastMathFlag(Value *V) { 3383 if (isa<FPMathOperator>(V)) { 3384 FastMathFlags Flags; 3385 Flags.setUnsafeAlgebra(); 3386 cast<Instruction>(V)->setFastMathFlags(Flags); 3387 } 3388 return V; 3389 } 3390 3391 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3392 /// the result needs to be inserted and/or extracted from vectors. 3393 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3394 const TargetTransformInfo &TTI) { 3395 if (Ty->isVoidTy()) 3396 return 0; 3397 3398 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3399 unsigned Cost = 0; 3400 3401 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3402 if (Insert) 3403 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3404 if (Extract) 3405 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3406 } 3407 3408 return Cost; 3409 } 3410 3411 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3412 // Return the cost of the instruction, including scalarization overhead if it's 3413 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3414 // i.e. either vector version isn't available, or is too expensive. 3415 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3416 const TargetTransformInfo &TTI, 3417 const TargetLibraryInfo *TLI, 3418 bool &NeedToScalarize) { 3419 Function *F = CI->getCalledFunction(); 3420 StringRef FnName = CI->getCalledFunction()->getName(); 3421 Type *ScalarRetTy = CI->getType(); 3422 SmallVector<Type *, 4> Tys, ScalarTys; 3423 for (auto &ArgOp : CI->arg_operands()) 3424 ScalarTys.push_back(ArgOp->getType()); 3425 3426 // Estimate cost of scalarized vector call. The source operands are assumed 3427 // to be vectors, so we need to extract individual elements from there, 3428 // execute VF scalar calls, and then gather the result into the vector return 3429 // value. 3430 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3431 if (VF == 1) 3432 return ScalarCallCost; 3433 3434 // Compute corresponding vector type for return value and arguments. 3435 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3436 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3437 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3438 3439 // Compute costs of unpacking argument values for the scalar calls and 3440 // packing the return values to a vector. 3441 unsigned ScalarizationCost = 3442 getScalarizationOverhead(RetTy, true, false, TTI); 3443 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3444 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3445 3446 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3447 3448 // If we can't emit a vector call for this function, then the currently found 3449 // cost is the cost we need to return. 3450 NeedToScalarize = true; 3451 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3452 return Cost; 3453 3454 // If the corresponding vector cost is cheaper, return its cost. 3455 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3456 if (VectorCallCost < Cost) { 3457 NeedToScalarize = false; 3458 return VectorCallCost; 3459 } 3460 return Cost; 3461 } 3462 3463 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3464 // factor VF. Return the cost of the instruction, including scalarization 3465 // overhead if it's needed. 3466 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3467 const TargetTransformInfo &TTI, 3468 const TargetLibraryInfo *TLI) { 3469 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3470 assert(ID && "Expected intrinsic call!"); 3471 3472 Type *RetTy = ToVectorTy(CI->getType(), VF); 3473 SmallVector<Type *, 4> Tys; 3474 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3475 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3476 3477 FastMathFlags FMF; 3478 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3479 FMF = FPMO->getFastMathFlags(); 3480 3481 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3482 } 3483 3484 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3485 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3486 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3487 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3488 } 3489 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3490 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3491 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3492 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3493 } 3494 3495 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3496 // For every instruction `I` in MinBWs, truncate the operands, create a 3497 // truncated version of `I` and reextend its result. InstCombine runs 3498 // later and will remove any ext/trunc pairs. 3499 // 3500 SmallPtrSet<Value *, 4> Erased; 3501 for (auto &KV : MinBWs) { 3502 VectorParts &Parts = WidenMap.get(KV.first); 3503 for (Value *&I : Parts) { 3504 if (Erased.count(I) || I->use_empty()) 3505 continue; 3506 Type *OriginalTy = I->getType(); 3507 Type *ScalarTruncatedTy = 3508 IntegerType::get(OriginalTy->getContext(), KV.second); 3509 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3510 OriginalTy->getVectorNumElements()); 3511 if (TruncatedTy == OriginalTy) 3512 continue; 3513 3514 if (!isa<Instruction>(I)) 3515 continue; 3516 3517 IRBuilder<> B(cast<Instruction>(I)); 3518 auto ShrinkOperand = [&](Value *V) -> Value * { 3519 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3520 if (ZI->getSrcTy() == TruncatedTy) 3521 return ZI->getOperand(0); 3522 return B.CreateZExtOrTrunc(V, TruncatedTy); 3523 }; 3524 3525 // The actual instruction modification depends on the instruction type, 3526 // unfortunately. 3527 Value *NewI = nullptr; 3528 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3529 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3530 ShrinkOperand(BO->getOperand(1))); 3531 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3532 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3533 NewI = 3534 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3535 ShrinkOperand(CI->getOperand(1))); 3536 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3537 NewI = B.CreateSelect(SI->getCondition(), 3538 ShrinkOperand(SI->getTrueValue()), 3539 ShrinkOperand(SI->getFalseValue())); 3540 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3541 switch (CI->getOpcode()) { 3542 default: 3543 llvm_unreachable("Unhandled cast!"); 3544 case Instruction::Trunc: 3545 NewI = ShrinkOperand(CI->getOperand(0)); 3546 break; 3547 case Instruction::SExt: 3548 NewI = B.CreateSExtOrTrunc( 3549 CI->getOperand(0), 3550 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3551 break; 3552 case Instruction::ZExt: 3553 NewI = B.CreateZExtOrTrunc( 3554 CI->getOperand(0), 3555 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3556 break; 3557 } 3558 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3559 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3560 auto *O0 = B.CreateZExtOrTrunc( 3561 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3562 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3563 auto *O1 = B.CreateZExtOrTrunc( 3564 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3565 3566 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3567 } else if (isa<LoadInst>(I)) { 3568 // Don't do anything with the operands, just extend the result. 3569 continue; 3570 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3571 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3572 auto *O0 = B.CreateZExtOrTrunc( 3573 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3574 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3575 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3576 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3577 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3578 auto *O0 = B.CreateZExtOrTrunc( 3579 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3580 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3581 } else { 3582 llvm_unreachable("Unhandled instruction type!"); 3583 } 3584 3585 // Lastly, extend the result. 3586 NewI->takeName(cast<Instruction>(I)); 3587 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3588 I->replaceAllUsesWith(Res); 3589 cast<Instruction>(I)->eraseFromParent(); 3590 Erased.insert(I); 3591 I = Res; 3592 } 3593 } 3594 3595 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3596 for (auto &KV : MinBWs) { 3597 VectorParts &Parts = WidenMap.get(KV.first); 3598 for (Value *&I : Parts) { 3599 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3600 if (Inst && Inst->use_empty()) { 3601 Value *NewI = Inst->getOperand(0); 3602 Inst->eraseFromParent(); 3603 I = NewI; 3604 } 3605 } 3606 } 3607 } 3608 3609 void InnerLoopVectorizer::vectorizeLoop() { 3610 //===------------------------------------------------===// 3611 // 3612 // Notice: any optimization or new instruction that go 3613 // into the code below should be also be implemented in 3614 // the cost-model. 3615 // 3616 //===------------------------------------------------===// 3617 Constant *Zero = Builder.getInt32(0); 3618 3619 // In order to support recurrences we need to be able to vectorize Phi nodes. 3620 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3621 // we create a new vector PHI node with no incoming edges. We use this value 3622 // when we vectorize all of the instructions that use the PHI. Next, after 3623 // all of the instructions in the block are complete we add the new incoming 3624 // edges to the PHI. At this point all of the instructions in the basic block 3625 // are vectorized, so we can use them to construct the PHI. 3626 PhiVector PHIsToFix; 3627 3628 // Scan the loop in a topological order to ensure that defs are vectorized 3629 // before users. 3630 LoopBlocksDFS DFS(OrigLoop); 3631 DFS.perform(LI); 3632 3633 // Vectorize all of the blocks in the original loop. 3634 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 3635 bb != be; ++bb) 3636 vectorizeBlockInLoop(*bb, &PHIsToFix); 3637 3638 // Insert truncates and extends for any truncated instructions as hints to 3639 // InstCombine. 3640 if (VF > 1) 3641 truncateToMinimalBitwidths(); 3642 3643 // At this point every instruction in the original loop is widened to a 3644 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3645 // nodes are currently empty because we did not want to introduce cycles. 3646 // This is the second stage of vectorizing recurrences. 3647 for (PHINode *Phi : PHIsToFix) { 3648 assert(Phi && "Unable to recover vectorized PHI"); 3649 3650 // Handle first-order recurrences that need to be fixed. 3651 if (Legal->isFirstOrderRecurrence(Phi)) { 3652 fixFirstOrderRecurrence(Phi); 3653 continue; 3654 } 3655 3656 // If the phi node is not a first-order recurrence, it must be a reduction. 3657 // Get it's reduction variable descriptor. 3658 assert(Legal->isReductionVariable(Phi) && 3659 "Unable to find the reduction variable"); 3660 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3661 3662 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3663 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3664 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3665 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3666 RdxDesc.getMinMaxRecurrenceKind(); 3667 setDebugLocFromInst(Builder, ReductionStartValue); 3668 3669 // We need to generate a reduction vector from the incoming scalar. 3670 // To do so, we need to generate the 'identity' vector and override 3671 // one of the elements with the incoming scalar reduction. We need 3672 // to do it in the vector-loop preheader. 3673 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3674 3675 // This is the vector-clone of the value that leaves the loop. 3676 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3677 Type *VecTy = VectorExit[0]->getType(); 3678 3679 // Find the reduction identity variable. Zero for addition, or, xor, 3680 // one for multiplication, -1 for And. 3681 Value *Identity; 3682 Value *VectorStart; 3683 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3684 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3685 // MinMax reduction have the start value as their identify. 3686 if (VF == 1) { 3687 VectorStart = Identity = ReductionStartValue; 3688 } else { 3689 VectorStart = Identity = 3690 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3691 } 3692 } else { 3693 // Handle other reduction kinds: 3694 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3695 RK, VecTy->getScalarType()); 3696 if (VF == 1) { 3697 Identity = Iden; 3698 // This vector is the Identity vector where the first element is the 3699 // incoming scalar reduction. 3700 VectorStart = ReductionStartValue; 3701 } else { 3702 Identity = ConstantVector::getSplat(VF, Iden); 3703 3704 // This vector is the Identity vector where the first element is the 3705 // incoming scalar reduction. 3706 VectorStart = 3707 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3708 } 3709 } 3710 3711 // Fix the vector-loop phi. 3712 3713 // Reductions do not have to start at zero. They can start with 3714 // any loop invariant values. 3715 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3716 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3717 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3718 VectorParts &Val = getVectorValue(LoopVal); 3719 for (unsigned part = 0; part < UF; ++part) { 3720 // Make sure to add the reduction stat value only to the 3721 // first unroll part. 3722 Value *StartVal = (part == 0) ? VectorStart : Identity; 3723 cast<PHINode>(VecRdxPhi[part]) 3724 ->addIncoming(StartVal, LoopVectorPreHeader); 3725 cast<PHINode>(VecRdxPhi[part]) 3726 ->addIncoming(Val[part], LoopVectorBody); 3727 } 3728 3729 // Before each round, move the insertion point right between 3730 // the PHIs and the values we are going to write. 3731 // This allows us to write both PHINodes and the extractelement 3732 // instructions. 