1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/BlockFrequencyInfo.h" 58 #include "llvm/Analysis/LoopInfo.h" 59 #include "llvm/Analysis/LoopIterator.h" 60 #include "llvm/Analysis/LoopPass.h" 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/Analysis/ScalarEvolutionExpander.h" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Analysis/TargetTransformInfo.h" 65 #include "llvm/Analysis/ValueTracking.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfo.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/LLVMContext.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/IR/PatternMatch.h" 78 #include "llvm/IR/Type.h" 79 #include "llvm/IR/Value.h" 80 #include "llvm/IR/ValueHandle.h" 81 #include "llvm/IR/Verifier.h" 82 #include "llvm/Pass.h" 83 #include "llvm/Support/BranchProbability.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Scalar.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/VectorUtils.h" 92 #include <algorithm> 93 #include <map> 94 #include <tuple> 95 96 using namespace llvm; 97 using namespace llvm::PatternMatch; 98 99 #define LV_NAME "loop-vectorize" 100 #define DEBUG_TYPE LV_NAME 101 102 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 103 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 104 105 static cl::opt<unsigned> 106 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 107 cl::desc("Sets the SIMD width. Zero is autoselect.")); 108 109 static cl::opt<unsigned> 110 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 111 cl::desc("Sets the vectorization unroll count. " 112 "Zero is autoselect.")); 113 114 static cl::opt<bool> 115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 116 cl::desc("Enable if-conversion during vectorization.")); 117 118 /// We don't vectorize loops with a known constant trip count below this number. 119 static cl::opt<unsigned> 120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 121 cl::Hidden, 122 cl::desc("Don't vectorize loops with a constant " 123 "trip count that is smaller than this " 124 "value.")); 125 126 /// This enables versioning on the strides of symbolically striding memory 127 /// accesses in code like the following. 128 /// for (i = 0; i < N; ++i) 129 /// A[i * Stride1] += B[i * Stride2] ... 130 /// 131 /// Will be roughly translated to 132 /// if (Stride1 == 1 && Stride2 == 1) { 133 /// for (i = 0; i < N; i+=4) 134 /// A[i:i+3] += ... 135 /// } else 136 /// ... 137 static cl::opt<bool> EnableMemAccessVersioning( 138 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 139 cl::desc("Enable symblic stride memory access versioning")); 140 141 /// We don't unroll loops with a known constant trip count below this number. 142 static const unsigned TinyTripCountUnrollThreshold = 128; 143 144 /// When performing memory disambiguation checks at runtime do not make more 145 /// than this number of comparisons. 146 static const unsigned RuntimeMemoryCheckThreshold = 8; 147 148 /// Maximum simd width. 149 static const unsigned MaxVectorWidth = 64; 150 151 static cl::opt<unsigned> ForceTargetNumScalarRegs( 152 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's number of scalar registers.")); 154 155 static cl::opt<unsigned> ForceTargetNumVectorRegs( 156 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's number of vector registers.")); 158 159 /// Maximum vectorization unroll count. 160 static const unsigned MaxUnrollFactor = 16; 161 162 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor( 163 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's max unroll factor for scalar " 165 "loops.")); 166 167 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor( 168 "force-target-max-vector-unroll", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's max unroll factor for " 170 "vectorized loops.")); 171 172 static cl::opt<unsigned> ForceTargetInstructionCost( 173 "force-target-instruction-cost", cl::init(0), cl::Hidden, 174 cl::desc("A flag that overrides the target's expected cost for " 175 "an instruction to a single constant value. Mostly " 176 "useful for getting consistent testing.")); 177 178 static cl::opt<unsigned> SmallLoopCost( 179 "small-loop-cost", cl::init(20), cl::Hidden, 180 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 181 182 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 183 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 184 cl::desc("Enable the use of the block frequency analysis to access PGO " 185 "heuristics minimizing code growth in cold regions and being more " 186 "aggressive in hot regions.")); 187 188 // Runtime unroll loops for load/store throughput. 189 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 190 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 191 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 192 193 /// The number of stores in a loop that are allowed to need predication. 194 static cl::opt<unsigned> NumberOfStoresToPredicate( 195 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 196 cl::desc("Max number of stores to be predicated behind an if.")); 197 198 static cl::opt<bool> EnableIndVarRegisterHeur( 199 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 200 cl::desc("Count the induction variable only once when unrolling")); 201 202 static cl::opt<bool> EnableCondStoresVectorization( 203 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 204 cl::desc("Enable if predication of stores during vectorization.")); 205 206 namespace { 207 208 // Forward declarations. 209 class LoopVectorizationLegality; 210 class LoopVectorizationCostModel; 211 212 /// InnerLoopVectorizer vectorizes loops which contain only one basic 213 /// block to a specified vectorization factor (VF). 214 /// This class performs the widening of scalars into vectors, or multiple 215 /// scalars. This class also implements the following features: 216 /// * It inserts an epilogue loop for handling loops that don't have iteration 217 /// counts that are known to be a multiple of the vectorization factor. 218 /// * It handles the code generation for reduction variables. 219 /// * Scalarization (implementation using scalars) of un-vectorizable 220 /// instructions. 221 /// InnerLoopVectorizer does not perform any vectorization-legality 222 /// checks, and relies on the caller to check for the different legality 223 /// aspects. The InnerLoopVectorizer relies on the 224 /// LoopVectorizationLegality class to provide information about the induction 225 /// and reduction variables that were found to a given vectorization factor. 226 class InnerLoopVectorizer { 227 public: 228 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 229 DominatorTree *DT, const DataLayout *DL, 230 const TargetLibraryInfo *TLI, unsigned VecWidth, 231 unsigned UnrollFactor) 232 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 233 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 234 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 235 Legal(nullptr) {} 236 237 // Perform the actual loop widening (vectorization). 238 void vectorize(LoopVectorizationLegality *L) { 239 Legal = L; 240 // Create a new empty loop. Unlink the old loop and connect the new one. 241 createEmptyLoop(); 242 // Widen each instruction in the old loop to a new one in the new loop. 243 // Use the Legality module to find the induction and reduction variables. 244 vectorizeLoop(); 245 // Register the new loop and update the analysis passes. 246 updateAnalysis(); 247 } 248 249 virtual ~InnerLoopVectorizer() {} 250 251 protected: 252 /// A small list of PHINodes. 253 typedef SmallVector<PHINode*, 4> PhiVector; 254 /// When we unroll loops we have multiple vector values for each scalar. 255 /// This data structure holds the unrolled and vectorized values that 256 /// originated from one scalar instruction. 257 typedef SmallVector<Value*, 2> VectorParts; 258 259 // When we if-convert we need create edge masks. We have to cache values so 260 // that we don't end up with exponential recursion/IR. 261 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 262 VectorParts> EdgeMaskCache; 263 264 /// \brief Add code that checks at runtime if the accessed arrays overlap. 265 /// 266 /// Returns a pair of instructions where the first element is the first 267 /// instruction generated in possibly a sequence of instructions and the 268 /// second value is the final comparator value or NULL if no check is needed. 269 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 270 271 /// \brief Add checks for strides that where assumed to be 1. 272 /// 273 /// Returns the last check instruction and the first check instruction in the 274 /// pair as (first, last). 275 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 276 277 /// Create an empty loop, based on the loop ranges of the old loop. 278 void createEmptyLoop(); 279 /// Copy and widen the instructions from the old loop. 280 virtual void vectorizeLoop(); 281 282 /// \brief The Loop exit block may have single value PHI nodes where the 283 /// incoming value is 'Undef'. While vectorizing we only handled real values 284 /// that were defined inside the loop. Here we fix the 'undef case'. 285 /// See PR14725. 286 void fixLCSSAPHIs(); 287 288 /// A helper function that computes the predicate of the block BB, assuming 289 /// that the header block of the loop is set to True. It returns the *entry* 290 /// mask for the block BB. 291 VectorParts createBlockInMask(BasicBlock *BB); 292 /// A helper function that computes the predicate of the edge between SRC 293 /// and DST. 294 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 295 296 /// A helper function to vectorize a single BB within the innermost loop. 297 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 298 299 /// Vectorize a single PHINode in a block. This method handles the induction 300 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 301 /// arbitrary length vectors. 302 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 303 unsigned UF, unsigned VF, PhiVector *PV); 304 305 /// Insert the new loop to the loop hierarchy and pass manager 306 /// and update the analysis passes. 307 void updateAnalysis(); 308 309 /// This instruction is un-vectorizable. Implement it as a sequence 310 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 311 /// scalarized instruction behind an if block predicated on the control 312 /// dependence of the instruction. 313 virtual void scalarizeInstruction(Instruction *Instr, 314 bool IfPredicateStore=false); 315 316 /// Vectorize Load and Store instructions, 317 virtual void vectorizeMemoryInstruction(Instruction *Instr); 318 319 /// Create a broadcast instruction. This method generates a broadcast 320 /// instruction (shuffle) for loop invariant values and for the induction 321 /// value. If this is the induction variable then we extend it to N, N+1, ... 322 /// this is needed because each iteration in the loop corresponds to a SIMD 323 /// element. 324 virtual Value *getBroadcastInstrs(Value *V); 325 326 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 327 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 328 /// The sequence starts at StartIndex. 329 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 330 331 /// When we go over instructions in the basic block we rely on previous 332 /// values within the current basic block or on loop invariant values. 333 /// When we widen (vectorize) values we place them in the map. If the values 334 /// are not within the map, they have to be loop invariant, so we simply 335 /// broadcast them into a vector. 336 VectorParts &getVectorValue(Value *V); 337 338 /// Generate a shuffle sequence that will reverse the vector Vec. 339 virtual Value *reverseVector(Value *Vec); 340 341 /// This is a helper class that holds the vectorizer state. It maps scalar 342 /// instructions to vector instructions. When the code is 'unrolled' then 343 /// then a single scalar value is mapped to multiple vector parts. The parts 344 /// are stored in the VectorPart type. 345 struct ValueMap { 346 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 347 /// are mapped. 348 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 349 350 /// \return True if 'Key' is saved in the Value Map. 351 bool has(Value *Key) const { return MapStorage.count(Key); } 352 353 /// Initializes a new entry in the map. Sets all of the vector parts to the 354 /// save value in 'Val'. 355 /// \return A reference to a vector with splat values. 356 VectorParts &splat(Value *Key, Value *Val) { 357 VectorParts &Entry = MapStorage[Key]; 358 Entry.assign(UF, Val); 359 return Entry; 360 } 361 362 ///\return A reference to the value that is stored at 'Key'. 363 VectorParts &get(Value *Key) { 364 VectorParts &Entry = MapStorage[Key]; 365 if (Entry.empty()) 366 Entry.resize(UF); 367 assert(Entry.size() == UF); 368 return Entry; 369 } 370 371 private: 372 /// The unroll factor. Each entry in the map stores this number of vector 373 /// elements. 374 unsigned UF; 375 376 /// Map storage. We use std::map and not DenseMap because insertions to a 377 /// dense map invalidates its iterators. 378 std::map<Value *, VectorParts> MapStorage; 379 }; 380 381 /// The original loop. 382 Loop *OrigLoop; 383 /// Scev analysis to use. 384 ScalarEvolution *SE; 385 /// Loop Info. 386 LoopInfo *LI; 387 /// Dominator Tree. 388 DominatorTree *DT; 389 /// Data Layout. 390 const DataLayout *DL; 391 /// Target Library Info. 392 const TargetLibraryInfo *TLI; 393 394 /// The vectorization SIMD factor to use. Each vector will have this many 395 /// vector elements. 396 unsigned VF; 397 398 protected: 399 /// The vectorization unroll factor to use. Each scalar is vectorized to this 400 /// many different vector instructions. 401 unsigned UF; 402 403 /// The builder that we use 404 IRBuilder<> Builder; 405 406 // --- Vectorization state --- 407 408 /// The vector-loop preheader. 409 BasicBlock *LoopVectorPreHeader; 410 /// The scalar-loop preheader. 411 BasicBlock *LoopScalarPreHeader; 412 /// Middle Block between the vector and the scalar. 413 BasicBlock *LoopMiddleBlock; 414 ///The ExitBlock of the scalar loop. 415 BasicBlock *LoopExitBlock; 416 ///The vector loop body. 417 SmallVector<BasicBlock *, 4> LoopVectorBody; 418 ///The scalar loop body. 419 BasicBlock *LoopScalarBody; 420 /// A list of all bypass blocks. The first block is the entry of the loop. 421 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 422 423 /// The new Induction variable which was added to the new block. 424 PHINode *Induction; 425 /// The induction variable of the old basic block. 426 PHINode *OldInduction; 427 /// Holds the extended (to the widest induction type) start index. 428 Value *ExtendedIdx; 429 /// Maps scalars to widened vectors. 430 ValueMap WidenMap; 431 EdgeMaskCache MaskCache; 432 433 LoopVectorizationLegality *Legal; 434 }; 435 436 class InnerLoopUnroller : public InnerLoopVectorizer { 437 public: 438 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 439 DominatorTree *DT, const DataLayout *DL, 440 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 441 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 442 443 private: 444 void scalarizeInstruction(Instruction *Instr, 445 bool IfPredicateStore = false) override; 446 void vectorizeMemoryInstruction(Instruction *Instr) override; 447 Value *getBroadcastInstrs(Value *V) override; 448 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 449 Value *reverseVector(Value *Vec) override; 450 }; 451 452 /// \brief Look for a meaningful debug location on the instruction or it's 453 /// operands. 454 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 455 if (!I) 456 return I; 457 458 DebugLoc Empty; 459 if (I->getDebugLoc() != Empty) 460 return I; 461 462 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 463 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 464 if (OpInst->getDebugLoc() != Empty) 465 return OpInst; 466 } 467 468 return I; 469 } 470 471 /// \brief Set the debug location in the builder using the debug location in the 472 /// instruction. 473 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 474 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 475 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 476 else 477 B.SetCurrentDebugLocation(DebugLoc()); 478 } 479 480 #ifndef NDEBUG 481 /// \return string containing a file name and a line # for the given 482 /// instruction. 483 static format_object3<const char *, const char *, unsigned> 484 getDebugLocString(const Instruction *I) { 485 if (!I) 486 return format<const char *, const char *, unsigned>("", "", "", 0U); 487 MDNode *N = I->getMetadata("dbg"); 488 if (!N) { 489 const StringRef ModuleName = 490 I->getParent()->getParent()->getParent()->getModuleIdentifier(); 491 return format<const char *, const char *, unsigned>("%s", ModuleName.data(), 492 "", 0U); 493 } 494 const DILocation Loc(N); 495 const unsigned LineNo = Loc.getLineNumber(); 496 const char *DirName = Loc.getDirectory().data(); 497 const char *FileName = Loc.getFilename().data(); 498 return format("%s/%s:%u", DirName, FileName, LineNo); 499 } 500 #endif 501 502 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 503 /// to what vectorization factor. 504 /// This class does not look at the profitability of vectorization, only the 505 /// legality. This class has two main kinds of checks: 506 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 507 /// will change the order of memory accesses in a way that will change the 508 /// correctness of the program. 509 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 510 /// checks for a number of different conditions, such as the availability of a 511 /// single induction variable, that all types are supported and vectorize-able, 512 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 513 /// This class is also used by InnerLoopVectorizer for identifying 514 /// induction variable and the different reduction variables. 515 class LoopVectorizationLegality { 516 public: 517 unsigned NumLoads; 518 unsigned NumStores; 519 unsigned NumPredStores; 520 521 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 522 DominatorTree *DT, TargetLibraryInfo *TLI) 523 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 524 DT(DT), TLI(TLI), Induction(nullptr), WidestIndTy(nullptr), 525 HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {} 526 527 /// This enum represents the kinds of reductions that we support. 528 enum ReductionKind { 529 RK_NoReduction, ///< Not a reduction. 530 RK_IntegerAdd, ///< Sum of integers. 531 RK_IntegerMult, ///< Product of integers. 532 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 533 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 534 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 535 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 536 RK_FloatAdd, ///< Sum of floats. 537 RK_FloatMult, ///< Product of floats. 538 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 539 }; 540 541 /// This enum represents the kinds of inductions that we support. 542 enum InductionKind { 543 IK_NoInduction, ///< Not an induction variable. 544 IK_IntInduction, ///< Integer induction variable. Step = 1. 545 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 546 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 547 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 548 }; 549 550 // This enum represents the kind of minmax reduction. 551 enum MinMaxReductionKind { 552 MRK_Invalid, 553 MRK_UIntMin, 554 MRK_UIntMax, 555 MRK_SIntMin, 556 MRK_SIntMax, 557 MRK_FloatMin, 558 MRK_FloatMax 559 }; 560 561 /// This struct holds information about reduction variables. 562 struct ReductionDescriptor { 563 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 564 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 565 566 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 567 MinMaxReductionKind MK) 568 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 569 570 // The starting value of the reduction. 571 // It does not have to be zero! 572 TrackingVH<Value> StartValue; 573 // The instruction who's value is used outside the loop. 574 Instruction *LoopExitInstr; 575 // The kind of the reduction. 576 ReductionKind Kind; 577 // If this a min/max reduction the kind of reduction. 578 MinMaxReductionKind MinMaxKind; 579 }; 580 581 /// This POD struct holds information about a potential reduction operation. 582 struct ReductionInstDesc { 583 ReductionInstDesc(bool IsRedux, Instruction *I) : 584 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 585 586 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 587 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 588 589 // Is this instruction a reduction candidate. 590 bool IsReduction; 591 // The last instruction in a min/max pattern (select of the select(icmp()) 592 // pattern), or the current reduction instruction otherwise. 593 Instruction *PatternLastInst; 594 // If this is a min/max pattern the comparison predicate. 595 MinMaxReductionKind MinMaxKind; 596 }; 597 598 /// This struct holds information about the memory runtime legality 599 /// check that a group of pointers do not overlap. 600 struct RuntimePointerCheck { 601 RuntimePointerCheck() : Need(false) {} 602 603 /// Reset the state of the pointer runtime information. 604 void reset() { 605 Need = false; 606 Pointers.clear(); 607 Starts.clear(); 608 Ends.clear(); 609 IsWritePtr.clear(); 610 DependencySetId.clear(); 611 } 612 613 /// Insert a pointer and calculate the start and end SCEVs. 614 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 615 unsigned DepSetId, ValueToValueMap &Strides); 616 617 /// This flag indicates if we need to add the runtime check. 618 bool Need; 619 /// Holds the pointers that we need to check. 620 SmallVector<TrackingVH<Value>, 2> Pointers; 621 /// Holds the pointer value at the beginning of the loop. 622 SmallVector<const SCEV*, 2> Starts; 623 /// Holds the pointer value at the end of the loop. 624 SmallVector<const SCEV*, 2> Ends; 625 /// Holds the information if this pointer is used for writing to memory. 626 SmallVector<bool, 2> IsWritePtr; 627 /// Holds the id of the set of pointers that could be dependent because of a 628 /// shared underlying object. 629 SmallVector<unsigned, 2> DependencySetId; 630 }; 631 632 /// A struct for saving information about induction variables. 633 struct InductionInfo { 634 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 635 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 636 /// Start value. 637 TrackingVH<Value> StartValue; 638 /// Induction kind. 639 InductionKind IK; 640 }; 641 642 /// ReductionList contains the reduction descriptors for all 643 /// of the reductions that were found in the loop. 644 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 645 646 /// InductionList saves induction variables and maps them to the 647 /// induction descriptor. 648 typedef MapVector<PHINode*, InductionInfo> InductionList; 649 650 /// Returns true if it is legal to vectorize this loop. 651 /// This does not mean that it is profitable to vectorize this 652 /// loop, only that it is legal to do so. 653 bool canVectorize(); 654 655 /// Returns the Induction variable. 656 PHINode *getInduction() { return Induction; } 657 658 /// Returns the reduction variables found in the loop. 659 ReductionList *getReductionVars() { return &Reductions; } 660 661 /// Returns the induction variables found in the loop. 662 InductionList *getInductionVars() { return &Inductions; } 663 664 /// Returns the widest induction type. 665 Type *getWidestInductionType() { return WidestIndTy; } 666 667 /// Returns True if V is an induction variable in this loop. 668 bool isInductionVariable(const Value *V); 669 670 /// Return true if the block BB needs to be predicated in order for the loop 671 /// to be vectorized. 672 bool blockNeedsPredication(BasicBlock *BB); 673 674 /// Check if this pointer is consecutive when vectorizing. This happens 675 /// when the last index of the GEP is the induction variable, or that the 676 /// pointer itself is an induction variable. 677 /// This check allows us to vectorize A[idx] into a wide load/store. 678 /// Returns: 679 /// 0 - Stride is unknown or non-consecutive. 680 /// 1 - Address is consecutive. 681 /// -1 - Address is consecutive, and decreasing. 682 int isConsecutivePtr(Value *Ptr); 683 684 /// Returns true if the value V is uniform within the loop. 685 bool isUniform(Value *V); 686 687 /// Returns true if this instruction will remain scalar after vectorization. 688 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 689 690 /// Returns the information that we collected about runtime memory check. 691 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 692 693 /// This function returns the identity element (or neutral element) for 694 /// the operation K. 695 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 696 697 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 698 699 bool hasStride(Value *V) { return StrideSet.count(V); } 700 bool mustCheckStrides() { return !StrideSet.empty(); } 701 SmallPtrSet<Value *, 8>::iterator strides_begin() { 702 return StrideSet.begin(); 703 } 704 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 705 706 private: 707 /// Check if a single basic block loop is vectorizable. 708 /// At this point we know that this is a loop with a constant trip count 709 /// and we only need to check individual instructions. 710 bool canVectorizeInstrs(); 711 712 /// When we vectorize loops we may change the order in which 713 /// we read and write from memory. This method checks if it is 714 /// legal to vectorize the code, considering only memory constrains. 715 /// Returns true if the loop is vectorizable 716 bool canVectorizeMemory(); 717 718 /// Return true if we can vectorize this loop using the IF-conversion 719 /// transformation. 720 bool canVectorizeWithIfConvert(); 721 722 /// Collect the variables that need to stay uniform after vectorization. 723 void collectLoopUniforms(); 724 725 /// Return true if all of the instructions in the block can be speculatively 726 /// executed. \p SafePtrs is a list of addresses that are known to be legal 727 /// and we know that we can read from them without segfault. 