1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single instruction within the innermost loop. 477 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 478 VPTransformState &State); 479 480 /// Widen a single call instruction within the innermost loop. 481 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 482 VPTransformState &State); 483 484 /// Widen a single select instruction within the innermost loop. 485 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 486 bool InvariantCond, VPTransformState &State); 487 488 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 489 void fixVectorizedLoop(VPTransformState &State); 490 491 // Return true if any runtime check is added. 492 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 493 494 /// A type for vectorized values in the new loop. Each value from the 495 /// original loop, when vectorized, is represented by UF vector values in the 496 /// new unrolled loop, where UF is the unroll factor. 497 using VectorParts = SmallVector<Value *, 2>; 498 499 /// Vectorize a single GetElementPtrInst based on information gathered and 500 /// decisions taken during planning. 501 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 502 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 503 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 504 505 /// Vectorize a single first-order recurrence or pointer induction PHINode in 506 /// a block. This method handles the induction variable canonicalization. It 507 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 508 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 509 VPTransformState &State); 510 511 /// A helper function to scalarize a single Instruction in the innermost loop. 512 /// Generates a sequence of scalar instances for each lane between \p MinLane 513 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 514 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 515 /// Instr's operands. 516 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 517 const VPIteration &Instance, bool IfPredicateInstr, 518 VPTransformState &State); 519 520 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 521 /// is provided, the integer induction variable will first be truncated to 522 /// the corresponding type. 523 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 524 VPValue *Def, VPValue *CastDef, 525 VPTransformState &State); 526 527 /// Construct the vector value of a scalarized value \p V one lane at a time. 528 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 529 VPTransformState &State); 530 531 /// Try to vectorize interleaved access group \p Group with the base address 532 /// given in \p Addr, optionally masking the vector operations if \p 533 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 534 /// values in the vectorized loop. 535 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 536 ArrayRef<VPValue *> VPDefs, 537 VPTransformState &State, VPValue *Addr, 538 ArrayRef<VPValue *> StoredValues, 539 VPValue *BlockInMask = nullptr); 540 541 /// Vectorize Load and Store instructions with the base address given in \p 542 /// Addr, optionally masking the vector operations if \p BlockInMask is 543 /// non-null. Use \p State to translate given VPValues to IR values in the 544 /// vectorized loop. 545 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 546 VPValue *Def, VPValue *Addr, 547 VPValue *StoredValue, VPValue *BlockInMask); 548 549 /// Set the debug location in the builder \p Ptr using the debug location in 550 /// \p V. If \p Ptr is None then it uses the class member's Builder. 551 void setDebugLocFromInst(const Value *V, 552 Optional<IRBuilder<> *> CustomBuilder = None); 553 554 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 555 void fixNonInductionPHIs(VPTransformState &State); 556 557 /// Returns true if the reordering of FP operations is not allowed, but we are 558 /// able to vectorize with strict in-order reductions for the given RdxDesc. 559 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 protected: 569 friend class LoopVectorizationPlanner; 570 571 /// A small list of PHINodes. 572 using PhiVector = SmallVector<PHINode *, 4>; 573 574 /// A type for scalarized values in the new loop. Each value from the 575 /// original loop, when scalarized, is represented by UF x VF scalar values 576 /// in the new unrolled loop, where UF is the unroll factor and VF is the 577 /// vectorization factor. 578 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 579 580 /// Set up the values of the IVs correctly when exiting the vector loop. 581 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 582 Value *CountRoundDown, Value *EndValue, 583 BasicBlock *MiddleBlock); 584 585 /// Create a new induction variable inside L. 586 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 587 Value *Step, Instruction *DL); 588 589 /// Handle all cross-iteration phis in the header. 590 void fixCrossIterationPHIs(VPTransformState &State); 591 592 /// Create the exit value of first order recurrences in the middle block and 593 /// update their users. 594 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 595 596 /// Create code for the loop exit value of the reduction. 597 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 598 599 /// Clear NSW/NUW flags from reduction instructions if necessary. 600 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 601 VPTransformState &State); 602 603 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 604 /// means we need to add the appropriate incoming value from the middle 605 /// block as exiting edges from the scalar epilogue loop (if present) are 606 /// already in place, and we exit the vector loop exclusively to the middle 607 /// block. 608 void fixLCSSAPHIs(VPTransformState &State); 609 610 /// Iteratively sink the scalarized operands of a predicated instruction into 611 /// the block that was created for it. 612 void sinkScalarOperands(Instruction *PredInst); 613 614 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 615 /// represented as. 616 void truncateToMinimalBitwidths(VPTransformState &State); 617 618 /// This function adds 619 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 620 /// to each vector element of Val. The sequence starts at StartIndex. 621 /// \p Opcode is relevant for FP induction variable. 622 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 623 Instruction::BinaryOps Opcode = 624 Instruction::BinaryOpsEnd); 625 626 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 627 /// variable on which to base the steps, \p Step is the size of the step, and 628 /// \p EntryVal is the value from the original loop that maps to the steps. 629 /// Note that \p EntryVal doesn't have to be an induction variable - it 630 /// can also be a truncate instruction. 631 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 632 const InductionDescriptor &ID, VPValue *Def, 633 VPValue *CastDef, VPTransformState &State); 634 635 /// Create a vector induction phi node based on an existing scalar one. \p 636 /// EntryVal is the value from the original loop that maps to the vector phi 637 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 638 /// truncate instruction, instead of widening the original IV, we widen a 639 /// version of the IV truncated to \p EntryVal's type. 640 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 641 Value *Step, Value *Start, 642 Instruction *EntryVal, VPValue *Def, 643 VPValue *CastDef, 644 VPTransformState &State); 645 646 /// Returns true if an instruction \p I should be scalarized instead of 647 /// vectorized for the chosen vectorization factor. 648 bool shouldScalarizeInstruction(Instruction *I) const; 649 650 /// Returns true if we should generate a scalar version of \p IV. 651 bool needsScalarInduction(Instruction *IV) const; 652 653 /// If there is a cast involved in the induction variable \p ID, which should 654 /// be ignored in the vectorized loop body, this function records the 655 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 656 /// cast. We had already proved that the casted Phi is equal to the uncasted 657 /// Phi in the vectorized loop (under a runtime guard), and therefore 658 /// there is no need to vectorize the cast - the same value can be used in the 659 /// vector loop for both the Phi and the cast. 660 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 661 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 662 /// 663 /// \p EntryVal is the value from the original loop that maps to the vector 664 /// phi node and is used to distinguish what is the IV currently being 665 /// processed - original one (if \p EntryVal is a phi corresponding to the 666 /// original IV) or the "newly-created" one based on the proof mentioned above 667 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 668 /// latter case \p EntryVal is a TruncInst and we must not record anything for 669 /// that IV, but it's error-prone to expect callers of this routine to care 670 /// about that, hence this explicit parameter. 671 void recordVectorLoopValueForInductionCast( 672 const InductionDescriptor &ID, const Instruction *EntryVal, 673 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 674 unsigned Part, unsigned Lane = UINT_MAX); 675 676 /// Generate a shuffle sequence that will reverse the vector Vec. 677 virtual Value *reverseVector(Value *Vec); 678 679 /// Returns (and creates if needed) the original loop trip count. 680 Value *getOrCreateTripCount(Loop *NewLoop); 681 682 /// Returns (and creates if needed) the trip count of the widened loop. 683 Value *getOrCreateVectorTripCount(Loop *NewLoop); 684 685 /// Returns a bitcasted value to the requested vector type. 686 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 687 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 688 const DataLayout &DL); 689 690 /// Emit a bypass check to see if the vector trip count is zero, including if 691 /// it overflows. 692 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 693 694 /// Emit a bypass check to see if all of the SCEV assumptions we've 695 /// had to make are correct. Returns the block containing the checks or 696 /// nullptr if no checks have been added. 697 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 698 699 /// Emit bypass checks to check any memory assumptions we may have made. 700 /// Returns the block containing the checks or nullptr if no checks have been 701 /// added. 702 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Compute the transformed value of Index at offset StartValue using step 705 /// StepValue. 706 /// For integer induction, returns StartValue + Index * StepValue. 707 /// For pointer induction, returns StartValue[Index * StepValue]. 708 /// FIXME: The newly created binary instructions should contain nsw/nuw 709 /// flags, which can be found from the original scalar operations. 710 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 711 const DataLayout &DL, 712 const InductionDescriptor &ID) const; 713 714 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 715 /// vector loop preheader, middle block and scalar preheader. Also 716 /// allocate a loop object for the new vector loop and return it. 717 Loop *createVectorLoopSkeleton(StringRef Prefix); 718 719 /// Create new phi nodes for the induction variables to resume iteration count 720 /// in the scalar epilogue, from where the vectorized loop left off (given by 721 /// \p VectorTripCount). 722 /// In cases where the loop skeleton is more complicated (eg. epilogue 723 /// vectorization) and the resume values can come from an additional bypass 724 /// block, the \p AdditionalBypass pair provides information about the bypass 725 /// block and the end value on the edge from bypass to this loop. 726 void createInductionResumeValues( 727 Loop *L, Value *VectorTripCount, 728 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 729 730 /// Complete the loop skeleton by adding debug MDs, creating appropriate 731 /// conditional branches in the middle block, preparing the builder and 732 /// running the verifier. Take in the vector loop \p L as argument, and return 733 /// the preheader of the completed vector loop. 734 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 735 736 /// Add additional metadata to \p To that was not present on \p Orig. 737 /// 738 /// Currently this is used to add the noalias annotations based on the 739 /// inserted memchecks. Use this for instructions that are *cloned* into the 740 /// vector loop. 741 void addNewMetadata(Instruction *To, const Instruction *Orig); 742 743 /// Add metadata from one instruction to another. 744 /// 745 /// This includes both the original MDs from \p From and additional ones (\see 746 /// addNewMetadata). Use this for *newly created* instructions in the vector 747 /// loop. 748 void addMetadata(Instruction *To, Instruction *From); 749 750 /// Similar to the previous function but it adds the metadata to a 751 /// vector of instructions. 752 void addMetadata(ArrayRef<Value *> To, Instruction *From); 753 754 /// Allow subclasses to override and print debug traces before/after vplan 755 /// execution, when trace information is requested. 756 virtual void printDebugTracesAtStart(){}; 757 virtual void printDebugTracesAtEnd(){}; 758 759 /// The original loop. 760 Loop *OrigLoop; 761 762 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 763 /// dynamic knowledge to simplify SCEV expressions and converts them to a 764 /// more usable form. 765 PredicatedScalarEvolution &PSE; 766 767 /// Loop Info. 768 LoopInfo *LI; 769 770 /// Dominator Tree. 771 DominatorTree *DT; 772 773 /// Alias Analysis. 774 AAResults *AA; 775 776 /// Target Library Info. 777 const TargetLibraryInfo *TLI; 778 779 /// Target Transform Info. 780 const TargetTransformInfo *TTI; 781 782 /// Assumption Cache. 783 AssumptionCache *AC; 784 785 /// Interface to emit optimization remarks. 786 OptimizationRemarkEmitter *ORE; 787 788 /// LoopVersioning. It's only set up (non-null) if memchecks were 789 /// used. 790 /// 791 /// This is currently only used to add no-alias metadata based on the 792 /// memchecks. The actually versioning is performed manually. 793 std::unique_ptr<LoopVersioning> LVer; 794 795 /// The vectorization SIMD factor to use. Each vector will have this many 796 /// vector elements. 797 ElementCount VF; 798 799 /// The vectorization unroll factor to use. Each scalar is vectorized to this 800 /// many different vector instructions. 801 unsigned UF; 802 803 /// The builder that we use 804 IRBuilder<> Builder; 805 806 // --- Vectorization state --- 807 808 /// The vector-loop preheader. 809 BasicBlock *LoopVectorPreHeader; 810 811 /// The scalar-loop preheader. 812 BasicBlock *LoopScalarPreHeader; 813 814 /// Middle Block between the vector and the scalar. 815 BasicBlock *LoopMiddleBlock; 816 817 /// The unique ExitBlock of the scalar loop if one exists. Note that 818 /// there can be multiple exiting edges reaching this block. 819 BasicBlock *LoopExitBlock; 820 821 /// The vector loop body. 822 BasicBlock *LoopVectorBody; 823 824 /// The scalar loop body. 825 BasicBlock *LoopScalarBody; 826 827 /// A list of all bypass blocks. The first block is the entry of the loop. 828 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 829 830 /// The new Induction variable which was added to the new block. 831 PHINode *Induction = nullptr; 832 833 /// The induction variable of the old basic block. 834 PHINode *OldInduction = nullptr; 835 836 /// Store instructions that were predicated. 837 SmallVector<Instruction *, 4> PredicatedInstructions; 838 839 /// Trip count of the original loop. 840 Value *TripCount = nullptr; 841 842 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 843 Value *VectorTripCount = nullptr; 844 845 /// The legality analysis. 846 LoopVectorizationLegality *Legal; 847 848 /// The profitablity analysis. 849 LoopVectorizationCostModel *Cost; 850 851 // Record whether runtime checks are added. 852 bool AddedSafetyChecks = false; 853 854 // Holds the end values for each induction variable. We save the end values 855 // so we can later fix-up the external users of the induction variables. 856 DenseMap<PHINode *, Value *> IVEndValues; 857 858 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 859 // fixed up at the end of vector code generation. 860 SmallVector<PHINode *, 8> OrigPHIsToFix; 861 862 /// BFI and PSI are used to check for profile guided size optimizations. 863 BlockFrequencyInfo *BFI; 864 ProfileSummaryInfo *PSI; 865 866 // Whether this loop should be optimized for size based on profile guided size 867 // optimizatios. 868 bool OptForSizeBasedOnProfile; 869 870 /// Structure to hold information about generated runtime checks, responsible 871 /// for cleaning the checks, if vectorization turns out unprofitable. 872 GeneratedRTChecks &RTChecks; 873 }; 874 875 class InnerLoopUnroller : public InnerLoopVectorizer { 876 public: 877 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 878 LoopInfo *LI, DominatorTree *DT, 879 const TargetLibraryInfo *TLI, 880 const TargetTransformInfo *TTI, AssumptionCache *AC, 881 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 882 LoopVectorizationLegality *LVL, 883 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 884 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 885 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 886 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 887 BFI, PSI, Check) {} 888 889 private: 890 Value *getBroadcastInstrs(Value *V) override; 891 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 892 Instruction::BinaryOps Opcode = 893 Instruction::BinaryOpsEnd) override; 894 Value *reverseVector(Value *Vec) override; 895 }; 896 897 /// Encapsulate information regarding vectorization of a loop and its epilogue. 898 /// This information is meant to be updated and used across two stages of 899 /// epilogue vectorization. 900 struct EpilogueLoopVectorizationInfo { 901 ElementCount MainLoopVF = ElementCount::getFixed(0); 902 unsigned MainLoopUF = 0; 903 ElementCount EpilogueVF = ElementCount::getFixed(0); 904 unsigned EpilogueUF = 0; 905 BasicBlock *MainLoopIterationCountCheck = nullptr; 906 BasicBlock *EpilogueIterationCountCheck = nullptr; 907 BasicBlock *SCEVSafetyCheck = nullptr; 908 BasicBlock *MemSafetyCheck = nullptr; 909 Value *TripCount = nullptr; 910 Value *VectorTripCount = nullptr; 911 912 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 913 ElementCount EVF, unsigned EUF) 914 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 915 assert(EUF == 1 && 916 "A high UF for the epilogue loop is likely not beneficial."); 917 } 918 }; 919 920 /// An extension of the inner loop vectorizer that creates a skeleton for a 921 /// vectorized loop that has its epilogue (residual) also vectorized. 922 /// The idea is to run the vplan on a given loop twice, firstly to setup the 923 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 924 /// from the first step and vectorize the epilogue. This is achieved by 925 /// deriving two concrete strategy classes from this base class and invoking 926 /// them in succession from the loop vectorizer planner. 927 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 928 public: 929 InnerLoopAndEpilogueVectorizer( 930 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 931 DominatorTree *DT, const TargetLibraryInfo *TLI, 932 const TargetTransformInfo *TTI, AssumptionCache *AC, 933 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 934 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 935 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 936 GeneratedRTChecks &Checks) 937 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 938 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 939 Checks), 940 EPI(EPI) {} 941 942 // Override this function to handle the more complex control flow around the 943 // three loops. 944 BasicBlock *createVectorizedLoopSkeleton() final override { 945 return createEpilogueVectorizedLoopSkeleton(); 946 } 947 948 /// The interface for creating a vectorized skeleton using one of two 949 /// different strategies, each corresponding to one execution of the vplan 950 /// as described above. 951 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 952 953 /// Holds and updates state information required to vectorize the main loop 954 /// and its epilogue in two separate passes. This setup helps us avoid 955 /// regenerating and recomputing runtime safety checks. It also helps us to 956 /// shorten the iteration-count-check path length for the cases where the 957 /// iteration count of the loop is so small that the main vector loop is 958 /// completely skipped. 959 EpilogueLoopVectorizationInfo &EPI; 960 }; 961 962 /// A specialized derived class of inner loop vectorizer that performs 963 /// vectorization of *main* loops in the process of vectorizing loops and their 964 /// epilogues. 965 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 966 public: 967 EpilogueVectorizerMainLoop( 968 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 969 DominatorTree *DT, const TargetLibraryInfo *TLI, 970 const TargetTransformInfo *TTI, AssumptionCache *AC, 971 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 972 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 973 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 974 GeneratedRTChecks &Check) 975 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 976 EPI, LVL, CM, BFI, PSI, Check) {} 977 /// Implements the interface for creating a vectorized skeleton using the 978 /// *main loop* strategy (ie the first pass of vplan execution). 979 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 980 981 protected: 982 /// Emits an iteration count bypass check once for the main loop (when \p 983 /// ForEpilogue is false) and once for the epilogue loop (when \p 984 /// ForEpilogue is true). 985 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 986 bool ForEpilogue); 987 void printDebugTracesAtStart() override; 988 void printDebugTracesAtEnd() override; 989 }; 990 991 // A specialized derived class of inner loop vectorizer that performs 992 // vectorization of *epilogue* loops in the process of vectorizing loops and 993 // their epilogues. 994 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 995 public: 996 EpilogueVectorizerEpilogueLoop( 997 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 998 DominatorTree *DT, const TargetLibraryInfo *TLI, 999 const TargetTransformInfo *TTI, AssumptionCache *AC, 1000 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1001 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1002 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1003 GeneratedRTChecks &Checks) 1004 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1005 EPI, LVL, CM, BFI, PSI, Checks) {} 1006 /// Implements the interface for creating a vectorized skeleton using the 1007 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1008 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1009 1010 protected: 1011 /// Emits an iteration count bypass check after the main vector loop has 1012 /// finished to see if there are any iterations left to execute by either 1013 /// the vector epilogue or the scalar epilogue. 1014 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1015 BasicBlock *Bypass, 1016 BasicBlock *Insert); 1017 void printDebugTracesAtStart() override; 1018 void printDebugTracesAtEnd() override; 1019 }; 1020 } // end namespace llvm 1021 1022 /// Look for a meaningful debug location on the instruction or it's 1023 /// operands. 1024 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1025 if (!I) 1026 return I; 1027 1028 DebugLoc Empty; 1029 if (I->getDebugLoc() != Empty) 1030 return I; 1031 1032 for (Use &Op : I->operands()) { 1033 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1034 if (OpInst->getDebugLoc() != Empty) 1035 return OpInst; 1036 } 1037 1038 return I; 1039 } 1040 1041 void InnerLoopVectorizer::setDebugLocFromInst( 1042 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1043 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1044 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1045 const DILocation *DIL = Inst->getDebugLoc(); 1046 1047 // When a FSDiscriminator is enabled, we don't need to add the multiply 1048 // factors to the discriminators. 1049 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1050 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1051 // FIXME: For scalable vectors, assume vscale=1. 1052 auto NewDIL = 1053 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1054 if (NewDIL) 1055 B->SetCurrentDebugLocation(NewDIL.getValue()); 1056 else 1057 LLVM_DEBUG(dbgs() 1058 << "Failed to create new discriminator: " 1059 << DIL->getFilename() << " Line: " << DIL->getLine()); 1060 } else 1061 B->SetCurrentDebugLocation(DIL); 1062 } else 1063 B->SetCurrentDebugLocation(DebugLoc()); 1064 } 1065 1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1067 /// is passed, the message relates to that particular instruction. 1068 #ifndef NDEBUG 1069 static void debugVectorizationMessage(const StringRef Prefix, 1070 const StringRef DebugMsg, 1071 Instruction *I) { 1072 dbgs() << "LV: " << Prefix << DebugMsg; 1073 if (I != nullptr) 1074 dbgs() << " " << *I; 1075 else 1076 dbgs() << '.'; 1077 dbgs() << '\n'; 1078 } 1079 #endif 1080 1081 /// Create an analysis remark that explains why vectorization failed 1082 /// 1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1084 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1085 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1086 /// the location of the remark. \return the remark object that can be 1087 /// streamed to. 1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1089 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1090 Value *CodeRegion = TheLoop->getHeader(); 1091 DebugLoc DL = TheLoop->getStartLoc(); 1092 1093 if (I) { 1094 CodeRegion = I->getParent(); 1095 // If there is no debug location attached to the instruction, revert back to 1096 // using the loop's. 1097 if (I->getDebugLoc()) 1098 DL = I->getDebugLoc(); 1099 } 1100 1101 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1102 } 1103 1104 /// Return a value for Step multiplied by VF. 1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1106 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1107 Constant *StepVal = ConstantInt::get( 1108 Step->getType(), 1109 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1110 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1111 } 1112 1113 namespace llvm { 1114 1115 /// Return the runtime value for VF. 1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1117 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1118 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1119 } 1120 1121 void reportVectorizationFailure(const StringRef DebugMsg, 1122 const StringRef OREMsg, const StringRef ORETag, 1123 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1124 Instruction *I) { 1125 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1126 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1127 ORE->emit( 1128 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1129 << "loop not vectorized: " << OREMsg); 1130 } 1131 1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1133 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1134 Instruction *I) { 1135 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1136 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1137 ORE->emit( 1138 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1139 << Msg); 1140 } 1141 1142 } // end namespace llvm 1143 1144 #ifndef NDEBUG 1145 /// \return string containing a file name and a line # for the given loop. 1146 static std::string getDebugLocString(const Loop *L) { 1147 std::string Result; 1148 if (L) { 1149 raw_string_ostream OS(Result); 1150 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1151 LoopDbgLoc.print(OS); 1152 else 1153 // Just print the module name. 1154 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1155 OS.flush(); 1156 } 1157 return Result; 1158 } 1159 #endif 1160 1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1162 const Instruction *Orig) { 1163 // If the loop was versioned with memchecks, add the corresponding no-alias 1164 // metadata. 1165 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1166 LVer->annotateInstWithNoAlias(To, Orig); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 namespace llvm { 1184 1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1186 // lowered. 1187 enum ScalarEpilogueLowering { 1188 1189 // The default: allowing scalar epilogues. 1190 CM_ScalarEpilogueAllowed, 1191 1192 // Vectorization with OptForSize: don't allow epilogues. 1193 CM_ScalarEpilogueNotAllowedOptSize, 1194 1195 // A special case of vectorisation with OptForSize: loops with a very small 1196 // trip count are considered for vectorization under OptForSize, thereby 1197 // making sure the cost of their loop body is dominant, free of runtime 1198 // guards and scalar iteration overheads. 1199 CM_ScalarEpilogueNotAllowedLowTripLoop, 1200 1201 // Loop hint predicate indicating an epilogue is undesired. 1202 CM_ScalarEpilogueNotNeededUsePredicate, 1203 1204 // Directive indicating we must either tail fold or not vectorize 1205 CM_ScalarEpilogueNotAllowedUsePredicate 1206 }; 1207 1208 /// ElementCountComparator creates a total ordering for ElementCount 1209 /// for the purposes of using it in a set structure. 1210 struct ElementCountComparator { 1211 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1212 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1213 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1214 } 1215 }; 1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1217 1218 /// LoopVectorizationCostModel - estimates the expected speedups due to 1219 /// vectorization. 1220 /// In many cases vectorization is not profitable. This can happen because of 1221 /// a number of reasons. In this class we mainly attempt to predict the 1222 /// expected speedup/slowdowns due to the supported instruction set. We use the 1223 /// TargetTransformInfo to query the different backends for the cost of 1224 /// different operations. 1225 class LoopVectorizationCostModel { 1226 public: 1227 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1228 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1229 LoopVectorizationLegality *Legal, 1230 const TargetTransformInfo &TTI, 1231 const TargetLibraryInfo *TLI, DemandedBits *DB, 1232 AssumptionCache *AC, 1233 OptimizationRemarkEmitter *ORE, const Function *F, 1234 const LoopVectorizeHints *Hints, 1235 InterleavedAccessInfo &IAI) 1236 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1237 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1238 Hints(Hints), InterleaveInfo(IAI) {} 1239 1240 /// \return An upper bound for the vectorization factors (both fixed and 1241 /// scalable). If the factors are 0, vectorization and interleaving should be 1242 /// avoided up front. 1243 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1244 1245 /// \return True if runtime checks are required for vectorization, and false 1246 /// otherwise. 1247 bool runtimeChecksRequired(); 1248 1249 /// \return The most profitable vectorization factor and the cost of that VF. 1250 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1251 /// then this vectorization factor will be selected if vectorization is 1252 /// possible. 1253 VectorizationFactor 1254 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1255 1256 VectorizationFactor 1257 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1258 const LoopVectorizationPlanner &LVP); 1259 1260 /// Setup cost-based decisions for user vectorization factor. 1261 /// \return true if the UserVF is a feasible VF to be chosen. 1262 bool selectUserVectorizationFactor(ElementCount UserVF) { 1263 collectUniformsAndScalars(UserVF); 1264 collectInstsToScalarize(UserVF); 1265 return expectedCost(UserVF).first.isValid(); 1266 } 1267 1268 /// \return The size (in bits) of the smallest and widest types in the code 1269 /// that needs to be vectorized. We ignore values that remain scalar such as 1270 /// 64 bit loop indices. 1271 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1272 1273 /// \return The desired interleave count. 1274 /// If interleave count has been specified by metadata it will be returned. 1275 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1276 /// are the selected vectorization factor and the cost of the selected VF. 1277 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1278 1279 /// Memory access instruction may be vectorized in more than one way. 1280 /// Form of instruction after vectorization depends on cost. 1281 /// This function takes cost-based decisions for Load/Store instructions 1282 /// and collects them in a map. This decisions map is used for building 1283 /// the lists of loop-uniform and loop-scalar instructions. 1284 /// The calculated cost is saved with widening decision in order to 1285 /// avoid redundant calculations. 1286 void setCostBasedWideningDecision(ElementCount VF); 1287 1288 /// A struct that represents some properties of the register usage 1289 /// of a loop. 1290 struct RegisterUsage { 1291 /// Holds the number of loop invariant values that are used in the loop. 1292 /// The key is ClassID of target-provided register class. 1293 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1294 /// Holds the maximum number of concurrent live intervals in the loop. 1295 /// The key is ClassID of target-provided register class. 1296 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1297 }; 1298 1299 /// \return Returns information about the register usages of the loop for the 1300 /// given vectorization factors. 1301 SmallVector<RegisterUsage, 8> 1302 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1303 1304 /// Collect values we want to ignore in the cost model. 1305 void collectValuesToIgnore(); 1306 1307 /// Collect all element types in the loop for which widening is needed. 1308 void collectElementTypesForWidening(); 1309 1310 /// Split reductions into those that happen in the loop, and those that happen 1311 /// outside. In loop reductions are collected into InLoopReductionChains. 1312 void collectInLoopReductions(); 1313 1314 /// Returns true if we should use strict in-order reductions for the given 1315 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1316 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1317 /// of FP operations. 1318 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1319 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1320 } 1321 1322 /// \returns The smallest bitwidth each instruction can be represented with. 1323 /// The vector equivalents of these instructions should be truncated to this 1324 /// type. 1325 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1326 return MinBWs; 1327 } 1328 1329 /// \returns True if it is more profitable to scalarize instruction \p I for 1330 /// vectorization factor \p VF. 1331 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1332 assert(VF.isVector() && 1333 "Profitable to scalarize relevant only for VF > 1."); 1334 1335 // Cost model is not run in the VPlan-native path - return conservative 1336 // result until this changes. 1337 if (EnableVPlanNativePath) 1338 return false; 1339 1340 auto Scalars = InstsToScalarize.find(VF); 1341 assert(Scalars != InstsToScalarize.end() && 1342 "VF not yet analyzed for scalarization profitability"); 1343 return Scalars->second.find(I) != Scalars->second.end(); 1344 } 1345 1346 /// Returns true if \p I is known to be uniform after vectorization. 1347 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1348 if (VF.isScalar()) 1349 return true; 1350 1351 // Cost model is not run in the VPlan-native path - return conservative 1352 // result until this changes. 1353 if (EnableVPlanNativePath) 1354 return false; 1355 1356 auto UniformsPerVF = Uniforms.find(VF); 1357 assert(UniformsPerVF != Uniforms.end() && 1358 "VF not yet analyzed for uniformity"); 1359 return UniformsPerVF->second.count(I); 1360 } 1361 1362 /// Returns true if \p I is known to be scalar after vectorization. 1363 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1364 if (VF.isScalar()) 1365 return true; 1366 1367 // Cost model is not run in the VPlan-native path - return conservative 1368 // result until this changes. 1369 if (EnableVPlanNativePath) 1370 return false; 1371 1372 auto ScalarsPerVF = Scalars.find(VF); 1373 assert(ScalarsPerVF != Scalars.end() && 1374 "Scalar values are not calculated for VF"); 1375 return ScalarsPerVF->second.count(I); 1376 } 1377 1378 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1379 /// for vectorization factor \p VF. 1380 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1381 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1382 !isProfitableToScalarize(I, VF) && 1383 !isScalarAfterVectorization(I, VF); 1384 } 1385 1386 /// Decision that was taken during cost calculation for memory instruction. 1387 enum InstWidening { 1388 CM_Unknown, 1389 CM_Widen, // For consecutive accesses with stride +1. 1390 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1391 CM_Interleave, 1392 CM_GatherScatter, 1393 CM_Scalarize 1394 }; 1395 1396 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1397 /// instruction \p I and vector width \p VF. 1398 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1399 InstructionCost Cost) { 1400 assert(VF.isVector() && "Expected VF >=2"); 1401 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1402 } 1403 1404 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1405 /// interleaving group \p Grp and vector width \p VF. 1406 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1407 ElementCount VF, InstWidening W, 1408 InstructionCost Cost) { 1409 assert(VF.isVector() && "Expected VF >=2"); 1410 /// Broadcast this decicion to all instructions inside the group. 1411 /// But the cost will be assigned to one instruction only. 1412 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1413 if (auto *I = Grp->getMember(i)) { 1414 if (Grp->getInsertPos() == I) 1415 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1416 else 1417 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1418 } 1419 } 1420 } 1421 1422 /// Return the cost model decision for the given instruction \p I and vector 1423 /// width \p VF. Return CM_Unknown if this instruction did not pass 1424 /// through the cost modeling. 1425 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1426 assert(VF.isVector() && "Expected VF to be a vector VF"); 1427 // Cost model is not run in the VPlan-native path - return conservative 1428 // result until this changes. 1429 if (EnableVPlanNativePath) 1430 return CM_GatherScatter; 1431 1432 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1433 auto Itr = WideningDecisions.find(InstOnVF); 1434 if (Itr == WideningDecisions.end()) 1435 return CM_Unknown; 1436 return Itr->second.first; 1437 } 1438 1439 /// Return the vectorization cost for the given instruction \p I and vector 1440 /// width \p VF. 1441 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1442 assert(VF.isVector() && "Expected VF >=2"); 1443 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1444 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1445 "The cost is not calculated"); 1446 return WideningDecisions[InstOnVF].second; 1447 } 1448 1449 /// Return True if instruction \p I is an optimizable truncate whose operand 1450 /// is an induction variable. Such a truncate will be removed by adding a new 1451 /// induction variable with the destination type. 1452 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1453 // If the instruction is not a truncate, return false. 1454 auto *Trunc = dyn_cast<TruncInst>(I); 1455 if (!Trunc) 1456 return false; 1457 1458 // Get the source and destination types of the truncate. 1459 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1460 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1461 1462 // If the truncate is free for the given types, return false. Replacing a 1463 // free truncate with an induction variable would add an induction variable 1464 // update instruction to each iteration of the loop. We exclude from this 1465 // check the primary induction variable since it will need an update 1466 // instruction regardless. 1467 Value *Op = Trunc->getOperand(0); 1468 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1469 return false; 1470 1471 // If the truncated value is not an induction variable, return false. 1472 return Legal->isInductionPhi(Op); 1473 } 1474 1475 /// Collects the instructions to scalarize for each predicated instruction in 1476 /// the loop. 1477 void collectInstsToScalarize(ElementCount VF); 1478 1479 /// Collect Uniform and Scalar values for the given \p VF. 1480 /// The sets depend on CM decision for Load/Store instructions 1481 /// that may be vectorized as interleave, gather-scatter or scalarized. 1482 void collectUniformsAndScalars(ElementCount VF) { 1483 // Do the analysis once. 1484 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1485 return; 1486 setCostBasedWideningDecision(VF); 1487 collectLoopUniforms(VF); 1488 collectLoopScalars(VF); 1489 } 1490 1491 /// Returns true if the target machine supports masked store operation 1492 /// for the given \p DataType and kind of access to \p Ptr. 1493 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1494 return Legal->isConsecutivePtr(DataType, Ptr) && 1495 TTI.isLegalMaskedStore(DataType, Alignment); 1496 } 1497 1498 /// Returns true if the target machine supports masked load operation 1499 /// for the given \p DataType and kind of access to \p Ptr. 1500 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1501 return Legal->isConsecutivePtr(DataType, Ptr) && 1502 TTI.isLegalMaskedLoad(DataType, Alignment); 1503 } 1504 1505 /// Returns true if the target machine can represent \p V as a masked gather 1506 /// or scatter operation. 1507 bool isLegalGatherOrScatter(Value *V) { 1508 bool LI = isa<LoadInst>(V); 1509 bool SI = isa<StoreInst>(V); 1510 if (!LI && !SI) 1511 return false; 1512 auto *Ty = getLoadStoreType(V); 1513 Align Align = getLoadStoreAlignment(V); 1514 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1515 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1516 } 1517 1518 /// Returns true if the target machine supports all of the reduction 1519 /// variables found for the given VF. 1520 bool canVectorizeReductions(ElementCount VF) const { 1521 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1522 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1523 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1524 })); 1525 } 1526 1527 /// Returns true if \p I is an instruction that will be scalarized with 1528 /// predication. Such instructions include conditional stores and 1529 /// instructions that may divide by zero. 1530 /// If a non-zero VF has been calculated, we check if I will be scalarized 1531 /// predication for that VF. 1532 bool isScalarWithPredication(Instruction *I) const; 1533 1534 // Returns true if \p I is an instruction that will be predicated either 1535 // through scalar predication or masked load/store or masked gather/scatter. 1536 // Superset of instructions that return true for isScalarWithPredication. 1537 bool isPredicatedInst(Instruction *I) { 1538 if (!blockNeedsPredication(I->getParent())) 1539 return false; 1540 // Loads and stores that need some form of masked operation are predicated 1541 // instructions. 1542 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1543 return Legal->isMaskRequired(I); 1544 return isScalarWithPredication(I); 1545 } 1546 1547 /// Returns true if \p I is a memory instruction with consecutive memory 1548 /// access that can be widened. 1549 bool 1550 memoryInstructionCanBeWidened(Instruction *I, 1551 ElementCount VF = ElementCount::getFixed(1)); 1552 1553 /// Returns true if \p I is a memory instruction in an interleaved-group 1554 /// of memory accesses that can be vectorized with wide vector loads/stores 1555 /// and shuffles. 1556 bool 1557 interleavedAccessCanBeWidened(Instruction *I, 1558 ElementCount VF = ElementCount::getFixed(1)); 1559 1560 /// Check if \p Instr belongs to any interleaved access group. 1561 bool isAccessInterleaved(Instruction *Instr) { 1562 return InterleaveInfo.isInterleaved(Instr); 1563 } 1564 1565 /// Get the interleaved access group that \p Instr belongs to. 1566 const InterleaveGroup<Instruction> * 1567 getInterleavedAccessGroup(Instruction *Instr) { 1568 return InterleaveInfo.getInterleaveGroup(Instr); 1569 } 1570 1571 /// Returns true if we're required to use a scalar epilogue for at least 1572 /// the final iteration of the original loop. 1573 bool requiresScalarEpilogue(ElementCount VF) const { 1574 if (!isScalarEpilogueAllowed()) 1575 return false; 1576 // If we might exit from anywhere but the latch, must run the exiting 1577 // iteration in scalar form. 1578 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1579 return true; 1580 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1581 } 1582 1583 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1584 /// loop hint annotation. 1585 bool isScalarEpilogueAllowed() const { 1586 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1587 } 1588 1589 /// Returns true if all loop blocks should be masked to fold tail loop. 1590 bool foldTailByMasking() const { return FoldTailByMasking; } 1591 1592 bool blockNeedsPredication(BasicBlock *BB) const { 1593 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1594 } 1595 1596 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1597 /// nodes to the chain of instructions representing the reductions. Uses a 1598 /// MapVector to ensure deterministic iteration order. 1599 using ReductionChainMap = 1600 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1601 1602 /// Return the chain of instructions representing an inloop reduction. 1603 const ReductionChainMap &getInLoopReductionChains() const { 1604 return InLoopReductionChains; 1605 } 1606 1607 /// Returns true if the Phi is part of an inloop reduction. 1608 bool isInLoopReduction(PHINode *Phi) const { 1609 return InLoopReductionChains.count(Phi); 1610 } 1611 1612 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1613 /// with factor VF. Return the cost of the instruction, including 1614 /// scalarization overhead if it's needed. 1615 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1616 1617 /// Estimate cost of a call instruction CI if it were vectorized with factor 1618 /// VF. Return the cost of the instruction, including scalarization overhead 1619 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1620 /// scalarized - 1621 /// i.e. either vector version isn't available, or is too expensive. 1622 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1623 bool &NeedToScalarize) const; 1624 1625 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1626 /// that of B. 1627 bool isMoreProfitable(const VectorizationFactor &A, 1628 const VectorizationFactor &B) const; 1629 1630 /// Invalidates decisions already taken by the cost model. 1631 void invalidateCostModelingDecisions() { 1632 WideningDecisions.clear(); 1633 Uniforms.clear(); 1634 Scalars.clear(); 1635 } 1636 1637 private: 1638 unsigned NumPredStores = 0; 1639 1640 /// \return An upper bound for the vectorization factors for both 1641 /// fixed and scalable vectorization, where the minimum-known number of 1642 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1643 /// disabled or unsupported, then the scalable part will be equal to 1644 /// ElementCount::getScalable(0). 1645 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1646 ElementCount UserVF); 1647 1648 /// \return the maximized element count based on the targets vector 1649 /// registers and the loop trip-count, but limited to a maximum safe VF. 1650 /// This is a helper function of computeFeasibleMaxVF. 1651 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1652 /// issue that occurred on one of the buildbots which cannot be reproduced 1653 /// without having access to the properietary compiler (see comments on 1654 /// D98509). The issue is currently under investigation and this workaround 1655 /// will be removed as soon as possible. 1656 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1657 unsigned SmallestType, 1658 unsigned WidestType, 1659 const ElementCount &MaxSafeVF); 1660 1661 /// \return the maximum legal scalable VF, based on the safe max number 1662 /// of elements. 1663 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1664 1665 /// The vectorization cost is a combination of the cost itself and a boolean 1666 /// indicating whether any of the contributing operations will actually 1667 /// operate on vector values after type legalization in the backend. If this 1668 /// latter value is false, then all operations will be scalarized (i.e. no 1669 /// vectorization has actually taken place). 1670 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1671 1672 /// Returns the expected execution cost. The unit of the cost does 1673 /// not matter because we use the 'cost' units to compare different 1674 /// vector widths. The cost that is returned is *not* normalized by 1675 /// the factor width. If \p Invalid is not nullptr, this function 1676 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1677 /// each instruction that has an Invalid cost for the given VF. 1678 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1679 VectorizationCostTy 1680 expectedCost(ElementCount VF, 1681 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1682 1683 /// Returns the execution time cost of an instruction for a given vector 1684 /// width. Vector width of one means scalar. 1685 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1686 1687 /// The cost-computation logic from getInstructionCost which provides 1688 /// the vector type as an output parameter. 1689 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1690 Type *&VectorTy); 1691 1692 /// Return the cost of instructions in an inloop reduction pattern, if I is 1693 /// part of that pattern. 1694 Optional<InstructionCost> 1695 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1696 TTI::TargetCostKind CostKind); 1697 1698 /// Calculate vectorization cost of memory instruction \p I. 1699 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1700 1701 /// The cost computation for scalarized memory instruction. 1702 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1703 1704 /// The cost computation for interleaving group of memory instructions. 1705 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1706 1707 /// The cost computation for Gather/Scatter instruction. 1708 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1709 1710 /// The cost computation for widening instruction \p I with consecutive 1711 /// memory access. 