3733 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3734 3735 VectorParts RdxParts = getVectorValue(LoopExitInst); 3736 setDebugLocFromInst(Builder, LoopExitInst); 3737 3738 // If the vector reduction can be performed in a smaller type, we truncate 3739 // then extend the loop exit value to enable InstCombine to evaluate the 3740 // entire expression in the smaller type. 3741 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3742 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3743 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3744 for (unsigned part = 0; part < UF; ++part) { 3745 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3746 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3747 : Builder.CreateZExt(Trunc, VecTy); 3748 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3749 UI != RdxParts[part]->user_end();) 3750 if (*UI != Trunc) { 3751 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3752 RdxParts[part] = Extnd; 3753 } else { 3754 ++UI; 3755 } 3756 } 3757 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3758 for (unsigned part = 0; part < UF; ++part) 3759 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3760 } 3761 3762 // Reduce all of the unrolled parts into a single vector. 3763 Value *ReducedPartRdx = RdxParts[0]; 3764 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3765 setDebugLocFromInst(Builder, ReducedPartRdx); 3766 for (unsigned part = 1; part < UF; ++part) { 3767 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3768 // Floating point operations had to be 'fast' to enable the reduction. 3769 ReducedPartRdx = addFastMathFlag( 3770 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3771 ReducedPartRdx, "bin.rdx")); 3772 else 3773 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3774 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3775 } 3776 3777 if (VF > 1) { 3778 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3779 // and vector ops, reducing the set of values being computed by half each 3780 // round. 3781 assert(isPowerOf2_32(VF) && 3782 "Reduction emission only supported for pow2 vectors!"); 3783 Value *TmpVec = ReducedPartRdx; 3784 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3785 for (unsigned i = VF; i != 1; i >>= 1) { 3786 // Move the upper half of the vector to the lower half. 3787 for (unsigned j = 0; j != i / 2; ++j) 3788 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3789 3790 // Fill the rest of the mask with undef. 3791 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3792 UndefValue::get(Builder.getInt32Ty())); 3793 3794 Value *Shuf = Builder.CreateShuffleVector( 3795 TmpVec, UndefValue::get(TmpVec->getType()), 3796 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3797 3798 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3799 // Floating point operations had to be 'fast' to enable the reduction. 3800 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3801 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3802 else 3803 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3804 TmpVec, Shuf); 3805 } 3806 3807 // The result is in the first element of the vector. 3808 ReducedPartRdx = 3809 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3810 3811 // If the reduction can be performed in a smaller type, we need to extend 3812 // the reduction to the wider type before we branch to the original loop. 3813 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3814 ReducedPartRdx = 3815 RdxDesc.isSigned() 3816 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3817 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3818 } 3819 3820 // Create a phi node that merges control-flow from the backedge-taken check 3821 // block and the middle block. 3822 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3823 LoopScalarPreHeader->getTerminator()); 3824 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3825 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3826 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3827 3828 // Now, we need to fix the users of the reduction variable 3829 // inside and outside of the scalar remainder loop. 3830 // We know that the loop is in LCSSA form. We need to update the 3831 // PHI nodes in the exit blocks. 3832 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3833 LEE = LoopExitBlock->end(); 3834 LEI != LEE; ++LEI) { 3835 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3836 if (!LCSSAPhi) 3837 break; 3838 3839 // All PHINodes need to have a single entry edge, or two if 3840 // we already fixed them. 3841 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3842 3843 // We found our reduction value exit-PHI. Update it with the 3844 // incoming bypass edge. 3845 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3846 // Add an edge coming from the bypass. 3847 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3848 break; 3849 } 3850 } // end of the LCSSA phi scan. 3851 3852 // Fix the scalar loop reduction variable with the incoming reduction sum 3853 // from the vector body and from the backedge value. 3854 int IncomingEdgeBlockIdx = 3855 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3856 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3857 // Pick the other block. 3858 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3859 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3860 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3861 } // end of for each Phi in PHIsToFix. 3862 3863 fixLCSSAPHIs(); 3864 3865 // Make sure DomTree is updated. 3866 updateAnalysis(); 3867 3868 // Predicate any stores. 3869 for (auto KV : PredicatedStores) { 3870 BasicBlock::iterator I(KV.first); 3871 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3872 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3873 /*BranchWeights=*/nullptr, DT, LI); 3874 I->moveBefore(T); 3875 I->getParent()->setName("pred.store.if"); 3876 BB->setName("pred.store.continue"); 3877 } 3878 DEBUG(DT->verifyDomTree()); 3879 // Remove redundant induction instructions. 3880 cse(LoopVectorBody); 3881 } 3882 3883 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3884 3885 // This is the second phase of vectorizing first-order recurrences. An 3886 // overview of the transformation is described below. Suppose we have the 3887 // following loop. 3888 // 3889 // for (int i = 0; i < n; ++i) 3890 // b[i] = a[i] - a[i - 1]; 3891 // 3892 // There is a first-order recurrence on "a". For this loop, the shorthand 3893 // scalar IR looks like: 3894 // 3895 // scalar.ph: 3896 // s_init = a[-1] 3897 // br scalar.body 3898 // 3899 // scalar.body: 3900 // i = phi [0, scalar.ph], [i+1, scalar.body] 3901 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3902 // s2 = a[i] 3903 // b[i] = s2 - s1 3904 // br cond, scalar.body, ... 3905 // 3906 // In this example, s1 is a recurrence because it's value depends on the 3907 // previous iteration. In the first phase of vectorization, we created a 3908 // temporary value for s1. We now complete the vectorization and produce the 3909 // shorthand vector IR shown below (for VF = 4, UF = 1). 3910 // 3911 // vector.ph: 3912 // v_init = vector(..., ..., ..., a[-1]) 3913 // br vector.body 3914 // 3915 // vector.body 3916 // i = phi [0, vector.ph], [i+4, vector.body] 3917 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3918 // v2 = a[i, i+1, i+2, i+3]; 3919 // v3 = vector(v1(3), v2(0, 1, 2)) 3920 // b[i, i+1, i+2, i+3] = v2 - v3 3921 // br cond, vector.body, middle.block 3922 // 3923 // middle.block: 3924 // x = v2(3) 3925 // br scalar.ph 3926 // 3927 // scalar.ph: 3928 // s_init = phi [x, middle.block], [a[-1], otherwise] 3929 // br scalar.body 3930 // 3931 // After execution completes the vector loop, we extract the next value of 3932 // the recurrence (x) to use as the initial value in the scalar loop. 3933 3934 // Get the original loop preheader and single loop latch. 3935 auto *Preheader = OrigLoop->getLoopPreheader(); 3936 auto *Latch = OrigLoop->getLoopLatch(); 3937 3938 // Get the initial and previous values of the scalar recurrence. 3939 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3940 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3941 3942 // Create a vector from the initial value. 3943 auto *VectorInit = ScalarInit; 3944 if (VF > 1) { 3945 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3946 VectorInit = Builder.CreateInsertElement( 3947 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3948 Builder.getInt32(VF - 1), "vector.recur.init"); 3949 } 3950 3951 // We constructed a temporary phi node in the first phase of vectorization. 3952 // This phi node will eventually be deleted. 3953 auto &PhiParts = getVectorValue(Phi); 3954 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3955 3956 // Create a phi node for the new recurrence. The current value will either be 3957 // the initial value inserted into a vector or loop-varying vector value. 3958 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3959 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3960 3961 // Get the vectorized previous value. We ensured the previous values was an 3962 // instruction when detecting the recurrence. 3963 auto &PreviousParts = getVectorValue(Previous); 3964 3965 // Set the insertion point to be after this instruction. We ensured the 3966 // previous value dominated all uses of the phi when detecting the 3967 // recurrence. 3968 Builder.SetInsertPoint( 3969 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3970 3971 // We will construct a vector for the recurrence by combining the values for 3972 // the current and previous iterations. This is the required shuffle mask. 3973 SmallVector<Constant *, 8> ShuffleMask(VF); 3974 ShuffleMask[0] = Builder.getInt32(VF - 1); 3975 for (unsigned I = 1; I < VF; ++I) 3976 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3977 3978 // The vector from which to take the initial value for the current iteration 3979 // (actual or unrolled). Initially, this is the vector phi node. 3980 Value *Incoming = VecPhi; 3981 3982 // Shuffle the current and previous vector and update the vector parts. 3983 for (unsigned Part = 0; Part < UF; ++Part) { 3984 auto *Shuffle = 3985 VF > 1 3986 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3987 ConstantVector::get(ShuffleMask)) 3988 : Incoming; 3989 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3990 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3991 PhiParts[Part] = Shuffle; 3992 Incoming = PreviousParts[Part]; 3993 } 3994 3995 // Fix the latch value of the new recurrence in the vector loop. 3996 VecPhi->addIncoming(Incoming, 3997 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3998 3999 // Extract the last vector element in the middle block. This will be the 4000 // initial value for the recurrence when jumping to the scalar loop. 4001 auto *Extract = Incoming; 4002 if (VF > 1) { 4003 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4004 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4005 "vector.recur.extract"); 4006 } 4007 4008 // Fix the initial value of the original recurrence in the scalar loop. 4009 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4010 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4011 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4012 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4013 Start->addIncoming(Incoming, BB); 4014 } 4015 4016 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4017 Phi->setName("scalar.recur"); 4018 4019 // Finally, fix users of the recurrence outside the loop. The users will need 4020 // either the last value of the scalar recurrence or the last value of the 4021 // vector recurrence we extracted in the middle block. Since the loop is in 4022 // LCSSA form, we just need to find the phi node for the original scalar 4023 // recurrence in the exit block, and then add an edge for the middle block. 4024 for (auto &I : *LoopExitBlock) { 4025 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4026 if (!LCSSAPhi) 4027 break; 4028 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4029 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4030 break; 4031 } 4032 } 4033 } 4034 4035 void InnerLoopVectorizer::fixLCSSAPHIs() { 4036 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4037 LEE = LoopExitBlock->end(); 4038 LEI != LEE; ++LEI) { 4039 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4040 if (!LCSSAPhi) 4041 break; 4042 if (LCSSAPhi->getNumIncomingValues() == 1) 4043 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4044 LoopMiddleBlock); 4045 } 4046 } 4047 4048 InnerLoopVectorizer::VectorParts 4049 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4050 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 4051 "Invalid edge"); 4052 4053 // Look for cached value. 4054 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4055 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4056 if (ECEntryIt != MaskCache.end()) 4057 return ECEntryIt->second; 4058 4059 VectorParts SrcMask = createBlockInMask(Src); 4060 4061 // The terminator has to be a branch inst! 4062 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4063 assert(BI && "Unexpected terminator found"); 4064 4065 if (BI->isConditional()) { 4066 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4067 4068 if (BI->getSuccessor(0) != Dst) 4069 for (unsigned part = 0; part < UF; ++part) 4070 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4071 4072 for (unsigned part = 0; part < UF; ++part) 4073 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4074 4075 MaskCache[Edge] = EdgeMask; 4076 return EdgeMask; 4077 } 4078 4079 MaskCache[Edge] = SrcMask; 4080 return SrcMask; 4081 } 4082 4083 InnerLoopVectorizer::VectorParts 4084 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4085 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4086 4087 // Loop incoming mask is all-one. 4088 if (OrigLoop->getHeader() == BB) { 4089 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4090 return getVectorValue(C); 4091 } 4092 4093 // This is the block mask. We OR all incoming edges, and with zero. 4094 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4095 VectorParts BlockMask = getVectorValue(Zero); 4096 4097 // For each pred: 4098 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4099 VectorParts EM = createEdgeMask(*it, BB); 4100 for (unsigned part = 0; part < UF; ++part) 4101 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4102 } 4103 4104 return BlockMask; 4105 } 4106 4107 void InnerLoopVectorizer::widenPHIInstruction( 4108 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 4109 unsigned VF, PhiVector *PV) { 4110 PHINode *P = cast<PHINode>(PN); 4111 // Handle recurrences. 4112 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4113 for (unsigned part = 0; part < UF; ++part) { 4114 // This is phase one of vectorizing PHIs. 4115 Type *VecTy = 4116 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4117 Entry[part] = PHINode::Create( 4118 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4119 } 4120 PV->push_back(P); 4121 return; 4122 } 4123 4124 setDebugLocFromInst(Builder, P); 4125 // Check for PHI nodes that are lowered to vector selects. 