1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/PatternMatch.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/InstructionCost.h" 135 #include "llvm/Support/MathExtras.h" 136 #include "llvm/Support/raw_ostream.h" 137 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 138 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <cstdlib> 149 #include <functional> 150 #include <iterator> 151 #include <limits> 152 #include <memory> 153 #include <string> 154 #include <tuple> 155 #include <utility> 156 157 using namespace llvm; 158 159 #define LV_NAME "loop-vectorize" 160 #define DEBUG_TYPE LV_NAME 161 162 #ifndef NDEBUG 163 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 164 #endif 165 166 /// @{ 167 /// Metadata attribute names 168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 169 const char LLVMLoopVectorizeFollowupVectorized[] = 170 "llvm.loop.vectorize.followup_vectorized"; 171 const char LLVMLoopVectorizeFollowupEpilogue[] = 172 "llvm.loop.vectorize.followup_epilogue"; 173 /// @} 174 175 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 178 179 static cl::opt<bool> EnableEpilogueVectorization( 180 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 181 cl::desc("Enable vectorization of epilogue loops.")); 182 183 static cl::opt<unsigned> EpilogueVectorizationForceVF( 184 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 185 cl::desc("When epilogue vectorization is enabled, and a value greater than " 186 "1 is specified, forces the given VF for all applicable epilogue " 187 "loops.")); 188 189 static cl::opt<unsigned> EpilogueVectorizationMinVF( 190 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 191 cl::desc("Only loops with vectorization factor equal to or larger than " 192 "the specified value are considered for epilogue vectorization.")); 193 194 /// Loops with a known constant trip count below this number are vectorized only 195 /// if no scalar iteration overheads are incurred. 196 static cl::opt<unsigned> TinyTripCountVectorThreshold( 197 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 198 cl::desc("Loops with a constant trip count that is smaller than this " 199 "value are vectorized only if no scalar iteration overheads " 200 "are incurred.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 208 // that predication is preferred, and this lists all options. I.e., the 209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 210 // and predicate the instructions accordingly. If tail-folding fails, there are 211 // different fallback strategies depending on these values: 212 namespace PreferPredicateTy { 213 enum Option { 214 ScalarEpilogue = 0, 215 PredicateElseScalarEpilogue, 216 PredicateOrDontVectorize 217 }; 218 } // namespace PreferPredicateTy 219 220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 221 "prefer-predicate-over-epilogue", 222 cl::init(PreferPredicateTy::ScalarEpilogue), 223 cl::Hidden, 224 cl::desc("Tail-folding and predication preferences over creating a scalar " 225 "epilogue loop."), 226 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 227 "scalar-epilogue", 228 "Don't tail-predicate loops, create scalar epilogue"), 229 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 230 "predicate-else-scalar-epilogue", 231 "prefer tail-folding, create scalar epilogue if tail " 232 "folding fails."), 233 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 234 "predicate-dont-vectorize", 235 "prefers tail-folding, don't attempt vectorization if " 236 "tail-folding fails."))); 237 238 static cl::opt<bool> MaximizeBandwidth( 239 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 240 cl::desc("Maximize bandwidth when selecting vectorization factor which " 241 "will be determined by the smallest type in loop.")); 242 243 static cl::opt<bool> EnableInterleavedMemAccesses( 244 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 246 247 /// An interleave-group may need masking if it resides in a block that needs 248 /// predication, or in order to mask away gaps. 249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 250 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 251 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 252 253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 254 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 255 cl::desc("We don't interleave loops with a estimated constant trip count " 256 "below this number")); 257 258 static cl::opt<unsigned> ForceTargetNumScalarRegs( 259 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of scalar registers.")); 261 262 static cl::opt<unsigned> ForceTargetNumVectorRegs( 263 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's number of vector registers.")); 265 266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 267 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 268 cl::desc("A flag that overrides the target's max interleave factor for " 269 "scalar loops.")); 270 271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 272 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 273 cl::desc("A flag that overrides the target's max interleave factor for " 274 "vectorized loops.")); 275 276 static cl::opt<unsigned> ForceTargetInstructionCost( 277 "force-target-instruction-cost", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's expected cost for " 279 "an instruction to a single constant value. Mostly " 280 "useful for getting consistent testing.")); 281 282 static cl::opt<bool> ForceTargetSupportsScalableVectors( 283 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 284 cl::desc( 285 "Pretend that scalable vectors are supported, even if the target does " 286 "not support them. This flag should only be used for testing.")); 287 288 static cl::opt<unsigned> SmallLoopCost( 289 "small-loop-cost", cl::init(20), cl::Hidden, 290 cl::desc( 291 "The cost of a loop that is considered 'small' by the interleaver.")); 292 293 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 294 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 295 cl::desc("Enable the use of the block frequency analysis to access PGO " 296 "heuristics minimizing code growth in cold regions and being more " 297 "aggressive in hot regions.")); 298 299 // Runtime interleave loops for load/store throughput. 300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 301 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 302 cl::desc( 303 "Enable runtime interleaving until load/store ports are saturated")); 304 305 /// Interleave small loops with scalar reductions. 306 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 307 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 308 cl::desc("Enable interleaving for loops with small iteration counts that " 309 "contain scalar reductions to expose ILP.")); 310 311 /// The number of stores in a loop that are allowed to need predication. 312 static cl::opt<unsigned> NumberOfStoresToPredicate( 313 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 314 cl::desc("Max number of stores to be predicated behind an if.")); 315 316 static cl::opt<bool> EnableIndVarRegisterHeur( 317 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 318 cl::desc("Count the induction variable only once when interleaving")); 319 320 static cl::opt<bool> EnableCondStoresVectorization( 321 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 322 cl::desc("Enable if predication of stores during vectorization.")); 323 324 static cl::opt<unsigned> MaxNestedScalarReductionIC( 325 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 326 cl::desc("The maximum interleave count to use when interleaving a scalar " 327 "reduction in a nested loop.")); 328 329 static cl::opt<bool> 330 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 331 cl::Hidden, 332 cl::desc("Prefer in-loop vector reductions, " 333 "overriding the targets preference.")); 334 335 cl::opt<bool> EnableStrictReductions( 336 "enable-strict-reductions", cl::init(false), cl::Hidden, 337 cl::desc("Enable the vectorisation of loops with in-order (strict) " 338 "FP reductions")); 339 340 static cl::opt<bool> PreferPredicatedReductionSelect( 341 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 342 cl::desc( 343 "Prefer predicating a reduction operation over an after loop select.")); 344 345 cl::opt<bool> EnableVPlanNativePath( 346 "enable-vplan-native-path", cl::init(false), cl::Hidden, 347 cl::desc("Enable VPlan-native vectorization path with " 348 "support for outer loop vectorization.")); 349 350 // FIXME: Remove this switch once we have divergence analysis. Currently we 351 // assume divergent non-backedge branches when this switch is true. 352 cl::opt<bool> EnableVPlanPredication( 353 "enable-vplan-predication", cl::init(false), cl::Hidden, 354 cl::desc("Enable VPlan-native vectorization path predicator with " 355 "support for outer loop vectorization.")); 356 357 // This flag enables the stress testing of the VPlan H-CFG construction in the 358 // VPlan-native vectorization path. It must be used in conjuction with 359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 360 // verification of the H-CFGs built. 361 static cl::opt<bool> VPlanBuildStressTest( 362 "vplan-build-stress-test", cl::init(false), cl::Hidden, 363 cl::desc( 364 "Build VPlan for every supported loop nest in the function and bail " 365 "out right after the build (stress test the VPlan H-CFG construction " 366 "in the VPlan-native vectorization path).")); 367 368 cl::opt<bool> llvm::EnableLoopInterleaving( 369 "interleave-loops", cl::init(true), cl::Hidden, 370 cl::desc("Enable loop interleaving in Loop vectorization passes")); 371 cl::opt<bool> llvm::EnableLoopVectorization( 372 "vectorize-loops", cl::init(true), cl::Hidden, 373 cl::desc("Run the Loop vectorization passes")); 374 375 cl::opt<bool> PrintVPlansInDotFormat( 376 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 377 cl::desc("Use dot format instead of plain text when dumping VPlans")); 378 379 /// A helper function that returns true if the given type is irregular. The 380 /// type is irregular if its allocated size doesn't equal the store size of an 381 /// element of the corresponding vector type. 382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 383 // Determine if an array of N elements of type Ty is "bitcast compatible" 384 // with a <N x Ty> vector. 385 // This is only true if there is no padding between the array elements. 386 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 387 } 388 389 /// A helper function that returns the reciprocal of the block probability of 390 /// predicated blocks. If we return X, we are assuming the predicated block 391 /// will execute once for every X iterations of the loop header. 392 /// 393 /// TODO: We should use actual block probability here, if available. Currently, 394 /// we always assume predicated blocks have a 50% chance of executing. 395 static unsigned getReciprocalPredBlockProb() { return 2; } 396 397 /// A helper function that returns an integer or floating-point constant with 398 /// value C. 399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 400 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 401 : ConstantFP::get(Ty, C); 402 } 403 404 /// Returns "best known" trip count for the specified loop \p L as defined by 405 /// the following procedure: 406 /// 1) Returns exact trip count if it is known. 407 /// 2) Returns expected trip count according to profile data if any. 408 /// 3) Returns upper bound estimate if it is known. 409 /// 4) Returns None if all of the above failed. 410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 411 // Check if exact trip count is known. 412 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 413 return ExpectedTC; 414 415 // Check if there is an expected trip count available from profile data. 416 if (LoopVectorizeWithBlockFrequency) 417 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 418 return EstimatedTC; 419 420 // Check if upper bound estimate is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 422 return ExpectedTC; 423 424 return None; 425 } 426 427 // Forward declare GeneratedRTChecks. 428 class GeneratedRTChecks; 429 430 namespace llvm { 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop. 473 /// In the case of epilogue vectorization, this function is overriden to 474 /// handle the more complex control flow around the loops. 475 virtual BasicBlock *createVectorizedLoopSkeleton(); 476 477 /// Widen a single instruction within the innermost loop. 478 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 479 VPTransformState &State); 480 481 /// Widen a single call instruction within the innermost loop. 482 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 483 VPTransformState &State); 484 485 /// Widen a single select instruction within the innermost loop. 486 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 487 bool InvariantCond, VPTransformState &State); 488 489 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 490 void fixVectorizedLoop(VPTransformState &State); 491 492 // Return true if any runtime check is added. 493 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 494 495 /// A type for vectorized values in the new loop. Each value from the 496 /// original loop, when vectorized, is represented by UF vector values in the 497 /// new unrolled loop, where UF is the unroll factor. 498 using VectorParts = SmallVector<Value *, 2>; 499 500 /// Vectorize a single GetElementPtrInst based on information gathered and 501 /// decisions taken during planning. 502 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 503 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 504 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 505 506 /// Vectorize a single first-order recurrence or pointer induction PHINode in 507 /// a block. This method handles the induction variable canonicalization. It 508 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 509 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 510 VPTransformState &State); 511 512 /// A helper function to scalarize a single Instruction in the innermost loop. 513 /// Generates a sequence of scalar instances for each lane between \p MinLane 514 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 515 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 516 /// Instr's operands. 517 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 518 const VPIteration &Instance, bool IfPredicateInstr, 519 VPTransformState &State); 520 521 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 522 /// is provided, the integer induction variable will first be truncated to 523 /// the corresponding type. 524 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 525 VPValue *Def, VPValue *CastDef, 526 VPTransformState &State); 527 528 /// Construct the vector value of a scalarized value \p V one lane at a time. 529 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 530 VPTransformState &State); 531 532 /// Try to vectorize interleaved access group \p Group with the base address 533 /// given in \p Addr, optionally masking the vector operations if \p 534 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 535 /// values in the vectorized loop. 536 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 537 ArrayRef<VPValue *> VPDefs, 538 VPTransformState &State, VPValue *Addr, 539 ArrayRef<VPValue *> StoredValues, 540 VPValue *BlockInMask = nullptr); 541 542 /// Vectorize Load and Store instructions with the base address given in \p 543 /// Addr, optionally masking the vector operations if \p BlockInMask is 544 /// non-null. Use \p State to translate given VPValues to IR values in the 545 /// vectorized loop. 546 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 547 VPValue *Def, VPValue *Addr, 548 VPValue *StoredValue, VPValue *BlockInMask); 549 550 /// Set the debug location in the builder \p Ptr using the debug location in 551 /// \p V. If \p Ptr is None then it uses the class member's Builder. 552 void setDebugLocFromInst(const Value *V, 553 Optional<IRBuilder<> *> CustomBuilder = None); 554 555 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 556 void fixNonInductionPHIs(VPTransformState &State); 557 558 /// Returns true if the reordering of FP operations is not allowed, but we are 559 /// able to vectorize with strict in-order reductions for the given RdxDesc. 560 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 561 562 /// Create a broadcast instruction. This method generates a broadcast 563 /// instruction (shuffle) for loop invariant values and for the induction 564 /// value. If this is the induction variable then we extend it to N, N+1, ... 565 /// this is needed because each iteration in the loop corresponds to a SIMD 566 /// element. 567 virtual Value *getBroadcastInstrs(Value *V); 568 569 protected: 570 friend class LoopVectorizationPlanner; 571 572 /// A small list of PHINodes. 573 using PhiVector = SmallVector<PHINode *, 4>; 574 575 /// A type for scalarized values in the new loop. Each value from the 576 /// original loop, when scalarized, is represented by UF x VF scalar values 577 /// in the new unrolled loop, where UF is the unroll factor and VF is the 578 /// vectorization factor. 579 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 580 581 /// Set up the values of the IVs correctly when exiting the vector loop. 582 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 583 Value *CountRoundDown, Value *EndValue, 584 BasicBlock *MiddleBlock); 585 586 /// Create a new induction variable inside L. 587 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 588 Value *Step, Instruction *DL); 589 590 /// Handle all cross-iteration phis in the header. 591 void fixCrossIterationPHIs(VPTransformState &State); 592 593 /// Fix a first-order recurrence. This is the second phase of vectorizing 594 /// this phi node. 595 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 596 597 /// Fix a reduction cross-iteration phi. This is the second phase of 598 /// vectorizing this phi node. 599 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 600 601 /// Clear NSW/NUW flags from reduction instructions if necessary. 602 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 603 VPTransformState &State); 604 605 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 606 /// means we need to add the appropriate incoming value from the middle 607 /// block as exiting edges from the scalar epilogue loop (if present) are 608 /// already in place, and we exit the vector loop exclusively to the middle 609 /// block. 610 void fixLCSSAPHIs(VPTransformState &State); 611 612 /// Iteratively sink the scalarized operands of a predicated instruction into 613 /// the block that was created for it. 614 void sinkScalarOperands(Instruction *PredInst); 615 616 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 617 /// represented as. 618 void truncateToMinimalBitwidths(VPTransformState &State); 619 620 /// This function adds 621 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 622 /// to each vector element of Val. The sequence starts at StartIndex. 623 /// \p Opcode is relevant for FP induction variable. 624 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 625 Instruction::BinaryOps Opcode = 626 Instruction::BinaryOpsEnd); 627 628 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 629 /// variable on which to base the steps, \p Step is the size of the step, and 630 /// \p EntryVal is the value from the original loop that maps to the steps. 631 /// Note that \p EntryVal doesn't have to be an induction variable - it 632 /// can also be a truncate instruction. 633 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 634 const InductionDescriptor &ID, VPValue *Def, 635 VPValue *CastDef, VPTransformState &State); 636 637 /// Create a vector induction phi node based on an existing scalar one. \p 638 /// EntryVal is the value from the original loop that maps to the vector phi 639 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 640 /// truncate instruction, instead of widening the original IV, we widen a 641 /// version of the IV truncated to \p EntryVal's type. 642 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 643 Value *Step, Value *Start, 644 Instruction *EntryVal, VPValue *Def, 645 VPValue *CastDef, 646 VPTransformState &State); 647 648 /// Returns true if an instruction \p I should be scalarized instead of 649 /// vectorized for the chosen vectorization factor. 650 bool shouldScalarizeInstruction(Instruction *I) const; 651 652 /// Returns true if we should generate a scalar version of \p IV. 653 bool needsScalarInduction(Instruction *IV) const; 654 655 /// If there is a cast involved in the induction variable \p ID, which should 656 /// be ignored in the vectorized loop body, this function records the 657 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 658 /// cast. We had already proved that the casted Phi is equal to the uncasted 659 /// Phi in the vectorized loop (under a runtime guard), and therefore 660 /// there is no need to vectorize the cast - the same value can be used in the 661 /// vector loop for both the Phi and the cast. 662 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 663 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 664 /// 665 /// \p EntryVal is the value from the original loop that maps to the vector 666 /// phi node and is used to distinguish what is the IV currently being 667 /// processed - original one (if \p EntryVal is a phi corresponding to the 668 /// original IV) or the "newly-created" one based on the proof mentioned above 669 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 670 /// latter case \p EntryVal is a TruncInst and we must not record anything for 671 /// that IV, but it's error-prone to expect callers of this routine to care 672 /// about that, hence this explicit parameter. 673 void recordVectorLoopValueForInductionCast( 674 const InductionDescriptor &ID, const Instruction *EntryVal, 675 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 676 unsigned Part, unsigned Lane = UINT_MAX); 677 678 /// Generate a shuffle sequence that will reverse the vector Vec. 679 virtual Value *reverseVector(Value *Vec); 680 681 /// Returns (and creates if needed) the original loop trip count. 682 Value *getOrCreateTripCount(Loop *NewLoop); 683 684 /// Returns (and creates if needed) the trip count of the widened loop. 685 Value *getOrCreateVectorTripCount(Loop *NewLoop); 686 687 /// Returns a bitcasted value to the requested vector type. 688 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 689 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 690 const DataLayout &DL); 691 692 /// Emit a bypass check to see if the vector trip count is zero, including if 693 /// it overflows. 694 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 695 696 /// Emit a bypass check to see if all of the SCEV assumptions we've 697 /// had to make are correct. Returns the block containing the checks or 698 /// nullptr if no checks have been added. 699 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 700 701 /// Emit bypass checks to check any memory assumptions we may have made. 702 /// Returns the block containing the checks or nullptr if no checks have been 703 /// added. 704 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 705 706 /// Compute the transformed value of Index at offset StartValue using step 707 /// StepValue. 708 /// For integer induction, returns StartValue + Index * StepValue. 709 /// For pointer induction, returns StartValue[Index * StepValue]. 710 /// FIXME: The newly created binary instructions should contain nsw/nuw 711 /// flags, which can be found from the original scalar operations. 712 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 713 const DataLayout &DL, 714 const InductionDescriptor &ID) const; 715 716 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 717 /// vector loop preheader, middle block and scalar preheader. Also 718 /// allocate a loop object for the new vector loop and return it. 719 Loop *createVectorLoopSkeleton(StringRef Prefix); 720 721 /// Create new phi nodes for the induction variables to resume iteration count 722 /// in the scalar epilogue, from where the vectorized loop left off (given by 723 /// \p VectorTripCount). 724 /// In cases where the loop skeleton is more complicated (eg. epilogue 725 /// vectorization) and the resume values can come from an additional bypass 726 /// block, the \p AdditionalBypass pair provides information about the bypass 727 /// block and the end value on the edge from bypass to this loop. 728 void createInductionResumeValues( 729 Loop *L, Value *VectorTripCount, 730 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 731 732 /// Complete the loop skeleton by adding debug MDs, creating appropriate 733 /// conditional branches in the middle block, preparing the builder and 734 /// running the verifier. Take in the vector loop \p L as argument, and return 735 /// the preheader of the completed vector loop. 736 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 737 738 /// Add additional metadata to \p To that was not present on \p Orig. 739 /// 740 /// Currently this is used to add the noalias annotations based on the 741 /// inserted memchecks. Use this for instructions that are *cloned* into the 742 /// vector loop. 743 void addNewMetadata(Instruction *To, const Instruction *Orig); 744 745 /// Add metadata from one instruction to another. 746 /// 747 /// This includes both the original MDs from \p From and additional ones (\see 748 /// addNewMetadata). Use this for *newly created* instructions in the vector 749 /// loop. 750 void addMetadata(Instruction *To, Instruction *From); 751 752 /// Similar to the previous function but it adds the metadata to a 753 /// vector of instructions. 754 void addMetadata(ArrayRef<Value *> To, Instruction *From); 755 756 /// Allow subclasses to override and print debug traces before/after vplan 757 /// execution, when trace information is requested. 