1712 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1713 1714 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1715 /// Load: scalar load + broadcast. 1716 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1717 /// element) 1718 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1719 1720 /// Estimate the overhead of scalarizing an instruction. This is a 1721 /// convenience wrapper for the type-based getScalarizationOverhead API. 1722 InstructionCost getScalarizationOverhead(Instruction *I, 1723 ElementCount VF) const; 1724 1725 /// Returns whether the instruction is a load or store and will be a emitted 1726 /// as a vector operation. 1727 bool isConsecutiveLoadOrStore(Instruction *I); 1728 1729 /// Returns true if an artificially high cost for emulated masked memrefs 1730 /// should be used. 1731 bool useEmulatedMaskMemRefHack(Instruction *I); 1732 1733 /// Map of scalar integer values to the smallest bitwidth they can be legally 1734 /// represented as. The vector equivalents of these values should be truncated 1735 /// to this type. 1736 MapVector<Instruction *, uint64_t> MinBWs; 1737 1738 /// A type representing the costs for instructions if they were to be 1739 /// scalarized rather than vectorized. The entries are Instruction-Cost 1740 /// pairs. 1741 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1742 1743 /// A set containing all BasicBlocks that are known to present after 1744 /// vectorization as a predicated block. 1745 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1746 1747 /// Records whether it is allowed to have the original scalar loop execute at 1748 /// least once. This may be needed as a fallback loop in case runtime 1749 /// aliasing/dependence checks fail, or to handle the tail/remainder 1750 /// iterations when the trip count is unknown or doesn't divide by the VF, 1751 /// or as a peel-loop to handle gaps in interleave-groups. 1752 /// Under optsize and when the trip count is very small we don't allow any 1753 /// iterations to execute in the scalar loop. 1754 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1755 1756 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1757 bool FoldTailByMasking = false; 1758 1759 /// A map holding scalar costs for different vectorization factors. The 1760 /// presence of a cost for an instruction in the mapping indicates that the 1761 /// instruction will be scalarized when vectorizing with the associated 1762 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1763 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1764 1765 /// Holds the instructions known to be uniform after vectorization. 1766 /// The data is collected per VF. 1767 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1768 1769 /// Holds the instructions known to be scalar after vectorization. 1770 /// The data is collected per VF. 1771 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1772 1773 /// Holds the instructions (address computations) that are forced to be 1774 /// scalarized. 1775 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1776 1777 /// PHINodes of the reductions that should be expanded in-loop along with 1778 /// their associated chains of reduction operations, in program order from top 1779 /// (PHI) to bottom 1780 ReductionChainMap InLoopReductionChains; 1781 1782 /// A Map of inloop reduction operations and their immediate chain operand. 1783 /// FIXME: This can be removed once reductions can be costed correctly in 1784 /// vplan. This was added to allow quick lookup to the inloop operations, 1785 /// without having to loop through InLoopReductionChains. 1786 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1787 1788 /// Returns the expected difference in cost from scalarizing the expression 1789 /// feeding a predicated instruction \p PredInst. The instructions to 1790 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1791 /// non-negative return value implies the expression will be scalarized. 1792 /// Currently, only single-use chains are considered for scalarization. 1793 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1794 ElementCount VF); 1795 1796 /// Collect the instructions that are uniform after vectorization. An 1797 /// instruction is uniform if we represent it with a single scalar value in 1798 /// the vectorized loop corresponding to each vector iteration. Examples of 1799 /// uniform instructions include pointer operands of consecutive or 1800 /// interleaved memory accesses. Note that although uniformity implies an 1801 /// instruction will be scalar, the reverse is not true. In general, a 1802 /// scalarized instruction will be represented by VF scalar values in the 1803 /// vectorized loop, each corresponding to an iteration of the original 1804 /// scalar loop. 1805 void collectLoopUniforms(ElementCount VF); 1806 1807 /// Collect the instructions that are scalar after vectorization. An 1808 /// instruction is scalar if it is known to be uniform or will be scalarized 1809 /// during vectorization. Non-uniform scalarized instructions will be 1810 /// represented by VF values in the vectorized loop, each corresponding to an 1811 /// iteration of the original scalar loop. 1812 void collectLoopScalars(ElementCount VF); 1813 1814 /// Keeps cost model vectorization decision and cost for instructions. 1815 /// Right now it is used for memory instructions only. 1816 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1817 std::pair<InstWidening, InstructionCost>>; 1818 1819 DecisionList WideningDecisions; 1820 1821 /// Returns true if \p V is expected to be vectorized and it needs to be 1822 /// extracted. 1823 bool needsExtract(Value *V, ElementCount VF) const { 1824 Instruction *I = dyn_cast<Instruction>(V); 1825 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1826 TheLoop->isLoopInvariant(I)) 1827 return false; 1828 1829 // Assume we can vectorize V (and hence we need extraction) if the 1830 // scalars are not computed yet. This can happen, because it is called 1831 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1832 // the scalars are collected. That should be a safe assumption in most 1833 // cases, because we check if the operands have vectorizable types 1834 // beforehand in LoopVectorizationLegality. 1835 return Scalars.find(VF) == Scalars.end() || 1836 !isScalarAfterVectorization(I, VF); 1837 }; 1838 1839 /// Returns a range containing only operands needing to be extracted. 1840 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1841 ElementCount VF) const { 1842 return SmallVector<Value *, 4>(make_filter_range( 1843 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1844 } 1845 1846 /// Determines if we have the infrastructure to vectorize loop \p L and its 1847 /// epilogue, assuming the main loop is vectorized by \p VF. 1848 bool isCandidateForEpilogueVectorization(const Loop &L, 1849 const ElementCount VF) const; 1850 1851 /// Returns true if epilogue vectorization is considered profitable, and 1852 /// false otherwise. 1853 /// \p VF is the vectorization factor chosen for the original loop. 1854 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1855 1856 public: 1857 /// The loop that we evaluate. 1858 Loop *TheLoop; 1859 1860 /// Predicated scalar evolution analysis. 1861 PredicatedScalarEvolution &PSE; 1862 1863 /// Loop Info analysis. 1864 LoopInfo *LI; 1865 1866 /// Vectorization legality. 1867 LoopVectorizationLegality *Legal; 1868 1869 /// Vector target information. 1870 const TargetTransformInfo &TTI; 1871 1872 /// Target Library Info. 1873 const TargetLibraryInfo *TLI; 1874 1875 /// Demanded bits analysis. 1876 DemandedBits *DB; 1877 1878 /// Assumption cache. 1879 AssumptionCache *AC; 1880 1881 /// Interface to emit optimization remarks. 1882 OptimizationRemarkEmitter *ORE; 1883 1884 const Function *TheFunction; 1885 1886 /// Loop Vectorize Hint. 1887 const LoopVectorizeHints *Hints; 1888 1889 /// The interleave access information contains groups of interleaved accesses 1890 /// with the same stride and close to each other. 1891 InterleavedAccessInfo &InterleaveInfo; 1892 1893 /// Values to ignore in the cost model. 1894 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1895 1896 /// Values to ignore in the cost model when VF > 1. 1897 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1898 1899 /// All element types found in the loop. 1900 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1901 1902 /// Profitable vector factors. 1903 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1904 }; 1905 } // end namespace llvm 1906 1907 /// Helper struct to manage generating runtime checks for vectorization. 1908 /// 1909 /// The runtime checks are created up-front in temporary blocks to allow better 1910 /// estimating the cost and un-linked from the existing IR. After deciding to 1911 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1912 /// temporary blocks are completely removed. 1913 class GeneratedRTChecks { 1914 /// Basic block which contains the generated SCEV checks, if any. 1915 BasicBlock *SCEVCheckBlock = nullptr; 1916 1917 /// The value representing the result of the generated SCEV checks. If it is 1918 /// nullptr, either no SCEV checks have been generated or they have been used. 1919 Value *SCEVCheckCond = nullptr; 1920 1921 /// Basic block which contains the generated memory runtime checks, if any. 1922 BasicBlock *MemCheckBlock = nullptr; 1923 1924 /// The value representing the result of the generated memory runtime checks. 1925 /// If it is nullptr, either no memory runtime checks have been generated or 1926 /// they have been used. 1927 Instruction *MemRuntimeCheckCond = nullptr; 1928 1929 DominatorTree *DT; 1930 LoopInfo *LI; 1931 1932 SCEVExpander SCEVExp; 1933 SCEVExpander MemCheckExp; 1934 1935 public: 1936 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1937 const DataLayout &DL) 1938 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1939 MemCheckExp(SE, DL, "scev.check") {} 1940 1941 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1942 /// accurately estimate the cost of the runtime checks. The blocks are 1943 /// un-linked from the IR and is added back during vector code generation. If 1944 /// there is no vector code generation, the check blocks are removed 1945 /// completely. 1946 void Create(Loop *L, const LoopAccessInfo &LAI, 1947 const SCEVUnionPredicate &UnionPred) { 1948 1949 BasicBlock *LoopHeader = L->getHeader(); 1950 BasicBlock *Preheader = L->getLoopPreheader(); 1951 1952 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1953 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1954 // may be used by SCEVExpander. The blocks will be un-linked from their 1955 // predecessors and removed from LI & DT at the end of the function. 1956 if (!UnionPred.isAlwaysTrue()) { 1957 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1958 nullptr, "vector.scevcheck"); 1959 1960 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1961 &UnionPred, SCEVCheckBlock->getTerminator()); 1962 } 1963 1964 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1965 if (RtPtrChecking.Need) { 1966 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1967 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1968 "vector.memcheck"); 1969 1970 std::tie(std::ignore, MemRuntimeCheckCond) = 1971 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1972 RtPtrChecking.getChecks(), MemCheckExp); 1973 assert(MemRuntimeCheckCond && 1974 "no RT checks generated although RtPtrChecking " 1975 "claimed checks are required"); 1976 } 1977 1978 if (!MemCheckBlock && !SCEVCheckBlock) 1979 return; 1980 1981 // Unhook the temporary block with the checks, update various places 1982 // accordingly. 1983 if (SCEVCheckBlock) 1984 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1985 if (MemCheckBlock) 1986 MemCheckBlock->replaceAllUsesWith(Preheader); 1987 1988 if (SCEVCheckBlock) { 1989 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1990 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1991 Preheader->getTerminator()->eraseFromParent(); 1992 } 1993 if (MemCheckBlock) { 1994 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1995 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1996 Preheader->getTerminator()->eraseFromParent(); 1997 } 1998 1999 DT->changeImmediateDominator(LoopHeader, Preheader); 2000 if (MemCheckBlock) { 2001 DT->eraseNode(MemCheckBlock); 2002 LI->removeBlock(MemCheckBlock); 2003 } 2004 if (SCEVCheckBlock) { 2005 DT->eraseNode(SCEVCheckBlock); 2006 LI->removeBlock(SCEVCheckBlock); 2007 } 2008 } 2009 2010 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2011 /// unused. 2012 ~GeneratedRTChecks() { 2013 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2014 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2015 if (!SCEVCheckCond) 2016 SCEVCleaner.markResultUsed(); 2017 2018 if (!MemRuntimeCheckCond) 2019 MemCheckCleaner.markResultUsed(); 2020 2021 if (MemRuntimeCheckCond) { 2022 auto &SE = *MemCheckExp.getSE(); 2023 // Memory runtime check generation creates compares that use expanded 2024 // values. Remove them before running the SCEVExpanderCleaners. 2025 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2026 if (MemCheckExp.isInsertedInstruction(&I)) 2027 continue; 2028 SE.forgetValue(&I); 2029 SE.eraseValueFromMap(&I); 2030 I.eraseFromParent(); 2031 } 2032 } 2033 MemCheckCleaner.cleanup(); 2034 SCEVCleaner.cleanup(); 2035 2036 if (SCEVCheckCond) 2037 SCEVCheckBlock->eraseFromParent(); 2038 if (MemRuntimeCheckCond) 2039 MemCheckBlock->eraseFromParent(); 2040 } 2041 2042 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2043 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2044 /// depending on the generated condition. 2045 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2046 BasicBlock *LoopVectorPreHeader, 2047 BasicBlock *LoopExitBlock) { 2048 if (!SCEVCheckCond) 2049 return nullptr; 2050 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2051 if (C->isZero()) 2052 return nullptr; 2053 2054 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2055 2056 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2057 // Create new preheader for vector loop. 2058 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2059 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2060 2061 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2062 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2063 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2064 SCEVCheckBlock); 2065 2066 DT->addNewBlock(SCEVCheckBlock, Pred); 2067 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2068 2069 ReplaceInstWithInst( 2070 SCEVCheckBlock->getTerminator(), 2071 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2072 // Mark the check as used, to prevent it from being removed during cleanup. 2073 SCEVCheckCond = nullptr; 2074 return SCEVCheckBlock; 2075 } 2076 2077 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2078 /// the branches to branch to the vector preheader or \p Bypass, depending on 2079 /// the generated condition. 2080 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2081 BasicBlock *LoopVectorPreHeader) { 2082 // Check if we generated code that checks in runtime if arrays overlap. 2083 if (!MemRuntimeCheckCond) 2084 return nullptr; 2085 2086 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2087 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2088 MemCheckBlock); 2089 2090 DT->addNewBlock(MemCheckBlock, Pred); 2091 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2092 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2093 2094 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2095 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2096 2097 ReplaceInstWithInst( 2098 MemCheckBlock->getTerminator(), 2099 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2100 MemCheckBlock->getTerminator()->setDebugLoc( 2101 Pred->getTerminator()->getDebugLoc()); 2102 2103 // Mark the check as used, to prevent it from being removed during cleanup. 2104 MemRuntimeCheckCond = nullptr; 2105 return MemCheckBlock; 2106 } 2107 }; 2108 2109 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2110 // vectorization. The loop needs to be annotated with #pragma omp simd 2111 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2112 // vector length information is not provided, vectorization is not considered 2113 // explicit. Interleave hints are not allowed either. These limitations will be 2114 // relaxed in the future. 2115 // Please, note that we are currently forced to abuse the pragma 'clang 2116 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2117 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2118 // provides *explicit vectorization hints* (LV can bypass legal checks and 2119 // assume that vectorization is legal). However, both hints are implemented 2120 // using the same metadata (llvm.loop.vectorize, processed by 2121 // LoopVectorizeHints). This will be fixed in the future when the native IR 2122 // representation for pragma 'omp simd' is introduced. 2123 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2124 OptimizationRemarkEmitter *ORE) { 2125 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2126 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2127 2128 // Only outer loops with an explicit vectorization hint are supported. 2129 // Unannotated outer loops are ignored. 2130 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2131 return false; 2132 2133 Function *Fn = OuterLp->getHeader()->getParent(); 2134 if (!Hints.allowVectorization(Fn, OuterLp, 2135 true /*VectorizeOnlyWhenForced*/)) { 2136 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2137 return false; 2138 } 2139 2140 if (Hints.getInterleave() > 1) { 2141 // TODO: Interleave support is future work. 2142 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2143 "outer loops.\n"); 2144 Hints.emitRemarkWithHints(); 2145 return false; 2146 } 2147 2148 return true; 2149 } 2150 2151 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2152 OptimizationRemarkEmitter *ORE, 2153 SmallVectorImpl<Loop *> &V) { 2154 // Collect inner loops and outer loops without irreducible control flow. For 2155 // now, only collect outer loops that have explicit vectorization hints. If we 2156 // are stress testing the VPlan H-CFG construction, we collect the outermost 2157 // loop of every loop nest. 2158 if (L.isInnermost() || VPlanBuildStressTest || 2159 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2160 LoopBlocksRPO RPOT(&L); 2161 RPOT.perform(LI); 2162 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2163 V.push_back(&L); 2164 // TODO: Collect inner loops inside marked outer loops in case 2165 // vectorization fails for the outer loop. Do not invoke 2166 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2167 // already known to be reducible. We can use an inherited attribute for 2168 // that. 2169 return; 2170 } 2171 } 2172 for (Loop *InnerL : L) 2173 collectSupportedLoops(*InnerL, LI, ORE, V); 2174 } 2175 2176 namespace { 2177 2178 /// The LoopVectorize Pass. 2179 struct LoopVectorize : public FunctionPass { 2180 /// Pass identification, replacement for typeid 2181 static char ID; 2182 2183 LoopVectorizePass Impl; 2184 2185 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2186 bool VectorizeOnlyWhenForced = false) 2187 : FunctionPass(ID), 2188 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2189 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2190 } 2191 2192 bool runOnFunction(Function &F) override { 2193 if (skipFunction(F)) 2194 return false; 2195 2196 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2197 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2198 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2199 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2200 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2201 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2202 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2203 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2204 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2205 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2206 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2207 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2208 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2209 2210 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2211 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2212 2213 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2214 GetLAA, *ORE, PSI).MadeAnyChange; 2215 } 2216 2217 void getAnalysisUsage(AnalysisUsage &AU) const override { 2218 AU.addRequired<AssumptionCacheTracker>(); 2219 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2220 AU.addRequired<DominatorTreeWrapperPass>(); 2221 AU.addRequired<LoopInfoWrapperPass>(); 2222 AU.addRequired<ScalarEvolutionWrapperPass>(); 2223 AU.addRequired<TargetTransformInfoWrapperPass>(); 2224 AU.addRequired<AAResultsWrapperPass>(); 2225 AU.addRequired<LoopAccessLegacyAnalysis>(); 2226 AU.addRequired<DemandedBitsWrapperPass>(); 2227 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2228 AU.addRequired<InjectTLIMappingsLegacy>(); 2229 2230 // We currently do not preserve loopinfo/dominator analyses with outer loop 2231 // vectorization. Until this is addressed, mark these analyses as preserved 2232 // only for non-VPlan-native path. 2233 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2234 if (!EnableVPlanNativePath) { 2235 AU.addPreserved<LoopInfoWrapperPass>(); 2236 AU.addPreserved<DominatorTreeWrapperPass>(); 2237 } 2238 2239 AU.addPreserved<BasicAAWrapperPass>(); 2240 AU.addPreserved<GlobalsAAWrapperPass>(); 2241 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2242 } 2243 }; 2244 2245 } // end anonymous namespace 2246 2247 //===----------------------------------------------------------------------===// 2248 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2249 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2250 //===----------------------------------------------------------------------===// 2251 2252 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2253 // We need to place the broadcast of invariant variables outside the loop, 2254 // but only if it's proven safe to do so. Else, broadcast will be inside 2255 // vector loop body. 2256 Instruction *Instr = dyn_cast<Instruction>(V); 2257 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2258 (!Instr || 2259 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2260 // Place the code for broadcasting invariant variables in the new preheader. 2261 IRBuilder<>::InsertPointGuard Guard(Builder); 2262 if (SafeToHoist) 2263 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2264 2265 // Broadcast the scalar into all locations in the vector. 2266 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2267 2268 return Shuf; 2269 } 2270 2271 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2272 const InductionDescriptor &II, Value *Step, Value *Start, 2273 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2274 VPTransformState &State) { 2275 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2276 "Expected either an induction phi-node or a truncate of it!"); 2277 2278 // Construct the initial value of the vector IV in the vector loop preheader 2279 auto CurrIP = Builder.saveIP(); 2280 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2281 if (isa<TruncInst>(EntryVal)) { 2282 assert(Start->getType()->isIntegerTy() && 2283 "Truncation requires an integer type"); 2284 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2285 Step = Builder.CreateTrunc(Step, TruncType); 2286 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2287 } 2288 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2289 Value *SteppedStart = 2290 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2291 2292 // We create vector phi nodes for both integer and floating-point induction 2293 // variables. Here, we determine the kind of arithmetic we will perform. 2294 Instruction::BinaryOps AddOp; 2295 Instruction::BinaryOps MulOp; 2296 if (Step->getType()->isIntegerTy()) { 2297 AddOp = Instruction::Add; 2298 MulOp = Instruction::Mul; 2299 } else { 2300 AddOp = II.getInductionOpcode(); 2301 MulOp = Instruction::FMul; 2302 } 2303 2304 // Multiply the vectorization factor by the step using integer or 2305 // floating-point arithmetic as appropriate. 2306 Type *StepType = Step->getType(); 2307 if (Step->getType()->isFloatingPointTy()) 2308 StepType = IntegerType::get(StepType->getContext(), 2309 StepType->getScalarSizeInBits()); 2310 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2311 if (Step->getType()->isFloatingPointTy()) 2312 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2313 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2314 2315 // Create a vector splat to use in the induction update. 2316 // 2317 // FIXME: If the step is non-constant, we create the vector splat with 2318 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2319 // handle a constant vector splat. 2320 Value *SplatVF = isa<Constant>(Mul) 2321 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2322 : Builder.CreateVectorSplat(VF, Mul); 2323 Builder.restoreIP(CurrIP); 2324 2325 // We may need to add the step a number of times, depending on the unroll 2326 // factor. The last of those goes into the PHI. 2327 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2328 &*LoopVectorBody->getFirstInsertionPt()); 2329 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2330 Instruction *LastInduction = VecInd; 2331 for (unsigned Part = 0; Part < UF; ++Part) { 2332 State.set(Def, LastInduction, Part); 2333 2334 if (isa<TruncInst>(EntryVal)) 2335 addMetadata(LastInduction, EntryVal); 2336 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2337 State, Part); 2338 2339 LastInduction = cast<Instruction>( 2340 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2341 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2342 } 2343 2344 // Move the last step to the end of the latch block. This ensures consistent 2345 // placement of all induction updates. 2346 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2347 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2348 auto *ICmp = cast<Instruction>(Br->getCondition()); 2349 LastInduction->moveBefore(ICmp); 2350 LastInduction->setName("vec.ind.next"); 2351 2352 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2353 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2354 } 2355 2356 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2357 return Cost->isScalarAfterVectorization(I, VF) || 2358 Cost->isProfitableToScalarize(I, VF); 2359 } 2360 2361 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2362 if (shouldScalarizeInstruction(IV)) 2363 return true; 2364 auto isScalarInst = [&](User *U) -> bool { 2365 auto *I = cast<Instruction>(U); 2366 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2367 }; 2368 return llvm::any_of(IV->users(), isScalarInst); 2369 } 2370 2371 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2372 const InductionDescriptor &ID, const Instruction *EntryVal, 2373 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2374 unsigned Part, unsigned Lane) { 2375 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2376 "Expected either an induction phi-node or a truncate of it!"); 2377 2378 // This induction variable is not the phi from the original loop but the 2379 // newly-created IV based on the proof that casted Phi is equal to the 2380 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2381 // re-uses the same InductionDescriptor that original IV uses but we don't 2382 // have to do any recording in this case - that is done when original IV is 2383 // processed. 2384 if (isa<TruncInst>(EntryVal)) 2385 return; 2386 2387 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2388 if (Casts.empty()) 2389 return; 2390 // Only the first Cast instruction in the Casts vector is of interest. 2391 // The rest of the Casts (if exist) have no uses outside the 2392 // induction update chain itself. 2393 if (Lane < UINT_MAX) 2394 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2395 else 2396 State.set(CastDef, VectorLoopVal, Part); 2397 } 2398 2399 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2400 TruncInst *Trunc, VPValue *Def, 2401 VPValue *CastDef, 2402 VPTransformState &State) { 2403 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2404 "Primary induction variable must have an integer type"); 2405 2406 auto II = Legal->getInductionVars().find(IV); 2407 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2408 2409 auto ID = II->second; 2410 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2411 2412 // The value from the original loop to which we are mapping the new induction 2413 // variable. 2414 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2415 2416 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2417 2418 // Generate code for the induction step. Note that induction steps are 2419 // required to be loop-invariant 2420 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2421 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2422 "Induction step should be loop invariant"); 2423 if (PSE.getSE()->isSCEVable(IV->getType())) { 2424 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2425 return Exp.expandCodeFor(Step, Step->getType(), 2426 LoopVectorPreHeader->getTerminator()); 2427 } 2428 return cast<SCEVUnknown>(Step)->getValue(); 2429 }; 2430 2431 // The scalar value to broadcast. This is derived from the canonical 2432 // induction variable. If a truncation type is given, truncate the canonical 2433 // induction variable and step. Otherwise, derive these values from the 2434 // induction descriptor. 2435 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2436 Value *ScalarIV = Induction; 2437 if (IV != OldInduction) { 2438 ScalarIV = IV->getType()->isIntegerTy() 2439 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2440 : Builder.CreateCast(Instruction::SIToFP, Induction, 2441 IV->getType()); 2442 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2443 ScalarIV->setName("offset.idx"); 2444 } 2445 if (Trunc) { 2446 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2447 assert(Step->getType()->isIntegerTy() && 2448 "Truncation requires an integer step"); 2449 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2450 Step = Builder.CreateTrunc(Step, TruncType); 2451 } 2452 return ScalarIV; 2453 }; 2454 2455 // Create the vector values from the scalar IV, in the absence of creating a 2456 // vector IV. 2457 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2458 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2459 for (unsigned Part = 0; Part < UF; ++Part) { 2460 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2461 Value *EntryPart = 2462 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2463 ID.getInductionOpcode()); 2464 State.set(Def, EntryPart, Part); 2465 if (Trunc) 2466 addMetadata(EntryPart, Trunc); 2467 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2468 State, Part); 2469 } 2470 }; 2471 2472 // Fast-math-flags propagate from the original induction instruction. 2473 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2474 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2475 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2476 2477 // Now do the actual transformations, and start with creating the step value. 2478 Value *Step = CreateStepValue(ID.getStep()); 2479 if (VF.isZero() || VF.isScalar()) { 2480 Value *ScalarIV = CreateScalarIV(Step); 2481 CreateSplatIV(ScalarIV, Step); 2482 return; 2483 } 2484 2485 // Determine if we want a scalar version of the induction variable. This is 2486 // true if the induction variable itself is not widened, or if it has at 2487 // least one user in the loop that is not widened. 2488 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2489 if (!NeedsScalarIV) { 2490 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2491 State); 2492 return; 2493 } 2494 2495 // Try to create a new independent vector induction variable. If we can't 2496 // create the phi node, we will splat the scalar induction variable in each 2497 // loop iteration. 2498 if (!shouldScalarizeInstruction(EntryVal)) { 2499 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2500 State); 2501 Value *ScalarIV = CreateScalarIV(Step); 2502 // Create scalar steps that can be used by instructions we will later 2503 // scalarize. Note that the addition of the scalar steps will not increase 2504 // the number of instructions in the loop in the common case prior to 2505 // InstCombine. We will be trading one vector extract for each scalar step. 2506 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2507 return; 2508 } 2509 2510 // All IV users are scalar instructions, so only emit a scalar IV, not a 2511 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2512 // predicate used by the masked loads/stores. 2513 Value *ScalarIV = CreateScalarIV(Step); 2514 if (!Cost->isScalarEpilogueAllowed()) 2515 CreateSplatIV(ScalarIV, Step); 2516 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2517 } 2518 2519 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2520 Instruction::BinaryOps BinOp) { 2521 // Create and check the types. 2522 auto *ValVTy = cast<VectorType>(Val->getType()); 2523 ElementCount VLen = ValVTy->getElementCount(); 2524 2525 Type *STy = Val->getType()->getScalarType(); 2526 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2527 "Induction Step must be an integer or FP"); 2528 assert(Step->getType() == STy && "Step has wrong type"); 2529 2530 SmallVector<Constant *, 8> Indices; 2531 2532 // Create a vector of consecutive numbers from zero to VF. 2533 VectorType *InitVecValVTy = ValVTy; 2534 Type *InitVecValSTy = STy; 2535 if (STy->isFloatingPointTy()) { 2536 InitVecValSTy = 2537 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2538 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2539 } 2540 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2541 2542 // Add on StartIdx 2543 Value *StartIdxSplat = Builder.CreateVectorSplat( 2544 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2545 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2546 2547 if (STy->isIntegerTy()) { 2548 Step = Builder.CreateVectorSplat(VLen, Step); 2549 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2550 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2551 // which can be found from the original scalar operations. 2552 Step = Builder.CreateMul(InitVec, Step); 2553 return Builder.CreateAdd(Val, Step, "induction"); 2554 } 2555 2556 // Floating point induction. 2557 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2558 "Binary Opcode should be specified for FP induction"); 2559 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2560 Step = Builder.CreateVectorSplat(VLen, Step); 2561 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2562 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2563 } 2564 2565 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2566 Instruction *EntryVal, 2567 const InductionDescriptor &ID, 2568 VPValue *Def, VPValue *CastDef, 2569 VPTransformState &State) { 2570 // We shouldn't have to build scalar steps if we aren't vectorizing. 2571 assert(VF.isVector() && "VF should be greater than one"); 2572 // Get the value type and ensure it and the step have the same integer type. 2573 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2574 assert(ScalarIVTy == Step->getType() && 2575 "Val and Step should have the same type"); 2576 2577 // We build scalar steps for both integer and floating-point induction 2578 // variables. Here, we determine the kind of arithmetic we will perform. 2579 Instruction::BinaryOps AddOp; 2580 Instruction::BinaryOps MulOp; 2581 if (ScalarIVTy->isIntegerTy()) { 2582 AddOp = Instruction::Add; 2583 MulOp = Instruction::Mul; 2584 } else { 2585 AddOp = ID.getInductionOpcode(); 2586 MulOp = Instruction::FMul; 2587 } 2588 2589 // Determine the number of scalars we need to generate for each unroll 2590 // iteration. If EntryVal is uniform, we only need to generate the first 2591 // lane. Otherwise, we generate all VF values. 2592 bool IsUniform = 2593 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2594 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2595 // Compute the scalar steps and save the results in State. 2596 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2597 ScalarIVTy->getScalarSizeInBits()); 2598 Type *VecIVTy = nullptr; 2599 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2600 if (!IsUniform && VF.isScalable()) { 2601 VecIVTy = VectorType::get(ScalarIVTy, VF); 2602 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2603 SplatStep = Builder.CreateVectorSplat(VF, Step); 2604 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2605 } 2606 2607 for (unsigned Part = 0; Part < UF; ++Part) { 2608 Value *StartIdx0 = 2609 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2610 2611 if (!IsUniform && VF.isScalable()) { 2612 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2613 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2614 if (ScalarIVTy->isFloatingPointTy()) 2615 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2616 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2617 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2618 State.set(Def, Add, Part); 2619 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2620 Part); 2621 // It's useful to record the lane values too for the known minimum number 2622 // of elements so we do those below. This improves the code quality when 2623 // trying to extract the first element, for example. 2624 } 2625 2626 if (ScalarIVTy->isFloatingPointTy()) 2627 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2628 2629 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2630 Value *StartIdx = Builder.CreateBinOp( 2631 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2632 // The step returned by `createStepForVF` is a runtime-evaluated value 2633 // when VF is scalable. Otherwise, it should be folded into a Constant. 2634 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2635 "Expected StartIdx to be folded to a constant when VF is not " 2636 "scalable"); 2637 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2638 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2639 State.set(Def, Add, VPIteration(Part, Lane)); 2640 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2641 Part, Lane); 2642 } 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2647 const VPIteration &Instance, 2648 VPTransformState &State) { 2649 Value *ScalarInst = State.get(Def, Instance); 2650 Value *VectorValue = State.get(Def, Instance.Part); 2651 VectorValue = Builder.CreateInsertElement( 2652 VectorValue, ScalarInst, 2653 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2654 State.set(Def, VectorValue, Instance.Part); 2655 } 2656 2657 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2658 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2659 return Builder.CreateVectorReverse(Vec, "reverse"); 2660 } 2661 2662 // Return whether we allow using masked interleave-groups (for dealing with 2663 // strided loads/stores that reside in predicated blocks, or for dealing 2664 // with gaps). 2665 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2666 // If an override option has been passed in for interleaved accesses, use it. 2667 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2668 return EnableMaskedInterleavedMemAccesses; 2669 2670 return TTI.enableMaskedInterleavedAccessVectorization(); 2671 } 2672 2673 // Try to vectorize the interleave group that \p Instr belongs to. 2674 // 2675 // E.g. Translate following interleaved load group (factor = 3): 2676 // for (i = 0; i < N; i+=3) { 2677 // R = Pic[i]; // Member of index 0 2678 // G = Pic[i+1]; // Member of index 1 2679 // B = Pic[i+2]; // Member of index 2 2680 // ... // do something to R, G, B 2681 // } 2682 // To: 2683 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2684 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2685 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2686 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2687 // 2688 // Or translate following interleaved store group (factor = 3): 2689 // for (i = 0; i < N; i+=3) { 2690 // ... do something to R, G, B 2691 // Pic[i] = R; // Member of index 0 2692 // Pic[i+1] = G; // Member of index 1 2693 // Pic[i+2] = B; // Member of index 2 2694 // } 2695 // To: 2696 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2697 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2698 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2699 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2700 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2701 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2702 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2703 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2704 VPValue *BlockInMask) { 2705 Instruction *Instr = Group->getInsertPos(); 2706 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2707 2708 // Prepare for the vector type of the interleaved load/store. 2709 Type *ScalarTy = getLoadStoreType(Instr); 2710 unsigned InterleaveFactor = Group->getFactor(); 2711 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2712 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2713 2714 // Prepare for the new pointers. 2715 SmallVector<Value *, 2> AddrParts; 2716 unsigned Index = Group->getIndex(Instr); 2717 2718 // TODO: extend the masked interleaved-group support to reversed access. 2719 assert((!BlockInMask || !Group->isReverse()) && 2720 "Reversed masked interleave-group not supported."); 2721 2722 // If the group is reverse, adjust the index to refer to the last vector lane 2723 // instead of the first. We adjust the index from the first vector lane, 2724 // rather than directly getting the pointer for lane VF - 1, because the 2725 // pointer operand of the interleaved access is supposed to be uniform. For 2726 // uniform instructions, we're only required to generate a value for the 2727 // first vector lane in each unroll iteration. 2728 if (Group->isReverse()) 2729 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2730 2731 for (unsigned Part = 0; Part < UF; Part++) { 2732 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2733 setDebugLocFromInst(AddrPart); 2734 2735 // Notice current instruction could be any index. Need to adjust the address 2736 // to the member of index 0. 2737 // 2738 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2739 // b = A[i]; // Member of index 0 2740 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2741 // 2742 // E.g. A[i+1] = a; // Member of index 1 2743 // A[i] = b; // Member of index 0 2744 // A[i+2] = c; // Member of index 2 (Current instruction) 2745 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2746 2747 bool InBounds = false; 2748 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2749 InBounds = gep->isInBounds(); 2750 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2751 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2752 2753 // Cast to the vector pointer type. 2754 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2755 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2756 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2757 } 2758 2759 setDebugLocFromInst(Instr); 2760 Value *PoisonVec = PoisonValue::get(VecTy); 2761 2762 Value *MaskForGaps = nullptr; 2763 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2764 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2765 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2766 } 2767 2768 // Vectorize the interleaved load group. 2769 if (isa<LoadInst>(Instr)) { 2770 // For each unroll part, create a wide load for the group. 2771 SmallVector<Value *, 2> NewLoads; 2772 for (unsigned Part = 0; Part < UF; Part++) { 2773 Instruction *NewLoad; 2774 if (BlockInMask || MaskForGaps) { 2775 assert(useMaskedInterleavedAccesses(*TTI) && 2776 "masked interleaved groups are not allowed."); 2777 Value *GroupMask = MaskForGaps; 2778 if (BlockInMask) { 2779 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2780 Value *ShuffledMask = Builder.CreateShuffleVector( 2781 BlockInMaskPart, 2782 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2783 "interleaved.mask"); 2784 GroupMask = MaskForGaps 2785 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2786 MaskForGaps) 2787 : ShuffledMask; 2788 } 2789 NewLoad = 2790 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2791 GroupMask, PoisonVec, "wide.masked.vec"); 2792 } 2793 else 2794 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2795 Group->getAlign(), "wide.vec"); 2796 Group->addMetadata(NewLoad); 2797 NewLoads.push_back(NewLoad); 2798 } 2799 2800 // For each member in the group, shuffle out the appropriate data from the 2801 // wide loads. 2802 unsigned J = 0; 2803 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2804 Instruction *Member = Group->getMember(I); 2805 2806 // Skip the gaps in the group. 2807 if (!Member) 2808 continue; 2809 2810 auto StrideMask = 2811 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2812 for (unsigned Part = 0; Part < UF; Part++) { 2813 Value *StridedVec = Builder.CreateShuffleVector( 2814 NewLoads[Part], StrideMask, "strided.vec"); 2815 2816 // If this member has different type, cast the result type. 2817 if (Member->getType() != ScalarTy) { 2818 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2819 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2820 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2821 } 2822 2823 if (Group->isReverse()) 2824 StridedVec = reverseVector(StridedVec); 2825 2826 State.set(VPDefs[J], StridedVec, Part); 2827 } 2828 ++J; 2829 } 2830 return; 2831 } 2832 2833 // The sub vector type for current instruction. 2834 auto *SubVT = VectorType::get(ScalarTy, VF); 2835 2836 // Vectorize the interleaved store group. 2837 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2838 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2839 "masked interleaved groups are not allowed."); 2840 assert((!MaskForGaps || !VF.isScalable()) && 2841 "masking gaps for scalable vectors is not yet supported."); 2842 for (unsigned Part = 0; Part < UF; Part++) { 2843 // Collect the stored vector from each member. 2844 SmallVector<Value *, 4> StoredVecs; 2845 for (unsigned i = 0; i < InterleaveFactor; i++) { 2846 assert((Group->getMember(i) || MaskForGaps) && 2847 "Fail to get a member from an interleaved store group"); 2848 Instruction *Member = Group->getMember(i); 2849 2850 // Skip the gaps in the group. 2851 if (!Member) { 2852 Value *Undef = PoisonValue::get(SubVT); 2853 StoredVecs.push_back(Undef); 2854 continue; 2855 } 2856 2857 Value *StoredVec = State.get(StoredValues[i], Part); 2858 2859 if (Group->isReverse()) 2860 StoredVec = reverseVector(StoredVec); 2861 2862 // If this member has different type, cast it to a unified type. 2863 2864 if (StoredVec->getType() != SubVT) 2865 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2866 2867 StoredVecs.push_back(StoredVec); 2868 } 2869 2870 // Concatenate all vectors into a wide vector. 2871 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2872 2873 // Interleave the elements in the wide vector. 2874 Value *IVec = Builder.CreateShuffleVector( 2875 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2876 "interleaved.vec"); 2877 2878 Instruction *NewStoreInstr; 2879 if (BlockInMask || MaskForGaps) { 2880 Value *GroupMask = MaskForGaps; 2881 if (BlockInMask) { 2882 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2883 Value *ShuffledMask = Builder.CreateShuffleVector( 2884 BlockInMaskPart, 2885 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2886 "interleaved.mask"); 2887 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2888 ShuffledMask, MaskForGaps) 2889 : ShuffledMask; 2890 } 2891 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2892 Group->getAlign(), GroupMask); 2893 } else 2894 NewStoreInstr = 2895 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2896 2897 Group->addMetadata(NewStoreInstr); 2898 } 2899 } 2900 2901 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2902 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2903 VPValue *StoredValue, VPValue *BlockInMask) { 2904 // Attempt to issue a wide load. 2905 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2906 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2907 2908 assert((LI || SI) && "Invalid Load/Store instruction"); 2909 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2910 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2911 2912 LoopVectorizationCostModel::InstWidening Decision = 2913 Cost->getWideningDecision(Instr, VF); 2914 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2915 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2916 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2917 "CM decision is not to widen the memory instruction"); 2918 2919 Type *ScalarDataTy = getLoadStoreType(Instr); 2920 2921 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2922 const Align Alignment = getLoadStoreAlignment(Instr); 2923 2924 // Determine if the pointer operand of the access is either consecutive or 2925 // reverse consecutive. 2926 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2927 bool ConsecutiveStride = 2928 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2929 bool CreateGatherScatter = 2930 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2931 2932 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2933 // gather/scatter. Otherwise Decision should have been to Scalarize. 2934 assert((ConsecutiveStride || CreateGatherScatter) && 2935 "The instruction should be scalarized"); 2936 (void)ConsecutiveStride; 2937 2938 VectorParts BlockInMaskParts(UF); 2939 bool isMaskRequired = BlockInMask; 2940 if (isMaskRequired) 2941 for (unsigned Part = 0; Part < UF; ++Part) 2942 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2943 2944 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2945 // Calculate the pointer for the specific unroll-part. 2946 GetElementPtrInst *PartPtr = nullptr; 2947 2948 bool InBounds = false; 2949 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2950 InBounds = gep->isInBounds(); 2951 if (Reverse) { 2952 // If the address is consecutive but reversed, then the 2953 // wide store needs to start at the last vector element. 