4126 if (P->getParent() != OrigLoop->getHeader()) { 4127 // We know that all PHIs in non-header blocks are converted into 4128 // selects, so we don't have to worry about the insertion order and we 4129 // can just use the builder. 4130 // At this point we generate the predication tree. There may be 4131 // duplications since this is a simple recursive scan, but future 4132 // optimizations will clean it up. 4133 4134 unsigned NumIncoming = P->getNumIncomingValues(); 4135 4136 // Generate a sequence of selects of the form: 4137 // SELECT(Mask3, In3, 4138 // SELECT(Mask2, In2, 4139 // ( ...))) 4140 for (unsigned In = 0; In < NumIncoming; In++) { 4141 VectorParts Cond = 4142 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4143 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4144 4145 for (unsigned part = 0; part < UF; ++part) { 4146 // We might have single edge PHIs (blocks) - use an identity 4147 // 'select' for the first PHI operand. 4148 if (In == 0) 4149 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4150 else 4151 // Select between the current value and the previous incoming edge 4152 // based on the incoming mask. 4153 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4154 "predphi"); 4155 } 4156 } 4157 return; 4158 } 4159 4160 // This PHINode must be an induction variable. 4161 // Make sure that we know about it. 4162 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4163 4164 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4165 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4166 4167 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4168 // which can be found from the original scalar operations. 4169 switch (II.getKind()) { 4170 case InductionDescriptor::IK_NoInduction: 4171 llvm_unreachable("Unknown induction"); 4172 case InductionDescriptor::IK_IntInduction: { 4173 assert(P->getType() == II.getStartValue()->getType() && "Types must match"); 4174 if (VF == 1 || P->getType() != Induction->getType() || 4175 !II.getConstIntStepValue()) { 4176 Value *V = Induction; 4177 // Handle other induction variables that are now based on the 4178 // canonical one. 4179 if (P != OldInduction) { 4180 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4181 V = II.transform(Builder, V, PSE.getSE(), DL); 4182 V->setName("offset.idx"); 4183 } 4184 Value *Broadcasted = getBroadcastInstrs(V); 4185 // After broadcasting the induction variable we need to make the vector 4186 // consecutive by adding 0, 1, 2, etc. 4187 for (unsigned part = 0; part < UF; ++part) 4188 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStep()); 4189 } else { 4190 // Instead of re-creating the vector IV by splatting the scalar IV 4191 // in each iteration, we can make a new independent vector IV. 4192 widenInductionVariable(II, Entry); 4193 } 4194 return; 4195 } 4196 case InductionDescriptor::IK_PtrInduction: 4197 // Handle the pointer induction variable case. 4198 assert(P->getType()->isPointerTy() && "Unexpected type."); 4199 // This is the normalized GEP that starts counting at zero. 4200 Value *PtrInd = Induction; 4201 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4202 // This is the vector of results. Notice that we don't generate 4203 // vector geps because scalar geps result in better code. 4204 for (unsigned part = 0; part < UF; ++part) { 4205 if (VF == 1) { 4206 int EltIndex = part; 4207 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4208 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4209 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4210 SclrGep->setName("next.gep"); 4211 Entry[part] = SclrGep; 4212 continue; 4213 } 4214 4215 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4216 for (unsigned int i = 0; i < VF; ++i) { 4217 int EltIndex = i + part * VF; 4218 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4219 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4220 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4221 SclrGep->setName("next.gep"); 4222 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4223 Builder.getInt32(i), "insert.gep"); 4224 } 4225 Entry[part] = VecVal; 4226 } 4227 return; 4228 } 4229 } 4230 4231 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4232 // For each instruction in the old loop. 4233 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4234 VectorParts &Entry = WidenMap.get(&*it); 4235 4236 switch (it->getOpcode()) { 4237 case Instruction::Br: 4238 // Nothing to do for PHIs and BR, since we already took care of the 4239 // loop control flow instructions. 4240 continue; 4241 case Instruction::PHI: { 4242 // Vectorize PHINodes. 4243 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4244 continue; 4245 } // End of PHI. 4246 4247 case Instruction::Add: 4248 case Instruction::FAdd: 4249 case Instruction::Sub: 4250 case Instruction::FSub: 4251 case Instruction::Mul: 4252 case Instruction::FMul: 4253 case Instruction::UDiv: 4254 case Instruction::SDiv: 4255 case Instruction::FDiv: 4256 case Instruction::URem: 4257 case Instruction::SRem: 4258 case Instruction::FRem: 4259 case Instruction::Shl: 4260 case Instruction::LShr: 4261 case Instruction::AShr: 4262 case Instruction::And: 4263 case Instruction::Or: 4264 case Instruction::Xor: { 4265 // Just widen binops. 4266 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4267 setDebugLocFromInst(Builder, BinOp); 4268 VectorParts &A = getVectorValue(it->getOperand(0)); 4269 VectorParts &B = getVectorValue(it->getOperand(1)); 4270 4271 // Use this vector value for all users of the original instruction. 4272 for (unsigned Part = 0; Part < UF; ++Part) { 4273 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4274 4275 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4276 VecOp->copyIRFlags(BinOp); 4277 4278 Entry[Part] = V; 4279 } 4280 4281 addMetadata(Entry, &*it); 4282 break; 4283 } 4284 case Instruction::Select: { 4285 // Widen selects. 4286 // If the selector is loop invariant we can create a select 4287 // instruction with a scalar condition. Otherwise, use vector-select. 4288 auto *SE = PSE.getSE(); 4289 bool InvariantCond = 4290 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4291 setDebugLocFromInst(Builder, &*it); 4292 4293 // The condition can be loop invariant but still defined inside the 4294 // loop. This means that we can't just use the original 'cond' value. 4295 // We have to take the 'vectorized' value and pick the first lane. 4296 // Instcombine will make this a no-op. 4297 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4298 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4299 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4300 4301 Value *ScalarCond = 4302 (VF == 1) 4303 ? Cond[0] 4304 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4305 4306 for (unsigned Part = 0; Part < UF; ++Part) { 4307 Entry[Part] = Builder.CreateSelect( 4308 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4309 } 4310 4311 addMetadata(Entry, &*it); 4312 break; 4313 } 4314 4315 case Instruction::ICmp: 4316 case Instruction::FCmp: { 4317 // Widen compares. Generate vector compares. 4318 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4319 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4320 setDebugLocFromInst(Builder, &*it); 4321 VectorParts &A = getVectorValue(it->getOperand(0)); 4322 VectorParts &B = getVectorValue(it->getOperand(1)); 4323 for (unsigned Part = 0; Part < UF; ++Part) { 4324 Value *C = nullptr; 4325 if (FCmp) { 4326 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4327 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4328 } else { 4329 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4330 } 4331 Entry[Part] = C; 4332 } 4333 4334 addMetadata(Entry, &*it); 4335 break; 4336 } 4337 4338 case Instruction::Store: 4339 case Instruction::Load: 4340 vectorizeMemoryInstruction(&*it); 4341 break; 4342 case Instruction::ZExt: 4343 case Instruction::SExt: 4344 case Instruction::FPToUI: 4345 case Instruction::FPToSI: 4346 case Instruction::FPExt: 4347 case Instruction::PtrToInt: 4348 case Instruction::IntToPtr: 4349 case Instruction::SIToFP: 4350 case Instruction::UIToFP: 4351 case Instruction::Trunc: 4352 case Instruction::FPTrunc: 4353 case Instruction::BitCast: { 4354 CastInst *CI = dyn_cast<CastInst>(it); 4355 setDebugLocFromInst(Builder, &*it); 4356 /// Optimize the special case where the source is a constant integer 4357 /// induction variable. Notice that we can only optimize the 'trunc' case 4358 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4359 /// c. other casts depend on pointer size. 4360 4361 if (CI->getOperand(0) == OldInduction && 4362 it->getOpcode() == Instruction::Trunc) { 4363 InductionDescriptor II = 4364 Legal->getInductionVars()->lookup(OldInduction); 4365 if (auto StepValue = II.getConstIntStepValue()) { 4366 IntegerType *TruncType = cast<IntegerType>(CI->getType()); 4367 if (VF == 1) { 4368 StepValue = 4369 ConstantInt::getSigned(TruncType, StepValue->getSExtValue()); 4370 Value *ScalarCast = 4371 Builder.CreateCast(CI->getOpcode(), Induction, CI->getType()); 4372 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4373 for (unsigned Part = 0; Part < UF; ++Part) 4374 Entry[Part] = getStepVector(Broadcasted, VF * Part, StepValue); 4375 } else { 4376 // Truncating a vector induction variable on each iteration 4377 // may be expensive. Instead, truncate the initial value, and create 4378 // a new, truncated, vector IV based on that. 4379 widenInductionVariable(II, Entry, TruncType); 4380 } 4381 addMetadata(Entry, &*it); 4382 break; 4383 } 4384 } 4385 /// Vectorize casts. 4386 Type *DestTy = 4387 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4388 4389 VectorParts &A = getVectorValue(it->getOperand(0)); 4390 for (unsigned Part = 0; Part < UF; ++Part) 4391 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4392 addMetadata(Entry, &*it); 4393 break; 4394 } 4395 4396 case Instruction::Call: { 4397 // Ignore dbg intrinsics. 4398 if (isa<DbgInfoIntrinsic>(it)) 4399 break; 4400 setDebugLocFromInst(Builder, &*it); 4401 4402 Module *M = BB->getParent()->getParent(); 4403 CallInst *CI = cast<CallInst>(it); 4404 4405 StringRef FnName = CI->getCalledFunction()->getName(); 4406 Function *F = CI->getCalledFunction(); 4407 Type *RetTy = ToVectorTy(CI->getType(), VF); 4408 SmallVector<Type *, 4> Tys; 4409 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4410 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4411 4412 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4413 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4414 ID == Intrinsic::lifetime_start)) { 4415 scalarizeInstruction(&*it); 4416 break; 4417 } 4418 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4419 // version of the instruction. 4420 // Is it beneficial to perform intrinsic call compared to lib call? 4421 bool NeedToScalarize; 4422 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4423 bool UseVectorIntrinsic = 4424 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4425 if (!UseVectorIntrinsic && NeedToScalarize) { 4426 scalarizeInstruction(&*it); 4427 break; 4428 } 4429 4430 for (unsigned Part = 0; Part < UF; ++Part) { 4431 SmallVector<Value *, 4> Args; 4432 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4433 Value *Arg = CI->getArgOperand(i); 4434 // Some intrinsics have a scalar argument - don't replace it with a 4435 // vector. 4436 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4437 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4438 Arg = VectorArg[Part]; 4439 } 4440 Args.push_back(Arg); 4441 } 4442 4443 Function *VectorF; 4444 if (UseVectorIntrinsic) { 4445 // Use vector version of the intrinsic. 4446 Type *TysForDecl[] = {CI->getType()}; 4447 if (VF > 1) 4448 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4449 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4450 } else { 4451 // Use vector version of the library call. 4452 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4453 assert(!VFnName.empty() && "Vector function name is empty."); 4454 VectorF = M->getFunction(VFnName); 4455 if (!VectorF) { 4456 // Generate a declaration 4457 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4458 VectorF = 4459 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4460 VectorF->copyAttributesFrom(F); 4461 } 4462 } 4463 assert(VectorF && "Can't create vector function."); 4464 4465 SmallVector<OperandBundleDef, 1> OpBundles; 4466 CI->getOperandBundlesAsDefs(OpBundles); 4467 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4468 4469 if (isa<FPMathOperator>(V)) 4470 V->copyFastMathFlags(CI); 4471 4472 Entry[Part] = V; 4473 } 4474 4475 addMetadata(Entry, &*it); 4476 break; 4477 } 4478 4479 default: 4480 // All other instructions are unsupported. Scalarize them. 4481 scalarizeInstruction(&*it); 4482 break; 4483 } // end of switch. 4484 } // end of for_each instr. 4485 } 4486 4487 void InnerLoopVectorizer::updateAnalysis() { 4488 // Forget the original basic block. 4489 PSE.getSE()->forgetLoop(OrigLoop); 4490 4491 // Update the dominator tree information. 4492 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4493 "Entry does not dominate exit."); 4494 4495 // We don't predicate stores by this point, so the vector body should be a 4496 // single loop. 4497 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4498 4499 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4500 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4501 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4502 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4503 4504 DEBUG(DT->verifyDomTree()); 4505 } 4506 4507 /// \brief Check whether it is safe to if-convert this phi node. 4508 /// 4509 /// Phi nodes with constant expressions that can trap are not safe to if 4510 /// convert. 4511 static bool canIfConvertPHINodes(BasicBlock *BB) { 4512 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4513 PHINode *Phi = dyn_cast<PHINode>(I); 4514 if (!Phi) 4515 return true; 4516 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4517 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4518 if (C->canTrap()) 4519 return false; 4520 } 4521 return true; 4522 } 4523 4524 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4525 if (!EnableIfConversion) { 4526 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4527 return false; 4528 } 4529 4530 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4531 4532 // A list of pointers that we can safely read and write to. 4533 SmallPtrSet<Value *, 8> SafePointes; 4534 4535 // Collect safe addresses. 