728 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 729 730 /// Returns True, if 'Phi' is the kind of reduction variable for type 731 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 732 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 733 /// Returns a struct describing if the instruction 'I' can be a reduction 734 /// variable of type 'Kind'. If the reduction is a min/max pattern of 735 /// select(icmp()) this function advances the instruction pointer 'I' from the 736 /// compare instruction to the select instruction and stores this pointer in 737 /// 'PatternLastInst' member of the returned struct. 738 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 739 ReductionInstDesc &Desc); 740 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 741 /// pattern corresponding to a min(X, Y) or max(X, Y). 742 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 743 ReductionInstDesc &Prev); 744 /// Returns the induction kind of Phi. This function may return NoInduction 745 /// if the PHI is not an induction variable. 746 InductionKind isInductionVariable(PHINode *Phi); 747 748 /// \brief Collect memory access with loop invariant strides. 749 /// 750 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 751 /// invariant. 752 void collectStridedAcccess(Value *LoadOrStoreInst); 753 754 /// The loop that we evaluate. 755 Loop *TheLoop; 756 /// Scev analysis. 757 ScalarEvolution *SE; 758 /// DataLayout analysis. 759 const DataLayout *DL; 760 /// Dominators. 761 DominatorTree *DT; 762 /// Target Library Info. 763 TargetLibraryInfo *TLI; 764 765 // --- vectorization state --- // 766 767 /// Holds the integer induction variable. This is the counter of the 768 /// loop. 769 PHINode *Induction; 770 /// Holds the reduction variables. 771 ReductionList Reductions; 772 /// Holds all of the induction variables that we found in the loop. 773 /// Notice that inductions don't need to start at zero and that induction 774 /// variables can be pointers. 775 InductionList Inductions; 776 /// Holds the widest induction type encountered. 777 Type *WidestIndTy; 778 779 /// Allowed outside users. This holds the reduction 780 /// vars which can be accessed from outside the loop. 781 SmallPtrSet<Value*, 4> AllowedExit; 782 /// This set holds the variables which are known to be uniform after 783 /// vectorization. 784 SmallPtrSet<Instruction*, 4> Uniforms; 785 /// We need to check that all of the pointers in this list are disjoint 786 /// at runtime. 787 RuntimePointerCheck PtrRtCheck; 788 /// Can we assume the absence of NaNs. 789 bool HasFunNoNaNAttr; 790 791 unsigned MaxSafeDepDistBytes; 792 793 ValueToValueMap Strides; 794 SmallPtrSet<Value *, 8> StrideSet; 795 }; 796 797 /// LoopVectorizationCostModel - estimates the expected speedups due to 798 /// vectorization. 799 /// In many cases vectorization is not profitable. This can happen because of 800 /// a number of reasons. In this class we mainly attempt to predict the 801 /// expected speedup/slowdowns due to the supported instruction set. We use the 802 /// TargetTransformInfo to query the different backends for the cost of 803 /// different operations. 804 class LoopVectorizationCostModel { 805 public: 806 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 807 LoopVectorizationLegality *Legal, 808 const TargetTransformInfo &TTI, 809 const DataLayout *DL, const TargetLibraryInfo *TLI) 810 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 811 812 /// Information about vectorization costs 813 struct VectorizationFactor { 814 unsigned Width; // Vector width with best cost 815 unsigned Cost; // Cost of the loop with that width 816 }; 817 /// \return The most profitable vectorization factor and the cost of that VF. 818 /// This method checks every power of two up to VF. If UserVF is not ZERO 819 /// then this vectorization factor will be selected if vectorization is 820 /// possible. 821 VectorizationFactor selectVectorizationFactor(bool OptForSize, 822 unsigned UserVF, 823 bool ForceVectorization); 824 825 /// \return The size (in bits) of the widest type in the code that 826 /// needs to be vectorized. We ignore values that remain scalar such as 827 /// 64 bit loop indices. 828 unsigned getWidestType(); 829 830 /// \return The most profitable unroll factor. 831 /// If UserUF is non-zero then this method finds the best unroll-factor 832 /// based on register pressure and other parameters. 833 /// VF and LoopCost are the selected vectorization factor and the cost of the 834 /// selected VF. 835 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 836 unsigned LoopCost); 837 838 /// \brief A struct that represents some properties of the register usage 839 /// of a loop. 840 struct RegisterUsage { 841 /// Holds the number of loop invariant values that are used in the loop. 842 unsigned LoopInvariantRegs; 843 /// Holds the maximum number of concurrent live intervals in the loop. 844 unsigned MaxLocalUsers; 845 /// Holds the number of instructions in the loop. 846 unsigned NumInstructions; 847 }; 848 849 /// \return information about the register usage of the loop. 850 RegisterUsage calculateRegisterUsage(); 851 852 private: 853 /// Returns the expected execution cost. The unit of the cost does 854 /// not matter because we use the 'cost' units to compare different 855 /// vector widths. The cost that is returned is *not* normalized by 856 /// the factor width. 857 unsigned expectedCost(unsigned VF); 858 859 /// Returns the execution time cost of an instruction for a given vector 860 /// width. Vector width of one means scalar. 861 unsigned getInstructionCost(Instruction *I, unsigned VF); 862 863 /// A helper function for converting Scalar types to vector types. 864 /// If the incoming type is void, we return void. If the VF is 1, we return 865 /// the scalar type. 866 static Type* ToVectorTy(Type *Scalar, unsigned VF); 867 868 /// Returns whether the instruction is a load or store and will be a emitted 869 /// as a vector operation. 870 bool isConsecutiveLoadOrStore(Instruction *I); 871 872 /// The loop that we evaluate. 873 Loop *TheLoop; 874 /// Scev analysis. 875 ScalarEvolution *SE; 876 /// Loop Info analysis. 877 LoopInfo *LI; 878 /// Vectorization legality. 879 LoopVectorizationLegality *Legal; 880 /// Vector target information. 881 const TargetTransformInfo &TTI; 882 /// Target data layout information. 883 const DataLayout *DL; 884 /// Target Library Info. 885 const TargetLibraryInfo *TLI; 886 }; 887 888 /// Utility class for getting and setting loop vectorizer hints in the form 889 /// of loop metadata. 890 class LoopVectorizeHints { 891 public: 892 enum ForceKind { 893 FK_Undefined = -1, ///< Not selected. 894 FK_Disabled = 0, ///< Forcing disabled. 895 FK_Enabled = 1, ///< Forcing enabled. 896 }; 897 898 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 899 : Width(VectorizationFactor), 900 Unroll(DisableUnrolling), 901 Force(FK_Undefined), 902 LoopID(L->getLoopID()) { 903 getHints(L); 904 // force-vector-unroll overrides DisableUnrolling. 905 if (VectorizationUnroll.getNumOccurrences() > 0) 906 Unroll = VectorizationUnroll; 907 908 DEBUG(if (DisableUnrolling && Unroll == 1) dbgs() 909 << "LV: Unrolling disabled by the pass manager\n"); 910 } 911 912 /// Return the loop vectorizer metadata prefix. 913 static StringRef Prefix() { return "llvm.vectorizer."; } 914 915 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const { 916 SmallVector<Value*, 2> Vals; 917 Vals.push_back(MDString::get(Context, Name)); 918 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 919 return MDNode::get(Context, Vals); 920 } 921 922 /// Mark the loop L as already vectorized by setting the width to 1. 923 void setAlreadyVectorized(Loop *L) { 924 LLVMContext &Context = L->getHeader()->getContext(); 925 926 Width = 1; 927 928 // Create a new loop id with one more operand for the already_vectorized 929 // hint. If the loop already has a loop id then copy the existing operands. 930 SmallVector<Value*, 4> Vals(1); 931 if (LoopID) 932 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 933 Vals.push_back(LoopID->getOperand(i)); 934 935 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 936 Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1)); 937 938 MDNode *NewLoopID = MDNode::get(Context, Vals); 939 // Set operand 0 to refer to the loop id itself. 940 NewLoopID->replaceOperandWith(0, NewLoopID); 941 942 L->setLoopID(NewLoopID); 943 if (LoopID) 944 LoopID->replaceAllUsesWith(NewLoopID); 945 946 LoopID = NewLoopID; 947 } 948 949 unsigned getWidth() const { return Width; } 950 unsigned getUnroll() const { return Unroll; } 951 enum ForceKind getForce() const { return Force; } 952 MDNode *getLoopID() const { return LoopID; } 953 954 private: 955 /// Find hints specified in the loop metadata. 956 void getHints(const Loop *L) { 957 if (!LoopID) 958 return; 959 960 // First operand should refer to the loop id itself. 961 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 962 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 963 964 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 965 const MDString *S = nullptr; 966 SmallVector<Value*, 4> Args; 967 968 // The expected hint is either a MDString or a MDNode with the first 969 // operand a MDString. 970 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 971 if (!MD || MD->getNumOperands() == 0) 972 continue; 973 S = dyn_cast<MDString>(MD->getOperand(0)); 974 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 975 Args.push_back(MD->getOperand(i)); 976 } else { 977 S = dyn_cast<MDString>(LoopID->getOperand(i)); 978 assert(Args.size() == 0 && "too many arguments for MDString"); 979 } 980 981 if (!S) 982 continue; 983 984 // Check if the hint starts with the vectorizer prefix. 985 StringRef Hint = S->getString(); 986 if (!Hint.startswith(Prefix())) 987 continue; 988 // Remove the prefix. 989 Hint = Hint.substr(Prefix().size(), StringRef::npos); 990 991 if (Args.size() == 1) 992 getHint(Hint, Args[0]); 993 } 994 } 995 996 // Check string hint with one operand. 997 void getHint(StringRef Hint, Value *Arg) { 998 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 999 if (!C) return; 1000 unsigned Val = C->getZExtValue(); 1001 1002 if (Hint == "width") { 1003 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 1004 Width = Val; 1005 else 1006 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 1007 } else if (Hint == "unroll") { 1008 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 1009 Unroll = Val; 1010 else 1011 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 1012 } else if (Hint == "enable") { 1013 if (C->getBitWidth() == 1) 1014 Force = Val == 1 ? LoopVectorizeHints::FK_Enabled 1015 : LoopVectorizeHints::FK_Disabled; 1016 else 1017 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n"); 1018 } else { 1019 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 1020 } 1021 } 1022 1023 /// Vectorization width. 1024 unsigned Width; 1025 /// Vectorization unroll factor. 1026 unsigned Unroll; 1027 /// Vectorization forced 1028 enum ForceKind Force; 1029 1030 MDNode *LoopID; 1031 }; 1032 1033 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1034 if (L.empty()) 1035 return V.push_back(&L); 1036 1037 for (Loop *InnerL : L) 1038 addInnerLoop(*InnerL, V); 1039 } 1040 1041 /// The LoopVectorize Pass. 1042 struct LoopVectorize : public FunctionPass { 1043 /// Pass identification, replacement for typeid 1044 static char ID; 1045 1046 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1047 : FunctionPass(ID), 1048 DisableUnrolling(NoUnrolling), 1049 AlwaysVectorize(AlwaysVectorize) { 1050 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1051 } 1052 1053 ScalarEvolution *SE; 1054 const DataLayout *DL; 1055 LoopInfo *LI; 1056 TargetTransformInfo *TTI; 1057 DominatorTree *DT; 1058 BlockFrequencyInfo *BFI; 1059 TargetLibraryInfo *TLI; 1060 bool DisableUnrolling; 1061 bool AlwaysVectorize; 1062 1063 BlockFrequency ColdEntryFreq; 1064 1065 bool runOnFunction(Function &F) override { 1066 SE = &getAnalysis<ScalarEvolution>(); 1067 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1068 DL = DLP ? &DLP->getDataLayout() : nullptr; 1069 LI = &getAnalysis<LoopInfo>(); 1070 TTI = &getAnalysis<TargetTransformInfo>(); 1071 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1072 BFI = &getAnalysis<BlockFrequencyInfo>(); 1073 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1074 1075 // Compute some weights outside of the loop over the loops. Compute this 1076 // using a BranchProbability to re-use its scaling math. 1077 const BranchProbability ColdProb(1, 5); // 20% 1078 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1079 1080 // If the target claims to have no vector registers don't attempt 1081 // vectorization. 1082 if (!TTI->getNumberOfRegisters(true)) 1083 return false; 1084 1085 if (!DL) { 1086 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1087 << ": Missing data layout\n"); 1088 return false; 1089 } 1090 1091 // Build up a worklist of inner-loops to vectorize. This is necessary as 1092 // the act of vectorizing or partially unrolling a loop creates new loops 1093 // and can invalidate iterators across the loops. 1094 SmallVector<Loop *, 8> Worklist; 1095 1096 for (Loop *L : *LI) 1097 addInnerLoop(*L, Worklist); 1098 1099 LoopsAnalyzed += Worklist.size(); 1100 1101 // Now walk the identified inner loops. 1102 bool Changed = false; 1103 while (!Worklist.empty()) 1104 Changed |= processLoop(Worklist.pop_back_val()); 1105 1106 // Process each loop nest in the function. 1107 return Changed; 1108 } 1109 1110 bool processLoop(Loop *L) { 1111 assert(L->empty() && "Only process inner loops."); 1112 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1113 << L->getHeader()->getParent()->getName() << "\" from " 1114 << getDebugLocString(L->getHeader()->getFirstNonPHIOrDbg()) 1115 << "\n"); 1116 1117 LoopVectorizeHints Hints(L, DisableUnrolling); 1118 1119 DEBUG(dbgs() << "LV: Loop hints:" 1120 << " force=" 1121 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1122 ? "disabled" 1123 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1124 ? "enabled" 1125 : "?")) << " width=" << Hints.getWidth() 1126 << " unroll=" << Hints.getUnroll() << "\n"); 1127 1128 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1129 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1130 return false; 1131 } 1132 1133 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1134 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1135 return false; 1136 } 1137 1138 if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) { 1139 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1140 return false; 1141 } 1142 1143 // Check the loop for a trip count threshold: 1144 // do not vectorize loops with a tiny trip count. 1145 BasicBlock *Latch = L->getLoopLatch(); 1146 const unsigned TC = SE->getSmallConstantTripCount(L, Latch); 1147 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1148 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1149 << "This loop is not worth vectorizing."); 1150 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1151 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1152 else { 1153 DEBUG(dbgs() << "\n"); 1154 return false; 1155 } 1156 } 1157 1158 // Check if it is legal to vectorize the loop. 1159 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI); 1160 if (!LVL.canVectorize()) { 1161 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1162 return false; 1163 } 1164 1165 // Use the cost model. 1166 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 1167 1168 // Check the function attributes to find out if this function should be 1169 // optimized for size. 1170 Function *F = L->getHeader()->getParent(); 1171 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1172 F->hasFnAttribute(Attribute::OptimizeForSize); 1173 1174 // Compute the weighted frequency of this loop being executed and see if it 1175 // is less than 20% of the function entry baseline frequency. Note that we 1176 // always have a canonical loop here because we think we *can* vectoriez. 1177 // FIXME: This is hidden behind a flag due to pervasive problems with 1178 // exactly what block frequency models. 1179 if (LoopVectorizeWithBlockFrequency) { 1180 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1181 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1182 LoopEntryFreq < ColdEntryFreq) 1183 OptForSize = true; 1184 } 1185 1186 // Check the function attributes to see if implicit floats are allowed.a 1187 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1188 // an integer loop and the vector instructions selected are purely integer 1189 // vector instructions? 1190 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1191 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1192 "attribute is used.\n"); 1193 return false; 1194 } 1195 1196 // Select the optimal vectorization factor. 1197 const LoopVectorizationCostModel::VectorizationFactor VF = 1198 CM.selectVectorizationFactor(OptForSize, Hints.getWidth(), 1199 Hints.getForce() == 1200 LoopVectorizeHints::FK_Enabled); 1201 1202 // Select the unroll factor. 1203 const unsigned UF = 1204 CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost); 1205 1206 DEBUG(dbgs() << "LV: Found a vectorizable loop (" 1207 << VF.Width << ") in " 1208 << getDebugLocString(L->getHeader()->getFirstNonPHIOrDbg()) 1209 << '\n'); 1210 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1211 1212 if (VF.Width == 1) { 1213 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1214 if (UF == 1) 1215 return false; 1216 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1217 1218 // Report the unrolling decision. 1219 F->getContext().emitOptimizationRemark( 1220 DEBUG_TYPE, *F, L->getStartLoc(), 1221 Twine("unrolled with interleaving factor " + Twine(UF) + 1222 " (vectorization not beneficial)")); 1223 1224 // We decided not to vectorize, but we may want to unroll. 1225 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1226 Unroller.vectorize(&LVL); 1227 } else { 1228 // If we decided that it is *legal* to vectorize the loop then do it. 1229 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1230 LB.vectorize(&LVL); 1231 ++LoopsVectorized; 1232 1233 // Report the vectorization decision. 1234 F->getContext().emitOptimizationRemark( 1235 DEBUG_TYPE, *F, L->getStartLoc(), 1236 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1237 ", unrolling interleave factor: " + Twine(UF) + ")"); 1238 } 1239 1240 // Mark the loop as already vectorized to avoid vectorizing again. 1241 Hints.setAlreadyVectorized(L); 1242 1243 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1244 return true; 1245 } 1246 1247 void getAnalysisUsage(AnalysisUsage &AU) const override { 1248 AU.addRequiredID(LoopSimplifyID); 1249 AU.addRequiredID(LCSSAID); 1250 AU.addRequired<BlockFrequencyInfo>(); 1251 AU.addRequired<DominatorTreeWrapperPass>(); 1252 AU.addRequired<LoopInfo>(); 1253 AU.addRequired<ScalarEvolution>(); 1254 AU.addRequired<TargetTransformInfo>(); 1255 AU.addPreserved<LoopInfo>(); 1256 AU.addPreserved<DominatorTreeWrapperPass>(); 1257 } 1258 1259 }; 1260 1261 } // end anonymous namespace 1262 1263 //===----------------------------------------------------------------------===// 1264 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1265 // LoopVectorizationCostModel. 1266 //===----------------------------------------------------------------------===// 1267 1268 static Value *stripIntegerCast(Value *V) { 1269 if (CastInst *CI = dyn_cast<CastInst>(V)) 1270 if (CI->getOperand(0)->getType()->isIntegerTy()) 1271 return CI->getOperand(0); 1272 return V; 1273 } 1274 1275 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1276 /// 1277 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1278 /// \p Ptr. 1279 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1280 ValueToValueMap &PtrToStride, 1281 Value *Ptr, Value *OrigPtr = nullptr) { 1282 1283 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1284 1285 // If there is an entry in the map return the SCEV of the pointer with the 1286 // symbolic stride replaced by one. 1287 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1288 if (SI != PtrToStride.end()) { 1289 Value *StrideVal = SI->second; 1290 1291 // Strip casts. 1292 StrideVal = stripIntegerCast(StrideVal); 1293 1294 // Replace symbolic stride by one. 1295 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1296 ValueToValueMap RewriteMap; 1297 RewriteMap[StrideVal] = One; 1298 1299 const SCEV *ByOne = 1300 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1301 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1302 << "\n"); 1303 return ByOne; 1304 } 1305 1306 // Otherwise, just return the SCEV of the original pointer. 1307 return SE->getSCEV(Ptr); 1308 } 1309 1310 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1311 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1312 ValueToValueMap &Strides) { 1313 // Get the stride replaced scev. 1314 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1315 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1316 assert(AR && "Invalid addrec expression"); 1317 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1318 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1319 Pointers.push_back(Ptr); 1320 Starts.push_back(AR->getStart()); 1321 Ends.push_back(ScEnd); 1322 IsWritePtr.push_back(WritePtr); 1323 DependencySetId.push_back(DepSetId); 1324 } 1325 1326 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1327 // We need to place the broadcast of invariant variables outside the loop. 1328 Instruction *Instr = dyn_cast<Instruction>(V); 1329 bool NewInstr = 1330 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1331 Instr->getParent()) != LoopVectorBody.end()); 1332 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1333 1334 // Place the code for broadcasting invariant variables in the new preheader. 1335 IRBuilder<>::InsertPointGuard Guard(Builder); 1336 if (Invariant) 1337 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1338 1339 // Broadcast the scalar into all locations in the vector. 1340 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1341 1342 return Shuf; 1343 } 1344 1345 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1346 bool Negate) { 1347 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1348 assert(Val->getType()->getScalarType()->isIntegerTy() && 1349 "Elem must be an integer"); 1350 // Create the types. 1351 Type *ITy = Val->getType()->getScalarType(); 1352 VectorType *Ty = cast<VectorType>(Val->getType()); 1353 int VLen = Ty->getNumElements(); 1354 SmallVector<Constant*, 8> Indices; 1355 1356 // Create a vector of consecutive numbers from zero to VF. 1357 for (int i = 0; i < VLen; ++i) { 1358 int64_t Idx = Negate ? (-i) : i; 1359 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1360 } 1361 1362 // Add the consecutive indices to the vector value. 1363 Constant *Cv = ConstantVector::get(Indices); 1364 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1365 return Builder.CreateAdd(Val, Cv, "induction"); 1366 } 1367 1368 /// \brief Find the operand of the GEP that should be checked for consecutive 1369 /// stores. This ignores trailing indices that have no effect on the final 1370 /// pointer. 1371 static unsigned getGEPInductionOperand(const DataLayout *DL, 1372 const GetElementPtrInst *Gep) { 1373 unsigned LastOperand = Gep->getNumOperands() - 1; 1374 unsigned GEPAllocSize = DL->getTypeAllocSize( 1375 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1376 1377 // Walk backwards and try to peel off zeros. 1378 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1379 // Find the type we're currently indexing into. 1380 gep_type_iterator GEPTI = gep_type_begin(Gep); 1381 std::advance(GEPTI, LastOperand - 1); 1382 1383 // If it's a type with the same allocation size as the result of the GEP we 1384 // can peel off the zero index. 1385 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1386 break; 1387 --LastOperand; 1388 } 1389 1390 return LastOperand; 1391 } 1392 1393 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1394 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1395 // Make sure that the pointer does not point to structs. 1396 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1397 return 0; 1398 1399 // If this value is a pointer induction variable we know it is consecutive. 1400 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1401 if (Phi && Inductions.count(Phi)) { 1402 InductionInfo II = Inductions[Phi]; 1403 if (IK_PtrInduction == II.IK) 1404 return 1; 1405 else if (IK_ReversePtrInduction == II.IK) 1406 return -1; 1407 } 1408 1409 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1410 if (!Gep) 1411 return 0; 1412 1413 unsigned NumOperands = Gep->getNumOperands(); 1414 Value *GpPtr = Gep->getPointerOperand(); 1415 // If this GEP value is a consecutive pointer induction variable and all of 1416 // the indices are constant then we know it is consecutive. We can 1417 Phi = dyn_cast<PHINode>(GpPtr); 1418 if (Phi && Inductions.count(Phi)) { 1419 1420 // Make sure that the pointer does not point to structs. 1421 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1422 if (GepPtrType->getElementType()->isAggregateType()) 1423 return 0; 1424 1425 // Make sure that all of the index operands are loop invariant. 1426 for (unsigned i = 1; i < NumOperands; ++i) 1427 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1428 return 0; 1429 1430 InductionInfo II = Inductions[Phi]; 1431 if (IK_PtrInduction == II.IK) 1432 return 1; 1433 else if (IK_ReversePtrInduction == II.IK) 1434 return -1; 1435 } 1436 1437 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1438 1439 // Check that all of the gep indices are uniform except for our induction 1440 // operand. 1441 for (unsigned i = 0; i != NumOperands; ++i) 1442 if (i != InductionOperand && 1443 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1444 return 0; 1445 1446 // We can emit wide load/stores only if the last non-zero index is the 1447 // induction variable. 1448 const SCEV *Last = nullptr; 1449 if (!Strides.count(Gep)) 1450 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1451 else { 1452 // Because of the multiplication by a stride we can have a s/zext cast. 1453 // We are going to replace this stride by 1 so the cast is safe to ignore. 1454 // 1455 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1456 // %0 = trunc i64 %indvars.iv to i32 1457 // %mul = mul i32 %0, %Stride1 1458 // %idxprom = zext i32 %mul to i64 << Safe cast. 1459 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1460 // 1461 Last = replaceSymbolicStrideSCEV(SE, Strides, 1462 Gep->getOperand(InductionOperand), Gep); 1463 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1464 Last = 1465 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1466 ? C->getOperand() 1467 : Last; 1468 } 1469 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1470 const SCEV *Step = AR->getStepRecurrence(*SE); 1471 1472 // The memory is consecutive because the last index is consecutive 1473 // and all other indices are loop invariant. 