758 virtual void printDebugTracesAtStart(){}; 759 virtual void printDebugTracesAtEnd(){}; 760 761 /// The original loop. 762 Loop *OrigLoop; 763 764 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 765 /// dynamic knowledge to simplify SCEV expressions and converts them to a 766 /// more usable form. 767 PredicatedScalarEvolution &PSE; 768 769 /// Loop Info. 770 LoopInfo *LI; 771 772 /// Dominator Tree. 773 DominatorTree *DT; 774 775 /// Alias Analysis. 776 AAResults *AA; 777 778 /// Target Library Info. 779 const TargetLibraryInfo *TLI; 780 781 /// Target Transform Info. 782 const TargetTransformInfo *TTI; 783 784 /// Assumption Cache. 785 AssumptionCache *AC; 786 787 /// Interface to emit optimization remarks. 788 OptimizationRemarkEmitter *ORE; 789 790 /// LoopVersioning. It's only set up (non-null) if memchecks were 791 /// used. 792 /// 793 /// This is currently only used to add no-alias metadata based on the 794 /// memchecks. The actually versioning is performed manually. 795 std::unique_ptr<LoopVersioning> LVer; 796 797 /// The vectorization SIMD factor to use. Each vector will have this many 798 /// vector elements. 799 ElementCount VF; 800 801 /// The vectorization unroll factor to use. Each scalar is vectorized to this 802 /// many different vector instructions. 803 unsigned UF; 804 805 /// The builder that we use 806 IRBuilder<> Builder; 807 808 // --- Vectorization state --- 809 810 /// The vector-loop preheader. 811 BasicBlock *LoopVectorPreHeader; 812 813 /// The scalar-loop preheader. 814 BasicBlock *LoopScalarPreHeader; 815 816 /// Middle Block between the vector and the scalar. 817 BasicBlock *LoopMiddleBlock; 818 819 /// The unique ExitBlock of the scalar loop if one exists. Note that 820 /// there can be multiple exiting edges reaching this block. 821 BasicBlock *LoopExitBlock; 822 823 /// The vector loop body. 824 BasicBlock *LoopVectorBody; 825 826 /// The scalar loop body. 827 BasicBlock *LoopScalarBody; 828 829 /// A list of all bypass blocks. The first block is the entry of the loop. 830 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 831 832 /// The new Induction variable which was added to the new block. 833 PHINode *Induction = nullptr; 834 835 /// The induction variable of the old basic block. 836 PHINode *OldInduction = nullptr; 837 838 /// Store instructions that were predicated. 839 SmallVector<Instruction *, 4> PredicatedInstructions; 840 841 /// Trip count of the original loop. 842 Value *TripCount = nullptr; 843 844 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 845 Value *VectorTripCount = nullptr; 846 847 /// The legality analysis. 848 LoopVectorizationLegality *Legal; 849 850 /// The profitablity analysis. 851 LoopVectorizationCostModel *Cost; 852 853 // Record whether runtime checks are added. 854 bool AddedSafetyChecks = false; 855 856 // Holds the end values for each induction variable. We save the end values 857 // so we can later fix-up the external users of the induction variables. 858 DenseMap<PHINode *, Value *> IVEndValues; 859 860 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 861 // fixed up at the end of vector code generation. 862 SmallVector<PHINode *, 8> OrigPHIsToFix; 863 864 /// BFI and PSI are used to check for profile guided size optimizations. 865 BlockFrequencyInfo *BFI; 866 ProfileSummaryInfo *PSI; 867 868 // Whether this loop should be optimized for size based on profile guided size 869 // optimizatios. 870 bool OptForSizeBasedOnProfile; 871 872 /// Structure to hold information about generated runtime checks, responsible 873 /// for cleaning the checks, if vectorization turns out unprofitable. 874 GeneratedRTChecks &RTChecks; 875 }; 876 877 class InnerLoopUnroller : public InnerLoopVectorizer { 878 public: 879 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 880 LoopInfo *LI, DominatorTree *DT, 881 const TargetLibraryInfo *TLI, 882 const TargetTransformInfo *TTI, AssumptionCache *AC, 883 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 884 LoopVectorizationLegality *LVL, 885 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 886 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 887 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 888 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 889 BFI, PSI, Check) {} 890 891 private: 892 Value *getBroadcastInstrs(Value *V) override; 893 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 894 Instruction::BinaryOps Opcode = 895 Instruction::BinaryOpsEnd) override; 896 Value *reverseVector(Value *Vec) override; 897 }; 898 899 /// Encapsulate information regarding vectorization of a loop and its epilogue. 900 /// This information is meant to be updated and used across two stages of 901 /// epilogue vectorization. 902 struct EpilogueLoopVectorizationInfo { 903 ElementCount MainLoopVF = ElementCount::getFixed(0); 904 unsigned MainLoopUF = 0; 905 ElementCount EpilogueVF = ElementCount::getFixed(0); 906 unsigned EpilogueUF = 0; 907 BasicBlock *MainLoopIterationCountCheck = nullptr; 908 BasicBlock *EpilogueIterationCountCheck = nullptr; 909 BasicBlock *SCEVSafetyCheck = nullptr; 910 BasicBlock *MemSafetyCheck = nullptr; 911 Value *TripCount = nullptr; 912 Value *VectorTripCount = nullptr; 913 914 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 915 unsigned EUF) 916 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 917 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 918 assert(EUF == 1 && 919 "A high UF for the epilogue loop is likely not beneficial."); 920 } 921 }; 922 923 /// An extension of the inner loop vectorizer that creates a skeleton for a 924 /// vectorized loop that has its epilogue (residual) also vectorized. 925 /// The idea is to run the vplan on a given loop twice, firstly to setup the 926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 927 /// from the first step and vectorize the epilogue. This is achieved by 928 /// deriving two concrete strategy classes from this base class and invoking 929 /// them in succession from the loop vectorizer planner. 930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 931 public: 932 InnerLoopAndEpilogueVectorizer( 933 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 934 DominatorTree *DT, const TargetLibraryInfo *TLI, 935 const TargetTransformInfo *TTI, AssumptionCache *AC, 936 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 937 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 938 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 939 GeneratedRTChecks &Checks) 940 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 941 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 942 Checks), 943 EPI(EPI) {} 944 945 // Override this function to handle the more complex control flow around the 946 // three loops. 947 BasicBlock *createVectorizedLoopSkeleton() final override { 948 return createEpilogueVectorizedLoopSkeleton(); 949 } 950 951 /// The interface for creating a vectorized skeleton using one of two 952 /// different strategies, each corresponding to one execution of the vplan 953 /// as described above. 954 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 955 956 /// Holds and updates state information required to vectorize the main loop 957 /// and its epilogue in two separate passes. This setup helps us avoid 958 /// regenerating and recomputing runtime safety checks. It also helps us to 959 /// shorten the iteration-count-check path length for the cases where the 960 /// iteration count of the loop is so small that the main vector loop is 961 /// completely skipped. 962 EpilogueLoopVectorizationInfo &EPI; 963 }; 964 965 /// A specialized derived class of inner loop vectorizer that performs 966 /// vectorization of *main* loops in the process of vectorizing loops and their 967 /// epilogues. 968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 969 public: 970 EpilogueVectorizerMainLoop( 971 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 972 DominatorTree *DT, const TargetLibraryInfo *TLI, 973 const TargetTransformInfo *TTI, AssumptionCache *AC, 974 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 975 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 976 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 977 GeneratedRTChecks &Check) 978 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 979 EPI, LVL, CM, BFI, PSI, Check) {} 980 /// Implements the interface for creating a vectorized skeleton using the 981 /// *main loop* strategy (ie the first pass of vplan execution). 982 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 983 984 protected: 985 /// Emits an iteration count bypass check once for the main loop (when \p 986 /// ForEpilogue is false) and once for the epilogue loop (when \p 987 /// ForEpilogue is true). 988 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 989 bool ForEpilogue); 990 void printDebugTracesAtStart() override; 991 void printDebugTracesAtEnd() override; 992 }; 993 994 // A specialized derived class of inner loop vectorizer that performs 995 // vectorization of *epilogue* loops in the process of vectorizing loops and 996 // their epilogues. 997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 998 public: 999 EpilogueVectorizerEpilogueLoop( 1000 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1001 DominatorTree *DT, const TargetLibraryInfo *TLI, 1002 const TargetTransformInfo *TTI, AssumptionCache *AC, 1003 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1004 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1005 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1006 GeneratedRTChecks &Checks) 1007 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1008 EPI, LVL, CM, BFI, PSI, Checks) {} 1009 /// Implements the interface for creating a vectorized skeleton using the 1010 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1011 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1012 1013 protected: 1014 /// Emits an iteration count bypass check after the main vector loop has 1015 /// finished to see if there are any iterations left to execute by either 1016 /// the vector epilogue or the scalar epilogue. 1017 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1018 BasicBlock *Bypass, 1019 BasicBlock *Insert); 1020 void printDebugTracesAtStart() override; 1021 void printDebugTracesAtEnd() override; 1022 }; 1023 } // end namespace llvm 1024 1025 /// Look for a meaningful debug location on the instruction or it's 1026 /// operands. 1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1028 if (!I) 1029 return I; 1030 1031 DebugLoc Empty; 1032 if (I->getDebugLoc() != Empty) 1033 return I; 1034 1035 for (Use &Op : I->operands()) { 1036 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1037 if (OpInst->getDebugLoc() != Empty) 1038 return OpInst; 1039 } 1040 1041 return I; 1042 } 1043 1044 void InnerLoopVectorizer::setDebugLocFromInst( 1045 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1046 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1047 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1048 const DILocation *DIL = Inst->getDebugLoc(); 1049 1050 // When a FSDiscriminator is enabled, we don't need to add the multiply 1051 // factors to the discriminators. 1052 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1053 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1054 // FIXME: For scalable vectors, assume vscale=1. 1055 auto NewDIL = 1056 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1057 if (NewDIL) 1058 B->SetCurrentDebugLocation(NewDIL.getValue()); 1059 else 1060 LLVM_DEBUG(dbgs() 1061 << "Failed to create new discriminator: " 1062 << DIL->getFilename() << " Line: " << DIL->getLine()); 1063 } else 1064 B->SetCurrentDebugLocation(DIL); 1065 } else 1066 B->SetCurrentDebugLocation(DebugLoc()); 1067 } 1068 1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1070 /// is passed, the message relates to that particular instruction. 1071 #ifndef NDEBUG 1072 static void debugVectorizationMessage(const StringRef Prefix, 1073 const StringRef DebugMsg, 1074 Instruction *I) { 1075 dbgs() << "LV: " << Prefix << DebugMsg; 1076 if (I != nullptr) 1077 dbgs() << " " << *I; 1078 else 1079 dbgs() << '.'; 1080 dbgs() << '\n'; 1081 } 1082 #endif 1083 1084 /// Create an analysis remark that explains why vectorization failed 1085 /// 1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1087 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1088 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1089 /// the location of the remark. \return the remark object that can be 1090 /// streamed to. 1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1092 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1093 Value *CodeRegion = TheLoop->getHeader(); 1094 DebugLoc DL = TheLoop->getStartLoc(); 1095 1096 if (I) { 1097 CodeRegion = I->getParent(); 1098 // If there is no debug location attached to the instruction, revert back to 1099 // using the loop's. 1100 if (I->getDebugLoc()) 1101 DL = I->getDebugLoc(); 1102 } 1103 1104 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1105 } 1106 1107 /// Return a value for Step multiplied by VF. 1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1109 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1110 Constant *StepVal = ConstantInt::get( 1111 Step->getType(), 1112 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1113 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1114 } 1115 1116 namespace llvm { 1117 1118 /// Return the runtime value for VF. 1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1120 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1121 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1122 } 1123 1124 void reportVectorizationFailure(const StringRef DebugMsg, 1125 const StringRef OREMsg, const StringRef ORETag, 1126 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1127 Instruction *I) { 1128 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1129 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1130 ORE->emit( 1131 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1132 << "loop not vectorized: " << OREMsg); 1133 } 1134 1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1136 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1137 Instruction *I) { 1138 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1139 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1140 ORE->emit( 1141 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1142 << Msg); 1143 } 1144 1145 } // end namespace llvm 1146 1147 #ifndef NDEBUG 1148 /// \return string containing a file name and a line # for the given loop. 1149 static std::string getDebugLocString(const Loop *L) { 1150 std::string Result; 1151 if (L) { 1152 raw_string_ostream OS(Result); 1153 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1154 LoopDbgLoc.print(OS); 1155 else 1156 // Just print the module name. 1157 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1158 OS.flush(); 1159 } 1160 return Result; 1161 } 1162 #endif 1163 1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1165 const Instruction *Orig) { 1166 // If the loop was versioned with memchecks, add the corresponding no-alias 1167 // metadata. 1168 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1169 LVer->annotateInstWithNoAlias(To, Orig); 1170 } 1171 1172 void InnerLoopVectorizer::addMetadata(Instruction *To, 1173 Instruction *From) { 1174 propagateMetadata(To, From); 1175 addNewMetadata(To, From); 1176 } 1177 1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1179 Instruction *From) { 1180 for (Value *V : To) { 1181 if (Instruction *I = dyn_cast<Instruction>(V)) 1182 addMetadata(I, From); 1183 } 1184 } 1185 1186 namespace llvm { 1187 1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1189 // lowered. 1190 enum ScalarEpilogueLowering { 1191 1192 // The default: allowing scalar epilogues. 1193 CM_ScalarEpilogueAllowed, 1194 1195 // Vectorization with OptForSize: don't allow epilogues. 1196 CM_ScalarEpilogueNotAllowedOptSize, 1197 1198 // A special case of vectorisation with OptForSize: loops with a very small 1199 // trip count are considered for vectorization under OptForSize, thereby 1200 // making sure the cost of their loop body is dominant, free of runtime 1201 // guards and scalar iteration overheads. 1202 CM_ScalarEpilogueNotAllowedLowTripLoop, 1203 1204 // Loop hint predicate indicating an epilogue is undesired. 1205 CM_ScalarEpilogueNotNeededUsePredicate, 1206 1207 // Directive indicating we must either tail fold or not vectorize 1208 CM_ScalarEpilogueNotAllowedUsePredicate 1209 }; 1210 1211 /// ElementCountComparator creates a total ordering for ElementCount 1212 /// for the purposes of using it in a set structure. 1213 struct ElementCountComparator { 1214 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1215 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1216 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1217 } 1218 }; 1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1220 1221 /// LoopVectorizationCostModel - estimates the expected speedups due to 1222 /// vectorization. 1223 /// In many cases vectorization is not profitable. This can happen because of 1224 /// a number of reasons. In this class we mainly attempt to predict the 1225 /// expected speedup/slowdowns due to the supported instruction set. We use the 1226 /// TargetTransformInfo to query the different backends for the cost of 1227 /// different operations. 1228 class LoopVectorizationCostModel { 1229 public: 1230 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1231 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1232 LoopVectorizationLegality *Legal, 1233 const TargetTransformInfo &TTI, 1234 const TargetLibraryInfo *TLI, DemandedBits *DB, 1235 AssumptionCache *AC, 1236 OptimizationRemarkEmitter *ORE, const Function *F, 1237 const LoopVectorizeHints *Hints, 1238 InterleavedAccessInfo &IAI) 1239 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1240 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1241 Hints(Hints), InterleaveInfo(IAI) {} 1242 1243 /// \return An upper bound for the vectorization factors (both fixed and 1244 /// scalable). If the factors are 0, vectorization and interleaving should be 1245 /// avoided up front. 1246 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1247 1248 /// \return True if runtime checks are required for vectorization, and false 1249 /// otherwise. 1250 bool runtimeChecksRequired(); 1251 1252 /// \return The most profitable vectorization factor and the cost of that VF. 1253 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1254 /// then this vectorization factor will be selected if vectorization is 1255 /// possible. 1256 VectorizationFactor 1257 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1258 1259 VectorizationFactor 1260 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1261 const LoopVectorizationPlanner &LVP); 1262 1263 /// Setup cost-based decisions for user vectorization factor. 1264 void selectUserVectorizationFactor(ElementCount UserVF) { 1265 collectUniformsAndScalars(UserVF); 1266 collectInstsToScalarize(UserVF); 1267 } 1268 1269 /// \return The size (in bits) of the smallest and widest types in the code 1270 /// that needs to be vectorized. We ignore values that remain scalar such as 1271 /// 64 bit loop indices. 1272 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1273 1274 /// \return The desired interleave count. 1275 /// If interleave count has been specified by metadata it will be returned. 1276 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1277 /// are the selected vectorization factor and the cost of the selected VF. 1278 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1279 1280 /// Memory access instruction may be vectorized in more than one way. 1281 /// Form of instruction after vectorization depends on cost. 1282 /// This function takes cost-based decisions for Load/Store instructions 1283 /// and collects them in a map. This decisions map is used for building 1284 /// the lists of loop-uniform and loop-scalar instructions. 1285 /// The calculated cost is saved with widening decision in order to 1286 /// avoid redundant calculations. 1287 void setCostBasedWideningDecision(ElementCount VF); 1288 1289 /// A struct that represents some properties of the register usage 1290 /// of a loop. 1291 struct RegisterUsage { 1292 /// Holds the number of loop invariant values that are used in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1295 /// Holds the maximum number of concurrent live intervals in the loop. 1296 /// The key is ClassID of target-provided register class. 1297 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1298 }; 1299 1300 /// \return Returns information about the register usages of the loop for the 1301 /// given vectorization factors. 1302 SmallVector<RegisterUsage, 8> 1303 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1304 1305 /// Collect values we want to ignore in the cost model. 1306 void collectValuesToIgnore(); 1307 1308 /// Collect all element types in the loop for which widening is needed. 1309 void collectElementTypesForWidening(); 1310 1311 /// Split reductions into those that happen in the loop, and those that happen 1312 /// outside. In loop reductions are collected into InLoopReductionChains. 1313 void collectInLoopReductions(); 1314 1315 /// Returns true if we should use strict in-order reductions for the given 1316 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1317 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1318 /// of FP operations. 1319 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1320 return EnableStrictReductions && !Hints->allowReordering() && 1321 RdxDesc.isOrdered(); 1322 } 1323 1324 /// \returns The smallest bitwidth each instruction can be represented with. 1325 /// The vector equivalents of these instructions should be truncated to this 1326 /// type. 1327 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1328 return MinBWs; 1329 } 1330 1331 /// \returns True if it is more profitable to scalarize instruction \p I for 1332 /// vectorization factor \p VF. 1333 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1334 assert(VF.isVector() && 1335 "Profitable to scalarize relevant only for VF > 1."); 1336 1337 // Cost model is not run in the VPlan-native path - return conservative 1338 // result until this changes. 1339 if (EnableVPlanNativePath) 1340 return false; 1341 1342 auto Scalars = InstsToScalarize.find(VF); 1343 assert(Scalars != InstsToScalarize.end() && 1344 "VF not yet analyzed for scalarization profitability"); 1345 return Scalars->second.find(I) != Scalars->second.end(); 1346 } 1347 1348 /// Returns true if \p I is known to be uniform after vectorization. 1349 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1350 if (VF.isScalar()) 1351 return true; 1352 1353 // Cost model is not run in the VPlan-native path - return conservative 1354 // result until this changes. 1355 if (EnableVPlanNativePath) 1356 return false; 1357 1358 auto UniformsPerVF = Uniforms.find(VF); 1359 assert(UniformsPerVF != Uniforms.end() && 1360 "VF not yet analyzed for uniformity"); 1361 return UniformsPerVF->second.count(I); 1362 } 1363 1364 /// Returns true if \p I is known to be scalar after vectorization. 1365 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1366 if (VF.isScalar()) 1367 return true; 1368 1369 // Cost model is not run in the VPlan-native path - return conservative 1370 // result until this changes. 1371 if (EnableVPlanNativePath) 1372 return false; 1373 1374 auto ScalarsPerVF = Scalars.find(VF); 1375 assert(ScalarsPerVF != Scalars.end() && 1376 "Scalar values are not calculated for VF"); 1377 return ScalarsPerVF->second.count(I); 1378 } 1379 1380 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1381 /// for vectorization factor \p VF. 1382 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1383 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1384 !isProfitableToScalarize(I, VF) && 1385 !isScalarAfterVectorization(I, VF); 1386 } 1387 1388 /// Decision that was taken during cost calculation for memory instruction. 1389 enum InstWidening { 1390 CM_Unknown, 1391 CM_Widen, // For consecutive accesses with stride +1. 1392 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1393 CM_Interleave, 1394 CM_GatherScatter, 1395 CM_Scalarize 1396 }; 1397 1398 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1399 /// instruction \p I and vector width \p VF. 1400 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1401 InstructionCost Cost) { 1402 assert(VF.isVector() && "Expected VF >=2"); 1403 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1404 } 1405 1406 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1407 /// interleaving group \p Grp and vector width \p VF. 1408 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1409 ElementCount VF, InstWidening W, 1410 InstructionCost Cost) { 1411 assert(VF.isVector() && "Expected VF >=2"); 1412 /// Broadcast this decicion to all instructions inside the group. 1413 /// But the cost will be assigned to one instruction only. 1414 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1415 if (auto *I = Grp->getMember(i)) { 1416 if (Grp->getInsertPos() == I) 1417 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1418 else 1419 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1420 } 1421 } 1422 } 1423 1424 /// Return the cost model decision for the given instruction \p I and vector 1425 /// width \p VF. Return CM_Unknown if this instruction did not pass 1426 /// through the cost modeling. 1427 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1428 assert(VF.isVector() && "Expected VF to be a vector VF"); 1429 // Cost model is not run in the VPlan-native path - return conservative 1430 // result until this changes. 