4536 for (Loop::block_iterator BI = TheLoop->block_begin(), 4537 BE = TheLoop->block_end(); 4538 BI != BE; ++BI) { 4539 BasicBlock *BB = *BI; 4540 4541 if (blockNeedsPredication(BB)) 4542 continue; 4543 4544 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4545 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4546 SafePointes.insert(LI->getPointerOperand()); 4547 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4548 SafePointes.insert(SI->getPointerOperand()); 4549 } 4550 } 4551 4552 // Collect the blocks that need predication. 4553 BasicBlock *Header = TheLoop->getHeader(); 4554 for (Loop::block_iterator BI = TheLoop->block_begin(), 4555 BE = TheLoop->block_end(); 4556 BI != BE; ++BI) { 4557 BasicBlock *BB = *BI; 4558 4559 // We don't support switch statements inside loops. 4560 if (!isa<BranchInst>(BB->getTerminator())) { 4561 emitAnalysis(VectorizationReport(BB->getTerminator()) 4562 << "loop contains a switch statement"); 4563 return false; 4564 } 4565 4566 // We must be able to predicate all blocks that need to be predicated. 4567 if (blockNeedsPredication(BB)) { 4568 if (!blockCanBePredicated(BB, SafePointes)) { 4569 emitAnalysis(VectorizationReport(BB->getTerminator()) 4570 << "control flow cannot be substituted for a select"); 4571 return false; 4572 } 4573 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4574 emitAnalysis(VectorizationReport(BB->getTerminator()) 4575 << "control flow cannot be substituted for a select"); 4576 return false; 4577 } 4578 } 4579 4580 // We can if-convert this loop. 4581 return true; 4582 } 4583 4584 bool LoopVectorizationLegality::canVectorize() { 4585 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4586 // be canonicalized. 4587 if (!TheLoop->getLoopPreheader()) { 4588 emitAnalysis(VectorizationReport() 4589 << "loop control flow is not understood by vectorizer"); 4590 return false; 4591 } 4592 4593 // We can only vectorize innermost loops. 4594 if (!TheLoop->empty()) { 4595 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4596 return false; 4597 } 4598 4599 // We must have a single backedge. 4600 if (TheLoop->getNumBackEdges() != 1) { 4601 emitAnalysis(VectorizationReport() 4602 << "loop control flow is not understood by vectorizer"); 4603 return false; 4604 } 4605 4606 // We must have a single exiting block. 4607 if (!TheLoop->getExitingBlock()) { 4608 emitAnalysis(VectorizationReport() 4609 << "loop control flow is not understood by vectorizer"); 4610 return false; 4611 } 4612 4613 // We only handle bottom-tested loops, i.e. loop in which the condition is 4614 // checked at the end of each iteration. With that we can assume that all 4615 // instructions in the loop are executed the same number of times. 4616 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4617 emitAnalysis(VectorizationReport() 4618 << "loop control flow is not understood by vectorizer"); 4619 return false; 4620 } 4621 4622 // We need to have a loop header. 4623 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4624 << '\n'); 4625 4626 // Check if we can if-convert non-single-bb loops. 4627 unsigned NumBlocks = TheLoop->getNumBlocks(); 4628 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4629 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4630 return false; 4631 } 4632 4633 // ScalarEvolution needs to be able to find the exit count. 4634 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4635 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4636 emitAnalysis(VectorizationReport() 4637 << "could not determine number of loop iterations"); 4638 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4639 return false; 4640 } 4641 4642 // Check if we can vectorize the instructions and CFG in this loop. 4643 if (!canVectorizeInstrs()) { 4644 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4645 return false; 4646 } 4647 4648 // Go over each instruction and look at memory deps. 4649 if (!canVectorizeMemory()) { 4650 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4651 return false; 4652 } 4653 4654 // Collect all of the variables that remain uniform after vectorization. 4655 collectLoopUniforms(); 4656 4657 DEBUG(dbgs() << "LV: We can vectorize this loop" 4658 << (LAI->getRuntimePointerChecking()->Need 4659 ? " (with a runtime bound check)" 4660 : "") 4661 << "!\n"); 4662 4663 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4664 4665 // If an override option has been passed in for interleaved accesses, use it. 4666 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4667 UseInterleaved = EnableInterleavedMemAccesses; 4668 4669 // Analyze interleaved memory accesses. 4670 if (UseInterleaved) 4671 InterleaveInfo.analyzeInterleaving(Strides); 4672 4673 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4674 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4675 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4676 4677 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4678 emitAnalysis(VectorizationReport() 4679 << "Too many SCEV assumptions need to be made and checked " 4680 << "at runtime"); 4681 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4682 return false; 4683 } 4684 4685 // Okay! We can vectorize. At this point we don't have any other mem analysis 4686 // which may limit our maximum vectorization factor, so just return true with 4687 // no restrictions. 4688 return true; 4689 } 4690 4691 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4692 if (Ty->isPointerTy()) 4693 return DL.getIntPtrType(Ty); 4694 4695 // It is possible that char's or short's overflow when we ask for the loop's 4696 // trip count, work around this by changing the type size. 4697 if (Ty->getScalarSizeInBits() < 32) 4698 return Type::getInt32Ty(Ty->getContext()); 4699 4700 return Ty; 4701 } 4702 4703 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4704 Ty0 = convertPointerToIntegerType(DL, Ty0); 4705 Ty1 = convertPointerToIntegerType(DL, Ty1); 4706 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4707 return Ty0; 4708 return Ty1; 4709 } 4710 4711 /// \brief Check that the instruction has outside loop users and is not an 4712 /// identified reduction variable. 4713 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4714 SmallPtrSetImpl<Value *> &AllowedExit) { 4715 // Reduction and Induction instructions are allowed to have exit users. All 4716 // other instructions must not have external users. 4717 if (!AllowedExit.count(Inst)) 4718 // Check that all of the users of the loop are inside the BB. 4719 for (User *U : Inst->users()) { 4720 Instruction *UI = cast<Instruction>(U); 4721 // This user may be a reduction exit value. 4722 if (!TheLoop->contains(UI)) { 4723 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4724 return true; 4725 } 4726 } 4727 return false; 4728 } 4729 4730 void LoopVectorizationLegality::addInductionPhi( 4731 PHINode *Phi, InductionDescriptor ID, 4732 SmallPtrSetImpl<Value *> &AllowedExit) { 4733 Inductions[Phi] = ID; 4734 Type *PhiTy = Phi->getType(); 4735 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4736 4737 // Get the widest type. 4738 if (!WidestIndTy) 4739 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4740 else 4741 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4742 4743 // Int inductions are special because we only allow one IV. 4744 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4745 ID.getConstIntStepValue() && 4746 ID.getConstIntStepValue()->isOne() && 4747 isa<Constant>(ID.getStartValue()) && 4748 cast<Constant>(ID.getStartValue())->isNullValue()) { 4749 4750 // Use the phi node with the widest type as induction. Use the last 4751 // one if there are multiple (no good reason for doing this other 4752 // than it is expedient). We've checked that it begins at zero and 4753 // steps by one, so this is a canonical induction variable. 4754 if (!Induction || PhiTy == WidestIndTy) 4755 Induction = Phi; 4756 } 4757 4758 // Both the PHI node itself, and the "post-increment" value feeding 4759 // back into the PHI node may have external users. 4760 AllowedExit.insert(Phi); 4761 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 4762 4763 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4764 return; 4765 } 4766 4767 bool LoopVectorizationLegality::canVectorizeInstrs() { 4768 BasicBlock *Header = TheLoop->getHeader(); 4769 4770 // Look for the attribute signaling the absence of NaNs. 4771 Function &F = *Header->getParent(); 4772 HasFunNoNaNAttr = 4773 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4774 4775 // For each block in the loop. 4776 for (Loop::block_iterator bb = TheLoop->block_begin(), 4777 be = TheLoop->block_end(); 4778 bb != be; ++bb) { 4779 4780 // Scan the instructions in the block and look for hazards. 4781 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4782 ++it) { 4783 4784 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4785 Type *PhiTy = Phi->getType(); 4786 // Check that this PHI type is allowed. 4787 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 4788 !PhiTy->isPointerTy()) { 4789 emitAnalysis(VectorizationReport(&*it) 4790 << "loop control flow is not understood by vectorizer"); 4791 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4792 return false; 4793 } 4794 4795 // If this PHINode is not in the header block, then we know that we 4796 // can convert it to select during if-conversion. No need to check if 4797 // the PHIs in this block are induction or reduction variables. 4798 if (*bb != Header) { 4799 // Check that this instruction has no outside users or is an 4800 // identified reduction value with an outside user. 4801 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4802 continue; 4803 emitAnalysis(VectorizationReport(&*it) 4804 << "value could not be identified as " 4805 "an induction or reduction variable"); 4806 return false; 4807 } 4808 4809 // We only allow if-converted PHIs with exactly two incoming values. 4810 if (Phi->getNumIncomingValues() != 2) { 4811 emitAnalysis(VectorizationReport(&*it) 4812 << "control flow not understood by vectorizer"); 4813 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4814 return false; 4815 } 4816 4817 RecurrenceDescriptor RedDes; 4818 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4819 if (RedDes.hasUnsafeAlgebra()) 4820 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4821 AllowedExit.insert(RedDes.getLoopExitInstr()); 4822 Reductions[Phi] = RedDes; 4823 continue; 4824 } 4825 4826 InductionDescriptor ID; 4827 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { 4828 addInductionPhi(Phi, ID, AllowedExit); 4829 continue; 4830 } 4831 4832 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4833 FirstOrderRecurrences.insert(Phi); 4834 continue; 4835 } 4836 4837 // As a last resort, coerce the PHI to a AddRec expression 4838 // and re-try classifying it a an induction PHI. 4839 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { 4840 addInductionPhi(Phi, ID, AllowedExit); 4841 continue; 4842 } 4843 4844 emitAnalysis(VectorizationReport(&*it) 4845 << "value that could not be identified as " 4846 "reduction is used outside the loop"); 4847 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 4848 return false; 4849 } // end of PHI handling 4850 4851 // We handle calls that: 4852 // * Are debug info intrinsics. 4853 // * Have a mapping to an IR intrinsic. 4854 // * Have a vector version available. 4855 CallInst *CI = dyn_cast<CallInst>(it); 4856 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 4857 !isa<DbgInfoIntrinsic>(CI) && 4858 !(CI->getCalledFunction() && TLI && 4859 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4860 emitAnalysis(VectorizationReport(&*it) 4861 << "call instruction cannot be vectorized"); 4862 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4863 return false; 4864 } 4865 4866 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4867 // second argument is the same (i.e. loop invariant) 4868 if (CI && hasVectorInstrinsicScalarOpd( 4869 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4870 auto *SE = PSE.getSE(); 4871 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4872 emitAnalysis(VectorizationReport(&*it) 4873 << "intrinsic instruction cannot be vectorized"); 4874 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4875 return false; 4876 } 4877 } 4878 4879 // Check that the instruction return type is vectorizable. 4880 // Also, we can't vectorize extractelement instructions. 4881 if ((!VectorType::isValidElementType(it->getType()) && 4882 !it->getType()->isVoidTy()) || 4883 isa<ExtractElementInst>(it)) { 4884 emitAnalysis(VectorizationReport(&*it) 4885 << "instruction return type cannot be vectorized"); 4886 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4887 return false; 4888 } 4889 4890 // Check that the stored type is vectorizable. 4891 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4892 Type *T = ST->getValueOperand()->getType(); 4893 if (!VectorType::isValidElementType(T)) { 4894 emitAnalysis(VectorizationReport(ST) 4895 << "store instruction cannot be vectorized"); 4896 return false; 4897 } 4898 if (EnableMemAccessVersioning) 4899 collectStridedAccess(ST); 4900 4901 } else if (LoadInst *LI = dyn_cast<LoadInst>(it)) { 4902 if (EnableMemAccessVersioning) 4903 collectStridedAccess(LI); 4904 4905 // FP instructions can allow unsafe algebra, thus vectorizable by 4906 // non-IEEE-754 compliant SIMD units. 4907 // This applies to floating-point math operations and calls, not memory 4908 // operations, shuffles, or casts, as they don't change precision or 4909 // semantics. 4910 } else if (it->getType()->isFloatingPointTy() && 4911 (CI || it->isBinaryOp()) && !it->hasUnsafeAlgebra()) { 4912 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4913 Hints->setPotentiallyUnsafe(); 4914 } 4915 4916 // Reduction instructions are allowed to have exit users. 4917 // All other instructions must not have external users. 4918 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4919 emitAnalysis(VectorizationReport(&*it) 4920 << "value cannot be used outside the loop"); 4921 return false; 4922 } 4923 4924 } // next instr. 