2954 // RunTimeVF = VScale * VF.getKnownMinValue() 2955 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2956 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2957 // NumElt = -Part * RunTimeVF 2958 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2959 // LastLane = 1 - RunTimeVF 2960 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2961 PartPtr = 2962 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2963 PartPtr->setIsInBounds(InBounds); 2964 PartPtr = cast<GetElementPtrInst>( 2965 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2966 PartPtr->setIsInBounds(InBounds); 2967 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2968 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2969 } else { 2970 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2971 PartPtr = cast<GetElementPtrInst>( 2972 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2973 PartPtr->setIsInBounds(InBounds); 2974 } 2975 2976 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2977 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2978 }; 2979 2980 // Handle Stores: 2981 if (SI) { 2982 setDebugLocFromInst(SI); 2983 2984 for (unsigned Part = 0; Part < UF; ++Part) { 2985 Instruction *NewSI = nullptr; 2986 Value *StoredVal = State.get(StoredValue, Part); 2987 if (CreateGatherScatter) { 2988 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2989 Value *VectorGep = State.get(Addr, Part); 2990 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2991 MaskPart); 2992 } else { 2993 if (Reverse) { 2994 // If we store to reverse consecutive memory locations, then we need 2995 // to reverse the order of elements in the stored value. 2996 StoredVal = reverseVector(StoredVal); 2997 // We don't want to update the value in the map as it might be used in 2998 // another expression. So don't call resetVectorValue(StoredVal). 2999 } 3000 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3001 if (isMaskRequired) 3002 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3003 BlockInMaskParts[Part]); 3004 else 3005 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3006 } 3007 addMetadata(NewSI, SI); 3008 } 3009 return; 3010 } 3011 3012 // Handle loads. 3013 assert(LI && "Must have a load instruction"); 3014 setDebugLocFromInst(LI); 3015 for (unsigned Part = 0; Part < UF; ++Part) { 3016 Value *NewLI; 3017 if (CreateGatherScatter) { 3018 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3019 Value *VectorGep = State.get(Addr, Part); 3020 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3021 nullptr, "wide.masked.gather"); 3022 addMetadata(NewLI, LI); 3023 } else { 3024 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3025 if (isMaskRequired) 3026 NewLI = Builder.CreateMaskedLoad( 3027 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3028 PoisonValue::get(DataTy), "wide.masked.load"); 3029 else 3030 NewLI = 3031 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3032 3033 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3034 addMetadata(NewLI, LI); 3035 if (Reverse) 3036 NewLI = reverseVector(NewLI); 3037 } 3038 3039 State.set(Def, NewLI, Part); 3040 } 3041 } 3042 3043 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3044 VPUser &User, 3045 const VPIteration &Instance, 3046 bool IfPredicateInstr, 3047 VPTransformState &State) { 3048 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3049 3050 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3051 // the first lane and part. 3052 if (isa<NoAliasScopeDeclInst>(Instr)) 3053 if (!Instance.isFirstIteration()) 3054 return; 3055 3056 setDebugLocFromInst(Instr); 3057 3058 // Does this instruction return a value ? 3059 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3060 3061 Instruction *Cloned = Instr->clone(); 3062 if (!IsVoidRetTy) 3063 Cloned->setName(Instr->getName() + ".cloned"); 3064 3065 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3066 Builder.GetInsertPoint()); 3067 // Replace the operands of the cloned instructions with their scalar 3068 // equivalents in the new loop. 3069 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3070 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3071 auto InputInstance = Instance; 3072 if (!Operand || !OrigLoop->contains(Operand) || 3073 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3074 InputInstance.Lane = VPLane::getFirstLane(); 3075 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3076 Cloned->setOperand(op, NewOp); 3077 } 3078 addNewMetadata(Cloned, Instr); 3079 3080 // Place the cloned scalar in the new loop. 3081 Builder.Insert(Cloned); 3082 3083 State.set(Def, Cloned, Instance); 3084 3085 // If we just cloned a new assumption, add it the assumption cache. 3086 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3087 AC->registerAssumption(II); 3088 3089 // End if-block. 3090 if (IfPredicateInstr) 3091 PredicatedInstructions.push_back(Cloned); 3092 } 3093 3094 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3095 Value *End, Value *Step, 3096 Instruction *DL) { 3097 BasicBlock *Header = L->getHeader(); 3098 BasicBlock *Latch = L->getLoopLatch(); 3099 // As we're just creating this loop, it's possible no latch exists 3100 // yet. If so, use the header as this will be a single block loop. 3101 if (!Latch) 3102 Latch = Header; 3103 3104 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3105 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3106 setDebugLocFromInst(OldInst, &B); 3107 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3108 3109 B.SetInsertPoint(Latch->getTerminator()); 3110 setDebugLocFromInst(OldInst, &B); 3111 3112 // Create i+1 and fill the PHINode. 3113 // 3114 // If the tail is not folded, we know that End - Start >= Step (either 3115 // statically or through the minimum iteration checks). We also know that both 3116 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3117 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3118 // overflows and we can mark the induction increment as NUW. 3119 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3120 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3121 Induction->addIncoming(Start, L->getLoopPreheader()); 3122 Induction->addIncoming(Next, Latch); 3123 // Create the compare. 3124 Value *ICmp = B.CreateICmpEQ(Next, End); 3125 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3126 3127 // Now we have two terminators. Remove the old one from the block. 3128 Latch->getTerminator()->eraseFromParent(); 3129 3130 return Induction; 3131 } 3132 3133 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3134 if (TripCount) 3135 return TripCount; 3136 3137 assert(L && "Create Trip Count for null loop."); 3138 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3139 // Find the loop boundaries. 3140 ScalarEvolution *SE = PSE.getSE(); 3141 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3142 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3143 "Invalid loop count"); 3144 3145 Type *IdxTy = Legal->getWidestInductionType(); 3146 assert(IdxTy && "No type for induction"); 3147 3148 // The exit count might have the type of i64 while the phi is i32. This can 3149 // happen if we have an induction variable that is sign extended before the 3150 // compare. The only way that we get a backedge taken count is that the 3151 // induction variable was signed and as such will not overflow. In such a case 3152 // truncation is legal. 3153 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3154 IdxTy->getPrimitiveSizeInBits()) 3155 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3156 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3157 3158 // Get the total trip count from the count by adding 1. 3159 const SCEV *ExitCount = SE->getAddExpr( 3160 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3161 3162 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3163 3164 // Expand the trip count and place the new instructions in the preheader. 3165 // Notice that the pre-header does not change, only the loop body. 3166 SCEVExpander Exp(*SE, DL, "induction"); 3167 3168 // Count holds the overall loop count (N). 3169 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3170 L->getLoopPreheader()->getTerminator()); 3171 3172 if (TripCount->getType()->isPointerTy()) 3173 TripCount = 3174 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3175 L->getLoopPreheader()->getTerminator()); 3176 3177 return TripCount; 3178 } 3179 3180 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3181 if (VectorTripCount) 3182 return VectorTripCount; 3183 3184 Value *TC = getOrCreateTripCount(L); 3185 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3186 3187 Type *Ty = TC->getType(); 3188 // This is where we can make the step a runtime constant. 3189 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3190 3191 // If the tail is to be folded by masking, round the number of iterations N 3192 // up to a multiple of Step instead of rounding down. This is done by first 3193 // adding Step-1 and then rounding down. Note that it's ok if this addition 3194 // overflows: the vector induction variable will eventually wrap to zero given 3195 // that it starts at zero and its Step is a power of two; the loop will then 3196 // exit, with the last early-exit vector comparison also producing all-true. 3197 if (Cost->foldTailByMasking()) { 3198 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3199 "VF*UF must be a power of 2 when folding tail by masking"); 3200 assert(!VF.isScalable() && 3201 "Tail folding not yet supported for scalable vectors"); 3202 TC = Builder.CreateAdd( 3203 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3204 } 3205 3206 // Now we need to generate the expression for the part of the loop that the 3207 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3208 // iterations are not required for correctness, or N - Step, otherwise. Step 3209 // is equal to the vectorization factor (number of SIMD elements) times the 3210 // unroll factor (number of SIMD instructions). 3211 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3212 3213 // There are cases where we *must* run at least one iteration in the remainder 3214 // loop. See the cost model for when this can happen. If the step evenly 3215 // divides the trip count, we set the remainder to be equal to the step. If 3216 // the step does not evenly divide the trip count, no adjustment is necessary 3217 // since there will already be scalar iterations. Note that the minimum 3218 // iterations check ensures that N >= Step. 3219 if (Cost->requiresScalarEpilogue(VF)) { 3220 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3221 R = Builder.CreateSelect(IsZero, Step, R); 3222 } 3223 3224 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3225 3226 return VectorTripCount; 3227 } 3228 3229 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3230 const DataLayout &DL) { 3231 // Verify that V is a vector type with same number of elements as DstVTy. 3232 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3233 unsigned VF = DstFVTy->getNumElements(); 3234 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3235 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3236 Type *SrcElemTy = SrcVecTy->getElementType(); 3237 Type *DstElemTy = DstFVTy->getElementType(); 3238 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3239 "Vector elements must have same size"); 3240 3241 // Do a direct cast if element types are castable. 3242 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3243 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3244 } 3245 // V cannot be directly casted to desired vector type. 3246 // May happen when V is a floating point vector but DstVTy is a vector of 3247 // pointers or vice-versa. Handle this using a two-step bitcast using an 3248 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3249 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3250 "Only one type should be a pointer type"); 3251 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3252 "Only one type should be a floating point type"); 3253 Type *IntTy = 3254 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3255 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3256 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3257 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3258 } 3259 3260 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3261 BasicBlock *Bypass) { 3262 Value *Count = getOrCreateTripCount(L); 3263 // Reuse existing vector loop preheader for TC checks. 3264 // Note that new preheader block is generated for vector loop. 3265 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3266 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3267 3268 // Generate code to check if the loop's trip count is less than VF * UF, or 3269 // equal to it in case a scalar epilogue is required; this implies that the 3270 // vector trip count is zero. This check also covers the case where adding one 3271 // to the backedge-taken count overflowed leading to an incorrect trip count 3272 // of zero. In this case we will also jump to the scalar loop. 3273 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3274 : ICmpInst::ICMP_ULT; 3275 3276 // If tail is to be folded, vector loop takes care of all iterations. 3277 Value *CheckMinIters = Builder.getFalse(); 3278 if (!Cost->foldTailByMasking()) { 3279 Value *Step = 3280 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3281 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3282 } 3283 // Create new preheader for vector loop. 3284 LoopVectorPreHeader = 3285 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3286 "vector.ph"); 3287 3288 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3289 DT->getNode(Bypass)->getIDom()) && 3290 "TC check is expected to dominate Bypass"); 3291 3292 // Update dominator for Bypass & LoopExit (if needed). 3293 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3294 if (!Cost->requiresScalarEpilogue(VF)) 3295 // If there is an epilogue which must run, there's no edge from the 3296 // middle block to exit blocks and thus no need to update the immediate 3297 // dominator of the exit blocks. 3298 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3299 3300 ReplaceInstWithInst( 3301 TCCheckBlock->getTerminator(), 3302 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3303 LoopBypassBlocks.push_back(TCCheckBlock); 3304 } 3305 3306 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3307 3308 BasicBlock *const SCEVCheckBlock = 3309 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3310 if (!SCEVCheckBlock) 3311 return nullptr; 3312 3313 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3314 (OptForSizeBasedOnProfile && 3315 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3316 "Cannot SCEV check stride or overflow when optimizing for size"); 3317 3318 3319 // Update dominator only if this is first RT check. 3320 if (LoopBypassBlocks.empty()) { 3321 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3322 if (!Cost->requiresScalarEpilogue(VF)) 3323 // If there is an epilogue which must run, there's no edge from the 3324 // middle block to exit blocks and thus no need to update the immediate 3325 // dominator of the exit blocks. 3326 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3327 } 3328 3329 LoopBypassBlocks.push_back(SCEVCheckBlock); 3330 AddedSafetyChecks = true; 3331 return SCEVCheckBlock; 3332 } 3333 3334 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3335 BasicBlock *Bypass) { 3336 // VPlan-native path does not do any analysis for runtime checks currently. 3337 if (EnableVPlanNativePath) 3338 return nullptr; 3339 3340 BasicBlock *const MemCheckBlock = 3341 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3342 3343 // Check if we generated code that checks in runtime if arrays overlap. We put 3344 // the checks into a separate block to make the more common case of few 3345 // elements faster. 3346 if (!MemCheckBlock) 3347 return nullptr; 3348 3349 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3350 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3351 "Cannot emit memory checks when optimizing for size, unless forced " 3352 "to vectorize."); 3353 ORE->emit([&]() { 3354 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3355 L->getStartLoc(), L->getHeader()) 3356 << "Code-size may be reduced by not forcing " 3357 "vectorization, or by source-code modifications " 3358 "eliminating the need for runtime checks " 3359 "(e.g., adding 'restrict')."; 3360 }); 3361 } 3362 3363 LoopBypassBlocks.push_back(MemCheckBlock); 3364 3365 AddedSafetyChecks = true; 3366 3367 // We currently don't use LoopVersioning for the actual loop cloning but we 3368 // still use it to add the noalias metadata. 3369 LVer = std::make_unique<LoopVersioning>( 3370 *Legal->getLAI(), 3371 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3372 DT, PSE.getSE()); 3373 LVer->prepareNoAliasMetadata(); 3374 return MemCheckBlock; 3375 } 3376 3377 Value *InnerLoopVectorizer::emitTransformedIndex( 3378 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3379 const InductionDescriptor &ID) const { 3380 3381 SCEVExpander Exp(*SE, DL, "induction"); 3382 auto Step = ID.getStep(); 3383 auto StartValue = ID.getStartValue(); 3384 assert(Index->getType()->getScalarType() == Step->getType() && 3385 "Index scalar type does not match StepValue type"); 3386 3387 // Note: the IR at this point is broken. We cannot use SE to create any new 3388 // SCEV and then expand it, hoping that SCEV's simplification will give us 3389 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3390 // lead to various SCEV crashes. So all we can do is to use builder and rely 3391 // on InstCombine for future simplifications. Here we handle some trivial 3392 // cases only. 3393 auto CreateAdd = [&B](Value *X, Value *Y) { 3394 assert(X->getType() == Y->getType() && "Types don't match!"); 3395 if (auto *CX = dyn_cast<ConstantInt>(X)) 3396 if (CX->isZero()) 3397 return Y; 3398 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3399 if (CY->isZero()) 3400 return X; 3401 return B.CreateAdd(X, Y); 3402 }; 3403 3404 // We allow X to be a vector type, in which case Y will potentially be 3405 // splatted into a vector with the same element count. 3406 auto CreateMul = [&B](Value *X, Value *Y) { 3407 assert(X->getType()->getScalarType() == Y->getType() && 3408 "Types don't match!"); 3409 if (auto *CX = dyn_cast<ConstantInt>(X)) 3410 if (CX->isOne()) 3411 return Y; 3412 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3413 if (CY->isOne()) 3414 return X; 3415 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3416 if (XVTy && !isa<VectorType>(Y->getType())) 3417 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3418 return B.CreateMul(X, Y); 3419 }; 3420 3421 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3422 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3423 // the DomTree is not kept up-to-date for additional blocks generated in the 3424 // vector loop. By using the header as insertion point, we guarantee that the 3425 // expanded instructions dominate all their uses. 3426 auto GetInsertPoint = [this, &B]() { 3427 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3428 if (InsertBB != LoopVectorBody && 3429 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3430 return LoopVectorBody->getTerminator(); 3431 return &*B.GetInsertPoint(); 3432 }; 3433 3434 switch (ID.getKind()) { 3435 case InductionDescriptor::IK_IntInduction: { 3436 assert(!isa<VectorType>(Index->getType()) && 3437 "Vector indices not supported for integer inductions yet"); 3438 assert(Index->getType() == StartValue->getType() && 3439 "Index type does not match StartValue type"); 3440 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3441 return B.CreateSub(StartValue, Index); 3442 auto *Offset = CreateMul( 3443 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3444 return CreateAdd(StartValue, Offset); 3445 } 3446 case InductionDescriptor::IK_PtrInduction: { 3447 assert(isa<SCEVConstant>(Step) && 3448 "Expected constant step for pointer induction"); 3449 return B.CreateGEP( 3450 ID.getElementType(), StartValue, 3451 CreateMul(Index, 3452 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3453 GetInsertPoint()))); 3454 } 3455 case InductionDescriptor::IK_FpInduction: { 3456 assert(!isa<VectorType>(Index->getType()) && 3457 "Vector indices not supported for FP inductions yet"); 3458 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3459 auto InductionBinOp = ID.getInductionBinOp(); 3460 assert(InductionBinOp && 3461 (InductionBinOp->getOpcode() == Instruction::FAdd || 3462 InductionBinOp->getOpcode() == Instruction::FSub) && 3463 "Original bin op should be defined for FP induction"); 3464 3465 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3466 Value *MulExp = B.CreateFMul(StepValue, Index); 3467 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3468 "induction"); 3469 } 3470 case InductionDescriptor::IK_NoInduction: 3471 return nullptr; 3472 } 3473 llvm_unreachable("invalid enum"); 3474 } 3475 3476 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3477 LoopScalarBody = OrigLoop->getHeader(); 3478 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3479 assert(LoopVectorPreHeader && "Invalid loop structure"); 3480 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3481 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3482 "multiple exit loop without required epilogue?"); 3483 3484 LoopMiddleBlock = 3485 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3486 LI, nullptr, Twine(Prefix) + "middle.block"); 3487 LoopScalarPreHeader = 3488 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3489 nullptr, Twine(Prefix) + "scalar.ph"); 3490 3491 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3492 3493 // Set up the middle block terminator. Two cases: 3494 // 1) If we know that we must execute the scalar epilogue, emit an 3495 // unconditional branch. 3496 // 2) Otherwise, we must have a single unique exit block (due to how we 3497 // implement the multiple exit case). In this case, set up a conditonal 3498 // branch from the middle block to the loop scalar preheader, and the 3499 // exit block. completeLoopSkeleton will update the condition to use an 3500 // iteration check, if required to decide whether to execute the remainder. 3501 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3502 BranchInst::Create(LoopScalarPreHeader) : 3503 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3504 Builder.getTrue()); 3505 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3506 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3507 3508 // We intentionally don't let SplitBlock to update LoopInfo since 3509 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3510 // LoopVectorBody is explicitly added to the correct place few lines later. 3511 LoopVectorBody = 3512 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3513 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3514 3515 // Update dominator for loop exit. 3516 if (!Cost->requiresScalarEpilogue(VF)) 3517 // If there is an epilogue which must run, there's no edge from the 3518 // middle block to exit blocks and thus no need to update the immediate 3519 // dominator of the exit blocks. 3520 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3521 3522 // Create and register the new vector loop. 3523 Loop *Lp = LI->AllocateLoop(); 3524 Loop *ParentLoop = OrigLoop->getParentLoop(); 3525 3526 // Insert the new loop into the loop nest and register the new basic blocks 3527 // before calling any utilities such as SCEV that require valid LoopInfo. 3528 if (ParentLoop) { 3529 ParentLoop->addChildLoop(Lp); 3530 } else { 3531 LI->addTopLevelLoop(Lp); 3532 } 3533 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3534 return Lp; 3535 } 3536 3537 void InnerLoopVectorizer::createInductionResumeValues( 3538 Loop *L, Value *VectorTripCount, 3539 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3540 assert(VectorTripCount && L && "Expected valid arguments"); 3541 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3542 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3543 "Inconsistent information about additional bypass."); 3544 // We are going to resume the execution of the scalar loop. 3545 // Go over all of the induction variables that we found and fix the 3546 // PHIs that are left in the scalar version of the loop. 3547 // The starting values of PHI nodes depend on the counter of the last 3548 // iteration in the vectorized loop. 3549 // If we come from a bypass edge then we need to start from the original 3550 // start value. 3551 for (auto &InductionEntry : Legal->getInductionVars()) { 3552 PHINode *OrigPhi = InductionEntry.first; 3553 InductionDescriptor II = InductionEntry.second; 3554 3555 // Create phi nodes to merge from the backedge-taken check block. 3556 PHINode *BCResumeVal = 3557 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3558 LoopScalarPreHeader->getTerminator()); 3559 // Copy original phi DL over to the new one. 3560 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3561 Value *&EndValue = IVEndValues[OrigPhi]; 3562 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3563 if (OrigPhi == OldInduction) { 3564 // We know what the end value is. 3565 EndValue = VectorTripCount; 3566 } else { 3567 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3568 3569 // Fast-math-flags propagate from the original induction instruction. 3570 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3571 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3572 3573 Type *StepType = II.getStep()->getType(); 3574 Instruction::CastOps CastOp = 3575 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3576 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3577 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3578 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3579 EndValue->setName("ind.end"); 3580 3581 // Compute the end value for the additional bypass (if applicable). 3582 if (AdditionalBypass.first) { 3583 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3584 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3585 StepType, true); 3586 CRD = 3587 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3588 EndValueFromAdditionalBypass = 3589 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3590 EndValueFromAdditionalBypass->setName("ind.end"); 3591 } 3592 } 3593 // The new PHI merges the original incoming value, in case of a bypass, 3594 // or the value at the end of the vectorized loop. 3595 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3596 3597 // Fix the scalar body counter (PHI node). 3598 // The old induction's phi node in the scalar body needs the truncated 3599 // value. 3600 for (BasicBlock *BB : LoopBypassBlocks) 3601 BCResumeVal->addIncoming(II.getStartValue(), BB); 3602 3603 if (AdditionalBypass.first) 3604 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3605 EndValueFromAdditionalBypass); 3606 3607 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3608 } 3609 } 3610 3611 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3612 MDNode *OrigLoopID) { 3613 assert(L && "Expected valid loop."); 3614 3615 // The trip counts should be cached by now. 3616 Value *Count = getOrCreateTripCount(L); 3617 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3618 3619 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3620 3621 // Add a check in the middle block to see if we have completed 3622 // all of the iterations in the first vector loop. Three cases: 3623 // 1) If we require a scalar epilogue, there is no conditional branch as 3624 // we unconditionally branch to the scalar preheader. Do nothing. 3625 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3626 // Thus if tail is to be folded, we know we don't need to run the 3627 // remainder and we can use the previous value for the condition (true). 3628 // 3) Otherwise, construct a runtime check. 3629 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3630 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3631 Count, VectorTripCount, "cmp.n", 3632 LoopMiddleBlock->getTerminator()); 3633 3634 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3635 // of the corresponding compare because they may have ended up with 3636 // different line numbers and we want to avoid awkward line stepping while 3637 // debugging. Eg. if the compare has got a line number inside the loop. 3638 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3639 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3640 } 3641 3642 // Get ready to start creating new instructions into the vectorized body. 3643 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3644 "Inconsistent vector loop preheader"); 3645 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3646 3647 Optional<MDNode *> VectorizedLoopID = 3648 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3649 LLVMLoopVectorizeFollowupVectorized}); 3650 if (VectorizedLoopID.hasValue()) { 3651 L->setLoopID(VectorizedLoopID.getValue()); 3652 3653 // Do not setAlreadyVectorized if loop attributes have been defined 3654 // explicitly. 3655 return LoopVectorPreHeader; 3656 } 3657 3658 // Keep all loop hints from the original loop on the vector loop (we'll 3659 // replace the vectorizer-specific hints below). 3660 if (MDNode *LID = OrigLoop->getLoopID()) 3661 L->setLoopID(LID); 3662 3663 LoopVectorizeHints Hints(L, true, *ORE); 3664 Hints.setAlreadyVectorized(); 3665 3666 #ifdef EXPENSIVE_CHECKS 3667 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3668 LI->verify(*DT); 3669 #endif 3670 3671 return LoopVectorPreHeader; 3672 } 3673 3674 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3675 /* 3676 In this function we generate a new loop. The new loop will contain 3677 the vectorized instructions while the old loop will continue to run the 3678 scalar remainder. 3679 3680 [ ] <-- loop iteration number check. 3681 / | 3682 / v 3683 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3684 | / | 3685 | / v 3686 || [ ] <-- vector pre header. 3687 |/ | 3688 | v 3689 | [ ] \ 3690 | [ ]_| <-- vector loop. 3691 | | 3692 | v 3693 \ -[ ] <--- middle-block. 3694 \/ | 3695 /\ v 3696 | ->[ ] <--- new preheader. 3697 | | 3698 (opt) v <-- edge from middle to exit iff epilogue is not required. 3699 | [ ] \ 3700 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3701 \ | 3702 \ v 3703 >[ ] <-- exit block(s). 3704 ... 3705 */ 3706 3707 // Get the metadata of the original loop before it gets modified. 3708 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3709 3710 // Workaround! Compute the trip count of the original loop and cache it 3711 // before we start modifying the CFG. This code has a systemic problem 3712 // wherein it tries to run analysis over partially constructed IR; this is 3713 // wrong, and not simply for SCEV. The trip count of the original loop 3714 // simply happens to be prone to hitting this in practice. In theory, we 3715 // can hit the same issue for any SCEV, or ValueTracking query done during 3716 // mutation. See PR49900. 3717 getOrCreateTripCount(OrigLoop); 3718 3719 // Create an empty vector loop, and prepare basic blocks for the runtime 3720 // checks. 3721 Loop *Lp = createVectorLoopSkeleton(""); 3722 3723 // Now, compare the new count to zero. If it is zero skip the vector loop and 3724 // jump to the scalar loop. This check also covers the case where the 3725 // backedge-taken count is uint##_max: adding one to it will overflow leading 3726 // to an incorrect trip count of zero. In this (rare) case we will also jump 3727 // to the scalar loop. 3728 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3729 3730 // Generate the code to check any assumptions that we've made for SCEV 3731 // expressions. 3732 emitSCEVChecks(Lp, LoopScalarPreHeader); 3733 3734 // Generate the code that checks in runtime if arrays overlap. We put the 3735 // checks into a separate block to make the more common case of few elements 3736 // faster. 3737 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3738 3739 // Some loops have a single integer induction variable, while other loops 3740 // don't. One example is c++ iterators that often have multiple pointer 3741 // induction variables. In the code below we also support a case where we 3742 // don't have a single induction variable. 3743 // 3744 // We try to obtain an induction variable from the original loop as hard 3745 // as possible. However if we don't find one that: 3746 // - is an integer 3747 // - counts from zero, stepping by one 3748 // - is the size of the widest induction variable type 3749 // then we create a new one. 3750 OldInduction = Legal->getPrimaryInduction(); 3751 Type *IdxTy = Legal->getWidestInductionType(); 3752 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3753 // The loop step is equal to the vectorization factor (num of SIMD elements) 3754 // times the unroll factor (num of SIMD instructions). 3755 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3756 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3757 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3758 Induction = 3759 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3760 getDebugLocFromInstOrOperands(OldInduction)); 3761 3762 // Emit phis for the new starting index of the scalar loop. 3763 createInductionResumeValues(Lp, CountRoundDown); 3764 3765 return completeLoopSkeleton(Lp, OrigLoopID); 3766 } 3767 3768 // Fix up external users of the induction variable. At this point, we are 3769 // in LCSSA form, with all external PHIs that use the IV having one input value, 3770 // coming from the remainder loop. We need those PHIs to also have a correct 3771 // value for the IV when arriving directly from the middle block. 3772 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3773 const InductionDescriptor &II, 3774 Value *CountRoundDown, Value *EndValue, 3775 BasicBlock *MiddleBlock) { 3776 // There are two kinds of external IV usages - those that use the value 3777 // computed in the last iteration (the PHI) and those that use the penultimate 3778 // value (the value that feeds into the phi from the loop latch). 3779 // We allow both, but they, obviously, have different values. 3780 3781 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3782 3783 DenseMap<Value *, Value *> MissingVals; 3784 3785 // An external user of the last iteration's value should see the value that 3786 // the remainder loop uses to initialize its own IV. 3787 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3788 for (User *U : PostInc->users()) { 3789 Instruction *UI = cast<Instruction>(U); 3790 if (!OrigLoop->contains(UI)) { 3791 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3792 MissingVals[UI] = EndValue; 3793 } 3794 } 3795 3796 // An external user of the penultimate value need to see EndValue - Step. 3797 // The simplest way to get this is to recompute it from the constituent SCEVs, 3798 // that is Start + (Step * (CRD - 1)). 3799 for (User *U : OrigPhi->users()) { 3800 auto *UI = cast<Instruction>(U); 3801 if (!OrigLoop->contains(UI)) { 3802 const DataLayout &DL = 3803 OrigLoop->getHeader()->getModule()->getDataLayout(); 3804 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3805 3806 IRBuilder<> B(MiddleBlock->getTerminator()); 3807 3808 // Fast-math-flags propagate from the original induction instruction. 3809 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3810 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3811 3812 Value *CountMinusOne = B.CreateSub( 3813 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3814 Value *CMO = 3815 !II.getStep()->getType()->isIntegerTy() 3816 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3817 II.getStep()->getType()) 3818 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3819 CMO->setName("cast.cmo"); 3820 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3821 Escape->setName("ind.escape"); 3822 MissingVals[UI] = Escape; 3823 } 3824 } 3825 3826 for (auto &I : MissingVals) { 3827 PHINode *PHI = cast<PHINode>(I.first); 3828 // One corner case we have to handle is two IVs "chasing" each-other, 3829 // that is %IV2 = phi [...], [ %IV1, %latch ] 3830 // In this case, if IV1 has an external use, we need to avoid adding both 3831 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3832 // don't already have an incoming value for the middle block. 3833 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3834 PHI->addIncoming(I.second, MiddleBlock); 3835 } 3836 } 3837 3838 namespace { 3839 3840 struct CSEDenseMapInfo { 3841 static bool canHandle(const Instruction *I) { 3842 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3843 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3844 } 3845 3846 static inline Instruction *getEmptyKey() { 3847 return DenseMapInfo<Instruction *>::getEmptyKey(); 3848 } 3849 3850 static inline Instruction *getTombstoneKey() { 3851 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3852 } 3853 3854 static unsigned getHashValue(const Instruction *I) { 3855 assert(canHandle(I) && "Unknown instruction!"); 3856 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3857 I->value_op_end())); 3858 } 3859 3860 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3861 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3862 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3863 return LHS == RHS; 3864 return LHS->isIdenticalTo(RHS); 3865 } 3866 }; 3867 3868 } // end anonymous namespace 3869 3870 ///Perform cse of induction variable instructions. 3871 static void cse(BasicBlock *BB) { 3872 // Perform simple cse. 3873 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3874 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3875 if (!CSEDenseMapInfo::canHandle(&In)) 3876 continue; 3877 3878 // Check if we can replace this instruction with any of the 3879 // visited instructions. 3880 if (Instruction *V = CSEMap.lookup(&In)) { 3881 In.replaceAllUsesWith(V); 3882 In.eraseFromParent(); 3883 continue; 3884 } 3885 3886 CSEMap[&In] = &In; 3887 } 3888 } 3889 3890 InstructionCost 3891 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3892 bool &NeedToScalarize) const { 3893 Function *F = CI->getCalledFunction(); 3894 Type *ScalarRetTy = CI->getType(); 3895 SmallVector<Type *, 4> Tys, ScalarTys; 3896 for (auto &ArgOp : CI->arg_operands()) 3897 ScalarTys.push_back(ArgOp->getType()); 3898 3899 // Estimate cost of scalarized vector call. The source operands are assumed 3900 // to be vectors, so we need to extract individual elements from there, 3901 // execute VF scalar calls, and then gather the result into the vector return 3902 // value. 3903 InstructionCost ScalarCallCost = 3904 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3905 if (VF.isScalar()) 3906 return ScalarCallCost; 3907 3908 // Compute corresponding vector type for return value and arguments. 3909 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3910 for (Type *ScalarTy : ScalarTys) 3911 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3912 3913 // Compute costs of unpacking argument values for the scalar calls and 3914 // packing the return values to a vector. 3915 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3916 3917 InstructionCost Cost = 3918 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3919 3920 // If we can't emit a vector call for this function, then the currently found 3921 // cost is the cost we need to return. 3922 NeedToScalarize = true; 3923 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3924 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3925 3926 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3927 return Cost; 3928 3929 // If the corresponding vector cost is cheaper, return its cost. 3930 InstructionCost VectorCallCost = 3931 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3932 if (VectorCallCost < Cost) { 3933 NeedToScalarize = false; 3934 Cost = VectorCallCost; 3935 } 3936 return Cost; 3937 } 3938 3939 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3940 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3941 return Elt; 3942 return VectorType::get(Elt, VF); 3943 } 3944 3945 InstructionCost 3946 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3947 ElementCount VF) const { 3948 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3949 assert(ID && "Expected intrinsic call!"); 3950 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3951 FastMathFlags FMF; 3952 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3953 FMF = FPMO->getFastMathFlags(); 3954 3955 SmallVector<const Value *> Arguments(CI->args()); 3956 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3957 SmallVector<Type *> ParamTys; 3958 std::transform(FTy->param_begin(), FTy->param_end(), 3959 std::back_inserter(ParamTys), 3960 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3961 3962 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3963 dyn_cast<IntrinsicInst>(CI)); 3964 return TTI.getIntrinsicInstrCost(CostAttrs, 3965 TargetTransformInfo::TCK_RecipThroughput); 3966 } 3967 3968 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3969 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3970 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3971 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3972 } 3973 3974 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3975 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3976 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3977 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3978 } 3979 3980 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3981 // For every instruction `I` in MinBWs, truncate the operands, create a 3982 // truncated version of `I` and reextend its result. InstCombine runs 3983 // later and will remove any ext/trunc pairs. 3984 SmallPtrSet<Value *, 4> Erased; 3985 for (const auto &KV : Cost->getMinimalBitwidths()) { 3986 // If the value wasn't vectorized, we must maintain the original scalar 3987 // type. The absence of the value from State indicates that it 3988 // wasn't vectorized. 3989 // FIXME: Should not rely on getVPValue at this point. 3990 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3991 if (!State.hasAnyVectorValue(Def)) 3992 continue; 3993 for (unsigned Part = 0; Part < UF; ++Part) { 3994 Value *I = State.get(Def, Part); 3995 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3996 continue; 3997 Type *OriginalTy = I->getType(); 3998 Type *ScalarTruncatedTy = 3999 IntegerType::get(OriginalTy->getContext(), KV.second); 4000 auto *TruncatedTy = VectorType::get( 4001 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 4002 if (TruncatedTy == OriginalTy) 4003 continue; 4004 4005 IRBuilder<> B(cast<Instruction>(I)); 4006 auto ShrinkOperand = [&](Value *V) -> Value * { 4007 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4008 if (ZI->getSrcTy() == TruncatedTy) 4009 return ZI->getOperand(0); 4010 return B.CreateZExtOrTrunc(V, TruncatedTy); 4011 }; 4012 4013 // The actual instruction modification depends on the instruction type, 4014 // unfortunately. 4015 Value *NewI = nullptr; 4016 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4017 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4018 ShrinkOperand(BO->getOperand(1))); 4019 4020 // Any wrapping introduced by shrinking this operation shouldn't be 4021 // considered undefined behavior. So, we can't unconditionally copy 4022 // arithmetic wrapping flags to NewI. 4023 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4024 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4025 NewI = 4026 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4027 ShrinkOperand(CI->getOperand(1))); 4028 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4029 NewI = B.CreateSelect(SI->getCondition(), 4030 ShrinkOperand(SI->getTrueValue()), 4031 ShrinkOperand(SI->getFalseValue())); 4032 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4033 switch (CI->getOpcode()) { 4034 default: 4035 llvm_unreachable("Unhandled cast!"); 4036 case Instruction::Trunc: 4037 NewI = ShrinkOperand(CI->getOperand(0)); 4038 break; 4039 case Instruction::SExt: 4040 NewI = B.CreateSExtOrTrunc( 4041 CI->getOperand(0), 4042 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4043 break; 4044 case Instruction::ZExt: 4045 NewI = B.CreateZExtOrTrunc( 4046 CI->getOperand(0), 4047 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4048 break; 4049 } 4050 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4051 auto Elements0 = 4052 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4053 auto *O0 = B.CreateZExtOrTrunc( 4054 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4055 auto Elements1 = 4056 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4057 auto *O1 = B.CreateZExtOrTrunc( 4058 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4059 4060 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4061 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4062 // Don't do anything with the operands, just extend the result. 4063 continue; 4064 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4065 auto Elements = 4066 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4067 auto *O0 = B.CreateZExtOrTrunc( 4068 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4069 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4070 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4071 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4072 auto Elements = 4073 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4074 auto *O0 = B.CreateZExtOrTrunc( 4075 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4076 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4077 } else { 4078 // If we don't know what to do, be conservative and don't do anything. 4079 continue; 4080 } 4081 4082 // Lastly, extend the result. 4083 NewI->takeName(cast<Instruction>(I)); 4084 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4085 I->replaceAllUsesWith(Res); 4086 cast<Instruction>(I)->eraseFromParent(); 4087 Erased.insert(I); 4088 State.reset(Def, Res, Part); 4089 } 4090 } 4091 4092 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4093 for (const auto &KV : Cost->getMinimalBitwidths()) { 4094 // If the value wasn't vectorized, we must maintain the original scalar 4095 // type. The absence of the value from State indicates that it 4096 // wasn't vectorized. 4097 // FIXME: Should not rely on getVPValue at this point. 4098 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4099 if (!State.hasAnyVectorValue(Def)) 4100 continue; 4101 for (unsigned Part = 0; Part < UF; ++Part) { 4102 Value *I = State.get(Def, Part); 4103 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4104 if (Inst && Inst->use_empty()) { 4105 Value *NewI = Inst->getOperand(0); 4106 Inst->eraseFromParent(); 4107 State.reset(Def, NewI, Part); 4108 } 4109 } 4110 } 4111 } 4112 4113 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4114 // Insert truncates and extends for any truncated instructions as hints to 4115 // InstCombine. 4116 if (VF.isVector()) 4117 truncateToMinimalBitwidths(State); 4118 4119 // Fix widened non-induction PHIs by setting up the PHI operands. 4120 if (OrigPHIsToFix.size()) { 4121 assert(EnableVPlanNativePath && 4122 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4123 fixNonInductionPHIs(State); 4124 } 4125 4126 // At this point every instruction in the original loop is widened to a 4127 // vector form. Now we need to fix the recurrences in the loop. These PHI 4128 // nodes are currently empty because we did not want to introduce cycles. 4129 // This is the second stage of vectorizing recurrences. 4130 fixCrossIterationPHIs(State); 4131 4132 // Forget the original basic block. 4133 PSE.getSE()->forgetLoop(OrigLoop); 4134 4135 // If we inserted an edge from the middle block to the unique exit block, 4136 // update uses outside the loop (phis) to account for the newly inserted 4137 // edge. 4138 if (!Cost->requiresScalarEpilogue(VF)) { 4139 // Fix-up external users of the induction variables. 4140 for (auto &Entry : Legal->getInductionVars()) 4141 fixupIVUsers(Entry.first, Entry.second, 4142 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4143 IVEndValues[Entry.first], LoopMiddleBlock); 4144 4145 fixLCSSAPHIs(State); 4146 } 4147 4148 for (Instruction *PI : PredicatedInstructions) 4149 sinkScalarOperands(&*PI); 4150 4151 // Remove redundant induction instructions. 4152 cse(LoopVectorBody); 4153 4154 // Set/update profile weights for the vector and remainder loops as original 4155 // loop iterations are now distributed among them. Note that original loop 4156 // represented by LoopScalarBody becomes remainder loop after vectorization. 4157 // 4158 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4159 // end up getting slightly roughened result but that should be OK since 4160 // profile is not inherently precise anyway. Note also possible bypass of 4161 // vector code caused by legality checks is ignored, assigning all the weight 4162 // to the vector loop, optimistically. 4163 // 4164 // For scalable vectorization we can't know at compile time how many iterations 4165 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4166 // vscale of '1'. 4167 setProfileInfoAfterUnrolling( 4168 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4169 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4170 } 4171 4172 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4173 // In order to support recurrences we need to be able to vectorize Phi nodes. 4174 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4175 // stage #2: We now need to fix the recurrences by adding incoming edges to 4176 // the currently empty PHI nodes. At this point every instruction in the 4177 // original loop is widened to a vector form so we can use them to construct 4178 // the incoming edges. 4179 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4180 for (VPRecipeBase &R : Header->phis()) { 4181 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4182 fixReduction(ReductionPhi, State); 4183 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4184 fixFirstOrderRecurrence(FOR, State); 4185 } 4186 } 4187 4188 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4189 VPTransformState &State) { 4190 // This is the second phase of vectorizing first-order recurrences. An 4191 // overview of the transformation is described below. Suppose we have the 4192 // following loop. 4193 // 4194 // for (int i = 0; i < n; ++i) 4195 // b[i] = a[i] - a[i - 1]; 4196 // 4197 // There is a first-order recurrence on "a". For this loop, the shorthand 4198 // scalar IR looks like: 4199 // 4200 // scalar.ph: 4201 // s_init = a[-1] 4202 // br scalar.body 4203 // 4204 // scalar.body: 4205 // i = phi [0, scalar.ph], [i+1, scalar.body] 4206 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4207 // s2 = a[i] 4208 // b[i] = s2 - s1 4209 // br cond, scalar.body, ... 4210 // 4211 // In this example, s1 is a recurrence because it's value depends on the 4212 // previous iteration. In the first phase of vectorization, we created a 4213 // vector phi v1 for s1. We now complete the vectorization and produce the 4214 // shorthand vector IR shown below (for VF = 4, UF = 1). 