1431 if (EnableVPlanNativePath) 1432 return CM_GatherScatter; 1433 1434 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1435 auto Itr = WideningDecisions.find(InstOnVF); 1436 if (Itr == WideningDecisions.end()) 1437 return CM_Unknown; 1438 return Itr->second.first; 1439 } 1440 1441 /// Return the vectorization cost for the given instruction \p I and vector 1442 /// width \p VF. 1443 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1444 assert(VF.isVector() && "Expected VF >=2"); 1445 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1446 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1447 "The cost is not calculated"); 1448 return WideningDecisions[InstOnVF].second; 1449 } 1450 1451 /// Return True if instruction \p I is an optimizable truncate whose operand 1452 /// is an induction variable. Such a truncate will be removed by adding a new 1453 /// induction variable with the destination type. 1454 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1455 // If the instruction is not a truncate, return false. 1456 auto *Trunc = dyn_cast<TruncInst>(I); 1457 if (!Trunc) 1458 return false; 1459 1460 // Get the source and destination types of the truncate. 1461 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1462 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1463 1464 // If the truncate is free for the given types, return false. Replacing a 1465 // free truncate with an induction variable would add an induction variable 1466 // update instruction to each iteration of the loop. We exclude from this 1467 // check the primary induction variable since it will need an update 1468 // instruction regardless. 1469 Value *Op = Trunc->getOperand(0); 1470 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1471 return false; 1472 1473 // If the truncated value is not an induction variable, return false. 1474 return Legal->isInductionPhi(Op); 1475 } 1476 1477 /// Collects the instructions to scalarize for each predicated instruction in 1478 /// the loop. 1479 void collectInstsToScalarize(ElementCount VF); 1480 1481 /// Collect Uniform and Scalar values for the given \p VF. 1482 /// The sets depend on CM decision for Load/Store instructions 1483 /// that may be vectorized as interleave, gather-scatter or scalarized. 1484 void collectUniformsAndScalars(ElementCount VF) { 1485 // Do the analysis once. 1486 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1487 return; 1488 setCostBasedWideningDecision(VF); 1489 collectLoopUniforms(VF); 1490 collectLoopScalars(VF); 1491 } 1492 1493 /// Returns true if the target machine supports masked store operation 1494 /// for the given \p DataType and kind of access to \p Ptr. 1495 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1496 return Legal->isConsecutivePtr(Ptr) && 1497 TTI.isLegalMaskedStore(DataType, Alignment); 1498 } 1499 1500 /// Returns true if the target machine supports masked load operation 1501 /// for the given \p DataType and kind of access to \p Ptr. 1502 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1503 return Legal->isConsecutivePtr(Ptr) && 1504 TTI.isLegalMaskedLoad(DataType, Alignment); 1505 } 1506 1507 /// Returns true if the target machine can represent \p V as a masked gather 1508 /// or scatter operation. 1509 bool isLegalGatherOrScatter(Value *V) { 1510 bool LI = isa<LoadInst>(V); 1511 bool SI = isa<StoreInst>(V); 1512 if (!LI && !SI) 1513 return false; 1514 auto *Ty = getLoadStoreType(V); 1515 Align Align = getLoadStoreAlignment(V); 1516 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1517 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1518 } 1519 1520 /// Returns true if the target machine supports all of the reduction 1521 /// variables found for the given VF. 1522 bool canVectorizeReductions(ElementCount VF) const { 1523 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1524 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1525 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1526 })); 1527 } 1528 1529 /// Returns true if \p I is an instruction that will be scalarized with 1530 /// predication. Such instructions include conditional stores and 1531 /// instructions that may divide by zero. 1532 /// If a non-zero VF has been calculated, we check if I will be scalarized 1533 /// predication for that VF. 1534 bool isScalarWithPredication(Instruction *I) const; 1535 1536 // Returns true if \p I is an instruction that will be predicated either 1537 // through scalar predication or masked load/store or masked gather/scatter. 1538 // Superset of instructions that return true for isScalarWithPredication. 1539 bool isPredicatedInst(Instruction *I) { 1540 if (!blockNeedsPredication(I->getParent())) 1541 return false; 1542 // Loads and stores that need some form of masked operation are predicated 1543 // instructions. 1544 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1545 return Legal->isMaskRequired(I); 1546 return isScalarWithPredication(I); 1547 } 1548 1549 /// Returns true if \p I is a memory instruction with consecutive memory 1550 /// access that can be widened. 1551 bool 1552 memoryInstructionCanBeWidened(Instruction *I, 1553 ElementCount VF = ElementCount::getFixed(1)); 1554 1555 /// Returns true if \p I is a memory instruction in an interleaved-group 1556 /// of memory accesses that can be vectorized with wide vector loads/stores 1557 /// and shuffles. 1558 bool 1559 interleavedAccessCanBeWidened(Instruction *I, 1560 ElementCount VF = ElementCount::getFixed(1)); 1561 1562 /// Check if \p Instr belongs to any interleaved access group. 1563 bool isAccessInterleaved(Instruction *Instr) { 1564 return InterleaveInfo.isInterleaved(Instr); 1565 } 1566 1567 /// Get the interleaved access group that \p Instr belongs to. 1568 const InterleaveGroup<Instruction> * 1569 getInterleavedAccessGroup(Instruction *Instr) { 1570 return InterleaveInfo.getInterleaveGroup(Instr); 1571 } 1572 1573 /// Returns true if we're required to use a scalar epilogue for at least 1574 /// the final iteration of the original loop. 1575 bool requiresScalarEpilogue(ElementCount VF) const { 1576 if (!isScalarEpilogueAllowed()) 1577 return false; 1578 // If we might exit from anywhere but the latch, must run the exiting 1579 // iteration in scalar form. 1580 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1581 return true; 1582 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1583 } 1584 1585 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1586 /// loop hint annotation. 1587 bool isScalarEpilogueAllowed() const { 1588 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1589 } 1590 1591 /// Returns true if all loop blocks should be masked to fold tail loop. 1592 bool foldTailByMasking() const { return FoldTailByMasking; } 1593 1594 bool blockNeedsPredication(BasicBlock *BB) const { 1595 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1596 } 1597 1598 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1599 /// nodes to the chain of instructions representing the reductions. Uses a 1600 /// MapVector to ensure deterministic iteration order. 1601 using ReductionChainMap = 1602 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1603 1604 /// Return the chain of instructions representing an inloop reduction. 1605 const ReductionChainMap &getInLoopReductionChains() const { 1606 return InLoopReductionChains; 1607 } 1608 1609 /// Returns true if the Phi is part of an inloop reduction. 1610 bool isInLoopReduction(PHINode *Phi) const { 1611 return InLoopReductionChains.count(Phi); 1612 } 1613 1614 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1615 /// with factor VF. Return the cost of the instruction, including 1616 /// scalarization overhead if it's needed. 1617 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1618 1619 /// Estimate cost of a call instruction CI if it were vectorized with factor 1620 /// VF. Return the cost of the instruction, including scalarization overhead 1621 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1622 /// scalarized - 1623 /// i.e. either vector version isn't available, or is too expensive. 1624 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1625 bool &NeedToScalarize) const; 1626 1627 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1628 /// that of B. 1629 bool isMoreProfitable(const VectorizationFactor &A, 1630 const VectorizationFactor &B) const; 1631 1632 /// Invalidates decisions already taken by the cost model. 1633 void invalidateCostModelingDecisions() { 1634 WideningDecisions.clear(); 1635 Uniforms.clear(); 1636 Scalars.clear(); 1637 } 1638 1639 private: 1640 unsigned NumPredStores = 0; 1641 1642 /// \return An upper bound for the vectorization factors for both 1643 /// fixed and scalable vectorization, where the minimum-known number of 1644 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1645 /// disabled or unsupported, then the scalable part will be equal to 1646 /// ElementCount::getScalable(0). 1647 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1648 ElementCount UserVF); 1649 1650 /// \return the maximized element count based on the targets vector 1651 /// registers and the loop trip-count, but limited to a maximum safe VF. 1652 /// This is a helper function of computeFeasibleMaxVF. 1653 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1654 /// issue that occurred on one of the buildbots which cannot be reproduced 1655 /// without having access to the properietary compiler (see comments on 1656 /// D98509). The issue is currently under investigation and this workaround 1657 /// will be removed as soon as possible. 1658 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1659 unsigned SmallestType, 1660 unsigned WidestType, 1661 const ElementCount &MaxSafeVF); 1662 1663 /// \return the maximum legal scalable VF, based on the safe max number 1664 /// of elements. 1665 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1666 1667 /// The vectorization cost is a combination of the cost itself and a boolean 1668 /// indicating whether any of the contributing operations will actually 1669 /// operate on vector values after type legalization in the backend. If this 1670 /// latter value is false, then all operations will be scalarized (i.e. no 1671 /// vectorization has actually taken place). 1672 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1673 1674 /// Returns the expected execution cost. The unit of the cost does 1675 /// not matter because we use the 'cost' units to compare different 1676 /// vector widths. The cost that is returned is *not* normalized by 1677 /// the factor width. 1678 VectorizationCostTy expectedCost(ElementCount VF); 1679 1680 /// Returns the execution time cost of an instruction for a given vector 1681 /// width. Vector width of one means scalar. 1682 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1683 1684 /// The cost-computation logic from getInstructionCost which provides 1685 /// the vector type as an output parameter. 1686 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1687 Type *&VectorTy); 1688 1689 /// Return the cost of instructions in an inloop reduction pattern, if I is 1690 /// part of that pattern. 1691 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1692 Type *VectorTy, 1693 TTI::TargetCostKind CostKind); 1694 1695 /// Calculate vectorization cost of memory instruction \p I. 1696 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1697 1698 /// The cost computation for scalarized memory instruction. 1699 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1700 1701 /// The cost computation for interleaving group of memory instructions. 1702 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1703 1704 /// The cost computation for Gather/Scatter instruction. 1705 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1706 1707 /// The cost computation for widening instruction \p I with consecutive 1708 /// memory access. 1709 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1710 1711 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1712 /// Load: scalar load + broadcast. 1713 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1714 /// element) 1715 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1716 1717 /// Estimate the overhead of scalarizing an instruction. This is a 1718 /// convenience wrapper for the type-based getScalarizationOverhead API. 1719 InstructionCost getScalarizationOverhead(Instruction *I, 1720 ElementCount VF) const; 1721 1722 /// Returns whether the instruction is a load or store and will be a emitted 1723 /// as a vector operation. 1724 bool isConsecutiveLoadOrStore(Instruction *I); 1725 1726 /// Returns true if an artificially high cost for emulated masked memrefs 1727 /// should be used. 1728 bool useEmulatedMaskMemRefHack(Instruction *I); 1729 1730 /// Map of scalar integer values to the smallest bitwidth they can be legally 1731 /// represented as. The vector equivalents of these values should be truncated 1732 /// to this type. 1733 MapVector<Instruction *, uint64_t> MinBWs; 1734 1735 /// A type representing the costs for instructions if they were to be 1736 /// scalarized rather than vectorized. The entries are Instruction-Cost 1737 /// pairs. 1738 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1739 1740 /// A set containing all BasicBlocks that are known to present after 1741 /// vectorization as a predicated block. 1742 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1743 1744 /// Records whether it is allowed to have the original scalar loop execute at 1745 /// least once. This may be needed as a fallback loop in case runtime 1746 /// aliasing/dependence checks fail, or to handle the tail/remainder 1747 /// iterations when the trip count is unknown or doesn't divide by the VF, 1748 /// or as a peel-loop to handle gaps in interleave-groups. 1749 /// Under optsize and when the trip count is very small we don't allow any 1750 /// iterations to execute in the scalar loop. 1751 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1752 1753 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1754 bool FoldTailByMasking = false; 1755 1756 /// A map holding scalar costs for different vectorization factors. The 1757 /// presence of a cost for an instruction in the mapping indicates that the 1758 /// instruction will be scalarized when vectorizing with the associated 1759 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1760 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1761 1762 /// Holds the instructions known to be uniform after vectorization. 1763 /// The data is collected per VF. 1764 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1765 1766 /// Holds the instructions known to be scalar after vectorization. 1767 /// The data is collected per VF. 1768 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1769 1770 /// Holds the instructions (address computations) that are forced to be 1771 /// scalarized. 1772 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1773 1774 /// PHINodes of the reductions that should be expanded in-loop along with 1775 /// their associated chains of reduction operations, in program order from top 1776 /// (PHI) to bottom 1777 ReductionChainMap InLoopReductionChains; 1778 1779 /// A Map of inloop reduction operations and their immediate chain operand. 1780 /// FIXME: This can be removed once reductions can be costed correctly in 1781 /// vplan. This was added to allow quick lookup to the inloop operations, 1782 /// without having to loop through InLoopReductionChains. 1783 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1784 1785 /// Returns the expected difference in cost from scalarizing the expression 1786 /// feeding a predicated instruction \p PredInst. The instructions to 1787 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1788 /// non-negative return value implies the expression will be scalarized. 1789 /// Currently, only single-use chains are considered for scalarization. 1790 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1791 ElementCount VF); 1792 1793 /// Collect the instructions that are uniform after vectorization. An 1794 /// instruction is uniform if we represent it with a single scalar value in 1795 /// the vectorized loop corresponding to each vector iteration. Examples of 1796 /// uniform instructions include pointer operands of consecutive or 1797 /// interleaved memory accesses. Note that although uniformity implies an 1798 /// instruction will be scalar, the reverse is not true. In general, a 1799 /// scalarized instruction will be represented by VF scalar values in the 1800 /// vectorized loop, each corresponding to an iteration of the original 1801 /// scalar loop. 1802 void collectLoopUniforms(ElementCount VF); 1803 1804 /// Collect the instructions that are scalar after vectorization. An 1805 /// instruction is scalar if it is known to be uniform or will be scalarized 1806 /// during vectorization. Non-uniform scalarized instructions will be 1807 /// represented by VF values in the vectorized loop, each corresponding to an 1808 /// iteration of the original scalar loop. 1809 void collectLoopScalars(ElementCount VF); 1810 1811 /// Keeps cost model vectorization decision and cost for instructions. 1812 /// Right now it is used for memory instructions only. 1813 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1814 std::pair<InstWidening, InstructionCost>>; 1815 1816 DecisionList WideningDecisions; 1817 1818 /// Returns true if \p V is expected to be vectorized and it needs to be 1819 /// extracted. 1820 bool needsExtract(Value *V, ElementCount VF) const { 1821 Instruction *I = dyn_cast<Instruction>(V); 1822 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1823 TheLoop->isLoopInvariant(I)) 1824 return false; 1825 1826 // Assume we can vectorize V (and hence we need extraction) if the 1827 // scalars are not computed yet. This can happen, because it is called 1828 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1829 // the scalars are collected. That should be a safe assumption in most 1830 // cases, because we check if the operands have vectorizable types 1831 // beforehand in LoopVectorizationLegality. 1832 return Scalars.find(VF) == Scalars.end() || 1833 !isScalarAfterVectorization(I, VF); 1834 }; 1835 1836 /// Returns a range containing only operands needing to be extracted. 1837 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1838 ElementCount VF) const { 1839 return SmallVector<Value *, 4>(make_filter_range( 1840 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1841 } 1842 1843 /// Determines if we have the infrastructure to vectorize loop \p L and its 1844 /// epilogue, assuming the main loop is vectorized by \p VF. 1845 bool isCandidateForEpilogueVectorization(const Loop &L, 1846 const ElementCount VF) const; 1847 1848 /// Returns true if epilogue vectorization is considered profitable, and 1849 /// false otherwise. 1850 /// \p VF is the vectorization factor chosen for the original loop. 1851 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1852 1853 public: 1854 /// The loop that we evaluate. 1855 Loop *TheLoop; 1856 1857 /// Predicated scalar evolution analysis. 1858 PredicatedScalarEvolution &PSE; 1859 1860 /// Loop Info analysis. 1861 LoopInfo *LI; 1862 1863 /// Vectorization legality. 1864 LoopVectorizationLegality *Legal; 1865 1866 /// Vector target information. 1867 const TargetTransformInfo &TTI; 1868 1869 /// Target Library Info. 1870 const TargetLibraryInfo *TLI; 1871 1872 /// Demanded bits analysis. 1873 DemandedBits *DB; 1874 1875 /// Assumption cache. 1876 AssumptionCache *AC; 1877 1878 /// Interface to emit optimization remarks. 1879 OptimizationRemarkEmitter *ORE; 1880 1881 const Function *TheFunction; 1882 1883 /// Loop Vectorize Hint. 1884 const LoopVectorizeHints *Hints; 1885 1886 /// The interleave access information contains groups of interleaved accesses 1887 /// with the same stride and close to each other. 1888 InterleavedAccessInfo &InterleaveInfo; 1889 1890 /// Values to ignore in the cost model. 1891 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1892 1893 /// Values to ignore in the cost model when VF > 1. 1894 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1895 1896 /// All element types found in the loop. 1897 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1898 1899 /// Profitable vector factors. 1900 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1901 }; 1902 } // end namespace llvm 1903 1904 /// Helper struct to manage generating runtime checks for vectorization. 1905 /// 1906 /// The runtime checks are created up-front in temporary blocks to allow better 1907 /// estimating the cost and un-linked from the existing IR. After deciding to 1908 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1909 /// temporary blocks are completely removed. 1910 class GeneratedRTChecks { 1911 /// Basic block which contains the generated SCEV checks, if any. 1912 BasicBlock *SCEVCheckBlock = nullptr; 1913 1914 /// The value representing the result of the generated SCEV checks. If it is 1915 /// nullptr, either no SCEV checks have been generated or they have been used. 1916 Value *SCEVCheckCond = nullptr; 1917 1918 /// Basic block which contains the generated memory runtime checks, if any. 1919 BasicBlock *MemCheckBlock = nullptr; 1920 1921 /// The value representing the result of the generated memory runtime checks. 1922 /// If it is nullptr, either no memory runtime checks have been generated or 1923 /// they have been used. 1924 Instruction *MemRuntimeCheckCond = nullptr; 1925 1926 DominatorTree *DT; 1927 LoopInfo *LI; 1928 1929 SCEVExpander SCEVExp; 1930 SCEVExpander MemCheckExp; 1931 1932 public: 1933 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1934 const DataLayout &DL) 1935 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1936 MemCheckExp(SE, DL, "scev.check") {} 1937 1938 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1939 /// accurately estimate the cost of the runtime checks. The blocks are 1940 /// un-linked from the IR and is added back during vector code generation. If 1941 /// there is no vector code generation, the check blocks are removed 1942 /// completely. 1943 void Create(Loop *L, const LoopAccessInfo &LAI, 1944 const SCEVUnionPredicate &UnionPred) { 1945 1946 BasicBlock *LoopHeader = L->getHeader(); 1947 BasicBlock *Preheader = L->getLoopPreheader(); 1948 1949 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1950 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1951 // may be used by SCEVExpander. The blocks will be un-linked from their 1952 // predecessors and removed from LI & DT at the end of the function. 1953 if (!UnionPred.isAlwaysTrue()) { 1954 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1955 nullptr, "vector.scevcheck"); 1956 1957 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1958 &UnionPred, SCEVCheckBlock->getTerminator()); 1959 } 1960 1961 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1962 if (RtPtrChecking.Need) { 1963 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1964 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1965 "vector.memcheck"); 1966 1967 std::tie(std::ignore, MemRuntimeCheckCond) = 1968 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1969 RtPtrChecking.getChecks(), MemCheckExp); 1970 assert(MemRuntimeCheckCond && 1971 "no RT checks generated although RtPtrChecking " 1972 "claimed checks are required"); 1973 } 1974 1975 if (!MemCheckBlock && !SCEVCheckBlock) 1976 return; 1977 1978 // Unhook the temporary block with the checks, update various places 1979 // accordingly. 1980 if (SCEVCheckBlock) 1981 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1982 if (MemCheckBlock) 1983 MemCheckBlock->replaceAllUsesWith(Preheader); 1984 1985 if (SCEVCheckBlock) { 1986 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1987 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1988 Preheader->getTerminator()->eraseFromParent(); 1989 } 1990 if (MemCheckBlock) { 1991 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1992 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1993 Preheader->getTerminator()->eraseFromParent(); 1994 } 1995 1996 DT->changeImmediateDominator(LoopHeader, Preheader); 1997 if (MemCheckBlock) { 1998 DT->eraseNode(MemCheckBlock); 1999 LI->removeBlock(MemCheckBlock); 2000 } 2001 if (SCEVCheckBlock) { 2002 DT->eraseNode(SCEVCheckBlock); 2003 LI->removeBlock(SCEVCheckBlock); 2004 } 2005 } 2006 2007 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2008 /// unused. 2009 ~GeneratedRTChecks() { 2010 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2011 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2012 if (!SCEVCheckCond) 2013 SCEVCleaner.markResultUsed(); 2014 2015 if (!MemRuntimeCheckCond) 2016 MemCheckCleaner.markResultUsed(); 2017 2018 if (MemRuntimeCheckCond) { 2019 auto &SE = *MemCheckExp.getSE(); 2020 // Memory runtime check generation creates compares that use expanded 2021 // values. Remove them before running the SCEVExpanderCleaners. 2022 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2023 if (MemCheckExp.isInsertedInstruction(&I)) 2024 continue; 2025 SE.forgetValue(&I); 2026 SE.eraseValueFromMap(&I); 2027 I.eraseFromParent(); 2028 } 2029 } 2030 MemCheckCleaner.cleanup(); 2031 SCEVCleaner.cleanup(); 2032 2033 if (SCEVCheckCond) 2034 SCEVCheckBlock->eraseFromParent(); 2035 if (MemRuntimeCheckCond) 2036 MemCheckBlock->eraseFromParent(); 2037 } 2038 2039 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2040 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2041 /// depending on the generated condition. 2042 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2043 BasicBlock *LoopVectorPreHeader, 2044 BasicBlock *LoopExitBlock) { 2045 if (!SCEVCheckCond) 2046 return nullptr; 2047 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2048 if (C->isZero()) 2049 return nullptr; 2050 2051 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2052 2053 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2054 // Create new preheader for vector loop. 2055 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2056 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2057 2058 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2059 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2060 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2061 SCEVCheckBlock); 2062 2063 DT->addNewBlock(SCEVCheckBlock, Pred); 2064 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2065 2066 ReplaceInstWithInst( 2067 SCEVCheckBlock->getTerminator(), 2068 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2069 // Mark the check as used, to prevent it from being removed during cleanup. 