4925 } 4926 4927 if (!Induction) { 4928 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4929 if (Inductions.empty()) { 4930 emitAnalysis(VectorizationReport() 4931 << "loop induction variable could not be identified"); 4932 return false; 4933 } 4934 } 4935 4936 // Now we know the widest induction type, check if our found induction 4937 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4938 // will create another. 4939 if (Induction && WidestIndTy != Induction->getType()) 4940 Induction = nullptr; 4941 4942 return true; 4943 } 4944 4945 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4946 Value *Ptr = nullptr; 4947 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4948 Ptr = LI->getPointerOperand(); 4949 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4950 Ptr = SI->getPointerOperand(); 4951 else 4952 return; 4953 4954 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4955 if (!Stride) 4956 return; 4957 4958 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4959 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4960 Strides[Ptr] = Stride; 4961 StrideSet.insert(Stride); 4962 } 4963 4964 void LoopVectorizationLegality::collectLoopUniforms() { 4965 // We now know that the loop is vectorizable! 4966 // Collect variables that will remain uniform after vectorization. 4967 std::vector<Value *> Worklist; 4968 BasicBlock *Latch = TheLoop->getLoopLatch(); 4969 4970 // Start with the conditional branch and walk up the block. 4971 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4972 4973 // Also add all consecutive pointer values; these values will be uniform 4974 // after vectorization (and subsequent cleanup) and, until revectorization is 4975 // supported, all dependencies must also be uniform. 4976 for (Loop::block_iterator B = TheLoop->block_begin(), 4977 BE = TheLoop->block_end(); 4978 B != BE; ++B) 4979 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); I != IE; ++I) 4980 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4981 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4982 4983 while (!Worklist.empty()) { 4984 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4985 Worklist.pop_back(); 4986 4987 // Look at instructions inside this loop. 4988 // Stop when reaching PHI nodes. 4989 // TODO: we need to follow values all over the loop, not only in this block. 4990 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4991 continue; 4992 4993 // This is a known uniform. 4994 Uniforms.insert(I); 4995 4996 // Insert all operands. 4997 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4998 } 4999 } 5000 5001 bool LoopVectorizationLegality::canVectorizeMemory() { 5002 LAI = &LAA->getInfo(TheLoop, Strides); 5003 auto &OptionalReport = LAI->getReport(); 5004 if (OptionalReport) 5005 emitAnalysis(VectorizationReport(*OptionalReport)); 5006 if (!LAI->canVectorizeMemory()) 5007 return false; 5008 5009 if (LAI->hasStoreToLoopInvariantAddress()) { 5010 emitAnalysis( 5011 VectorizationReport() 5012 << "write to a loop invariant address could not be vectorized"); 5013 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5014 return false; 5015 } 5016 5017 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5018 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 5019 5020 return true; 5021 } 5022 5023 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5024 Value *In0 = const_cast<Value *>(V); 5025 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5026 if (!PN) 5027 return false; 5028 5029 return Inductions.count(PN); 5030 } 5031 5032 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5033 return FirstOrderRecurrences.count(Phi); 5034 } 5035 5036 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5037 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5038 } 5039 5040 bool LoopVectorizationLegality::blockCanBePredicated( 5041 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5042 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5043 5044 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5045 // Check that we don't have a constant expression that can trap as operand. 5046 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5047 OI != OE; ++OI) { 5048 if (Constant *C = dyn_cast<Constant>(*OI)) 5049 if (C->canTrap()) 5050 return false; 5051 } 5052 // We might be able to hoist the load. 5053 if (it->mayReadFromMemory()) { 5054 LoadInst *LI = dyn_cast<LoadInst>(it); 5055 if (!LI) 5056 return false; 5057 if (!SafePtrs.count(LI->getPointerOperand())) { 5058 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5059 isLegalMaskedGather(LI->getType())) { 5060 MaskedOp.insert(LI); 5061 continue; 5062 } 5063 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5064 if (IsAnnotatedParallel) 5065 continue; 5066 return false; 5067 } 5068 } 5069 5070 // We don't predicate stores at the moment. 5071 if (it->mayWriteToMemory()) { 5072 StoreInst *SI = dyn_cast<StoreInst>(it); 5073 // We only support predication of stores in basic blocks with one 5074 // predecessor. 5075 if (!SI) 5076 return false; 5077 5078 // Build a masked store if it is legal for the target. 5079 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5080 SI->getPointerOperand()) || 5081 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5082 MaskedOp.insert(SI); 5083 continue; 5084 } 5085 5086 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5087 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5088 5089 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5090 !isSinglePredecessor) 5091 return false; 5092 } 5093 if (it->mayThrow()) 5094 return false; 5095 5096 // The instructions below can trap. 5097 switch (it->getOpcode()) { 5098 default: 5099 continue; 5100 case Instruction::UDiv: 5101 case Instruction::SDiv: 5102 case Instruction::URem: 5103 case Instruction::SRem: 5104 return false; 5105 } 5106 } 5107 5108 return true; 5109 } 5110 5111 void InterleavedAccessInfo::collectConstStridedAccesses( 5112 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 5113 const ValueToValueMap &Strides) { 5114 // Holds load/store instructions in program order. 5115 SmallVector<Instruction *, 16> AccessList; 5116 5117 for (auto *BB : TheLoop->getBlocks()) { 5118 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5119 5120 for (auto &I : *BB) { 5121 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 5122 continue; 5123 // FIXME: Currently we can't handle mixed accesses and predicated accesses 5124 if (IsPred) 5125 return; 5126 5127 AccessList.push_back(&I); 5128 } 5129 } 5130 5131 if (AccessList.empty()) 5132 return; 5133 5134 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5135 for (auto I : AccessList) { 5136 LoadInst *LI = dyn_cast<LoadInst>(I); 5137 StoreInst *SI = dyn_cast<StoreInst>(I); 5138 5139 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 5140 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5141 5142 // The factor of the corresponding interleave group. 5143 unsigned Factor = std::abs(Stride); 5144 5145 // Ignore the access if the factor is too small or too large. 5146 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 5147 continue; 5148 5149 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5150 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5151 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5152 5153 // An alignment of 0 means target ABI alignment. 5154 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5155 if (!Align) 5156 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5157 5158 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 5159 } 5160 } 5161 5162 // Analyze interleaved accesses and collect them into interleave groups. 5163 // 5164 // Notice that the vectorization on interleaved groups will change instruction 5165 // orders and may break dependences. But the memory dependence check guarantees 5166 // that there is no overlap between two pointers of different strides, element 5167 // sizes or underlying bases. 5168 // 5169 // For pointers sharing the same stride, element size and underlying base, no 5170 // need to worry about Read-After-Write dependences and Write-After-Read 5171 // dependences. 5172 // 5173 // E.g. The RAW dependence: A[i] = a; 5174 // b = A[i]; 5175 // This won't exist as it is a store-load forwarding conflict, which has 5176 // already been checked and forbidden in the dependence check. 5177 // 5178 // E.g. The WAR dependence: a = A[i]; // (1) 5179 // A[i] = b; // (2) 5180 // The store group of (2) is always inserted at or below (2), and the load group 5181 // of (1) is always inserted at or above (1). The dependence is safe. 5182 void InterleavedAccessInfo::analyzeInterleaving( 5183 const ValueToValueMap &Strides) { 5184 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5185 5186 // Holds all the stride accesses. 5187 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5188 collectConstStridedAccesses(StrideAccesses, Strides); 5189 5190 if (StrideAccesses.empty()) 5191 return; 5192 5193 // Holds all interleaved store groups temporarily. 5194 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5195 // Holds all interleaved load groups temporarily. 5196 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5197 5198 // Search the load-load/write-write pair B-A in bottom-up order and try to 5199 // insert B into the interleave group of A according to 3 rules: 5200 // 1. A and B have the same stride. 5201 // 2. A and B have the same memory object size. 5202 // 3. B belongs to the group according to the distance. 5203 // 5204 // The bottom-up order can avoid breaking the Write-After-Write dependences 5205 // between two pointers of the same base. 5206 // E.g. A[i] = a; (1) 5207 // A[i] = b; (2) 5208 // A[i+1] = c (3) 5209 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 5210 // above (1), which guarantees that (1) is always above (2). 5211 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 5212 ++I) { 5213 Instruction *A = I->first; 5214 StrideDescriptor DesA = I->second; 5215 5216 InterleaveGroup *Group = getInterleaveGroup(A); 5217 if (!Group) { 5218 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5219 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5220 } 5221 5222 if (A->mayWriteToMemory()) 5223 StoreGroups.insert(Group); 5224 else 5225 LoadGroups.insert(Group); 5226 5227 for (auto II = std::next(I); II != E; ++II) { 5228 Instruction *B = II->first; 5229 StrideDescriptor DesB = II->second; 5230 5231 // Ignore if B is already in a group or B is a different memory operation. 5232 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5233 continue; 5234 5235 // Check the rule 1 and 2. 5236 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5237 continue; 5238 5239 // Calculate the distance and prepare for the rule 3. 5240 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5241 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5242 if (!DistToA) 5243 continue; 5244 5245 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5246 5247 // Skip if the distance is not multiple of size as they are not in the 5248 // same group. 5249 if (DistanceToA % static_cast<int>(DesA.Size)) 5250 continue; 5251 5252 // The index of B is the index of A plus the related index to A. 5253 int IndexB = 5254 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5255 5256 // Try to insert B into the group. 5257 if (Group->insertMember(B, IndexB, DesB.Align)) { 5258 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5259 << " into the interleave group with" << *A << '\n'); 5260 InterleaveGroupMap[B] = Group; 5261 5262 // Set the first load in program order as the insert position. 5263 if (B->mayReadFromMemory()) 5264 Group->setInsertPos(B); 5265 } 5266 } // Iteration on instruction B 5267 } // Iteration on instruction A 5268 5269 // Remove interleaved store groups with gaps. 5270 for (InterleaveGroup *Group : StoreGroups) 5271 if (Group->getNumMembers() != Group->getFactor()) 5272 releaseGroup(Group); 5273 5274 // If there is a non-reversed interleaved load group with gaps, we will need 5275 // to execute at least one scalar epilogue iteration. This will ensure that 5276 // we don't speculatively access memory out-of-bounds. Note that we only need 5277 // to look for a member at index factor - 1, since every group must have a 5278 // member at index zero. 5279 for (InterleaveGroup *Group : LoadGroups) 5280 if (!Group->getMember(Group->getFactor() - 1)) { 5281 if (Group->isReverse()) { 5282 releaseGroup(Group); 5283 } else { 5284 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5285 RequiresScalarEpilogue = true; 5286 } 5287 } 5288 } 5289 5290 LoopVectorizationCostModel::VectorizationFactor 5291 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5292 // Width 1 means no vectorize 5293 VectorizationFactor Factor = {1U, 0U}; 5294 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5295 emitAnalysis( 5296 VectorizationReport() 5297 << "runtime pointer checks needed. Enable vectorization of this " 5298 "loop with '#pragma clang loop vectorize(enable)' when " 5299 "compiling with -Os/-Oz"); 5300 DEBUG(dbgs() 5301 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5302 return Factor; 5303 } 5304 5305 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5306 emitAnalysis( 5307 VectorizationReport() 5308 << "store that is conditionally executed prevents vectorization"); 5309 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5310 return Factor; 5311 } 5312 5313 // Find the trip count. 5314 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5315 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5316 5317 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5318 unsigned SmallestType, WidestType; 5319 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5320 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5321 unsigned MaxSafeDepDist = -1U; 5322 5323 // Get the maximum safe dependence distance in bits computed by LAA. If the 5324 // loop contains any interleaved accesses, we divide the dependence distance 5325 // by the maximum interleave factor of all interleaved groups. Note that 5326 // although the division ensures correctness, this is a fairly conservative 5327 // computation because the maximum distance computed by LAA may not involve 5328 // any of the interleaved accesses. 