4215 // 4216 // vector.ph: 4217 // v_init = vector(..., ..., ..., a[-1]) 4218 // br vector.body 4219 // 4220 // vector.body 4221 // i = phi [0, vector.ph], [i+4, vector.body] 4222 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4223 // v2 = a[i, i+1, i+2, i+3]; 4224 // v3 = vector(v1(3), v2(0, 1, 2)) 4225 // b[i, i+1, i+2, i+3] = v2 - v3 4226 // br cond, vector.body, middle.block 4227 // 4228 // middle.block: 4229 // x = v2(3) 4230 // br scalar.ph 4231 // 4232 // scalar.ph: 4233 // s_init = phi [x, middle.block], [a[-1], otherwise] 4234 // br scalar.body 4235 // 4236 // After execution completes the vector loop, we extract the next value of 4237 // the recurrence (x) to use as the initial value in the scalar loop. 4238 4239 // Extract the last vector element in the middle block. This will be the 4240 // initial value for the recurrence when jumping to the scalar loop. 4241 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4242 Value *Incoming = State.get(PreviousDef, UF - 1); 4243 auto *ExtractForScalar = Incoming; 4244 auto *IdxTy = Builder.getInt32Ty(); 4245 if (VF.isVector()) { 4246 auto *One = ConstantInt::get(IdxTy, 1); 4247 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4248 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4249 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4250 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4251 "vector.recur.extract"); 4252 } 4253 // Extract the second last element in the middle block if the 4254 // Phi is used outside the loop. We need to extract the phi itself 4255 // and not the last element (the phi update in the current iteration). This 4256 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4257 // when the scalar loop is not run at all. 4258 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4259 if (VF.isVector()) { 4260 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4261 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4262 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4263 Incoming, Idx, "vector.recur.extract.for.phi"); 4264 } else if (UF > 1) 4265 // When loop is unrolled without vectorizing, initialize 4266 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4267 // of `Incoming`. This is analogous to the vectorized case above: extracting 4268 // the second last element when VF > 1. 4269 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4270 4271 // Fix the initial value of the original recurrence in the scalar loop. 4272 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4273 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4274 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4275 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4276 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4277 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4278 Start->addIncoming(Incoming, BB); 4279 } 4280 4281 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4282 Phi->setName("scalar.recur"); 4283 4284 // Finally, fix users of the recurrence outside the loop. The users will need 4285 // either the last value of the scalar recurrence or the last value of the 4286 // vector recurrence we extracted in the middle block. Since the loop is in 4287 // LCSSA form, we just need to find all the phi nodes for the original scalar 4288 // recurrence in the exit block, and then add an edge for the middle block. 4289 // Note that LCSSA does not imply single entry when the original scalar loop 4290 // had multiple exiting edges (as we always run the last iteration in the 4291 // scalar epilogue); in that case, there is no edge from middle to exit and 4292 // and thus no phis which needed updated. 4293 if (!Cost->requiresScalarEpilogue(VF)) 4294 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4295 if (any_of(LCSSAPhi.incoming_values(), 4296 [Phi](Value *V) { return V == Phi; })) 4297 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4298 } 4299 4300 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4301 VPTransformState &State) { 4302 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4303 // Get it's reduction variable descriptor. 4304 assert(Legal->isReductionVariable(OrigPhi) && 4305 "Unable to find the reduction variable"); 4306 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4307 4308 RecurKind RK = RdxDesc.getRecurrenceKind(); 4309 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4310 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4311 setDebugLocFromInst(ReductionStartValue); 4312 4313 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4314 // This is the vector-clone of the value that leaves the loop. 4315 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4316 4317 // Wrap flags are in general invalid after vectorization, clear them. 4318 clearReductionWrapFlags(RdxDesc, State); 4319 4320 // Before each round, move the insertion point right between 4321 // the PHIs and the values we are going to write. 4322 // This allows us to write both PHINodes and the extractelement 4323 // instructions. 4324 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4325 4326 setDebugLocFromInst(LoopExitInst); 4327 4328 Type *PhiTy = OrigPhi->getType(); 4329 // If tail is folded by masking, the vector value to leave the loop should be 4330 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4331 // instead of the former. For an inloop reduction the reduction will already 4332 // be predicated, and does not need to be handled here. 4333 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4334 for (unsigned Part = 0; Part < UF; ++Part) { 4335 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4336 Value *Sel = nullptr; 4337 for (User *U : VecLoopExitInst->users()) { 4338 if (isa<SelectInst>(U)) { 4339 assert(!Sel && "Reduction exit feeding two selects"); 4340 Sel = U; 4341 } else 4342 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4343 } 4344 assert(Sel && "Reduction exit feeds no select"); 4345 State.reset(LoopExitInstDef, Sel, Part); 4346 4347 // If the target can create a predicated operator for the reduction at no 4348 // extra cost in the loop (for example a predicated vadd), it can be 4349 // cheaper for the select to remain in the loop than be sunk out of it, 4350 // and so use the select value for the phi instead of the old 4351 // LoopExitValue. 4352 if (PreferPredicatedReductionSelect || 4353 TTI->preferPredicatedReductionSelect( 4354 RdxDesc.getOpcode(), PhiTy, 4355 TargetTransformInfo::ReductionFlags())) { 4356 auto *VecRdxPhi = 4357 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4358 VecRdxPhi->setIncomingValueForBlock( 4359 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4360 } 4361 } 4362 } 4363 4364 // If the vector reduction can be performed in a smaller type, we truncate 4365 // then extend the loop exit value to enable InstCombine to evaluate the 4366 // entire expression in the smaller type. 4367 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4368 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4369 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4370 Builder.SetInsertPoint( 4371 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4372 VectorParts RdxParts(UF); 4373 for (unsigned Part = 0; Part < UF; ++Part) { 4374 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4375 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4376 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4377 : Builder.CreateZExt(Trunc, VecTy); 4378 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4379 UI != RdxParts[Part]->user_end();) 4380 if (*UI != Trunc) { 4381 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4382 RdxParts[Part] = Extnd; 4383 } else { 4384 ++UI; 4385 } 4386 } 4387 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4388 for (unsigned Part = 0; Part < UF; ++Part) { 4389 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4390 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4391 } 4392 } 4393 4394 // Reduce all of the unrolled parts into a single vector. 4395 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4396 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4397 4398 // The middle block terminator has already been assigned a DebugLoc here (the 4399 // OrigLoop's single latch terminator). We want the whole middle block to 4400 // appear to execute on this line because: (a) it is all compiler generated, 4401 // (b) these instructions are always executed after evaluating the latch 4402 // conditional branch, and (c) other passes may add new predecessors which 4403 // terminate on this line. This is the easiest way to ensure we don't 4404 // accidentally cause an extra step back into the loop while debugging. 4405 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4406 if (PhiR->isOrdered()) 4407 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4408 else { 4409 // Floating-point operations should have some FMF to enable the reduction. 4410 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4411 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4412 for (unsigned Part = 1; Part < UF; ++Part) { 4413 Value *RdxPart = State.get(LoopExitInstDef, Part); 4414 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4415 ReducedPartRdx = Builder.CreateBinOp( 4416 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4417 } else { 4418 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4419 } 4420 } 4421 } 4422 4423 // Create the reduction after the loop. Note that inloop reductions create the 4424 // target reduction in the loop using a Reduction recipe. 4425 if (VF.isVector() && !PhiR->isInLoop()) { 4426 ReducedPartRdx = 4427 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4428 // If the reduction can be performed in a smaller type, we need to extend 4429 // the reduction to the wider type before we branch to the original loop. 4430 if (PhiTy != RdxDesc.getRecurrenceType()) 4431 ReducedPartRdx = RdxDesc.isSigned() 4432 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4433 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4434 } 4435 4436 // Create a phi node that merges control-flow from the backedge-taken check 4437 // block and the middle block. 4438 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4439 LoopScalarPreHeader->getTerminator()); 4440 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4441 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4442 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4443 4444 // Now, we need to fix the users of the reduction variable 4445 // inside and outside of the scalar remainder loop. 4446 4447 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4448 // in the exit blocks. See comment on analogous loop in 4449 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4450 if (!Cost->requiresScalarEpilogue(VF)) 4451 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4452 if (any_of(LCSSAPhi.incoming_values(), 4453 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4454 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4455 4456 // Fix the scalar loop reduction variable with the incoming reduction sum 4457 // from the vector body and from the backedge value. 4458 int IncomingEdgeBlockIdx = 4459 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4460 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4461 // Pick the other block. 4462 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4463 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4464 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4465 } 4466 4467 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4468 VPTransformState &State) { 4469 RecurKind RK = RdxDesc.getRecurrenceKind(); 4470 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4471 return; 4472 4473 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4474 assert(LoopExitInstr && "null loop exit instruction"); 4475 SmallVector<Instruction *, 8> Worklist; 4476 SmallPtrSet<Instruction *, 8> Visited; 4477 Worklist.push_back(LoopExitInstr); 4478 Visited.insert(LoopExitInstr); 4479 4480 while (!Worklist.empty()) { 4481 Instruction *Cur = Worklist.pop_back_val(); 4482 if (isa<OverflowingBinaryOperator>(Cur)) 4483 for (unsigned Part = 0; Part < UF; ++Part) { 4484 // FIXME: Should not rely on getVPValue at this point. 4485 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4486 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4487 } 4488 4489 for (User *U : Cur->users()) { 4490 Instruction *UI = cast<Instruction>(U); 4491 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4492 Visited.insert(UI).second) 4493 Worklist.push_back(UI); 4494 } 4495 } 4496 } 4497 4498 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4499 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4500 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4501 // Some phis were already hand updated by the reduction and recurrence 4502 // code above, leave them alone. 4503 continue; 4504 4505 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4506 // Non-instruction incoming values will have only one value. 4507 4508 VPLane Lane = VPLane::getFirstLane(); 4509 if (isa<Instruction>(IncomingValue) && 4510 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4511 VF)) 4512 Lane = VPLane::getLastLaneForVF(VF); 4513 4514 // Can be a loop invariant incoming value or the last scalar value to be 4515 // extracted from the vectorized loop. 4516 // FIXME: Should not rely on getVPValue at this point. 4517 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4518 Value *lastIncomingValue = 4519 OrigLoop->isLoopInvariant(IncomingValue) 4520 ? IncomingValue 4521 : State.get(State.Plan->getVPValue(IncomingValue, true), 4522 VPIteration(UF - 1, Lane)); 4523 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4524 } 4525 } 4526 4527 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4528 // The basic block and loop containing the predicated instruction. 4529 auto *PredBB = PredInst->getParent(); 4530 auto *VectorLoop = LI->getLoopFor(PredBB); 4531 4532 // Initialize a worklist with the operands of the predicated instruction. 4533 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4534 4535 // Holds instructions that we need to analyze again. An instruction may be 4536 // reanalyzed if we don't yet know if we can sink it or not. 4537 SmallVector<Instruction *, 8> InstsToReanalyze; 4538 4539 // Returns true if a given use occurs in the predicated block. Phi nodes use 4540 // their operands in their corresponding predecessor blocks. 4541 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4542 auto *I = cast<Instruction>(U.getUser()); 4543 BasicBlock *BB = I->getParent(); 4544 if (auto *Phi = dyn_cast<PHINode>(I)) 4545 BB = Phi->getIncomingBlock( 4546 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4547 return BB == PredBB; 4548 }; 4549 4550 // Iteratively sink the scalarized operands of the predicated instruction 4551 // into the block we created for it. When an instruction is sunk, it's 4552 // operands are then added to the worklist. The algorithm ends after one pass 4553 // through the worklist doesn't sink a single instruction. 4554 bool Changed; 4555 do { 4556 // Add the instructions that need to be reanalyzed to the worklist, and 4557 // reset the changed indicator. 4558 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4559 InstsToReanalyze.clear(); 4560 Changed = false; 4561 4562 while (!Worklist.empty()) { 4563 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4564 4565 // We can't sink an instruction if it is a phi node, is not in the loop, 4566 // or may have side effects. 4567 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4568 I->mayHaveSideEffects()) 4569 continue; 4570 4571 // If the instruction is already in PredBB, check if we can sink its 4572 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4573 // sinking the scalar instruction I, hence it appears in PredBB; but it 4574 // may have failed to sink I's operands (recursively), which we try 4575 // (again) here. 4576 if (I->getParent() == PredBB) { 4577 Worklist.insert(I->op_begin(), I->op_end()); 4578 continue; 4579 } 4580 4581 // It's legal to sink the instruction if all its uses occur in the 4582 // predicated block. Otherwise, there's nothing to do yet, and we may 4583 // need to reanalyze the instruction. 4584 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4585 InstsToReanalyze.push_back(I); 4586 continue; 4587 } 4588 4589 // Move the instruction to the beginning of the predicated block, and add 4590 // it's operands to the worklist. 4591 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4592 Worklist.insert(I->op_begin(), I->op_end()); 4593 4594 // The sinking may have enabled other instructions to be sunk, so we will 4595 // need to iterate. 4596 Changed = true; 4597 } 4598 } while (Changed); 4599 } 4600 4601 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4602 for (PHINode *OrigPhi : OrigPHIsToFix) { 4603 VPWidenPHIRecipe *VPPhi = 4604 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4605 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4606 // Make sure the builder has a valid insert point. 4607 Builder.SetInsertPoint(NewPhi); 4608 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4609 VPValue *Inc = VPPhi->getIncomingValue(i); 4610 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4611 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4612 } 4613 } 4614 } 4615 4616 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4617 return Cost->useOrderedReductions(RdxDesc); 4618 } 4619 4620 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4621 VPUser &Operands, unsigned UF, 4622 ElementCount VF, bool IsPtrLoopInvariant, 4623 SmallBitVector &IsIndexLoopInvariant, 4624 VPTransformState &State) { 4625 // Construct a vector GEP by widening the operands of the scalar GEP as 4626 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4627 // results in a vector of pointers when at least one operand of the GEP 4628 // is vector-typed. Thus, to keep the representation compact, we only use 4629 // vector-typed operands for loop-varying values. 4630 4631 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4632 // If we are vectorizing, but the GEP has only loop-invariant operands, 4633 // the GEP we build (by only using vector-typed operands for 4634 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4635 // produce a vector of pointers, we need to either arbitrarily pick an 4636 // operand to broadcast, or broadcast a clone of the original GEP. 4637 // Here, we broadcast a clone of the original. 4638 // 4639 // TODO: If at some point we decide to scalarize instructions having 4640 // loop-invariant operands, this special case will no longer be 4641 // required. We would add the scalarization decision to 4642 // collectLoopScalars() and teach getVectorValue() to broadcast 4643 // the lane-zero scalar value. 4644 auto *Clone = Builder.Insert(GEP->clone()); 4645 for (unsigned Part = 0; Part < UF; ++Part) { 4646 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4647 State.set(VPDef, EntryPart, Part); 4648 addMetadata(EntryPart, GEP); 4649 } 4650 } else { 4651 // If the GEP has at least one loop-varying operand, we are sure to 4652 // produce a vector of pointers. But if we are only unrolling, we want 4653 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4654 // produce with the code below will be scalar (if VF == 1) or vector 4655 // (otherwise). Note that for the unroll-only case, we still maintain 4656 // values in the vector mapping with initVector, as we do for other 4657 // instructions. 4658 for (unsigned Part = 0; Part < UF; ++Part) { 4659 // The pointer operand of the new GEP. If it's loop-invariant, we 4660 // won't broadcast it. 4661 auto *Ptr = IsPtrLoopInvariant 4662 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4663 : State.get(Operands.getOperand(0), Part); 4664 4665 // Collect all the indices for the new GEP. If any index is 4666 // loop-invariant, we won't broadcast it. 4667 SmallVector<Value *, 4> Indices; 4668 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4669 VPValue *Operand = Operands.getOperand(I); 4670 if (IsIndexLoopInvariant[I - 1]) 4671 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4672 else 4673 Indices.push_back(State.get(Operand, Part)); 4674 } 4675 4676 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4677 // but it should be a vector, otherwise. 4678 auto *NewGEP = 4679 GEP->isInBounds() 4680 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4681 Indices) 4682 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4683 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4684 "NewGEP is not a pointer vector"); 4685 State.set(VPDef, NewGEP, Part); 4686 addMetadata(NewGEP, GEP); 4687 } 4688 } 4689 } 4690 4691 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4692 VPWidenPHIRecipe *PhiR, 4693 VPTransformState &State) { 4694 PHINode *P = cast<PHINode>(PN); 4695 if (EnableVPlanNativePath) { 4696 // Currently we enter here in the VPlan-native path for non-induction 4697 // PHIs where all control flow is uniform. We simply widen these PHIs. 4698 // Create a vector phi with no operands - the vector phi operands will be 4699 // set at the end of vector code generation. 4700 Type *VecTy = (State.VF.isScalar()) 4701 ? PN->getType() 4702 : VectorType::get(PN->getType(), State.VF); 4703 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4704 State.set(PhiR, VecPhi, 0); 4705 OrigPHIsToFix.push_back(P); 4706 4707 return; 4708 } 4709 4710 assert(PN->getParent() == OrigLoop->getHeader() && 4711 "Non-header phis should have been handled elsewhere"); 4712 4713 // In order to support recurrences we need to be able to vectorize Phi nodes. 4714 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4715 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4716 // this value when we vectorize all of the instructions that use the PHI. 4717 4718 assert(!Legal->isReductionVariable(P) && 4719 "reductions should be handled elsewhere"); 4720 4721 setDebugLocFromInst(P); 4722 4723 // This PHINode must be an induction variable. 4724 // Make sure that we know about it. 4725 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4726 4727 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4728 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4729 4730 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4731 // which can be found from the original scalar operations. 4732 switch (II.getKind()) { 4733 case InductionDescriptor::IK_NoInduction: 4734 llvm_unreachable("Unknown induction"); 4735 case InductionDescriptor::IK_IntInduction: 4736 case InductionDescriptor::IK_FpInduction: 4737 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4738 case InductionDescriptor::IK_PtrInduction: { 4739 // Handle the pointer induction variable case. 4740 assert(P->getType()->isPointerTy() && "Unexpected type."); 4741 4742 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4743 // This is the normalized GEP that starts counting at zero. 4744 Value *PtrInd = 4745 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4746 // Determine the number of scalars we need to generate for each unroll 4747 // iteration. If the instruction is uniform, we only need to generate the 4748 // first lane. Otherwise, we generate all VF values. 4749 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4750 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4751 4752 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4753 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4754 if (NeedsVectorIndex) { 4755 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4756 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4757 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4758 } 4759 4760 for (unsigned Part = 0; Part < UF; ++Part) { 4761 Value *PartStart = createStepForVF( 4762 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4763 4764 if (NeedsVectorIndex) { 4765 // Here we cache the whole vector, which means we can support the 4766 // extraction of any lane. However, in some cases the extractelement 4767 // instruction that is generated for scalar uses of this vector (e.g. 4768 // a load instruction) is not folded away. Therefore we still 4769 // calculate values for the first n lanes to avoid redundant moves 4770 // (when extracting the 0th element) and to produce scalar code (i.e. 4771 // additional add/gep instructions instead of expensive extractelement 4772 // instructions) when extracting higher-order elements. 4773 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4774 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4775 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4776 Value *SclrGep = 4777 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4778 SclrGep->setName("next.gep"); 4779 State.set(PhiR, SclrGep, Part); 4780 } 4781 4782 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4783 Value *Idx = Builder.CreateAdd( 4784 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4785 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4786 Value *SclrGep = 4787 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4788 SclrGep->setName("next.gep"); 4789 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4790 } 4791 } 4792 return; 4793 } 4794 assert(isa<SCEVConstant>(II.getStep()) && 4795 "Induction step not a SCEV constant!"); 4796 Type *PhiType = II.getStep()->getType(); 4797 4798 // Build a pointer phi 4799 Value *ScalarStartValue = II.getStartValue(); 4800 Type *ScStValueType = ScalarStartValue->getType(); 4801 PHINode *NewPointerPhi = 4802 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4803 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4804 4805 // A pointer induction, performed by using a gep 4806 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4807 Instruction *InductionLoc = LoopLatch->getTerminator(); 4808 const SCEV *ScalarStep = II.getStep(); 4809 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4810 Value *ScalarStepValue = 4811 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4812 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4813 Value *NumUnrolledElems = 4814 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4815 Value *InductionGEP = GetElementPtrInst::Create( 4816 II.getElementType(), NewPointerPhi, 4817 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4818 InductionLoc); 4819 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4820 4821 // Create UF many actual address geps that use the pointer 4822 // phi as base and a vectorized version of the step value 4823 // (<step*0, ..., step*N>) as offset. 4824 for (unsigned Part = 0; Part < State.UF; ++Part) { 4825 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4826 Value *StartOffsetScalar = 4827 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4828 Value *StartOffset = 4829 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4830 // Create a vector of consecutive numbers from zero to VF. 4831 StartOffset = 4832 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4833 4834 Value *GEP = Builder.CreateGEP( 4835 II.getElementType(), NewPointerPhi, 4836 Builder.CreateMul( 4837 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4838 "vector.gep")); 4839 State.set(PhiR, GEP, Part); 4840 } 4841 } 4842 } 4843 } 4844 4845 /// A helper function for checking whether an integer division-related 4846 /// instruction may divide by zero (in which case it must be predicated if 4847 /// executed conditionally in the scalar code). 4848 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4849 /// Non-zero divisors that are non compile-time constants will not be 4850 /// converted into multiplication, so we will still end up scalarizing 4851 /// the division, but can do so w/o predication. 4852 static bool mayDivideByZero(Instruction &I) { 4853 assert((I.getOpcode() == Instruction::UDiv || 4854 I.getOpcode() == Instruction::SDiv || 4855 I.getOpcode() == Instruction::URem || 4856 I.getOpcode() == Instruction::SRem) && 4857 "Unexpected instruction"); 4858 Value *Divisor = I.getOperand(1); 4859 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4860 return !CInt || CInt->isZero(); 4861 } 4862 4863 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4864 VPUser &User, 4865 VPTransformState &State) { 4866 switch (I.getOpcode()) { 4867 case Instruction::Call: 4868 case Instruction::Br: 4869 case Instruction::PHI: 4870 case Instruction::GetElementPtr: 4871 case Instruction::Select: 4872 llvm_unreachable("This instruction is handled by a different recipe."); 4873 case Instruction::UDiv: 4874 case Instruction::SDiv: 4875 case Instruction::SRem: 4876 case Instruction::URem: 4877 case Instruction::Add: 4878 case Instruction::FAdd: 4879 case Instruction::Sub: 4880 case Instruction::FSub: 4881 case Instruction::FNeg: 4882 case Instruction::Mul: 4883 case Instruction::FMul: 4884 case Instruction::FDiv: 4885 case Instruction::FRem: 4886 case Instruction::Shl: 4887 case Instruction::LShr: 4888 case Instruction::AShr: 4889 case Instruction::And: 4890 case Instruction::Or: 4891 case Instruction::Xor: { 4892 // Just widen unops and binops. 4893 setDebugLocFromInst(&I); 4894 4895 for (unsigned Part = 0; Part < UF; ++Part) { 4896 SmallVector<Value *, 2> Ops; 4897 for (VPValue *VPOp : User.operands()) 4898 Ops.push_back(State.get(VPOp, Part)); 4899 4900 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4901 4902 if (auto *VecOp = dyn_cast<Instruction>(V)) 4903 VecOp->copyIRFlags(&I); 4904 4905 // Use this vector value for all users of the original instruction. 4906 State.set(Def, V, Part); 4907 addMetadata(V, &I); 4908 } 4909 4910 break; 4911 } 4912 case Instruction::ICmp: 4913 case Instruction::FCmp: { 4914 // Widen compares. Generate vector compares. 4915 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4916 auto *Cmp = cast<CmpInst>(&I); 4917 setDebugLocFromInst(Cmp); 4918 for (unsigned Part = 0; Part < UF; ++Part) { 4919 Value *A = State.get(User.getOperand(0), Part); 4920 Value *B = State.get(User.getOperand(1), Part); 4921 Value *C = nullptr; 4922 if (FCmp) { 4923 // Propagate fast math flags. 4924 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4925 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4926 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4927 } else { 4928 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4929 } 4930 State.set(Def, C, Part); 4931 addMetadata(C, &I); 4932 } 4933 4934 break; 4935 } 4936 4937 case Instruction::ZExt: 4938 case Instruction::SExt: 4939 case Instruction::FPToUI: 4940 case Instruction::FPToSI: 4941 case Instruction::FPExt: 4942 case Instruction::PtrToInt: 4943 case Instruction::IntToPtr: 4944 case Instruction::SIToFP: 4945 case Instruction::UIToFP: 4946 case Instruction::Trunc: 4947 case Instruction::FPTrunc: 4948 case Instruction::BitCast: { 4949 auto *CI = cast<CastInst>(&I); 4950 setDebugLocFromInst(CI); 4951 4952 /// Vectorize casts. 4953 Type *DestTy = 4954 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4955 4956 for (unsigned Part = 0; Part < UF; ++Part) { 4957 Value *A = State.get(User.getOperand(0), Part); 4958 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4959 State.set(Def, Cast, Part); 4960 addMetadata(Cast, &I); 4961 } 4962 break; 4963 } 4964 default: 4965 // This instruction is not vectorized by simple widening. 4966 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4967 llvm_unreachable("Unhandled instruction!"); 4968 } // end of switch. 4969 } 4970 4971 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4972 VPUser &ArgOperands, 4973 VPTransformState &State) { 4974 assert(!isa<DbgInfoIntrinsic>(I) && 4975 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4976 setDebugLocFromInst(&I); 4977 4978 Module *M = I.getParent()->getParent()->getParent(); 4979 auto *CI = cast<CallInst>(&I); 4980 4981 SmallVector<Type *, 4> Tys; 4982 for (Value *ArgOperand : CI->arg_operands()) 4983 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4984 4985 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4986 4987 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4988 // version of the instruction. 4989 // Is it beneficial to perform intrinsic call compared to lib call? 4990 bool NeedToScalarize = false; 4991 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4992 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4993 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4994 assert((UseVectorIntrinsic || !NeedToScalarize) && 4995 "Instruction should be scalarized elsewhere."); 4996 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4997 "Either the intrinsic cost or vector call cost must be valid"); 4998 4999 for (unsigned Part = 0; Part < UF; ++Part) { 5000 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5001 SmallVector<Value *, 4> Args; 5002 for (auto &I : enumerate(ArgOperands.operands())) { 5003 // Some intrinsics have a scalar argument - don't replace it with a 5004 // vector. 5005 Value *Arg; 5006 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5007 Arg = State.get(I.value(), Part); 5008 else { 5009 Arg = State.get(I.value(), VPIteration(0, 0)); 5010 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5011 TysForDecl.push_back(Arg->getType()); 5012 } 5013 Args.push_back(Arg); 5014 } 5015 5016 Function *VectorF; 5017 if (UseVectorIntrinsic) { 5018 // Use vector version of the intrinsic. 5019 if (VF.isVector()) 5020 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5021 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5022 assert(VectorF && "Can't retrieve vector intrinsic."); 5023 } else { 5024 // Use vector version of the function call. 5025 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5026 #ifndef NDEBUG 5027 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5028 "Can't create vector function."); 5029 #endif 5030 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5031 } 5032 SmallVector<OperandBundleDef, 1> OpBundles; 5033 CI->getOperandBundlesAsDefs(OpBundles); 5034 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5035 5036 if (isa<FPMathOperator>(V)) 5037 V->copyFastMathFlags(CI); 5038 5039 State.set(Def, V, Part); 5040 addMetadata(V, &I); 5041 } 5042 } 5043 5044 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5045 VPUser &Operands, 5046 bool InvariantCond, 5047 VPTransformState &State) { 5048 setDebugLocFromInst(&I); 5049 5050 // The condition can be loop invariant but still defined inside the 5051 // loop. This means that we can't just use the original 'cond' value. 5052 // We have to take the 'vectorized' value and pick the first lane. 5053 // Instcombine will make this a no-op. 5054 auto *InvarCond = InvariantCond 5055 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5056 : nullptr; 5057 5058 for (unsigned Part = 0; Part < UF; ++Part) { 5059 Value *Cond = 5060 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5061 Value *Op0 = State.get(Operands.getOperand(1), Part); 5062 Value *Op1 = State.get(Operands.getOperand(2), Part); 5063 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5064 State.set(VPDef, Sel, Part); 5065 addMetadata(Sel, &I); 5066 } 5067 } 5068 5069 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5070 // We should not collect Scalars more than once per VF. Right now, this 5071 // function is called from collectUniformsAndScalars(), which already does 5072 // this check. Collecting Scalars for VF=1 does not make any sense. 5073 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5074 "This function should not be visited twice for the same VF"); 5075 5076 SmallSetVector<Instruction *, 8> Worklist; 5077 5078 // These sets are used to seed the analysis with pointers used by memory 5079 // accesses that will remain scalar. 5080 SmallSetVector<Instruction *, 8> ScalarPtrs; 5081 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5082 auto *Latch = TheLoop->getLoopLatch(); 5083 5084 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5085 // The pointer operands of loads and stores will be scalar as long as the 5086 // memory access is not a gather or scatter operation. The value operand of a 5087 // store will remain scalar if the store is scalarized. 5088 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5089 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5090 assert(WideningDecision != CM_Unknown && 5091 "Widening decision should be ready at this moment"); 5092 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5093 if (Ptr == Store->getValueOperand()) 5094 return WideningDecision == CM_Scalarize; 5095 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5096 "Ptr is neither a value or pointer operand"); 5097 return WideningDecision != CM_GatherScatter; 5098 }; 5099 5100 // A helper that returns true if the given value is a bitcast or 5101 // getelementptr instruction contained in the loop. 5102 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5103 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5104 isa<GetElementPtrInst>(V)) && 5105 !TheLoop->isLoopInvariant(V); 5106 }; 5107 5108 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5109 if (!isa<PHINode>(Ptr) || 5110 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5111 return false; 5112 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5113 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5114 return false; 5115 return isScalarUse(MemAccess, Ptr); 5116 }; 5117 5118 // A helper that evaluates a memory access's use of a pointer. If the 5119 // pointer is actually the pointer induction of a loop, it is being 5120 // inserted into Worklist. If the use will be a scalar use, and the 5121 // pointer is only used by memory accesses, we place the pointer in 5122 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5123 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5124 if (isScalarPtrInduction(MemAccess, Ptr)) { 5125 Worklist.insert(cast<Instruction>(Ptr)); 5126 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5127 << "\n"); 5128 5129 Instruction *Update = cast<Instruction>( 5130 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5131 ScalarPtrs.insert(Update); 5132 return; 5133 } 5134 // We only care about bitcast and getelementptr instructions contained in 5135 // the loop. 5136 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5137 return; 5138 5139 // If the pointer has already been identified as scalar (e.g., if it was 5140 // also identified as uniform), there's nothing to do. 5141 auto *I = cast<Instruction>(Ptr); 5142 if (Worklist.count(I)) 5143 return; 5144 5145 // If the use of the pointer will be a scalar use, and all users of the 5146 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5147 // place the pointer in PossibleNonScalarPtrs. 5148 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5149 return isa<LoadInst>(U) || isa<StoreInst>(U); 5150 })) 5151 ScalarPtrs.insert(I); 5152 else 5153 PossibleNonScalarPtrs.insert(I); 5154 }; 5155 5156 // We seed the scalars analysis with three classes of instructions: (1) 5157 // instructions marked uniform-after-vectorization and (2) bitcast, 5158 // getelementptr and (pointer) phi instructions used by memory accesses 5159 // requiring a scalar use. 5160 // 5161 // (1) Add to the worklist all instructions that have been identified as 5162 // uniform-after-vectorization. 5163 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5164 5165 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5166 // memory accesses requiring a scalar use. The pointer operands of loads and 5167 // stores will be scalar as long as the memory accesses is not a gather or 5168 // scatter operation. The value operand of a store will remain scalar if the 5169 // store is scalarized. 5170 for (auto *BB : TheLoop->blocks()) 5171 for (auto &I : *BB) { 5172 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5173 evaluatePtrUse(Load, Load->getPointerOperand()); 5174 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5175 evaluatePtrUse(Store, Store->getPointerOperand()); 5176 evaluatePtrUse(Store, Store->getValueOperand()); 5177 } 5178 } 5179 for (auto *I : ScalarPtrs) 5180 if (!PossibleNonScalarPtrs.count(I)) { 5181 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5182 Worklist.insert(I); 5183 } 5184 5185 // Insert the forced scalars. 5186 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5187 // induction variable when the PHI user is scalarized. 5188 auto ForcedScalar = ForcedScalars.find(VF); 5189 if (ForcedScalar != ForcedScalars.end()) 5190 for (auto *I : ForcedScalar->second) 5191 Worklist.insert(I); 5192 5193 // Expand the worklist by looking through any bitcasts and getelementptr 5194 // instructions we've already identified as scalar. This is similar to the 5195 // expansion step in collectLoopUniforms(); however, here we're only 5196 // expanding to include additional bitcasts and getelementptr instructions. 5197 unsigned Idx = 0; 5198 while (Idx != Worklist.size()) { 5199 Instruction *Dst = Worklist[Idx++]; 5200 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5201 continue; 5202 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5203 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5204 auto *J = cast<Instruction>(U); 5205 return !TheLoop->contains(J) || Worklist.count(J) || 5206 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5207 isScalarUse(J, Src)); 5208 })) { 5209 Worklist.insert(Src); 5210 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5211 } 5212 } 5213 5214 // An induction variable will remain scalar if all users of the induction 5215 // variable and induction variable update remain scalar. 5216 for (auto &Induction : Legal->getInductionVars()) { 5217 auto *Ind = Induction.first; 5218 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5219 5220 // If tail-folding is applied, the primary induction variable will be used 5221 // to feed a vector compare. 5222 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5223 continue; 5224 5225 // Determine if all users of the induction variable are scalar after 5226 // vectorization. 5227 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5228 auto *I = cast<Instruction>(U); 5229 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5230 }); 5231 if (!ScalarInd) 5232 continue; 5233 5234 // Determine if all users of the induction variable update instruction are 5235 // scalar after vectorization. 5236 auto ScalarIndUpdate = 5237 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5238 auto *I = cast<Instruction>(U); 5239 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5240 }); 5241 if (!ScalarIndUpdate) 5242 continue; 5243 5244 // The induction variable and its update instruction will remain scalar. 5245 Worklist.insert(Ind); 5246 Worklist.insert(IndUpdate); 5247 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5248 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5249 << "\n"); 5250 } 5251 5252 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5253 } 5254 5255 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5256 if (!blockNeedsPredication(I->getParent())) 5257 return false; 5258 switch(I->getOpcode()) { 5259 default: 5260 break; 5261 case Instruction::Load: 5262 case Instruction::Store: { 5263 if (!Legal->isMaskRequired(I)) 5264 return false; 5265 auto *Ptr = getLoadStorePointerOperand(I); 5266 auto *Ty = getLoadStoreType(I); 5267 const Align Alignment = getLoadStoreAlignment(I); 5268 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5269 TTI.isLegalMaskedGather(Ty, Alignment)) 5270 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5271 TTI.isLegalMaskedScatter(Ty, Alignment)); 5272 } 5273 case Instruction::UDiv: 5274 case Instruction::SDiv: 5275 case Instruction::SRem: 5276 case Instruction::URem: 5277 return mayDivideByZero(*I); 5278 } 5279 return false; 5280 } 5281 5282 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5283 Instruction *I, ElementCount VF) { 5284 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5285 assert(getWideningDecision(I, VF) == CM_Unknown && 5286 "Decision should not be set yet."); 5287 auto *Group = getInterleavedAccessGroup(I); 5288 assert(Group && "Must have a group."); 5289 5290 // If the instruction's allocated size doesn't equal it's type size, it 5291 // requires padding and will be scalarized. 5292 auto &DL = I->getModule()->getDataLayout(); 5293 auto *ScalarTy = getLoadStoreType(I); 5294 if (hasIrregularType(ScalarTy, DL)) 5295 return false; 5296 5297 // Check if masking is required. 5298 // A Group may need masking for one of two reasons: it resides in a block that 5299 // needs predication, or it was decided to use masking to deal with gaps 5300 // (either a gap at the end of a load-access that may result in a speculative 5301 // load, or any gaps in a store-access). 5302 bool PredicatedAccessRequiresMasking = 5303 blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5304 bool LoadAccessWithGapsRequiresEpilogMasking = 5305 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5306 !isScalarEpilogueAllowed(); 5307 bool StoreAccessWithGapsRequiresMasking = 5308 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5309 if (!PredicatedAccessRequiresMasking && 5310 !LoadAccessWithGapsRequiresEpilogMasking && 5311 !StoreAccessWithGapsRequiresMasking) 5312 return true; 5313 5314 // If masked interleaving is required, we expect that the user/target had 5315 // enabled it, because otherwise it either wouldn't have been created or 5316 // it should have been invalidated by the CostModel. 5317 assert(useMaskedInterleavedAccesses(TTI) && 5318 "Masked interleave-groups for predicated accesses are not enabled."); 5319 5320 auto *Ty = getLoadStoreType(I); 5321 const Align Alignment = getLoadStoreAlignment(I); 5322 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5323 : TTI.isLegalMaskedStore(Ty, Alignment); 5324 } 5325 5326 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5327 Instruction *I, ElementCount VF) { 5328 // Get and ensure we have a valid memory instruction. 5329 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 5330 5331 auto *Ptr = getLoadStorePointerOperand(I); 5332 auto *ScalarTy = getLoadStoreType(I); 5333 5334 // In order to be widened, the pointer should be consecutive, first of all. 5335 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 5336 return false; 5337 5338 // If the instruction is a store located in a predicated block, it will be 5339 // scalarized. 5340 if (isScalarWithPredication(I)) 5341 return false; 5342 5343 // If the instruction's allocated size doesn't equal it's type size, it 5344 // requires padding and will be scalarized. 5345 auto &DL = I->getModule()->getDataLayout(); 5346 if (hasIrregularType(ScalarTy, DL)) 5347 return false; 5348 5349 return true; 5350 } 5351 5352 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5353 // We should not collect Uniforms more than once per VF. Right now, 5354 // this function is called from collectUniformsAndScalars(), which 5355 // already does this check. Collecting Uniforms for VF=1 does not make any 5356 // sense. 5357 5358 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5359 "This function should not be visited twice for the same VF"); 5360 5361 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5362 // not analyze again. Uniforms.count(VF) will return 1. 5363 Uniforms[VF].clear(); 5364 5365 // We now know that the loop is vectorizable! 5366 // Collect instructions inside the loop that will remain uniform after 5367 // vectorization. 5368 5369 // Global values, params and instructions outside of current loop are out of 5370 // scope. 5371 auto isOutOfScope = [&](Value *V) -> bool { 5372 Instruction *I = dyn_cast<Instruction>(V); 5373 return (!I || !TheLoop->contains(I)); 5374 }; 5375 5376 SetVector<Instruction *> Worklist; 5377 BasicBlock *Latch = TheLoop->getLoopLatch(); 5378 5379 // Instructions that are scalar with predication must not be considered 5380 // uniform after vectorization, because that would create an erroneous 5381 // replicating region where only a single instance out of VF should be formed. 5382 // TODO: optimize such seldom cases if found important, see PR40816. 5383 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5384 if (isOutOfScope(I)) { 5385 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5386 << *I << "\n"); 5387 return; 5388 } 5389 if (isScalarWithPredication(I)) { 5390 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5391 << *I << "\n"); 5392 return; 5393 } 5394 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5395 Worklist.insert(I); 5396 }; 5397 5398 // Start with the conditional branch. If the branch condition is an 5399 // instruction contained in the loop that is only used by the branch, it is 5400 // uniform. 5401 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5402 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5403 addToWorklistIfAllowed(Cmp); 5404 5405 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5406 InstWidening WideningDecision = getWideningDecision(I, VF); 5407 assert(WideningDecision != CM_Unknown && 5408 "Widening decision should be ready at this moment"); 5409 5410 // A uniform memory op is itself uniform. We exclude uniform stores 5411 // here as they demand the last lane, not the first one. 5412 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5413 assert(WideningDecision == CM_Scalarize); 5414 return true; 5415 } 5416 5417 return (WideningDecision == CM_Widen || 5418 WideningDecision == CM_Widen_Reverse || 5419 WideningDecision == CM_Interleave); 5420 }; 5421 5422 5423 // Returns true if Ptr is the pointer operand of a memory access instruction 5424 // I, and I is known to not require scalarization. 5425 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5426 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5427 }; 5428 5429 // Holds a list of values which are known to have at least one uniform use. 5430 // Note that there may be other uses which aren't uniform. A "uniform use" 5431 // here is something which only demands lane 0 of the unrolled iterations; 5432 // it does not imply that all lanes produce the same value (e.g. this is not 5433 // the usual meaning of uniform) 5434 SetVector<Value *> HasUniformUse; 5435 5436 // Scan the loop for instructions which are either a) known to have only 5437 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5438 for (auto *BB : TheLoop->blocks()) 5439 for (auto &I : *BB) { 5440 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5441 switch (II->getIntrinsicID()) { 5442 case Intrinsic::sideeffect: 5443 case Intrinsic::experimental_noalias_scope_decl: 5444 case Intrinsic::assume: 5445 case Intrinsic::lifetime_start: 5446 case Intrinsic::lifetime_end: 5447 if (TheLoop->hasLoopInvariantOperands(&I)) 5448 addToWorklistIfAllowed(&I); 5449 break; 5450 default: 5451 break; 5452 } 5453 } 5454 5455 // ExtractValue instructions must be uniform, because the operands are 5456 // known to be loop-invariant. 