2070 SCEVCheckCond = nullptr; 2071 return SCEVCheckBlock; 2072 } 2073 2074 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2075 /// the branches to branch to the vector preheader or \p Bypass, depending on 2076 /// the generated condition. 2077 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2078 BasicBlock *LoopVectorPreHeader) { 2079 // Check if we generated code that checks in runtime if arrays overlap. 2080 if (!MemRuntimeCheckCond) 2081 return nullptr; 2082 2083 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2084 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2085 MemCheckBlock); 2086 2087 DT->addNewBlock(MemCheckBlock, Pred); 2088 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2089 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2090 2091 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2092 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2093 2094 ReplaceInstWithInst( 2095 MemCheckBlock->getTerminator(), 2096 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2097 MemCheckBlock->getTerminator()->setDebugLoc( 2098 Pred->getTerminator()->getDebugLoc()); 2099 2100 // Mark the check as used, to prevent it from being removed during cleanup. 2101 MemRuntimeCheckCond = nullptr; 2102 return MemCheckBlock; 2103 } 2104 }; 2105 2106 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2107 // vectorization. The loop needs to be annotated with #pragma omp simd 2108 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2109 // vector length information is not provided, vectorization is not considered 2110 // explicit. Interleave hints are not allowed either. These limitations will be 2111 // relaxed in the future. 2112 // Please, note that we are currently forced to abuse the pragma 'clang 2113 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2114 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2115 // provides *explicit vectorization hints* (LV can bypass legal checks and 2116 // assume that vectorization is legal). However, both hints are implemented 2117 // using the same metadata (llvm.loop.vectorize, processed by 2118 // LoopVectorizeHints). This will be fixed in the future when the native IR 2119 // representation for pragma 'omp simd' is introduced. 2120 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2121 OptimizationRemarkEmitter *ORE) { 2122 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2123 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2124 2125 // Only outer loops with an explicit vectorization hint are supported. 2126 // Unannotated outer loops are ignored. 2127 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2128 return false; 2129 2130 Function *Fn = OuterLp->getHeader()->getParent(); 2131 if (!Hints.allowVectorization(Fn, OuterLp, 2132 true /*VectorizeOnlyWhenForced*/)) { 2133 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2134 return false; 2135 } 2136 2137 if (Hints.getInterleave() > 1) { 2138 // TODO: Interleave support is future work. 2139 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2140 "outer loops.\n"); 2141 Hints.emitRemarkWithHints(); 2142 return false; 2143 } 2144 2145 return true; 2146 } 2147 2148 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2149 OptimizationRemarkEmitter *ORE, 2150 SmallVectorImpl<Loop *> &V) { 2151 // Collect inner loops and outer loops without irreducible control flow. For 2152 // now, only collect outer loops that have explicit vectorization hints. If we 2153 // are stress testing the VPlan H-CFG construction, we collect the outermost 2154 // loop of every loop nest. 2155 if (L.isInnermost() || VPlanBuildStressTest || 2156 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2157 LoopBlocksRPO RPOT(&L); 2158 RPOT.perform(LI); 2159 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2160 V.push_back(&L); 2161 // TODO: Collect inner loops inside marked outer loops in case 2162 // vectorization fails for the outer loop. Do not invoke 2163 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2164 // already known to be reducible. We can use an inherited attribute for 2165 // that. 2166 return; 2167 } 2168 } 2169 for (Loop *InnerL : L) 2170 collectSupportedLoops(*InnerL, LI, ORE, V); 2171 } 2172 2173 namespace { 2174 2175 /// The LoopVectorize Pass. 2176 struct LoopVectorize : public FunctionPass { 2177 /// Pass identification, replacement for typeid 2178 static char ID; 2179 2180 LoopVectorizePass Impl; 2181 2182 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2183 bool VectorizeOnlyWhenForced = false) 2184 : FunctionPass(ID), 2185 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2186 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2187 } 2188 2189 bool runOnFunction(Function &F) override { 2190 if (skipFunction(F)) 2191 return false; 2192 2193 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2194 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2195 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2196 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2197 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2198 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2199 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2200 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2201 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2202 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2203 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2204 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2205 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2206 2207 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2208 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2209 2210 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2211 GetLAA, *ORE, PSI).MadeAnyChange; 2212 } 2213 2214 void getAnalysisUsage(AnalysisUsage &AU) const override { 2215 AU.addRequired<AssumptionCacheTracker>(); 2216 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2217 AU.addRequired<DominatorTreeWrapperPass>(); 2218 AU.addRequired<LoopInfoWrapperPass>(); 2219 AU.addRequired<ScalarEvolutionWrapperPass>(); 2220 AU.addRequired<TargetTransformInfoWrapperPass>(); 2221 AU.addRequired<AAResultsWrapperPass>(); 2222 AU.addRequired<LoopAccessLegacyAnalysis>(); 2223 AU.addRequired<DemandedBitsWrapperPass>(); 2224 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2225 AU.addRequired<InjectTLIMappingsLegacy>(); 2226 2227 // We currently do not preserve loopinfo/dominator analyses with outer loop 2228 // vectorization. Until this is addressed, mark these analyses as preserved 2229 // only for non-VPlan-native path. 2230 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2231 if (!EnableVPlanNativePath) { 2232 AU.addPreserved<LoopInfoWrapperPass>(); 2233 AU.addPreserved<DominatorTreeWrapperPass>(); 2234 } 2235 2236 AU.addPreserved<BasicAAWrapperPass>(); 2237 AU.addPreserved<GlobalsAAWrapperPass>(); 2238 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2239 } 2240 }; 2241 2242 } // end anonymous namespace 2243 2244 //===----------------------------------------------------------------------===// 2245 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2246 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2247 //===----------------------------------------------------------------------===// 2248 2249 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2250 // We need to place the broadcast of invariant variables outside the loop, 2251 // but only if it's proven safe to do so. Else, broadcast will be inside 2252 // vector loop body. 2253 Instruction *Instr = dyn_cast<Instruction>(V); 2254 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2255 (!Instr || 2256 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2257 // Place the code for broadcasting invariant variables in the new preheader. 2258 IRBuilder<>::InsertPointGuard Guard(Builder); 2259 if (SafeToHoist) 2260 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2261 2262 // Broadcast the scalar into all locations in the vector. 2263 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2264 2265 return Shuf; 2266 } 2267 2268 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2269 const InductionDescriptor &II, Value *Step, Value *Start, 2270 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2271 VPTransformState &State) { 2272 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2273 "Expected either an induction phi-node or a truncate of it!"); 2274 2275 // Construct the initial value of the vector IV in the vector loop preheader 2276 auto CurrIP = Builder.saveIP(); 2277 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2278 if (isa<TruncInst>(EntryVal)) { 2279 assert(Start->getType()->isIntegerTy() && 2280 "Truncation requires an integer type"); 2281 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2282 Step = Builder.CreateTrunc(Step, TruncType); 2283 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2284 } 2285 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2286 Value *SteppedStart = 2287 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2288 2289 // We create vector phi nodes for both integer and floating-point induction 2290 // variables. Here, we determine the kind of arithmetic we will perform. 2291 Instruction::BinaryOps AddOp; 2292 Instruction::BinaryOps MulOp; 2293 if (Step->getType()->isIntegerTy()) { 2294 AddOp = Instruction::Add; 2295 MulOp = Instruction::Mul; 2296 } else { 2297 AddOp = II.getInductionOpcode(); 2298 MulOp = Instruction::FMul; 2299 } 2300 2301 // Multiply the vectorization factor by the step using integer or 2302 // floating-point arithmetic as appropriate. 2303 Type *StepType = Step->getType(); 2304 if (Step->getType()->isFloatingPointTy()) 2305 StepType = IntegerType::get(StepType->getContext(), 2306 StepType->getScalarSizeInBits()); 2307 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2308 if (Step->getType()->isFloatingPointTy()) 2309 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2310 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2311 2312 // Create a vector splat to use in the induction update. 2313 // 2314 // FIXME: If the step is non-constant, we create the vector splat with 2315 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2316 // handle a constant vector splat. 2317 Value *SplatVF = isa<Constant>(Mul) 2318 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2319 : Builder.CreateVectorSplat(VF, Mul); 2320 Builder.restoreIP(CurrIP); 2321 2322 // We may need to add the step a number of times, depending on the unroll 2323 // factor. The last of those goes into the PHI. 2324 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2325 &*LoopVectorBody->getFirstInsertionPt()); 2326 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2327 Instruction *LastInduction = VecInd; 2328 for (unsigned Part = 0; Part < UF; ++Part) { 2329 State.set(Def, LastInduction, Part); 2330 2331 if (isa<TruncInst>(EntryVal)) 2332 addMetadata(LastInduction, EntryVal); 2333 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2334 State, Part); 2335 2336 LastInduction = cast<Instruction>( 2337 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2338 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2339 } 2340 2341 // Move the last step to the end of the latch block. This ensures consistent 2342 // placement of all induction updates. 2343 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2344 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2345 auto *ICmp = cast<Instruction>(Br->getCondition()); 2346 LastInduction->moveBefore(ICmp); 2347 LastInduction->setName("vec.ind.next"); 2348 2349 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2350 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2351 } 2352 2353 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2354 return Cost->isScalarAfterVectorization(I, VF) || 2355 Cost->isProfitableToScalarize(I, VF); 2356 } 2357 2358 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2359 if (shouldScalarizeInstruction(IV)) 2360 return true; 2361 auto isScalarInst = [&](User *U) -> bool { 2362 auto *I = cast<Instruction>(U); 2363 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2364 }; 2365 return llvm::any_of(IV->users(), isScalarInst); 2366 } 2367 2368 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2369 const InductionDescriptor &ID, const Instruction *EntryVal, 2370 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2371 unsigned Part, unsigned Lane) { 2372 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2373 "Expected either an induction phi-node or a truncate of it!"); 2374 2375 // This induction variable is not the phi from the original loop but the 2376 // newly-created IV based on the proof that casted Phi is equal to the 2377 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2378 // re-uses the same InductionDescriptor that original IV uses but we don't 2379 // have to do any recording in this case - that is done when original IV is 2380 // processed. 2381 if (isa<TruncInst>(EntryVal)) 2382 return; 2383 2384 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2385 if (Casts.empty()) 2386 return; 2387 // Only the first Cast instruction in the Casts vector is of interest. 2388 // The rest of the Casts (if exist) have no uses outside the 2389 // induction update chain itself. 2390 if (Lane < UINT_MAX) 2391 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2392 else 2393 State.set(CastDef, VectorLoopVal, Part); 2394 } 2395 2396 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2397 TruncInst *Trunc, VPValue *Def, 2398 VPValue *CastDef, 2399 VPTransformState &State) { 2400 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2401 "Primary induction variable must have an integer type"); 2402 2403 auto II = Legal->getInductionVars().find(IV); 2404 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2405 2406 auto ID = II->second; 2407 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2408 2409 // The value from the original loop to which we are mapping the new induction 2410 // variable. 2411 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2412 2413 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2414 2415 // Generate code for the induction step. Note that induction steps are 2416 // required to be loop-invariant 2417 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2418 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2419 "Induction step should be loop invariant"); 2420 if (PSE.getSE()->isSCEVable(IV->getType())) { 2421 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2422 return Exp.expandCodeFor(Step, Step->getType(), 2423 LoopVectorPreHeader->getTerminator()); 2424 } 2425 return cast<SCEVUnknown>(Step)->getValue(); 2426 }; 2427 2428 // The scalar value to broadcast. This is derived from the canonical 2429 // induction variable. If a truncation type is given, truncate the canonical 2430 // induction variable and step. Otherwise, derive these values from the 2431 // induction descriptor. 2432 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2433 Value *ScalarIV = Induction; 2434 if (IV != OldInduction) { 2435 ScalarIV = IV->getType()->isIntegerTy() 2436 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2437 : Builder.CreateCast(Instruction::SIToFP, Induction, 2438 IV->getType()); 2439 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2440 ScalarIV->setName("offset.idx"); 2441 } 2442 if (Trunc) { 2443 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2444 assert(Step->getType()->isIntegerTy() && 2445 "Truncation requires an integer step"); 2446 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2447 Step = Builder.CreateTrunc(Step, TruncType); 2448 } 2449 return ScalarIV; 2450 }; 2451 2452 // Create the vector values from the scalar IV, in the absence of creating a 2453 // vector IV. 2454 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2455 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2456 for (unsigned Part = 0; Part < UF; ++Part) { 2457 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2458 Value *EntryPart = 2459 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2460 ID.getInductionOpcode()); 2461 State.set(Def, EntryPart, Part); 2462 if (Trunc) 2463 addMetadata(EntryPart, Trunc); 2464 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2465 State, Part); 2466 } 2467 }; 2468 2469 // Fast-math-flags propagate from the original induction instruction. 2470 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2471 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2472 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2473 2474 // Now do the actual transformations, and start with creating the step value. 2475 Value *Step = CreateStepValue(ID.getStep()); 2476 if (VF.isZero() || VF.isScalar()) { 2477 Value *ScalarIV = CreateScalarIV(Step); 2478 CreateSplatIV(ScalarIV, Step); 2479 return; 2480 } 2481 2482 // Determine if we want a scalar version of the induction variable. This is 2483 // true if the induction variable itself is not widened, or if it has at 2484 // least one user in the loop that is not widened. 2485 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2486 if (!NeedsScalarIV) { 2487 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2488 State); 2489 return; 2490 } 2491 2492 // Try to create a new independent vector induction variable. If we can't 2493 // create the phi node, we will splat the scalar induction variable in each 2494 // loop iteration. 2495 if (!shouldScalarizeInstruction(EntryVal)) { 2496 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2497 State); 2498 Value *ScalarIV = CreateScalarIV(Step); 2499 // Create scalar steps that can be used by instructions we will later 2500 // scalarize. Note that the addition of the scalar steps will not increase 2501 // the number of instructions in the loop in the common case prior to 2502 // InstCombine. We will be trading one vector extract for each scalar step. 2503 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2504 return; 2505 } 2506 2507 // All IV users are scalar instructions, so only emit a scalar IV, not a 2508 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2509 // predicate used by the masked loads/stores. 2510 Value *ScalarIV = CreateScalarIV(Step); 2511 if (!Cost->isScalarEpilogueAllowed()) 2512 CreateSplatIV(ScalarIV, Step); 2513 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2514 } 2515 2516 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2517 Instruction::BinaryOps BinOp) { 2518 // Create and check the types. 2519 auto *ValVTy = cast<VectorType>(Val->getType()); 2520 ElementCount VLen = ValVTy->getElementCount(); 2521 2522 Type *STy = Val->getType()->getScalarType(); 2523 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2524 "Induction Step must be an integer or FP"); 2525 assert(Step->getType() == STy && "Step has wrong type"); 2526 2527 SmallVector<Constant *, 8> Indices; 2528 2529 // Create a vector of consecutive numbers from zero to VF. 2530 VectorType *InitVecValVTy = ValVTy; 2531 Type *InitVecValSTy = STy; 2532 if (STy->isFloatingPointTy()) { 2533 InitVecValSTy = 2534 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2535 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2536 } 2537 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2538 2539 // Add on StartIdx 2540 Value *StartIdxSplat = Builder.CreateVectorSplat( 2541 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2542 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2543 2544 if (STy->isIntegerTy()) { 2545 Step = Builder.CreateVectorSplat(VLen, Step); 2546 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2547 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2548 // which can be found from the original scalar operations. 2549 Step = Builder.CreateMul(InitVec, Step); 2550 return Builder.CreateAdd(Val, Step, "induction"); 2551 } 2552 2553 // Floating point induction. 2554 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2555 "Binary Opcode should be specified for FP induction"); 2556 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2557 Step = Builder.CreateVectorSplat(VLen, Step); 2558 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2559 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2560 } 2561 2562 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2563 Instruction *EntryVal, 2564 const InductionDescriptor &ID, 2565 VPValue *Def, VPValue *CastDef, 2566 VPTransformState &State) { 2567 // We shouldn't have to build scalar steps if we aren't vectorizing. 2568 assert(VF.isVector() && "VF should be greater than one"); 2569 // Get the value type and ensure it and the step have the same integer type. 2570 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2571 assert(ScalarIVTy == Step->getType() && 2572 "Val and Step should have the same type"); 2573 2574 // We build scalar steps for both integer and floating-point induction 2575 // variables. Here, we determine the kind of arithmetic we will perform. 2576 Instruction::BinaryOps AddOp; 2577 Instruction::BinaryOps MulOp; 2578 if (ScalarIVTy->isIntegerTy()) { 2579 AddOp = Instruction::Add; 2580 MulOp = Instruction::Mul; 2581 } else { 2582 AddOp = ID.getInductionOpcode(); 2583 MulOp = Instruction::FMul; 2584 } 2585 2586 // Determine the number of scalars we need to generate for each unroll 2587 // iteration. If EntryVal is uniform, we only need to generate the first 2588 // lane. Otherwise, we generate all VF values. 2589 bool IsUniform = 2590 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2591 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2592 // Compute the scalar steps and save the results in State. 2593 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2594 ScalarIVTy->getScalarSizeInBits()); 2595 Type *VecIVTy = nullptr; 2596 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2597 if (!IsUniform && VF.isScalable()) { 2598 VecIVTy = VectorType::get(ScalarIVTy, VF); 2599 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2600 SplatStep = Builder.CreateVectorSplat(VF, Step); 2601 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2602 } 2603 2604 for (unsigned Part = 0; Part < UF; ++Part) { 2605 Value *StartIdx0 = 2606 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2607 2608 if (!IsUniform && VF.isScalable()) { 2609 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2610 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2611 if (ScalarIVTy->isFloatingPointTy()) 2612 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2613 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2614 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2615 State.set(Def, Add, Part); 2616 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2617 Part); 2618 // It's useful to record the lane values too for the known minimum number 2619 // of elements so we do those below. This improves the code quality when 2620 // trying to extract the first element, for example. 2621 } 2622 2623 if (ScalarIVTy->isFloatingPointTy()) 2624 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2625 2626 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2627 Value *StartIdx = Builder.CreateBinOp( 2628 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2629 // The step returned by `createStepForVF` is a runtime-evaluated value 2630 // when VF is scalable. Otherwise, it should be folded into a Constant. 2631 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2632 "Expected StartIdx to be folded to a constant when VF is not " 2633 "scalable"); 2634 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2635 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2636 State.set(Def, Add, VPIteration(Part, Lane)); 2637 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2638 Part, Lane); 2639 } 2640 } 2641 } 2642 2643 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2644 const VPIteration &Instance, 2645 VPTransformState &State) { 2646 Value *ScalarInst = State.get(Def, Instance); 2647 Value *VectorValue = State.get(Def, Instance.Part); 2648 VectorValue = Builder.CreateInsertElement( 2649 VectorValue, ScalarInst, 2650 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2651 State.set(Def, VectorValue, Instance.Part); 2652 } 2653 2654 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2655 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2656 return Builder.CreateVectorReverse(Vec, "reverse"); 2657 } 2658 2659 // Return whether we allow using masked interleave-groups (for dealing with 2660 // strided loads/stores that reside in predicated blocks, or for dealing 2661 // with gaps). 2662 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2663 // If an override option has been passed in for interleaved accesses, use it. 2664 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2665 return EnableMaskedInterleavedMemAccesses; 2666 2667 return TTI.enableMaskedInterleavedAccessVectorization(); 2668 } 2669 2670 // Try to vectorize the interleave group that \p Instr belongs to. 2671 // 2672 // E.g. Translate following interleaved load group (factor = 3): 2673 // for (i = 0; i < N; i+=3) { 2674 // R = Pic[i]; // Member of index 0 2675 // G = Pic[i+1]; // Member of index 1 2676 // B = Pic[i+2]; // Member of index 2 2677 // ... // do something to R, G, B 2678 // } 2679 // To: 2680 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2681 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2682 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2683 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2684 // 2685 // Or translate following interleaved store group (factor = 3): 2686 // for (i = 0; i < N; i+=3) { 2687 // ... do something to R, G, B 2688 // Pic[i] = R; // Member of index 0 2689 // Pic[i+1] = G; // Member of index 1 2690 // Pic[i+2] = B; // Member of index 2 2691 // } 2692 // To: 2693 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2694 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2695 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2696 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2697 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2698 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2699 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2700 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2701 VPValue *BlockInMask) { 2702 Instruction *Instr = Group->getInsertPos(); 2703 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2704 2705 // Prepare for the vector type of the interleaved load/store. 