5329 if (Legal->getMaxSafeDepDistBytes() != -1U) 5330 MaxSafeDepDist = 5331 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5332 5333 WidestRegister = 5334 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5335 unsigned MaxVectorSize = WidestRegister / WidestType; 5336 5337 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5338 << WidestType << " bits.\n"); 5339 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5340 << " bits.\n"); 5341 5342 if (MaxVectorSize == 0) { 5343 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5344 MaxVectorSize = 1; 5345 } 5346 5347 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5348 " into one vector!"); 5349 5350 unsigned VF = MaxVectorSize; 5351 if (MaximizeBandwidth && !OptForSize) { 5352 // Collect all viable vectorization factors. 5353 SmallVector<unsigned, 8> VFs; 5354 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5355 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5356 VFs.push_back(VS); 5357 5358 // For each VF calculate its register usage. 5359 auto RUs = calculateRegisterUsage(VFs); 5360 5361 // Select the largest VF which doesn't require more registers than existing 5362 // ones. 5363 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5364 for (int i = RUs.size() - 1; i >= 0; --i) { 5365 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5366 VF = VFs[i]; 5367 break; 5368 } 5369 } 5370 } 5371 5372 // If we optimize the program for size, avoid creating the tail loop. 5373 if (OptForSize) { 5374 // If we are unable to calculate the trip count then don't try to vectorize. 5375 if (TC < 2) { 5376 emitAnalysis( 5377 VectorizationReport() 5378 << "unable to calculate the loop count due to complex control flow"); 5379 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5380 return Factor; 5381 } 5382 5383 // Find the maximum SIMD width that can fit within the trip count. 5384 VF = TC % MaxVectorSize; 5385 5386 if (VF == 0) 5387 VF = MaxVectorSize; 5388 else { 5389 // If the trip count that we found modulo the vectorization factor is not 5390 // zero then we require a tail. 5391 emitAnalysis(VectorizationReport() 5392 << "cannot optimize for size and vectorize at the " 5393 "same time. Enable vectorization of this loop " 5394 "with '#pragma clang loop vectorize(enable)' " 5395 "when compiling with -Os/-Oz"); 5396 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5397 return Factor; 5398 } 5399 } 5400 5401 int UserVF = Hints->getWidth(); 5402 if (UserVF != 0) { 5403 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5404 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5405 5406 Factor.Width = UserVF; 5407 return Factor; 5408 } 5409 5410 float Cost = expectedCost(1).first; 5411 #ifndef NDEBUG 5412 const float ScalarCost = Cost; 5413 #endif /* NDEBUG */ 5414 unsigned Width = 1; 5415 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5416 5417 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5418 // Ignore scalar width, because the user explicitly wants vectorization. 5419 if (ForceVectorization && VF > 1) { 5420 Width = 2; 5421 Cost = expectedCost(Width).first / (float)Width; 5422 } 5423 5424 for (unsigned i = 2; i <= VF; i *= 2) { 5425 // Notice that the vector loop needs to be executed less times, so 5426 // we need to divide the cost of the vector loops by the width of 5427 // the vector elements. 5428 VectorizationCostTy C = expectedCost(i); 5429 float VectorCost = C.first / (float)i; 5430 DEBUG(dbgs() << "LV: Vector loop of width " << i 5431 << " costs: " << (int)VectorCost << ".\n"); 5432 if (!C.second && !ForceVectorization) { 5433 DEBUG( 5434 dbgs() << "LV: Not considering vector loop of width " << i 5435 << " because it will not generate any vector instructions.\n"); 5436 continue; 5437 } 5438 if (VectorCost < Cost) { 5439 Cost = VectorCost; 5440 Width = i; 5441 } 5442 } 5443 5444 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5445 << "LV: Vectorization seems to be not beneficial, " 5446 << "but was forced by a user.\n"); 5447 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5448 Factor.Width = Width; 5449 Factor.Cost = Width * Cost; 5450 return Factor; 5451 } 5452 5453 std::pair<unsigned, unsigned> 5454 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5455 unsigned MinWidth = -1U; 5456 unsigned MaxWidth = 8; 5457 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5458 5459 // For each block. 5460 for (Loop::block_iterator bb = TheLoop->block_begin(), 5461 be = TheLoop->block_end(); 5462 bb != be; ++bb) { 5463 BasicBlock *BB = *bb; 5464 5465 // For each instruction in the loop. 5466 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5467 Type *T = it->getType(); 5468 5469 // Skip ignored values. 5470 if (ValuesToIgnore.count(&*it)) 5471 continue; 5472 5473 // Only examine Loads, Stores and PHINodes. 5474 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5475 continue; 5476 5477 // Examine PHI nodes that are reduction variables. Update the type to 5478 // account for the recurrence type. 5479 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5480 if (!Legal->isReductionVariable(PN)) 5481 continue; 5482 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5483 T = RdxDesc.getRecurrenceType(); 5484 } 5485 5486 // Examine the stored values. 5487 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5488 T = ST->getValueOperand()->getType(); 5489 5490 // Ignore loaded pointer types and stored pointer types that are not 5491 // consecutive. However, we do want to take consecutive stores/loads of 5492 // pointer vectors into account. 5493 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5494 continue; 5495 5496 MinWidth = std::min(MinWidth, 5497 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5498 MaxWidth = std::max(MaxWidth, 5499 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5500 } 5501 } 5502 5503 return {MinWidth, MaxWidth}; 5504 } 5505 5506 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5507 unsigned VF, 5508 unsigned LoopCost) { 5509 5510 // -- The interleave heuristics -- 5511 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5512 // There are many micro-architectural considerations that we can't predict 5513 // at this level. For example, frontend pressure (on decode or fetch) due to 5514 // code size, or the number and capabilities of the execution ports. 5515 // 5516 // We use the following heuristics to select the interleave count: 5517 // 1. If the code has reductions, then we interleave to break the cross 5518 // iteration dependency. 5519 // 2. If the loop is really small, then we interleave to reduce the loop 5520 // overhead. 5521 // 3. We don't interleave if we think that we will spill registers to memory 5522 // due to the increased register pressure. 5523 5524 // When we optimize for size, we don't interleave. 5525 if (OptForSize) 5526 return 1; 5527 5528 // We used the distance for the interleave count. 5529 if (Legal->getMaxSafeDepDistBytes() != -1U) 5530 return 1; 5531 5532 // Do not interleave loops with a relatively small trip count. 5533 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5534 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5535 return 1; 5536 5537 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5538 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5539 << " registers\n"); 5540 5541 if (VF == 1) { 5542 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5543 TargetNumRegisters = ForceTargetNumScalarRegs; 5544 } else { 5545 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5546 TargetNumRegisters = ForceTargetNumVectorRegs; 5547 } 5548 5549 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5550 // We divide by these constants so assume that we have at least one 5551 // instruction that uses at least one register. 5552 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5553 R.NumInstructions = std::max(R.NumInstructions, 1U); 5554 5555 // We calculate the interleave count using the following formula. 5556 // Subtract the number of loop invariants from the number of available 5557 // registers. These registers are used by all of the interleaved instances. 5558 // Next, divide the remaining registers by the number of registers that is 5559 // required by the loop, in order to estimate how many parallel instances 5560 // fit without causing spills. All of this is rounded down if necessary to be 5561 // a power of two. We want power of two interleave count to simplify any 5562 // addressing operations or alignment considerations. 5563 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5564 R.MaxLocalUsers); 5565 5566 // Don't count the induction variable as interleaved. 5567 if (EnableIndVarRegisterHeur) 5568 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5569 std::max(1U, (R.MaxLocalUsers - 1))); 5570 5571 // Clamp the interleave ranges to reasonable counts. 5572 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5573 5574 // Check if the user has overridden the max. 5575 if (VF == 1) { 5576 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5577 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5578 } else { 5579 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5580 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5581 } 5582 5583 // If we did not calculate the cost for VF (because the user selected the VF) 5584 // then we calculate the cost of VF here. 5585 if (LoopCost == 0) 5586 LoopCost = expectedCost(VF).first; 5587 5588 // Clamp the calculated IC to be between the 1 and the max interleave count 5589 // that the target allows. 5590 if (IC > MaxInterleaveCount) 5591 IC = MaxInterleaveCount; 5592 else if (IC < 1) 5593 IC = 1; 5594 5595 // Interleave if we vectorized this loop and there is a reduction that could 5596 // benefit from interleaving. 5597 if (VF > 1 && Legal->getReductionVars()->size()) { 5598 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5599 return IC; 5600 } 5601 5602 // Note that if we've already vectorized the loop we will have done the 5603 // runtime check and so interleaving won't require further checks. 5604 bool InterleavingRequiresRuntimePointerCheck = 5605 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5606 5607 // We want to interleave small loops in order to reduce the loop overhead and 5608 // potentially expose ILP opportunities. 5609 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5610 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5611 // We assume that the cost overhead is 1 and we use the cost model 5612 // to estimate the cost of the loop and interleave until the cost of the 5613 // loop overhead is about 5% of the cost of the loop. 5614 unsigned SmallIC = 5615 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5616 5617 // Interleave until store/load ports (estimated by max interleave count) are 5618 // saturated. 5619 unsigned NumStores = Legal->getNumStores(); 5620 unsigned NumLoads = Legal->getNumLoads(); 5621 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5622 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5623 5624 // If we have a scalar reduction (vector reductions are already dealt with 5625 // by this point), we can increase the critical path length if the loop 5626 // we're interleaving is inside another loop. Limit, by default to 2, so the 5627 // critical path only gets increased by one reduction operation. 5628 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 5629 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5630 SmallIC = std::min(SmallIC, F); 5631 StoresIC = std::min(StoresIC, F); 5632 LoadsIC = std::min(LoadsIC, F); 5633 } 5634 5635 if (EnableLoadStoreRuntimeInterleave && 5636 std::max(StoresIC, LoadsIC) > SmallIC) { 5637 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5638 return std::max(StoresIC, LoadsIC); 5639 } 5640 5641 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5642 return SmallIC; 5643 } 5644 5645 // Interleave if this is a large loop (small loops are already dealt with by 5646 // this point) that could benefit from interleaving. 5647 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5648 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5649 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5650 return IC; 5651 } 5652 5653 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5654 return 1; 5655 } 5656 5657 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5658 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5659 // This function calculates the register usage by measuring the highest number 5660 // of values that are alive at a single location. Obviously, this is a very 5661 // rough estimation. We scan the loop in a topological order in order and 5662 // assign a number to each instruction. We use RPO to ensure that defs are 5663 // met before their users. We assume that each instruction that has in-loop 5664 // users starts an interval. We record every time that an in-loop value is 5665 // used, so we have a list of the first and last occurrences of each 5666 // instruction. Next, we transpose this data structure into a multi map that 5667 // holds the list of intervals that *end* at a specific location. This multi 5668 // map allows us to perform a linear search. We scan the instructions linearly 5669 // and record each time that a new interval starts, by placing it in a set. 5670 // If we find this value in the multi-map then we remove it from the set. 5671 // The max register usage is the maximum size of the set. 5672 // We also search for instructions that are defined outside the loop, but are 5673 // used inside the loop. We need this number separately from the max-interval 5674 // usage number because when we unroll, loop-invariant values do not take 5675 // more register. 5676 LoopBlocksDFS DFS(TheLoop); 5677 DFS.perform(LI); 5678 5679 RegisterUsage RU; 5680 RU.NumInstructions = 0; 5681 5682 // Each 'key' in the map opens a new interval. The values 5683 // of the map are the index of the 'last seen' usage of the 5684 // instruction that is the key. 5685 typedef DenseMap<Instruction *, unsigned> IntervalMap; 5686 // Maps instruction to its index. 5687 DenseMap<unsigned, Instruction *> IdxToInstr; 5688 // Marks the end of each interval. 5689 IntervalMap EndPoint; 5690 // Saves the list of instruction indices that are used in the loop. 5691 SmallSet<Instruction *, 8> Ends; 5692 // Saves the list of values that are used in the loop but are 5693 // defined outside the loop, such as arguments and constants. 