5457 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5458 assert(isOutOfScope(EVI->getAggregateOperand()) && 5459 "Expected aggregate value to be loop invariant"); 5460 addToWorklistIfAllowed(EVI); 5461 continue; 5462 } 5463 5464 // If there's no pointer operand, there's nothing to do. 5465 auto *Ptr = getLoadStorePointerOperand(&I); 5466 if (!Ptr) 5467 continue; 5468 5469 // A uniform memory op is itself uniform. We exclude uniform stores 5470 // here as they demand the last lane, not the first one. 5471 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5472 addToWorklistIfAllowed(&I); 5473 5474 if (isUniformDecision(&I, VF)) { 5475 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5476 HasUniformUse.insert(Ptr); 5477 } 5478 } 5479 5480 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5481 // demanding) users. Since loops are assumed to be in LCSSA form, this 5482 // disallows uses outside the loop as well. 5483 for (auto *V : HasUniformUse) { 5484 if (isOutOfScope(V)) 5485 continue; 5486 auto *I = cast<Instruction>(V); 5487 auto UsersAreMemAccesses = 5488 llvm::all_of(I->users(), [&](User *U) -> bool { 5489 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5490 }); 5491 if (UsersAreMemAccesses) 5492 addToWorklistIfAllowed(I); 5493 } 5494 5495 // Expand Worklist in topological order: whenever a new instruction 5496 // is added , its users should be already inside Worklist. It ensures 5497 // a uniform instruction will only be used by uniform instructions. 5498 unsigned idx = 0; 5499 while (idx != Worklist.size()) { 5500 Instruction *I = Worklist[idx++]; 5501 5502 for (auto OV : I->operand_values()) { 5503 // isOutOfScope operands cannot be uniform instructions. 5504 if (isOutOfScope(OV)) 5505 continue; 5506 // First order recurrence Phi's should typically be considered 5507 // non-uniform. 5508 auto *OP = dyn_cast<PHINode>(OV); 5509 if (OP && Legal->isFirstOrderRecurrence(OP)) 5510 continue; 5511 // If all the users of the operand are uniform, then add the 5512 // operand into the uniform worklist. 5513 auto *OI = cast<Instruction>(OV); 5514 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5515 auto *J = cast<Instruction>(U); 5516 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5517 })) 5518 addToWorklistIfAllowed(OI); 5519 } 5520 } 5521 5522 // For an instruction to be added into Worklist above, all its users inside 5523 // the loop should also be in Worklist. However, this condition cannot be 5524 // true for phi nodes that form a cyclic dependence. We must process phi 5525 // nodes separately. An induction variable will remain uniform if all users 5526 // of the induction variable and induction variable update remain uniform. 5527 // The code below handles both pointer and non-pointer induction variables. 5528 for (auto &Induction : Legal->getInductionVars()) { 5529 auto *Ind = Induction.first; 5530 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5531 5532 // Determine if all users of the induction variable are uniform after 5533 // vectorization. 5534 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5535 auto *I = cast<Instruction>(U); 5536 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5537 isVectorizedMemAccessUse(I, Ind); 5538 }); 5539 if (!UniformInd) 5540 continue; 5541 5542 // Determine if all users of the induction variable update instruction are 5543 // uniform after vectorization. 5544 auto UniformIndUpdate = 5545 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5546 auto *I = cast<Instruction>(U); 5547 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5548 isVectorizedMemAccessUse(I, IndUpdate); 5549 }); 5550 if (!UniformIndUpdate) 5551 continue; 5552 5553 // The induction variable and its update instruction will remain uniform. 5554 addToWorklistIfAllowed(Ind); 5555 addToWorklistIfAllowed(IndUpdate); 5556 } 5557 5558 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5559 } 5560 5561 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5562 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5563 5564 if (Legal->getRuntimePointerChecking()->Need) { 5565 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5566 "runtime pointer checks needed. Enable vectorization of this " 5567 "loop with '#pragma clang loop vectorize(enable)' when " 5568 "compiling with -Os/-Oz", 5569 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5570 return true; 5571 } 5572 5573 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5574 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5575 "runtime SCEV checks needed. Enable vectorization of this " 5576 "loop with '#pragma clang loop vectorize(enable)' when " 5577 "compiling with -Os/-Oz", 5578 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5579 return true; 5580 } 5581 5582 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5583 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5584 reportVectorizationFailure("Runtime stride check for small trip count", 5585 "runtime stride == 1 checks needed. Enable vectorization of " 5586 "this loop without such check by compiling with -Os/-Oz", 5587 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5588 return true; 5589 } 5590 5591 return false; 5592 } 5593 5594 ElementCount 5595 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5596 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5597 return ElementCount::getScalable(0); 5598 5599 if (Hints->isScalableVectorizationDisabled()) { 5600 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5601 "ScalableVectorizationDisabled", ORE, TheLoop); 5602 return ElementCount::getScalable(0); 5603 } 5604 5605 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5606 5607 auto MaxScalableVF = ElementCount::getScalable( 5608 std::numeric_limits<ElementCount::ScalarTy>::max()); 5609 5610 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5611 // FIXME: While for scalable vectors this is currently sufficient, this should 5612 // be replaced by a more detailed mechanism that filters out specific VFs, 5613 // instead of invalidating vectorization for a whole set of VFs based on the 5614 // MaxVF. 5615 5616 // Disable scalable vectorization if the loop contains unsupported reductions. 5617 if (!canVectorizeReductions(MaxScalableVF)) { 5618 reportVectorizationInfo( 5619 "Scalable vectorization not supported for the reduction " 5620 "operations found in this loop.", 5621 "ScalableVFUnfeasible", ORE, TheLoop); 5622 return ElementCount::getScalable(0); 5623 } 5624 5625 // Disable scalable vectorization if the loop contains any instructions 5626 // with element types not supported for scalable vectors. 5627 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5628 return !Ty->isVoidTy() && 5629 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5630 })) { 5631 reportVectorizationInfo("Scalable vectorization is not supported " 5632 "for all element types found in this loop.", 5633 "ScalableVFUnfeasible", ORE, TheLoop); 5634 return ElementCount::getScalable(0); 5635 } 5636 5637 if (Legal->isSafeForAnyVectorWidth()) 5638 return MaxScalableVF; 5639 5640 // Limit MaxScalableVF by the maximum safe dependence distance. 5641 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5642 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5643 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5644 .getVScaleRangeArgs() 5645 .second; 5646 if (VScaleMax > 0) 5647 MaxVScale = VScaleMax; 5648 } 5649 MaxScalableVF = ElementCount::getScalable( 5650 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5651 if (!MaxScalableVF) 5652 reportVectorizationInfo( 5653 "Max legal vector width too small, scalable vectorization " 5654 "unfeasible.", 5655 "ScalableVFUnfeasible", ORE, TheLoop); 5656 5657 return MaxScalableVF; 5658 } 5659 5660 FixedScalableVFPair 5661 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5662 ElementCount UserVF) { 5663 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5664 unsigned SmallestType, WidestType; 5665 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5666 5667 // Get the maximum safe dependence distance in bits computed by LAA. 5668 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5669 // the memory accesses that is most restrictive (involved in the smallest 5670 // dependence distance). 5671 unsigned MaxSafeElements = 5672 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5673 5674 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5675 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5676 5677 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5678 << ".\n"); 5679 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5680 << ".\n"); 5681 5682 // First analyze the UserVF, fall back if the UserVF should be ignored. 5683 if (UserVF) { 5684 auto MaxSafeUserVF = 5685 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5686 5687 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5688 // If `VF=vscale x N` is safe, then so is `VF=N` 5689 if (UserVF.isScalable()) 5690 return FixedScalableVFPair( 5691 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5692 else 5693 return UserVF; 5694 } 5695 5696 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5697 5698 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5699 // is better to ignore the hint and let the compiler choose a suitable VF. 5700 if (!UserVF.isScalable()) { 5701 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5702 << " is unsafe, clamping to max safe VF=" 5703 << MaxSafeFixedVF << ".\n"); 5704 ORE->emit([&]() { 5705 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5706 TheLoop->getStartLoc(), 5707 TheLoop->getHeader()) 5708 << "User-specified vectorization factor " 5709 << ore::NV("UserVectorizationFactor", UserVF) 5710 << " is unsafe, clamping to maximum safe vectorization factor " 5711 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5712 }); 5713 return MaxSafeFixedVF; 5714 } 5715 5716 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5717 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5718 << " is ignored because scalable vectors are not " 5719 "available.\n"); 5720 ORE->emit([&]() { 5721 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5722 TheLoop->getStartLoc(), 5723 TheLoop->getHeader()) 5724 << "User-specified vectorization factor " 5725 << ore::NV("UserVectorizationFactor", UserVF) 5726 << " is ignored because the target does not support scalable " 5727 "vectors. The compiler will pick a more suitable value."; 5728 }); 5729 } else { 5730 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5731 << " is unsafe. Ignoring scalable UserVF.\n"); 5732 ORE->emit([&]() { 5733 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5734 TheLoop->getStartLoc(), 5735 TheLoop->getHeader()) 5736 << "User-specified vectorization factor " 5737 << ore::NV("UserVectorizationFactor", UserVF) 5738 << " is unsafe. Ignoring the hint to let the compiler pick a " 5739 "more suitable value."; 5740 }); 5741 } 5742 } 5743 5744 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5745 << " / " << WidestType << " bits.\n"); 5746 5747 FixedScalableVFPair Result(ElementCount::getFixed(1), 5748 ElementCount::getScalable(0)); 5749 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5750 WidestType, MaxSafeFixedVF)) 5751 Result.FixedVF = MaxVF; 5752 5753 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5754 WidestType, MaxSafeScalableVF)) 5755 if (MaxVF.isScalable()) { 5756 Result.ScalableVF = MaxVF; 5757 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5758 << "\n"); 5759 } 5760 5761 return Result; 5762 } 5763 5764 FixedScalableVFPair 5765 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5766 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5767 // TODO: It may by useful to do since it's still likely to be dynamically 5768 // uniform if the target can skip. 5769 reportVectorizationFailure( 5770 "Not inserting runtime ptr check for divergent target", 5771 "runtime pointer checks needed. Not enabled for divergent target", 5772 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5773 return FixedScalableVFPair::getNone(); 5774 } 5775 5776 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5777 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5778 if (TC == 1) { 5779 reportVectorizationFailure("Single iteration (non) loop", 5780 "loop trip count is one, irrelevant for vectorization", 5781 "SingleIterationLoop", ORE, TheLoop); 5782 return FixedScalableVFPair::getNone(); 5783 } 5784 5785 switch (ScalarEpilogueStatus) { 5786 case CM_ScalarEpilogueAllowed: 5787 return computeFeasibleMaxVF(TC, UserVF); 5788 case CM_ScalarEpilogueNotAllowedUsePredicate: 5789 LLVM_FALLTHROUGH; 5790 case CM_ScalarEpilogueNotNeededUsePredicate: 5791 LLVM_DEBUG( 5792 dbgs() << "LV: vector predicate hint/switch found.\n" 5793 << "LV: Not allowing scalar epilogue, creating predicated " 5794 << "vector loop.\n"); 5795 break; 5796 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5797 // fallthrough as a special case of OptForSize 5798 case CM_ScalarEpilogueNotAllowedOptSize: 5799 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5800 LLVM_DEBUG( 5801 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5802 else 5803 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5804 << "count.\n"); 5805 5806 // Bail if runtime checks are required, which are not good when optimising 5807 // for size. 5808 if (runtimeChecksRequired()) 5809 return FixedScalableVFPair::getNone(); 5810 5811 break; 5812 } 5813 5814 // The only loops we can vectorize without a scalar epilogue, are loops with 5815 // a bottom-test and a single exiting block. We'd have to handle the fact 5816 // that not every instruction executes on the last iteration. This will 5817 // require a lane mask which varies through the vector loop body. (TODO) 5818 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5819 // If there was a tail-folding hint/switch, but we can't fold the tail by 5820 // masking, fallback to a vectorization with a scalar epilogue. 5821 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5822 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5823 "scalar epilogue instead.\n"); 5824 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5825 return computeFeasibleMaxVF(TC, UserVF); 5826 } 5827 return FixedScalableVFPair::getNone(); 5828 } 5829 5830 // Now try the tail folding 5831 5832 // Invalidate interleave groups that require an epilogue if we can't mask 5833 // the interleave-group. 5834 if (!useMaskedInterleavedAccesses(TTI)) { 5835 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5836 "No decisions should have been taken at this point"); 5837 // Note: There is no need to invalidate any cost modeling decisions here, as 5838 // non where taken so far. 5839 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5840 } 5841 5842 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5843 // Avoid tail folding if the trip count is known to be a multiple of any VF 5844 // we chose. 5845 // FIXME: The condition below pessimises the case for fixed-width vectors, 5846 // when scalable VFs are also candidates for vectorization. 5847 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5848 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5849 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5850 "MaxFixedVF must be a power of 2"); 5851 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5852 : MaxFixedVF.getFixedValue(); 5853 ScalarEvolution *SE = PSE.getSE(); 5854 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5855 const SCEV *ExitCount = SE->getAddExpr( 5856 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5857 const SCEV *Rem = SE->getURemExpr( 5858 SE->applyLoopGuards(ExitCount, TheLoop), 5859 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5860 if (Rem->isZero()) { 5861 // Accept MaxFixedVF if we do not have a tail. 5862 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5863 return MaxFactors; 5864 } 5865 } 5866 5867 // For scalable vectors, don't use tail folding as this is currently not yet 5868 // supported. The code is likely to have ended up here if the tripcount is 5869 // low, in which case it makes sense not to use scalable vectors. 5870 if (MaxFactors.ScalableVF.isVector()) 5871 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5872 5873 // If we don't know the precise trip count, or if the trip count that we 5874 // found modulo the vectorization factor is not zero, try to fold the tail 5875 // by masking. 5876 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5877 if (Legal->prepareToFoldTailByMasking()) { 5878 FoldTailByMasking = true; 5879 return MaxFactors; 5880 } 5881 5882 // If there was a tail-folding hint/switch, but we can't fold the tail by 5883 // masking, fallback to a vectorization with a scalar epilogue. 5884 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5885 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5886 "scalar epilogue instead.\n"); 5887 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5888 return MaxFactors; 5889 } 5890 5891 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5892 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5893 return FixedScalableVFPair::getNone(); 5894 } 5895 5896 if (TC == 0) { 5897 reportVectorizationFailure( 5898 "Unable to calculate the loop count due to complex control flow", 5899 "unable to calculate the loop count due to complex control flow", 5900 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5901 return FixedScalableVFPair::getNone(); 5902 } 5903 5904 reportVectorizationFailure( 5905 "Cannot optimize for size and vectorize at the same time.", 5906 "cannot optimize for size and vectorize at the same time. " 5907 "Enable vectorization of this loop with '#pragma clang loop " 5908 "vectorize(enable)' when compiling with -Os/-Oz", 5909 "NoTailLoopWithOptForSize", ORE, TheLoop); 5910 return FixedScalableVFPair::getNone(); 5911 } 5912 5913 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5914 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5915 const ElementCount &MaxSafeVF) { 5916 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5917 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5918 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5919 : TargetTransformInfo::RGK_FixedWidthVector); 5920 5921 // Convenience function to return the minimum of two ElementCounts. 5922 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5923 assert((LHS.isScalable() == RHS.isScalable()) && 5924 "Scalable flags must match"); 5925 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5926 }; 5927 5928 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5929 // Note that both WidestRegister and WidestType may not be a powers of 2. 5930 auto MaxVectorElementCount = ElementCount::get( 5931 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5932 ComputeScalableMaxVF); 5933 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5934 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5935 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5936 5937 if (!MaxVectorElementCount) { 5938 LLVM_DEBUG(dbgs() << "LV: The target has no " 5939 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5940 << " vector registers.\n"); 5941 return ElementCount::getFixed(1); 5942 } 5943 5944 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5945 if (ConstTripCount && 5946 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5947 isPowerOf2_32(ConstTripCount)) { 5948 // We need to clamp the VF to be the ConstTripCount. There is no point in 5949 // choosing a higher viable VF as done in the loop below. If 5950 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5951 // the TC is less than or equal to the known number of lanes. 5952 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5953 << ConstTripCount << "\n"); 5954 return TripCountEC; 5955 } 5956 5957 ElementCount MaxVF = MaxVectorElementCount; 5958 if (TTI.shouldMaximizeVectorBandwidth() || 5959 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5960 auto MaxVectorElementCountMaxBW = ElementCount::get( 5961 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5962 ComputeScalableMaxVF); 5963 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5964 5965 // Collect all viable vectorization factors larger than the default MaxVF 5966 // (i.e. MaxVectorElementCount). 5967 SmallVector<ElementCount, 8> VFs; 5968 for (ElementCount VS = MaxVectorElementCount * 2; 5969 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5970 VFs.push_back(VS); 5971 5972 // For each VF calculate its register usage. 5973 auto RUs = calculateRegisterUsage(VFs); 5974 5975 // Select the largest VF which doesn't require more registers than existing 5976 // ones. 5977 for (int i = RUs.size() - 1; i >= 0; --i) { 5978 bool Selected = true; 5979 for (auto &pair : RUs[i].MaxLocalUsers) { 5980 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5981 if (pair.second > TargetNumRegisters) 5982 Selected = false; 5983 } 5984 if (Selected) { 5985 MaxVF = VFs[i]; 5986 break; 5987 } 5988 } 5989 if (ElementCount MinVF = 5990 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5991 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5992 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5993 << ") with target's minimum: " << MinVF << '\n'); 5994 MaxVF = MinVF; 5995 } 5996 } 5997 } 5998 return MaxVF; 5999 } 6000 6001 bool LoopVectorizationCostModel::isMoreProfitable( 6002 const VectorizationFactor &A, const VectorizationFactor &B) const { 6003 InstructionCost CostA = A.Cost; 6004 InstructionCost CostB = B.Cost; 6005 6006 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6007 6008 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6009 MaxTripCount) { 6010 // If we are folding the tail and the trip count is a known (possibly small) 6011 // constant, the trip count will be rounded up to an integer number of 6012 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6013 // which we compare directly. When not folding the tail, the total cost will 6014 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6015 // approximated with the per-lane cost below instead of using the tripcount 6016 // as here. 6017 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6018 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6019 return RTCostA < RTCostB; 6020 } 6021 6022 // When set to preferred, for now assume vscale may be larger than 1, so 6023 // that scalable vectorization is slightly favorable over fixed-width 6024 // vectorization. 6025 if (Hints->isScalableVectorizationPreferred()) 6026 if (A.Width.isScalable() && !B.Width.isScalable()) 6027 return (CostA * B.Width.getKnownMinValue()) <= 6028 (CostB * A.Width.getKnownMinValue()); 6029 6030 // To avoid the need for FP division: 6031 // (CostA / A.Width) < (CostB / B.Width) 6032 // <=> (CostA * B.Width) < (CostB * A.Width) 6033 return (CostA * B.Width.getKnownMinValue()) < 6034 (CostB * A.Width.getKnownMinValue()); 6035 } 6036 6037 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6038 const ElementCountSet &VFCandidates) { 6039 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6040 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6041 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6042 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6043 "Expected Scalar VF to be a candidate"); 6044 6045 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6046 VectorizationFactor ChosenFactor = ScalarCost; 6047 6048 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6049 if (ForceVectorization && VFCandidates.size() > 1) { 6050 // Ignore scalar width, because the user explicitly wants vectorization. 6051 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6052 // evaluation. 6053 ChosenFactor.Cost = InstructionCost::getMax(); 6054 } 6055 6056 SmallVector<InstructionVFPair> InvalidCosts; 6057 for (const auto &i : VFCandidates) { 6058 // The cost for scalar VF=1 is already calculated, so ignore it. 6059 if (i.isScalar()) 6060 continue; 6061 6062 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 6063 VectorizationFactor Candidate(i, C.first); 6064 LLVM_DEBUG( 6065 dbgs() << "LV: Vector loop of width " << i << " costs: " 6066 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6067 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6068 << ".\n"); 6069 6070 if (!C.second && !ForceVectorization) { 6071 LLVM_DEBUG( 6072 dbgs() << "LV: Not considering vector loop of width " << i 6073 << " because it will not generate any vector instructions.\n"); 6074 continue; 6075 } 6076 6077 // If profitable add it to ProfitableVF list. 6078 if (isMoreProfitable(Candidate, ScalarCost)) 6079 ProfitableVFs.push_back(Candidate); 6080 6081 if (isMoreProfitable(Candidate, ChosenFactor)) 6082 ChosenFactor = Candidate; 6083 } 6084 6085 // Emit a report of VFs with invalid costs in the loop. 6086 if (!InvalidCosts.empty()) { 6087 // Group the remarks per instruction, keeping the instruction order from 6088 // InvalidCosts. 6089 std::map<Instruction *, unsigned> Numbering; 6090 unsigned I = 0; 6091 for (auto &Pair : InvalidCosts) 6092 if (!Numbering.count(Pair.first)) 6093 Numbering[Pair.first] = I++; 6094 6095 // Sort the list, first on instruction(number) then on VF. 6096 llvm::sort(InvalidCosts, 6097 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 6098 if (Numbering[A.first] != Numbering[B.first]) 6099 return Numbering[A.first] < Numbering[B.first]; 6100 ElementCountComparator ECC; 6101 return ECC(A.second, B.second); 6102 }); 6103 6104 // For a list of ordered instruction-vf pairs: 6105 // [(load, vf1), (load, vf2), (store, vf1)] 6106 // Group the instructions together to emit separate remarks for: 6107 // load (vf1, vf2) 6108 // store (vf1) 6109 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 6110 auto Subset = ArrayRef<InstructionVFPair>(); 6111 do { 6112 if (Subset.empty()) 6113 Subset = Tail.take_front(1); 6114 6115 Instruction *I = Subset.front().first; 6116 6117 // If the next instruction is different, or if there are no other pairs, 6118 // emit a remark for the collated subset. e.g. 6119 // [(load, vf1), (load, vf2))] 6120 // to emit: 6121 // remark: invalid costs for 'load' at VF=(vf, vf2) 6122 if (Subset == Tail || Tail[Subset.size()].first != I) { 6123 std::string OutString; 6124 raw_string_ostream OS(OutString); 6125 assert(!Subset.empty() && "Unexpected empty range"); 6126 OS << "Instruction with invalid costs prevented vectorization at VF=("; 6127 for (auto &Pair : Subset) 6128 OS << (Pair.second == Subset.front().second ? "" : ", ") 6129 << Pair.second; 6130 OS << "):"; 6131 if (auto *CI = dyn_cast<CallInst>(I)) 6132 OS << " call to " << CI->getCalledFunction()->getName(); 6133 else 6134 OS << " " << I->getOpcodeName(); 6135 OS.flush(); 6136 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 6137 Tail = Tail.drop_front(Subset.size()); 6138 Subset = {}; 6139 } else 6140 // Grow the subset by one element 6141 Subset = Tail.take_front(Subset.size() + 1); 6142 } while (!Tail.empty()); 6143 } 6144 6145 if (!EnableCondStoresVectorization && NumPredStores) { 6146 reportVectorizationFailure("There are conditional stores.", 6147 "store that is conditionally executed prevents vectorization", 6148 "ConditionalStore", ORE, TheLoop); 6149 ChosenFactor = ScalarCost; 6150 } 6151 6152 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6153 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6154 << "LV: Vectorization seems to be not beneficial, " 6155 << "but was forced by a user.\n"); 6156 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6157 return ChosenFactor; 6158 } 6159 6160 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6161 const Loop &L, ElementCount VF) const { 6162 // Cross iteration phis such as reductions need special handling and are 6163 // currently unsupported. 6164 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6165 return Legal->isFirstOrderRecurrence(&Phi) || 6166 Legal->isReductionVariable(&Phi); 6167 })) 6168 return false; 6169 6170 // Phis with uses outside of the loop require special handling and are 6171 // currently unsupported. 6172 for (auto &Entry : Legal->getInductionVars()) { 6173 // Look for uses of the value of the induction at the last iteration. 6174 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6175 for (User *U : PostInc->users()) 6176 if (!L.contains(cast<Instruction>(U))) 6177 return false; 6178 // Look for uses of penultimate value of the induction. 6179 for (User *U : Entry.first->users()) 6180 if (!L.contains(cast<Instruction>(U))) 6181 return false; 6182 } 6183 6184 // Induction variables that are widened require special handling that is 6185 // currently not supported. 6186 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6187 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6188 this->isProfitableToScalarize(Entry.first, VF)); 6189 })) 6190 return false; 6191 6192 // Epilogue vectorization code has not been auditted to ensure it handles 6193 // non-latch exits properly. It may be fine, but it needs auditted and 6194 // tested. 6195 if (L.getExitingBlock() != L.getLoopLatch()) 6196 return false; 6197 6198 return true; 6199 } 6200 6201 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6202 const ElementCount VF) const { 6203 // FIXME: We need a much better cost-model to take different parameters such 6204 // as register pressure, code size increase and cost of extra branches into 6205 // account. For now we apply a very crude heuristic and only consider loops 6206 // with vectorization factors larger than a certain value. 6207 // We also consider epilogue vectorization unprofitable for targets that don't 6208 // consider interleaving beneficial (eg. MVE). 6209 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6210 return false; 6211 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6212 return true; 6213 return false; 6214 } 6215 6216 VectorizationFactor 6217 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6218 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6219 VectorizationFactor Result = VectorizationFactor::Disabled(); 6220 if (!EnableEpilogueVectorization) { 6221 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6222 return Result; 6223 } 6224 6225 if (!isScalarEpilogueAllowed()) { 6226 LLVM_DEBUG( 6227 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6228 "allowed.\n";); 6229 return Result; 6230 } 6231 6232 // FIXME: This can be fixed for scalable vectors later, because at this stage 6233 // the LoopVectorizer will only consider vectorizing a loop with scalable 6234 // vectors when the loop has a hint to enable vectorization for a given VF. 6235 if (MainLoopVF.isScalable()) { 6236 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6237 "yet supported.\n"); 6238 return Result; 6239 } 6240 6241 // Not really a cost consideration, but check for unsupported cases here to 6242 // simplify the logic. 6243 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6244 LLVM_DEBUG( 6245 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6246 "not a supported candidate.\n";); 6247 return Result; 6248 } 6249 6250 if (EpilogueVectorizationForceVF > 1) { 6251 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6252 if (LVP.hasPlanWithVFs( 6253 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6254 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6255 else { 6256 LLVM_DEBUG( 6257 dbgs() 6258 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6259 return Result; 6260 } 6261 } 6262 6263 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6264 TheLoop->getHeader()->getParent()->hasMinSize()) { 6265 LLVM_DEBUG( 6266 dbgs() 6267 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6268 return Result; 6269 } 6270 6271 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6272 return Result; 6273 6274 for (auto &NextVF : ProfitableVFs) 6275 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6276 (Result.Width.getFixedValue() == 1 || 6277 isMoreProfitable(NextVF, Result)) && 6278 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6279 Result = NextVF; 6280 6281 if (Result != VectorizationFactor::Disabled()) 6282 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6283 << Result.Width.getFixedValue() << "\n";); 6284 return Result; 6285 } 6286 6287 std::pair<unsigned, unsigned> 6288 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6289 unsigned MinWidth = -1U; 6290 unsigned MaxWidth = 8; 6291 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6292 for (Type *T : ElementTypesInLoop) { 6293 MinWidth = std::min<unsigned>( 6294 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6295 MaxWidth = std::max<unsigned>( 6296 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6297 } 6298 return {MinWidth, MaxWidth}; 6299 } 6300 6301 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6302 ElementTypesInLoop.clear(); 6303 // For each block. 6304 for (BasicBlock *BB : TheLoop->blocks()) { 6305 // For each instruction in the loop. 6306 for (Instruction &I : BB->instructionsWithoutDebug()) { 6307 Type *T = I.getType(); 6308 6309 // Skip ignored values. 6310 if (ValuesToIgnore.count(&I)) 6311 continue; 6312 6313 // Only examine Loads, Stores and PHINodes. 6314 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6315 continue; 6316 6317 // Examine PHI nodes that are reduction variables. Update the type to 6318 // account for the recurrence type. 6319 if (auto *PN = dyn_cast<PHINode>(&I)) { 6320 if (!Legal->isReductionVariable(PN)) 6321 continue; 6322 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6323 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6324 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6325 RdxDesc.getRecurrenceType(), 6326 TargetTransformInfo::ReductionFlags())) 6327 continue; 6328 T = RdxDesc.getRecurrenceType(); 6329 } 6330 6331 // Examine the stored values. 6332 if (auto *ST = dyn_cast<StoreInst>(&I)) 6333 T = ST->getValueOperand()->getType(); 6334 6335 // Ignore loaded pointer types and stored pointer types that are not 6336 // vectorizable. 6337 // 6338 // FIXME: The check here attempts to predict whether a load or store will 6339 // be vectorized. We only know this for certain after a VF has 6340 // been selected. Here, we assume that if an access can be 6341 // vectorized, it will be. We should also look at extending this 6342 // optimization to non-pointer types. 6343 // 6344 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6345 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6346 continue; 6347 6348 ElementTypesInLoop.insert(T); 6349 } 6350 } 6351 } 6352 6353 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6354 unsigned LoopCost) { 6355 // -- The interleave heuristics -- 6356 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6357 // There are many micro-architectural considerations that we can't predict 6358 // at this level. For example, frontend pressure (on decode or fetch) due to 6359 // code size, or the number and capabilities of the execution ports. 6360 // 6361 // We use the following heuristics to select the interleave count: 6362 // 1. If the code has reductions, then we interleave to break the cross 6363 // iteration dependency. 6364 // 2. If the loop is really small, then we interleave to reduce the loop 6365 // overhead. 6366 // 3. We don't interleave if we think that we will spill registers to memory 6367 // due to the increased register pressure. 6368 6369 if (!isScalarEpilogueAllowed()) 6370 return 1; 6371 6372 // We used the distance for the interleave count. 6373 if (Legal->getMaxSafeDepDistBytes() != -1U) 6374 return 1; 6375 6376 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6377 const bool HasReductions = !Legal->getReductionVars().empty(); 6378 // Do not interleave loops with a relatively small known or estimated trip 6379 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6380 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6381 // because with the above conditions interleaving can expose ILP and break 6382 // cross iteration dependences for reductions. 6383 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6384 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6385 return 1; 6386 6387 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6388 // We divide by these constants so assume that we have at least one 6389 // instruction that uses at least one register. 6390 for (auto& pair : R.MaxLocalUsers) { 6391 pair.second = std::max(pair.second, 1U); 6392 } 6393 6394 // We calculate the interleave count using the following formula. 6395 // Subtract the number of loop invariants from the number of available 6396 // registers. These registers are used by all of the interleaved instances. 6397 // Next, divide the remaining registers by the number of registers that is 6398 // required by the loop, in order to estimate how many parallel instances 6399 // fit without causing spills. All of this is rounded down if necessary to be 6400 // a power of two. We want power of two interleave count to simplify any 6401 // addressing operations or alignment considerations. 6402 // We also want power of two interleave counts to ensure that the induction 6403 // variable of the vector loop wraps to zero, when tail is folded by masking; 6404 // this currently happens when OptForSize, in which case IC is set to 1 above. 6405 unsigned IC = UINT_MAX; 6406 6407 for (auto& pair : R.MaxLocalUsers) { 6408 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6409 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6410 << " registers of " 6411 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6412 if (VF.isScalar()) { 6413 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6414 TargetNumRegisters = ForceTargetNumScalarRegs; 6415 } else { 6416 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6417 TargetNumRegisters = ForceTargetNumVectorRegs; 6418 } 6419 unsigned MaxLocalUsers = pair.second; 6420 unsigned LoopInvariantRegs = 0; 6421 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6422 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6423 6424 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6425 // Don't count the induction variable as interleaved. 6426 if (EnableIndVarRegisterHeur) { 6427 TmpIC = 6428 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6429 std::max(1U, (MaxLocalUsers - 1))); 6430 } 6431 6432 IC = std::min(IC, TmpIC); 6433 } 6434 6435 // Clamp the interleave ranges to reasonable counts. 6436 unsigned MaxInterleaveCount = 6437 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6438 6439 // Check if the user has overridden the max. 6440 if (VF.isScalar()) { 6441 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6442 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6443 } else { 6444 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6445 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6446 } 6447 6448 // If trip count is known or estimated compile time constant, limit the 6449 // interleave count to be less than the trip count divided by VF, provided it 6450 // is at least 1. 6451 // 6452 // For scalable vectors we can't know if interleaving is beneficial. It may 6453 // not be beneficial for small loops if none of the lanes in the second vector 6454 // iterations is enabled. However, for larger loops, there is likely to be a 6455 // similar benefit as for fixed-width vectors. For now, we choose to leave 6456 // the InterleaveCount as if vscale is '1', although if some information about 6457 // the vector is known (e.g. min vector size), we can make a better decision. 6458 if (BestKnownTC) { 6459 MaxInterleaveCount = 6460 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6461 // Make sure MaxInterleaveCount is greater than 0. 6462 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6463 } 6464 6465 assert(MaxInterleaveCount > 0 && 6466 "Maximum interleave count must be greater than 0"); 6467 6468 // Clamp the calculated IC to be between the 1 and the max interleave count 6469 // that the target and trip count allows. 6470 if (IC > MaxInterleaveCount) 6471 IC = MaxInterleaveCount; 6472 else 6473 // Make sure IC is greater than 0. 6474 IC = std::max(1u, IC); 6475 6476 assert(IC > 0 && "Interleave count must be greater than 0."); 6477 6478 // If we did not calculate the cost for VF (because the user selected the VF) 6479 // then we calculate the cost of VF here. 6480 if (LoopCost == 0) { 6481 InstructionCost C = expectedCost(VF).first; 6482 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6483 LoopCost = *C.getValue(); 6484 } 6485 6486 assert(LoopCost && "Non-zero loop cost expected"); 6487 6488 // Interleave if we vectorized this loop and there is a reduction that could 6489 // benefit from interleaving. 6490 if (VF.isVector() && HasReductions) { 6491 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6492 return IC; 6493 } 6494 6495 // Note that if we've already vectorized the loop we will have done the 6496 // runtime check and so interleaving won't require further checks. 6497 bool InterleavingRequiresRuntimePointerCheck = 6498 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6499 6500 // We want to interleave small loops in order to reduce the loop overhead and 6501 // potentially expose ILP opportunities. 6502 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6503 << "LV: IC is " << IC << '\n' 6504 << "LV: VF is " << VF << '\n'); 6505 const bool AggressivelyInterleaveReductions = 6506 TTI.enableAggressiveInterleaving(HasReductions); 6507 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6508 // We assume that the cost overhead is 1 and we use the cost model 6509 // to estimate the cost of the loop and interleave until the cost of the 6510 // loop overhead is about 5% of the cost of the loop. 6511 unsigned SmallIC = 6512 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6513 6514 // Interleave until store/load ports (estimated by max interleave count) are 6515 // saturated. 6516 unsigned NumStores = Legal->getNumStores(); 6517 unsigned NumLoads = Legal->getNumLoads(); 6518 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6519 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6520 6521 // If we have a scalar reduction (vector reductions are already dealt with 6522 // by this point), we can increase the critical path length if the loop 6523 // we're interleaving is inside another loop. For tree-wise reductions 6524 // set the limit to 2, and for ordered reductions it's best to disable 6525 // interleaving entirely. 6526 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6527 bool HasOrderedReductions = 6528 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6529 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6530 return RdxDesc.isOrdered(); 6531 }); 6532 if (HasOrderedReductions) { 6533 LLVM_DEBUG( 6534 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6535 return 1; 6536 } 6537 6538 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6539 SmallIC = std::min(SmallIC, F); 6540 StoresIC = std::min(StoresIC, F); 6541 LoadsIC = std::min(LoadsIC, F); 6542 } 6543 6544 if (EnableLoadStoreRuntimeInterleave && 6545 std::max(StoresIC, LoadsIC) > SmallIC) { 6546 LLVM_DEBUG( 6547 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6548 return std::max(StoresIC, LoadsIC); 6549 } 6550 6551 // If there are scalar reductions and TTI has enabled aggressive 6552 // interleaving for reductions, we will interleave to expose ILP. 6553 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6554 AggressivelyInterleaveReductions) { 6555 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6556 // Interleave no less than SmallIC but not as aggressive as the normal IC 6557 // to satisfy the rare situation when resources are too limited. 6558 return std::max(IC / 2, SmallIC); 6559 } else { 6560 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6561 return SmallIC; 6562 } 6563 } 6564 6565 // Interleave if this is a large loop (small loops are already dealt with by 6566 // this point) that could benefit from interleaving. 6567 if (AggressivelyInterleaveReductions) { 6568 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6569 return IC; 6570 } 6571 6572 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6573 return 1; 6574 } 6575 6576 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6577 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6578 // This function calculates the register usage by measuring the highest number 6579 // of values that are alive at a single location. Obviously, this is a very 6580 // rough estimation. We scan the loop in a topological order in order and 6581 // assign a number to each instruction. We use RPO to ensure that defs are 6582 // met before their users. We assume that each instruction that has in-loop 6583 // users starts an interval. We record every time that an in-loop value is 6584 // used, so we have a list of the first and last occurrences of each 6585 // instruction. Next, we transpose this data structure into a multi map that 6586 // holds the list of intervals that *end* at a specific location. This multi 6587 // map allows us to perform a linear search. We scan the instructions linearly 6588 // and record each time that a new interval starts, by placing it in a set. 6589 // If we find this value in the multi-map then we remove it from the set. 6590 // The max register usage is the maximum size of the set. 6591 // We also search for instructions that are defined outside the loop, but are 6592 // used inside the loop. We need this number separately from the max-interval 6593 // usage number because when we unroll, loop-invariant values do not take 6594 // more register. 6595 LoopBlocksDFS DFS(TheLoop); 6596 DFS.perform(LI); 6597 6598 RegisterUsage RU; 6599 6600 // Each 'key' in the map opens a new interval. The values 6601 // of the map are the index of the 'last seen' usage of the 6602 // instruction that is the key. 6603 using IntervalMap = DenseMap<Instruction *, unsigned>; 6604 6605 // Maps instruction to its index. 6606 SmallVector<Instruction *, 64> IdxToInstr; 6607 // Marks the end of each interval. 6608 IntervalMap EndPoint; 6609 // Saves the list of instruction indices that are used in the loop. 6610 SmallPtrSet<Instruction *, 8> Ends; 6611 // Saves the list of values that are used in the loop but are 6612 // defined outside the loop, such as arguments and constants. 6613 SmallPtrSet<Value *, 8> LoopInvariants; 6614 6615 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6616 for (Instruction &I : BB->instructionsWithoutDebug()) { 6617 IdxToInstr.push_back(&I); 6618 6619 // Save the end location of each USE. 6620 for (Value *U : I.operands()) { 6621 auto *Instr = dyn_cast<Instruction>(U); 6622 6623 // Ignore non-instruction values such as arguments, constants, etc. 6624 if (!Instr) 6625 continue; 6626 6627 // If this instruction is outside the loop then record it and continue. 6628 if (!TheLoop->contains(Instr)) { 6629 LoopInvariants.insert(Instr); 6630 continue; 6631 } 6632 6633 // Overwrite previous end points. 6634 EndPoint[Instr] = IdxToInstr.size(); 6635 Ends.insert(Instr); 6636 } 6637 } 6638 } 6639 6640 // Saves the list of intervals that end with the index in 'key'. 6641 using InstrList = SmallVector<Instruction *, 2>; 6642 DenseMap<unsigned, InstrList> TransposeEnds; 6643 6644 // Transpose the EndPoints to a list of values that end at each index. 6645 for (auto &Interval : EndPoint) 6646 TransposeEnds[Interval.second].push_back(Interval.first); 6647 6648 SmallPtrSet<Instruction *, 8> OpenIntervals; 6649 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6650 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6651 6652 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6653 6654 // A lambda that gets the register usage for the given type and VF. 6655 const auto &TTICapture = TTI; 6656 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6657 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6658 return 0; 6659 InstructionCost::CostType RegUsage = 6660 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6661 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6662 "Nonsensical values for register usage."); 6663 return RegUsage; 6664 }; 6665 6666 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6667 Instruction *I = IdxToInstr[i]; 6668 6669 // Remove all of the instructions that end at this location. 6670 InstrList &List = TransposeEnds[i]; 6671 for (Instruction *ToRemove : List) 6672 OpenIntervals.erase(ToRemove); 6673 6674 // Ignore instructions that are never used within the loop. 6675 if (!Ends.count(I)) 6676 continue; 6677 6678 // Skip ignored values. 6679 if (ValuesToIgnore.count(I)) 6680 continue; 6681 6682 // For each VF find the maximum usage of registers. 6683 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6684 // Count the number of live intervals. 6685 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6686 6687 if (VFs[j].isScalar()) { 6688 for (auto Inst : OpenIntervals) { 6689 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6690 if (RegUsage.find(ClassID) == RegUsage.end()) 6691 RegUsage[ClassID] = 1; 6692 else 6693 RegUsage[ClassID] += 1; 6694 } 6695 } else { 6696 collectUniformsAndScalars(VFs[j]); 6697 for (auto Inst : OpenIntervals) { 6698 // Skip ignored values for VF > 1. 6699 if (VecValuesToIgnore.count(Inst)) 6700 continue; 6701 if (isScalarAfterVectorization(Inst, VFs[j])) { 6702 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6703 if (RegUsage.find(ClassID) == RegUsage.end()) 6704 RegUsage[ClassID] = 1; 6705 else 6706 RegUsage[ClassID] += 1; 6707 } else { 6708 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6709 if (RegUsage.find(ClassID) == RegUsage.end()) 6710 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6711 else 6712 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6713 } 6714 } 6715 } 6716 6717 for (auto& pair : RegUsage) { 6718 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6719 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6720 else 6721 MaxUsages[j][pair.first] = pair.second; 6722 } 6723 } 6724 6725 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6726 << OpenIntervals.size() << '\n'); 6727 6728 // Add the current instruction to the list of open intervals. 6729 OpenIntervals.insert(I); 6730 } 6731 6732 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6733 SmallMapVector<unsigned, unsigned, 4> Invariant; 6734 6735 for (auto Inst : LoopInvariants) { 6736 unsigned Usage = 6737 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6738 unsigned ClassID = 6739 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6740 if (Invariant.find(ClassID) == Invariant.end()) 6741 Invariant[ClassID] = Usage; 6742 else 6743 Invariant[ClassID] += Usage; 6744 } 6745 6746 LLVM_DEBUG({ 6747 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6748 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6749 << " item\n"; 6750 for (const auto &pair : MaxUsages[i]) { 6751 dbgs() << "LV(REG): RegisterClass: " 6752 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6753 << " registers\n"; 6754 } 6755 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6756 << " item\n"; 6757 for (const auto &pair : Invariant) { 6758 dbgs() << "LV(REG): RegisterClass: " 6759 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6760 << " registers\n"; 6761 } 6762 }); 6763 6764 RU.LoopInvariantRegs = Invariant; 6765 RU.MaxLocalUsers = MaxUsages[i]; 6766 RUs[i] = RU; 6767 } 6768 6769 return RUs; 6770 } 6771 6772 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6773 // TODO: Cost model for emulated masked load/store is completely 6774 // broken. This hack guides the cost model to use an artificially 6775 // high enough value to practically disable vectorization with such 6776 // operations, except where previously deployed legality hack allowed 6777 // using very low cost values. This is to avoid regressions coming simply 6778 // from moving "masked load/store" check from legality to cost model. 