2706 Type *ScalarTy = getLoadStoreType(Instr); 2707 unsigned InterleaveFactor = Group->getFactor(); 2708 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2709 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2710 2711 // Prepare for the new pointers. 2712 SmallVector<Value *, 2> AddrParts; 2713 unsigned Index = Group->getIndex(Instr); 2714 2715 // TODO: extend the masked interleaved-group support to reversed access. 2716 assert((!BlockInMask || !Group->isReverse()) && 2717 "Reversed masked interleave-group not supported."); 2718 2719 // If the group is reverse, adjust the index to refer to the last vector lane 2720 // instead of the first. We adjust the index from the first vector lane, 2721 // rather than directly getting the pointer for lane VF - 1, because the 2722 // pointer operand of the interleaved access is supposed to be uniform. For 2723 // uniform instructions, we're only required to generate a value for the 2724 // first vector lane in each unroll iteration. 2725 if (Group->isReverse()) 2726 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2727 2728 for (unsigned Part = 0; Part < UF; Part++) { 2729 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2730 setDebugLocFromInst(AddrPart); 2731 2732 // Notice current instruction could be any index. Need to adjust the address 2733 // to the member of index 0. 2734 // 2735 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2736 // b = A[i]; // Member of index 0 2737 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2738 // 2739 // E.g. A[i+1] = a; // Member of index 1 2740 // A[i] = b; // Member of index 0 2741 // A[i+2] = c; // Member of index 2 (Current instruction) 2742 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2743 2744 bool InBounds = false; 2745 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2746 InBounds = gep->isInBounds(); 2747 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2748 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2749 2750 // Cast to the vector pointer type. 2751 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2752 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2753 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2754 } 2755 2756 setDebugLocFromInst(Instr); 2757 Value *PoisonVec = PoisonValue::get(VecTy); 2758 2759 Value *MaskForGaps = nullptr; 2760 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2761 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2762 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2763 } 2764 2765 // Vectorize the interleaved load group. 2766 if (isa<LoadInst>(Instr)) { 2767 // For each unroll part, create a wide load for the group. 2768 SmallVector<Value *, 2> NewLoads; 2769 for (unsigned Part = 0; Part < UF; Part++) { 2770 Instruction *NewLoad; 2771 if (BlockInMask || MaskForGaps) { 2772 assert(useMaskedInterleavedAccesses(*TTI) && 2773 "masked interleaved groups are not allowed."); 2774 Value *GroupMask = MaskForGaps; 2775 if (BlockInMask) { 2776 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2777 Value *ShuffledMask = Builder.CreateShuffleVector( 2778 BlockInMaskPart, 2779 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2780 "interleaved.mask"); 2781 GroupMask = MaskForGaps 2782 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2783 MaskForGaps) 2784 : ShuffledMask; 2785 } 2786 NewLoad = 2787 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2788 GroupMask, PoisonVec, "wide.masked.vec"); 2789 } 2790 else 2791 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2792 Group->getAlign(), "wide.vec"); 2793 Group->addMetadata(NewLoad); 2794 NewLoads.push_back(NewLoad); 2795 } 2796 2797 // For each member in the group, shuffle out the appropriate data from the 2798 // wide loads. 2799 unsigned J = 0; 2800 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2801 Instruction *Member = Group->getMember(I); 2802 2803 // Skip the gaps in the group. 2804 if (!Member) 2805 continue; 2806 2807 auto StrideMask = 2808 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2809 for (unsigned Part = 0; Part < UF; Part++) { 2810 Value *StridedVec = Builder.CreateShuffleVector( 2811 NewLoads[Part], StrideMask, "strided.vec"); 2812 2813 // If this member has different type, cast the result type. 2814 if (Member->getType() != ScalarTy) { 2815 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2816 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2817 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2818 } 2819 2820 if (Group->isReverse()) 2821 StridedVec = reverseVector(StridedVec); 2822 2823 State.set(VPDefs[J], StridedVec, Part); 2824 } 2825 ++J; 2826 } 2827 return; 2828 } 2829 2830 // The sub vector type for current instruction. 2831 auto *SubVT = VectorType::get(ScalarTy, VF); 2832 2833 // Vectorize the interleaved store group. 2834 for (unsigned Part = 0; Part < UF; Part++) { 2835 // Collect the stored vector from each member. 2836 SmallVector<Value *, 4> StoredVecs; 2837 for (unsigned i = 0; i < InterleaveFactor; i++) { 2838 // Interleaved store group doesn't allow a gap, so each index has a member 2839 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2840 2841 Value *StoredVec = State.get(StoredValues[i], Part); 2842 2843 if (Group->isReverse()) 2844 StoredVec = reverseVector(StoredVec); 2845 2846 // If this member has different type, cast it to a unified type. 2847 2848 if (StoredVec->getType() != SubVT) 2849 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2850 2851 StoredVecs.push_back(StoredVec); 2852 } 2853 2854 // Concatenate all vectors into a wide vector. 2855 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2856 2857 // Interleave the elements in the wide vector. 2858 Value *IVec = Builder.CreateShuffleVector( 2859 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2860 "interleaved.vec"); 2861 2862 Instruction *NewStoreInstr; 2863 if (BlockInMask) { 2864 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2865 Value *ShuffledMask = Builder.CreateShuffleVector( 2866 BlockInMaskPart, 2867 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2868 "interleaved.mask"); 2869 NewStoreInstr = Builder.CreateMaskedStore( 2870 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2871 } 2872 else 2873 NewStoreInstr = 2874 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2875 2876 Group->addMetadata(NewStoreInstr); 2877 } 2878 } 2879 2880 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2881 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2882 VPValue *StoredValue, VPValue *BlockInMask) { 2883 // Attempt to issue a wide load. 2884 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2885 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2886 2887 assert((LI || SI) && "Invalid Load/Store instruction"); 2888 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2889 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2890 2891 LoopVectorizationCostModel::InstWidening Decision = 2892 Cost->getWideningDecision(Instr, VF); 2893 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2894 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2895 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2896 "CM decision is not to widen the memory instruction"); 2897 2898 Type *ScalarDataTy = getLoadStoreType(Instr); 2899 2900 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2901 const Align Alignment = getLoadStoreAlignment(Instr); 2902 2903 // Determine if the pointer operand of the access is either consecutive or 2904 // reverse consecutive. 2905 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2906 bool ConsecutiveStride = 2907 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2908 bool CreateGatherScatter = 2909 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2910 2911 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2912 // gather/scatter. Otherwise Decision should have been to Scalarize. 2913 assert((ConsecutiveStride || CreateGatherScatter) && 2914 "The instruction should be scalarized"); 2915 (void)ConsecutiveStride; 2916 2917 VectorParts BlockInMaskParts(UF); 2918 bool isMaskRequired = BlockInMask; 2919 if (isMaskRequired) 2920 for (unsigned Part = 0; Part < UF; ++Part) 2921 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2922 2923 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2924 // Calculate the pointer for the specific unroll-part. 2925 GetElementPtrInst *PartPtr = nullptr; 2926 2927 bool InBounds = false; 2928 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2929 InBounds = gep->isInBounds(); 2930 if (Reverse) { 2931 // If the address is consecutive but reversed, then the 2932 // wide store needs to start at the last vector element. 2933 // RunTimeVF = VScale * VF.getKnownMinValue() 2934 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2935 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2936 // NumElt = -Part * RunTimeVF 2937 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2938 // LastLane = 1 - RunTimeVF 2939 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2940 PartPtr = 2941 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2942 PartPtr->setIsInBounds(InBounds); 2943 PartPtr = cast<GetElementPtrInst>( 2944 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2945 PartPtr->setIsInBounds(InBounds); 2946 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2947 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2948 } else { 2949 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2950 PartPtr = cast<GetElementPtrInst>( 2951 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2952 PartPtr->setIsInBounds(InBounds); 2953 } 2954 2955 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2956 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2957 }; 2958 2959 // Handle Stores: 2960 if (SI) { 2961 setDebugLocFromInst(SI); 2962 2963 for (unsigned Part = 0; Part < UF; ++Part) { 2964 Instruction *NewSI = nullptr; 2965 Value *StoredVal = State.get(StoredValue, Part); 2966 if (CreateGatherScatter) { 2967 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2968 Value *VectorGep = State.get(Addr, Part); 2969 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2970 MaskPart); 2971 } else { 2972 if (Reverse) { 2973 // If we store to reverse consecutive memory locations, then we need 2974 // to reverse the order of elements in the stored value. 2975 StoredVal = reverseVector(StoredVal); 2976 // We don't want to update the value in the map as it might be used in 2977 // another expression. So don't call resetVectorValue(StoredVal). 2978 } 2979 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2980 if (isMaskRequired) 2981 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2982 BlockInMaskParts[Part]); 2983 else 2984 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2985 } 2986 addMetadata(NewSI, SI); 2987 } 2988 return; 2989 } 2990 2991 // Handle loads. 2992 assert(LI && "Must have a load instruction"); 2993 setDebugLocFromInst(LI); 2994 for (unsigned Part = 0; Part < UF; ++Part) { 2995 Value *NewLI; 2996 if (CreateGatherScatter) { 2997 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2998 Value *VectorGep = State.get(Addr, Part); 2999 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3000 nullptr, "wide.masked.gather"); 3001 addMetadata(NewLI, LI); 3002 } else { 3003 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3004 if (isMaskRequired) 3005 NewLI = Builder.CreateMaskedLoad( 3006 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3007 PoisonValue::get(DataTy), "wide.masked.load"); 3008 else 3009 NewLI = 3010 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3011 3012 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3013 addMetadata(NewLI, LI); 3014 if (Reverse) 3015 NewLI = reverseVector(NewLI); 3016 } 3017 3018 State.set(Def, NewLI, Part); 3019 } 3020 } 3021 3022 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3023 VPUser &User, 3024 const VPIteration &Instance, 3025 bool IfPredicateInstr, 3026 VPTransformState &State) { 3027 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3028 3029 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3030 // the first lane and part. 3031 if (isa<NoAliasScopeDeclInst>(Instr)) 3032 if (!Instance.isFirstIteration()) 3033 return; 3034 3035 setDebugLocFromInst(Instr); 3036 3037 // Does this instruction return a value ? 3038 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3039 3040 Instruction *Cloned = Instr->clone(); 3041 if (!IsVoidRetTy) 3042 Cloned->setName(Instr->getName() + ".cloned"); 3043 3044 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3045 Builder.GetInsertPoint()); 3046 // Replace the operands of the cloned instructions with their scalar 3047 // equivalents in the new loop. 3048 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3049 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3050 auto InputInstance = Instance; 3051 if (!Operand || !OrigLoop->contains(Operand) || 3052 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3053 InputInstance.Lane = VPLane::getFirstLane(); 3054 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3055 Cloned->setOperand(op, NewOp); 3056 } 3057 addNewMetadata(Cloned, Instr); 3058 3059 // Place the cloned scalar in the new loop. 3060 Builder.Insert(Cloned); 3061 3062 State.set(Def, Cloned, Instance); 3063 3064 // If we just cloned a new assumption, add it the assumption cache. 3065 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3066 AC->registerAssumption(II); 3067 3068 // End if-block. 3069 if (IfPredicateInstr) 3070 PredicatedInstructions.push_back(Cloned); 3071 } 3072 3073 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3074 Value *End, Value *Step, 3075 Instruction *DL) { 3076 BasicBlock *Header = L->getHeader(); 3077 BasicBlock *Latch = L->getLoopLatch(); 3078 // As we're just creating this loop, it's possible no latch exists 3079 // yet. If so, use the header as this will be a single block loop. 3080 if (!Latch) 3081 Latch = Header; 3082 3083 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3084 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3085 setDebugLocFromInst(OldInst, &B); 3086 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3087 3088 B.SetInsertPoint(Latch->getTerminator()); 3089 setDebugLocFromInst(OldInst, &B); 3090 3091 // Create i+1 and fill the PHINode. 3092 // 3093 // If the tail is not folded, we know that End - Start >= Step (either 3094 // statically or through the minimum iteration checks). We also know that both 3095 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3096 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3097 // overflows and we can mark the induction increment as NUW. 3098 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3099 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3100 Induction->addIncoming(Start, L->getLoopPreheader()); 3101 Induction->addIncoming(Next, Latch); 3102 // Create the compare. 3103 Value *ICmp = B.CreateICmpEQ(Next, End); 3104 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3105 3106 // Now we have two terminators. Remove the old one from the block. 3107 Latch->getTerminator()->eraseFromParent(); 3108 3109 return Induction; 3110 } 3111 3112 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3113 if (TripCount) 3114 return TripCount; 3115 3116 assert(L && "Create Trip Count for null loop."); 3117 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3118 // Find the loop boundaries. 3119 ScalarEvolution *SE = PSE.getSE(); 3120 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3121 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3122 "Invalid loop count"); 3123 3124 Type *IdxTy = Legal->getWidestInductionType(); 3125 assert(IdxTy && "No type for induction"); 3126 3127 // The exit count might have the type of i64 while the phi is i32. This can 3128 // happen if we have an induction variable that is sign extended before the 3129 // compare. The only way that we get a backedge taken count is that the 3130 // induction variable was signed and as such will not overflow. In such a case 3131 // truncation is legal. 3132 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3133 IdxTy->getPrimitiveSizeInBits()) 3134 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3135 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3136 3137 // Get the total trip count from the count by adding 1. 3138 const SCEV *ExitCount = SE->getAddExpr( 3139 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3140 3141 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3142 3143 // Expand the trip count and place the new instructions in the preheader. 3144 // Notice that the pre-header does not change, only the loop body. 3145 SCEVExpander Exp(*SE, DL, "induction"); 3146 3147 // Count holds the overall loop count (N). 3148 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3149 L->getLoopPreheader()->getTerminator()); 3150 3151 if (TripCount->getType()->isPointerTy()) 3152 TripCount = 3153 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3154 L->getLoopPreheader()->getTerminator()); 3155 3156 return TripCount; 3157 } 3158 3159 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3160 if (VectorTripCount) 3161 return VectorTripCount; 3162 3163 Value *TC = getOrCreateTripCount(L); 3164 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3165 3166 Type *Ty = TC->getType(); 3167 // This is where we can make the step a runtime constant. 3168 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3169 3170 // If the tail is to be folded by masking, round the number of iterations N 3171 // up to a multiple of Step instead of rounding down. This is done by first 3172 // adding Step-1 and then rounding down. Note that it's ok if this addition 3173 // overflows: the vector induction variable will eventually wrap to zero given 3174 // that it starts at zero and its Step is a power of two; the loop will then 3175 // exit, with the last early-exit vector comparison also producing all-true. 3176 if (Cost->foldTailByMasking()) { 3177 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3178 "VF*UF must be a power of 2 when folding tail by masking"); 3179 assert(!VF.isScalable() && 3180 "Tail folding not yet supported for scalable vectors"); 3181 TC = Builder.CreateAdd( 3182 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3183 } 3184 3185 // Now we need to generate the expression for the part of the loop that the 3186 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3187 // iterations are not required for correctness, or N - Step, otherwise. Step 3188 // is equal to the vectorization factor (number of SIMD elements) times the 3189 // unroll factor (number of SIMD instructions). 3190 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3191 3192 // There are cases where we *must* run at least one iteration in the remainder 3193 // loop. See the cost model for when this can happen. If the step evenly 3194 // divides the trip count, we set the remainder to be equal to the step. If 3195 // the step does not evenly divide the trip count, no adjustment is necessary 3196 // since there will already be scalar iterations. Note that the minimum 3197 // iterations check ensures that N >= Step. 3198 if (Cost->requiresScalarEpilogue(VF)) { 3199 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3200 R = Builder.CreateSelect(IsZero, Step, R); 3201 } 3202 3203 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3204 3205 return VectorTripCount; 3206 } 3207 3208 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3209 const DataLayout &DL) { 3210 // Verify that V is a vector type with same number of elements as DstVTy. 3211 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3212 unsigned VF = DstFVTy->getNumElements(); 3213 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3214 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3215 Type *SrcElemTy = SrcVecTy->getElementType(); 3216 Type *DstElemTy = DstFVTy->getElementType(); 3217 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3218 "Vector elements must have same size"); 3219 3220 // Do a direct cast if element types are castable. 3221 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3222 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3223 } 3224 // V cannot be directly casted to desired vector type. 3225 // May happen when V is a floating point vector but DstVTy is a vector of 3226 // pointers or vice-versa. Handle this using a two-step bitcast using an 3227 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3228 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3229 "Only one type should be a pointer type"); 3230 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3231 "Only one type should be a floating point type"); 3232 Type *IntTy = 3233 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3234 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3235 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3236 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3237 } 3238 3239 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3240 BasicBlock *Bypass) { 3241 Value *Count = getOrCreateTripCount(L); 3242 // Reuse existing vector loop preheader for TC checks. 3243 // Note that new preheader block is generated for vector loop. 3244 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3245 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3246 3247 // Generate code to check if the loop's trip count is less than VF * UF, or 3248 // equal to it in case a scalar epilogue is required; this implies that the 3249 // vector trip count is zero. This check also covers the case where adding one 3250 // to the backedge-taken count overflowed leading to an incorrect trip count 3251 // of zero. In this case we will also jump to the scalar loop. 3252 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3253 : ICmpInst::ICMP_ULT; 3254 3255 // If tail is to be folded, vector loop takes care of all iterations. 3256 Value *CheckMinIters = Builder.getFalse(); 3257 if (!Cost->foldTailByMasking()) { 3258 Value *Step = 3259 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3260 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3261 } 3262 // Create new preheader for vector loop. 3263 LoopVectorPreHeader = 3264 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3265 "vector.ph"); 3266 3267 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3268 DT->getNode(Bypass)->getIDom()) && 3269 "TC check is expected to dominate Bypass"); 3270 3271 // Update dominator for Bypass & LoopExit (if needed). 3272 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3273 if (!Cost->requiresScalarEpilogue(VF)) 3274 // If there is an epilogue which must run, there's no edge from the 3275 // middle block to exit blocks and thus no need to update the immediate 3276 // dominator of the exit blocks. 3277 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3278 3279 ReplaceInstWithInst( 3280 TCCheckBlock->getTerminator(), 3281 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3282 LoopBypassBlocks.push_back(TCCheckBlock); 3283 } 3284 3285 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3286 3287 BasicBlock *const SCEVCheckBlock = 3288 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3289 if (!SCEVCheckBlock) 3290 return nullptr; 3291 3292 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3293 (OptForSizeBasedOnProfile && 3294 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3295 "Cannot SCEV check stride or overflow when optimizing for size"); 3296 3297 3298 // Update dominator only if this is first RT check. 3299 if (LoopBypassBlocks.empty()) { 3300 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3301 if (!Cost->requiresScalarEpilogue(VF)) 3302 // If there is an epilogue which must run, there's no edge from the 3303 // middle block to exit blocks and thus no need to update the immediate 3304 // dominator of the exit blocks. 3305 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3306 } 3307 3308 LoopBypassBlocks.push_back(SCEVCheckBlock); 3309 AddedSafetyChecks = true; 3310 return SCEVCheckBlock; 3311 } 3312 3313 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3314 BasicBlock *Bypass) { 3315 // VPlan-native path does not do any analysis for runtime checks currently. 3316 if (EnableVPlanNativePath) 3317 return nullptr; 3318 3319 BasicBlock *const MemCheckBlock = 3320 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3321 3322 // Check if we generated code that checks in runtime if arrays overlap. We put 3323 // the checks into a separate block to make the more common case of few 3324 // elements faster. 3325 if (!MemCheckBlock) 3326 return nullptr; 3327 3328 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3329 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3330 "Cannot emit memory checks when optimizing for size, unless forced " 3331 "to vectorize."); 3332 ORE->emit([&]() { 3333 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3334 L->getStartLoc(), L->getHeader()) 3335 << "Code-size may be reduced by not forcing " 3336 "vectorization, or by source-code modifications " 3337 "eliminating the need for runtime checks " 3338 "(e.g., adding 'restrict')."; 3339 }); 3340 } 3341 3342 LoopBypassBlocks.push_back(MemCheckBlock); 3343 3344 AddedSafetyChecks = true; 3345 3346 // We currently don't use LoopVersioning for the actual loop cloning but we 3347 // still use it to add the noalias metadata. 