1474 if (Step->isOne()) 1475 return 1; 1476 if (Step->isAllOnesValue()) 1477 return -1; 1478 } 1479 1480 return 0; 1481 } 1482 1483 bool LoopVectorizationLegality::isUniform(Value *V) { 1484 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1485 } 1486 1487 InnerLoopVectorizer::VectorParts& 1488 InnerLoopVectorizer::getVectorValue(Value *V) { 1489 assert(V != Induction && "The new induction variable should not be used."); 1490 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1491 1492 // If we have a stride that is replaced by one, do it here. 1493 if (Legal->hasStride(V)) 1494 V = ConstantInt::get(V->getType(), 1); 1495 1496 // If we have this scalar in the map, return it. 1497 if (WidenMap.has(V)) 1498 return WidenMap.get(V); 1499 1500 // If this scalar is unknown, assume that it is a constant or that it is 1501 // loop invariant. Broadcast V and save the value for future uses. 1502 Value *B = getBroadcastInstrs(V); 1503 return WidenMap.splat(V, B); 1504 } 1505 1506 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1507 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1508 SmallVector<Constant*, 8> ShuffleMask; 1509 for (unsigned i = 0; i < VF; ++i) 1510 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1511 1512 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1513 ConstantVector::get(ShuffleMask), 1514 "reverse"); 1515 } 1516 1517 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1518 // Attempt to issue a wide load. 1519 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1520 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1521 1522 assert((LI || SI) && "Invalid Load/Store instruction"); 1523 1524 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1525 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1526 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1527 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1528 // An alignment of 0 means target abi alignment. We need to use the scalar's 1529 // target abi alignment in such a case. 1530 if (!Alignment) 1531 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1532 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1533 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1534 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1535 1536 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1537 return scalarizeInstruction(Instr, true); 1538 1539 if (ScalarAllocatedSize != VectorElementSize) 1540 return scalarizeInstruction(Instr); 1541 1542 // If the pointer is loop invariant or if it is non-consecutive, 1543 // scalarize the load. 1544 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1545 bool Reverse = ConsecutiveStride < 0; 1546 bool UniformLoad = LI && Legal->isUniform(Ptr); 1547 if (!ConsecutiveStride || UniformLoad) 1548 return scalarizeInstruction(Instr); 1549 1550 Constant *Zero = Builder.getInt32(0); 1551 VectorParts &Entry = WidenMap.get(Instr); 1552 1553 // Handle consecutive loads/stores. 1554 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1555 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1556 setDebugLocFromInst(Builder, Gep); 1557 Value *PtrOperand = Gep->getPointerOperand(); 1558 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1559 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1560 1561 // Create the new GEP with the new induction variable. 1562 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1563 Gep2->setOperand(0, FirstBasePtr); 1564 Gep2->setName("gep.indvar.base"); 1565 Ptr = Builder.Insert(Gep2); 1566 } else if (Gep) { 1567 setDebugLocFromInst(Builder, Gep); 1568 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1569 OrigLoop) && "Base ptr must be invariant"); 1570 1571 // The last index does not have to be the induction. It can be 1572 // consecutive and be a function of the index. For example A[I+1]; 1573 unsigned NumOperands = Gep->getNumOperands(); 1574 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1575 // Create the new GEP with the new induction variable. 1576 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1577 1578 for (unsigned i = 0; i < NumOperands; ++i) { 1579 Value *GepOperand = Gep->getOperand(i); 1580 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1581 1582 // Update last index or loop invariant instruction anchored in loop. 1583 if (i == InductionOperand || 1584 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1585 assert((i == InductionOperand || 1586 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1587 "Must be last index or loop invariant"); 1588 1589 VectorParts &GEPParts = getVectorValue(GepOperand); 1590 Value *Index = GEPParts[0]; 1591 Index = Builder.CreateExtractElement(Index, Zero); 1592 Gep2->setOperand(i, Index); 1593 Gep2->setName("gep.indvar.idx"); 1594 } 1595 } 1596 Ptr = Builder.Insert(Gep2); 1597 } else { 1598 // Use the induction element ptr. 1599 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1600 setDebugLocFromInst(Builder, Ptr); 1601 VectorParts &PtrVal = getVectorValue(Ptr); 1602 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1603 } 1604 1605 // Handle Stores: 1606 if (SI) { 1607 assert(!Legal->isUniform(SI->getPointerOperand()) && 1608 "We do not allow storing to uniform addresses"); 1609 setDebugLocFromInst(Builder, SI); 1610 // We don't want to update the value in the map as it might be used in 1611 // another expression. So don't use a reference type for "StoredVal". 1612 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1613 1614 for (unsigned Part = 0; Part < UF; ++Part) { 1615 // Calculate the pointer for the specific unroll-part. 1616 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1617 1618 if (Reverse) { 1619 // If we store to reverse consecutive memory locations then we need 1620 // to reverse the order of elements in the stored value. 1621 StoredVal[Part] = reverseVector(StoredVal[Part]); 1622 // If the address is consecutive but reversed, then the 1623 // wide store needs to start at the last vector element. 1624 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1625 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1626 } 1627 1628 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1629 DataTy->getPointerTo(AddressSpace)); 1630 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1631 } 1632 return; 1633 } 1634 1635 // Handle loads. 1636 assert(LI && "Must have a load instruction"); 1637 setDebugLocFromInst(Builder, LI); 1638 for (unsigned Part = 0; Part < UF; ++Part) { 1639 // Calculate the pointer for the specific unroll-part. 1640 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1641 1642 if (Reverse) { 1643 // If the address is consecutive but reversed, then the 1644 // wide store needs to start at the last vector element. 1645 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1646 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1647 } 1648 1649 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1650 DataTy->getPointerTo(AddressSpace)); 1651 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1652 cast<LoadInst>(LI)->setAlignment(Alignment); 1653 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1654 } 1655 } 1656 1657 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1658 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1659 // Holds vector parameters or scalars, in case of uniform vals. 1660 SmallVector<VectorParts, 4> Params; 1661 1662 setDebugLocFromInst(Builder, Instr); 1663 1664 // Find all of the vectorized parameters. 1665 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1666 Value *SrcOp = Instr->getOperand(op); 1667 1668 // If we are accessing the old induction variable, use the new one. 1669 if (SrcOp == OldInduction) { 1670 Params.push_back(getVectorValue(SrcOp)); 1671 continue; 1672 } 1673 1674 // Try using previously calculated values. 1675 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1676 1677 // If the src is an instruction that appeared earlier in the basic block 1678 // then it should already be vectorized. 1679 if (SrcInst && OrigLoop->contains(SrcInst)) { 1680 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1681 // The parameter is a vector value from earlier. 1682 Params.push_back(WidenMap.get(SrcInst)); 1683 } else { 1684 // The parameter is a scalar from outside the loop. Maybe even a constant. 1685 VectorParts Scalars; 1686 Scalars.append(UF, SrcOp); 1687 Params.push_back(Scalars); 1688 } 1689 } 1690 1691 assert(Params.size() == Instr->getNumOperands() && 1692 "Invalid number of operands"); 1693 1694 // Does this instruction return a value ? 1695 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1696 1697 Value *UndefVec = IsVoidRetTy ? nullptr : 1698 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1699 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1700 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1701 1702 Instruction *InsertPt = Builder.GetInsertPoint(); 1703 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1704 BasicBlock *CondBlock = nullptr; 1705 1706 VectorParts Cond; 1707 Loop *VectorLp = nullptr; 1708 if (IfPredicateStore) { 1709 assert(Instr->getParent()->getSinglePredecessor() && 1710 "Only support single predecessor blocks"); 1711 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1712 Instr->getParent()); 1713 VectorLp = LI->getLoopFor(IfBlock); 1714 assert(VectorLp && "Must have a loop for this block"); 1715 } 1716 1717 // For each vector unroll 'part': 1718 for (unsigned Part = 0; Part < UF; ++Part) { 1719 // For each scalar that we create: 1720 for (unsigned Width = 0; Width < VF; ++Width) { 1721 1722 // Start if-block. 1723 Value *Cmp = nullptr; 1724 if (IfPredicateStore) { 1725 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1726 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1727 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1728 LoopVectorBody.push_back(CondBlock); 1729 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1730 // Update Builder with newly created basic block. 1731 Builder.SetInsertPoint(InsertPt); 1732 } 1733 1734 Instruction *Cloned = Instr->clone(); 1735 if (!IsVoidRetTy) 1736 Cloned->setName(Instr->getName() + ".cloned"); 1737 // Replace the operands of the cloned instructions with extracted scalars. 1738 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1739 Value *Op = Params[op][Part]; 1740 // Param is a vector. Need to extract the right lane. 1741 if (Op->getType()->isVectorTy()) 1742 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1743 Cloned->setOperand(op, Op); 1744 } 1745 1746 // Place the cloned scalar in the new loop. 1747 Builder.Insert(Cloned); 1748 1749 // If the original scalar returns a value we need to place it in a vector 1750 // so that future users will be able to use it. 1751 if (!IsVoidRetTy) 1752 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1753 Builder.getInt32(Width)); 1754 // End if-block. 1755 if (IfPredicateStore) { 1756 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1757 LoopVectorBody.push_back(NewIfBlock); 1758 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 1759 Builder.SetInsertPoint(InsertPt); 1760 Instruction *OldBr = IfBlock->getTerminator(); 1761 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1762 OldBr->eraseFromParent(); 1763 IfBlock = NewIfBlock; 1764 } 1765 } 1766 } 1767 } 1768 1769 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1770 Instruction *Loc) { 1771 if (FirstInst) 1772 return FirstInst; 1773 if (Instruction *I = dyn_cast<Instruction>(V)) 1774 return I->getParent() == Loc->getParent() ? I : nullptr; 1775 return nullptr; 1776 } 1777 1778 std::pair<Instruction *, Instruction *> 1779 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1780 Instruction *tnullptr = nullptr; 1781 if (!Legal->mustCheckStrides()) 1782 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1783 1784 IRBuilder<> ChkBuilder(Loc); 1785 1786 // Emit checks. 1787 Value *Check = nullptr; 1788 Instruction *FirstInst = nullptr; 1789 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1790 SE = Legal->strides_end(); 1791 SI != SE; ++SI) { 1792 Value *Ptr = stripIntegerCast(*SI); 1793 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1794 "stride.chk"); 1795 // Store the first instruction we create. 1796 FirstInst = getFirstInst(FirstInst, C, Loc); 1797 if (Check) 1798 Check = ChkBuilder.CreateOr(Check, C); 1799 else 1800 Check = C; 1801 } 1802 1803 // We have to do this trickery because the IRBuilder might fold the check to a 1804 // constant expression in which case there is no Instruction anchored in a 1805 // the block. 1806 LLVMContext &Ctx = Loc->getContext(); 1807 Instruction *TheCheck = 1808 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1809 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1810 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1811 1812 return std::make_pair(FirstInst, TheCheck); 1813 } 1814 1815 std::pair<Instruction *, Instruction *> 1816 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 1817 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1818 Legal->getRuntimePointerCheck(); 1819 1820 Instruction *tnullptr = nullptr; 1821 if (!PtrRtCheck->Need) 1822 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1823 1824 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1825 SmallVector<TrackingVH<Value> , 2> Starts; 1826 SmallVector<TrackingVH<Value> , 2> Ends; 1827 1828 LLVMContext &Ctx = Loc->getContext(); 1829 SCEVExpander Exp(*SE, "induction"); 1830 Instruction *FirstInst = nullptr; 1831 1832 for (unsigned i = 0; i < NumPointers; ++i) { 1833 Value *Ptr = PtrRtCheck->Pointers[i]; 1834 const SCEV *Sc = SE->getSCEV(Ptr); 1835 1836 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1837 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1838 *Ptr <<"\n"); 1839 Starts.push_back(Ptr); 1840 Ends.push_back(Ptr); 1841 } else { 1842 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1843 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1844 1845 // Use this type for pointer arithmetic. 1846 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1847 1848 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1849 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1850 Starts.push_back(Start); 1851 Ends.push_back(End); 1852 } 1853 } 1854 1855 IRBuilder<> ChkBuilder(Loc); 1856 // Our instructions might fold to a constant. 1857 Value *MemoryRuntimeCheck = nullptr; 1858 for (unsigned i = 0; i < NumPointers; ++i) { 1859 for (unsigned j = i+1; j < NumPointers; ++j) { 1860 // No need to check if two readonly pointers intersect. 1861 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1862 continue; 1863 1864 // Only need to check pointers between two different dependency sets. 1865 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1866 continue; 1867 1868 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1869 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1870 1871 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1872 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1873 "Trying to bounds check pointers with different address spaces"); 1874 1875 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1876 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1877 1878 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1879 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1880 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1881 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1882 1883 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1884 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1885 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1886 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1887 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1888 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1889 if (MemoryRuntimeCheck) { 1890 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1891 "conflict.rdx"); 1892 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1893 } 1894 MemoryRuntimeCheck = IsConflict; 1895 } 1896 } 1897 1898 // We have to do this trickery because the IRBuilder might fold the check to a 1899 // constant expression in which case there is no Instruction anchored in a 1900 // the block. 1901 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1902 ConstantInt::getTrue(Ctx)); 1903 ChkBuilder.Insert(Check, "memcheck.conflict"); 1904 FirstInst = getFirstInst(FirstInst, Check, Loc); 1905 return std::make_pair(FirstInst, Check); 1906 } 1907 1908 void InnerLoopVectorizer::createEmptyLoop() { 1909 /* 1910 In this function we generate a new loop. The new loop will contain 1911 the vectorized instructions while the old loop will continue to run the 1912 scalar remainder. 1913 1914 [ ] <-- vector loop bypass (may consist of multiple blocks). 1915 / | 1916 / v 1917 | [ ] <-- vector pre header. 1918 | | 1919 | v 1920 | [ ] \ 1921 | [ ]_| <-- vector loop. 1922 | | 1923 \ v 1924 >[ ] <--- middle-block. 1925 / | 1926 / v 1927 | [ ] <--- new preheader. 1928 | | 1929 | v 1930 | [ ] \ 1931 | [ ]_| <-- old scalar loop to handle remainder. 1932 \ | 1933 \ v 1934 >[ ] <-- exit block. 1935 ... 1936 */ 1937 1938 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 1939 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 1940 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 1941 assert(ExitBlock && "Must have an exit block"); 1942 1943 // Some loops have a single integer induction variable, while other loops 1944 // don't. One example is c++ iterators that often have multiple pointer 1945 // induction variables. In the code below we also support a case where we 1946 // don't have a single induction variable. 1947 OldInduction = Legal->getInduction(); 1948 Type *IdxTy = Legal->getWidestInductionType(); 1949 1950 // Find the loop boundaries. 1951 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 1952 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 1953 1954 // The exit count might have the type of i64 while the phi is i32. This can 1955 // happen if we have an induction variable that is sign extended before the 1956 // compare. The only way that we get a backedge taken count is that the 1957 // induction variable was signed and as such will not overflow. In such a case 1958 // truncation is legal. 1959 if (ExitCount->getType()->getPrimitiveSizeInBits() > 1960 IdxTy->getPrimitiveSizeInBits()) 1961 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 1962 1963 ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 1964 // Get the total trip count from the count by adding 1. 1965 ExitCount = SE->getAddExpr(ExitCount, 1966 SE->getConstant(ExitCount->getType(), 1)); 1967 1968 // Expand the trip count and place the new instructions in the preheader. 1969 // Notice that the pre-header does not change, only the loop body. 1970 SCEVExpander Exp(*SE, "induction"); 1971 1972 // Count holds the overall loop count (N). 1973 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 1974 BypassBlock->getTerminator()); 1975 1976 // The loop index does not have to start at Zero. Find the original start 1977 // value from the induction PHI node. If we don't have an induction variable 1978 // then we know that it starts at zero. 1979 Builder.SetInsertPoint(BypassBlock->getTerminator()); 1980 Value *StartIdx = ExtendedIdx = OldInduction ? 1981 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 1982 IdxTy): 1983 ConstantInt::get(IdxTy, 0); 1984 1985 assert(BypassBlock && "Invalid loop structure"); 1986 LoopBypassBlocks.push_back(BypassBlock); 1987 1988 // Split the single block loop into the two loop structure described above. 1989 BasicBlock *VectorPH = 1990 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 1991 BasicBlock *VecBody = 1992 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 1993 BasicBlock *MiddleBlock = 1994 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 1995 BasicBlock *ScalarPH = 1996 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 1997 1998 // Create and register the new vector loop. 1999 Loop* Lp = new Loop(); 2000 Loop *ParentLoop = OrigLoop->getParentLoop(); 2001 2002 // Insert the new loop into the loop nest and register the new basic blocks 2003 // before calling any utilities such as SCEV that require valid LoopInfo. 2004 if (ParentLoop) { 2005 ParentLoop->addChildLoop(Lp); 2006 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2007 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2008 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2009 } else { 2010 LI->addTopLevelLoop(Lp); 2011 } 2012 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2013 2014 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2015 // inside the loop. 2016 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2017 2018 // Generate the induction variable. 2019 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2020 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2021 // The loop step is equal to the vectorization factor (num of SIMD elements) 2022 // times the unroll factor (num of SIMD instructions). 2023 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2024 2025 // This is the IR builder that we use to add all of the logic for bypassing 2026 // the new vector loop. 2027 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2028 setDebugLocFromInst(BypassBuilder, 2029 getDebugLocFromInstOrOperands(OldInduction)); 2030 2031 // We may need to extend the index in case there is a type mismatch. 2032 // We know that the count starts at zero and does not overflow. 2033 if (Count->getType() != IdxTy) { 2034 // The exit count can be of pointer type. Convert it to the correct 2035 // integer type. 2036 if (ExitCount->getType()->isPointerTy()) 2037 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2038 else 2039 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2040 } 2041 2042 // Add the start index to the loop count to get the new end index. 2043 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2044 2045 // Now we need to generate the expression for N - (N % VF), which is 2046 // the part that the vectorized body will execute. 2047 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2048 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2049 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2050 "end.idx.rnd.down"); 2051 2052 // Now, compare the new count to zero. If it is zero skip the vector loop and 2053 // jump to the scalar loop. 2054 Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, 2055 "cmp.zero"); 2056 2057 BasicBlock *LastBypassBlock = BypassBlock; 2058 2059 // Generate the code to check that the strides we assumed to be one are really 2060 // one. We want the new basic block to start at the first instruction in a 2061 // sequence of instructions that form a check. 2062 Instruction *StrideCheck; 2063 Instruction *FirstCheckInst; 2064 std::tie(FirstCheckInst, StrideCheck) = 2065 addStrideCheck(BypassBlock->getTerminator()); 2066 if (StrideCheck) { 2067 // Create a new block containing the stride check. 2068 BasicBlock *CheckBlock = 2069 BypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2070 if (ParentLoop) 2071 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2072 LoopBypassBlocks.push_back(CheckBlock); 2073 2074 // Replace the branch into the memory check block with a conditional branch 2075 // for the "few elements case". 2076 Instruction *OldTerm = BypassBlock->getTerminator(); 2077 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2078 OldTerm->eraseFromParent(); 2079 2080 Cmp = StrideCheck; 2081 LastBypassBlock = CheckBlock; 2082 } 2083 2084 // Generate the code that checks in runtime if arrays overlap. We put the 2085 // checks into a separate block to make the more common case of few elements 2086 // faster. 2087 Instruction *MemRuntimeCheck; 2088 std::tie(FirstCheckInst, MemRuntimeCheck) = 2089 addRuntimeCheck(LastBypassBlock->getTerminator()); 2090 if (MemRuntimeCheck) { 2091 // Create a new block containing the memory check. 2092 BasicBlock *CheckBlock = 2093 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2094 if (ParentLoop) 2095 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2096 LoopBypassBlocks.push_back(CheckBlock); 2097 2098 // Replace the branch into the memory check block with a conditional branch 2099 // for the "few elements case". 2100 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2101 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2102 OldTerm->eraseFromParent(); 2103 2104 Cmp = MemRuntimeCheck; 2105 LastBypassBlock = CheckBlock; 2106 } 2107 2108 LastBypassBlock->getTerminator()->eraseFromParent(); 2109 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2110 LastBypassBlock); 2111 2112 // We are going to resume the execution of the scalar loop. 2113 // Go over all of the induction variables that we found and fix the 2114 // PHIs that are left in the scalar version of the loop. 2115 // The starting values of PHI nodes depend on the counter of the last 2116 // iteration in the vectorized loop. 2117 // If we come from a bypass edge then we need to start from the original 2118 // start value. 2119 2120 // This variable saves the new starting index for the scalar loop. 2121 PHINode *ResumeIndex = nullptr; 2122 LoopVectorizationLegality::InductionList::iterator I, E; 2123 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2124 // Set builder to point to last bypass block. 2125 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2126 for (I = List->begin(), E = List->end(); I != E; ++I) { 2127 PHINode *OrigPhi = I->first; 2128 LoopVectorizationLegality::InductionInfo II = I->second; 2129 2130 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2131 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2132 MiddleBlock->getTerminator()); 2133 // We might have extended the type of the induction variable but we need a 2134 // truncated version for the scalar loop. 2135 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2136 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2137 MiddleBlock->getTerminator()) : nullptr; 2138 2139 Value *EndValue = nullptr; 2140 switch (II.IK) { 2141 case LoopVectorizationLegality::IK_NoInduction: 2142 llvm_unreachable("Unknown induction"); 2143 case LoopVectorizationLegality::IK_IntInduction: { 2144 // Handle the integer induction counter. 