6779 // Masked Load/Gather emulation was previously never allowed. 6780 // Limited number of Masked Store/Scatter emulation was allowed. 6781 assert(isPredicatedInst(I) && 6782 "Expecting a scalar emulated instruction"); 6783 return isa<LoadInst>(I) || 6784 (isa<StoreInst>(I) && 6785 NumPredStores > NumberOfStoresToPredicate); 6786 } 6787 6788 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6789 // If we aren't vectorizing the loop, or if we've already collected the 6790 // instructions to scalarize, there's nothing to do. Collection may already 6791 // have occurred if we have a user-selected VF and are now computing the 6792 // expected cost for interleaving. 6793 if (VF.isScalar() || VF.isZero() || 6794 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6795 return; 6796 6797 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6798 // not profitable to scalarize any instructions, the presence of VF in the 6799 // map will indicate that we've analyzed it already. 6800 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6801 6802 // Find all the instructions that are scalar with predication in the loop and 6803 // determine if it would be better to not if-convert the blocks they are in. 6804 // If so, we also record the instructions to scalarize. 6805 for (BasicBlock *BB : TheLoop->blocks()) { 6806 if (!blockNeedsPredication(BB)) 6807 continue; 6808 for (Instruction &I : *BB) 6809 if (isScalarWithPredication(&I)) { 6810 ScalarCostsTy ScalarCosts; 6811 // Do not apply discount if scalable, because that would lead to 6812 // invalid scalarization costs. 6813 // Do not apply discount logic if hacked cost is needed 6814 // for emulated masked memrefs. 6815 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6816 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6817 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6818 // Remember that BB will remain after vectorization. 6819 PredicatedBBsAfterVectorization.insert(BB); 6820 } 6821 } 6822 } 6823 6824 int LoopVectorizationCostModel::computePredInstDiscount( 6825 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6826 assert(!isUniformAfterVectorization(PredInst, VF) && 6827 "Instruction marked uniform-after-vectorization will be predicated"); 6828 6829 // Initialize the discount to zero, meaning that the scalar version and the 6830 // vector version cost the same. 6831 InstructionCost Discount = 0; 6832 6833 // Holds instructions to analyze. The instructions we visit are mapped in 6834 // ScalarCosts. Those instructions are the ones that would be scalarized if 6835 // we find that the scalar version costs less. 6836 SmallVector<Instruction *, 8> Worklist; 6837 6838 // Returns true if the given instruction can be scalarized. 6839 auto canBeScalarized = [&](Instruction *I) -> bool { 6840 // We only attempt to scalarize instructions forming a single-use chain 6841 // from the original predicated block that would otherwise be vectorized. 6842 // Although not strictly necessary, we give up on instructions we know will 6843 // already be scalar to avoid traversing chains that are unlikely to be 6844 // beneficial. 6845 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6846 isScalarAfterVectorization(I, VF)) 6847 return false; 6848 6849 // If the instruction is scalar with predication, it will be analyzed 6850 // separately. We ignore it within the context of PredInst. 6851 if (isScalarWithPredication(I)) 6852 return false; 6853 6854 // If any of the instruction's operands are uniform after vectorization, 6855 // the instruction cannot be scalarized. This prevents, for example, a 6856 // masked load from being scalarized. 6857 // 6858 // We assume we will only emit a value for lane zero of an instruction 6859 // marked uniform after vectorization, rather than VF identical values. 6860 // Thus, if we scalarize an instruction that uses a uniform, we would 6861 // create uses of values corresponding to the lanes we aren't emitting code 6862 // for. This behavior can be changed by allowing getScalarValue to clone 6863 // the lane zero values for uniforms rather than asserting. 6864 for (Use &U : I->operands()) 6865 if (auto *J = dyn_cast<Instruction>(U.get())) 6866 if (isUniformAfterVectorization(J, VF)) 6867 return false; 6868 6869 // Otherwise, we can scalarize the instruction. 6870 return true; 6871 }; 6872 6873 // Compute the expected cost discount from scalarizing the entire expression 6874 // feeding the predicated instruction. We currently only consider expressions 6875 // that are single-use instruction chains. 6876 Worklist.push_back(PredInst); 6877 while (!Worklist.empty()) { 6878 Instruction *I = Worklist.pop_back_val(); 6879 6880 // If we've already analyzed the instruction, there's nothing to do. 6881 if (ScalarCosts.find(I) != ScalarCosts.end()) 6882 continue; 6883 6884 // Compute the cost of the vector instruction. Note that this cost already 6885 // includes the scalarization overhead of the predicated instruction. 6886 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6887 6888 // Compute the cost of the scalarized instruction. This cost is the cost of 6889 // the instruction as if it wasn't if-converted and instead remained in the 6890 // predicated block. We will scale this cost by block probability after 6891 // computing the scalarization overhead. 6892 InstructionCost ScalarCost = 6893 VF.getFixedValue() * 6894 getInstructionCost(I, ElementCount::getFixed(1)).first; 6895 6896 // Compute the scalarization overhead of needed insertelement instructions 6897 // and phi nodes. 6898 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6899 ScalarCost += TTI.getScalarizationOverhead( 6900 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6901 APInt::getAllOnes(VF.getFixedValue()), true, false); 6902 ScalarCost += 6903 VF.getFixedValue() * 6904 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6905 } 6906 6907 // Compute the scalarization overhead of needed extractelement 6908 // instructions. For each of the instruction's operands, if the operand can 6909 // be scalarized, add it to the worklist; otherwise, account for the 6910 // overhead. 6911 for (Use &U : I->operands()) 6912 if (auto *J = dyn_cast<Instruction>(U.get())) { 6913 assert(VectorType::isValidElementType(J->getType()) && 6914 "Instruction has non-scalar type"); 6915 if (canBeScalarized(J)) 6916 Worklist.push_back(J); 6917 else if (needsExtract(J, VF)) { 6918 ScalarCost += TTI.getScalarizationOverhead( 6919 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6920 APInt::getAllOnes(VF.getFixedValue()), false, true); 6921 } 6922 } 6923 6924 // Scale the total scalar cost by block probability. 6925 ScalarCost /= getReciprocalPredBlockProb(); 6926 6927 // Compute the discount. A non-negative discount means the vector version 6928 // of the instruction costs more, and scalarizing would be beneficial. 6929 Discount += VectorCost - ScalarCost; 6930 ScalarCosts[I] = ScalarCost; 6931 } 6932 6933 return *Discount.getValue(); 6934 } 6935 6936 LoopVectorizationCostModel::VectorizationCostTy 6937 LoopVectorizationCostModel::expectedCost( 6938 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6939 VectorizationCostTy Cost; 6940 6941 // For each block. 6942 for (BasicBlock *BB : TheLoop->blocks()) { 6943 VectorizationCostTy BlockCost; 6944 6945 // For each instruction in the old loop. 6946 for (Instruction &I : BB->instructionsWithoutDebug()) { 6947 // Skip ignored values. 6948 if (ValuesToIgnore.count(&I) || 6949 (VF.isVector() && VecValuesToIgnore.count(&I))) 6950 continue; 6951 6952 VectorizationCostTy C = getInstructionCost(&I, VF); 6953 6954 // Check if we should override the cost. 6955 if (C.first.isValid() && 6956 ForceTargetInstructionCost.getNumOccurrences() > 0) 6957 C.first = InstructionCost(ForceTargetInstructionCost); 6958 6959 // Keep a list of instructions with invalid costs. 6960 if (Invalid && !C.first.isValid()) 6961 Invalid->emplace_back(&I, VF); 6962 6963 BlockCost.first += C.first; 6964 BlockCost.second |= C.second; 6965 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6966 << " for VF " << VF << " For instruction: " << I 6967 << '\n'); 6968 } 6969 6970 // If we are vectorizing a predicated block, it will have been 6971 // if-converted. This means that the block's instructions (aside from 6972 // stores and instructions that may divide by zero) will now be 6973 // unconditionally executed. For the scalar case, we may not always execute 6974 // the predicated block, if it is an if-else block. Thus, scale the block's 6975 // cost by the probability of executing it. blockNeedsPredication from 6976 // Legal is used so as to not include all blocks in tail folded loops. 6977 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6978 BlockCost.first /= getReciprocalPredBlockProb(); 6979 6980 Cost.first += BlockCost.first; 6981 Cost.second |= BlockCost.second; 6982 } 6983 6984 return Cost; 6985 } 6986 6987 /// Gets Address Access SCEV after verifying that the access pattern 6988 /// is loop invariant except the induction variable dependence. 6989 /// 6990 /// This SCEV can be sent to the Target in order to estimate the address 6991 /// calculation cost. 6992 static const SCEV *getAddressAccessSCEV( 6993 Value *Ptr, 6994 LoopVectorizationLegality *Legal, 6995 PredicatedScalarEvolution &PSE, 6996 const Loop *TheLoop) { 6997 6998 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6999 if (!Gep) 7000 return nullptr; 7001 7002 // We are looking for a gep with all loop invariant indices except for one 7003 // which should be an induction variable. 7004 auto SE = PSE.getSE(); 7005 unsigned NumOperands = Gep->getNumOperands(); 7006 for (unsigned i = 1; i < NumOperands; ++i) { 7007 Value *Opd = Gep->getOperand(i); 7008 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7009 !Legal->isInductionVariable(Opd)) 7010 return nullptr; 7011 } 7012 7013 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7014 return PSE.getSCEV(Ptr); 7015 } 7016 7017 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7018 return Legal->hasStride(I->getOperand(0)) || 7019 Legal->hasStride(I->getOperand(1)); 7020 } 7021 7022 InstructionCost 7023 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7024 ElementCount VF) { 7025 assert(VF.isVector() && 7026 "Scalarization cost of instruction implies vectorization."); 7027 if (VF.isScalable()) 7028 return InstructionCost::getInvalid(); 7029 7030 Type *ValTy = getLoadStoreType(I); 7031 auto SE = PSE.getSE(); 7032 7033 unsigned AS = getLoadStoreAddressSpace(I); 7034 Value *Ptr = getLoadStorePointerOperand(I); 7035 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7036 7037 // Figure out whether the access is strided and get the stride value 7038 // if it's known in compile time 7039 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7040 7041 // Get the cost of the scalar memory instruction and address computation. 7042 InstructionCost Cost = 7043 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7044 7045 // Don't pass *I here, since it is scalar but will actually be part of a 7046 // vectorized loop where the user of it is a vectorized instruction. 7047 const Align Alignment = getLoadStoreAlignment(I); 7048 Cost += VF.getKnownMinValue() * 7049 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7050 AS, TTI::TCK_RecipThroughput); 7051 7052 // Get the overhead of the extractelement and insertelement instructions 7053 // we might create due to scalarization. 7054 Cost += getScalarizationOverhead(I, VF); 7055 7056 // If we have a predicated load/store, it will need extra i1 extracts and 7057 // conditional branches, but may not be executed for each vector lane. Scale 7058 // the cost by the probability of executing the predicated block. 7059 if (isPredicatedInst(I)) { 7060 Cost /= getReciprocalPredBlockProb(); 7061 7062 // Add the cost of an i1 extract and a branch 7063 auto *Vec_i1Ty = 7064 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7065 Cost += TTI.getScalarizationOverhead( 7066 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 7067 /*Insert=*/false, /*Extract=*/true); 7068 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7069 7070 if (useEmulatedMaskMemRefHack(I)) 7071 // Artificially setting to a high enough value to practically disable 7072 // vectorization with such operations. 7073 Cost = 3000000; 7074 } 7075 7076 return Cost; 7077 } 7078 7079 InstructionCost 7080 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7081 ElementCount VF) { 7082 Type *ValTy = getLoadStoreType(I); 7083 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7084 Value *Ptr = getLoadStorePointerOperand(I); 7085 unsigned AS = getLoadStoreAddressSpace(I); 7086 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 7087 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7088 7089 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7090 "Stride should be 1 or -1 for consecutive memory access"); 7091 const Align Alignment = getLoadStoreAlignment(I); 7092 InstructionCost Cost = 0; 7093 if (Legal->isMaskRequired(I)) 7094 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7095 CostKind); 7096 else 7097 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7098 CostKind, I); 7099 7100 bool Reverse = ConsecutiveStride < 0; 7101 if (Reverse) 7102 Cost += 7103 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7104 return Cost; 7105 } 7106 7107 InstructionCost 7108 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7109 ElementCount VF) { 7110 assert(Legal->isUniformMemOp(*I)); 7111 7112 Type *ValTy = getLoadStoreType(I); 7113 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7114 const Align Alignment = getLoadStoreAlignment(I); 7115 unsigned AS = getLoadStoreAddressSpace(I); 7116 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7117 if (isa<LoadInst>(I)) { 7118 return TTI.getAddressComputationCost(ValTy) + 7119 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7120 CostKind) + 7121 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7122 } 7123 StoreInst *SI = cast<StoreInst>(I); 7124 7125 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7126 return TTI.getAddressComputationCost(ValTy) + 7127 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7128 CostKind) + 7129 (isLoopInvariantStoreValue 7130 ? 0 7131 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7132 VF.getKnownMinValue() - 1)); 7133 } 7134 7135 InstructionCost 7136 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7137 ElementCount VF) { 7138 Type *ValTy = getLoadStoreType(I); 7139 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7140 const Align Alignment = getLoadStoreAlignment(I); 7141 const Value *Ptr = getLoadStorePointerOperand(I); 7142 7143 return TTI.getAddressComputationCost(VectorTy) + 7144 TTI.getGatherScatterOpCost( 7145 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7146 TargetTransformInfo::TCK_RecipThroughput, I); 7147 } 7148 7149 InstructionCost 7150 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7151 ElementCount VF) { 7152 // TODO: Once we have support for interleaving with scalable vectors 7153 // we can calculate the cost properly here. 7154 if (VF.isScalable()) 7155 return InstructionCost::getInvalid(); 7156 7157 Type *ValTy = getLoadStoreType(I); 7158 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7159 unsigned AS = getLoadStoreAddressSpace(I); 7160 7161 auto Group = getInterleavedAccessGroup(I); 7162 assert(Group && "Fail to get an interleaved access group."); 7163 7164 unsigned InterleaveFactor = Group->getFactor(); 7165 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7166 7167 // Holds the indices of existing members in the interleaved group. 7168 SmallVector<unsigned, 4> Indices; 7169 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 7170 if (Group->getMember(IF)) 7171 Indices.push_back(IF); 7172 7173 // Calculate the cost of the whole interleaved group. 7174 bool UseMaskForGaps = 7175 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 7176 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 7177 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7178 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7179 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7180 7181 if (Group->isReverse()) { 7182 // TODO: Add support for reversed masked interleaved access. 7183 assert(!Legal->isMaskRequired(I) && 7184 "Reverse masked interleaved access not supported."); 7185 Cost += 7186 Group->getNumMembers() * 7187 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7188 } 7189 return Cost; 7190 } 7191 7192 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 7193 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7194 using namespace llvm::PatternMatch; 7195 // Early exit for no inloop reductions 7196 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7197 return None; 7198 auto *VectorTy = cast<VectorType>(Ty); 7199 7200 // We are looking for a pattern of, and finding the minimal acceptable cost: 7201 // reduce(mul(ext(A), ext(B))) or 7202 // reduce(mul(A, B)) or 7203 // reduce(ext(A)) or 7204 // reduce(A). 7205 // The basic idea is that we walk down the tree to do that, finding the root 7206 // reduction instruction in InLoopReductionImmediateChains. From there we find 7207 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7208 // of the components. If the reduction cost is lower then we return it for the 7209 // reduction instruction and 0 for the other instructions in the pattern. If 7210 // it is not we return an invalid cost specifying the orignal cost method 7211 // should be used. 7212 Instruction *RetI = I; 7213 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 7214 if (!RetI->hasOneUser()) 7215 return None; 7216 RetI = RetI->user_back(); 7217 } 7218 if (match(RetI, m_Mul(m_Value(), m_Value())) && 7219 RetI->user_back()->getOpcode() == Instruction::Add) { 7220 if (!RetI->hasOneUser()) 7221 return None; 7222 RetI = RetI->user_back(); 7223 } 7224 7225 // Test if the found instruction is a reduction, and if not return an invalid 7226 // cost specifying the parent to use the original cost modelling. 7227 if (!InLoopReductionImmediateChains.count(RetI)) 7228 return None; 7229 7230 // Find the reduction this chain is a part of and calculate the basic cost of 7231 // the reduction on its own. 7232 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7233 Instruction *ReductionPhi = LastChain; 7234 while (!isa<PHINode>(ReductionPhi)) 7235 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7236 7237 const RecurrenceDescriptor &RdxDesc = 7238 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7239 7240 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7241 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7242 7243 // If we're using ordered reductions then we can just return the base cost 7244 // here, since getArithmeticReductionCost calculates the full ordered 7245 // reduction cost when FP reassociation is not allowed. 7246 if (useOrderedReductions(RdxDesc)) 7247 return BaseCost; 7248 7249 // Get the operand that was not the reduction chain and match it to one of the 7250 // patterns, returning the better cost if it is found. 7251 Instruction *RedOp = RetI->getOperand(1) == LastChain 7252 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7253 : dyn_cast<Instruction>(RetI->getOperand(1)); 7254 7255 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7256 7257 Instruction *Op0, *Op1; 7258 if (RedOp && 7259 match(RedOp, 7260 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7261 match(Op0, m_ZExtOrSExt(m_Value())) && 7262 Op0->getOpcode() == Op1->getOpcode() && 7263 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7264 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7265 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7266 7267 // Matched reduce(ext(mul(ext(A), ext(B))) 7268 // Note that the extend opcodes need to all match, or if A==B they will have 7269 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7270 // which is equally fine. 7271 bool IsUnsigned = isa<ZExtInst>(Op0); 7272 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7273 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7274 7275 InstructionCost ExtCost = 7276 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7277 TTI::CastContextHint::None, CostKind, Op0); 7278 InstructionCost MulCost = 7279 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7280 InstructionCost Ext2Cost = 7281 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7282 TTI::CastContextHint::None, CostKind, RedOp); 7283 7284 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7285 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7286 CostKind); 7287 7288 if (RedCost.isValid() && 7289 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7290 return I == RetI ? RedCost : 0; 7291 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7292 !TheLoop->isLoopInvariant(RedOp)) { 7293 // Matched reduce(ext(A)) 7294 bool IsUnsigned = isa<ZExtInst>(RedOp); 7295 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7296 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7297 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7298 CostKind); 7299 7300 InstructionCost ExtCost = 7301 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7302 TTI::CastContextHint::None, CostKind, RedOp); 7303 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7304 return I == RetI ? RedCost : 0; 7305 } else if (RedOp && 7306 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7307 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7308 Op0->getOpcode() == Op1->getOpcode() && 7309 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7310 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7311 bool IsUnsigned = isa<ZExtInst>(Op0); 7312 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7313 // Matched reduce(mul(ext, ext)) 7314 InstructionCost ExtCost = 7315 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7316 TTI::CastContextHint::None, CostKind, Op0); 7317 InstructionCost MulCost = 7318 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7319 7320 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7321 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7322 CostKind); 7323 7324 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7325 return I == RetI ? RedCost : 0; 7326 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7327 // Matched reduce(mul()) 7328 InstructionCost MulCost = 7329 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7330 7331 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7332 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7333 CostKind); 7334 7335 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7336 return I == RetI ? RedCost : 0; 7337 } 7338 } 7339 7340 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7341 } 7342 7343 InstructionCost 7344 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7345 ElementCount VF) { 7346 // Calculate scalar cost only. Vectorization cost should be ready at this 7347 // moment. 7348 if (VF.isScalar()) { 7349 Type *ValTy = getLoadStoreType(I); 7350 const Align Alignment = getLoadStoreAlignment(I); 7351 unsigned AS = getLoadStoreAddressSpace(I); 7352 7353 return TTI.getAddressComputationCost(ValTy) + 7354 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7355 TTI::TCK_RecipThroughput, I); 7356 } 7357 return getWideningCost(I, VF); 7358 } 7359 7360 LoopVectorizationCostModel::VectorizationCostTy 7361 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7362 ElementCount VF) { 7363 // If we know that this instruction will remain uniform, check the cost of 7364 // the scalar version. 7365 if (isUniformAfterVectorization(I, VF)) 7366 VF = ElementCount::getFixed(1); 7367 7368 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7369 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7370 7371 // Forced scalars do not have any scalarization overhead. 7372 auto ForcedScalar = ForcedScalars.find(VF); 7373 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7374 auto InstSet = ForcedScalar->second; 7375 if (InstSet.count(I)) 7376 return VectorizationCostTy( 7377 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7378 VF.getKnownMinValue()), 7379 false); 7380 } 7381 7382 Type *VectorTy; 7383 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7384 7385 bool TypeNotScalarized = 7386 VF.isVector() && VectorTy->isVectorTy() && 7387 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7388 return VectorizationCostTy(C, TypeNotScalarized); 7389 } 7390 7391 InstructionCost 7392 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7393 ElementCount VF) const { 7394 7395 // There is no mechanism yet to create a scalable scalarization loop, 7396 // so this is currently Invalid. 7397 if (VF.isScalable()) 7398 return InstructionCost::getInvalid(); 7399 7400 if (VF.isScalar()) 7401 return 0; 7402 7403 InstructionCost Cost = 0; 7404 Type *RetTy = ToVectorTy(I->getType(), VF); 7405 if (!RetTy->isVoidTy() && 7406 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7407 Cost += TTI.getScalarizationOverhead( 7408 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7409 false); 7410 7411 // Some targets keep addresses scalar. 7412 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7413 return Cost; 7414 7415 // Some targets support efficient element stores. 7416 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7417 return Cost; 7418 7419 // Collect operands to consider. 7420 CallInst *CI = dyn_cast<CallInst>(I); 7421 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7422 7423 // Skip operands that do not require extraction/scalarization and do not incur 7424 // any overhead. 7425 SmallVector<Type *> Tys; 7426 for (auto *V : filterExtractingOperands(Ops, VF)) 7427 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7428 return Cost + TTI.getOperandsScalarizationOverhead( 7429 filterExtractingOperands(Ops, VF), Tys); 7430 } 7431 7432 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7433 if (VF.isScalar()) 7434 return; 7435 NumPredStores = 0; 7436 for (BasicBlock *BB : TheLoop->blocks()) { 7437 // For each instruction in the old loop. 7438 for (Instruction &I : *BB) { 7439 Value *Ptr = getLoadStorePointerOperand(&I); 7440 if (!Ptr) 7441 continue; 7442 7443 // TODO: We should generate better code and update the cost model for 7444 // predicated uniform stores. Today they are treated as any other 7445 // predicated store (see added test cases in 7446 // invariant-store-vectorization.ll). 7447 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7448 NumPredStores++; 7449 7450 if (Legal->isUniformMemOp(I)) { 7451 // TODO: Avoid replicating loads and stores instead of 7452 // relying on instcombine to remove them. 7453 // Load: Scalar load + broadcast 7454 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7455 InstructionCost Cost; 7456 if (isa<StoreInst>(&I) && VF.isScalable() && 7457 isLegalGatherOrScatter(&I)) { 7458 Cost = getGatherScatterCost(&I, VF); 7459 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7460 } else { 7461 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7462 "Cannot yet scalarize uniform stores"); 7463 Cost = getUniformMemOpCost(&I, VF); 7464 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7465 } 7466 continue; 7467 } 7468 7469 // We assume that widening is the best solution when possible. 7470 if (memoryInstructionCanBeWidened(&I, VF)) { 7471 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7472 int ConsecutiveStride = Legal->isConsecutivePtr( 7473 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7474 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7475 "Expected consecutive stride."); 7476 InstWidening Decision = 7477 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7478 setWideningDecision(&I, VF, Decision, Cost); 7479 continue; 7480 } 7481 7482 // Choose between Interleaving, Gather/Scatter or Scalarization. 7483 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7484 unsigned NumAccesses = 1; 7485 if (isAccessInterleaved(&I)) { 7486 auto Group = getInterleavedAccessGroup(&I); 7487 assert(Group && "Fail to get an interleaved access group."); 7488 7489 // Make one decision for the whole group. 7490 if (getWideningDecision(&I, VF) != CM_Unknown) 7491 continue; 7492 7493 NumAccesses = Group->getNumMembers(); 7494 if (interleavedAccessCanBeWidened(&I, VF)) 7495 InterleaveCost = getInterleaveGroupCost(&I, VF); 7496 } 7497 7498 InstructionCost GatherScatterCost = 7499 isLegalGatherOrScatter(&I) 7500 ? getGatherScatterCost(&I, VF) * NumAccesses 7501 : InstructionCost::getInvalid(); 7502 7503 InstructionCost ScalarizationCost = 7504 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7505 7506 // Choose better solution for the current VF, 7507 // write down this decision and use it during vectorization. 7508 InstructionCost Cost; 7509 InstWidening Decision; 7510 if (InterleaveCost <= GatherScatterCost && 7511 InterleaveCost < ScalarizationCost) { 7512 Decision = CM_Interleave; 7513 Cost = InterleaveCost; 7514 } else if (GatherScatterCost < ScalarizationCost) { 7515 Decision = CM_GatherScatter; 7516 Cost = GatherScatterCost; 7517 } else { 7518 Decision = CM_Scalarize; 7519 Cost = ScalarizationCost; 7520 } 7521 // If the instructions belongs to an interleave group, the whole group 7522 // receives the same decision. The whole group receives the cost, but 7523 // the cost will actually be assigned to one instruction. 7524 if (auto Group = getInterleavedAccessGroup(&I)) 7525 setWideningDecision(Group, VF, Decision, Cost); 7526 else 7527 setWideningDecision(&I, VF, Decision, Cost); 7528 } 7529 } 7530 7531 // Make sure that any load of address and any other address computation 7532 // remains scalar unless there is gather/scatter support. This avoids 7533 // inevitable extracts into address registers, and also has the benefit of 7534 // activating LSR more, since that pass can't optimize vectorized 7535 // addresses. 7536 if (TTI.prefersVectorizedAddressing()) 7537 return; 7538 7539 // Start with all scalar pointer uses. 7540 SmallPtrSet<Instruction *, 8> AddrDefs; 7541 for (BasicBlock *BB : TheLoop->blocks()) 7542 for (Instruction &I : *BB) { 7543 Instruction *PtrDef = 7544 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7545 if (PtrDef && TheLoop->contains(PtrDef) && 7546 getWideningDecision(&I, VF) != CM_GatherScatter) 7547 AddrDefs.insert(PtrDef); 7548 } 7549 7550 // Add all instructions used to generate the addresses. 7551 SmallVector<Instruction *, 4> Worklist; 7552 append_range(Worklist, AddrDefs); 7553 while (!Worklist.empty()) { 7554 Instruction *I = Worklist.pop_back_val(); 7555 for (auto &Op : I->operands()) 7556 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7557 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7558 AddrDefs.insert(InstOp).second) 7559 Worklist.push_back(InstOp); 7560 } 7561 7562 for (auto *I : AddrDefs) { 7563 if (isa<LoadInst>(I)) { 7564 // Setting the desired widening decision should ideally be handled in 7565 // by cost functions, but since this involves the task of finding out 7566 // if the loaded register is involved in an address computation, it is 7567 // instead changed here when we know this is the case. 7568 InstWidening Decision = getWideningDecision(I, VF); 7569 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7570 // Scalarize a widened load of address. 7571 setWideningDecision( 7572 I, VF, CM_Scalarize, 7573 (VF.getKnownMinValue() * 7574 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7575 else if (auto Group = getInterleavedAccessGroup(I)) { 7576 // Scalarize an interleave group of address loads. 7577 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7578 if (Instruction *Member = Group->getMember(I)) 7579 setWideningDecision( 7580 Member, VF, CM_Scalarize, 7581 (VF.getKnownMinValue() * 7582 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7583 } 7584 } 7585 } else 7586 // Make sure I gets scalarized and a cost estimate without 7587 // scalarization overhead. 7588 ForcedScalars[VF].insert(I); 7589 } 7590 } 7591 7592 InstructionCost 7593 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7594 Type *&VectorTy) { 7595 Type *RetTy = I->getType(); 7596 if (canTruncateToMinimalBitwidth(I, VF)) 7597 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7598 auto SE = PSE.getSE(); 7599 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7600 7601 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7602 ElementCount VF) -> bool { 7603 if (VF.isScalar()) 7604 return true; 7605 7606 auto Scalarized = InstsToScalarize.find(VF); 7607 assert(Scalarized != InstsToScalarize.end() && 7608 "VF not yet analyzed for scalarization profitability"); 7609 return !Scalarized->second.count(I) && 7610 llvm::all_of(I->users(), [&](User *U) { 7611 auto *UI = cast<Instruction>(U); 7612 return !Scalarized->second.count(UI); 7613 }); 7614 }; 7615 (void) hasSingleCopyAfterVectorization; 7616 7617 if (isScalarAfterVectorization(I, VF)) { 7618 // With the exception of GEPs and PHIs, after scalarization there should 7619 // only be one copy of the instruction generated in the loop. This is 7620 // because the VF is either 1, or any instructions that need scalarizing 7621 // have already been dealt with by the the time we get here. As a result, 7622 // it means we don't have to multiply the instruction cost by VF. 7623 assert(I->getOpcode() == Instruction::GetElementPtr || 7624 I->getOpcode() == Instruction::PHI || 7625 (I->getOpcode() == Instruction::BitCast && 7626 I->getType()->isPointerTy()) || 7627 hasSingleCopyAfterVectorization(I, VF)); 7628 VectorTy = RetTy; 7629 } else 7630 VectorTy = ToVectorTy(RetTy, VF); 7631 7632 // TODO: We need to estimate the cost of intrinsic calls. 7633 switch (I->getOpcode()) { 7634 case Instruction::GetElementPtr: 7635 // We mark this instruction as zero-cost because the cost of GEPs in 7636 // vectorized code depends on whether the corresponding memory instruction 7637 // is scalarized or not. Therefore, we handle GEPs with the memory 7638 // instruction cost. 7639 return 0; 7640 case Instruction::Br: { 7641 // In cases of scalarized and predicated instructions, there will be VF 7642 // predicated blocks in the vectorized loop. Each branch around these 7643 // blocks requires also an extract of its vector compare i1 element. 7644 bool ScalarPredicatedBB = false; 7645 BranchInst *BI = cast<BranchInst>(I); 7646 if (VF.isVector() && BI->isConditional() && 7647 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7648 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7649 ScalarPredicatedBB = true; 7650 7651 if (ScalarPredicatedBB) { 7652 // Not possible to scalarize scalable vector with predicated instructions. 7653 if (VF.isScalable()) 7654 return InstructionCost::getInvalid(); 7655 // Return cost for branches around scalarized and predicated blocks. 7656 auto *Vec_i1Ty = 7657 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7658 return ( 7659 TTI.getScalarizationOverhead( 7660 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7661 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7662 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7663 // The back-edge branch will remain, as will all scalar branches. 7664 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7665 else 7666 // This branch will be eliminated by if-conversion. 7667 return 0; 7668 // Note: We currently assume zero cost for an unconditional branch inside 7669 // a predicated block since it will become a fall-through, although we 7670 // may decide in the future to call TTI for all branches. 7671 } 7672 case Instruction::PHI: { 7673 auto *Phi = cast<PHINode>(I); 7674 7675 // First-order recurrences are replaced by vector shuffles inside the loop. 7676 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7677 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7678 return TTI.getShuffleCost( 7679 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7680 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7681 7682 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7683 // converted into select instructions. We require N - 1 selects per phi 7684 // node, where N is the number of incoming values. 7685 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7686 return (Phi->getNumIncomingValues() - 1) * 7687 TTI.getCmpSelInstrCost( 7688 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7689 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7690 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7691 7692 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7693 } 7694 case Instruction::UDiv: 7695 case Instruction::SDiv: 7696 case Instruction::URem: 7697 case Instruction::SRem: 7698 // If we have a predicated instruction, it may not be executed for each 7699 // vector lane. Get the scalarization cost and scale this amount by the 7700 // probability of executing the predicated block. If the instruction is not 7701 // predicated, we fall through to the next case. 7702 if (VF.isVector() && isScalarWithPredication(I)) { 7703 InstructionCost Cost = 0; 7704 7705 // These instructions have a non-void type, so account for the phi nodes 7706 // that we will create. This cost is likely to be zero. The phi node 7707 // cost, if any, should be scaled by the block probability because it 7708 // models a copy at the end of each predicated block. 7709 Cost += VF.getKnownMinValue() * 7710 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7711 7712 // The cost of the non-predicated instruction. 7713 Cost += VF.getKnownMinValue() * 7714 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7715 7716 // The cost of insertelement and extractelement instructions needed for 7717 // scalarization. 7718 Cost += getScalarizationOverhead(I, VF); 7719 7720 // Scale the cost by the probability of executing the predicated blocks. 7721 // This assumes the predicated block for each vector lane is equally 7722 // likely. 7723 return Cost / getReciprocalPredBlockProb(); 7724 } 7725 LLVM_FALLTHROUGH; 7726 case Instruction::Add: 7727 case Instruction::FAdd: 7728 case Instruction::Sub: 7729 case Instruction::FSub: 7730 case Instruction::Mul: 7731 case Instruction::FMul: 7732 case Instruction::FDiv: 7733 case Instruction::FRem: 7734 case Instruction::Shl: 7735 case Instruction::LShr: 7736 case Instruction::AShr: 7737 case Instruction::And: 7738 case Instruction::Or: 7739 case Instruction::Xor: { 7740 // Since we will replace the stride by 1 the multiplication should go away. 7741 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7742 return 0; 7743 7744 // Detect reduction patterns 7745 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7746 return *RedCost; 7747 7748 // Certain instructions can be cheaper to vectorize if they have a constant 7749 // second vector operand. One example of this are shifts on x86. 7750 Value *Op2 = I->getOperand(1); 7751 TargetTransformInfo::OperandValueProperties Op2VP; 7752 TargetTransformInfo::OperandValueKind Op2VK = 7753 TTI.getOperandInfo(Op2, Op2VP); 7754 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7755 Op2VK = TargetTransformInfo::OK_UniformValue; 7756 7757 SmallVector<const Value *, 4> Operands(I->operand_values()); 7758 return TTI.getArithmeticInstrCost( 7759 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7760 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7761 } 7762 case Instruction::FNeg: { 7763 return TTI.getArithmeticInstrCost( 7764 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7765 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7766 TargetTransformInfo::OP_None, I->getOperand(0), I); 7767 } 7768 case Instruction::Select: { 7769 SelectInst *SI = cast<SelectInst>(I); 7770 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7771 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7772 7773 const Value *Op0, *Op1; 7774 using namespace llvm::PatternMatch; 7775 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7776 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7777 // select x, y, false --> x & y 7778 // select x, true, y --> x | y 7779 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7780 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7781 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7782 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7783 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7784 Op1->getType()->getScalarSizeInBits() == 1); 7785 7786 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7787 return TTI.getArithmeticInstrCost( 7788 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7789 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7790 } 7791 7792 Type *CondTy = SI->getCondition()->getType(); 7793 if (!ScalarCond) 7794 CondTy = VectorType::get(CondTy, VF); 7795 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7796 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7797 } 7798 case Instruction::ICmp: 7799 case Instruction::FCmp: { 7800 Type *ValTy = I->getOperand(0)->getType(); 7801 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7802 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7803 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7804 VectorTy = ToVectorTy(ValTy, VF); 7805 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7806 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7807 } 7808 case Instruction::Store: 7809 case Instruction::Load: { 7810 ElementCount Width = VF; 7811 if (Width.isVector()) { 7812 InstWidening Decision = getWideningDecision(I, Width); 7813 assert(Decision != CM_Unknown && 7814 "CM decision should be taken at this point"); 7815 if (Decision == CM_Scalarize) 7816 Width = ElementCount::getFixed(1); 7817 } 7818 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7819 return getMemoryInstructionCost(I, VF); 7820 } 7821 case Instruction::BitCast: 7822 if (I->getType()->isPointerTy()) 7823 return 0; 7824 LLVM_FALLTHROUGH; 7825 case Instruction::ZExt: 7826 case Instruction::SExt: 7827 case Instruction::FPToUI: 7828 case Instruction::FPToSI: 7829 case Instruction::FPExt: 7830 case Instruction::PtrToInt: 7831 case Instruction::IntToPtr: 7832 case Instruction::SIToFP: 7833 case Instruction::UIToFP: 7834 case Instruction::Trunc: 7835 case Instruction::FPTrunc: { 7836 // Computes the CastContextHint from a Load/Store instruction. 7837 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7838 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7839 "Expected a load or a store!"); 7840 7841 if (VF.isScalar() || !TheLoop->contains(I)) 7842 return TTI::CastContextHint::Normal; 7843 7844 switch (getWideningDecision(I, VF)) { 7845 case LoopVectorizationCostModel::CM_GatherScatter: 7846 return TTI::CastContextHint::GatherScatter; 7847 case LoopVectorizationCostModel::CM_Interleave: 7848 return TTI::CastContextHint::Interleave; 7849 case LoopVectorizationCostModel::CM_Scalarize: 7850 case LoopVectorizationCostModel::CM_Widen: 7851 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7852 : TTI::CastContextHint::Normal; 7853 case LoopVectorizationCostModel::CM_Widen_Reverse: 7854 return TTI::CastContextHint::Reversed; 7855 case LoopVectorizationCostModel::CM_Unknown: 7856 llvm_unreachable("Instr did not go through cost modelling?"); 7857 } 7858 7859 llvm_unreachable("Unhandled case!"); 7860 }; 7861 7862 unsigned Opcode = I->getOpcode(); 7863 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7864 // For Trunc, the context is the only user, which must be a StoreInst. 7865 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7866 if (I->hasOneUse()) 7867 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7868 CCH = ComputeCCH(Store); 7869 } 7870 // For Z/Sext, the context is the operand, which must be a LoadInst. 7871 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7872 Opcode == Instruction::FPExt) { 7873 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7874 CCH = ComputeCCH(Load); 7875 } 7876 7877 // We optimize the truncation of induction variables having constant 7878 // integer steps. The cost of these truncations is the same as the scalar 7879 // operation. 7880 if (isOptimizableIVTruncate(I, VF)) { 7881 auto *Trunc = cast<TruncInst>(I); 7882 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7883 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7884 } 7885 7886 // Detect reduction patterns 7887 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7888 return *RedCost; 7889 7890 Type *SrcScalarTy = I->getOperand(0)->getType(); 7891 Type *SrcVecTy = 7892 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7893 if (canTruncateToMinimalBitwidth(I, VF)) { 7894 // This cast is going to be shrunk. This may remove the cast or it might 7895 // turn it into slightly different cast. For example, if MinBW == 16, 7896 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7897 // 7898 // Calculate the modified src and dest types. 7899 Type *MinVecTy = VectorTy; 7900 if (Opcode == Instruction::Trunc) { 7901 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7902 VectorTy = 7903 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7904 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7905 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7906 VectorTy = 7907 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7908 } 7909 } 7910 7911 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7912 } 7913 case Instruction::Call: { 7914 bool NeedToScalarize; 7915 CallInst *CI = cast<CallInst>(I); 7916 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7917 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7918 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7919 return std::min(CallCost, IntrinsicCost); 7920 } 7921 return CallCost; 7922 } 7923 case Instruction::ExtractValue: 7924 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7925 case Instruction::Alloca: 7926 // We cannot easily widen alloca to a scalable alloca, as 7927 // the result would need to be a vector of pointers. 7928 if (VF.isScalable()) 7929 return InstructionCost::getInvalid(); 7930 LLVM_FALLTHROUGH; 7931 default: 7932 // This opcode is unknown. Assume that it is the same as 'mul'. 7933 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7934 } // end of switch. 7935 } 7936 7937 char LoopVectorize::ID = 0; 7938 7939 static const char lv_name[] = "Loop Vectorization"; 7940 7941 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7942 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7943 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7944 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7945 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7946 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7947 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7948 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7949 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7950 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7951 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7952 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7953 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7954 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7955 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7956 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7957 7958 namespace llvm { 7959 7960 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7961 7962 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7963 bool VectorizeOnlyWhenForced) { 7964 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7965 } 7966 7967 } // end namespace llvm 7968 7969 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7970 // Check if the pointer operand of a load or store instruction is 7971 // consecutive. 7972 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7973 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7974 return false; 7975 } 7976 7977 void LoopVectorizationCostModel::collectValuesToIgnore() { 7978 // Ignore ephemeral values. 7979 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7980 7981 // Ignore type-promoting instructions we identified during reduction 7982 // detection. 7983 for (auto &Reduction : Legal->getReductionVars()) { 7984 RecurrenceDescriptor &RedDes = Reduction.second; 7985 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7986 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7987 } 7988 // Ignore type-casting instructions we identified during induction 7989 // detection. 7990 for (auto &Induction : Legal->getInductionVars()) { 7991 InductionDescriptor &IndDes = Induction.second; 7992 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7993 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7994 } 7995 } 7996 7997 void LoopVectorizationCostModel::collectInLoopReductions() { 7998 for (auto &Reduction : Legal->getReductionVars()) { 7999 PHINode *Phi = Reduction.first; 8000 RecurrenceDescriptor &RdxDesc = Reduction.second; 8001 8002 // We don't collect reductions that are type promoted (yet). 8003 if (RdxDesc.getRecurrenceType() != Phi->getType()) 8004 continue; 8005 8006 // If the target would prefer this reduction to happen "in-loop", then we 8007 // want to record it as such. 8008 unsigned Opcode = RdxDesc.getOpcode(); 8009 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 8010 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 8011 TargetTransformInfo::ReductionFlags())) 8012 continue; 8013 8014 // Check that we can correctly put the reductions into the loop, by 8015 // finding the chain of operations that leads from the phi to the loop 8016 // exit value. 8017 SmallVector<Instruction *, 4> ReductionOperations = 8018 RdxDesc.getReductionOpChain(Phi, TheLoop); 8019 bool InLoop = !ReductionOperations.empty(); 8020 if (InLoop) { 8021 InLoopReductionChains[Phi] = ReductionOperations; 8022 // Add the elements to InLoopReductionImmediateChains for cost modelling. 8023 Instruction *LastChain = Phi; 8024 for (auto *I : ReductionOperations) { 8025 InLoopReductionImmediateChains[I] = LastChain; 8026 LastChain = I; 8027 } 8028 } 8029 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 8030 << " reduction for phi: " << *Phi << "\n"); 8031 } 8032 } 8033 8034 // TODO: we could return a pair of values that specify the max VF and 8035 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 8036 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 8037 // doesn't have a cost model that can choose which plan to execute if 8038 // more than one is generated. 