3348 LVer = std::make_unique<LoopVersioning>( 3349 *Legal->getLAI(), 3350 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3351 DT, PSE.getSE()); 3352 LVer->prepareNoAliasMetadata(); 3353 return MemCheckBlock; 3354 } 3355 3356 Value *InnerLoopVectorizer::emitTransformedIndex( 3357 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3358 const InductionDescriptor &ID) const { 3359 3360 SCEVExpander Exp(*SE, DL, "induction"); 3361 auto Step = ID.getStep(); 3362 auto StartValue = ID.getStartValue(); 3363 assert(Index->getType()->getScalarType() == Step->getType() && 3364 "Index scalar type does not match StepValue type"); 3365 3366 // Note: the IR at this point is broken. We cannot use SE to create any new 3367 // SCEV and then expand it, hoping that SCEV's simplification will give us 3368 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3369 // lead to various SCEV crashes. So all we can do is to use builder and rely 3370 // on InstCombine for future simplifications. Here we handle some trivial 3371 // cases only. 3372 auto CreateAdd = [&B](Value *X, Value *Y) { 3373 assert(X->getType() == Y->getType() && "Types don't match!"); 3374 if (auto *CX = dyn_cast<ConstantInt>(X)) 3375 if (CX->isZero()) 3376 return Y; 3377 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3378 if (CY->isZero()) 3379 return X; 3380 return B.CreateAdd(X, Y); 3381 }; 3382 3383 // We allow X to be a vector type, in which case Y will potentially be 3384 // splatted into a vector with the same element count. 3385 auto CreateMul = [&B](Value *X, Value *Y) { 3386 assert(X->getType()->getScalarType() == Y->getType() && 3387 "Types don't match!"); 3388 if (auto *CX = dyn_cast<ConstantInt>(X)) 3389 if (CX->isOne()) 3390 return Y; 3391 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3392 if (CY->isOne()) 3393 return X; 3394 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3395 if (XVTy && !isa<VectorType>(Y->getType())) 3396 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3397 return B.CreateMul(X, Y); 3398 }; 3399 3400 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3401 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3402 // the DomTree is not kept up-to-date for additional blocks generated in the 3403 // vector loop. By using the header as insertion point, we guarantee that the 3404 // expanded instructions dominate all their uses. 3405 auto GetInsertPoint = [this, &B]() { 3406 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3407 if (InsertBB != LoopVectorBody && 3408 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3409 return LoopVectorBody->getTerminator(); 3410 return &*B.GetInsertPoint(); 3411 }; 3412 3413 switch (ID.getKind()) { 3414 case InductionDescriptor::IK_IntInduction: { 3415 assert(!isa<VectorType>(Index->getType()) && 3416 "Vector indices not supported for integer inductions yet"); 3417 assert(Index->getType() == StartValue->getType() && 3418 "Index type does not match StartValue type"); 3419 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3420 return B.CreateSub(StartValue, Index); 3421 auto *Offset = CreateMul( 3422 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3423 return CreateAdd(StartValue, Offset); 3424 } 3425 case InductionDescriptor::IK_PtrInduction: { 3426 assert(isa<SCEVConstant>(Step) && 3427 "Expected constant step for pointer induction"); 3428 return B.CreateGEP( 3429 StartValue->getType()->getPointerElementType(), StartValue, 3430 CreateMul(Index, 3431 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3432 GetInsertPoint()))); 3433 } 3434 case InductionDescriptor::IK_FpInduction: { 3435 assert(!isa<VectorType>(Index->getType()) && 3436 "Vector indices not supported for FP inductions yet"); 3437 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3438 auto InductionBinOp = ID.getInductionBinOp(); 3439 assert(InductionBinOp && 3440 (InductionBinOp->getOpcode() == Instruction::FAdd || 3441 InductionBinOp->getOpcode() == Instruction::FSub) && 3442 "Original bin op should be defined for FP induction"); 3443 3444 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3445 Value *MulExp = B.CreateFMul(StepValue, Index); 3446 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3447 "induction"); 3448 } 3449 case InductionDescriptor::IK_NoInduction: 3450 return nullptr; 3451 } 3452 llvm_unreachable("invalid enum"); 3453 } 3454 3455 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3456 LoopScalarBody = OrigLoop->getHeader(); 3457 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3458 assert(LoopVectorPreHeader && "Invalid loop structure"); 3459 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3460 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3461 "multiple exit loop without required epilogue?"); 3462 3463 LoopMiddleBlock = 3464 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3465 LI, nullptr, Twine(Prefix) + "middle.block"); 3466 LoopScalarPreHeader = 3467 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3468 nullptr, Twine(Prefix) + "scalar.ph"); 3469 3470 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3471 3472 // Set up the middle block terminator. Two cases: 3473 // 1) If we know that we must execute the scalar epilogue, emit an 3474 // unconditional branch. 3475 // 2) Otherwise, we must have a single unique exit block (due to how we 3476 // implement the multiple exit case). In this case, set up a conditonal 3477 // branch from the middle block to the loop scalar preheader, and the 3478 // exit block. completeLoopSkeleton will update the condition to use an 3479 // iteration check, if required to decide whether to execute the remainder. 3480 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3481 BranchInst::Create(LoopScalarPreHeader) : 3482 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3483 Builder.getTrue()); 3484 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3485 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3486 3487 // We intentionally don't let SplitBlock to update LoopInfo since 3488 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3489 // LoopVectorBody is explicitly added to the correct place few lines later. 3490 LoopVectorBody = 3491 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3492 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3493 3494 // Update dominator for loop exit. 3495 if (!Cost->requiresScalarEpilogue(VF)) 3496 // If there is an epilogue which must run, there's no edge from the 3497 // middle block to exit blocks and thus no need to update the immediate 3498 // dominator of the exit blocks. 3499 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3500 3501 // Create and register the new vector loop. 3502 Loop *Lp = LI->AllocateLoop(); 3503 Loop *ParentLoop = OrigLoop->getParentLoop(); 3504 3505 // Insert the new loop into the loop nest and register the new basic blocks 3506 // before calling any utilities such as SCEV that require valid LoopInfo. 3507 if (ParentLoop) { 3508 ParentLoop->addChildLoop(Lp); 3509 } else { 3510 LI->addTopLevelLoop(Lp); 3511 } 3512 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3513 return Lp; 3514 } 3515 3516 void InnerLoopVectorizer::createInductionResumeValues( 3517 Loop *L, Value *VectorTripCount, 3518 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3519 assert(VectorTripCount && L && "Expected valid arguments"); 3520 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3521 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3522 "Inconsistent information about additional bypass."); 3523 // We are going to resume the execution of the scalar loop. 3524 // Go over all of the induction variables that we found and fix the 3525 // PHIs that are left in the scalar version of the loop. 3526 // The starting values of PHI nodes depend on the counter of the last 3527 // iteration in the vectorized loop. 3528 // If we come from a bypass edge then we need to start from the original 3529 // start value. 3530 for (auto &InductionEntry : Legal->getInductionVars()) { 3531 PHINode *OrigPhi = InductionEntry.first; 3532 InductionDescriptor II = InductionEntry.second; 3533 3534 // Create phi nodes to merge from the backedge-taken check block. 3535 PHINode *BCResumeVal = 3536 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3537 LoopScalarPreHeader->getTerminator()); 3538 // Copy original phi DL over to the new one. 3539 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3540 Value *&EndValue = IVEndValues[OrigPhi]; 3541 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3542 if (OrigPhi == OldInduction) { 3543 // We know what the end value is. 3544 EndValue = VectorTripCount; 3545 } else { 3546 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3547 3548 // Fast-math-flags propagate from the original induction instruction. 3549 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3550 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3551 3552 Type *StepType = II.getStep()->getType(); 3553 Instruction::CastOps CastOp = 3554 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3555 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3556 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3557 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3558 EndValue->setName("ind.end"); 3559 3560 // Compute the end value for the additional bypass (if applicable). 3561 if (AdditionalBypass.first) { 3562 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3563 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3564 StepType, true); 3565 CRD = 3566 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3567 EndValueFromAdditionalBypass = 3568 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3569 EndValueFromAdditionalBypass->setName("ind.end"); 3570 } 3571 } 3572 // The new PHI merges the original incoming value, in case of a bypass, 3573 // or the value at the end of the vectorized loop. 3574 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3575 3576 // Fix the scalar body counter (PHI node). 3577 // The old induction's phi node in the scalar body needs the truncated 3578 // value. 3579 for (BasicBlock *BB : LoopBypassBlocks) 3580 BCResumeVal->addIncoming(II.getStartValue(), BB); 3581 3582 if (AdditionalBypass.first) 3583 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3584 EndValueFromAdditionalBypass); 3585 3586 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3587 } 3588 } 3589 3590 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3591 MDNode *OrigLoopID) { 3592 assert(L && "Expected valid loop."); 3593 3594 // The trip counts should be cached by now. 3595 Value *Count = getOrCreateTripCount(L); 3596 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3597 3598 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3599 3600 // Add a check in the middle block to see if we have completed 3601 // all of the iterations in the first vector loop. Three cases: 3602 // 1) If we require a scalar epilogue, there is no conditional branch as 3603 // we unconditionally branch to the scalar preheader. Do nothing. 3604 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3605 // Thus if tail is to be folded, we know we don't need to run the 3606 // remainder and we can use the previous value for the condition (true). 3607 // 3) Otherwise, construct a runtime check. 3608 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3609 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3610 Count, VectorTripCount, "cmp.n", 3611 LoopMiddleBlock->getTerminator()); 3612 3613 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3614 // of the corresponding compare because they may have ended up with 3615 // different line numbers and we want to avoid awkward line stepping while 3616 // debugging. Eg. if the compare has got a line number inside the loop. 3617 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3618 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3619 } 3620 3621 // Get ready to start creating new instructions into the vectorized body. 3622 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3623 "Inconsistent vector loop preheader"); 3624 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3625 3626 Optional<MDNode *> VectorizedLoopID = 3627 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3628 LLVMLoopVectorizeFollowupVectorized}); 3629 if (VectorizedLoopID.hasValue()) { 3630 L->setLoopID(VectorizedLoopID.getValue()); 3631 3632 // Do not setAlreadyVectorized if loop attributes have been defined 3633 // explicitly. 3634 return LoopVectorPreHeader; 3635 } 3636 3637 // Keep all loop hints from the original loop on the vector loop (we'll 3638 // replace the vectorizer-specific hints below). 3639 if (MDNode *LID = OrigLoop->getLoopID()) 3640 L->setLoopID(LID); 3641 3642 LoopVectorizeHints Hints(L, true, *ORE); 3643 Hints.setAlreadyVectorized(); 3644 3645 #ifdef EXPENSIVE_CHECKS 3646 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3647 LI->verify(*DT); 3648 #endif 3649 3650 return LoopVectorPreHeader; 3651 } 3652 3653 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3654 /* 3655 In this function we generate a new loop. The new loop will contain 3656 the vectorized instructions while the old loop will continue to run the 3657 scalar remainder. 3658 3659 [ ] <-- loop iteration number check. 3660 / | 3661 / v 3662 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3663 | / | 3664 | / v 3665 || [ ] <-- vector pre header. 3666 |/ | 3667 | v 3668 | [ ] \ 3669 | [ ]_| <-- vector loop. 3670 | | 3671 | v 3672 \ -[ ] <--- middle-block. 3673 \/ | 3674 /\ v 3675 | ->[ ] <--- new preheader. 3676 | | 3677 (opt) v <-- edge from middle to exit iff epilogue is not required. 3678 | [ ] \ 3679 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3680 \ | 3681 \ v 3682 >[ ] <-- exit block(s). 3683 ... 3684 */ 3685 3686 // Get the metadata of the original loop before it gets modified. 3687 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3688 3689 // Workaround! Compute the trip count of the original loop and cache it 3690 // before we start modifying the CFG. This code has a systemic problem 3691 // wherein it tries to run analysis over partially constructed IR; this is 3692 // wrong, and not simply for SCEV. The trip count of the original loop 3693 // simply happens to be prone to hitting this in practice. In theory, we 3694 // can hit the same issue for any SCEV, or ValueTracking query done during 3695 // mutation. See PR49900. 3696 getOrCreateTripCount(OrigLoop); 3697 3698 // Create an empty vector loop, and prepare basic blocks for the runtime 3699 // checks. 3700 Loop *Lp = createVectorLoopSkeleton(""); 3701 3702 // Now, compare the new count to zero. If it is zero skip the vector loop and 3703 // jump to the scalar loop. This check also covers the case where the 3704 // backedge-taken count is uint##_max: adding one to it will overflow leading 3705 // to an incorrect trip count of zero. In this (rare) case we will also jump 3706 // to the scalar loop. 3707 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3708 3709 // Generate the code to check any assumptions that we've made for SCEV 3710 // expressions. 3711 emitSCEVChecks(Lp, LoopScalarPreHeader); 3712 3713 // Generate the code that checks in runtime if arrays overlap. We put the 3714 // checks into a separate block to make the more common case of few elements 3715 // faster. 3716 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3717 3718 // Some loops have a single integer induction variable, while other loops 3719 // don't. One example is c++ iterators that often have multiple pointer 3720 // induction variables. In the code below we also support a case where we 3721 // don't have a single induction variable. 3722 // 3723 // We try to obtain an induction variable from the original loop as hard 3724 // as possible. However if we don't find one that: 3725 // - is an integer 3726 // - counts from zero, stepping by one 3727 // - is the size of the widest induction variable type 3728 // then we create a new one. 3729 OldInduction = Legal->getPrimaryInduction(); 3730 Type *IdxTy = Legal->getWidestInductionType(); 3731 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3732 // The loop step is equal to the vectorization factor (num of SIMD elements) 3733 // times the unroll factor (num of SIMD instructions). 3734 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3735 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3736 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3737 Induction = 3738 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3739 getDebugLocFromInstOrOperands(OldInduction)); 3740 3741 // Emit phis for the new starting index of the scalar loop. 3742 createInductionResumeValues(Lp, CountRoundDown); 3743 3744 return completeLoopSkeleton(Lp, OrigLoopID); 3745 } 3746 3747 // Fix up external users of the induction variable. At this point, we are 3748 // in LCSSA form, with all external PHIs that use the IV having one input value, 3749 // coming from the remainder loop. We need those PHIs to also have a correct 3750 // value for the IV when arriving directly from the middle block. 3751 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3752 const InductionDescriptor &II, 3753 Value *CountRoundDown, Value *EndValue, 3754 BasicBlock *MiddleBlock) { 3755 // There are two kinds of external IV usages - those that use the value 3756 // computed in the last iteration (the PHI) and those that use the penultimate 3757 // value (the value that feeds into the phi from the loop latch). 3758 // We allow both, but they, obviously, have different values. 3759 3760 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3761 3762 DenseMap<Value *, Value *> MissingVals; 3763 3764 // An external user of the last iteration's value should see the value that 3765 // the remainder loop uses to initialize its own IV. 3766 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3767 for (User *U : PostInc->users()) { 3768 Instruction *UI = cast<Instruction>(U); 3769 if (!OrigLoop->contains(UI)) { 3770 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3771 MissingVals[UI] = EndValue; 3772 } 3773 } 3774 3775 // An external user of the penultimate value need to see EndValue - Step. 3776 // The simplest way to get this is to recompute it from the constituent SCEVs, 3777 // that is Start + (Step * (CRD - 1)). 3778 for (User *U : OrigPhi->users()) { 3779 auto *UI = cast<Instruction>(U); 3780 if (!OrigLoop->contains(UI)) { 3781 const DataLayout &DL = 3782 OrigLoop->getHeader()->getModule()->getDataLayout(); 3783 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3784 3785 IRBuilder<> B(MiddleBlock->getTerminator()); 3786 3787 // Fast-math-flags propagate from the original induction instruction. 3788 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3789 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3790 3791 Value *CountMinusOne = B.CreateSub( 3792 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3793 Value *CMO = 3794 !II.getStep()->getType()->isIntegerTy() 3795 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3796 II.getStep()->getType()) 3797 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3798 CMO->setName("cast.cmo"); 3799 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3800 Escape->setName("ind.escape"); 3801 MissingVals[UI] = Escape; 3802 } 3803 } 3804 3805 for (auto &I : MissingVals) { 3806 PHINode *PHI = cast<PHINode>(I.first); 3807 // One corner case we have to handle is two IVs "chasing" each-other, 3808 // that is %IV2 = phi [...], [ %IV1, %latch ] 3809 // In this case, if IV1 has an external use, we need to avoid adding both 3810 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3811 // don't already have an incoming value for the middle block. 3812 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3813 PHI->addIncoming(I.second, MiddleBlock); 3814 } 3815 } 3816 3817 namespace { 3818 3819 struct CSEDenseMapInfo { 3820 static bool canHandle(const Instruction *I) { 3821 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3822 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3823 } 3824 3825 static inline Instruction *getEmptyKey() { 3826 return DenseMapInfo<Instruction *>::getEmptyKey(); 3827 } 3828 3829 static inline Instruction *getTombstoneKey() { 3830 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3831 } 3832 3833 static unsigned getHashValue(const Instruction *I) { 3834 assert(canHandle(I) && "Unknown instruction!"); 3835 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3836 I->value_op_end())); 3837 } 3838 3839 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3840 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3841 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3842 return LHS == RHS; 3843 return LHS->isIdenticalTo(RHS); 3844 } 3845 }; 3846 3847 } // end anonymous namespace 3848 3849 ///Perform cse of induction variable instructions. 3850 static void cse(BasicBlock *BB) { 3851 // Perform simple cse. 3852 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3853 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3854 Instruction *In = &*I++; 3855 3856 if (!CSEDenseMapInfo::canHandle(In)) 3857 continue; 3858 3859 // Check if we can replace this instruction with any of the 3860 // visited instructions. 3861 if (Instruction *V = CSEMap.lookup(In)) { 3862 In->replaceAllUsesWith(V); 3863 In->eraseFromParent(); 3864 continue; 3865 } 3866 3867 CSEMap[In] = In; 3868 } 3869 } 3870 3871 InstructionCost 3872 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3873 bool &NeedToScalarize) const { 3874 Function *F = CI->getCalledFunction(); 3875 Type *ScalarRetTy = CI->getType(); 3876 SmallVector<Type *, 4> Tys, ScalarTys; 3877 for (auto &ArgOp : CI->arg_operands()) 3878 ScalarTys.push_back(ArgOp->getType()); 3879 3880 // Estimate cost of scalarized vector call. The source operands are assumed 3881 // to be vectors, so we need to extract individual elements from there, 3882 // execute VF scalar calls, and then gather the result into the vector return 3883 // value. 3884 InstructionCost ScalarCallCost = 3885 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3886 if (VF.isScalar()) 3887 return ScalarCallCost; 3888 3889 // Compute corresponding vector type for return value and arguments. 3890 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3891 for (Type *ScalarTy : ScalarTys) 3892 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3893 3894 // Compute costs of unpacking argument values for the scalar calls and 3895 // packing the return values to a vector. 3896 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3897 3898 InstructionCost Cost = 3899 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3900 3901 // If we can't emit a vector call for this function, then the currently found 3902 // cost is the cost we need to return. 3903 NeedToScalarize = true; 3904 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3905 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3906 3907 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3908 return Cost; 3909 3910 // If the corresponding vector cost is cheaper, return its cost. 3911 InstructionCost VectorCallCost = 3912 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3913 if (VectorCallCost < Cost) { 3914 NeedToScalarize = false; 3915 Cost = VectorCallCost; 3916 } 3917 return Cost; 3918 } 3919 3920 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3921 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3922 return Elt; 3923 return VectorType::get(Elt, VF); 3924 } 3925 3926 InstructionCost 3927 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3928 ElementCount VF) const { 3929 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3930 assert(ID && "Expected intrinsic call!"); 3931 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3932 FastMathFlags FMF; 3933 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3934 FMF = FPMO->getFastMathFlags(); 3935 3936 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3937 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3938 SmallVector<Type *> ParamTys; 3939 std::transform(FTy->param_begin(), FTy->param_end(), 3940 std::back_inserter(ParamTys), 3941 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3942 3943 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3944 dyn_cast<IntrinsicInst>(CI)); 3945 return TTI.getIntrinsicInstrCost(CostAttrs, 3946 TargetTransformInfo::TCK_RecipThroughput); 3947 } 3948 3949 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3950 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3951 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3952 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3953 } 3954 3955 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3956 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3957 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3958 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3959 } 3960 3961 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3962 // For every instruction `I` in MinBWs, truncate the operands, create a 3963 // truncated version of `I` and reextend its result. InstCombine runs 3964 // later and will remove any ext/trunc pairs. 3965 SmallPtrSet<Value *, 4> Erased; 3966 for (const auto &KV : Cost->getMinimalBitwidths()) { 3967 // If the value wasn't vectorized, we must maintain the original scalar 3968 // type. The absence of the value from State indicates that it 3969 // wasn't vectorized. 3970 VPValue *Def = State.Plan->getVPValue(KV.first); 3971 if (!State.hasAnyVectorValue(Def)) 3972 continue; 3973 for (unsigned Part = 0; Part < UF; ++Part) { 3974 Value *I = State.get(Def, Part); 3975 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3976 continue; 3977 Type *OriginalTy = I->getType(); 3978 Type *ScalarTruncatedTy = 3979 IntegerType::get(OriginalTy->getContext(), KV.second); 3980 auto *TruncatedTy = VectorType::get( 3981 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3982 if (TruncatedTy == OriginalTy) 3983 continue; 3984 3985 IRBuilder<> B(cast<Instruction>(I)); 3986 auto ShrinkOperand = [&](Value *V) -> Value * { 3987 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3988 if (ZI->getSrcTy() == TruncatedTy) 3989 return ZI->getOperand(0); 3990 return B.CreateZExtOrTrunc(V, TruncatedTy); 3991 }; 3992 3993 // The actual instruction modification depends on the instruction type, 3994 // unfortunately. 