2145 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2146 2147 // We have the canonical induction variable. 2148 if (OrigPhi == OldInduction) { 2149 // Create a truncated version of the resume value for the scalar loop, 2150 // we might have promoted the type to a larger width. 2151 EndValue = 2152 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2153 // The new PHI merges the original incoming value, in case of a bypass, 2154 // or the value at the end of the vectorized loop. 2155 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2156 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2157 TruncResumeVal->addIncoming(EndValue, VecBody); 2158 2159 // We know what the end value is. 2160 EndValue = IdxEndRoundDown; 2161 // We also know which PHI node holds it. 2162 ResumeIndex = ResumeVal; 2163 break; 2164 } 2165 2166 // Not the canonical induction variable - add the vector loop count to the 2167 // start value. 2168 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2169 II.StartValue->getType(), 2170 "cast.crd"); 2171 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2172 break; 2173 } 2174 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2175 // Convert the CountRoundDown variable to the PHI size. 2176 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2177 II.StartValue->getType(), 2178 "cast.crd"); 2179 // Handle reverse integer induction counter. 2180 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2181 break; 2182 } 2183 case LoopVectorizationLegality::IK_PtrInduction: { 2184 // For pointer induction variables, calculate the offset using 2185 // the end index. 2186 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2187 "ptr.ind.end"); 2188 break; 2189 } 2190 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2191 // The value at the end of the loop for the reverse pointer is calculated 2192 // by creating a GEP with a negative index starting from the start value. 2193 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2194 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2195 "rev.ind.end"); 2196 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2197 "rev.ptr.ind.end"); 2198 break; 2199 } 2200 }// end of case 2201 2202 // The new PHI merges the original incoming value, in case of a bypass, 2203 // or the value at the end of the vectorized loop. 2204 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) { 2205 if (OrigPhi == OldInduction) 2206 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2207 else 2208 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2209 } 2210 ResumeVal->addIncoming(EndValue, VecBody); 2211 2212 // Fix the scalar body counter (PHI node). 2213 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2214 // The old inductions phi node in the scalar body needs the truncated value. 2215 if (OrigPhi == OldInduction) 2216 OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal); 2217 else 2218 OrigPhi->setIncomingValue(BlockIdx, ResumeVal); 2219 } 2220 2221 // If we are generating a new induction variable then we also need to 2222 // generate the code that calculates the exit value. This value is not 2223 // simply the end of the counter because we may skip the vectorized body 2224 // in case of a runtime check. 2225 if (!OldInduction){ 2226 assert(!ResumeIndex && "Unexpected resume value found"); 2227 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2228 MiddleBlock->getTerminator()); 2229 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2230 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2231 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2232 } 2233 2234 // Make sure that we found the index where scalar loop needs to continue. 2235 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2236 "Invalid resume Index"); 2237 2238 // Add a check in the middle block to see if we have completed 2239 // all of the iterations in the first vector loop. 2240 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2241 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2242 ResumeIndex, "cmp.n", 2243 MiddleBlock->getTerminator()); 2244 2245 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2246 // Remove the old terminator. 2247 MiddleBlock->getTerminator()->eraseFromParent(); 2248 2249 // Create i+1 and fill the PHINode. 2250 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2251 Induction->addIncoming(StartIdx, VectorPH); 2252 Induction->addIncoming(NextIdx, VecBody); 2253 // Create the compare. 2254 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2255 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2256 2257 // Now we have two terminators. Remove the old one from the block. 2258 VecBody->getTerminator()->eraseFromParent(); 2259 2260 // Get ready to start creating new instructions into the vectorized body. 2261 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2262 2263 // Save the state. 2264 LoopVectorPreHeader = VectorPH; 2265 LoopScalarPreHeader = ScalarPH; 2266 LoopMiddleBlock = MiddleBlock; 2267 LoopExitBlock = ExitBlock; 2268 LoopVectorBody.push_back(VecBody); 2269 LoopScalarBody = OldBasicBlock; 2270 2271 LoopVectorizeHints Hints(Lp, true); 2272 Hints.setAlreadyVectorized(Lp); 2273 } 2274 2275 /// This function returns the identity element (or neutral element) for 2276 /// the operation K. 2277 Constant* 2278 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2279 switch (K) { 2280 case RK_IntegerXor: 2281 case RK_IntegerAdd: 2282 case RK_IntegerOr: 2283 // Adding, Xoring, Oring zero to a number does not change it. 2284 return ConstantInt::get(Tp, 0); 2285 case RK_IntegerMult: 2286 // Multiplying a number by 1 does not change it. 2287 return ConstantInt::get(Tp, 1); 2288 case RK_IntegerAnd: 2289 // AND-ing a number with an all-1 value does not change it. 2290 return ConstantInt::get(Tp, -1, true); 2291 case RK_FloatMult: 2292 // Multiplying a number by 1 does not change it. 2293 return ConstantFP::get(Tp, 1.0L); 2294 case RK_FloatAdd: 2295 // Adding zero to a number does not change it. 2296 return ConstantFP::get(Tp, 0.0L); 2297 default: 2298 llvm_unreachable("Unknown reduction kind"); 2299 } 2300 } 2301 2302 /// This function translates the reduction kind to an LLVM binary operator. 2303 static unsigned 2304 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2305 switch (Kind) { 2306 case LoopVectorizationLegality::RK_IntegerAdd: 2307 return Instruction::Add; 2308 case LoopVectorizationLegality::RK_IntegerMult: 2309 return Instruction::Mul; 2310 case LoopVectorizationLegality::RK_IntegerOr: 2311 return Instruction::Or; 2312 case LoopVectorizationLegality::RK_IntegerAnd: 2313 return Instruction::And; 2314 case LoopVectorizationLegality::RK_IntegerXor: 2315 return Instruction::Xor; 2316 case LoopVectorizationLegality::RK_FloatMult: 2317 return Instruction::FMul; 2318 case LoopVectorizationLegality::RK_FloatAdd: 2319 return Instruction::FAdd; 2320 case LoopVectorizationLegality::RK_IntegerMinMax: 2321 return Instruction::ICmp; 2322 case LoopVectorizationLegality::RK_FloatMinMax: 2323 return Instruction::FCmp; 2324 default: 2325 llvm_unreachable("Unknown reduction operation"); 2326 } 2327 } 2328 2329 Value *createMinMaxOp(IRBuilder<> &Builder, 2330 LoopVectorizationLegality::MinMaxReductionKind RK, 2331 Value *Left, 2332 Value *Right) { 2333 CmpInst::Predicate P = CmpInst::ICMP_NE; 2334 switch (RK) { 2335 default: 2336 llvm_unreachable("Unknown min/max reduction kind"); 2337 case LoopVectorizationLegality::MRK_UIntMin: 2338 P = CmpInst::ICMP_ULT; 2339 break; 2340 case LoopVectorizationLegality::MRK_UIntMax: 2341 P = CmpInst::ICMP_UGT; 2342 break; 2343 case LoopVectorizationLegality::MRK_SIntMin: 2344 P = CmpInst::ICMP_SLT; 2345 break; 2346 case LoopVectorizationLegality::MRK_SIntMax: 2347 P = CmpInst::ICMP_SGT; 2348 break; 2349 case LoopVectorizationLegality::MRK_FloatMin: 2350 P = CmpInst::FCMP_OLT; 2351 break; 2352 case LoopVectorizationLegality::MRK_FloatMax: 2353 P = CmpInst::FCMP_OGT; 2354 break; 2355 } 2356 2357 Value *Cmp; 2358 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2359 RK == LoopVectorizationLegality::MRK_FloatMax) 2360 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2361 else 2362 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2363 2364 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2365 return Select; 2366 } 2367 2368 namespace { 2369 struct CSEDenseMapInfo { 2370 static bool canHandle(Instruction *I) { 2371 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2372 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2373 } 2374 static inline Instruction *getEmptyKey() { 2375 return DenseMapInfo<Instruction *>::getEmptyKey(); 2376 } 2377 static inline Instruction *getTombstoneKey() { 2378 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2379 } 2380 static unsigned getHashValue(Instruction *I) { 2381 assert(canHandle(I) && "Unknown instruction!"); 2382 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2383 I->value_op_end())); 2384 } 2385 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2386 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2387 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2388 return LHS == RHS; 2389 return LHS->isIdenticalTo(RHS); 2390 } 2391 }; 2392 } 2393 2394 /// \brief Check whether this block is a predicated block. 2395 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2396 /// = ...; " blocks. We start with one vectorized basic block. For every 2397 /// conditional block we split this vectorized block. Therefore, every second 2398 /// block will be a predicated one. 2399 static bool isPredicatedBlock(unsigned BlockNum) { 2400 return BlockNum % 2; 2401 } 2402 2403 ///\brief Perform cse of induction variable instructions. 2404 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2405 // Perform simple cse. 2406 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2407 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2408 BasicBlock *BB = BBs[i]; 2409 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2410 Instruction *In = I++; 2411 2412 if (!CSEDenseMapInfo::canHandle(In)) 2413 continue; 2414 2415 // Check if we can replace this instruction with any of the 2416 // visited instructions. 2417 if (Instruction *V = CSEMap.lookup(In)) { 2418 In->replaceAllUsesWith(V); 2419 In->eraseFromParent(); 2420 continue; 2421 } 2422 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2423 // ...;" blocks for predicated stores. Every second block is a predicated 2424 // block. 2425 if (isPredicatedBlock(i)) 2426 continue; 2427 2428 CSEMap[In] = In; 2429 } 2430 } 2431 } 2432 2433 /// \brief Adds a 'fast' flag to floating point operations. 2434 static Value *addFastMathFlag(Value *V) { 2435 if (isa<FPMathOperator>(V)){ 2436 FastMathFlags Flags; 2437 Flags.setUnsafeAlgebra(); 2438 cast<Instruction>(V)->setFastMathFlags(Flags); 2439 } 2440 return V; 2441 } 2442 2443 void InnerLoopVectorizer::vectorizeLoop() { 2444 //===------------------------------------------------===// 2445 // 2446 // Notice: any optimization or new instruction that go 2447 // into the code below should be also be implemented in 2448 // the cost-model. 2449 // 2450 //===------------------------------------------------===// 2451 Constant *Zero = Builder.getInt32(0); 2452 2453 // In order to support reduction variables we need to be able to vectorize 2454 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2455 // stages. First, we create a new vector PHI node with no incoming edges. 2456 // We use this value when we vectorize all of the instructions that use the 2457 // PHI. Next, after all of the instructions in the block are complete we 2458 // add the new incoming edges to the PHI. At this point all of the 2459 // instructions in the basic block are vectorized, so we can use them to 2460 // construct the PHI. 2461 PhiVector RdxPHIsToFix; 2462 2463 // Scan the loop in a topological order to ensure that defs are vectorized 2464 // before users. 2465 LoopBlocksDFS DFS(OrigLoop); 2466 DFS.perform(LI); 2467 2468 // Vectorize all of the blocks in the original loop. 2469 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2470 be = DFS.endRPO(); bb != be; ++bb) 2471 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2472 2473 // At this point every instruction in the original loop is widened to 2474 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2475 // that we vectorized. The PHI nodes are currently empty because we did 2476 // not want to introduce cycles. Notice that the remaining PHI nodes 2477 // that we need to fix are reduction variables. 2478 2479 // Create the 'reduced' values for each of the induction vars. 2480 // The reduced values are the vector values that we scalarize and combine 2481 // after the loop is finished. 2482 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2483 it != e; ++it) { 2484 PHINode *RdxPhi = *it; 2485 assert(RdxPhi && "Unable to recover vectorized PHI"); 2486 2487 // Find the reduction variable descriptor. 2488 assert(Legal->getReductionVars()->count(RdxPhi) && 2489 "Unable to find the reduction variable"); 2490 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2491 (*Legal->getReductionVars())[RdxPhi]; 2492 2493 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2494 2495 // We need to generate a reduction vector from the incoming scalar. 2496 // To do so, we need to generate the 'identity' vector and override 2497 // one of the elements with the incoming scalar reduction. We need 2498 // to do it in the vector-loop preheader. 2499 Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator()); 2500 2501 // This is the vector-clone of the value that leaves the loop. 2502 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2503 Type *VecTy = VectorExit[0]->getType(); 2504 2505 // Find the reduction identity variable. Zero for addition, or, xor, 2506 // one for multiplication, -1 for And. 2507 Value *Identity; 2508 Value *VectorStart; 2509 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2510 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2511 // MinMax reduction have the start value as their identify. 2512 if (VF == 1) { 2513 VectorStart = Identity = RdxDesc.StartValue; 2514 } else { 2515 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2516 RdxDesc.StartValue, 2517 "minmax.ident"); 2518 } 2519 } else { 2520 // Handle other reduction kinds: 2521 Constant *Iden = 2522 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2523 VecTy->getScalarType()); 2524 if (VF == 1) { 2525 Identity = Iden; 2526 // This vector is the Identity vector where the first element is the 2527 // incoming scalar reduction. 2528 VectorStart = RdxDesc.StartValue; 2529 } else { 2530 Identity = ConstantVector::getSplat(VF, Iden); 2531 2532 // This vector is the Identity vector where the first element is the 2533 // incoming scalar reduction. 2534 VectorStart = Builder.CreateInsertElement(Identity, 2535 RdxDesc.StartValue, Zero); 2536 } 2537 } 2538 2539 // Fix the vector-loop phi. 2540 // We created the induction variable so we know that the 2541 // preheader is the first entry. 2542 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2543 2544 // Reductions do not have to start at zero. They can start with 2545 // any loop invariant values. 2546 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2547 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2548 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2549 VectorParts &Val = getVectorValue(LoopVal); 2550 for (unsigned part = 0; part < UF; ++part) { 2551 // Make sure to add the reduction stat value only to the 2552 // first unroll part. 2553 Value *StartVal = (part == 0) ? VectorStart : Identity; 2554 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2555 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2556 LoopVectorBody.back()); 2557 } 2558 2559 // Before each round, move the insertion point right between 2560 // the PHIs and the values we are going to write. 2561 // This allows us to write both PHINodes and the extractelement 2562 // instructions. 2563 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2564 2565 VectorParts RdxParts; 2566 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2567 for (unsigned part = 0; part < UF; ++part) { 2568 // This PHINode contains the vectorized reduction variable, or 2569 // the initial value vector, if we bypass the vector loop. 2570 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2571 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2572 Value *StartVal = (part == 0) ? VectorStart : Identity; 2573 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2574 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2575 NewPhi->addIncoming(RdxExitVal[part], 2576 LoopVectorBody.back()); 2577 RdxParts.push_back(NewPhi); 2578 } 2579 2580 // Reduce all of the unrolled parts into a single vector. 2581 Value *ReducedPartRdx = RdxParts[0]; 2582 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2583 setDebugLocFromInst(Builder, ReducedPartRdx); 2584 for (unsigned part = 1; part < UF; ++part) { 2585 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2586 // Floating point operations had to be 'fast' to enable the reduction. 2587 ReducedPartRdx = addFastMathFlag( 2588 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2589 ReducedPartRdx, "bin.rdx")); 2590 else 2591 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2592 ReducedPartRdx, RdxParts[part]); 2593 } 2594 2595 if (VF > 1) { 2596 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2597 // and vector ops, reducing the set of values being computed by half each 2598 // round. 2599 assert(isPowerOf2_32(VF) && 2600 "Reduction emission only supported for pow2 vectors!"); 2601 Value *TmpVec = ReducedPartRdx; 2602 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2603 for (unsigned i = VF; i != 1; i >>= 1) { 2604 // Move the upper half of the vector to the lower half. 2605 for (unsigned j = 0; j != i/2; ++j) 2606 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2607 2608 // Fill the rest of the mask with undef. 2609 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2610 UndefValue::get(Builder.getInt32Ty())); 2611 2612 Value *Shuf = 2613 Builder.CreateShuffleVector(TmpVec, 2614 UndefValue::get(TmpVec->getType()), 2615 ConstantVector::get(ShuffleMask), 2616 "rdx.shuf"); 2617 2618 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2619 // Floating point operations had to be 'fast' to enable the reduction. 2620 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2621 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2622 else 2623 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2624 } 2625 2626 // The result is in the first element of the vector. 2627 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2628 Builder.getInt32(0)); 2629 } 2630 2631 // Now, we need to fix the users of the reduction variable 2632 // inside and outside of the scalar remainder loop. 2633 // We know that the loop is in LCSSA form. We need to update the 2634 // PHI nodes in the exit blocks. 2635 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2636 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2637 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2638 if (!LCSSAPhi) break; 2639 2640 // All PHINodes need to have a single entry edge, or two if 2641 // we already fixed them. 2642 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2643 2644 // We found our reduction value exit-PHI. Update it with the 2645 // incoming bypass edge. 2646 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2647 // Add an edge coming from the bypass. 2648 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2649 break; 2650 } 2651 }// end of the LCSSA phi scan. 2652 2653 // Fix the scalar loop reduction variable with the incoming reduction sum 2654 // from the vector body and from the backedge value. 2655 int IncomingEdgeBlockIdx = 2656 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2657 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2658 // Pick the other block. 2659 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2660 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx); 2661 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2662 }// end of for each redux variable. 2663 2664 fixLCSSAPHIs(); 2665 2666 // Remove redundant induction instructions. 2667 cse(LoopVectorBody); 2668 } 2669 2670 void InnerLoopVectorizer::fixLCSSAPHIs() { 2671 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2672 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2673 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2674 if (!LCSSAPhi) break; 2675 if (LCSSAPhi->getNumIncomingValues() == 1) 2676 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2677 LoopMiddleBlock); 2678 } 2679 } 2680 2681 InnerLoopVectorizer::VectorParts 2682 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2683 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2684 "Invalid edge"); 2685 2686 // Look for cached value. 2687 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2688 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2689 if (ECEntryIt != MaskCache.end()) 2690 return ECEntryIt->second; 2691 2692 VectorParts SrcMask = createBlockInMask(Src); 2693 2694 // The terminator has to be a branch inst! 2695 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2696 assert(BI && "Unexpected terminator found"); 2697 2698 if (BI->isConditional()) { 2699 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2700 2701 if (BI->getSuccessor(0) != Dst) 2702 for (unsigned part = 0; part < UF; ++part) 2703 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2704 2705 for (unsigned part = 0; part < UF; ++part) 2706 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2707 2708 MaskCache[Edge] = EdgeMask; 2709 return EdgeMask; 2710 } 2711 2712 MaskCache[Edge] = SrcMask; 2713 return SrcMask; 2714 } 2715 2716 InnerLoopVectorizer::VectorParts 2717 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2718 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2719 2720 // Loop incoming mask is all-one. 2721 if (OrigLoop->getHeader() == BB) { 2722 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2723 return getVectorValue(C); 2724 } 2725 2726 // This is the block mask. We OR all incoming edges, and with zero. 2727 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2728 VectorParts BlockMask = getVectorValue(Zero); 2729 2730 // For each pred: 2731 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2732 VectorParts EM = createEdgeMask(*it, BB); 2733 for (unsigned part = 0; part < UF; ++part) 2734 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2735 } 2736 2737 return BlockMask; 2738 } 2739 2740 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2741 InnerLoopVectorizer::VectorParts &Entry, 2742 unsigned UF, unsigned VF, PhiVector *PV) { 2743 PHINode* P = cast<PHINode>(PN); 2744 // Handle reduction variables: 2745 if (Legal->getReductionVars()->count(P)) { 2746 for (unsigned part = 0; part < UF; ++part) { 2747 // This is phase one of vectorizing PHIs. 2748 Type *VecTy = (VF == 1) ? PN->getType() : 2749 VectorType::get(PN->getType(), VF); 2750 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2751 LoopVectorBody.back()-> getFirstInsertionPt()); 2752 } 2753 PV->push_back(P); 2754 return; 2755 } 2756 2757 setDebugLocFromInst(Builder, P); 2758 // Check for PHI nodes that are lowered to vector selects. 2759 if (P->getParent() != OrigLoop->getHeader()) { 2760 // We know that all PHIs in non-header blocks are converted into 2761 // selects, so we don't have to worry about the insertion order and we 2762 // can just use the builder. 2763 // At this point we generate the predication tree. There may be 2764 // duplications since this is a simple recursive scan, but future 2765 // optimizations will clean it up. 2766 2767 unsigned NumIncoming = P->getNumIncomingValues(); 2768 2769 // Generate a sequence of selects of the form: 2770 // SELECT(Mask3, In3, 2771 // SELECT(Mask2, In2, 2772 // ( ...))) 2773 for (unsigned In = 0; In < NumIncoming; In++) { 2774 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2775 P->getParent()); 2776 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2777 2778 for (unsigned part = 0; part < UF; ++part) { 2779 // We might have single edge PHIs (blocks) - use an identity 2780 // 'select' for the first PHI operand. 2781 if (In == 0) 2782 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2783 In0[part]); 2784 else 2785 // Select between the current value and the previous incoming edge 2786 // based on the incoming mask. 2787 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2788 Entry[part], "predphi"); 2789 } 2790 } 2791 return; 2792 } 2793 2794 // This PHINode must be an induction variable. 2795 // Make sure that we know about it. 2796 assert(Legal->getInductionVars()->count(P) && 2797 "Not an induction variable"); 2798 2799 LoopVectorizationLegality::InductionInfo II = 2800 Legal->getInductionVars()->lookup(P); 2801 2802 switch (II.IK) { 2803 case LoopVectorizationLegality::IK_NoInduction: 2804 llvm_unreachable("Unknown induction"); 2805 case LoopVectorizationLegality::IK_IntInduction: { 2806 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2807 Type *PhiTy = P->getType(); 2808 Value *Broadcasted; 2809 if (P == OldInduction) { 2810 // Handle the canonical induction variable. We might have had to 2811 // extend the type. 2812 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2813 } else { 2814 // Handle other induction variables that are now based on the 2815 // canonical one. 2816 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2817 "normalized.idx"); 2818 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2819 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2820 "offset.idx"); 2821 } 2822 Broadcasted = getBroadcastInstrs(Broadcasted); 2823 // After broadcasting the induction variable we need to make the vector 2824 // consecutive by adding 0, 1, 2, etc. 2825 for (unsigned part = 0; part < UF; ++part) 2826 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 2827 return; 2828 } 2829 case LoopVectorizationLegality::IK_ReverseIntInduction: 2830 case LoopVectorizationLegality::IK_PtrInduction: 2831 case LoopVectorizationLegality::IK_ReversePtrInduction: 2832 // Handle reverse integer and pointer inductions. 