5694 SmallPtrSet<Value *, 8> LoopInvariants; 5695 5696 unsigned Index = 0; 5697 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 5698 bb != be; ++bb) { 5699 RU.NumInstructions += (*bb)->size(); 5700 for (Instruction &I : **bb) { 5701 IdxToInstr[Index++] = &I; 5702 5703 // Save the end location of each USE. 5704 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5705 Value *U = I.getOperand(i); 5706 Instruction *Instr = dyn_cast<Instruction>(U); 5707 5708 // Ignore non-instruction values such as arguments, constants, etc. 5709 if (!Instr) 5710 continue; 5711 5712 // If this instruction is outside the loop then record it and continue. 5713 if (!TheLoop->contains(Instr)) { 5714 LoopInvariants.insert(Instr); 5715 continue; 5716 } 5717 5718 // Overwrite previous end points. 5719 EndPoint[Instr] = Index; 5720 Ends.insert(Instr); 5721 } 5722 } 5723 } 5724 5725 // Saves the list of intervals that end with the index in 'key'. 5726 typedef SmallVector<Instruction *, 2> InstrList; 5727 DenseMap<unsigned, InstrList> TransposeEnds; 5728 5729 // Transpose the EndPoints to a list of values that end at each index. 5730 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); it != e; 5731 ++it) 5732 TransposeEnds[it->second].push_back(it->first); 5733 5734 SmallSet<Instruction *, 8> OpenIntervals; 5735 5736 // Get the size of the widest register. 5737 unsigned MaxSafeDepDist = -1U; 5738 if (Legal->getMaxSafeDepDistBytes() != -1U) 5739 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5740 unsigned WidestRegister = 5741 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5742 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5743 5744 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5745 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5746 5747 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5748 5749 // A lambda that gets the register usage for the given type and VF. 5750 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5751 if (Ty->isTokenTy()) 5752 return 0U; 5753 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5754 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5755 }; 5756 5757 for (unsigned int i = 0; i < Index; ++i) { 5758 Instruction *I = IdxToInstr[i]; 5759 // Ignore instructions that are never used within the loop. 5760 if (!Ends.count(I)) 5761 continue; 5762 5763 // Remove all of the instructions that end at this location. 5764 InstrList &List = TransposeEnds[i]; 5765 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5766 OpenIntervals.erase(List[j]); 5767 5768 // Skip ignored values. 5769 if (ValuesToIgnore.count(I)) 5770 continue; 5771 5772 // For each VF find the maximum usage of registers. 5773 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5774 if (VFs[j] == 1) { 5775 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5776 continue; 5777 } 5778 5779 // Count the number of live intervals. 5780 unsigned RegUsage = 0; 5781 for (auto Inst : OpenIntervals) { 5782 // Skip ignored values for VF > 1. 5783 if (VecValuesToIgnore.count(Inst)) 5784 continue; 5785 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5786 } 5787 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5788 } 5789 5790 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5791 << OpenIntervals.size() << '\n'); 5792 5793 // Add the current instruction to the list of open intervals. 5794 OpenIntervals.insert(I); 5795 } 5796 5797 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5798 unsigned Invariant = 0; 5799 if (VFs[i] == 1) 5800 Invariant = LoopInvariants.size(); 5801 else { 5802 for (auto Inst : LoopInvariants) 5803 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5804 } 5805 5806 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5807 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5808 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5809 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5810 5811 RU.LoopInvariantRegs = Invariant; 5812 RU.MaxLocalUsers = MaxUsages[i]; 5813 RUs[i] = RU; 5814 } 5815 5816 return RUs; 5817 } 5818 5819 LoopVectorizationCostModel::VectorizationCostTy 5820 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5821 VectorizationCostTy Cost; 5822 5823 // For each block. 5824 for (Loop::block_iterator bb = TheLoop->block_begin(), 5825 be = TheLoop->block_end(); 5826 bb != be; ++bb) { 5827 VectorizationCostTy BlockCost; 5828 BasicBlock *BB = *bb; 5829 5830 // For each instruction in the old loop. 5831 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5832 // Skip dbg intrinsics. 5833 if (isa<DbgInfoIntrinsic>(it)) 5834 continue; 5835 5836 // Skip ignored values. 5837 if (ValuesToIgnore.count(&*it)) 5838 continue; 5839 5840 VectorizationCostTy C = getInstructionCost(&*it, VF); 5841 5842 // Check if we should override the cost. 5843 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5844 C.first = ForceTargetInstructionCost; 5845 5846 BlockCost.first += C.first; 5847 BlockCost.second |= C.second; 5848 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5849 << VF << " For instruction: " << *it << '\n'); 5850 } 5851 5852 // We assume that if-converted blocks have a 50% chance of being executed. 5853 // When the code is scalar then some of the blocks are avoided due to CF. 5854 // When the code is vectorized we execute all code paths. 5855 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5856 BlockCost.first /= 2; 5857 5858 Cost.first += BlockCost.first; 5859 Cost.second |= BlockCost.second; 5860 } 5861 5862 return Cost; 5863 } 5864 5865 /// \brief Check if the load/store instruction \p I may be translated into 5866 /// gather/scatter during vectorization. 5867 /// 5868 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5869 /// instruction. We need it to retrieve data type. 5870 /// Using gather/scatter is possible when it is supported by target. 5871 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5872 LoopVectorizationLegality *Legal) { 5873 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5874 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5875 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5876 } 5877 5878 /// \brief Check whether the address computation for a non-consecutive memory 5879 /// access looks like an unlikely candidate for being merged into the indexing 5880 /// mode. 5881 /// 5882 /// We look for a GEP which has one index that is an induction variable and all 5883 /// other indices are loop invariant. If the stride of this access is also 5884 /// within a small bound we decide that this address computation can likely be 5885 /// merged into the addressing mode. 5886 /// In all other cases, we identify the address computation as complex. 5887 static bool isLikelyComplexAddressComputation(Value *Ptr, 5888 LoopVectorizationLegality *Legal, 5889 ScalarEvolution *SE, 5890 const Loop *TheLoop) { 5891 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5892 if (!Gep) 5893 return true; 5894 5895 // We are looking for a gep with all loop invariant indices except for one 5896 // which should be an induction variable. 5897 unsigned NumOperands = Gep->getNumOperands(); 5898 for (unsigned i = 1; i < NumOperands; ++i) { 5899 Value *Opd = Gep->getOperand(i); 5900 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5901 !Legal->isInductionVariable(Opd)) 5902 return true; 5903 } 5904 5905 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5906 // can likely be merged into the address computation. 5907 unsigned MaxMergeDistance = 64; 5908 5909 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5910 if (!AddRec) 5911 return true; 5912 5913 // Check the step is constant. 5914 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5915 // Calculate the pointer stride and check if it is consecutive. 5916 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5917 if (!C) 5918 return true; 5919 5920 const APInt &APStepVal = C->getAPInt(); 5921 5922 // Huge step value - give up. 5923 if (APStepVal.getBitWidth() > 64) 5924 return true; 5925 5926 int64_t StepVal = APStepVal.getSExtValue(); 5927 5928 return StepVal > MaxMergeDistance; 5929 } 5930 5931 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5932 return Legal->hasStride(I->getOperand(0)) || 5933 Legal->hasStride(I->getOperand(1)); 5934 } 5935 5936 LoopVectorizationCostModel::VectorizationCostTy 5937 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5938 // If we know that this instruction will remain uniform, check the cost of 5939 // the scalar version. 5940 if (Legal->isUniformAfterVectorization(I)) 5941 VF = 1; 5942 5943 Type *VectorTy; 5944 unsigned C = getInstructionCost(I, VF, VectorTy); 5945 5946 bool TypeNotScalarized = 5947 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 5948 return VectorizationCostTy(C, TypeNotScalarized); 5949 } 5950 5951 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5952 unsigned VF, 5953 Type *&VectorTy) { 5954 Type *RetTy = I->getType(); 5955 if (VF > 1 && MinBWs.count(I)) 5956 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5957 VectorTy = ToVectorTy(RetTy, VF); 5958 auto SE = PSE.getSE(); 5959 5960 // TODO: We need to estimate the cost of intrinsic calls. 5961 switch (I->getOpcode()) { 5962 case Instruction::GetElementPtr: 5963 // We mark this instruction as zero-cost because the cost of GEPs in 5964 // vectorized code depends on whether the corresponding memory instruction 5965 // is scalarized or not. Therefore, we handle GEPs with the memory 5966 // instruction cost. 5967 return 0; 5968 case Instruction::Br: { 5969 return TTI.getCFInstrCost(I->getOpcode()); 5970 } 5971 case Instruction::PHI: { 5972 auto *Phi = cast<PHINode>(I); 5973 5974 // First-order recurrences are replaced by vector shuffles inside the loop. 5975 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5976 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5977 VectorTy, VF - 1, VectorTy); 5978 5979 // TODO: IF-converted IFs become selects. 5980 return 0; 5981 } 5982 case Instruction::Add: 5983 case Instruction::FAdd: 5984 case Instruction::Sub: 5985 case Instruction::FSub: 5986 case Instruction::Mul: 5987 case Instruction::FMul: 5988 case Instruction::UDiv: 5989 case Instruction::SDiv: 5990 case Instruction::FDiv: 5991 case Instruction::URem: 5992 case Instruction::SRem: 5993 case Instruction::FRem: 5994 case Instruction::Shl: 5995 case Instruction::LShr: 5996 case Instruction::AShr: 5997 case Instruction::And: 5998 case Instruction::Or: 5999 case Instruction::Xor: { 6000 // Since we will replace the stride by 1 the multiplication should go away. 6001 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6002 return 0; 6003 // Certain instructions can be cheaper to vectorize if they have a constant 6004 // second vector operand. One example of this are shifts on x86. 6005 TargetTransformInfo::OperandValueKind Op1VK = 6006 TargetTransformInfo::OK_AnyValue; 6007 TargetTransformInfo::OperandValueKind Op2VK = 6008 TargetTransformInfo::OK_AnyValue; 6009 TargetTransformInfo::OperandValueProperties Op1VP = 6010 TargetTransformInfo::OP_None; 6011 TargetTransformInfo::OperandValueProperties Op2VP = 6012 TargetTransformInfo::OP_None; 6013 Value *Op2 = I->getOperand(1); 6014 6015 // Check for a splat of a constant or for a non uniform vector of constants. 6016 if (isa<ConstantInt>(Op2)) { 6017 ConstantInt *CInt = cast<ConstantInt>(Op2); 6018 if (CInt && CInt->getValue().isPowerOf2()) 6019 Op2VP = TargetTransformInfo::OP_PowerOf2; 6020 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6021 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6022 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6023 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6024 if (SplatValue) { 6025 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6026 if (CInt && CInt->getValue().isPowerOf2()) 6027 Op2VP = TargetTransformInfo::OP_PowerOf2; 6028 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6029 } 6030 } 6031 6032 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6033 Op1VP, Op2VP); 6034 } 6035 case Instruction::Select: { 6036 SelectInst *SI = cast<SelectInst>(I); 6037 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6038 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6039 Type *CondTy = SI->getCondition()->getType(); 6040 if (!ScalarCond) 6041 CondTy = VectorType::get(CondTy, VF); 6042 6043 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6044 } 6045 case Instruction::ICmp: 6046 case Instruction::FCmp: { 6047 Type *ValTy = I->getOperand(0)->getType(); 6048 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6049 auto It = MinBWs.find(Op0AsInstruction); 6050 if (VF > 1 && It != MinBWs.end()) 6051 ValTy = IntegerType::get(ValTy->getContext(), It->second); 6052 VectorTy = ToVectorTy(ValTy, VF); 6053 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6054 } 6055 case Instruction::Store: 6056 case Instruction::Load: { 6057 StoreInst *SI = dyn_cast<StoreInst>(I); 6058 LoadInst *LI = dyn_cast<LoadInst>(I); 6059 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6060 VectorTy = ToVectorTy(ValTy, VF); 6061 6062 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6063 unsigned AS = 6064 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6065 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 6066 // We add the cost of address computation here instead of with the gep 6067 // instruction because only here we know whether the operation is 6068 // scalarized. 6069 if (VF == 1) 6070 return TTI.getAddressComputationCost(VectorTy) + 6071 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6072 6073 if (LI && Legal->isUniform(Ptr)) { 6074 // Scalar load + broadcast 6075 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6076 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6077 Alignment, AS); 6078 return Cost + 6079 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6080 } 6081 6082 // For an interleaved access, calculate the total cost of the whole 6083 // interleave group. 6084 if (Legal->isAccessInterleaved(I)) { 6085 auto Group = Legal->getInterleavedAccessGroup(I); 6086 assert(Group && "Fail to get an interleaved access group."); 6087 6088 // Only calculate the cost once at the insert position. 6089 if (Group->getInsertPos() != I) 6090 return 0; 6091 6092 unsigned InterleaveFactor = Group->getFactor(); 6093 Type *WideVecTy = 6094 VectorType::get(VectorTy->getVectorElementType(), 6095 VectorTy->getVectorNumElements() * InterleaveFactor); 6096 6097 // Holds the indices of existing members in an interleaved load group. 