8039 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 8040 LoopVectorizationCostModel &CM) { 8041 unsigned WidestType; 8042 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 8043 return WidestVectorRegBits / WidestType; 8044 } 8045 8046 VectorizationFactor 8047 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 8048 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 8049 ElementCount VF = UserVF; 8050 // Outer loop handling: They may require CFG and instruction level 8051 // transformations before even evaluating whether vectorization is profitable. 8052 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8053 // the vectorization pipeline. 8054 if (!OrigLoop->isInnermost()) { 8055 // If the user doesn't provide a vectorization factor, determine a 8056 // reasonable one. 8057 if (UserVF.isZero()) { 8058 VF = ElementCount::getFixed(determineVPlanVF( 8059 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 8060 .getFixedSize(), 8061 CM)); 8062 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 8063 8064 // Make sure we have a VF > 1 for stress testing. 8065 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 8066 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 8067 << "overriding computed VF.\n"); 8068 VF = ElementCount::getFixed(4); 8069 } 8070 } 8071 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8072 assert(isPowerOf2_32(VF.getKnownMinValue()) && 8073 "VF needs to be a power of two"); 8074 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 8075 << "VF " << VF << " to build VPlans.\n"); 8076 buildVPlans(VF, VF); 8077 8078 // For VPlan build stress testing, we bail out after VPlan construction. 8079 if (VPlanBuildStressTest) 8080 return VectorizationFactor::Disabled(); 8081 8082 return {VF, 0 /*Cost*/}; 8083 } 8084 8085 LLVM_DEBUG( 8086 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 8087 "VPlan-native path.\n"); 8088 return VectorizationFactor::Disabled(); 8089 } 8090 8091 Optional<VectorizationFactor> 8092 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 8093 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8094 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 8095 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8096 return None; 8097 8098 // Invalidate interleave groups if all blocks of loop will be predicated. 8099 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8100 !useMaskedInterleavedAccesses(*TTI)) { 8101 LLVM_DEBUG( 8102 dbgs() 8103 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8104 "which requires masked-interleaved support.\n"); 8105 if (CM.InterleaveInfo.invalidateGroups()) 8106 // Invalidating interleave groups also requires invalidating all decisions 8107 // based on them, which includes widening decisions and uniform and scalar 8108 // values. 8109 CM.invalidateCostModelingDecisions(); 8110 } 8111 8112 ElementCount MaxUserVF = 8113 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8114 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8115 if (!UserVF.isZero() && UserVFIsLegal) { 8116 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8117 "VF needs to be a power of two"); 8118 // Collect the instructions (and their associated costs) that will be more 8119 // profitable to scalarize. 8120 if (CM.selectUserVectorizationFactor(UserVF)) { 8121 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8122 CM.collectInLoopReductions(); 8123 buildVPlansWithVPRecipes(UserVF, UserVF); 8124 LLVM_DEBUG(printPlans(dbgs())); 8125 return {{UserVF, 0}}; 8126 } else 8127 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8128 "InvalidCost", ORE, OrigLoop); 8129 } 8130 8131 // Populate the set of Vectorization Factor Candidates. 8132 ElementCountSet VFCandidates; 8133 for (auto VF = ElementCount::getFixed(1); 8134 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8135 VFCandidates.insert(VF); 8136 for (auto VF = ElementCount::getScalable(1); 8137 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8138 VFCandidates.insert(VF); 8139 8140 for (const auto &VF : VFCandidates) { 8141 // Collect Uniform and Scalar instructions after vectorization with VF. 8142 CM.collectUniformsAndScalars(VF); 8143 8144 // Collect the instructions (and their associated costs) that will be more 8145 // profitable to scalarize. 8146 if (VF.isVector()) 8147 CM.collectInstsToScalarize(VF); 8148 } 8149 8150 CM.collectInLoopReductions(); 8151 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8152 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8153 8154 LLVM_DEBUG(printPlans(dbgs())); 8155 if (!MaxFactors.hasVector()) 8156 return VectorizationFactor::Disabled(); 8157 8158 // Select the optimal vectorization factor. 8159 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8160 8161 // Check if it is profitable to vectorize with runtime checks. 8162 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8163 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8164 bool PragmaThresholdReached = 8165 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8166 bool ThresholdReached = 8167 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8168 if ((ThresholdReached && !Hints.allowReordering()) || 8169 PragmaThresholdReached) { 8170 ORE->emit([&]() { 8171 return OptimizationRemarkAnalysisAliasing( 8172 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8173 OrigLoop->getHeader()) 8174 << "loop not vectorized: cannot prove it is safe to reorder " 8175 "memory operations"; 8176 }); 8177 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8178 Hints.emitRemarkWithHints(); 8179 return VectorizationFactor::Disabled(); 8180 } 8181 } 8182 return SelectedVF; 8183 } 8184 8185 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8186 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8187 << '\n'); 8188 BestVF = VF; 8189 BestUF = UF; 8190 8191 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8192 return !Plan->hasVF(VF); 8193 }); 8194 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8195 } 8196 8197 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8198 DominatorTree *DT) { 8199 // Perform the actual loop transformation. 8200 8201 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8202 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8203 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8204 8205 VPTransformState State{ 8206 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8207 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8208 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8209 State.CanonicalIV = ILV.Induction; 8210 8211 ILV.printDebugTracesAtStart(); 8212 8213 //===------------------------------------------------===// 8214 // 8215 // Notice: any optimization or new instruction that go 8216 // into the code below should also be implemented in 8217 // the cost-model. 8218 // 8219 //===------------------------------------------------===// 8220 8221 // 2. Copy and widen instructions from the old loop into the new loop. 8222 VPlans.front()->execute(&State); 8223 8224 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8225 // predication, updating analyses. 8226 ILV.fixVectorizedLoop(State); 8227 8228 ILV.printDebugTracesAtEnd(); 8229 } 8230 8231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8232 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8233 for (const auto &Plan : VPlans) 8234 if (PrintVPlansInDotFormat) 8235 Plan->printDOT(O); 8236 else 8237 Plan->print(O); 8238 } 8239 #endif 8240 8241 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8242 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8243 8244 // We create new control-flow for the vectorized loop, so the original exit 8245 // conditions will be dead after vectorization if it's only used by the 8246 // terminator 8247 SmallVector<BasicBlock*> ExitingBlocks; 8248 OrigLoop->getExitingBlocks(ExitingBlocks); 8249 for (auto *BB : ExitingBlocks) { 8250 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8251 if (!Cmp || !Cmp->hasOneUse()) 8252 continue; 8253 8254 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8255 if (!DeadInstructions.insert(Cmp).second) 8256 continue; 8257 8258 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8259 // TODO: can recurse through operands in general 8260 for (Value *Op : Cmp->operands()) { 8261 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8262 DeadInstructions.insert(cast<Instruction>(Op)); 8263 } 8264 } 8265 8266 // We create new "steps" for induction variable updates to which the original 8267 // induction variables map. An original update instruction will be dead if 8268 // all its users except the induction variable are dead. 8269 auto *Latch = OrigLoop->getLoopLatch(); 8270 for (auto &Induction : Legal->getInductionVars()) { 8271 PHINode *Ind = Induction.first; 8272 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8273 8274 // If the tail is to be folded by masking, the primary induction variable, 8275 // if exists, isn't dead: it will be used for masking. Don't kill it. 8276 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8277 continue; 8278 8279 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8280 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8281 })) 8282 DeadInstructions.insert(IndUpdate); 8283 8284 // We record as "Dead" also the type-casting instructions we had identified 8285 // during induction analysis. We don't need any handling for them in the 8286 // vectorized loop because we have proven that, under a proper runtime 8287 // test guarding the vectorized loop, the value of the phi, and the casted 8288 // value of the phi, are the same. The last instruction in this casting chain 8289 // will get its scalar/vector/widened def from the scalar/vector/widened def 8290 // of the respective phi node. Any other casts in the induction def-use chain 8291 // have no other uses outside the phi update chain, and will be ignored. 8292 InductionDescriptor &IndDes = Induction.second; 8293 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8294 DeadInstructions.insert(Casts.begin(), Casts.end()); 8295 } 8296 } 8297 8298 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8299 8300 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8301 8302 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8303 Instruction::BinaryOps BinOp) { 8304 // When unrolling and the VF is 1, we only need to add a simple scalar. 8305 Type *Ty = Val->getType(); 8306 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8307 8308 if (Ty->isFloatingPointTy()) { 8309 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8310 8311 // Floating-point operations inherit FMF via the builder's flags. 8312 Value *MulOp = Builder.CreateFMul(C, Step); 8313 return Builder.CreateBinOp(BinOp, Val, MulOp); 8314 } 8315 Constant *C = ConstantInt::get(Ty, StartIdx); 8316 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8317 } 8318 8319 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8320 SmallVector<Metadata *, 4> MDs; 8321 // Reserve first location for self reference to the LoopID metadata node. 8322 MDs.push_back(nullptr); 8323 bool IsUnrollMetadata = false; 8324 MDNode *LoopID = L->getLoopID(); 8325 if (LoopID) { 8326 // First find existing loop unrolling disable metadata. 8327 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8328 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8329 if (MD) { 8330 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8331 IsUnrollMetadata = 8332 S && S->getString().startswith("llvm.loop.unroll.disable"); 8333 } 8334 MDs.push_back(LoopID->getOperand(i)); 8335 } 8336 } 8337 8338 if (!IsUnrollMetadata) { 8339 // Add runtime unroll disable metadata. 8340 LLVMContext &Context = L->getHeader()->getContext(); 8341 SmallVector<Metadata *, 1> DisableOperands; 8342 DisableOperands.push_back( 8343 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8344 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8345 MDs.push_back(DisableNode); 8346 MDNode *NewLoopID = MDNode::get(Context, MDs); 8347 // Set operand 0 to refer to the loop id itself. 8348 NewLoopID->replaceOperandWith(0, NewLoopID); 8349 L->setLoopID(NewLoopID); 8350 } 8351 } 8352 8353 //===--------------------------------------------------------------------===// 8354 // EpilogueVectorizerMainLoop 8355 //===--------------------------------------------------------------------===// 8356 8357 /// This function is partially responsible for generating the control flow 8358 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8359 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8360 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8361 Loop *Lp = createVectorLoopSkeleton(""); 8362 8363 // Generate the code to check the minimum iteration count of the vector 8364 // epilogue (see below). 8365 EPI.EpilogueIterationCountCheck = 8366 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8367 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8368 8369 // Generate the code to check any assumptions that we've made for SCEV 8370 // expressions. 8371 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8372 8373 // Generate the code that checks at runtime if arrays overlap. We put the 8374 // checks into a separate block to make the more common case of few elements 8375 // faster. 8376 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8377 8378 // Generate the iteration count check for the main loop, *after* the check 8379 // for the epilogue loop, so that the path-length is shorter for the case 8380 // that goes directly through the vector epilogue. The longer-path length for 8381 // the main loop is compensated for, by the gain from vectorizing the larger 8382 // trip count. Note: the branch will get updated later on when we vectorize 8383 // the epilogue. 8384 EPI.MainLoopIterationCountCheck = 8385 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8386 8387 // Generate the induction variable. 8388 OldInduction = Legal->getPrimaryInduction(); 8389 Type *IdxTy = Legal->getWidestInductionType(); 8390 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8391 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8392 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8393 EPI.VectorTripCount = CountRoundDown; 8394 Induction = 8395 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8396 getDebugLocFromInstOrOperands(OldInduction)); 8397 8398 // Skip induction resume value creation here because they will be created in 8399 // the second pass. If we created them here, they wouldn't be used anyway, 8400 // because the vplan in the second pass still contains the inductions from the 8401 // original loop. 8402 8403 return completeLoopSkeleton(Lp, OrigLoopID); 8404 } 8405 8406 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8407 LLVM_DEBUG({ 8408 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8409 << "Main Loop VF:" << EPI.MainLoopVF 8410 << ", Main Loop UF:" << EPI.MainLoopUF 8411 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8412 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8413 }); 8414 } 8415 8416 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8417 DEBUG_WITH_TYPE(VerboseDebug, { 8418 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8419 }); 8420 } 8421 8422 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8423 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8424 assert(L && "Expected valid Loop."); 8425 assert(Bypass && "Expected valid bypass basic block."); 8426 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8427 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8428 Value *Count = getOrCreateTripCount(L); 8429 // Reuse existing vector loop preheader for TC checks. 8430 // Note that new preheader block is generated for vector loop. 8431 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8432 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8433 8434 // Generate code to check if the loop's trip count is less than VF * UF of the 8435 // main vector loop. 8436 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8437 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8438 8439 Value *CheckMinIters = Builder.CreateICmp( 8440 P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor), 8441 "min.iters.check"); 8442 8443 if (!ForEpilogue) 8444 TCCheckBlock->setName("vector.main.loop.iter.check"); 8445 8446 // Create new preheader for vector loop. 8447 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8448 DT, LI, nullptr, "vector.ph"); 8449 8450 if (ForEpilogue) { 8451 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8452 DT->getNode(Bypass)->getIDom()) && 8453 "TC check is expected to dominate Bypass"); 8454 8455 // Update dominator for Bypass & LoopExit. 8456 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8457 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8458 // For loops with multiple exits, there's no edge from the middle block 8459 // to exit blocks (as the epilogue must run) and thus no need to update 8460 // the immediate dominator of the exit blocks. 8461 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8462 8463 LoopBypassBlocks.push_back(TCCheckBlock); 8464 8465 // Save the trip count so we don't have to regenerate it in the 8466 // vec.epilog.iter.check. This is safe to do because the trip count 8467 // generated here dominates the vector epilog iter check. 8468 EPI.TripCount = Count; 8469 } 8470 8471 ReplaceInstWithInst( 8472 TCCheckBlock->getTerminator(), 8473 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8474 8475 return TCCheckBlock; 8476 } 8477 8478 //===--------------------------------------------------------------------===// 8479 // EpilogueVectorizerEpilogueLoop 8480 //===--------------------------------------------------------------------===// 8481 8482 /// This function is partially responsible for generating the control flow 8483 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8484 BasicBlock * 8485 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8486 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8487 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8488 8489 // Now, compare the remaining count and if there aren't enough iterations to 8490 // execute the vectorized epilogue skip to the scalar part. 8491 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8492 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8493 LoopVectorPreHeader = 8494 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8495 LI, nullptr, "vec.epilog.ph"); 8496 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8497 VecEpilogueIterationCountCheck); 8498 8499 // Adjust the control flow taking the state info from the main loop 8500 // vectorization into account. 8501 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8502 "expected this to be saved from the previous pass."); 8503 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8504 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8505 8506 DT->changeImmediateDominator(LoopVectorPreHeader, 8507 EPI.MainLoopIterationCountCheck); 8508 8509 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8510 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8511 8512 if (EPI.SCEVSafetyCheck) 8513 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8514 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8515 if (EPI.MemSafetyCheck) 8516 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8517 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8518 8519 DT->changeImmediateDominator( 8520 VecEpilogueIterationCountCheck, 8521 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8522 8523 DT->changeImmediateDominator(LoopScalarPreHeader, 8524 EPI.EpilogueIterationCountCheck); 8525 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8526 // If there is an epilogue which must run, there's no edge from the 8527 // middle block to exit blocks and thus no need to update the immediate 8528 // dominator of the exit blocks. 8529 DT->changeImmediateDominator(LoopExitBlock, 8530 EPI.EpilogueIterationCountCheck); 8531 8532 // Keep track of bypass blocks, as they feed start values to the induction 8533 // phis in the scalar loop preheader. 8534 if (EPI.SCEVSafetyCheck) 8535 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8536 if (EPI.MemSafetyCheck) 8537 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8538 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8539 8540 // Generate a resume induction for the vector epilogue and put it in the 8541 // vector epilogue preheader 8542 Type *IdxTy = Legal->getWidestInductionType(); 8543 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8544 LoopVectorPreHeader->getFirstNonPHI()); 8545 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8546 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8547 EPI.MainLoopIterationCountCheck); 8548 8549 // Generate the induction variable. 8550 OldInduction = Legal->getPrimaryInduction(); 8551 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8552 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8553 Value *StartIdx = EPResumeVal; 8554 Induction = 8555 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8556 getDebugLocFromInstOrOperands(OldInduction)); 8557 8558 // Generate induction resume values. These variables save the new starting 8559 // indexes for the scalar loop. They are used to test if there are any tail 8560 // iterations left once the vector loop has completed. 8561 // Note that when the vectorized epilogue is skipped due to iteration count 8562 // check, then the resume value for the induction variable comes from 8563 // the trip count of the main vector loop, hence passing the AdditionalBypass 8564 // argument. 8565 createInductionResumeValues(Lp, CountRoundDown, 8566 {VecEpilogueIterationCountCheck, 8567 EPI.VectorTripCount} /* AdditionalBypass */); 8568 8569 AddRuntimeUnrollDisableMetaData(Lp); 8570 return completeLoopSkeleton(Lp, OrigLoopID); 8571 } 8572 8573 BasicBlock * 8574 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8575 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8576 8577 assert(EPI.TripCount && 8578 "Expected trip count to have been safed in the first pass."); 8579 assert( 8580 (!isa<Instruction>(EPI.TripCount) || 8581 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8582 "saved trip count does not dominate insertion point."); 8583 Value *TC = EPI.TripCount; 8584 IRBuilder<> Builder(Insert->getTerminator()); 8585 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8586 8587 // Generate code to check if the loop's trip count is less than VF * UF of the 8588 // vector epilogue loop. 8589 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8590 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8591 8592 Value *CheckMinIters = Builder.CreateICmp( 8593 P, Count, 8594 getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF), 8595 "min.epilog.iters.check"); 8596 8597 ReplaceInstWithInst( 8598 Insert->getTerminator(), 8599 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8600 8601 LoopBypassBlocks.push_back(Insert); 8602 return Insert; 8603 } 8604 8605 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8606 LLVM_DEBUG({ 8607 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8608 << "Epilogue Loop VF:" << EPI.EpilogueVF 8609 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8610 }); 8611 } 8612 8613 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8614 DEBUG_WITH_TYPE(VerboseDebug, { 8615 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8616 }); 8617 } 8618 8619 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8620 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8621 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8622 bool PredicateAtRangeStart = Predicate(Range.Start); 8623 8624 for (ElementCount TmpVF = Range.Start * 2; 8625 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8626 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8627 Range.End = TmpVF; 8628 break; 8629 } 8630 8631 return PredicateAtRangeStart; 8632 } 8633 8634 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8635 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8636 /// of VF's starting at a given VF and extending it as much as possible. Each 8637 /// vectorization decision can potentially shorten this sub-range during 8638 /// buildVPlan(). 8639 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8640 ElementCount MaxVF) { 8641 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8642 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8643 VFRange SubRange = {VF, MaxVFPlusOne}; 8644 VPlans.push_back(buildVPlan(SubRange)); 8645 VF = SubRange.End; 8646 } 8647 } 8648 8649 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8650 VPlanPtr &Plan) { 8651 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8652 8653 // Look for cached value. 8654 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8655 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8656 if (ECEntryIt != EdgeMaskCache.end()) 8657 return ECEntryIt->second; 8658 8659 VPValue *SrcMask = createBlockInMask(Src, Plan); 8660 8661 // The terminator has to be a branch inst! 8662 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8663 assert(BI && "Unexpected terminator found"); 8664 8665 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8666 return EdgeMaskCache[Edge] = SrcMask; 8667 8668 // If source is an exiting block, we know the exit edge is dynamically dead 8669 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8670 // adding uses of an otherwise potentially dead instruction. 8671 if (OrigLoop->isLoopExiting(Src)) 8672 return EdgeMaskCache[Edge] = SrcMask; 8673 8674 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8675 assert(EdgeMask && "No Edge Mask found for condition"); 8676 8677 if (BI->getSuccessor(0) != Dst) 8678 EdgeMask = Builder.createNot(EdgeMask); 8679 8680 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8681 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8682 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8683 // The select version does not introduce new UB if SrcMask is false and 8684 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8685 VPValue *False = Plan->getOrAddVPValue( 8686 ConstantInt::getFalse(BI->getCondition()->getType())); 8687 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8688 } 8689 8690 return EdgeMaskCache[Edge] = EdgeMask; 8691 } 8692 8693 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8694 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8695 8696 // Look for cached value. 8697 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8698 if (BCEntryIt != BlockMaskCache.end()) 8699 return BCEntryIt->second; 8700 8701 // All-one mask is modelled as no-mask following the convention for masked 8702 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8703 VPValue *BlockMask = nullptr; 8704 8705 if (OrigLoop->getHeader() == BB) { 8706 if (!CM.blockNeedsPredication(BB)) 8707 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8708 8709 // Create the block in mask as the first non-phi instruction in the block. 8710 VPBuilder::InsertPointGuard Guard(Builder); 8711 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8712 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8713 8714 // Introduce the early-exit compare IV <= BTC to form header block mask. 8715 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8716 // Start by constructing the desired canonical IV. 8717 VPValue *IV = nullptr; 8718 if (Legal->getPrimaryInduction()) 8719 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8720 else { 8721 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8722 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8723 IV = IVRecipe->getVPSingleValue(); 8724 } 8725 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8726 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8727 8728 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8729 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8730 // as a second argument, we only pass the IV here and extract the 8731 // tripcount from the transform state where codegen of the VP instructions 8732 // happen. 8733 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8734 } else { 8735 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8736 } 8737 return BlockMaskCache[BB] = BlockMask; 8738 } 8739 8740 // This is the block mask. We OR all incoming edges. 8741 for (auto *Predecessor : predecessors(BB)) { 8742 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8743 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8744 return BlockMaskCache[BB] = EdgeMask; 8745 8746 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8747 BlockMask = EdgeMask; 8748 continue; 8749 } 8750 8751 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8752 } 8753 8754 return BlockMaskCache[BB] = BlockMask; 8755 } 8756 8757 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8758 ArrayRef<VPValue *> Operands, 8759 VFRange &Range, 8760 VPlanPtr &Plan) { 8761 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8762 "Must be called with either a load or store"); 8763 8764 auto willWiden = [&](ElementCount VF) -> bool { 8765 if (VF.isScalar()) 8766 return false; 8767 LoopVectorizationCostModel::InstWidening Decision = 8768 CM.getWideningDecision(I, VF); 8769 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8770 "CM decision should be taken at this point."); 8771 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8772 return true; 8773 if (CM.isScalarAfterVectorization(I, VF) || 8774 CM.isProfitableToScalarize(I, VF)) 8775 return false; 8776 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8777 }; 8778 8779 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8780 return nullptr; 8781 8782 VPValue *Mask = nullptr; 8783 if (Legal->isMaskRequired(I)) 8784 Mask = createBlockInMask(I->getParent(), Plan); 8785 8786 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8787 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8788 8789 StoreInst *Store = cast<StoreInst>(I); 8790 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8791 Mask); 8792 } 8793 8794 VPWidenIntOrFpInductionRecipe * 8795 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8796 ArrayRef<VPValue *> Operands) const { 8797 // Check if this is an integer or fp induction. If so, build the recipe that 8798 // produces its scalar and vector values. 8799 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8800 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8801 II.getKind() == InductionDescriptor::IK_FpInduction) { 8802 assert(II.getStartValue() == 8803 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8804 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8805 return new VPWidenIntOrFpInductionRecipe( 8806 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8807 } 8808 8809 return nullptr; 8810 } 8811 8812 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8813 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8814 VPlan &Plan) const { 8815 // Optimize the special case where the source is a constant integer 8816 // induction variable. Notice that we can only optimize the 'trunc' case 8817 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8818 // (c) other casts depend on pointer size. 8819 8820 // Determine whether \p K is a truncation based on an induction variable that 8821 // can be optimized. 8822 auto isOptimizableIVTruncate = 8823 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8824 return [=](ElementCount VF) -> bool { 8825 return CM.isOptimizableIVTruncate(K, VF); 8826 }; 8827 }; 8828 8829 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8830 isOptimizableIVTruncate(I), Range)) { 8831 8832 InductionDescriptor II = 8833 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8834 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8835 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8836 Start, nullptr, I); 8837 } 8838 return nullptr; 8839 } 8840 8841 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8842 ArrayRef<VPValue *> Operands, 8843 VPlanPtr &Plan) { 8844 // If all incoming values are equal, the incoming VPValue can be used directly 8845 // instead of creating a new VPBlendRecipe. 8846 VPValue *FirstIncoming = Operands[0]; 8847 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8848 return FirstIncoming == Inc; 8849 })) { 8850 return Operands[0]; 8851 } 8852 8853 // We know that all PHIs in non-header blocks are converted into selects, so 8854 // we don't have to worry about the insertion order and we can just use the 8855 // builder. At this point we generate the predication tree. There may be 8856 // duplications since this is a simple recursive scan, but future 8857 // optimizations will clean it up. 8858 SmallVector<VPValue *, 2> OperandsWithMask; 8859 unsigned NumIncoming = Phi->getNumIncomingValues(); 8860 8861 for (unsigned In = 0; In < NumIncoming; In++) { 8862 VPValue *EdgeMask = 8863 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8864 assert((EdgeMask || NumIncoming == 1) && 8865 "Multiple predecessors with one having a full mask"); 8866 OperandsWithMask.push_back(Operands[In]); 8867 if (EdgeMask) 8868 OperandsWithMask.push_back(EdgeMask); 8869 } 8870 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8871 } 8872 8873 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8874 ArrayRef<VPValue *> Operands, 8875 VFRange &Range) const { 8876 8877 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8878 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8879 Range); 8880 8881 if (IsPredicated) 8882 return nullptr; 8883 8884 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8885 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8886 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8887 ID == Intrinsic::pseudoprobe || 8888 ID == Intrinsic::experimental_noalias_scope_decl)) 8889 return nullptr; 8890 8891 auto willWiden = [&](ElementCount VF) -> bool { 8892 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8893 // The following case may be scalarized depending on the VF. 8894 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8895 // version of the instruction. 8896 // Is it beneficial to perform intrinsic call compared to lib call? 8897 bool NeedToScalarize = false; 8898 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8899 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8900 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8901 return UseVectorIntrinsic || !NeedToScalarize; 8902 }; 8903 8904 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8905 return nullptr; 8906 8907 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8908 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8909 } 8910 8911 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8912 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8913 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8914 // Instruction should be widened, unless it is scalar after vectorization, 8915 // scalarization is profitable or it is predicated. 8916 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8917 return CM.isScalarAfterVectorization(I, VF) || 8918 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8919 }; 8920 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8921 Range); 8922 } 8923 8924 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8925 ArrayRef<VPValue *> Operands) const { 8926 auto IsVectorizableOpcode = [](unsigned Opcode) { 8927 switch (Opcode) { 8928 case Instruction::Add: 8929 case Instruction::And: 8930 case Instruction::AShr: 8931 case Instruction::BitCast: 8932 case Instruction::FAdd: 8933 case Instruction::FCmp: 8934 case Instruction::FDiv: 8935 case Instruction::FMul: 8936 case Instruction::FNeg: 8937 case Instruction::FPExt: 8938 case Instruction::FPToSI: 8939 case Instruction::FPToUI: 8940 case Instruction::FPTrunc: 8941 case Instruction::FRem: 8942 case Instruction::FSub: 8943 case Instruction::ICmp: 8944 case Instruction::IntToPtr: 8945 case Instruction::LShr: 8946 case Instruction::Mul: 8947 case Instruction::Or: 8948 case Instruction::PtrToInt: 8949 case Instruction::SDiv: 8950 case Instruction::Select: 8951 case Instruction::SExt: 8952 case Instruction::Shl: 8953 case Instruction::SIToFP: 8954 case Instruction::SRem: 8955 case Instruction::Sub: 8956 case Instruction::Trunc: 8957 case Instruction::UDiv: 8958 case Instruction::UIToFP: 8959 case Instruction::URem: 8960 case Instruction::Xor: 8961 case Instruction::ZExt: 8962 return true; 8963 } 8964 return false; 8965 }; 8966 8967 if (!IsVectorizableOpcode(I->getOpcode())) 8968 return nullptr; 8969 8970 // Success: widen this instruction. 8971 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8972 } 8973 8974 void VPRecipeBuilder::fixHeaderPhis() { 8975 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8976 for (VPWidenPHIRecipe *R : PhisToFix) { 8977 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8978 VPRecipeBase *IncR = 8979 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8980 R->addOperand(IncR->getVPSingleValue()); 8981 } 8982 } 8983 8984 VPBasicBlock *VPRecipeBuilder::handleReplication( 8985 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8986 VPlanPtr &Plan) { 8987 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8988 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8989 Range); 8990 8991 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8992 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8993 8994 // Even if the instruction is not marked as uniform, there are certain 8995 // intrinsic calls that can be effectively treated as such, so we check for 8996 // them here. Conservatively, we only do this for scalable vectors, since 8997 // for fixed-width VFs we can always fall back on full scalarization. 8998 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8999 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 9000 case Intrinsic::assume: 9001 case Intrinsic::lifetime_start: 9002 case Intrinsic::lifetime_end: 9003 // For scalable vectors if one of the operands is variant then we still 9004 // want to mark as uniform, which will generate one instruction for just 9005 // the first lane of the vector. We can't scalarize the call in the same 9006 // way as for fixed-width vectors because we don't know how many lanes 9007 // there are. 9008 // 9009 // The reasons for doing it this way for scalable vectors are: 9010 // 1. For the assume intrinsic generating the instruction for the first 9011 // lane is still be better than not generating any at all. For 9012 // example, the input may be a splat across all lanes. 9013 // 2. For the lifetime start/end intrinsics the pointer operand only 9014 // does anything useful when the input comes from a stack object, 9015 // which suggests it should always be uniform. For non-stack objects 9016 // the effect is to poison the object, which still allows us to 9017 // remove the call. 9018 IsUniform = true; 9019 break; 9020 default: 9021 break; 9022 } 9023 } 9024 9025 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 9026 IsUniform, IsPredicated); 9027 setRecipe(I, Recipe); 9028 Plan->addVPValue(I, Recipe); 9029 9030 // Find if I uses a predicated instruction. If so, it will use its scalar 9031 // value. Avoid hoisting the insert-element which packs the scalar value into 9032 // a vector value, as that happens iff all users use the vector value. 9033 for (VPValue *Op : Recipe->operands()) { 9034 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 9035 if (!PredR) 9036 continue; 9037 auto *RepR = 9038 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 9039 assert(RepR->isPredicated() && 9040 "expected Replicate recipe to be predicated"); 9041 RepR->setAlsoPack(false); 9042 } 9043 9044 // Finalize the recipe for Instr, first if it is not predicated. 9045 if (!IsPredicated) { 9046 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 9047 VPBB->appendRecipe(Recipe); 9048 return VPBB; 9049 } 9050 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 9051 assert(VPBB->getSuccessors().empty() && 9052 "VPBB has successors when handling predicated replication."); 9053 // Record predicated instructions for above packing optimizations. 9054 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 9055 VPBlockUtils::insertBlockAfter(Region, VPBB); 9056 auto *RegSucc = new VPBasicBlock(); 9057 VPBlockUtils::insertBlockAfter(RegSucc, Region); 9058 return RegSucc; 9059 } 9060 9061 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 9062 VPRecipeBase *PredRecipe, 9063 VPlanPtr &Plan) { 9064 // Instructions marked for predication are replicated and placed under an 9065 // if-then construct to prevent side-effects. 9066 9067 // Generate recipes to compute the block mask for this region. 9068 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 9069 9070 // Build the triangular if-then region. 9071 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 9072 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 9073 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 9074 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 9075 auto *PHIRecipe = Instr->getType()->isVoidTy() 9076 ? nullptr 9077 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 9078 if (PHIRecipe) { 9079 Plan->removeVPValueFor(Instr); 9080 Plan->addVPValue(Instr, PHIRecipe); 9081 } 9082 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 9083 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 9084 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 9085 9086 // Note: first set Entry as region entry and then connect successors starting 9087 // from it in order, to propagate the "parent" of each VPBasicBlock. 9088 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 9089 VPBlockUtils::connectBlocks(Pred, Exit); 9090 9091 return Region; 9092 } 9093 9094 VPRecipeOrVPValueTy 9095 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 9096 ArrayRef<VPValue *> Operands, 9097 VFRange &Range, VPlanPtr &Plan) { 9098 // First, check for specific widening recipes that deal with calls, memory 9099 // operations, inductions and Phi nodes. 9100 if (auto *CI = dyn_cast<CallInst>(Instr)) 9101 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 9102 9103 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 9104 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 9105 9106 VPRecipeBase *Recipe; 9107 if (auto Phi = dyn_cast<PHINode>(Instr)) { 9108 if (Phi->getParent() != OrigLoop->getHeader()) 9109 return tryToBlend(Phi, Operands, Plan); 9110 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 9111 return toVPRecipeResult(Recipe); 9112 9113 VPWidenPHIRecipe *PhiRecipe = nullptr; 9114 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 9115 VPValue *StartV = Operands[0]; 9116 if (Legal->isReductionVariable(Phi)) { 9117 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9118 assert(RdxDesc.getRecurrenceStartValue() == 9119 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 9120 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 9121 CM.isInLoopReduction(Phi), 9122 CM.useOrderedReductions(RdxDesc)); 9123 } else { 9124 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 9125 } 9126 9127 // Record the incoming value from the backedge, so we can add the incoming 9128 // value from the backedge after all recipes have been created. 9129 recordRecipeOf(cast<Instruction>( 9130 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9131 PhisToFix.push_back(PhiRecipe); 9132 } else { 9133 // TODO: record start and backedge value for remaining pointer induction 9134 // phis. 9135 assert(Phi->getType()->isPointerTy() && 9136 "only pointer phis should be handled here"); 9137 PhiRecipe = new VPWidenPHIRecipe(Phi); 9138 } 9139 9140 return toVPRecipeResult(PhiRecipe); 9141 } 9142 9143 if (isa<TruncInst>(Instr) && 9144 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9145 Range, *Plan))) 9146 return toVPRecipeResult(Recipe); 9147 9148 if (!shouldWiden(Instr, Range)) 9149 return nullptr; 9150 9151 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9152 return toVPRecipeResult(new VPWidenGEPRecipe( 9153 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9154 9155 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9156 bool InvariantCond = 9157 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9158 return toVPRecipeResult(new VPWidenSelectRecipe( 9159 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9160 } 9161 9162 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9163 } 9164 9165 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9166 ElementCount MaxVF) { 9167 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9168 9169 // Collect instructions from the original loop that will become trivially dead 9170 // in the vectorized loop. We don't need to vectorize these instructions. For 9171 // example, original induction update instructions can become dead because we 9172 // separately emit induction "steps" when generating code for the new loop. 9173 // Similarly, we create a new latch condition when setting up the structure 9174 // of the new loop, so the old one can become dead. 9175 SmallPtrSet<Instruction *, 4> DeadInstructions; 9176 collectTriviallyDeadInstructions(DeadInstructions); 9177 9178 // Add assume instructions we need to drop to DeadInstructions, to prevent 9179 // them from being added to the VPlan. 9180 // TODO: We only need to drop assumes in blocks that get flattend. If the 9181 // control flow is preserved, we should keep them. 9182 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9183 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9184 9185 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9186 // Dead instructions do not need sinking. Remove them from SinkAfter. 9187 for (Instruction *I : DeadInstructions) 9188 SinkAfter.erase(I); 9189 9190 // Cannot sink instructions after dead instructions (there won't be any 9191 // recipes for them). Instead, find the first non-dead previous instruction. 9192 for (auto &P : Legal->getSinkAfter()) { 9193 Instruction *SinkTarget = P.second; 9194 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9195 (void)FirstInst; 9196 while (DeadInstructions.contains(SinkTarget)) { 9197 assert( 9198 SinkTarget != FirstInst && 9199 "Must find a live instruction (at least the one feeding the " 9200 "first-order recurrence PHI) before reaching beginning of the block"); 9201 SinkTarget = SinkTarget->getPrevNode(); 9202 assert(SinkTarget != P.first && 9203 "sink source equals target, no sinking required"); 9204 } 9205 P.second = SinkTarget; 9206 } 9207 9208 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9209 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9210 VFRange SubRange = {VF, MaxVFPlusOne}; 9211 VPlans.push_back( 9212 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9213 VF = SubRange.End; 9214 } 9215 } 9216 9217 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9218 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9219 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9220 9221 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9222 9223 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9224 9225 // --------------------------------------------------------------------------- 9226 // Pre-construction: record ingredients whose recipes we'll need to further 9227 // process after constructing the initial VPlan. 9228 // --------------------------------------------------------------------------- 9229 9230 // Mark instructions we'll need to sink later and their targets as 9231 // ingredients whose recipe we'll need to record. 9232 for (auto &Entry : SinkAfter) { 9233 RecipeBuilder.recordRecipeOf(Entry.first); 9234 RecipeBuilder.recordRecipeOf(Entry.second); 9235 } 9236 for (auto &Reduction : CM.getInLoopReductionChains()) { 9237 PHINode *Phi = Reduction.first; 9238 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9239 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9240 9241 RecipeBuilder.recordRecipeOf(Phi); 9242 for (auto &R : ReductionOperations) { 9243 RecipeBuilder.recordRecipeOf(R); 9244 // For min/max reducitons, where we have a pair of icmp/select, we also 9245 // need to record the ICmp recipe, so it can be removed later. 9246 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9247 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9248 } 9249 } 9250 9251 // For each interleave group which is relevant for this (possibly trimmed) 9252 // Range, add it to the set of groups to be later applied to the VPlan and add 9253 // placeholders for its members' Recipes which we'll be replacing with a 9254 // single VPInterleaveRecipe. 9255 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9256 auto applyIG = [IG, this](ElementCount VF) -> bool { 9257 return (VF.isVector() && // Query is illegal for VF == 1 9258 CM.getWideningDecision(IG->getInsertPos(), VF) == 9259 LoopVectorizationCostModel::CM_Interleave); 9260 }; 9261 if (!getDecisionAndClampRange(applyIG, Range)) 9262 continue; 9263 InterleaveGroups.insert(IG); 9264 for (unsigned i = 0; i < IG->getFactor(); i++) 9265 if (Instruction *Member = IG->getMember(i)) 9266 RecipeBuilder.recordRecipeOf(Member); 9267 }; 9268 9269 // --------------------------------------------------------------------------- 9270 // Build initial VPlan: Scan the body of the loop in a topological order to 9271 // visit each basic block after having visited its predecessor basic blocks. 9272 // --------------------------------------------------------------------------- 9273 9274 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9275 auto Plan = std::make_unique<VPlan>(); 9276 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9277 Plan->setEntry(VPBB); 9278 9279 // Scan the body of the loop in a topological order to visit each basic block 9280 // after having visited its predecessor basic blocks. 9281 LoopBlocksDFS DFS(OrigLoop); 9282 DFS.perform(LI); 9283 9284 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9285 // Relevant instructions from basic block BB will be grouped into VPRecipe 9286 // ingredients and fill a new VPBasicBlock. 9287 unsigned VPBBsForBB = 0; 9288 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9289 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9290 VPBB = FirstVPBBForBB; 9291 Builder.setInsertPoint(VPBB); 9292 9293 // Introduce each ingredient into VPlan. 9294 // TODO: Model and preserve debug instrinsics in VPlan. 9295 for (Instruction &I : BB->instructionsWithoutDebug()) { 9296 Instruction *Instr = &I; 9297 9298 // First filter out irrelevant instructions, to ensure no recipes are 9299 // built for them. 9300 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9301 continue; 9302 9303 SmallVector<VPValue *, 4> Operands; 9304 auto *Phi = dyn_cast<PHINode>(Instr); 9305 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9306 Operands.push_back(Plan->getOrAddVPValue( 9307 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9308 } else { 9309 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9310 Operands = {OpRange.begin(), OpRange.end()}; 9311 } 9312 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9313 Instr, Operands, Range, Plan)) { 9314 // If Instr can be simplified to an existing VPValue, use it. 9315 if (RecipeOrValue.is<VPValue *>()) { 9316 auto *VPV = RecipeOrValue.get<VPValue *>(); 9317 Plan->addVPValue(Instr, VPV); 9318 // If the re-used value is a recipe, register the recipe for the 9319 // instruction, in case the recipe for Instr needs to be recorded. 