2833 Value *StartIdx = ExtendedIdx; 2834 // This is the normalized GEP that starts counting at zero. 2835 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 2836 "normalized.idx"); 2837 2838 // Handle the reverse integer induction variable case. 2839 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 2840 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 2841 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 2842 "resize.norm.idx"); 2843 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 2844 "reverse.idx"); 2845 2846 // This is a new value so do not hoist it out. 2847 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 2848 // After broadcasting the induction variable we need to make the 2849 // vector consecutive by adding ... -3, -2, -1, 0. 2850 for (unsigned part = 0; part < UF; ++part) 2851 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 2852 true); 2853 return; 2854 } 2855 2856 // Handle the pointer induction variable case. 2857 assert(P->getType()->isPointerTy() && "Unexpected type."); 2858 2859 // Is this a reverse induction ptr or a consecutive induction ptr. 2860 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 2861 II.IK); 2862 2863 // This is the vector of results. Notice that we don't generate 2864 // vector geps because scalar geps result in better code. 2865 for (unsigned part = 0; part < UF; ++part) { 2866 if (VF == 1) { 2867 int EltIndex = (part) * (Reverse ? -1 : 1); 2868 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2869 Value *GlobalIdx; 2870 if (Reverse) 2871 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2872 else 2873 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2874 2875 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2876 "next.gep"); 2877 Entry[part] = SclrGep; 2878 continue; 2879 } 2880 2881 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 2882 for (unsigned int i = 0; i < VF; ++i) { 2883 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 2884 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2885 Value *GlobalIdx; 2886 if (!Reverse) 2887 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2888 else 2889 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2890 2891 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2892 "next.gep"); 2893 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 2894 Builder.getInt32(i), 2895 "insert.gep"); 2896 } 2897 Entry[part] = VecVal; 2898 } 2899 return; 2900 } 2901 } 2902 2903 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 2904 // For each instruction in the old loop. 2905 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2906 VectorParts &Entry = WidenMap.get(it); 2907 switch (it->getOpcode()) { 2908 case Instruction::Br: 2909 // Nothing to do for PHIs and BR, since we already took care of the 2910 // loop control flow instructions. 2911 continue; 2912 case Instruction::PHI:{ 2913 // Vectorize PHINodes. 2914 widenPHIInstruction(it, Entry, UF, VF, PV); 2915 continue; 2916 }// End of PHI. 2917 2918 case Instruction::Add: 2919 case Instruction::FAdd: 2920 case Instruction::Sub: 2921 case Instruction::FSub: 2922 case Instruction::Mul: 2923 case Instruction::FMul: 2924 case Instruction::UDiv: 2925 case Instruction::SDiv: 2926 case Instruction::FDiv: 2927 case Instruction::URem: 2928 case Instruction::SRem: 2929 case Instruction::FRem: 2930 case Instruction::Shl: 2931 case Instruction::LShr: 2932 case Instruction::AShr: 2933 case Instruction::And: 2934 case Instruction::Or: 2935 case Instruction::Xor: { 2936 // Just widen binops. 2937 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 2938 setDebugLocFromInst(Builder, BinOp); 2939 VectorParts &A = getVectorValue(it->getOperand(0)); 2940 VectorParts &B = getVectorValue(it->getOperand(1)); 2941 2942 // Use this vector value for all users of the original instruction. 2943 for (unsigned Part = 0; Part < UF; ++Part) { 2944 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 2945 2946 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 2947 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 2948 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 2949 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 2950 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 2951 } 2952 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 2953 VecOp->setIsExact(BinOp->isExact()); 2954 2955 // Copy the fast-math flags. 2956 if (VecOp && isa<FPMathOperator>(V)) 2957 VecOp->setFastMathFlags(it->getFastMathFlags()); 2958 2959 Entry[Part] = V; 2960 } 2961 break; 2962 } 2963 case Instruction::Select: { 2964 // Widen selects. 2965 // If the selector is loop invariant we can create a select 2966 // instruction with a scalar condition. Otherwise, use vector-select. 2967 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 2968 OrigLoop); 2969 setDebugLocFromInst(Builder, it); 2970 2971 // The condition can be loop invariant but still defined inside the 2972 // loop. This means that we can't just use the original 'cond' value. 2973 // We have to take the 'vectorized' value and pick the first lane. 2974 // Instcombine will make this a no-op. 2975 VectorParts &Cond = getVectorValue(it->getOperand(0)); 2976 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 2977 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 2978 2979 Value *ScalarCond = (VF == 1) ? Cond[0] : 2980 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 2981 2982 for (unsigned Part = 0; Part < UF; ++Part) { 2983 Entry[Part] = Builder.CreateSelect( 2984 InvariantCond ? ScalarCond : Cond[Part], 2985 Op0[Part], 2986 Op1[Part]); 2987 } 2988 break; 2989 } 2990 2991 case Instruction::ICmp: 2992 case Instruction::FCmp: { 2993 // Widen compares. Generate vector compares. 2994 bool FCmp = (it->getOpcode() == Instruction::FCmp); 2995 CmpInst *Cmp = dyn_cast<CmpInst>(it); 2996 setDebugLocFromInst(Builder, it); 2997 VectorParts &A = getVectorValue(it->getOperand(0)); 2998 VectorParts &B = getVectorValue(it->getOperand(1)); 2999 for (unsigned Part = 0; Part < UF; ++Part) { 3000 Value *C = nullptr; 3001 if (FCmp) 3002 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3003 else 3004 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3005 Entry[Part] = C; 3006 } 3007 break; 3008 } 3009 3010 case Instruction::Store: 3011 case Instruction::Load: 3012 vectorizeMemoryInstruction(it); 3013 break; 3014 case Instruction::ZExt: 3015 case Instruction::SExt: 3016 case Instruction::FPToUI: 3017 case Instruction::FPToSI: 3018 case Instruction::FPExt: 3019 case Instruction::PtrToInt: 3020 case Instruction::IntToPtr: 3021 case Instruction::SIToFP: 3022 case Instruction::UIToFP: 3023 case Instruction::Trunc: 3024 case Instruction::FPTrunc: 3025 case Instruction::BitCast: { 3026 CastInst *CI = dyn_cast<CastInst>(it); 3027 setDebugLocFromInst(Builder, it); 3028 /// Optimize the special case where the source is the induction 3029 /// variable. Notice that we can only optimize the 'trunc' case 3030 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3031 /// c. other casts depend on pointer size. 3032 if (CI->getOperand(0) == OldInduction && 3033 it->getOpcode() == Instruction::Trunc) { 3034 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3035 CI->getType()); 3036 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3037 for (unsigned Part = 0; Part < UF; ++Part) 3038 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3039 break; 3040 } 3041 /// Vectorize casts. 3042 Type *DestTy = (VF == 1) ? CI->getType() : 3043 VectorType::get(CI->getType(), VF); 3044 3045 VectorParts &A = getVectorValue(it->getOperand(0)); 3046 for (unsigned Part = 0; Part < UF; ++Part) 3047 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3048 break; 3049 } 3050 3051 case Instruction::Call: { 3052 // Ignore dbg intrinsics. 3053 if (isa<DbgInfoIntrinsic>(it)) 3054 break; 3055 setDebugLocFromInst(Builder, it); 3056 3057 Module *M = BB->getParent()->getParent(); 3058 CallInst *CI = cast<CallInst>(it); 3059 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3060 assert(ID && "Not an intrinsic call!"); 3061 switch (ID) { 3062 case Intrinsic::lifetime_end: 3063 case Intrinsic::lifetime_start: 3064 scalarizeInstruction(it); 3065 break; 3066 default: 3067 for (unsigned Part = 0; Part < UF; ++Part) { 3068 SmallVector<Value *, 4> Args; 3069 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3070 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3071 Args.push_back(Arg[Part]); 3072 } 3073 Type *Tys[] = {CI->getType()}; 3074 if (VF > 1) 3075 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3076 3077 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3078 Entry[Part] = Builder.CreateCall(F, Args); 3079 } 3080 break; 3081 } 3082 break; 3083 } 3084 3085 default: 3086 // All other instructions are unsupported. Scalarize them. 3087 scalarizeInstruction(it); 3088 break; 3089 }// end of switch. 3090 }// end of for_each instr. 3091 } 3092 3093 void InnerLoopVectorizer::updateAnalysis() { 3094 // Forget the original basic block. 3095 SE->forgetLoop(OrigLoop); 3096 3097 // Update the dominator tree information. 3098 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3099 "Entry does not dominate exit."); 3100 3101 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3102 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3103 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3104 3105 // Due to if predication of stores we might create a sequence of "if(pred) 3106 // a[i] = ...; " blocks. 3107 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3108 if (i == 0) 3109 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3110 else if (isPredicatedBlock(i)) { 3111 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3112 } else { 3113 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3114 } 3115 } 3116 3117 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front()); 3118 DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock); 3119 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3120 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3121 3122 DEBUG(DT->verifyDomTree()); 3123 } 3124 3125 /// \brief Check whether it is safe to if-convert this phi node. 3126 /// 3127 /// Phi nodes with constant expressions that can trap are not safe to if 3128 /// convert. 3129 static bool canIfConvertPHINodes(BasicBlock *BB) { 3130 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3131 PHINode *Phi = dyn_cast<PHINode>(I); 3132 if (!Phi) 3133 return true; 3134 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3135 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3136 if (C->canTrap()) 3137 return false; 3138 } 3139 return true; 3140 } 3141 3142 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3143 if (!EnableIfConversion) 3144 return false; 3145 3146 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3147 3148 // A list of pointers that we can safely read and write to. 3149 SmallPtrSet<Value *, 8> SafePointes; 3150 3151 // Collect safe addresses. 3152 for (Loop::block_iterator BI = TheLoop->block_begin(), 3153 BE = TheLoop->block_end(); BI != BE; ++BI) { 3154 BasicBlock *BB = *BI; 3155 3156 if (blockNeedsPredication(BB)) 3157 continue; 3158 3159 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3160 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3161 SafePointes.insert(LI->getPointerOperand()); 3162 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3163 SafePointes.insert(SI->getPointerOperand()); 3164 } 3165 } 3166 3167 // Collect the blocks that need predication. 3168 BasicBlock *Header = TheLoop->getHeader(); 3169 for (Loop::block_iterator BI = TheLoop->block_begin(), 3170 BE = TheLoop->block_end(); BI != BE; ++BI) { 3171 BasicBlock *BB = *BI; 3172 3173 // We don't support switch statements inside loops. 3174 if (!isa<BranchInst>(BB->getTerminator())) 3175 return false; 3176 3177 // We must be able to predicate all blocks that need to be predicated. 3178 if (blockNeedsPredication(BB)) { 3179 if (!blockCanBePredicated(BB, SafePointes)) 3180 return false; 3181 } else if (BB != Header && !canIfConvertPHINodes(BB)) 3182 return false; 3183 3184 } 3185 3186 // We can if-convert this loop. 3187 return true; 3188 } 3189 3190 bool LoopVectorizationLegality::canVectorize() { 3191 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3192 // be canonicalized. 3193 if (!TheLoop->getLoopPreheader()) 3194 return false; 3195 3196 // We can only vectorize innermost loops. 3197 if (TheLoop->getSubLoopsVector().size()) 3198 return false; 3199 3200 // We must have a single backedge. 3201 if (TheLoop->getNumBackEdges() != 1) 3202 return false; 3203 3204 // We must have a single exiting block. 3205 if (!TheLoop->getExitingBlock()) 3206 return false; 3207 3208 // We need to have a loop header. 3209 DEBUG(dbgs() << "LV: Found a loop: " << 3210 TheLoop->getHeader()->getName() << '\n'); 3211 3212 // Check if we can if-convert non-single-bb loops. 3213 unsigned NumBlocks = TheLoop->getNumBlocks(); 3214 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3215 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3216 return false; 3217 } 3218 3219 // ScalarEvolution needs to be able to find the exit count. 3220 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3221 if (ExitCount == SE->getCouldNotCompute()) { 3222 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3223 return false; 3224 } 3225 3226 // Check if we can vectorize the instructions and CFG in this loop. 3227 if (!canVectorizeInstrs()) { 3228 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3229 return false; 3230 } 3231 3232 // Go over each instruction and look at memory deps. 3233 if (!canVectorizeMemory()) { 3234 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3235 return false; 3236 } 3237 3238 // Collect all of the variables that remain uniform after vectorization. 3239 collectLoopUniforms(); 3240 3241 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3242 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3243 <<"!\n"); 3244 3245 // Okay! We can vectorize. At this point we don't have any other mem analysis 3246 // which may limit our maximum vectorization factor, so just return true with 3247 // no restrictions. 3248 return true; 3249 } 3250 3251 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3252 if (Ty->isPointerTy()) 3253 return DL.getIntPtrType(Ty); 3254 3255 // It is possible that char's or short's overflow when we ask for the loop's 3256 // trip count, work around this by changing the type size. 3257 if (Ty->getScalarSizeInBits() < 32) 3258 return Type::getInt32Ty(Ty->getContext()); 3259 3260 return Ty; 3261 } 3262 3263 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3264 Ty0 = convertPointerToIntegerType(DL, Ty0); 3265 Ty1 = convertPointerToIntegerType(DL, Ty1); 3266 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3267 return Ty0; 3268 return Ty1; 3269 } 3270 3271 /// \brief Check that the instruction has outside loop users and is not an 3272 /// identified reduction variable. 3273 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3274 SmallPtrSet<Value *, 4> &Reductions) { 3275 // Reduction instructions are allowed to have exit users. All other 3276 // instructions must not have external users. 3277 if (!Reductions.count(Inst)) 3278 //Check that all of the users of the loop are inside the BB. 3279 for (User *U : Inst->users()) { 3280 Instruction *UI = cast<Instruction>(U); 3281 // This user may be a reduction exit value. 3282 if (!TheLoop->contains(UI)) { 3283 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3284 return true; 3285 } 3286 } 3287 return false; 3288 } 3289 3290 bool LoopVectorizationLegality::canVectorizeInstrs() { 3291 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3292 BasicBlock *Header = TheLoop->getHeader(); 3293 3294 // Look for the attribute signaling the absence of NaNs. 3295 Function &F = *Header->getParent(); 3296 if (F.hasFnAttribute("no-nans-fp-math")) 3297 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3298 AttributeSet::FunctionIndex, 3299 "no-nans-fp-math").getValueAsString() == "true"; 3300 3301 // For each block in the loop. 3302 for (Loop::block_iterator bb = TheLoop->block_begin(), 3303 be = TheLoop->block_end(); bb != be; ++bb) { 3304 3305 // Scan the instructions in the block and look for hazards. 3306 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3307 ++it) { 3308 3309 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3310 Type *PhiTy = Phi->getType(); 3311 // Check that this PHI type is allowed. 3312 if (!PhiTy->isIntegerTy() && 3313 !PhiTy->isFloatingPointTy() && 3314 !PhiTy->isPointerTy()) { 3315 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3316 return false; 3317 } 3318 3319 // If this PHINode is not in the header block, then we know that we 3320 // can convert it to select during if-conversion. No need to check if 3321 // the PHIs in this block are induction or reduction variables. 3322 if (*bb != Header) { 3323 // Check that this instruction has no outside users or is an 3324 // identified reduction value with an outside user. 3325 if(!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3326 continue; 3327 return false; 3328 } 3329 3330 // We only allow if-converted PHIs with more than two incoming values. 3331 if (Phi->getNumIncomingValues() != 2) { 3332 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3333 return false; 3334 } 3335 3336 // This is the value coming from the preheader. 3337 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3338 // Check if this is an induction variable. 3339 InductionKind IK = isInductionVariable(Phi); 3340 3341 if (IK_NoInduction != IK) { 3342 // Get the widest type. 3343 if (!WidestIndTy) 3344 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3345 else 3346 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3347 3348 // Int inductions are special because we only allow one IV. 3349 if (IK == IK_IntInduction) { 3350 // Use the phi node with the widest type as induction. Use the last 3351 // one if there are multiple (no good reason for doing this other 3352 // than it is expedient). 3353 if (!Induction || PhiTy == WidestIndTy) 3354 Induction = Phi; 3355 } 3356 3357 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3358 Inductions[Phi] = InductionInfo(StartValue, IK); 3359 3360 // Until we explicitly handle the case of an induction variable with 3361 // an outside loop user we have to give up vectorizing this loop. 3362 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3363 return false; 3364 3365 continue; 3366 } 3367 3368 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3369 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3370 continue; 3371 } 3372 if (AddReductionVar(Phi, RK_IntegerMult)) { 3373 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3374 continue; 3375 } 3376 if (AddReductionVar(Phi, RK_IntegerOr)) { 3377 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3378 continue; 3379 } 3380 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3381 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3382 continue; 3383 } 3384 if (AddReductionVar(Phi, RK_IntegerXor)) { 3385 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3386 continue; 3387 } 3388 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3389 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3390 continue; 3391 } 3392 if (AddReductionVar(Phi, RK_FloatMult)) { 3393 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3394 continue; 3395 } 3396 if (AddReductionVar(Phi, RK_FloatAdd)) { 3397 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3398 continue; 3399 } 3400 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3401 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3402 "\n"); 3403 continue; 3404 } 3405 3406 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3407 return false; 3408 }// end of PHI handling 3409 3410 // We still don't handle functions. However, we can ignore dbg intrinsic 3411 // calls and we do handle certain intrinsic and libm functions. 3412 CallInst *CI = dyn_cast<CallInst>(it); 3413 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3414 DEBUG(dbgs() << "LV: Found a call site.\n"); 3415 return false; 3416 } 3417 3418 // Check that the instruction return type is vectorizable. 3419 // Also, we can't vectorize extractelement instructions. 3420 if ((!VectorType::isValidElementType(it->getType()) && 3421 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3422 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3423 return false; 3424 } 3425 3426 // Check that the stored type is vectorizable. 3427 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3428 Type *T = ST->getValueOperand()->getType(); 3429 if (!VectorType::isValidElementType(T)) 3430 return false; 3431 if (EnableMemAccessVersioning) 3432 collectStridedAcccess(ST); 3433 } 3434 3435 if (EnableMemAccessVersioning) 3436 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3437 collectStridedAcccess(LI); 3438 3439 // Reduction instructions are allowed to have exit users. 3440 // All other instructions must not have external users. 3441 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3442 return false; 3443 3444 } // next instr. 3445 3446 } 3447 3448 if (!Induction) { 3449 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3450 if (Inductions.empty()) 3451 return false; 3452 } 3453 3454 return true; 3455 } 3456 3457 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3458 /// return the induction operand of the gep pointer. 3459 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3460 const DataLayout *DL, Loop *Lp) { 3461 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3462 if (!GEP) 3463 return Ptr; 3464 3465 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3466 3467 // Check that all of the gep indices are uniform except for our induction 3468 // operand. 3469 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3470 if (i != InductionOperand && 3471 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3472 return Ptr; 3473 return GEP->getOperand(InductionOperand); 3474 } 3475 3476 ///\brief Look for a cast use of the passed value. 3477 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3478 Value *UniqueCast = nullptr; 3479 for (User *U : Ptr->users()) { 3480 CastInst *CI = dyn_cast<CastInst>(U); 3481 if (CI && CI->getType() == Ty) { 3482 if (!UniqueCast) 3483 UniqueCast = CI; 3484 else 3485 return nullptr; 3486 } 3487 } 3488 return UniqueCast; 3489 } 3490 3491 ///\brief Get the stride of a pointer access in a loop. 3492 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3493 /// pointer to the Value, or null otherwise. 3494 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3495 const DataLayout *DL, Loop *Lp) { 3496 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3497 if (!PtrTy || PtrTy->isAggregateType()) 3498 return nullptr; 3499 3500 // Try to remove a gep instruction to make the pointer (actually index at this 3501 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3502 // pointer, otherwise, we are analyzing the index. 3503 Value *OrigPtr = Ptr; 3504 3505 // The size of the pointer access. 3506 int64_t PtrAccessSize = 1; 3507 3508 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3509 const SCEV *V = SE->getSCEV(Ptr); 3510 3511 if (Ptr != OrigPtr) 3512 // Strip off casts. 3513 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3514 V = C->getOperand(); 3515 3516 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3517 if (!S) 3518 return nullptr; 3519 3520 V = S->getStepRecurrence(*SE); 3521 if (!V) 3522 return nullptr; 3523 3524 // Strip off the size of access multiplication if we are still analyzing the 3525 // pointer. 3526 if (OrigPtr == Ptr) { 3527 DL->getTypeAllocSize(PtrTy->getElementType()); 3528 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3529 if (M->getOperand(0)->getSCEVType() != scConstant) 3530 return nullptr; 3531 3532 const APInt &APStepVal = 3533 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3534 3535 // Huge step value - give up. 3536 if (APStepVal.getBitWidth() > 64) 3537 return nullptr; 3538 3539 int64_t StepVal = APStepVal.getSExtValue(); 3540 if (PtrAccessSize != StepVal) 3541 return nullptr; 3542 V = M->getOperand(1); 3543 } 3544 } 3545 3546 // Strip off casts. 3547 Type *StripedOffRecurrenceCast = nullptr; 3548 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3549 StripedOffRecurrenceCast = C->getType(); 3550 V = C->getOperand(); 3551 } 3552 3553 // Look for the loop invariant symbolic value. 3554 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3555 if (!U) 3556 return nullptr; 3557 3558 Value *Stride = U->getValue(); 3559 if (!Lp->isLoopInvariant(Stride)) 3560 return nullptr; 3561 3562 // If we have stripped off the recurrence cast we have to make sure that we 3563 // return the value that is used in this loop so that we can replace it later. 3564 if (StripedOffRecurrenceCast) 3565 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3566 3567 return Stride; 3568 } 3569 3570 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3571 Value *Ptr = nullptr; 3572 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3573 Ptr = LI->getPointerOperand(); 3574 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3575 Ptr = SI->getPointerOperand(); 3576 else 3577 return; 3578 3579 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3580 if (!Stride) 3581 return; 3582 3583 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3584 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3585 Strides[Ptr] = Stride; 3586 StrideSet.insert(Stride); 3587 } 3588 3589 void LoopVectorizationLegality::collectLoopUniforms() { 3590 // We now know that the loop is vectorizable! 3591 // Collect variables that will remain uniform after vectorization. 3592 std::vector<Value*> Worklist; 3593 BasicBlock *Latch = TheLoop->getLoopLatch(); 3594 3595 // Start with the conditional branch and walk up the block. 3596 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3597 3598 // Also add all consecutive pointer values; these values will be uniform 3599 // after vectorization (and subsequent cleanup) and, until revectorization is 3600 // supported, all dependencies must also be uniform. 3601 for (Loop::block_iterator B = TheLoop->block_begin(), 3602 BE = TheLoop->block_end(); B != BE; ++B) 3603 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3604 I != IE; ++I) 3605 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3606 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3607 3608 while (Worklist.size()) { 3609 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3610 Worklist.pop_back(); 3611 3612 // Look at instructions inside this loop. 3613 // Stop when reaching PHI nodes. 