3995 Value *NewI = nullptr; 3996 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3997 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3998 ShrinkOperand(BO->getOperand(1))); 3999 4000 // Any wrapping introduced by shrinking this operation shouldn't be 4001 // considered undefined behavior. So, we can't unconditionally copy 4002 // arithmetic wrapping flags to NewI. 4003 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4004 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4005 NewI = 4006 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4007 ShrinkOperand(CI->getOperand(1))); 4008 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4009 NewI = B.CreateSelect(SI->getCondition(), 4010 ShrinkOperand(SI->getTrueValue()), 4011 ShrinkOperand(SI->getFalseValue())); 4012 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4013 switch (CI->getOpcode()) { 4014 default: 4015 llvm_unreachable("Unhandled cast!"); 4016 case Instruction::Trunc: 4017 NewI = ShrinkOperand(CI->getOperand(0)); 4018 break; 4019 case Instruction::SExt: 4020 NewI = B.CreateSExtOrTrunc( 4021 CI->getOperand(0), 4022 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4023 break; 4024 case Instruction::ZExt: 4025 NewI = B.CreateZExtOrTrunc( 4026 CI->getOperand(0), 4027 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4028 break; 4029 } 4030 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4031 auto Elements0 = 4032 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4033 auto *O0 = B.CreateZExtOrTrunc( 4034 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4035 auto Elements1 = 4036 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4037 auto *O1 = B.CreateZExtOrTrunc( 4038 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4039 4040 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4041 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4042 // Don't do anything with the operands, just extend the result. 4043 continue; 4044 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4045 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 4046 ->getNumElements(); 4047 auto *O0 = B.CreateZExtOrTrunc( 4048 IE->getOperand(0), 4049 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4050 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4051 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4052 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4053 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4054 ->getNumElements(); 4055 auto *O0 = B.CreateZExtOrTrunc( 4056 EE->getOperand(0), 4057 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4058 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4059 } else { 4060 // If we don't know what to do, be conservative and don't do anything. 4061 continue; 4062 } 4063 4064 // Lastly, extend the result. 4065 NewI->takeName(cast<Instruction>(I)); 4066 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4067 I->replaceAllUsesWith(Res); 4068 cast<Instruction>(I)->eraseFromParent(); 4069 Erased.insert(I); 4070 State.reset(Def, Res, Part); 4071 } 4072 } 4073 4074 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4075 for (const auto &KV : Cost->getMinimalBitwidths()) { 4076 // If the value wasn't vectorized, we must maintain the original scalar 4077 // type. The absence of the value from State indicates that it 4078 // wasn't vectorized. 4079 VPValue *Def = State.Plan->getVPValue(KV.first); 4080 if (!State.hasAnyVectorValue(Def)) 4081 continue; 4082 for (unsigned Part = 0; Part < UF; ++Part) { 4083 Value *I = State.get(Def, Part); 4084 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4085 if (Inst && Inst->use_empty()) { 4086 Value *NewI = Inst->getOperand(0); 4087 Inst->eraseFromParent(); 4088 State.reset(Def, NewI, Part); 4089 } 4090 } 4091 } 4092 } 4093 4094 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4095 // Insert truncates and extends for any truncated instructions as hints to 4096 // InstCombine. 4097 if (VF.isVector()) 4098 truncateToMinimalBitwidths(State); 4099 4100 // Fix widened non-induction PHIs by setting up the PHI operands. 4101 if (OrigPHIsToFix.size()) { 4102 assert(EnableVPlanNativePath && 4103 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4104 fixNonInductionPHIs(State); 4105 } 4106 4107 // At this point every instruction in the original loop is widened to a 4108 // vector form. Now we need to fix the recurrences in the loop. These PHI 4109 // nodes are currently empty because we did not want to introduce cycles. 4110 // This is the second stage of vectorizing recurrences. 4111 fixCrossIterationPHIs(State); 4112 4113 // Forget the original basic block. 4114 PSE.getSE()->forgetLoop(OrigLoop); 4115 4116 // If we inserted an edge from the middle block to the unique exit block, 4117 // update uses outside the loop (phis) to account for the newly inserted 4118 // edge. 4119 if (!Cost->requiresScalarEpilogue(VF)) { 4120 // Fix-up external users of the induction variables. 4121 for (auto &Entry : Legal->getInductionVars()) 4122 fixupIVUsers(Entry.first, Entry.second, 4123 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4124 IVEndValues[Entry.first], LoopMiddleBlock); 4125 4126 fixLCSSAPHIs(State); 4127 } 4128 4129 for (Instruction *PI : PredicatedInstructions) 4130 sinkScalarOperands(&*PI); 4131 4132 // Remove redundant induction instructions. 4133 cse(LoopVectorBody); 4134 4135 // Set/update profile weights for the vector and remainder loops as original 4136 // loop iterations are now distributed among them. Note that original loop 4137 // represented by LoopScalarBody becomes remainder loop after vectorization. 4138 // 4139 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4140 // end up getting slightly roughened result but that should be OK since 4141 // profile is not inherently precise anyway. Note also possible bypass of 4142 // vector code caused by legality checks is ignored, assigning all the weight 4143 // to the vector loop, optimistically. 4144 // 4145 // For scalable vectorization we can't know at compile time how many iterations 4146 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4147 // vscale of '1'. 4148 setProfileInfoAfterUnrolling( 4149 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4150 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4151 } 4152 4153 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4154 // In order to support recurrences we need to be able to vectorize Phi nodes. 4155 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4156 // stage #2: We now need to fix the recurrences by adding incoming edges to 4157 // the currently empty PHI nodes. At this point every instruction in the 4158 // original loop is widened to a vector form so we can use them to construct 4159 // the incoming edges. 4160 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4161 for (VPRecipeBase &R : Header->phis()) { 4162 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4163 if (!PhiR) 4164 continue; 4165 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4166 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(PhiR)) { 4167 fixReduction(ReductionPhi, State); 4168 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4169 fixFirstOrderRecurrence(PhiR, State); 4170 } 4171 } 4172 4173 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4174 VPTransformState &State) { 4175 // This is the second phase of vectorizing first-order recurrences. An 4176 // overview of the transformation is described below. Suppose we have the 4177 // following loop. 4178 // 4179 // for (int i = 0; i < n; ++i) 4180 // b[i] = a[i] - a[i - 1]; 4181 // 4182 // There is a first-order recurrence on "a". For this loop, the shorthand 4183 // scalar IR looks like: 4184 // 4185 // scalar.ph: 4186 // s_init = a[-1] 4187 // br scalar.body 4188 // 4189 // scalar.body: 4190 // i = phi [0, scalar.ph], [i+1, scalar.body] 4191 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4192 // s2 = a[i] 4193 // b[i] = s2 - s1 4194 // br cond, scalar.body, ... 4195 // 4196 // In this example, s1 is a recurrence because it's value depends on the 4197 // previous iteration. In the first phase of vectorization, we created a 4198 // temporary value for s1. We now complete the vectorization and produce the 4199 // shorthand vector IR shown below (for VF = 4, UF = 1). 4200 // 4201 // vector.ph: 4202 // v_init = vector(..., ..., ..., a[-1]) 4203 // br vector.body 4204 // 4205 // vector.body 4206 // i = phi [0, vector.ph], [i+4, vector.body] 4207 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4208 // v2 = a[i, i+1, i+2, i+3]; 4209 // v3 = vector(v1(3), v2(0, 1, 2)) 4210 // b[i, i+1, i+2, i+3] = v2 - v3 4211 // br cond, vector.body, middle.block 4212 // 4213 // middle.block: 4214 // x = v2(3) 4215 // br scalar.ph 4216 // 4217 // scalar.ph: 4218 // s_init = phi [x, middle.block], [a[-1], otherwise] 4219 // br scalar.body 4220 // 4221 // After execution completes the vector loop, we extract the next value of 4222 // the recurrence (x) to use as the initial value in the scalar loop. 4223 4224 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4225 4226 auto *IdxTy = Builder.getInt32Ty(); 4227 auto *One = ConstantInt::get(IdxTy, 1); 4228 4229 // Create a vector from the initial value. 4230 auto *VectorInit = ScalarInit; 4231 if (VF.isVector()) { 4232 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4233 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4234 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4235 VectorInit = Builder.CreateInsertElement( 4236 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4237 VectorInit, LastIdx, "vector.recur.init"); 4238 } 4239 4240 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4241 // We constructed a temporary phi node in the first phase of vectorization. 4242 // This phi node will eventually be deleted. 4243 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiR, 0))); 4244 4245 // Create a phi node for the new recurrence. The current value will either be 4246 // the initial value inserted into a vector or loop-varying vector value. 4247 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4248 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4249 4250 // Get the vectorized previous value of the last part UF - 1. It appears last 4251 // among all unrolled iterations, due to the order of their construction. 4252 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4253 4254 // Find and set the insertion point after the previous value if it is an 4255 // instruction. 4256 BasicBlock::iterator InsertPt; 4257 // Note that the previous value may have been constant-folded so it is not 4258 // guaranteed to be an instruction in the vector loop. 4259 // FIXME: Loop invariant values do not form recurrences. We should deal with 4260 // them earlier. 4261 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4262 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4263 else { 4264 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4265 if (isa<PHINode>(PreviousLastPart)) 4266 // If the previous value is a phi node, we should insert after all the phi 4267 // nodes in the block containing the PHI to avoid breaking basic block 4268 // verification. Note that the basic block may be different to 4269 // LoopVectorBody, in case we predicate the loop. 4270 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4271 else 4272 InsertPt = ++PreviousInst->getIterator(); 4273 } 4274 Builder.SetInsertPoint(&*InsertPt); 4275 4276 // The vector from which to take the initial value for the current iteration 4277 // (actual or unrolled). Initially, this is the vector phi node. 4278 Value *Incoming = VecPhi; 4279 4280 // Shuffle the current and previous vector and update the vector parts. 4281 for (unsigned Part = 0; Part < UF; ++Part) { 4282 Value *PreviousPart = State.get(PreviousDef, Part); 4283 Value *PhiPart = State.get(PhiR, Part); 4284 auto *Shuffle = VF.isVector() 4285 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4286 : Incoming; 4287 PhiPart->replaceAllUsesWith(Shuffle); 4288 cast<Instruction>(PhiPart)->eraseFromParent(); 4289 State.reset(PhiR, Shuffle, Part); 4290 Incoming = PreviousPart; 4291 } 4292 4293 // Fix the latch value of the new recurrence in the vector loop. 4294 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4295 4296 // Extract the last vector element in the middle block. This will be the 4297 // initial value for the recurrence when jumping to the scalar loop. 4298 auto *ExtractForScalar = Incoming; 4299 if (VF.isVector()) { 4300 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4301 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4302 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4303 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4304 "vector.recur.extract"); 4305 } 4306 // Extract the second last element in the middle block if the 4307 // Phi is used outside the loop. We need to extract the phi itself 4308 // and not the last element (the phi update in the current iteration). This 4309 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4310 // when the scalar loop is not run at all. 4311 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4312 if (VF.isVector()) { 4313 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4314 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4315 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4316 Incoming, Idx, "vector.recur.extract.for.phi"); 4317 } else if (UF > 1) 4318 // When loop is unrolled without vectorizing, initialize 4319 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4320 // of `Incoming`. This is analogous to the vectorized case above: extracting 4321 // the second last element when VF > 1. 4322 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4323 4324 // Fix the initial value of the original recurrence in the scalar loop. 4325 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4326 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4327 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4328 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4329 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4330 Start->addIncoming(Incoming, BB); 4331 } 4332 4333 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4334 Phi->setName("scalar.recur"); 4335 4336 // Finally, fix users of the recurrence outside the loop. The users will need 4337 // either the last value of the scalar recurrence or the last value of the 4338 // vector recurrence we extracted in the middle block. Since the loop is in 4339 // LCSSA form, we just need to find all the phi nodes for the original scalar 4340 // recurrence in the exit block, and then add an edge for the middle block. 4341 // Note that LCSSA does not imply single entry when the original scalar loop 4342 // had multiple exiting edges (as we always run the last iteration in the 4343 // scalar epilogue); in that case, there is no edge from middle to exit and 4344 // and thus no phis which needed updated. 4345 if (!Cost->requiresScalarEpilogue(VF)) 4346 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4347 if (any_of(LCSSAPhi.incoming_values(), 4348 [Phi](Value *V) { return V == Phi; })) 4349 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4350 } 4351 4352 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4353 VPTransformState &State) { 4354 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4355 // Get it's reduction variable descriptor. 4356 assert(Legal->isReductionVariable(OrigPhi) && 4357 "Unable to find the reduction variable"); 4358 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4359 4360 RecurKind RK = RdxDesc.getRecurrenceKind(); 4361 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4362 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4363 setDebugLocFromInst(ReductionStartValue); 4364 4365 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4366 // This is the vector-clone of the value that leaves the loop. 4367 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4368 4369 // Wrap flags are in general invalid after vectorization, clear them. 4370 clearReductionWrapFlags(RdxDesc, State); 4371 4372 // Fix the vector-loop phi. 4373 4374 // Reductions do not have to start at zero. They can start with 4375 // any loop invariant values. 4376 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4377 4378 unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF; 4379 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 4380 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4381 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4382 if (PhiR->isOrdered()) 4383 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4384 4385 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4386 } 4387 4388 // Before each round, move the insertion point right between 4389 // the PHIs and the values we are going to write. 4390 // This allows us to write both PHINodes and the extractelement 4391 // instructions. 4392 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4393 4394 setDebugLocFromInst(LoopExitInst); 4395 4396 Type *PhiTy = OrigPhi->getType(); 4397 // If tail is folded by masking, the vector value to leave the loop should be 4398 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4399 // instead of the former. For an inloop reduction the reduction will already 4400 // be predicated, and does not need to be handled here. 4401 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4402 for (unsigned Part = 0; Part < UF; ++Part) { 4403 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4404 Value *Sel = nullptr; 4405 for (User *U : VecLoopExitInst->users()) { 4406 if (isa<SelectInst>(U)) { 4407 assert(!Sel && "Reduction exit feeding two selects"); 4408 Sel = U; 4409 } else 4410 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4411 } 4412 assert(Sel && "Reduction exit feeds no select"); 4413 State.reset(LoopExitInstDef, Sel, Part); 4414 4415 // If the target can create a predicated operator for the reduction at no 4416 // extra cost in the loop (for example a predicated vadd), it can be 4417 // cheaper for the select to remain in the loop than be sunk out of it, 4418 // and so use the select value for the phi instead of the old 4419 // LoopExitValue. 4420 if (PreferPredicatedReductionSelect || 4421 TTI->preferPredicatedReductionSelect( 4422 RdxDesc.getOpcode(), PhiTy, 4423 TargetTransformInfo::ReductionFlags())) { 4424 auto *VecRdxPhi = 4425 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4426 VecRdxPhi->setIncomingValueForBlock( 4427 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4428 } 4429 } 4430 } 4431 4432 // If the vector reduction can be performed in a smaller type, we truncate 4433 // then extend the loop exit value to enable InstCombine to evaluate the 4434 // entire expression in the smaller type. 4435 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4436 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4437 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4438 Builder.SetInsertPoint( 4439 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4440 VectorParts RdxParts(UF); 4441 for (unsigned Part = 0; Part < UF; ++Part) { 4442 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4443 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4444 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4445 : Builder.CreateZExt(Trunc, VecTy); 4446 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4447 UI != RdxParts[Part]->user_end();) 4448 if (*UI != Trunc) { 4449 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4450 RdxParts[Part] = Extnd; 4451 } else { 4452 ++UI; 4453 } 4454 } 4455 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4456 for (unsigned Part = 0; Part < UF; ++Part) { 4457 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4458 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4459 } 4460 } 4461 4462 // Reduce all of the unrolled parts into a single vector. 4463 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4464 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4465 4466 // The middle block terminator has already been assigned a DebugLoc here (the 4467 // OrigLoop's single latch terminator). We want the whole middle block to 4468 // appear to execute on this line because: (a) it is all compiler generated, 4469 // (b) these instructions are always executed after evaluating the latch 4470 // conditional branch, and (c) other passes may add new predecessors which 4471 // terminate on this line. This is the easiest way to ensure we don't 4472 // accidentally cause an extra step back into the loop while debugging. 4473 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4474 if (PhiR->isOrdered()) 4475 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4476 else { 4477 // Floating-point operations should have some FMF to enable the reduction. 4478 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4479 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4480 for (unsigned Part = 1; Part < UF; ++Part) { 4481 Value *RdxPart = State.get(LoopExitInstDef, Part); 4482 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4483 ReducedPartRdx = Builder.CreateBinOp( 4484 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4485 } else { 4486 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4487 } 4488 } 4489 } 4490 4491 // Create the reduction after the loop. Note that inloop reductions create the 4492 // target reduction in the loop using a Reduction recipe. 4493 if (VF.isVector() && !PhiR->isInLoop()) { 4494 ReducedPartRdx = 4495 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4496 // If the reduction can be performed in a smaller type, we need to extend 4497 // the reduction to the wider type before we branch to the original loop. 4498 if (PhiTy != RdxDesc.getRecurrenceType()) 4499 ReducedPartRdx = RdxDesc.isSigned() 4500 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4501 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4502 } 4503 4504 // Create a phi node that merges control-flow from the backedge-taken check 4505 // block and the middle block. 4506 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4507 LoopScalarPreHeader->getTerminator()); 4508 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4509 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4510 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4511 4512 // Now, we need to fix the users of the reduction variable 4513 // inside and outside of the scalar remainder loop. 4514 4515 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4516 // in the exit blocks. See comment on analogous loop in 4517 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4518 if (!Cost->requiresScalarEpilogue(VF)) 4519 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4520 if (any_of(LCSSAPhi.incoming_values(), 4521 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4522 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4523 4524 // Fix the scalar loop reduction variable with the incoming reduction sum 4525 // from the vector body and from the backedge value. 4526 int IncomingEdgeBlockIdx = 4527 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4528 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4529 // Pick the other block. 4530 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4531 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4532 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4533 } 4534 4535 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4536 VPTransformState &State) { 4537 RecurKind RK = RdxDesc.getRecurrenceKind(); 4538 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4539 return; 4540 4541 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4542 assert(LoopExitInstr && "null loop exit instruction"); 4543 SmallVector<Instruction *, 8> Worklist; 4544 SmallPtrSet<Instruction *, 8> Visited; 4545 Worklist.push_back(LoopExitInstr); 4546 Visited.insert(LoopExitInstr); 4547 4548 while (!Worklist.empty()) { 4549 Instruction *Cur = Worklist.pop_back_val(); 4550 if (isa<OverflowingBinaryOperator>(Cur)) 4551 for (unsigned Part = 0; Part < UF; ++Part) { 4552 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4553 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4554 } 4555 4556 for (User *U : Cur->users()) { 4557 Instruction *UI = cast<Instruction>(U); 4558 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4559 Visited.insert(UI).second) 4560 Worklist.push_back(UI); 4561 } 4562 } 4563 } 4564 4565 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4566 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4567 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4568 // Some phis were already hand updated by the reduction and recurrence 4569 // code above, leave them alone. 4570 continue; 4571 4572 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4573 // Non-instruction incoming values will have only one value. 4574 4575 VPLane Lane = VPLane::getFirstLane(); 4576 if (isa<Instruction>(IncomingValue) && 4577 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4578 VF)) 4579 Lane = VPLane::getLastLaneForVF(VF); 4580 4581 // Can be a loop invariant incoming value or the last scalar value to be 4582 // extracted from the vectorized loop. 4583 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4584 Value *lastIncomingValue = 4585 OrigLoop->isLoopInvariant(IncomingValue) 4586 ? IncomingValue 4587 : State.get(State.Plan->getVPValue(IncomingValue), 4588 VPIteration(UF - 1, Lane)); 4589 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4590 } 4591 } 4592 4593 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4594 // The basic block and loop containing the predicated instruction. 4595 auto *PredBB = PredInst->getParent(); 4596 auto *VectorLoop = LI->getLoopFor(PredBB); 4597 4598 // Initialize a worklist with the operands of the predicated instruction. 