9320 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9321 RecipeBuilder.setRecipe(Instr, R); 9322 continue; 9323 } 9324 // Otherwise, add the new recipe. 9325 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9326 for (auto *Def : Recipe->definedValues()) { 9327 auto *UV = Def->getUnderlyingValue(); 9328 Plan->addVPValue(UV, Def); 9329 } 9330 9331 RecipeBuilder.setRecipe(Instr, Recipe); 9332 VPBB->appendRecipe(Recipe); 9333 continue; 9334 } 9335 9336 // Otherwise, if all widening options failed, Instruction is to be 9337 // replicated. This may create a successor for VPBB. 9338 VPBasicBlock *NextVPBB = 9339 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9340 if (NextVPBB != VPBB) { 9341 VPBB = NextVPBB; 9342 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9343 : ""); 9344 } 9345 } 9346 } 9347 9348 RecipeBuilder.fixHeaderPhis(); 9349 9350 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9351 // may also be empty, such as the last one VPBB, reflecting original 9352 // basic-blocks with no recipes. 9353 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9354 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9355 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9356 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9357 delete PreEntry; 9358 9359 // --------------------------------------------------------------------------- 9360 // Transform initial VPlan: Apply previously taken decisions, in order, to 9361 // bring the VPlan to its final state. 9362 // --------------------------------------------------------------------------- 9363 9364 // Apply Sink-After legal constraints. 9365 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9366 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9367 if (Region && Region->isReplicator()) { 9368 assert(Region->getNumSuccessors() == 1 && 9369 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9370 assert(R->getParent()->size() == 1 && 9371 "A recipe in an original replicator region must be the only " 9372 "recipe in its block"); 9373 return Region; 9374 } 9375 return nullptr; 9376 }; 9377 for (auto &Entry : SinkAfter) { 9378 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9379 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9380 9381 auto *TargetRegion = GetReplicateRegion(Target); 9382 auto *SinkRegion = GetReplicateRegion(Sink); 9383 if (!SinkRegion) { 9384 // If the sink source is not a replicate region, sink the recipe directly. 9385 if (TargetRegion) { 9386 // The target is in a replication region, make sure to move Sink to 9387 // the block after it, not into the replication region itself. 9388 VPBasicBlock *NextBlock = 9389 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9390 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9391 } else 9392 Sink->moveAfter(Target); 9393 continue; 9394 } 9395 9396 // The sink source is in a replicate region. Unhook the region from the CFG. 9397 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9398 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9399 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9400 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9401 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9402 9403 if (TargetRegion) { 9404 // The target recipe is also in a replicate region, move the sink region 9405 // after the target region. 9406 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9407 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9408 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9409 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9410 } else { 9411 // The sink source is in a replicate region, we need to move the whole 9412 // replicate region, which should only contain a single recipe in the 9413 // main block. 9414 auto *SplitBlock = 9415 Target->getParent()->splitAt(std::next(Target->getIterator())); 9416 9417 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9418 9419 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9420 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9421 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9422 if (VPBB == SplitPred) 9423 VPBB = SplitBlock; 9424 } 9425 } 9426 9427 // Adjust the recipes for any inloop reductions. 9428 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9429 9430 // Introduce a recipe to combine the incoming and previous values of a 9431 // first-order recurrence. 9432 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9433 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9434 if (!RecurPhi) 9435 continue; 9436 9437 auto *RecurSplice = cast<VPInstruction>( 9438 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9439 {RecurPhi, RecurPhi->getBackedgeValue()})); 9440 9441 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9442 if (auto *Region = GetReplicateRegion(PrevRecipe)) { 9443 VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9444 RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi()); 9445 } else 9446 RecurSplice->moveAfter(PrevRecipe); 9447 RecurPhi->replaceAllUsesWith(RecurSplice); 9448 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9449 // all users. 9450 RecurSplice->setOperand(0, RecurPhi); 9451 } 9452 9453 // Interleave memory: for each Interleave Group we marked earlier as relevant 9454 // for this VPlan, replace the Recipes widening its memory instructions with a 9455 // single VPInterleaveRecipe at its insertion point. 9456 for (auto IG : InterleaveGroups) { 9457 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9458 RecipeBuilder.getRecipe(IG->getInsertPos())); 9459 SmallVector<VPValue *, 4> StoredValues; 9460 for (unsigned i = 0; i < IG->getFactor(); ++i) 9461 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9462 auto *StoreR = 9463 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9464 StoredValues.push_back(StoreR->getStoredValue()); 9465 } 9466 9467 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9468 Recipe->getMask()); 9469 VPIG->insertBefore(Recipe); 9470 unsigned J = 0; 9471 for (unsigned i = 0; i < IG->getFactor(); ++i) 9472 if (Instruction *Member = IG->getMember(i)) { 9473 if (!Member->getType()->isVoidTy()) { 9474 VPValue *OriginalV = Plan->getVPValue(Member); 9475 Plan->removeVPValueFor(Member); 9476 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9477 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9478 J++; 9479 } 9480 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9481 } 9482 } 9483 9484 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9485 // in ways that accessing values using original IR values is incorrect. 9486 Plan->disableValue2VPValue(); 9487 9488 VPlanTransforms::sinkScalarOperands(*Plan); 9489 VPlanTransforms::mergeReplicateRegions(*Plan); 9490 9491 std::string PlanName; 9492 raw_string_ostream RSO(PlanName); 9493 ElementCount VF = Range.Start; 9494 Plan->addVF(VF); 9495 RSO << "Initial VPlan for VF={" << VF; 9496 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9497 Plan->addVF(VF); 9498 RSO << "," << VF; 9499 } 9500 RSO << "},UF>=1"; 9501 RSO.flush(); 9502 Plan->setName(PlanName); 9503 9504 return Plan; 9505 } 9506 9507 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9508 // Outer loop handling: They may require CFG and instruction level 9509 // transformations before even evaluating whether vectorization is profitable. 9510 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9511 // the vectorization pipeline. 9512 assert(!OrigLoop->isInnermost()); 9513 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9514 9515 // Create new empty VPlan 9516 auto Plan = std::make_unique<VPlan>(); 9517 9518 // Build hierarchical CFG 9519 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9520 HCFGBuilder.buildHierarchicalCFG(); 9521 9522 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9523 VF *= 2) 9524 Plan->addVF(VF); 9525 9526 if (EnableVPlanPredication) { 9527 VPlanPredicator VPP(*Plan); 9528 VPP.predicate(); 9529 9530 // Avoid running transformation to recipes until masked code generation in 9531 // VPlan-native path is in place. 9532 return Plan; 9533 } 9534 9535 SmallPtrSet<Instruction *, 1> DeadInstructions; 9536 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9537 Legal->getInductionVars(), 9538 DeadInstructions, *PSE.getSE()); 9539 return Plan; 9540 } 9541 9542 // Adjust the recipes for reductions. For in-loop reductions the chain of 9543 // instructions leading from the loop exit instr to the phi need to be converted 9544 // to reductions, with one operand being vector and the other being the scalar 9545 // reduction chain. For other reductions, a select is introduced between the phi 9546 // and live-out recipes when folding the tail. 9547 void LoopVectorizationPlanner::adjustRecipesForReductions( 9548 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9549 ElementCount MinVF) { 9550 for (auto &Reduction : CM.getInLoopReductionChains()) { 9551 PHINode *Phi = Reduction.first; 9552 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9553 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9554 9555 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9556 continue; 9557 9558 // ReductionOperations are orders top-down from the phi's use to the 9559 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9560 // which of the two operands will remain scalar and which will be reduced. 9561 // For minmax the chain will be the select instructions. 9562 Instruction *Chain = Phi; 9563 for (Instruction *R : ReductionOperations) { 9564 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9565 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9566 9567 VPValue *ChainOp = Plan->getVPValue(Chain); 9568 unsigned FirstOpId; 9569 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9570 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9571 "Expected to replace a VPWidenSelectSC"); 9572 FirstOpId = 1; 9573 } else { 9574 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9575 "Expected to replace a VPWidenSC"); 9576 FirstOpId = 0; 9577 } 9578 unsigned VecOpId = 9579 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9580 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9581 9582 auto *CondOp = CM.foldTailByMasking() 9583 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9584 : nullptr; 9585 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9586 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9587 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9588 Plan->removeVPValueFor(R); 9589 Plan->addVPValue(R, RedRecipe); 9590 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9591 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9592 WidenRecipe->eraseFromParent(); 9593 9594 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9595 VPRecipeBase *CompareRecipe = 9596 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9597 assert(isa<VPWidenRecipe>(CompareRecipe) && 9598 "Expected to replace a VPWidenSC"); 9599 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9600 "Expected no remaining users"); 9601 CompareRecipe->eraseFromParent(); 9602 } 9603 Chain = R; 9604 } 9605 } 9606 9607 // If tail is folded by masking, introduce selects between the phi 9608 // and the live-out instruction of each reduction, at the end of the latch. 9609 if (CM.foldTailByMasking()) { 9610 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9611 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9612 if (!PhiR || PhiR->isInLoop()) 9613 continue; 9614 Builder.setInsertPoint(LatchVPBB); 9615 VPValue *Cond = 9616 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9617 VPValue *Red = PhiR->getBackedgeValue(); 9618 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9619 } 9620 } 9621 } 9622 9623 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9624 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9625 VPSlotTracker &SlotTracker) const { 9626 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9627 IG->getInsertPos()->printAsOperand(O, false); 9628 O << ", "; 9629 getAddr()->printAsOperand(O, SlotTracker); 9630 VPValue *Mask = getMask(); 9631 if (Mask) { 9632 O << ", "; 9633 Mask->printAsOperand(O, SlotTracker); 9634 } 9635 9636 unsigned OpIdx = 0; 9637 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9638 if (!IG->getMember(i)) 9639 continue; 9640 if (getNumStoreOperands() > 0) { 9641 O << "\n" << Indent << " store "; 9642 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9643 O << " to index " << i; 9644 } else { 9645 O << "\n" << Indent << " "; 9646 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9647 O << " = load from index " << i; 9648 } 9649 ++OpIdx; 9650 } 9651 } 9652 #endif 9653 9654 void VPWidenCallRecipe::execute(VPTransformState &State) { 9655 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9656 *this, State); 9657 } 9658 9659 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9660 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9661 this, *this, InvariantCond, State); 9662 } 9663 9664 void VPWidenRecipe::execute(VPTransformState &State) { 9665 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9666 } 9667 9668 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9669 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9670 *this, State.UF, State.VF, IsPtrLoopInvariant, 9671 IsIndexLoopInvariant, State); 9672 } 9673 9674 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9675 assert(!State.Instance && "Int or FP induction being replicated."); 9676 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9677 getTruncInst(), getVPValue(0), 9678 getCastValue(), State); 9679 } 9680 9681 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9682 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9683 State); 9684 } 9685 9686 void VPBlendRecipe::execute(VPTransformState &State) { 9687 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9688 // We know that all PHIs in non-header blocks are converted into 9689 // selects, so we don't have to worry about the insertion order and we 9690 // can just use the builder. 9691 // At this point we generate the predication tree. There may be 9692 // duplications since this is a simple recursive scan, but future 9693 // optimizations will clean it up. 9694 9695 unsigned NumIncoming = getNumIncomingValues(); 9696 9697 // Generate a sequence of selects of the form: 9698 // SELECT(Mask3, In3, 9699 // SELECT(Mask2, In2, 9700 // SELECT(Mask1, In1, 9701 // In0))) 9702 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9703 // are essentially undef are taken from In0. 9704 InnerLoopVectorizer::VectorParts Entry(State.UF); 9705 for (unsigned In = 0; In < NumIncoming; ++In) { 9706 for (unsigned Part = 0; Part < State.UF; ++Part) { 9707 // We might have single edge PHIs (blocks) - use an identity 9708 // 'select' for the first PHI operand. 9709 Value *In0 = State.get(getIncomingValue(In), Part); 9710 if (In == 0) 9711 Entry[Part] = In0; // Initialize with the first incoming value. 9712 else { 9713 // Select between the current value and the previous incoming edge 9714 // based on the incoming mask. 9715 Value *Cond = State.get(getMask(In), Part); 9716 Entry[Part] = 9717 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9718 } 9719 } 9720 } 9721 for (unsigned Part = 0; Part < State.UF; ++Part) 9722 State.set(this, Entry[Part], Part); 9723 } 9724 9725 void VPInterleaveRecipe::execute(VPTransformState &State) { 9726 assert(!State.Instance && "Interleave group being replicated."); 9727 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9728 getStoredValues(), getMask()); 9729 } 9730 9731 void VPReductionRecipe::execute(VPTransformState &State) { 9732 assert(!State.Instance && "Reduction being replicated."); 9733 Value *PrevInChain = State.get(getChainOp(), 0); 9734 for (unsigned Part = 0; Part < State.UF; ++Part) { 9735 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9736 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9737 Value *NewVecOp = State.get(getVecOp(), Part); 9738 if (VPValue *Cond = getCondOp()) { 9739 Value *NewCond = State.get(Cond, Part); 9740 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9741 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9742 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9743 Constant *IdenVec = 9744 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9745 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9746 NewVecOp = Select; 9747 } 9748 Value *NewRed; 9749 Value *NextInChain; 9750 if (IsOrdered) { 9751 if (State.VF.isVector()) 9752 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9753 PrevInChain); 9754 else 9755 NewRed = State.Builder.CreateBinOp( 9756 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9757 PrevInChain, NewVecOp); 9758 PrevInChain = NewRed; 9759 } else { 9760 PrevInChain = State.get(getChainOp(), Part); 9761 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9762 } 9763 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9764 NextInChain = 9765 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9766 NewRed, PrevInChain); 9767 } else if (IsOrdered) 9768 NextInChain = NewRed; 9769 else { 9770 NextInChain = State.Builder.CreateBinOp( 9771 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9772 PrevInChain); 9773 } 9774 State.set(this, NextInChain, Part); 9775 } 9776 } 9777 9778 void VPReplicateRecipe::execute(VPTransformState &State) { 9779 if (State.Instance) { // Generate a single instance. 9780 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9781 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9782 *State.Instance, IsPredicated, State); 9783 // Insert scalar instance packing it into a vector. 9784 if (AlsoPack && State.VF.isVector()) { 9785 // If we're constructing lane 0, initialize to start from poison. 9786 if (State.Instance->Lane.isFirstLane()) { 9787 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9788 Value *Poison = PoisonValue::get( 9789 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9790 State.set(this, Poison, State.Instance->Part); 9791 } 9792 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9793 } 9794 return; 9795 } 9796 9797 // Generate scalar instances for all VF lanes of all UF parts, unless the 9798 // instruction is uniform inwhich case generate only the first lane for each 9799 // of the UF parts. 9800 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9801 assert((!State.VF.isScalable() || IsUniform) && 9802 "Can't scalarize a scalable vector"); 9803 for (unsigned Part = 0; Part < State.UF; ++Part) 9804 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9805 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9806 VPIteration(Part, Lane), IsPredicated, 9807 State); 9808 } 9809 9810 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9811 assert(State.Instance && "Branch on Mask works only on single instance."); 9812 9813 unsigned Part = State.Instance->Part; 9814 unsigned Lane = State.Instance->Lane.getKnownLane(); 9815 9816 Value *ConditionBit = nullptr; 9817 VPValue *BlockInMask = getMask(); 9818 if (BlockInMask) { 9819 ConditionBit = State.get(BlockInMask, Part); 9820 if (ConditionBit->getType()->isVectorTy()) 9821 ConditionBit = State.Builder.CreateExtractElement( 9822 ConditionBit, State.Builder.getInt32(Lane)); 9823 } else // Block in mask is all-one. 9824 ConditionBit = State.Builder.getTrue(); 9825 9826 // Replace the temporary unreachable terminator with a new conditional branch, 9827 // whose two destinations will be set later when they are created. 9828 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9829 assert(isa<UnreachableInst>(CurrentTerminator) && 9830 "Expected to replace unreachable terminator with conditional branch."); 9831 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9832 CondBr->setSuccessor(0, nullptr); 9833 ReplaceInstWithInst(CurrentTerminator, CondBr); 9834 } 9835 9836 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9837 assert(State.Instance && "Predicated instruction PHI works per instance."); 9838 Instruction *ScalarPredInst = 9839 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9840 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9841 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9842 assert(PredicatingBB && "Predicated block has no single predecessor."); 9843 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9844 "operand must be VPReplicateRecipe"); 9845 9846 // By current pack/unpack logic we need to generate only a single phi node: if 9847 // a vector value for the predicated instruction exists at this point it means 9848 // the instruction has vector users only, and a phi for the vector value is 9849 // needed. In this case the recipe of the predicated instruction is marked to 9850 // also do that packing, thereby "hoisting" the insert-element sequence. 9851 // Otherwise, a phi node for the scalar value is needed. 9852 unsigned Part = State.Instance->Part; 9853 if (State.hasVectorValue(getOperand(0), Part)) { 9854 Value *VectorValue = State.get(getOperand(0), Part); 9855 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9856 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9857 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9858 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9859 if (State.hasVectorValue(this, Part)) 9860 State.reset(this, VPhi, Part); 9861 else 9862 State.set(this, VPhi, Part); 9863 // NOTE: Currently we need to update the value of the operand, so the next 9864 // predicated iteration inserts its generated value in the correct vector. 9865 State.reset(getOperand(0), VPhi, Part); 9866 } else { 9867 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9868 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9869 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9870 PredicatingBB); 9871 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9872 if (State.hasScalarValue(this, *State.Instance)) 9873 State.reset(this, Phi, *State.Instance); 9874 else 9875 State.set(this, Phi, *State.Instance); 9876 // NOTE: Currently we need to update the value of the operand, so the next 9877 // predicated iteration inserts its generated value in the correct vector. 9878 State.reset(getOperand(0), Phi, *State.Instance); 9879 } 9880 } 9881 9882 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9883 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9884 State.ILV->vectorizeMemoryInstruction( 9885 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9886 StoredValue, getMask()); 9887 } 9888 9889 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9890 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9891 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9892 // for predication. 9893 static ScalarEpilogueLowering getScalarEpilogueLowering( 9894 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9895 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9896 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9897 LoopVectorizationLegality &LVL) { 9898 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9899 // don't look at hints or options, and don't request a scalar epilogue. 9900 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9901 // LoopAccessInfo (due to code dependency and not being able to reliably get 9902 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9903 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9904 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9905 // back to the old way and vectorize with versioning when forced. See D81345.) 9906 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9907 PGSOQueryType::IRPass) && 9908 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9909 return CM_ScalarEpilogueNotAllowedOptSize; 9910 9911 // 2) If set, obey the directives 9912 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9913 switch (PreferPredicateOverEpilogue) { 9914 case PreferPredicateTy::ScalarEpilogue: 9915 return CM_ScalarEpilogueAllowed; 9916 case PreferPredicateTy::PredicateElseScalarEpilogue: 9917 return CM_ScalarEpilogueNotNeededUsePredicate; 9918 case PreferPredicateTy::PredicateOrDontVectorize: 9919 return CM_ScalarEpilogueNotAllowedUsePredicate; 9920 }; 9921 } 9922 9923 // 3) If set, obey the hints 9924 switch (Hints.getPredicate()) { 9925 case LoopVectorizeHints::FK_Enabled: 9926 return CM_ScalarEpilogueNotNeededUsePredicate; 9927 case LoopVectorizeHints::FK_Disabled: 9928 return CM_ScalarEpilogueAllowed; 9929 }; 9930 9931 // 4) if the TTI hook indicates this is profitable, request predication. 9932 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9933 LVL.getLAI())) 9934 return CM_ScalarEpilogueNotNeededUsePredicate; 9935 9936 return CM_ScalarEpilogueAllowed; 9937 } 9938 9939 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9940 // If Values have been set for this Def return the one relevant for \p Part. 9941 if (hasVectorValue(Def, Part)) 9942 return Data.PerPartOutput[Def][Part]; 9943 9944 if (!hasScalarValue(Def, {Part, 0})) { 9945 Value *IRV = Def->getLiveInIRValue(); 9946 Value *B = ILV->getBroadcastInstrs(IRV); 9947 set(Def, B, Part); 9948 return B; 9949 } 9950 9951 Value *ScalarValue = get(Def, {Part, 0}); 9952 // If we aren't vectorizing, we can just copy the scalar map values over 9953 // to the vector map. 9954 if (VF.isScalar()) { 9955 set(Def, ScalarValue, Part); 9956 return ScalarValue; 9957 } 9958 9959 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9960 bool IsUniform = RepR && RepR->isUniform(); 9961 9962 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9963 // Check if there is a scalar value for the selected lane. 9964 if (!hasScalarValue(Def, {Part, LastLane})) { 9965 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9966 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9967 "unexpected recipe found to be invariant"); 9968 IsUniform = true; 9969 LastLane = 0; 9970 } 9971 9972 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9973 // Set the insert point after the last scalarized instruction or after the 9974 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9975 // will directly follow the scalar definitions. 9976 auto OldIP = Builder.saveIP(); 9977 auto NewIP = 9978 isa<PHINode>(LastInst) 9979 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9980 : std::next(BasicBlock::iterator(LastInst)); 9981 Builder.SetInsertPoint(&*NewIP); 9982 9983 // However, if we are vectorizing, we need to construct the vector values. 9984 // If the value is known to be uniform after vectorization, we can just 9985 // broadcast the scalar value corresponding to lane zero for each unroll 9986 // iteration. Otherwise, we construct the vector values using 9987 // insertelement instructions. Since the resulting vectors are stored in 9988 // State, we will only generate the insertelements once. 9989 Value *VectorValue = nullptr; 9990 if (IsUniform) { 9991 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9992 set(Def, VectorValue, Part); 9993 } else { 9994 // Initialize packing with insertelements to start from undef. 9995 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9996 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9997 set(Def, Undef, Part); 9998 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9999 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10000 VectorValue = get(Def, Part); 10001 } 10002 Builder.restoreIP(OldIP); 10003 return VectorValue; 10004 } 10005 10006 // Process the loop in the VPlan-native vectorization path. This path builds 10007 // VPlan upfront in the vectorization pipeline, which allows to apply 10008 // VPlan-to-VPlan transformations from the very beginning without modifying the 10009 // input LLVM IR. 10010 static bool processLoopInVPlanNativePath( 10011 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10012 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10013 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10014 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10015 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10016 LoopVectorizationRequirements &Requirements) { 10017 10018 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10019 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10020 return false; 10021 } 10022 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10023 Function *F = L->getHeader()->getParent(); 10024 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10025 10026 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10027 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10028 10029 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10030 &Hints, IAI); 10031 // Use the planner for outer loop vectorization. 10032 // TODO: CM is not used at this point inside the planner. Turn CM into an 10033 // optional argument if we don't need it in the future. 10034 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10035 Requirements, ORE); 10036 10037 // Get user vectorization factor. 10038 ElementCount UserVF = Hints.getWidth(); 10039 10040 CM.collectElementTypesForWidening(); 10041 10042 // Plan how to best vectorize, return the best VF and its cost. 10043 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10044 10045 // If we are stress testing VPlan builds, do not attempt to generate vector 10046 // code. Masked vector code generation support will follow soon. 10047 // Also, do not attempt to vectorize if no vector code will be produced. 10048 if (VPlanBuildStressTest || EnableVPlanPredication || 10049 VectorizationFactor::Disabled() == VF) 10050 return false; 10051 10052 LVP.setBestPlan(VF.Width, 1); 10053 10054 { 10055 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10056 F->getParent()->getDataLayout()); 10057 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10058 &CM, BFI, PSI, Checks); 10059 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10060 << L->getHeader()->getParent()->getName() << "\"\n"); 10061 LVP.executePlan(LB, DT); 10062 } 10063 10064 // Mark the loop as already vectorized to avoid vectorizing again. 10065 Hints.setAlreadyVectorized(); 10066 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10067 return true; 10068 } 10069 10070 // Emit a remark if there are stores to floats that required a floating point 10071 // extension. If the vectorized loop was generated with floating point there 10072 // will be a performance penalty from the conversion overhead and the change in 10073 // the vector width. 10074 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10075 SmallVector<Instruction *, 4> Worklist; 10076 for (BasicBlock *BB : L->getBlocks()) { 10077 for (Instruction &Inst : *BB) { 10078 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10079 if (S->getValueOperand()->getType()->isFloatTy()) 10080 Worklist.push_back(S); 10081 } 10082 } 10083 } 10084 10085 // Traverse the floating point stores upwards searching, for floating point 10086 // conversions. 10087 SmallPtrSet<const Instruction *, 4> Visited; 10088 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10089 while (!Worklist.empty()) { 10090 auto *I = Worklist.pop_back_val(); 10091 if (!L->contains(I)) 10092 continue; 10093 if (!Visited.insert(I).second) 10094 continue; 10095 10096 // Emit a remark if the floating point store required a floating 10097 // point conversion. 10098 // TODO: More work could be done to identify the root cause such as a 10099 // constant or a function return type and point the user to it. 10100 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10101 ORE->emit([&]() { 10102 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10103 I->getDebugLoc(), L->getHeader()) 10104 << "floating point conversion changes vector width. " 10105 << "Mixed floating point precision requires an up/down " 10106 << "cast that will negatively impact performance."; 10107 }); 10108 10109 for (Use &Op : I->operands()) 10110 if (auto *OpI = dyn_cast<Instruction>(Op)) 10111 Worklist.push_back(OpI); 10112 } 10113 } 10114 10115 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10116 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10117 !EnableLoopInterleaving), 10118 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10119 !EnableLoopVectorization) {} 10120 10121 bool LoopVectorizePass::processLoop(Loop *L) { 10122 assert((EnableVPlanNativePath || L->isInnermost()) && 10123 "VPlan-native path is not enabled. Only process inner loops."); 10124 10125 #ifndef NDEBUG 10126 const std::string DebugLocStr = getDebugLocString(L); 10127 #endif /* NDEBUG */ 10128 10129 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10130 << L->getHeader()->getParent()->getName() << "\" from " 10131 << DebugLocStr << "\n"); 10132 10133 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10134 10135 LLVM_DEBUG( 10136 dbgs() << "LV: Loop hints:" 10137 << " force=" 10138 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10139 ? "disabled" 10140 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10141 ? "enabled" 10142 : "?")) 10143 << " width=" << Hints.getWidth() 10144 << " interleave=" << Hints.getInterleave() << "\n"); 10145 10146 // Function containing loop 10147 Function *F = L->getHeader()->getParent(); 10148 10149 // Looking at the diagnostic output is the only way to determine if a loop 10150 // was vectorized (other than looking at the IR or machine code), so it 10151 // is important to generate an optimization remark for each loop. Most of 10152 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10153 // generated as OptimizationRemark and OptimizationRemarkMissed are 10154 // less verbose reporting vectorized loops and unvectorized loops that may 10155 // benefit from vectorization, respectively. 10156 10157 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10158 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10159 return false; 10160 } 10161 10162 PredicatedScalarEvolution PSE(*SE, *L); 10163 10164 // Check if it is legal to vectorize the loop. 10165 LoopVectorizationRequirements Requirements; 10166 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10167 &Requirements, &Hints, DB, AC, BFI, PSI); 10168 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10169 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10170 Hints.emitRemarkWithHints(); 10171 return false; 10172 } 10173 10174 // Check the function attributes and profiles to find out if this function 10175 // should be optimized for size. 10176 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10177 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10178 10179 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10180 // here. They may require CFG and instruction level transformations before 10181 // even evaluating whether vectorization is profitable. Since we cannot modify 10182 // the incoming IR, we need to build VPlan upfront in the vectorization 10183 // pipeline. 10184 if (!L->isInnermost()) 10185 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10186 ORE, BFI, PSI, Hints, Requirements); 10187 10188 assert(L->isInnermost() && "Inner loop expected."); 10189 10190 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10191 // count by optimizing for size, to minimize overheads. 10192 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10193 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10194 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10195 << "This loop is worth vectorizing only if no scalar " 10196 << "iteration overheads are incurred."); 10197 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10198 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10199 else { 10200 LLVM_DEBUG(dbgs() << "\n"); 10201 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10202 } 10203 } 10204 10205 // Check the function attributes to see if implicit floats are allowed. 10206 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10207 // an integer loop and the vector instructions selected are purely integer 10208 // vector instructions? 10209 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10210 reportVectorizationFailure( 10211 "Can't vectorize when the NoImplicitFloat attribute is used", 10212 "loop not vectorized due to NoImplicitFloat attribute", 10213 "NoImplicitFloat", ORE, L); 10214 Hints.emitRemarkWithHints(); 10215 return false; 10216 } 10217 10218 // Check if the target supports potentially unsafe FP vectorization. 10219 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10220 // for the target we're vectorizing for, to make sure none of the 10221 // additional fp-math flags can help. 10222 if (Hints.isPotentiallyUnsafe() && 10223 TTI->isFPVectorizationPotentiallyUnsafe()) { 10224 reportVectorizationFailure( 10225 "Potentially unsafe FP op prevents vectorization", 10226 "loop not vectorized due to unsafe FP support.", 10227 "UnsafeFP", ORE, L); 10228 Hints.emitRemarkWithHints(); 10229 return false; 10230 } 10231 10232 bool AllowOrderedReductions; 10233 // If the flag is set, use that instead and override the TTI behaviour. 10234 if (ForceOrderedReductions.getNumOccurrences() > 0) 10235 AllowOrderedReductions = ForceOrderedReductions; 10236 else 10237 AllowOrderedReductions = TTI->enableOrderedReductions(); 10238 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10239 ORE->emit([&]() { 10240 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10241 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10242 ExactFPMathInst->getDebugLoc(), 10243 ExactFPMathInst->getParent()) 10244 << "loop not vectorized: cannot prove it is safe to reorder " 10245 "floating-point operations"; 10246 }); 10247 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10248 "reorder floating-point operations\n"); 10249 Hints.emitRemarkWithHints(); 10250 return false; 10251 } 10252 10253 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10254 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10255 10256 // If an override option has been passed in for interleaved accesses, use it. 10257 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10258 UseInterleaved = EnableInterleavedMemAccesses; 10259 10260 // Analyze interleaved memory accesses. 10261 if (UseInterleaved) { 10262 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10263 } 10264 10265 // Use the cost model. 10266 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10267 F, &Hints, IAI); 10268 CM.collectValuesToIgnore(); 10269 CM.collectElementTypesForWidening(); 10270 10271 // Use the planner for vectorization. 10272 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10273 Requirements, ORE); 10274 10275 // Get user vectorization factor and interleave count. 10276 ElementCount UserVF = Hints.getWidth(); 10277 unsigned UserIC = Hints.getInterleave(); 10278 10279 // Plan how to best vectorize, return the best VF and its cost. 10280 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10281 10282 VectorizationFactor VF = VectorizationFactor::Disabled(); 10283 unsigned IC = 1; 10284 10285 if (MaybeVF) { 10286 VF = *MaybeVF; 10287 // Select the interleave count. 10288 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10289 } 10290 10291 // Identify the diagnostic messages that should be produced. 10292 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10293 bool VectorizeLoop = true, InterleaveLoop = true; 10294 if (VF.Width.isScalar()) { 10295 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10296 VecDiagMsg = std::make_pair( 10297 "VectorizationNotBeneficial", 10298 "the cost-model indicates that vectorization is not beneficial"); 10299 VectorizeLoop = false; 10300 } 10301 10302 if (!MaybeVF && UserIC > 1) { 10303 // Tell the user interleaving was avoided up-front, despite being explicitly 10304 // requested. 10305 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10306 "interleaving should be avoided up front\n"); 10307 IntDiagMsg = std::make_pair( 10308 "InterleavingAvoided", 10309 "Ignoring UserIC, because interleaving was avoided up front"); 10310 InterleaveLoop = false; 10311 } else if (IC == 1 && UserIC <= 1) { 10312 // Tell the user interleaving is not beneficial. 10313 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10314 IntDiagMsg = std::make_pair( 10315 "InterleavingNotBeneficial", 10316 "the cost-model indicates that interleaving is not beneficial"); 10317 InterleaveLoop = false; 10318 if (UserIC == 1) { 10319 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10320 IntDiagMsg.second += 10321 " and is explicitly disabled or interleave count is set to 1"; 10322 } 10323 } else if (IC > 1 && UserIC == 1) { 10324 // Tell the user interleaving is beneficial, but it explicitly disabled. 10325 LLVM_DEBUG( 10326 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10327 IntDiagMsg = std::make_pair( 10328 "InterleavingBeneficialButDisabled", 10329 "the cost-model indicates that interleaving is beneficial " 10330 "but is explicitly disabled or interleave count is set to 1"); 10331 InterleaveLoop = false; 10332 } 10333 10334 // Override IC if user provided an interleave count. 10335 IC = UserIC > 0 ? UserIC : IC; 10336 10337 // Emit diagnostic messages, if any. 10338 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10339 if (!VectorizeLoop && !InterleaveLoop) { 10340 // Do not vectorize or interleaving the loop. 10341 ORE->emit([&]() { 10342 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10343 L->getStartLoc(), L->getHeader()) 10344 << VecDiagMsg.second; 10345 }); 10346 ORE->emit([&]() { 10347 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10348 L->getStartLoc(), L->getHeader()) 10349 << IntDiagMsg.second; 10350 }); 10351 return false; 10352 } else if (!VectorizeLoop && InterleaveLoop) { 10353 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10354 ORE->emit([&]() { 10355 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10356 L->getStartLoc(), L->getHeader()) 10357 << VecDiagMsg.second; 10358 }); 10359 } else if (VectorizeLoop && !InterleaveLoop) { 10360 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10361 << ") in " << DebugLocStr << '\n'); 10362 ORE->emit([&]() { 10363 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10364 L->getStartLoc(), L->getHeader()) 10365 << IntDiagMsg.second; 10366 }); 10367 } else if (VectorizeLoop && InterleaveLoop) { 10368 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10369 << ") in " << DebugLocStr << '\n'); 10370 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10371 } 10372 10373 bool DisableRuntimeUnroll = false; 10374 MDNode *OrigLoopID = L->getLoopID(); 10375 { 10376 // Optimistically generate runtime checks. Drop them if they turn out to not 10377 // be profitable. Limit the scope of Checks, so the cleanup happens 10378 // immediately after vector codegeneration is done. 10379 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10380 F->getParent()->getDataLayout()); 10381 if (!VF.Width.isScalar() || IC > 1) 10382 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10383 LVP.setBestPlan(VF.Width, IC); 10384 10385 using namespace ore; 10386 if (!VectorizeLoop) { 10387 assert(IC > 1 && "interleave count should not be 1 or 0"); 10388 // If we decided that it is not legal to vectorize the loop, then 10389 // interleave it. 10390 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10391 &CM, BFI, PSI, Checks); 10392 LVP.executePlan(Unroller, DT); 10393 10394 ORE->emit([&]() { 10395 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10396 L->getHeader()) 10397 << "interleaved loop (interleaved count: " 10398 << NV("InterleaveCount", IC) << ")"; 10399 }); 10400 } else { 10401 // If we decided that it is *legal* to vectorize the loop, then do it. 10402 10403 // Consider vectorizing the epilogue too if it's profitable. 10404 VectorizationFactor EpilogueVF = 10405 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10406 if (EpilogueVF.Width.isVector()) { 10407 10408 // The first pass vectorizes the main loop and creates a scalar epilogue 10409 // to be vectorized by executing the plan (potentially with a different 10410 // factor) again shortly afterwards. 10411 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10412 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10413 EPI, &LVL, &CM, BFI, PSI, Checks); 10414 10415 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10416 LVP.executePlan(MainILV, DT); 10417 ++LoopsVectorized; 10418 10419 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10420 formLCSSARecursively(*L, *DT, LI, SE); 10421 10422 // Second pass vectorizes the epilogue and adjusts the control flow 10423 // edges from the first pass. 10424 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10425 EPI.MainLoopVF = EPI.EpilogueVF; 10426 EPI.MainLoopUF = EPI.EpilogueUF; 10427 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10428 ORE, EPI, &LVL, &CM, BFI, PSI, 10429 Checks); 10430 LVP.executePlan(EpilogILV, DT); 10431 ++LoopsEpilogueVectorized; 10432 10433 if (!MainILV.areSafetyChecksAdded()) 10434 DisableRuntimeUnroll = true; 10435 } else { 10436 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10437 &LVL, &CM, BFI, PSI, Checks); 10438 LVP.executePlan(LB, DT); 10439 ++LoopsVectorized; 10440 10441 // Add metadata to disable runtime unrolling a scalar loop when there 10442 // are no runtime checks about strides and memory. A scalar loop that is 10443 // rarely used is not worth unrolling. 10444 if (!LB.areSafetyChecksAdded()) 10445 DisableRuntimeUnroll = true; 10446 } 10447 // Report the vectorization decision. 10448 ORE->emit([&]() { 10449 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10450 L->getHeader()) 10451 << "vectorized loop (vectorization width: " 10452 << NV("VectorizationFactor", VF.Width) 10453 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10454 }); 10455 } 10456 10457 if (ORE->allowExtraAnalysis(LV_NAME)) 10458 checkMixedPrecision(L, ORE); 10459 } 10460 10461 Optional<MDNode *> RemainderLoopID = 10462 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10463 LLVMLoopVectorizeFollowupEpilogue}); 10464 if (RemainderLoopID.hasValue()) { 10465 L->setLoopID(RemainderLoopID.getValue()); 10466 } else { 10467 if (DisableRuntimeUnroll) 10468 AddRuntimeUnrollDisableMetaData(L); 10469 10470 // Mark the loop as already vectorized to avoid vectorizing again. 10471 Hints.setAlreadyVectorized(); 10472 } 10473 10474 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10475 return true; 10476 } 10477 10478 LoopVectorizeResult LoopVectorizePass::runImpl( 10479 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10480 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10481 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10482 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10483 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10484 SE = &SE_; 10485 LI = &LI_; 10486 TTI = &TTI_; 10487 DT = &DT_; 10488 BFI = &BFI_; 10489 TLI = TLI_; 10490 AA = &AA_; 10491 AC = &AC_; 10492 GetLAA = &GetLAA_; 10493 DB = &DB_; 10494 ORE = &ORE_; 10495 PSI = PSI_; 10496 10497 // Don't attempt if 10498 // 1. the target claims to have no vector registers, and 10499 // 2. interleaving won't help ILP. 10500 // 10501 // The second condition is necessary because, even if the target has no 10502 // vector registers, loop vectorization may still enable scalar 10503 // interleaving. 10504 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10505 TTI->getMaxInterleaveFactor(1) < 2) 10506 return LoopVectorizeResult(false, false); 10507 10508 bool Changed = false, CFGChanged = false; 10509 10510 // The vectorizer requires loops to be in simplified form. 10511 // Since simplification may add new inner loops, it has to run before the 10512 // legality and profitability checks. This means running the loop vectorizer 10513 // will simplify all loops, regardless of whether anything end up being 10514 // vectorized. 10515 for (auto &L : *LI) 10516 Changed |= CFGChanged |= 10517 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10518 10519 // Build up a worklist of inner-loops to vectorize. This is necessary as 10520 // the act of vectorizing or partially unrolling a loop creates new loops 10521 // and can invalidate iterators across the loops. 10522 SmallVector<Loop *, 8> Worklist; 10523 10524 for (Loop *L : *LI) 10525 collectSupportedLoops(*L, LI, ORE, Worklist); 10526 10527 LoopsAnalyzed += Worklist.size(); 10528 10529 // Now walk the identified inner loops. 10530 while (!Worklist.empty()) { 10531 Loop *L = Worklist.pop_back_val(); 10532 10533 // For the inner loops we actually process, form LCSSA to simplify the 10534 // transform. 10535 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10536 10537 Changed |= CFGChanged |= processLoop(L); 10538 } 10539 10540 // Process each loop nest in the function. 10541 return LoopVectorizeResult(Changed, CFGChanged); 10542 } 10543 10544 PreservedAnalyses LoopVectorizePass::run(Function &F, 10545 FunctionAnalysisManager &AM) { 10546 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10547 auto &LI = AM.getResult<LoopAnalysis>(F); 10548 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10549 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10550 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10551 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10552 auto &AA = AM.getResult<AAManager>(F); 10553 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10554 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10555 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10556 10557 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10558 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10559 [&](Loop &L) -> const LoopAccessInfo & { 10560 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10561 TLI, TTI, nullptr, nullptr}; 10562 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10563 }; 10564 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10565 ProfileSummaryInfo *PSI = 10566 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10567 LoopVectorizeResult Result = 10568 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10569 if (!Result.MadeAnyChange) 10570 return PreservedAnalyses::all(); 10571 PreservedAnalyses PA; 10572 10573 // We currently do not preserve loopinfo/dominator analyses with outer loop 10574 // vectorization. Until this is addressed, mark these analyses as preserved 10575 // only for non-VPlan-native path. 10576 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10577 if (!EnableVPlanNativePath) { 10578 PA.preserve<LoopAnalysis>(); 10579 PA.preserve<DominatorTreeAnalysis>(); 10580 } 10581 if (!Result.MadeCFGChange) 10582 PA.preserveSet<CFGAnalyses>(); 10583 return PA; 10584 } 10585 10586 void LoopVectorizePass::printPipeline( 10587 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10588 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10589 OS, MapClassName2PassName); 10590 10591 OS << "<"; 10592 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10593 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10594 OS << ">"; 10595 } 10596