3614 // TODO: we need to follow values all over the loop, not only in this block. 3615 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3616 continue; 3617 3618 // This is a known uniform. 3619 Uniforms.insert(I); 3620 3621 // Insert all operands. 3622 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3623 } 3624 } 3625 3626 namespace { 3627 /// \brief Analyses memory accesses in a loop. 3628 /// 3629 /// Checks whether run time pointer checks are needed and builds sets for data 3630 /// dependence checking. 3631 class AccessAnalysis { 3632 public: 3633 /// \brief Read or write access location. 3634 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3635 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3636 3637 /// \brief Set of potential dependent memory accesses. 3638 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3639 3640 AccessAnalysis(const DataLayout *Dl, DepCandidates &DA) : 3641 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 3642 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 3643 3644 /// \brief Register a load and whether it is only read from. 3645 void addLoad(Value *Ptr, bool IsReadOnly) { 3646 Accesses.insert(MemAccessInfo(Ptr, false)); 3647 if (IsReadOnly) 3648 ReadOnlyPtr.insert(Ptr); 3649 } 3650 3651 /// \brief Register a store. 3652 void addStore(Value *Ptr) { 3653 Accesses.insert(MemAccessInfo(Ptr, true)); 3654 } 3655 3656 /// \brief Check whether we can check the pointers at runtime for 3657 /// non-intersection. 3658 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3659 unsigned &NumComparisons, ScalarEvolution *SE, 3660 Loop *TheLoop, ValueToValueMap &Strides, 3661 bool ShouldCheckStride = false); 3662 3663 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3664 /// and builds sets of dependent accesses. 3665 void buildDependenceSets() { 3666 // Process read-write pointers first. 3667 processMemAccesses(false); 3668 // Next, process read pointers. 3669 processMemAccesses(true); 3670 } 3671 3672 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3673 3674 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3675 void resetDepChecks() { CheckDeps.clear(); } 3676 3677 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3678 3679 private: 3680 typedef SetVector<MemAccessInfo> PtrAccessSet; 3681 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 3682 3683 /// \brief Go over all memory access or only the deferred ones if 3684 /// \p UseDeferred is true and check whether runtime pointer checks are needed 3685 /// and build sets of dependency check candidates. 3686 void processMemAccesses(bool UseDeferred); 3687 3688 /// Set of all accesses. 3689 PtrAccessSet Accesses; 3690 3691 /// Set of access to check after all writes have been processed. 3692 PtrAccessSet DeferredAccesses; 3693 3694 /// Map of pointers to last access encountered. 3695 UnderlyingObjToAccessMap ObjToLastAccess; 3696 3697 /// Set of accesses that need a further dependence check. 3698 MemAccessInfoSet CheckDeps; 3699 3700 /// Set of pointers that are read only. 3701 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3702 3703 /// Set of underlying objects already written to. 3704 SmallPtrSet<Value*, 16> WriteObjects; 3705 3706 const DataLayout *DL; 3707 3708 /// Sets of potentially dependent accesses - members of one set share an 3709 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 3710 /// dependence check. 3711 DepCandidates &DepCands; 3712 3713 bool AreAllWritesIdentified; 3714 bool AreAllReadsIdentified; 3715 bool IsRTCheckNeeded; 3716 }; 3717 3718 } // end anonymous namespace 3719 3720 /// \brief Check whether a pointer can participate in a runtime bounds check. 3721 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 3722 Value *Ptr) { 3723 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 3724 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3725 if (!AR) 3726 return false; 3727 3728 return AR->isAffine(); 3729 } 3730 3731 /// \brief Check the stride of the pointer and ensure that it does not wrap in 3732 /// the address space. 3733 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 3734 const Loop *Lp, ValueToValueMap &StridesMap); 3735 3736 bool AccessAnalysis::canCheckPtrAtRT( 3737 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3738 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 3739 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 3740 // Find pointers with computable bounds. We are going to use this information 3741 // to place a runtime bound check. 3742 unsigned NumReadPtrChecks = 0; 3743 unsigned NumWritePtrChecks = 0; 3744 bool CanDoRT = true; 3745 3746 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 3747 // We assign consecutive id to access from different dependence sets. 3748 // Accesses within the same set don't need a runtime check. 3749 unsigned RunningDepId = 1; 3750 DenseMap<Value *, unsigned> DepSetId; 3751 3752 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 3753 AI != AE; ++AI) { 3754 const MemAccessInfo &Access = *AI; 3755 Value *Ptr = Access.getPointer(); 3756 bool IsWrite = Access.getInt(); 3757 3758 // Just add write checks if we have both. 3759 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true))) 3760 continue; 3761 3762 if (IsWrite) 3763 ++NumWritePtrChecks; 3764 else 3765 ++NumReadPtrChecks; 3766 3767 if (hasComputableBounds(SE, StridesMap, Ptr) && 3768 // When we run after a failing dependency check we have to make sure we 3769 // don't have wrapping pointers. 3770 (!ShouldCheckStride || 3771 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 3772 // The id of the dependence set. 3773 unsigned DepId; 3774 3775 if (IsDepCheckNeeded) { 3776 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 3777 unsigned &LeaderId = DepSetId[Leader]; 3778 if (!LeaderId) 3779 LeaderId = RunningDepId++; 3780 DepId = LeaderId; 3781 } else 3782 // Each access has its own dependence set. 3783 DepId = RunningDepId++; 3784 3785 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap); 3786 3787 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 3788 } else { 3789 CanDoRT = false; 3790 } 3791 } 3792 3793 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 3794 NumComparisons = 0; // Only one dependence set. 3795 else { 3796 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 3797 NumWritePtrChecks - 1)); 3798 } 3799 3800 // If the pointers that we would use for the bounds comparison have different 3801 // address spaces, assume the values aren't directly comparable, so we can't 3802 // use them for the runtime check. We also have to assume they could 3803 // overlap. In the future there should be metadata for whether address spaces 3804 // are disjoint. 3805 unsigned NumPointers = RtCheck.Pointers.size(); 3806 for (unsigned i = 0; i < NumPointers; ++i) { 3807 for (unsigned j = i + 1; j < NumPointers; ++j) { 3808 // Only need to check pointers between two different dependency sets. 3809 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 3810 continue; 3811 3812 Value *PtrI = RtCheck.Pointers[i]; 3813 Value *PtrJ = RtCheck.Pointers[j]; 3814 3815 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 3816 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 3817 if (ASi != ASj) { 3818 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 3819 " different address spaces\n"); 3820 return false; 3821 } 3822 } 3823 } 3824 3825 return CanDoRT; 3826 } 3827 3828 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 3829 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 3830 } 3831 3832 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 3833 // We process the set twice: first we process read-write pointers, last we 3834 // process read-only pointers. This allows us to skip dependence tests for 3835 // read-only pointers. 3836 3837 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 3838 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 3839 const MemAccessInfo &Access = *AI; 3840 Value *Ptr = Access.getPointer(); 3841 bool IsWrite = Access.getInt(); 3842 3843 DepCands.insert(Access); 3844 3845 // Memorize read-only pointers for later processing and skip them in the 3846 // first round (they need to be checked after we have seen all write 3847 // pointers). Note: we also mark pointer that are not consecutive as 3848 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 3849 // second check for "!IsWrite". 3850 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 3851 if (!UseDeferred && IsReadOnlyPtr) { 3852 DeferredAccesses.insert(Access); 3853 continue; 3854 } 3855 3856 bool NeedDepCheck = false; 3857 // Check whether there is the possibility of dependency because of 3858 // underlying objects being the same. 3859 typedef SmallVector<Value*, 16> ValueVector; 3860 ValueVector TempObjects; 3861 GetUnderlyingObjects(Ptr, TempObjects, DL); 3862 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 3863 UI != UE; ++UI) { 3864 Value *UnderlyingObj = *UI; 3865 3866 // If this is a write then it needs to be an identified object. If this a 3867 // read and all writes (so far) are identified function scope objects we 3868 // don't need an identified underlying object but only an Argument (the 3869 // next write is going to invalidate this assumption if it is 3870 // unidentified). 3871 // This is a micro-optimization for the case where all writes are 3872 // identified and we have one argument pointer. 3873 // Otherwise, we do need a runtime check. 3874 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 3875 (!IsWrite && (!AreAllWritesIdentified || 3876 !isa<Argument>(UnderlyingObj)) && 3877 !isIdentifiedObject(UnderlyingObj))) { 3878 DEBUG(dbgs() << "LV: Found an unidentified " << 3879 (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj << 3880 "\n"); 3881 IsRTCheckNeeded = (IsRTCheckNeeded || 3882 !isIdentifiedObject(UnderlyingObj) || 3883 !AreAllReadsIdentified); 3884 3885 if (IsWrite) 3886 AreAllWritesIdentified = false; 3887 if (!IsWrite) 3888 AreAllReadsIdentified = false; 3889 } 3890 3891 // If this is a write - check other reads and writes for conflicts. If 3892 // this is a read only check other writes for conflicts (but only if there 3893 // is no other write to the ptr - this is an optimization to catch "a[i] = 3894 // a[i] + " without having to do a dependence check). 3895 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 3896 NeedDepCheck = true; 3897 3898 if (IsWrite) 3899 WriteObjects.insert(UnderlyingObj); 3900 3901 // Create sets of pointers connected by shared underlying objects. 3902 UnderlyingObjToAccessMap::iterator Prev = 3903 ObjToLastAccess.find(UnderlyingObj); 3904 if (Prev != ObjToLastAccess.end()) 3905 DepCands.unionSets(Access, Prev->second); 3906 3907 ObjToLastAccess[UnderlyingObj] = Access; 3908 } 3909 3910 if (NeedDepCheck) 3911 CheckDeps.insert(Access); 3912 } 3913 } 3914 3915 namespace { 3916 /// \brief Checks memory dependences among accesses to the same underlying 3917 /// object to determine whether there vectorization is legal or not (and at 3918 /// which vectorization factor). 3919 /// 3920 /// This class works under the assumption that we already checked that memory 3921 /// locations with different underlying pointers are "must-not alias". 3922 /// We use the ScalarEvolution framework to symbolically evalutate access 3923 /// functions pairs. Since we currently don't restructure the loop we can rely 3924 /// on the program order of memory accesses to determine their safety. 3925 /// At the moment we will only deem accesses as safe for: 3926 /// * A negative constant distance assuming program order. 3927 /// 3928 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 3929 /// a[i] = tmp; y = a[i]; 3930 /// 3931 /// The latter case is safe because later checks guarantuee that there can't 3932 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 3933 /// the same variable: a header phi can only be an induction or a reduction, a 3934 /// reduction can't have a memory sink, an induction can't have a memory 3935 /// source). This is important and must not be violated (or we have to 3936 /// resort to checking for cycles through memory). 3937 /// 3938 /// * A positive constant distance assuming program order that is bigger 3939 /// than the biggest memory access. 3940 /// 3941 /// tmp = a[i] OR b[i] = x 3942 /// a[i+2] = tmp y = b[i+2]; 3943 /// 3944 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 3945 /// 3946 /// * Zero distances and all accesses have the same size. 3947 /// 3948 class MemoryDepChecker { 3949 public: 3950 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3951 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3952 3953 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 3954 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 3955 ShouldRetryWithRuntimeCheck(false) {} 3956 3957 /// \brief Register the location (instructions are given increasing numbers) 3958 /// of a write access. 3959 void addAccess(StoreInst *SI) { 3960 Value *Ptr = SI->getPointerOperand(); 3961 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 3962 InstMap.push_back(SI); 3963 ++AccessIdx; 3964 } 3965 3966 /// \brief Register the location (instructions are given increasing numbers) 3967 /// of a write access. 3968 void addAccess(LoadInst *LI) { 3969 Value *Ptr = LI->getPointerOperand(); 3970 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 3971 InstMap.push_back(LI); 3972 ++AccessIdx; 3973 } 3974 3975 /// \brief Check whether the dependencies between the accesses are safe. 3976 /// 3977 /// Only checks sets with elements in \p CheckDeps. 3978 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 3979 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 3980 3981 /// \brief The maximum number of bytes of a vector register we can vectorize 3982 /// the accesses safely with. 3983 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 3984 3985 /// \brief In same cases when the dependency check fails we can still 3986 /// vectorize the loop with a dynamic array access check. 3987 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 3988 3989 private: 3990 ScalarEvolution *SE; 3991 const DataLayout *DL; 3992 const Loop *InnermostLoop; 3993 3994 /// \brief Maps access locations (ptr, read/write) to program order. 3995 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 3996 3997 /// \brief Memory access instructions in program order. 3998 SmallVector<Instruction *, 16> InstMap; 3999 4000 /// \brief The program order index to be used for the next instruction. 4001 unsigned AccessIdx; 4002 4003 // We can access this many bytes in parallel safely. 4004 unsigned MaxSafeDepDistBytes; 4005 4006 /// \brief If we see a non-constant dependence distance we can still try to 4007 /// vectorize this loop with runtime checks. 4008 bool ShouldRetryWithRuntimeCheck; 4009 4010 /// \brief Check whether there is a plausible dependence between the two 4011 /// accesses. 4012 /// 4013 /// Access \p A must happen before \p B in program order. The two indices 4014 /// identify the index into the program order map. 4015 /// 4016 /// This function checks whether there is a plausible dependence (or the 4017 /// absence of such can't be proved) between the two accesses. If there is a 4018 /// plausible dependence but the dependence distance is bigger than one 4019 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4020 /// distance is smaller than any other distance encountered so far). 4021 /// Otherwise, this function returns true signaling a possible dependence. 4022 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4023 const MemAccessInfo &B, unsigned BIdx, 4024 ValueToValueMap &Strides); 4025 4026 /// \brief Check whether the data dependence could prevent store-load 4027 /// forwarding. 4028 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4029 }; 4030 4031 } // end anonymous namespace 4032 4033 static bool isInBoundsGep(Value *Ptr) { 4034 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4035 return GEP->isInBounds(); 4036 return false; 4037 } 4038 4039 /// \brief Check whether the access through \p Ptr has a constant stride. 4040 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4041 const Loop *Lp, ValueToValueMap &StridesMap) { 4042 const Type *Ty = Ptr->getType(); 4043 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4044 4045 // Make sure that the pointer does not point to aggregate types. 4046 const PointerType *PtrTy = cast<PointerType>(Ty); 4047 if (PtrTy->getElementType()->isAggregateType()) { 4048 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4049 "\n"); 4050 return 0; 4051 } 4052 4053 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4054 4055 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4056 if (!AR) { 4057 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4058 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4059 return 0; 4060 } 4061 4062 // The accesss function must stride over the innermost loop. 4063 if (Lp != AR->getLoop()) { 4064 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4065 *Ptr << " SCEV: " << *PtrScev << "\n"); 4066 } 4067 4068 // The address calculation must not wrap. Otherwise, a dependence could be 4069 // inverted. 4070 // An inbounds getelementptr that is a AddRec with a unit stride 4071 // cannot wrap per definition. The unit stride requirement is checked later. 4072 // An getelementptr without an inbounds attribute and unit stride would have 4073 // to access the pointer value "0" which is undefined behavior in address 4074 // space 0, therefore we can also vectorize this case. 4075 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4076 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4077 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4078 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4079 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4080 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4081 return 0; 4082 } 4083 4084 // Check the step is constant. 4085 const SCEV *Step = AR->getStepRecurrence(*SE); 4086 4087 // Calculate the pointer stride and check if it is consecutive. 4088 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4089 if (!C) { 4090 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4091 " SCEV: " << *PtrScev << "\n"); 4092 return 0; 4093 } 4094 4095 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4096 const APInt &APStepVal = C->getValue()->getValue(); 4097 4098 // Huge step value - give up. 4099 if (APStepVal.getBitWidth() > 64) 4100 return 0; 4101 4102 int64_t StepVal = APStepVal.getSExtValue(); 4103 4104 // Strided access. 4105 int64_t Stride = StepVal / Size; 4106 int64_t Rem = StepVal % Size; 4107 if (Rem) 4108 return 0; 4109 4110 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4111 // know we can't "wrap around the address space". In case of address space 4112 // zero we know that this won't happen without triggering undefined behavior. 4113 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4114 Stride != 1 && Stride != -1) 4115 return 0; 4116 4117 return Stride; 4118 } 4119 4120 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4121 unsigned TypeByteSize) { 4122 // If loads occur at a distance that is not a multiple of a feasible vector 4123 // factor store-load forwarding does not take place. 4124 // Positive dependences might cause troubles because vectorizing them might 4125 // prevent store-load forwarding making vectorized code run a lot slower. 4126 // a[i] = a[i-3] ^ a[i-8]; 4127 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4128 // hence on your typical architecture store-load forwarding does not take 4129 // place. Vectorizing in such cases does not make sense. 4130 // Store-load forwarding distance. 4131 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4132 // Maximum vector factor. 4133 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4134 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4135 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4136 4137 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4138 vf *= 2) { 4139 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4140 MaxVFWithoutSLForwardIssues = (vf >>=1); 4141 break; 4142 } 4143 } 4144 4145 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4146 DEBUG(dbgs() << "LV: Distance " << Distance << 4147 " that could cause a store-load forwarding conflict\n"); 4148 return true; 4149 } 4150 4151 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4152 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4153 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4154 return false; 4155 } 4156 4157 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4158 const MemAccessInfo &B, unsigned BIdx, 4159 ValueToValueMap &Strides) { 4160 assert (AIdx < BIdx && "Must pass arguments in program order"); 4161 4162 Value *APtr = A.getPointer(); 4163 Value *BPtr = B.getPointer(); 4164 bool AIsWrite = A.getInt(); 4165 bool BIsWrite = B.getInt(); 4166 4167 // Two reads are independent. 4168 if (!AIsWrite && !BIsWrite) 4169 return false; 4170 4171 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4172 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4173 4174 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4175 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4176 4177 const SCEV *Src = AScev; 4178 const SCEV *Sink = BScev; 4179 4180 // If the induction step is negative we have to invert source and sink of the 4181 // dependence. 4182 if (StrideAPtr < 0) { 4183 //Src = BScev; 4184 //Sink = AScev; 4185 std::swap(APtr, BPtr); 4186 std::swap(Src, Sink); 4187 std::swap(AIsWrite, BIsWrite); 4188 std::swap(AIdx, BIdx); 4189 std::swap(StrideAPtr, StrideBPtr); 4190 } 4191 4192 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4193 4194 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4195 << "(Induction step: " << StrideAPtr << ")\n"); 4196 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4197 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4198 4199 // Need consecutive accesses. We don't want to vectorize 4200 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4201 // the address space. 4202 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4203 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4204 return true; 4205 } 4206 4207 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4208 if (!C) { 4209 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4210 ShouldRetryWithRuntimeCheck = true; 4211 return true; 4212 } 4213 4214 Type *ATy = APtr->getType()->getPointerElementType(); 4215 Type *BTy = BPtr->getType()->getPointerElementType(); 4216 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4217 4218 // Negative distances are not plausible dependencies. 4219 const APInt &Val = C->getValue()->getValue(); 4220 if (Val.isNegative()) { 4221 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4222 if (IsTrueDataDependence && 4223 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4224 ATy != BTy)) 4225 return true; 4226 4227 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4228 return false; 4229 } 4230 4231 // Write to the same location with the same size. 4232 // Could be improved to assert type sizes are the same (i32 == float, etc). 4233 if (Val == 0) { 4234 if (ATy == BTy) 4235 return false; 4236 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4237 return true; 4238 } 4239 4240 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4241 4242 // Positive distance bigger than max vectorization factor. 4243 if (ATy != BTy) { 4244 DEBUG(dbgs() << 4245 "LV: ReadWrite-Write positive dependency with different types\n"); 4246 return false; 4247 } 4248 4249 unsigned Distance = (unsigned) Val.getZExtValue(); 4250 4251 // Bail out early if passed-in parameters make vectorization not feasible. 4252 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4253 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4254 4255 // The distance must be bigger than the size needed for a vectorized version 4256 // of the operation and the size of the vectorized operation must not be 4257 // bigger than the currrent maximum size. 4258 if (Distance < 2*TypeByteSize || 4259 2*TypeByteSize > MaxSafeDepDistBytes || 4260 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4261 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4262 << Val.getSExtValue() << '\n'); 4263 return true; 4264 } 4265 4266 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4267 Distance : MaxSafeDepDistBytes; 4268 4269 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4270 if (IsTrueDataDependence && 4271 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4272 return true; 4273 4274 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4275 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4276 4277 return false; 4278 } 4279 4280 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4281 MemAccessInfoSet &CheckDeps, 4282 ValueToValueMap &Strides) { 4283 4284 MaxSafeDepDistBytes = -1U; 4285 while (!CheckDeps.empty()) { 4286 MemAccessInfo CurAccess = *CheckDeps.begin(); 4287 4288 // Get the relevant memory access set. 4289 EquivalenceClasses<MemAccessInfo>::iterator I = 4290 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4291 4292 // Check accesses within this set. 4293 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4294 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4295 4296 // Check every access pair. 4297 while (AI != AE) { 4298 CheckDeps.erase(*AI); 4299 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4300 while (OI != AE) { 4301 // Check every accessing instruction pair in program order. 4302 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4303 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4304 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4305 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4306 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4307 return false; 4308 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4309 return false; 4310 } 4311 ++OI; 4312 } 4313 AI++; 4314 } 4315 } 4316 return true; 4317 } 4318 4319 bool LoopVectorizationLegality::canVectorizeMemory() { 4320 4321 typedef SmallVector<Value*, 16> ValueVector; 4322 typedef SmallPtrSet<Value*, 16> ValueSet; 4323 4324 // Holds the Load and Store *instructions*. 