6098 // An interleaved store group doesn't need this as it doesn't allow gaps. 6099 SmallVector<unsigned, 4> Indices; 6100 if (LI) { 6101 for (unsigned i = 0; i < InterleaveFactor; i++) 6102 if (Group->getMember(i)) 6103 Indices.push_back(i); 6104 } 6105 6106 // Calculate the cost of the whole interleaved group. 6107 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6108 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6109 Group->getAlignment(), AS); 6110 6111 if (Group->isReverse()) 6112 Cost += 6113 Group->getNumMembers() * 6114 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6115 6116 // FIXME: The interleaved load group with a huge gap could be even more 6117 // expensive than scalar operations. Then we could ignore such group and 6118 // use scalar operations instead. 6119 return Cost; 6120 } 6121 6122 // Scalarized loads/stores. 6123 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6124 bool UseGatherOrScatter = 6125 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); 6126 6127 bool Reverse = ConsecutiveStride < 0; 6128 const DataLayout &DL = I->getModule()->getDataLayout(); 6129 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 6130 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 6131 if ((!ConsecutiveStride && !UseGatherOrScatter) || 6132 ScalarAllocatedSize != VectorElementSize) { 6133 bool IsComplexComputation = 6134 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6135 unsigned Cost = 0; 6136 // The cost of extracting from the value vector and pointer vector. 6137 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6138 for (unsigned i = 0; i < VF; ++i) { 6139 // The cost of extracting the pointer operand. 6140 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6141 // In case of STORE, the cost of ExtractElement from the vector. 6142 // In case of LOAD, the cost of InsertElement into the returned 6143 // vector. 6144 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6145 : Instruction::InsertElement, 6146 VectorTy, i); 6147 } 6148 6149 // The cost of the scalar loads/stores. 6150 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6151 Cost += VF * 6152 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6153 Alignment, AS); 6154 return Cost; 6155 } 6156 6157 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6158 if (UseGatherOrScatter) { 6159 assert(ConsecutiveStride == 0 && 6160 "Gather/Scatter are not used for consecutive stride"); 6161 return Cost + 6162 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6163 Legal->isMaskRequired(I), Alignment); 6164 } 6165 // Wide load/stores. 6166 if (Legal->isMaskRequired(I)) 6167 Cost += 6168 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6169 else 6170 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6171 6172 if (Reverse) 6173 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6174 return Cost; 6175 } 6176 case Instruction::ZExt: 6177 case Instruction::SExt: 6178 case Instruction::FPToUI: 6179 case Instruction::FPToSI: 6180 case Instruction::FPExt: 6181 case Instruction::PtrToInt: 6182 case Instruction::IntToPtr: 6183 case Instruction::SIToFP: 6184 case Instruction::UIToFP: 6185 case Instruction::Trunc: 6186 case Instruction::FPTrunc: 6187 case Instruction::BitCast: { 6188 // We optimize the truncation of induction variable. 6189 // The cost of these is the same as the scalar operation. 6190 if (I->getOpcode() == Instruction::Trunc && 6191 Legal->isInductionVariable(I->getOperand(0))) 6192 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6193 I->getOperand(0)->getType()); 6194 6195 Type *SrcScalarTy = I->getOperand(0)->getType(); 6196 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6197 if (VF > 1 && MinBWs.count(I)) { 6198 // This cast is going to be shrunk. This may remove the cast or it might 6199 // turn it into slightly different cast. For example, if MinBW == 16, 6200 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6201 // 6202 // Calculate the modified src and dest types. 6203 Type *MinVecTy = VectorTy; 6204 if (I->getOpcode() == Instruction::Trunc) { 6205 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6206 VectorTy = 6207 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6208 } else if (I->getOpcode() == Instruction::ZExt || 6209 I->getOpcode() == Instruction::SExt) { 6210 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6211 VectorTy = 6212 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6213 } 6214 } 6215 6216 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6217 } 6218 case Instruction::Call: { 6219 bool NeedToScalarize; 6220 CallInst *CI = cast<CallInst>(I); 6221 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6222 if (getVectorIntrinsicIDForCall(CI, TLI)) 6223 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6224 return CallCost; 6225 } 6226 default: { 6227 // We are scalarizing the instruction. Return the cost of the scalar 6228 // instruction, plus the cost of insert and extract into vector 6229 // elements, times the vector width. 6230 unsigned Cost = 0; 6231 6232 if (!RetTy->isVoidTy() && VF != 1) { 6233 unsigned InsCost = 6234 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); 6235 unsigned ExtCost = 6236 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); 6237 6238 // The cost of inserting the results plus extracting each one of the 6239 // operands. 6240 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6241 } 6242 6243 // The cost of executing VF copies of the scalar instruction. This opcode 6244 // is unknown. Assume that it is the same as 'mul'. 6245 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6246 return Cost; 6247 } 6248 } // end of switch. 6249 } 6250 6251 char LoopVectorize::ID = 0; 6252 static const char lv_name[] = "Loop Vectorization"; 6253 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6254 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6255 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6256 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6257 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6258 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6259 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6260 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6261 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6262 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6263 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6264 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6265 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6266 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6267 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6268 6269 namespace llvm { 6270 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6271 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6272 } 6273 } 6274 6275 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6276 // Check for a store. 6277 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6278 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6279 6280 // Check for a load. 6281 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6282 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6283 6284 return false; 6285 } 6286 6287 void LoopVectorizationCostModel::collectValuesToIgnore() { 6288 // Ignore ephemeral values. 6289 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6290 6291 // Ignore type-promoting instructions we identified during reduction 6292 // detection. 6293 for (auto &Reduction : *Legal->getReductionVars()) { 6294 RecurrenceDescriptor &RedDes = Reduction.second; 6295 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6296 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6297 } 6298 6299 // Ignore induction phis that are only used in either GetElementPtr or ICmp 6300 // instruction to exit loop. Induction variables usually have large types and 6301 // can have big impact when estimating register usage. 6302 // This is for when VF > 1. 6303 for (auto &Induction : *Legal->getInductionVars()) { 6304 auto *PN = Induction.first; 6305 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 6306 6307 // Check that the PHI is only used by the induction increment (UpdateV) or 6308 // by GEPs. Then check that UpdateV is only used by a compare instruction or 6309 // the loop header PHI. 6310 // FIXME: Need precise def-use analysis to determine if this instruction 6311 // variable will be vectorized. 6312 if (std::all_of(PN->user_begin(), PN->user_end(), 6313 [&](const User *U) -> bool { 6314 return U == UpdateV || isa<GetElementPtrInst>(U); 6315 }) && 6316 std::all_of(UpdateV->user_begin(), UpdateV->user_end(), 6317 [&](const User *U) -> bool { 6318 return U == PN || isa<ICmpInst>(U); 6319 })) { 6320 VecValuesToIgnore.insert(PN); 6321 VecValuesToIgnore.insert(UpdateV); 6322 } 6323 } 6324 6325 // Ignore instructions that will not be vectorized. 6326 // This is for when VF > 1. 6327 for (auto bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; 6328 ++bb) { 6329 for (auto &Inst : **bb) { 6330 switch (Inst.getOpcode()) 6331 case Instruction::GetElementPtr: { 6332 // Ignore GEP if its last operand is an induction variable so that it is 6333 // a consecutive load/store and won't be vectorized as scatter/gather 6334 // pattern. 6335 6336 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst); 6337 unsigned NumOperands = Gep->getNumOperands(); 6338 unsigned InductionOperand = getGEPInductionOperand(Gep); 6339 bool GepToIgnore = true; 6340 6341 // Check that all of the gep indices are uniform except for the 6342 // induction operand. 6343 for (unsigned i = 0; i != NumOperands; ++i) { 6344 if (i != InductionOperand && 6345 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 6346 TheLoop)) { 6347 GepToIgnore = false; 6348 break; 6349 } 6350 } 6351 6352 if (GepToIgnore) 6353 VecValuesToIgnore.insert(&Inst); 6354 break; 6355 } 6356 } 6357 } 6358 } 6359 6360 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6361 bool IfPredicateStore) { 6362 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6363 // Holds vector parameters or scalars, in case of uniform vals. 6364 SmallVector<VectorParts, 4> Params; 6365 6366 setDebugLocFromInst(Builder, Instr); 6367 6368 // Find all of the vectorized parameters. 6369 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6370 Value *SrcOp = Instr->getOperand(op); 6371 6372 // If we are accessing the old induction variable, use the new one. 6373 if (SrcOp == OldInduction) { 6374 Params.push_back(getVectorValue(SrcOp)); 6375 continue; 6376 } 6377 6378 // Try using previously calculated values. 6379 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6380 6381 // If the src is an instruction that appeared earlier in the basic block 6382 // then it should already be vectorized. 6383 if (SrcInst && OrigLoop->contains(SrcInst)) { 6384 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6385 // The parameter is a vector value from earlier. 6386 Params.push_back(WidenMap.get(SrcInst)); 6387 } else { 6388 // The parameter is a scalar from outside the loop. Maybe even a constant. 6389 VectorParts Scalars; 6390 Scalars.append(UF, SrcOp); 6391 Params.push_back(Scalars); 6392 } 6393 } 6394 6395 assert(Params.size() == Instr->getNumOperands() && 6396 "Invalid number of operands"); 6397 6398 // Does this instruction return a value ? 6399 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6400 6401 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); 6402 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6403 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6404 6405 VectorParts Cond; 6406 if (IfPredicateStore) { 6407 assert(Instr->getParent()->getSinglePredecessor() && 6408 "Only support single predecessor blocks"); 6409 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6410 Instr->getParent()); 6411 } 6412 6413 // For each vector unroll 'part': 6414 for (unsigned Part = 0; Part < UF; ++Part) { 6415 // For each scalar that we create: 6416 6417 // Start an "if (pred) a[i] = ..." block. 6418 Value *Cmp = nullptr; 6419 if (IfPredicateStore) { 6420 if (Cond[Part]->getType()->isVectorTy()) 6421 Cond[Part] = 6422 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6423 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6424 ConstantInt::get(Cond[Part]->getType(), 1)); 6425 } 6426 6427 Instruction *Cloned = Instr->clone(); 6428 if (!IsVoidRetTy) 6429 Cloned->setName(Instr->getName() + ".cloned"); 6430 // Replace the operands of the cloned instructions with extracted scalars. 6431 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6432 Value *Op = Params[op][Part]; 6433 Cloned->setOperand(op, Op); 6434 } 6435 6436 // Place the cloned scalar in the new loop. 6437 Builder.Insert(Cloned); 6438 6439 // If we just cloned a new assumption, add it the assumption cache. 6440 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6441 if (II->getIntrinsicID() == Intrinsic::assume) 6442 AC->registerAssumption(II); 6443 6444 // If the original scalar returns a value we need to place it in a vector 6445 // so that future users will be able to use it. 6446 if (!IsVoidRetTy) 6447 VecResults[Part] = Cloned; 6448 6449 // End if-block. 6450 if (IfPredicateStore) 6451 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp)); 6452 } 6453 } 6454 6455 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6456 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6457 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6458 6459 return scalarizeInstruction(Instr, IfPredicateStore); 6460 } 6461 6462 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6463 6464 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6465 6466 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, 6467 const SCEV *StepSCEV) { 6468 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 6469 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 6470 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 6471 &*Builder.GetInsertPoint()); 6472 return getStepVector(Val, StartIdx, StepValue); 6473 } 6474 6475 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6476 // When unrolling and the VF is 1, we only need to add a simple scalar. 6477 Type *ITy = Val->getType(); 6478 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6479 Constant *C = ConstantInt::get(ITy, StartIdx); 6480 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6481 } 6482