4325 ValueVector Loads; 4326 ValueVector Stores; 4327 4328 // Holds all the different accesses in the loop. 4329 unsigned NumReads = 0; 4330 unsigned NumReadWrites = 0; 4331 4332 PtrRtCheck.Pointers.clear(); 4333 PtrRtCheck.Need = false; 4334 4335 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4336 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4337 4338 // For each block. 4339 for (Loop::block_iterator bb = TheLoop->block_begin(), 4340 be = TheLoop->block_end(); bb != be; ++bb) { 4341 4342 // Scan the BB and collect legal loads and stores. 4343 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4344 ++it) { 4345 4346 // If this is a load, save it. If this instruction can read from memory 4347 // but is not a load, then we quit. Notice that we don't handle function 4348 // calls that read or write. 4349 if (it->mayReadFromMemory()) { 4350 // Many math library functions read the rounding mode. We will only 4351 // vectorize a loop if it contains known function calls that don't set 4352 // the flag. Therefore, it is safe to ignore this read from memory. 4353 CallInst *Call = dyn_cast<CallInst>(it); 4354 if (Call && getIntrinsicIDForCall(Call, TLI)) 4355 continue; 4356 4357 LoadInst *Ld = dyn_cast<LoadInst>(it); 4358 if (!Ld) return false; 4359 if (!Ld->isSimple() && !IsAnnotatedParallel) { 4360 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4361 return false; 4362 } 4363 NumLoads++; 4364 Loads.push_back(Ld); 4365 DepChecker.addAccess(Ld); 4366 continue; 4367 } 4368 4369 // Save 'store' instructions. Abort if other instructions write to memory. 4370 if (it->mayWriteToMemory()) { 4371 StoreInst *St = dyn_cast<StoreInst>(it); 4372 if (!St) return false; 4373 if (!St->isSimple() && !IsAnnotatedParallel) { 4374 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4375 return false; 4376 } 4377 NumStores++; 4378 Stores.push_back(St); 4379 DepChecker.addAccess(St); 4380 } 4381 } // Next instr. 4382 } // Next block. 4383 4384 // Now we have two lists that hold the loads and the stores. 4385 // Next, we find the pointers that they use. 4386 4387 // Check if we see any stores. If there are no stores, then we don't 4388 // care if the pointers are *restrict*. 4389 if (!Stores.size()) { 4390 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4391 return true; 4392 } 4393 4394 AccessAnalysis::DepCandidates DependentAccesses; 4395 AccessAnalysis Accesses(DL, DependentAccesses); 4396 4397 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4398 // multiple times on the same object. If the ptr is accessed twice, once 4399 // for read and once for write, it will only appear once (on the write 4400 // list). This is okay, since we are going to check for conflicts between 4401 // writes and between reads and writes, but not between reads and reads. 4402 ValueSet Seen; 4403 4404 ValueVector::iterator I, IE; 4405 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4406 StoreInst *ST = cast<StoreInst>(*I); 4407 Value* Ptr = ST->getPointerOperand(); 4408 4409 if (isUniform(Ptr)) { 4410 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4411 return false; 4412 } 4413 4414 // If we did *not* see this pointer before, insert it to the read-write 4415 // list. At this phase it is only a 'write' list. 4416 if (Seen.insert(Ptr)) { 4417 ++NumReadWrites; 4418 Accesses.addStore(Ptr); 4419 } 4420 } 4421 4422 if (IsAnnotatedParallel) { 4423 DEBUG(dbgs() 4424 << "LV: A loop annotated parallel, ignore memory dependency " 4425 << "checks.\n"); 4426 return true; 4427 } 4428 4429 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4430 LoadInst *LD = cast<LoadInst>(*I); 4431 Value* Ptr = LD->getPointerOperand(); 4432 // If we did *not* see this pointer before, insert it to the 4433 // read list. If we *did* see it before, then it is already in 4434 // the read-write list. This allows us to vectorize expressions 4435 // such as A[i] += x; Because the address of A[i] is a read-write 4436 // pointer. This only works if the index of A[i] is consecutive. 4437 // If the address of i is unknown (for example A[B[i]]) then we may 4438 // read a few words, modify, and write a few words, and some of the 4439 // words may be written to the same address. 4440 bool IsReadOnlyPtr = false; 4441 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4442 ++NumReads; 4443 IsReadOnlyPtr = true; 4444 } 4445 Accesses.addLoad(Ptr, IsReadOnlyPtr); 4446 } 4447 4448 // If we write (or read-write) to a single destination and there are no 4449 // other reads in this loop then is it safe to vectorize. 4450 if (NumReadWrites == 1 && NumReads == 0) { 4451 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4452 return true; 4453 } 4454 4455 // Build dependence sets and check whether we need a runtime pointer bounds 4456 // check. 4457 Accesses.buildDependenceSets(); 4458 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4459 4460 // Find pointers with computable bounds. We are going to use this information 4461 // to place a runtime bound check. 4462 unsigned NumComparisons = 0; 4463 bool CanDoRT = false; 4464 if (NeedRTCheck) 4465 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4466 Strides); 4467 4468 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4469 " pointer comparisons.\n"); 4470 4471 // If we only have one set of dependences to check pointers among we don't 4472 // need a runtime check. 4473 if (NumComparisons == 0 && NeedRTCheck) 4474 NeedRTCheck = false; 4475 4476 // Check that we did not collect too many pointers or found an unsizeable 4477 // pointer. 4478 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4479 PtrRtCheck.reset(); 4480 CanDoRT = false; 4481 } 4482 4483 if (CanDoRT) { 4484 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4485 } 4486 4487 if (NeedRTCheck && !CanDoRT) { 4488 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4489 "the array bounds.\n"); 4490 PtrRtCheck.reset(); 4491 return false; 4492 } 4493 4494 PtrRtCheck.Need = NeedRTCheck; 4495 4496 bool CanVecMem = true; 4497 if (Accesses.isDependencyCheckNeeded()) { 4498 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4499 CanVecMem = DepChecker.areDepsSafe( 4500 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4501 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4502 4503 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4504 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4505 NeedRTCheck = true; 4506 4507 // Clear the dependency checks. We assume they are not needed. 4508 Accesses.resetDepChecks(); 4509 4510 PtrRtCheck.reset(); 4511 PtrRtCheck.Need = true; 4512 4513 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4514 TheLoop, Strides, true); 4515 // Check that we did not collect too many pointers or found an unsizeable 4516 // pointer. 4517 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4518 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4519 PtrRtCheck.reset(); 4520 return false; 4521 } 4522 4523 CanVecMem = true; 4524 } 4525 } 4526 4527 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4528 " need a runtime memory check.\n"); 4529 4530 return CanVecMem; 4531 } 4532 4533 static bool hasMultipleUsesOf(Instruction *I, 4534 SmallPtrSet<Instruction *, 8> &Insts) { 4535 unsigned NumUses = 0; 4536 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4537 if (Insts.count(dyn_cast<Instruction>(*Use))) 4538 ++NumUses; 4539 if (NumUses > 1) 4540 return true; 4541 } 4542 4543 return false; 4544 } 4545 4546 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 4547 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4548 if (!Set.count(dyn_cast<Instruction>(*Use))) 4549 return false; 4550 return true; 4551 } 4552 4553 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4554 ReductionKind Kind) { 4555 if (Phi->getNumIncomingValues() != 2) 4556 return false; 4557 4558 // Reduction variables are only found in the loop header block. 4559 if (Phi->getParent() != TheLoop->getHeader()) 4560 return false; 4561 4562 // Obtain the reduction start value from the value that comes from the loop 4563 // preheader. 4564 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4565 4566 // ExitInstruction is the single value which is used outside the loop. 4567 // We only allow for a single reduction value to be used outside the loop. 4568 // This includes users of the reduction, variables (which form a cycle 4569 // which ends in the phi node). 4570 Instruction *ExitInstruction = nullptr; 4571 // Indicates that we found a reduction operation in our scan. 4572 bool FoundReduxOp = false; 4573 4574 // We start with the PHI node and scan for all of the users of this 4575 // instruction. All users must be instructions that can be used as reduction 4576 // variables (such as ADD). We must have a single out-of-block user. The cycle 4577 // must include the original PHI. 4578 bool FoundStartPHI = false; 4579 4580 // To recognize min/max patterns formed by a icmp select sequence, we store 4581 // the number of instruction we saw from the recognized min/max pattern, 4582 // to make sure we only see exactly the two instructions. 4583 unsigned NumCmpSelectPatternInst = 0; 4584 ReductionInstDesc ReduxDesc(false, nullptr); 4585 4586 SmallPtrSet<Instruction *, 8> VisitedInsts; 4587 SmallVector<Instruction *, 8> Worklist; 4588 Worklist.push_back(Phi); 4589 VisitedInsts.insert(Phi); 4590 4591 // A value in the reduction can be used: 4592 // - By the reduction: 4593 // - Reduction operation: 4594 // - One use of reduction value (safe). 4595 // - Multiple use of reduction value (not safe). 4596 // - PHI: 4597 // - All uses of the PHI must be the reduction (safe). 4598 // - Otherwise, not safe. 4599 // - By one instruction outside of the loop (safe). 4600 // - By further instructions outside of the loop (not safe). 4601 // - By an instruction that is not part of the reduction (not safe). 4602 // This is either: 4603 // * An instruction type other than PHI or the reduction operation. 4604 // * A PHI in the header other than the initial PHI. 4605 while (!Worklist.empty()) { 4606 Instruction *Cur = Worklist.back(); 4607 Worklist.pop_back(); 4608 4609 // No Users. 4610 // If the instruction has no users then this is a broken chain and can't be 4611 // a reduction variable. 4612 if (Cur->use_empty()) 4613 return false; 4614 4615 bool IsAPhi = isa<PHINode>(Cur); 4616 4617 // A header PHI use other than the original PHI. 4618 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4619 return false; 4620 4621 // Reductions of instructions such as Div, and Sub is only possible if the 4622 // LHS is the reduction variable. 4623 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4624 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4625 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4626 return false; 4627 4628 // Any reduction instruction must be of one of the allowed kinds. 4629 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4630 if (!ReduxDesc.IsReduction) 4631 return false; 4632 4633 // A reduction operation must only have one use of the reduction value. 4634 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4635 hasMultipleUsesOf(Cur, VisitedInsts)) 4636 return false; 4637 4638 // All inputs to a PHI node must be a reduction value. 4639 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4640 return false; 4641 4642 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4643 isa<SelectInst>(Cur))) 4644 ++NumCmpSelectPatternInst; 4645 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4646 isa<SelectInst>(Cur))) 4647 ++NumCmpSelectPatternInst; 4648 4649 // Check whether we found a reduction operator. 4650 FoundReduxOp |= !IsAPhi; 4651 4652 // Process users of current instruction. Push non-PHI nodes after PHI nodes 4653 // onto the stack. This way we are going to have seen all inputs to PHI 4654 // nodes once we get to them. 4655 SmallVector<Instruction *, 8> NonPHIs; 4656 SmallVector<Instruction *, 8> PHIs; 4657 for (User *U : Cur->users()) { 4658 Instruction *UI = cast<Instruction>(U); 4659 4660 // Check if we found the exit user. 4661 BasicBlock *Parent = UI->getParent(); 4662 if (!TheLoop->contains(Parent)) { 4663 // Exit if you find multiple outside users or if the header phi node is 4664 // being used. In this case the user uses the value of the previous 4665 // iteration, in which case we would loose "VF-1" iterations of the 4666 // reduction operation if we vectorize. 4667 if (ExitInstruction != nullptr || Cur == Phi) 4668 return false; 4669 4670 // The instruction used by an outside user must be the last instruction 4671 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4672 // operations on the value. 4673 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4674 return false; 4675 4676 ExitInstruction = Cur; 4677 continue; 4678 } 4679 4680 // Process instructions only once (termination). Each reduction cycle 4681 // value must only be used once, except by phi nodes and min/max 4682 // reductions which are represented as a cmp followed by a select. 4683 ReductionInstDesc IgnoredVal(false, nullptr); 4684 if (VisitedInsts.insert(UI)) { 4685 if (isa<PHINode>(UI)) 4686 PHIs.push_back(UI); 4687 else 4688 NonPHIs.push_back(UI); 4689 } else if (!isa<PHINode>(UI) && 4690 ((!isa<FCmpInst>(UI) && 4691 !isa<ICmpInst>(UI) && 4692 !isa<SelectInst>(UI)) || 4693 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4694 return false; 4695 4696 // Remember that we completed the cycle. 4697 if (UI == Phi) 4698 FoundStartPHI = true; 4699 } 4700 Worklist.append(PHIs.begin(), PHIs.end()); 4701 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4702 } 4703 4704 // This means we have seen one but not the other instruction of the 4705 // pattern or more than just a select and cmp. 4706 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4707 NumCmpSelectPatternInst != 2) 4708 return false; 4709 4710 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4711 return false; 4712 4713 // We found a reduction var if we have reached the original phi node and we 4714 // only have a single instruction with out-of-loop users. 4715 4716 // This instruction is allowed to have out-of-loop users. 4717 AllowedExit.insert(ExitInstruction); 4718 4719 // Save the description of this reduction variable. 4720 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4721 ReduxDesc.MinMaxKind); 4722 Reductions[Phi] = RD; 4723 // We've ended the cycle. This is a reduction variable if we have an 4724 // outside user and it has a binary op. 4725 4726 return true; 4727 } 4728 4729 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4730 /// pattern corresponding to a min(X, Y) or max(X, Y). 4731 LoopVectorizationLegality::ReductionInstDesc 4732 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4733 ReductionInstDesc &Prev) { 4734 4735 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4736 "Expect a select instruction"); 4737 Instruction *Cmp = nullptr; 4738 SelectInst *Select = nullptr; 4739 4740 // We must handle the select(cmp()) as a single instruction. Advance to the 4741 // select. 4742 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4743 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 4744 return ReductionInstDesc(false, I); 4745 return ReductionInstDesc(Select, Prev.MinMaxKind); 4746 } 4747 4748 // Only handle single use cases for now. 4749 if (!(Select = dyn_cast<SelectInst>(I))) 4750 return ReductionInstDesc(false, I); 4751 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4752 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4753 return ReductionInstDesc(false, I); 4754 if (!Cmp->hasOneUse()) 4755 return ReductionInstDesc(false, I); 4756 4757 Value *CmpLeft; 4758 Value *CmpRight; 4759 4760 // Look for a min/max pattern. 4761 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4762 return ReductionInstDesc(Select, MRK_UIntMin); 4763 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4764 return ReductionInstDesc(Select, MRK_UIntMax); 4765 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4766 return ReductionInstDesc(Select, MRK_SIntMax); 4767 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4768 return ReductionInstDesc(Select, MRK_SIntMin); 4769 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4770 return ReductionInstDesc(Select, MRK_FloatMin); 4771 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4772 return ReductionInstDesc(Select, MRK_FloatMax); 4773 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4774 return ReductionInstDesc(Select, MRK_FloatMin); 4775 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4776 return ReductionInstDesc(Select, MRK_FloatMax); 4777 4778 return ReductionInstDesc(false, I); 4779 } 4780 4781 LoopVectorizationLegality::ReductionInstDesc 4782 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4783 ReductionKind Kind, 4784 ReductionInstDesc &Prev) { 4785 bool FP = I->getType()->isFloatingPointTy(); 4786 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 4787 switch (I->getOpcode()) { 4788 default: 4789 return ReductionInstDesc(false, I); 4790 case Instruction::PHI: 4791 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4792 Kind != RK_FloatMinMax)) 4793 return ReductionInstDesc(false, I); 4794 return ReductionInstDesc(I, Prev.MinMaxKind); 4795 case Instruction::Sub: 4796 case Instruction::Add: 4797 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4798 case Instruction::Mul: 4799 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4800 case Instruction::And: 4801 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4802 case Instruction::Or: 4803 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4804 case Instruction::Xor: 4805 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4806 case Instruction::FMul: 4807 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4808 case Instruction::FAdd: 4809 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4810 case Instruction::FCmp: 4811 case Instruction::ICmp: 4812 case Instruction::Select: 4813 if (Kind != RK_IntegerMinMax && 4814 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4815 return ReductionInstDesc(false, I); 4816 return isMinMaxSelectCmpPattern(I, Prev); 4817 } 4818 } 4819 4820 LoopVectorizationLegality::InductionKind 4821 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 4822 Type *PhiTy = Phi->getType(); 4823 // We only handle integer and pointer inductions variables. 4824 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4825 return IK_NoInduction; 4826 4827 // Check that the PHI is consecutive. 4828 const SCEV *PhiScev = SE->getSCEV(Phi); 4829 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4830 if (!AR) { 4831 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4832 return IK_NoInduction; 4833 } 4834 const SCEV *Step = AR->getStepRecurrence(*SE); 4835 4836 // Integer inductions need to have a stride of one. 4837 if (PhiTy->isIntegerTy()) { 4838 if (Step->isOne()) 4839 return IK_IntInduction; 4840 if (Step->isAllOnesValue()) 4841 return IK_ReverseIntInduction; 4842 return IK_NoInduction; 4843 } 4844 4845 // Calculate the pointer stride and check if it is consecutive. 4846 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4847 if (!C) 4848 return IK_NoInduction; 4849 4850 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4851 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 4852 if (C->getValue()->equalsInt(Size)) 4853 return IK_PtrInduction; 4854 else if (C->getValue()->equalsInt(0 - Size)) 4855 return IK_ReversePtrInduction; 4856 4857 return IK_NoInduction; 4858 } 4859 4860 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4861 Value *In0 = const_cast<Value*>(V); 4862 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4863 if (!PN) 4864 return false; 4865 4866 return Inductions.count(PN); 4867 } 4868 4869 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4870 assert(TheLoop->contains(BB) && "Unknown block used"); 4871 4872 // Blocks that do not dominate the latch need predication. 4873 BasicBlock* Latch = TheLoop->getLoopLatch(); 4874 return !DT->dominates(BB, Latch); 4875 } 4876 4877 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4878 SmallPtrSet<Value *, 8>& SafePtrs) { 4879 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4880 // We might be able to hoist the load. 4881 if (it->mayReadFromMemory()) { 4882 LoadInst *LI = dyn_cast<LoadInst>(it); 4883 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 4884 return false; 4885 } 4886 4887 // We don't predicate stores at the moment. 4888 if (it->mayWriteToMemory()) { 4889 StoreInst *SI = dyn_cast<StoreInst>(it); 4890 // We only support predication of stores in basic blocks with one 4891 // predecessor. 4892 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 4893 !SafePtrs.count(SI->getPointerOperand()) || 4894 !SI->getParent()->getSinglePredecessor()) 4895 return false; 4896 } 4897 if (it->mayThrow()) 4898 return false; 4899 4900 // Check that we don't have a constant expression that can trap as operand. 4901 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4902 OI != OE; ++OI) { 4903 if (Constant *C = dyn_cast<Constant>(*OI)) 4904 if (C->canTrap()) 4905 return false; 4906 } 4907 4908 // The instructions below can trap. 4909 switch (it->getOpcode()) { 4910 default: continue; 4911 case Instruction::UDiv: 4912 case Instruction::SDiv: 4913 case Instruction::URem: 4914 case Instruction::SRem: 4915 return false; 4916 } 4917 } 4918 4919 return true; 4920 } 4921 4922 LoopVectorizationCostModel::VectorizationFactor 4923 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 4924 unsigned UserVF, 4925 bool ForceVectorization) { 4926 // Width 1 means no vectorize 4927 VectorizationFactor Factor = { 1U, 0U }; 4928 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4929 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4930 return Factor; 4931 } 4932 4933 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 4934 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4935 return Factor; 4936 } 4937 4938 // Find the trip count. 4939 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 4940 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4941 4942 unsigned WidestType = getWidestType(); 4943 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4944 unsigned MaxSafeDepDist = -1U; 4945 if (Legal->getMaxSafeDepDistBytes() != -1U) 4946 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4947 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4948 WidestRegister : MaxSafeDepDist); 4949 unsigned MaxVectorSize = WidestRegister / WidestType; 4950 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4951 DEBUG(dbgs() << "LV: The Widest register is: " 4952 << WidestRegister << " bits.\n"); 4953 4954 if (MaxVectorSize == 0) { 4955 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4956 MaxVectorSize = 1; 4957 } 4958 4959 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 4960 " into one vector!"); 4961 4962 unsigned VF = MaxVectorSize; 4963 4964 // If we optimize the program for size, avoid creating the tail loop. 4965 if (OptForSize) { 4966 // If we are unable to calculate the trip count then don't try to vectorize. 4967 if (TC < 2) { 4968 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4969 return Factor; 4970 } 4971 4972 // Find the maximum SIMD width that can fit within the trip count. 4973 VF = TC % MaxVectorSize; 4974 4975 if (VF == 0) 4976 VF = MaxVectorSize; 4977 4978 // If the trip count that we found modulo the vectorization factor is not 4979 // zero then we require a tail. 4980 if (VF < 2) { 4981 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4982 return Factor; 4983 } 4984 } 4985 4986 if (UserVF != 0) { 4987 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4988 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4989 4990 Factor.Width = UserVF; 4991 return Factor; 4992 } 4993 4994 float Cost = expectedCost(1); 4995 #ifndef NDEBUG 4996 const float ScalarCost = Cost; 4997 #endif /* NDEBUG */ 4998 unsigned Width = 1; 4999 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5000 5001 // Ignore scalar width, because the user explicitly wants vectorization. 5002 if (ForceVectorization && VF > 1) { 5003 Width = 2; 5004 Cost = expectedCost(Width) / (float)Width; 5005 } 5006 5007 for (unsigned i=2; i <= VF; i*=2) { 5008 // Notice that the vector loop needs to be executed less times, so 5009 // we need to divide the cost of the vector loops by the width of 5010 // the vector elements. 5011 float VectorCost = expectedCost(i) / (float)i; 5012 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5013 (int)VectorCost << ".\n"); 5014 if (VectorCost < Cost) { 5015 Cost = VectorCost; 5016 Width = i; 5017 } 5018 } 5019 5020 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5021 << "LV: Vectorization seems to be not beneficial, " 5022 << "but was forced by a user.\n"); 5023 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5024 Factor.Width = Width; 5025 Factor.Cost = Width * Cost; 5026 return Factor; 5027 } 5028 5029 unsigned LoopVectorizationCostModel::getWidestType() { 5030 unsigned MaxWidth = 8; 5031 5032 // For each block. 5033 for (Loop::block_iterator bb = TheLoop->block_begin(), 5034 be = TheLoop->block_end(); bb != be; ++bb) { 5035 BasicBlock *BB = *bb; 5036 5037 // For each instruction in the loop. 5038 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5039 Type *T = it->getType(); 5040 5041 // Only examine Loads, Stores and PHINodes. 5042 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5043 continue; 5044 5045 // Examine PHI nodes that are reduction variables. 5046 if (PHINode *PN = dyn_cast<PHINode>(it)) 5047 if (!Legal->getReductionVars()->count(PN)) 5048 continue; 5049 5050 // Examine the stored values. 5051 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5052 T = ST->getValueOperand()->getType(); 5053 5054 // Ignore loaded pointer types and stored pointer types that are not 5055 // consecutive. However, we do want to take consecutive stores/loads of 5056 // pointer vectors into account. 5057 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5058 continue; 5059 5060 MaxWidth = std::max(MaxWidth, 5061 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5062 } 5063 } 5064 5065 return MaxWidth; 5066 } 5067 5068 unsigned 5069 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5070 unsigned UserUF, 5071 unsigned VF, 5072 unsigned LoopCost) { 5073 5074 // -- The unroll heuristics -- 5075 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5076 // There are many micro-architectural considerations that we can't predict 5077 // at this level. For example frontend pressure (on decode or fetch) due to 5078 // code size, or the number and capabilities of the execution ports. 5079 // 5080 // We use the following heuristics to select the unroll factor: 5081 // 1. If the code has reductions the we unroll in order to break the cross 5082 // iteration dependency. 5083 // 2. If the loop is really small then we unroll in order to reduce the loop 5084 // overhead. 5085 // 3. We don't unroll if we think that we will spill registers to memory due 5086 // to the increased register pressure. 5087 5088 // Use the user preference, unless 'auto' is selected. 5089 if (UserUF != 0) 5090 return UserUF; 5091 5092 // When we optimize for size we don't unroll. 5093 if (OptForSize) 5094 return 1; 5095 5096 // We used the distance for the unroll factor. 5097 if (Legal->getMaxSafeDepDistBytes() != -1U) 5098 return 1; 5099 5100 // Do not unroll loops with a relatively small trip count. 5101 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 5102 TheLoop->getLoopLatch()); 5103 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5104 return 1; 5105 5106 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5107 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5108 " registers\n"); 5109 5110 if (VF == 1) { 5111 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5112 TargetNumRegisters = ForceTargetNumScalarRegs; 5113 } else { 5114 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5115 TargetNumRegisters = ForceTargetNumVectorRegs; 5116 } 5117 5118 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5119 // We divide by these constants so assume that we have at least one 5120 // instruction that uses at least one register. 5121 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5122 R.NumInstructions = std::max(R.NumInstructions, 1U); 5123 5124 // We calculate the unroll factor using the following formula. 5125 // Subtract the number of loop invariants from the number of available 5126 // registers. These registers are used by all of the unrolled instances. 5127 // Next, divide the remaining registers by the number of registers that is 5128 // required by the loop, in order to estimate how many parallel instances 5129 // fit without causing spills. All of this is rounded down if necessary to be 5130 // a power of two. We want power of two unroll factors to simplify any 5131 // addressing operations or alignment considerations. 5132 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5133 R.MaxLocalUsers); 5134 5135 // Don't count the induction variable as unrolled. 5136 if (EnableIndVarRegisterHeur) 5137 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5138 std::max(1U, (R.MaxLocalUsers - 1))); 5139 5140 // Clamp the unroll factor ranges to reasonable factors. 5141 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 5142 5143 // Check if the user has overridden the unroll max. 5144 if (VF == 1) { 5145 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0) 5146 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor; 5147 } else { 5148 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0) 5149 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor; 5150 } 5151 5152 // If we did not calculate the cost for VF (because the user selected the VF) 5153 // then we calculate the cost of VF here. 5154 if (LoopCost == 0) 5155 LoopCost = expectedCost(VF); 5156 5157 // Clamp the calculated UF to be between the 1 and the max unroll factor 5158 // that the target allows. 5159 if (UF > MaxUnrollSize) 5160 UF = MaxUnrollSize; 5161 else if (UF < 1) 5162 UF = 1; 5163 5164 // Unroll if we vectorized this loop and there is a reduction that could 5165 // benefit from unrolling. 5166 if (VF > 1 && Legal->getReductionVars()->size()) { 5167 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5168 return UF; 5169 } 5170 5171 // Note that if we've already vectorized the loop we will have done the 5172 // runtime check and so unrolling won't require further checks. 5173 bool UnrollingRequiresRuntimePointerCheck = 5174 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5175 5176 // We want to unroll small loops in order to reduce the loop overhead and 5177 // potentially expose ILP opportunities. 5178 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5179 if (!UnrollingRequiresRuntimePointerCheck && 5180 LoopCost < SmallLoopCost) { 5181 // We assume that the cost overhead is 1 and we use the cost model 5182 // to estimate the cost of the loop and unroll until the cost of the 5183 // loop overhead is about 5% of the cost of the loop. 5184 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5185 5186 // Unroll until store/load ports (estimated by max unroll factor) are 5187 // saturated. 5188 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5189 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5190 5191 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5192 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5193 return std::max(StoresUF, LoadsUF); 5194 } 5195 5196 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5197 return SmallUF; 5198 } 5199 5200 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5201 return 1; 5202 } 5203 5204 LoopVectorizationCostModel::RegisterUsage 5205 LoopVectorizationCostModel::calculateRegisterUsage() { 5206 // This function calculates the register usage by measuring the highest number 5207 // of values that are alive at a single location. Obviously, this is a very 5208 // rough estimation. We scan the loop in a topological order in order and 5209 // assign a number to each instruction. We use RPO to ensure that defs are 5210 // met before their users. We assume that each instruction that has in-loop 5211 // users starts an interval. We record every time that an in-loop value is 5212 // used, so we have a list of the first and last occurrences of each 5213 // instruction. Next, we transpose this data structure into a multi map that 5214 // holds the list of intervals that *end* at a specific location. This multi 5215 // map allows us to perform a linear search. We scan the instructions linearly 5216 // and record each time that a new interval starts, by placing it in a set. 5217 // If we find this value in the multi-map then we remove it from the set. 5218 // The max register usage is the maximum size of the set. 5219 // We also search for instructions that are defined outside the loop, but are 5220 // used inside the loop. We need this number separately from the max-interval 5221 // usage number because when we unroll, loop-invariant values do not take 5222 // more register. 5223 LoopBlocksDFS DFS(TheLoop); 5224 DFS.perform(LI); 5225 5226 RegisterUsage R; 5227 R.NumInstructions = 0; 5228 5229 // Each 'key' in the map opens a new interval. The values 5230 // of the map are the index of the 'last seen' usage of the 5231 // instruction that is the key. 5232 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5233 // Maps instruction to its index. 5234 DenseMap<unsigned, Instruction*> IdxToInstr; 5235 // Marks the end of each interval. 5236 IntervalMap EndPoint; 5237 // Saves the list of instruction indices that are used in the loop. 5238 SmallSet<Instruction*, 8> Ends; 5239 // Saves the list of values that are used in the loop but are 5240 // defined outside the loop, such as arguments and constants. 5241 SmallPtrSet<Value*, 8> LoopInvariants; 5242 5243 unsigned Index = 0; 5244 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5245 be = DFS.endRPO(); bb != be; ++bb) { 5246 R.NumInstructions += (*bb)->size(); 5247 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5248 ++it) { 5249 Instruction *I = it; 5250 IdxToInstr[Index++] = I; 5251 5252 // Save the end location of each USE. 5253 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5254 Value *U = I->getOperand(i); 5255 Instruction *Instr = dyn_cast<Instruction>(U); 5256 5257 // Ignore non-instruction values such as arguments, constants, etc. 5258 if (!Instr) continue; 5259 5260 // If this instruction is outside the loop then record it and continue. 5261 if (!TheLoop->contains(Instr)) { 5262 LoopInvariants.insert(Instr); 5263 continue; 5264 } 5265 5266 // Overwrite previous end points. 5267 EndPoint[Instr] = Index; 5268 Ends.insert(Instr); 5269 } 5270 } 5271 } 5272 5273 // Saves the list of intervals that end with the index in 'key'. 5274 typedef SmallVector<Instruction*, 2> InstrList; 5275 DenseMap<unsigned, InstrList> TransposeEnds; 5276 5277 // Transpose the EndPoints to a list of values that end at each index. 5278 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5279 it != e; ++it) 5280 TransposeEnds[it->second].push_back(it->first); 5281 5282 SmallSet<Instruction*, 8> OpenIntervals; 5283 unsigned MaxUsage = 0; 5284 5285 5286 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5287 for (unsigned int i = 0; i < Index; ++i) { 5288 Instruction *I = IdxToInstr[i]; 5289 // Ignore instructions that are never used within the loop. 5290 if (!Ends.count(I)) continue; 5291 5292 // Remove all of the instructions that end at this location. 5293 InstrList &List = TransposeEnds[i]; 5294 for (unsigned int j=0, e = List.size(); j < e; ++j) 5295 OpenIntervals.erase(List[j]); 5296 5297 // Count the number of live interals. 5298 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5299 5300 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5301 OpenIntervals.size() << '\n'); 5302 5303 // Add the current instruction to the list of open intervals. 5304 OpenIntervals.insert(I); 5305 } 5306 5307 unsigned Invariant = LoopInvariants.size(); 5308 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5309 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5310 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5311 5312 R.LoopInvariantRegs = Invariant; 5313 R.MaxLocalUsers = MaxUsage; 5314 return R; 5315 } 5316 5317 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5318 unsigned Cost = 0; 5319 5320 // For each block. 5321 for (Loop::block_iterator bb = TheLoop->block_begin(), 5322 be = TheLoop->block_end(); bb != be; ++bb) { 5323 unsigned BlockCost = 0; 5324 BasicBlock *BB = *bb; 5325 5326 // For each instruction in the old loop. 5327 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5328 // Skip dbg intrinsics. 5329 if (isa<DbgInfoIntrinsic>(it)) 5330 continue; 5331 5332 unsigned C = getInstructionCost(it, VF); 5333 5334 // Check if we should override the cost. 5335 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5336 C = ForceTargetInstructionCost; 5337 5338 BlockCost += C; 5339 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5340 VF << " For instruction: " << *it << '\n'); 5341 } 5342 5343 // We assume that if-converted blocks have a 50% chance of being executed. 5344 // When the code is scalar then some of the blocks are avoided due to CF. 5345 // When the code is vectorized we execute all code paths. 5346 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5347 BlockCost /= 2; 5348 5349 Cost += BlockCost; 5350 } 5351 5352 return Cost; 5353 } 5354 5355 /// \brief Check whether the address computation for a non-consecutive memory 5356 /// access looks like an unlikely candidate for being merged into the indexing 5357 /// mode. 5358 /// 5359 /// We look for a GEP which has one index that is an induction variable and all 5360 /// other indices are loop invariant. If the stride of this access is also 5361 /// within a small bound we decide that this address computation can likely be 5362 /// merged into the addressing mode. 5363 /// In all other cases, we identify the address computation as complex. 5364 static bool isLikelyComplexAddressComputation(Value *Ptr, 5365 LoopVectorizationLegality *Legal, 5366 ScalarEvolution *SE, 5367 const Loop *TheLoop) { 5368 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5369 if (!Gep) 5370 return true; 5371 5372 // We are looking for a gep with all loop invariant indices except for one 5373 // which should be an induction variable. 5374 unsigned NumOperands = Gep->getNumOperands(); 5375 for (unsigned i = 1; i < NumOperands; ++i) { 5376 Value *Opd = Gep->getOperand(i); 5377 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5378 !Legal->isInductionVariable(Opd)) 5379 return true; 5380 } 5381 5382 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5383 // can likely be merged into the address computation. 5384 unsigned MaxMergeDistance = 64; 5385 5386 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5387 if (!AddRec) 5388 return true; 5389 5390 // Check the step is constant. 5391 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5392 // Calculate the pointer stride and check if it is consecutive. 5393 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5394 if (!C) 5395 return true; 5396 5397 const APInt &APStepVal = C->getValue()->getValue(); 5398 5399 // Huge step value - give up. 5400 if (APStepVal.getBitWidth() > 64) 5401 return true; 5402 5403 int64_t StepVal = APStepVal.getSExtValue(); 5404 5405 return StepVal > MaxMergeDistance; 5406 } 5407 5408 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5409 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5410 return true; 5411 return false; 5412 } 5413 5414 unsigned 5415 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5416 // If we know that this instruction will remain uniform, check the cost of 5417 // the scalar version. 5418 if (Legal->isUniformAfterVectorization(I)) 5419 VF = 1; 5420 5421 Type *RetTy = I->getType(); 5422 Type *VectorTy = ToVectorTy(RetTy, VF); 5423 5424 // TODO: We need to estimate the cost of intrinsic calls. 5425 switch (I->getOpcode()) { 5426 case Instruction::GetElementPtr: 5427 // We mark this instruction as zero-cost because the cost of GEPs in 5428 // vectorized code depends on whether the corresponding memory instruction 5429 // is scalarized or not. Therefore, we handle GEPs with the memory 5430 // instruction cost. 5431 return 0; 5432 case Instruction::Br: { 5433 return TTI.getCFInstrCost(I->getOpcode()); 5434 } 5435 case Instruction::PHI: 5436 //TODO: IF-converted IFs become selects. 5437 return 0; 5438 case Instruction::Add: 5439 case Instruction::FAdd: 5440 case Instruction::Sub: 5441 case Instruction::FSub: 5442 case Instruction::Mul: 5443 case Instruction::FMul: 5444 case Instruction::UDiv: 5445 case Instruction::SDiv: 5446 case Instruction::FDiv: 5447 case Instruction::URem: 5448 case Instruction::SRem: 5449 case Instruction::FRem: 5450 case Instruction::Shl: 5451 case Instruction::LShr: 5452 case Instruction::AShr: 5453 case Instruction::And: 5454 case Instruction::Or: 5455 case Instruction::Xor: { 5456 // Since we will replace the stride by 1 the multiplication should go away. 5457 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5458 return 0; 5459 // Certain instructions can be cheaper to vectorize if they have a constant 5460 // second vector operand. One example of this are shifts on x86. 5461 TargetTransformInfo::OperandValueKind Op1VK = 5462 TargetTransformInfo::OK_AnyValue; 5463 TargetTransformInfo::OperandValueKind Op2VK = 5464 TargetTransformInfo::OK_AnyValue; 5465 Value *Op2 = I->getOperand(1); 5466 5467 // Check for a splat of a constant or for a non uniform vector of constants. 5468 if (isa<ConstantInt>(Op2)) 5469 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5470 else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5471 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5472 if (cast<Constant>(Op2)->getSplatValue() != nullptr) 5473 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5474 } 5475 5476 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 5477 } 5478 case Instruction::Select: { 5479 SelectInst *SI = cast<SelectInst>(I); 5480 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5481 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5482 Type *CondTy = SI->getCondition()->getType(); 5483 if (!ScalarCond) 5484 CondTy = VectorType::get(CondTy, VF); 5485 5486 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5487 } 5488 case Instruction::ICmp: 5489 case Instruction::FCmp: { 5490 Type *ValTy = I->getOperand(0)->getType(); 5491 VectorTy = ToVectorTy(ValTy, VF); 5492 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5493 } 5494 case Instruction::Store: 5495 case Instruction::Load: { 5496 StoreInst *SI = dyn_cast<StoreInst>(I); 5497 LoadInst *LI = dyn_cast<LoadInst>(I); 5498 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5499 LI->getType()); 5500 VectorTy = ToVectorTy(ValTy, VF); 5501 5502 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5503 unsigned AS = SI ? SI->getPointerAddressSpace() : 5504 LI->getPointerAddressSpace(); 5505 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5506 // We add the cost of address computation here instead of with the gep 5507 // instruction because only here we know whether the operation is 5508 // scalarized. 5509 if (VF == 1) 5510 return TTI.getAddressComputationCost(VectorTy) + 5511 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5512 5513 // Scalarized loads/stores. 5514 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5515 bool Reverse = ConsecutiveStride < 0; 5516 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5517 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5518 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5519 bool IsComplexComputation = 5520 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5521 unsigned Cost = 0; 5522 // The cost of extracting from the value vector and pointer vector. 5523 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5524 for (unsigned i = 0; i < VF; ++i) { 5525 // The cost of extracting the pointer operand. 5526 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5527 // In case of STORE, the cost of ExtractElement from the vector. 5528 // In case of LOAD, the cost of InsertElement into the returned 5529 // vector. 5530 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5531 Instruction::InsertElement, 5532 VectorTy, i); 5533 } 5534 5535 // The cost of the scalar loads/stores. 5536 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5537 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5538 Alignment, AS); 5539 return Cost; 5540 } 5541 5542 // Wide load/stores. 5543 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5544 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5545 5546 if (Reverse) 5547 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5548 VectorTy, 0); 5549 return Cost; 5550 } 5551 case Instruction::ZExt: 5552 case Instruction::SExt: 5553 case Instruction::FPToUI: 5554 case Instruction::FPToSI: 5555 case Instruction::FPExt: 5556 case Instruction::PtrToInt: 5557 case Instruction::IntToPtr: 5558 case Instruction::SIToFP: 5559 case Instruction::UIToFP: 5560 case Instruction::Trunc: 5561 case Instruction::FPTrunc: 5562 case Instruction::BitCast: { 5563 // We optimize the truncation of induction variable. 5564 // The cost of these is the same as the scalar operation. 5565 if (I->getOpcode() == Instruction::Trunc && 5566 Legal->isInductionVariable(I->getOperand(0))) 5567 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5568 I->getOperand(0)->getType()); 5569 5570 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5571 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5572 } 5573 case Instruction::Call: { 5574 CallInst *CI = cast<CallInst>(I); 5575 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5576 assert(ID && "Not an intrinsic call!"); 5577 Type *RetTy = ToVectorTy(CI->getType(), VF); 5578 SmallVector<Type*, 4> Tys; 5579 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5580 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5581 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5582 } 5583 default: { 5584 // We are scalarizing the instruction. Return the cost of the scalar 5585 // instruction, plus the cost of insert and extract into vector 5586 // elements, times the vector width. 5587 unsigned Cost = 0; 5588 5589 if (!RetTy->isVoidTy() && VF != 1) { 5590 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5591 VectorTy); 5592 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5593 VectorTy); 5594 5595 // The cost of inserting the results plus extracting each one of the 5596 // operands. 5597 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5598 } 5599 5600 // The cost of executing VF copies of the scalar instruction. This opcode 5601 // is unknown. Assume that it is the same as 'mul'. 5602 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5603 return Cost; 5604 } 5605 }// end of switch. 5606 } 5607 5608 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5609 if (Scalar->isVoidTy() || VF == 1) 5610 return Scalar; 5611 return VectorType::get(Scalar, VF); 5612 } 5613 5614 char LoopVectorize::ID = 0; 5615 static const char lv_name[] = "Loop Vectorization"; 5616 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5617 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5618 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5619 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5620 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5621 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5622 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5623 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5624 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5625 5626 namespace llvm { 5627 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5628 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5629 } 5630 } 5631 5632 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5633 // Check for a store. 5634 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5635 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5636 5637 // Check for a load. 5638 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5639 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5640 5641 return false; 5642 } 5643 5644 5645 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5646 bool IfPredicateStore) { 5647 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5648 // Holds vector parameters or scalars, in case of uniform vals. 5649 SmallVector<VectorParts, 4> Params; 5650 5651 setDebugLocFromInst(Builder, Instr); 5652 5653 // Find all of the vectorized parameters. 5654 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5655 Value *SrcOp = Instr->getOperand(op); 5656 5657 // If we are accessing the old induction variable, use the new one. 5658 if (SrcOp == OldInduction) { 5659 Params.push_back(getVectorValue(SrcOp)); 5660 continue; 5661 } 5662 5663 // Try using previously calculated values. 5664 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5665 5666 // If the src is an instruction that appeared earlier in the basic block 5667 // then it should already be vectorized. 5668 if (SrcInst && OrigLoop->contains(SrcInst)) { 5669 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5670 // The parameter is a vector value from earlier. 5671 Params.push_back(WidenMap.get(SrcInst)); 5672 } else { 5673 // The parameter is a scalar from outside the loop. Maybe even a constant. 5674 VectorParts Scalars; 5675 Scalars.append(UF, SrcOp); 5676 Params.push_back(Scalars); 5677 } 5678 } 5679 5680 assert(Params.size() == Instr->getNumOperands() && 5681 "Invalid number of operands"); 5682 5683 // Does this instruction return a value ? 5684 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5685 5686 Value *UndefVec = IsVoidRetTy ? nullptr : 5687 UndefValue::get(Instr->getType()); 5688 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5689 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5690 5691 Instruction *InsertPt = Builder.GetInsertPoint(); 5692 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5693 BasicBlock *CondBlock = nullptr; 5694 5695 VectorParts Cond; 5696 Loop *VectorLp = nullptr; 5697 if (IfPredicateStore) { 5698 assert(Instr->getParent()->getSinglePredecessor() && 5699 "Only support single predecessor blocks"); 5700 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5701 Instr->getParent()); 5702 VectorLp = LI->getLoopFor(IfBlock); 5703 assert(VectorLp && "Must have a loop for this block"); 5704 } 5705 5706 // For each vector unroll 'part': 5707 for (unsigned Part = 0; Part < UF; ++Part) { 5708 // For each scalar that we create: 5709 5710 // Start an "if (pred) a[i] = ..." block. 5711 Value *Cmp = nullptr; 5712 if (IfPredicateStore) { 5713 if (Cond[Part]->getType()->isVectorTy()) 5714 Cond[Part] = 5715 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5716 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5717 ConstantInt::get(Cond[Part]->getType(), 1)); 5718 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5719 LoopVectorBody.push_back(CondBlock); 5720 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 5721 // Update Builder with newly created basic block. 5722 Builder.SetInsertPoint(InsertPt); 5723 } 5724 5725 Instruction *Cloned = Instr->clone(); 5726 if (!IsVoidRetTy) 5727 Cloned->setName(Instr->getName() + ".cloned"); 5728 // Replace the operands of the cloned instructions with extracted scalars. 5729 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5730 Value *Op = Params[op][Part]; 5731 Cloned->setOperand(op, Op); 5732 } 5733 5734 // Place the cloned scalar in the new loop. 5735 Builder.Insert(Cloned); 5736 5737 // If the original scalar returns a value we need to place it in a vector 5738 // so that future users will be able to use it. 5739 if (!IsVoidRetTy) 5740 VecResults[Part] = Cloned; 5741 5742 // End if-block. 5743 if (IfPredicateStore) { 5744 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5745 LoopVectorBody.push_back(NewIfBlock); 5746 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 5747 Builder.SetInsertPoint(InsertPt); 5748 Instruction *OldBr = IfBlock->getTerminator(); 5749 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5750 OldBr->eraseFromParent(); 5751 IfBlock = NewIfBlock; 5752 } 5753 } 5754 } 5755 5756 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5757 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5758 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5759 5760 return scalarizeInstruction(Instr, IfPredicateStore); 5761 } 5762 5763 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5764 return Vec; 5765 } 5766 5767 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5768 return V; 5769 } 5770 5771 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 5772 bool Negate) { 5773 // When unrolling and the VF is 1, we only need to add a simple scalar. 5774 Type *ITy = Val->getType(); 5775 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5776 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 5777 return Builder.CreateAdd(Val, C, "induction"); 5778 } 5779 5780