4599 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4600 4601 // Holds instructions that we need to analyze again. An instruction may be 4602 // reanalyzed if we don't yet know if we can sink it or not. 4603 SmallVector<Instruction *, 8> InstsToReanalyze; 4604 4605 // Returns true if a given use occurs in the predicated block. Phi nodes use 4606 // their operands in their corresponding predecessor blocks. 4607 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4608 auto *I = cast<Instruction>(U.getUser()); 4609 BasicBlock *BB = I->getParent(); 4610 if (auto *Phi = dyn_cast<PHINode>(I)) 4611 BB = Phi->getIncomingBlock( 4612 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4613 return BB == PredBB; 4614 }; 4615 4616 // Iteratively sink the scalarized operands of the predicated instruction 4617 // into the block we created for it. When an instruction is sunk, it's 4618 // operands are then added to the worklist. The algorithm ends after one pass 4619 // through the worklist doesn't sink a single instruction. 4620 bool Changed; 4621 do { 4622 // Add the instructions that need to be reanalyzed to the worklist, and 4623 // reset the changed indicator. 4624 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4625 InstsToReanalyze.clear(); 4626 Changed = false; 4627 4628 while (!Worklist.empty()) { 4629 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4630 4631 // We can't sink an instruction if it is a phi node, is not in the loop, 4632 // or may have side effects. 4633 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4634 I->mayHaveSideEffects()) 4635 continue; 4636 4637 // If the instruction is already in PredBB, check if we can sink its 4638 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4639 // sinking the scalar instruction I, hence it appears in PredBB; but it 4640 // may have failed to sink I's operands (recursively), which we try 4641 // (again) here. 4642 if (I->getParent() == PredBB) { 4643 Worklist.insert(I->op_begin(), I->op_end()); 4644 continue; 4645 } 4646 4647 // It's legal to sink the instruction if all its uses occur in the 4648 // predicated block. Otherwise, there's nothing to do yet, and we may 4649 // need to reanalyze the instruction. 4650 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4651 InstsToReanalyze.push_back(I); 4652 continue; 4653 } 4654 4655 // Move the instruction to the beginning of the predicated block, and add 4656 // it's operands to the worklist. 4657 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4658 Worklist.insert(I->op_begin(), I->op_end()); 4659 4660 // The sinking may have enabled other instructions to be sunk, so we will 4661 // need to iterate. 4662 Changed = true; 4663 } 4664 } while (Changed); 4665 } 4666 4667 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4668 for (PHINode *OrigPhi : OrigPHIsToFix) { 4669 VPWidenPHIRecipe *VPPhi = 4670 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4671 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4672 // Make sure the builder has a valid insert point. 4673 Builder.SetInsertPoint(NewPhi); 4674 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4675 VPValue *Inc = VPPhi->getIncomingValue(i); 4676 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4677 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4678 } 4679 } 4680 } 4681 4682 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4683 return Cost->useOrderedReductions(RdxDesc); 4684 } 4685 4686 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4687 VPUser &Operands, unsigned UF, 4688 ElementCount VF, bool IsPtrLoopInvariant, 4689 SmallBitVector &IsIndexLoopInvariant, 4690 VPTransformState &State) { 4691 // Construct a vector GEP by widening the operands of the scalar GEP as 4692 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4693 // results in a vector of pointers when at least one operand of the GEP 4694 // is vector-typed. Thus, to keep the representation compact, we only use 4695 // vector-typed operands for loop-varying values. 4696 4697 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4698 // If we are vectorizing, but the GEP has only loop-invariant operands, 4699 // the GEP we build (by only using vector-typed operands for 4700 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4701 // produce a vector of pointers, we need to either arbitrarily pick an 4702 // operand to broadcast, or broadcast a clone of the original GEP. 4703 // Here, we broadcast a clone of the original. 4704 // 4705 // TODO: If at some point we decide to scalarize instructions having 4706 // loop-invariant operands, this special case will no longer be 4707 // required. We would add the scalarization decision to 4708 // collectLoopScalars() and teach getVectorValue() to broadcast 4709 // the lane-zero scalar value. 4710 auto *Clone = Builder.Insert(GEP->clone()); 4711 for (unsigned Part = 0; Part < UF; ++Part) { 4712 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4713 State.set(VPDef, EntryPart, Part); 4714 addMetadata(EntryPart, GEP); 4715 } 4716 } else { 4717 // If the GEP has at least one loop-varying operand, we are sure to 4718 // produce a vector of pointers. But if we are only unrolling, we want 4719 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4720 // produce with the code below will be scalar (if VF == 1) or vector 4721 // (otherwise). Note that for the unroll-only case, we still maintain 4722 // values in the vector mapping with initVector, as we do for other 4723 // instructions. 4724 for (unsigned Part = 0; Part < UF; ++Part) { 4725 // The pointer operand of the new GEP. If it's loop-invariant, we 4726 // won't broadcast it. 4727 auto *Ptr = IsPtrLoopInvariant 4728 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4729 : State.get(Operands.getOperand(0), Part); 4730 4731 // Collect all the indices for the new GEP. If any index is 4732 // loop-invariant, we won't broadcast it. 4733 SmallVector<Value *, 4> Indices; 4734 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4735 VPValue *Operand = Operands.getOperand(I); 4736 if (IsIndexLoopInvariant[I - 1]) 4737 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4738 else 4739 Indices.push_back(State.get(Operand, Part)); 4740 } 4741 4742 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4743 // but it should be a vector, otherwise. 4744 auto *NewGEP = 4745 GEP->isInBounds() 4746 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4747 Indices) 4748 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4749 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4750 "NewGEP is not a pointer vector"); 4751 State.set(VPDef, NewGEP, Part); 4752 addMetadata(NewGEP, GEP); 4753 } 4754 } 4755 } 4756 4757 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4758 VPWidenPHIRecipe *PhiR, 4759 VPTransformState &State) { 4760 PHINode *P = cast<PHINode>(PN); 4761 if (EnableVPlanNativePath) { 4762 // Currently we enter here in the VPlan-native path for non-induction 4763 // PHIs where all control flow is uniform. We simply widen these PHIs. 4764 // Create a vector phi with no operands - the vector phi operands will be 4765 // set at the end of vector code generation. 4766 Type *VecTy = (State.VF.isScalar()) 4767 ? PN->getType() 4768 : VectorType::get(PN->getType(), State.VF); 4769 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4770 State.set(PhiR, VecPhi, 0); 4771 OrigPHIsToFix.push_back(P); 4772 4773 return; 4774 } 4775 4776 assert(PN->getParent() == OrigLoop->getHeader() && 4777 "Non-header phis should have been handled elsewhere"); 4778 4779 // In order to support recurrences we need to be able to vectorize Phi nodes. 4780 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4781 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4782 // this value when we vectorize all of the instructions that use the PHI. 4783 if (Legal->isFirstOrderRecurrence(P)) { 4784 Type *VecTy = State.VF.isScalar() 4785 ? PN->getType() 4786 : VectorType::get(PN->getType(), State.VF); 4787 4788 for (unsigned Part = 0; Part < State.UF; ++Part) { 4789 Value *EntryPart = PHINode::Create( 4790 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4791 State.set(PhiR, EntryPart, Part); 4792 } 4793 return; 4794 } 4795 4796 assert(!Legal->isReductionVariable(P) && 4797 "reductions should be handled elsewhere"); 4798 4799 setDebugLocFromInst(P); 4800 4801 // This PHINode must be an induction variable. 4802 // Make sure that we know about it. 4803 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4804 4805 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4806 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4807 4808 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4809 // which can be found from the original scalar operations. 4810 switch (II.getKind()) { 4811 case InductionDescriptor::IK_NoInduction: 4812 llvm_unreachable("Unknown induction"); 4813 case InductionDescriptor::IK_IntInduction: 4814 case InductionDescriptor::IK_FpInduction: 4815 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4816 case InductionDescriptor::IK_PtrInduction: { 4817 // Handle the pointer induction variable case. 4818 assert(P->getType()->isPointerTy() && "Unexpected type."); 4819 4820 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4821 // This is the normalized GEP that starts counting at zero. 4822 Value *PtrInd = 4823 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4824 // Determine the number of scalars we need to generate for each unroll 4825 // iteration. If the instruction is uniform, we only need to generate the 4826 // first lane. Otherwise, we generate all VF values. 4827 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4828 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4829 4830 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4831 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4832 if (NeedsVectorIndex) { 4833 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4834 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4835 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4836 } 4837 4838 for (unsigned Part = 0; Part < UF; ++Part) { 4839 Value *PartStart = createStepForVF( 4840 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4841 4842 if (NeedsVectorIndex) { 4843 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4844 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4845 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4846 Value *SclrGep = 4847 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4848 SclrGep->setName("next.gep"); 4849 State.set(PhiR, SclrGep, Part); 4850 // We've cached the whole vector, which means we can support the 4851 // extraction of any lane. 4852 continue; 4853 } 4854 4855 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4856 Value *Idx = Builder.CreateAdd( 4857 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4858 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4859 Value *SclrGep = 4860 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4861 SclrGep->setName("next.gep"); 4862 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4863 } 4864 } 4865 return; 4866 } 4867 assert(isa<SCEVConstant>(II.getStep()) && 4868 "Induction step not a SCEV constant!"); 4869 Type *PhiType = II.getStep()->getType(); 4870 4871 // Build a pointer phi 4872 Value *ScalarStartValue = II.getStartValue(); 4873 Type *ScStValueType = ScalarStartValue->getType(); 4874 PHINode *NewPointerPhi = 4875 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4876 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4877 4878 // A pointer induction, performed by using a gep 4879 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4880 Instruction *InductionLoc = LoopLatch->getTerminator(); 4881 const SCEV *ScalarStep = II.getStep(); 4882 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4883 Value *ScalarStepValue = 4884 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4885 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4886 Value *NumUnrolledElems = 4887 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4888 Value *InductionGEP = GetElementPtrInst::Create( 4889 ScStValueType->getPointerElementType(), NewPointerPhi, 4890 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4891 InductionLoc); 4892 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4893 4894 // Create UF many actual address geps that use the pointer 4895 // phi as base and a vectorized version of the step value 4896 // (<step*0, ..., step*N>) as offset. 4897 for (unsigned Part = 0; Part < State.UF; ++Part) { 4898 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4899 Value *StartOffsetScalar = 4900 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4901 Value *StartOffset = 4902 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4903 // Create a vector of consecutive numbers from zero to VF. 4904 StartOffset = 4905 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4906 4907 Value *GEP = Builder.CreateGEP( 4908 ScStValueType->getPointerElementType(), NewPointerPhi, 4909 Builder.CreateMul( 4910 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4911 "vector.gep")); 4912 State.set(PhiR, GEP, Part); 4913 } 4914 } 4915 } 4916 } 4917 4918 /// A helper function for checking whether an integer division-related 4919 /// instruction may divide by zero (in which case it must be predicated if 4920 /// executed conditionally in the scalar code). 4921 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4922 /// Non-zero divisors that are non compile-time constants will not be 4923 /// converted into multiplication, so we will still end up scalarizing 4924 /// the division, but can do so w/o predication. 4925 static bool mayDivideByZero(Instruction &I) { 4926 assert((I.getOpcode() == Instruction::UDiv || 4927 I.getOpcode() == Instruction::SDiv || 4928 I.getOpcode() == Instruction::URem || 4929 I.getOpcode() == Instruction::SRem) && 4930 "Unexpected instruction"); 4931 Value *Divisor = I.getOperand(1); 4932 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4933 return !CInt || CInt->isZero(); 4934 } 4935 4936 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4937 VPUser &User, 4938 VPTransformState &State) { 4939 switch (I.getOpcode()) { 4940 case Instruction::Call: 4941 case Instruction::Br: 4942 case Instruction::PHI: 4943 case Instruction::GetElementPtr: 4944 case Instruction::Select: 4945 llvm_unreachable("This instruction is handled by a different recipe."); 4946 case Instruction::UDiv: 4947 case Instruction::SDiv: 4948 case Instruction::SRem: 4949 case Instruction::URem: 4950 case Instruction::Add: 4951 case Instruction::FAdd: 4952 case Instruction::Sub: 4953 case Instruction::FSub: 4954 case Instruction::FNeg: 4955 case Instruction::Mul: 4956 case Instruction::FMul: 4957 case Instruction::FDiv: 4958 case Instruction::FRem: 4959 case Instruction::Shl: 4960 case Instruction::LShr: 4961 case Instruction::AShr: 4962 case Instruction::And: 4963 case Instruction::Or: 4964 case Instruction::Xor: { 4965 // Just widen unops and binops. 4966 setDebugLocFromInst(&I); 4967 4968 for (unsigned Part = 0; Part < UF; ++Part) { 4969 SmallVector<Value *, 2> Ops; 4970 for (VPValue *VPOp : User.operands()) 4971 Ops.push_back(State.get(VPOp, Part)); 4972 4973 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4974 4975 if (auto *VecOp = dyn_cast<Instruction>(V)) 4976 VecOp->copyIRFlags(&I); 4977 4978 // Use this vector value for all users of the original instruction. 4979 State.set(Def, V, Part); 4980 addMetadata(V, &I); 4981 } 4982 4983 break; 4984 } 4985 case Instruction::ICmp: 4986 case Instruction::FCmp: { 4987 // Widen compares. Generate vector compares. 4988 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4989 auto *Cmp = cast<CmpInst>(&I); 4990 setDebugLocFromInst(Cmp); 4991 for (unsigned Part = 0; Part < UF; ++Part) { 4992 Value *A = State.get(User.getOperand(0), Part); 4993 Value *B = State.get(User.getOperand(1), Part); 4994 Value *C = nullptr; 4995 if (FCmp) { 4996 // Propagate fast math flags. 4997 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4998 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4999 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 5000 } else { 5001 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 5002 } 5003 State.set(Def, C, Part); 5004 addMetadata(C, &I); 5005 } 5006 5007 break; 5008 } 5009 5010 case Instruction::ZExt: 5011 case Instruction::SExt: 5012 case Instruction::FPToUI: 5013 case Instruction::FPToSI: 5014 case Instruction::FPExt: 5015 case Instruction::PtrToInt: 5016 case Instruction::IntToPtr: 5017 case Instruction::SIToFP: 5018 case Instruction::UIToFP: 5019 case Instruction::Trunc: 5020 case Instruction::FPTrunc: 5021 case Instruction::BitCast: { 5022 auto *CI = cast<CastInst>(&I); 5023 setDebugLocFromInst(CI); 5024 5025 /// Vectorize casts. 5026 Type *DestTy = 5027 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5028 5029 for (unsigned Part = 0; Part < UF; ++Part) { 5030 Value *A = State.get(User.getOperand(0), Part); 5031 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5032 State.set(Def, Cast, Part); 5033 addMetadata(Cast, &I); 5034 } 5035 break; 5036 } 5037 default: 5038 // This instruction is not vectorized by simple widening. 5039 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5040 llvm_unreachable("Unhandled instruction!"); 5041 } // end of switch. 5042 } 5043 5044 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5045 VPUser &ArgOperands, 5046 VPTransformState &State) { 5047 assert(!isa<DbgInfoIntrinsic>(I) && 5048 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5049 setDebugLocFromInst(&I); 5050 5051 Module *M = I.getParent()->getParent()->getParent(); 5052 auto *CI = cast<CallInst>(&I); 5053 5054 SmallVector<Type *, 4> Tys; 5055 for (Value *ArgOperand : CI->arg_operands()) 5056 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5057 5058 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5059 5060 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5061 // version of the instruction. 5062 // Is it beneficial to perform intrinsic call compared to lib call? 5063 bool NeedToScalarize = false; 5064 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5065 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5066 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5067 assert((UseVectorIntrinsic || !NeedToScalarize) && 5068 "Instruction should be scalarized elsewhere."); 5069 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5070 "Either the intrinsic cost or vector call cost must be valid"); 5071 5072 for (unsigned Part = 0; Part < UF; ++Part) { 5073 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5074 SmallVector<Value *, 4> Args; 5075 for (auto &I : enumerate(ArgOperands.operands())) { 5076 // Some intrinsics have a scalar argument - don't replace it with a 5077 // vector. 5078 Value *Arg; 5079 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5080 Arg = State.get(I.value(), Part); 5081 else { 5082 Arg = State.get(I.value(), VPIteration(0, 0)); 5083 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5084 TysForDecl.push_back(Arg->getType()); 5085 } 5086 Args.push_back(Arg); 5087 } 5088 5089 Function *VectorF; 5090 if (UseVectorIntrinsic) { 5091 // Use vector version of the intrinsic. 5092 if (VF.isVector()) 5093 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5094 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5095 assert(VectorF && "Can't retrieve vector intrinsic."); 5096 } else { 5097 // Use vector version of the function call. 5098 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5099 #ifndef NDEBUG 5100 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5101 "Can't create vector function."); 5102 #endif 5103 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5104 } 5105 SmallVector<OperandBundleDef, 1> OpBundles; 5106 CI->getOperandBundlesAsDefs(OpBundles); 5107 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5108 5109 if (isa<FPMathOperator>(V)) 5110 V->copyFastMathFlags(CI); 5111 5112 State.set(Def, V, Part); 5113 addMetadata(V, &I); 5114 } 5115 } 5116 5117 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5118 VPUser &Operands, 5119 bool InvariantCond, 5120 VPTransformState &State) { 5121 setDebugLocFromInst(&I); 5122 5123 // The condition can be loop invariant but still defined inside the 5124 // loop. This means that we can't just use the original 'cond' value. 5125 // We have to take the 'vectorized' value and pick the first lane. 5126 // Instcombine will make this a no-op. 5127 auto *InvarCond = InvariantCond 5128 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5129 : nullptr; 5130 5131 for (unsigned Part = 0; Part < UF; ++Part) { 5132 Value *Cond = 5133 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5134 Value *Op0 = State.get(Operands.getOperand(1), Part); 5135 Value *Op1 = State.get(Operands.getOperand(2), Part); 5136 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5137 State.set(VPDef, Sel, Part); 5138 addMetadata(Sel, &I); 5139 } 5140 } 5141 5142 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5143 // We should not collect Scalars more than once per VF. Right now, this 5144 // function is called from collectUniformsAndScalars(), which already does 5145 // this check. Collecting Scalars for VF=1 does not make any sense. 5146 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5147 "This function should not be visited twice for the same VF"); 5148 5149 SmallSetVector<Instruction *, 8> Worklist; 5150 5151 // These sets are used to seed the analysis with pointers used by memory 5152 // accesses that will remain scalar. 5153 SmallSetVector<Instruction *, 8> ScalarPtrs; 5154 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5155 auto *Latch = TheLoop->getLoopLatch(); 5156 5157 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5158 // The pointer operands of loads and stores will be scalar as long as the 5159 // memory access is not a gather or scatter operation. The value operand of a 5160 // store will remain scalar if the store is scalarized. 5161 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5162 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5163 assert(WideningDecision != CM_Unknown && 5164 "Widening decision should be ready at this moment"); 5165 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5166 if (Ptr == Store->getValueOperand()) 5167 return WideningDecision == CM_Scalarize; 5168 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5169 "Ptr is neither a value or pointer operand"); 5170 return WideningDecision != CM_GatherScatter; 5171 }; 5172 5173 // A helper that returns true if the given value is a bitcast or 5174 // getelementptr instruction contained in the loop. 5175 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5176 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5177 isa<GetElementPtrInst>(V)) && 5178 !TheLoop->isLoopInvariant(V); 5179 }; 5180 5181 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5182 if (!isa<PHINode>(Ptr) || 5183 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5184 return false; 5185 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5186 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5187 return false; 5188 return isScalarUse(MemAccess, Ptr); 5189 }; 5190 5191 // A helper that evaluates a memory access's use of a pointer. If the 5192 // pointer is actually the pointer induction of a loop, it is being 5193 // inserted into Worklist. If the use will be a scalar use, and the 5194 // pointer is only used by memory accesses, we place the pointer in 5195 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5196 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5197 if (isScalarPtrInduction(MemAccess, Ptr)) { 5198 Worklist.insert(cast<Instruction>(Ptr)); 5199 Instruction *Update = cast<Instruction>( 5200 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5201 Worklist.insert(Update); 5202 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5203 << "\n"); 5204 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5205 << "\n"); 5206 return; 5207 } 5208 // We only care about bitcast and getelementptr instructions contained in 5209 // the loop. 5210 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5211 return; 5212 5213 // If the pointer has already been identified as scalar (e.g., if it was 5214 // also identified as uniform), there's nothing to do. 5215 auto *I = cast<Instruction>(Ptr); 5216 if (Worklist.count(I)) 5217 return; 5218 5219 // If the use of the pointer will be a scalar use, and all users of the 5220 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5221 // place the pointer in PossibleNonScalarPtrs. 5222 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5223 return isa<LoadInst>(U) || isa<StoreInst>(U); 5224 })) 5225 ScalarPtrs.insert(I); 5226 else 5227 PossibleNonScalarPtrs.insert(I); 5228 }; 5229 5230 // We seed the scalars analysis with three classes of instructions: (1) 5231 // instructions marked uniform-after-vectorization and (2) bitcast, 5232 // getelementptr and (pointer) phi instructions used by memory accesses 5233 // requiring a scalar use. 5234 // 5235 // (1) Add to the worklist all instructions that have been identified as 5236 // uniform-after-vectorization. 5237 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5238 5239 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5240 // memory accesses requiring a scalar use. The pointer operands of loads and 5241 // stores will be scalar as long as the memory accesses is not a gather or 5242 // scatter operation. The value operand of a store will remain scalar if the 5243 // store is scalarized. 5244 for (auto *BB : TheLoop->blocks()) 5245 for (auto &I : *BB) { 5246 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5247 evaluatePtrUse(Load, Load->getPointerOperand()); 5248 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5249 evaluatePtrUse(Store, Store->getPointerOperand()); 5250 evaluatePtrUse(Store, Store->getValueOperand()); 5251 } 5252 } 5253 for (auto *I : ScalarPtrs) 5254 if (!PossibleNonScalarPtrs.count(I)) { 5255 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5256 Worklist.insert(I); 5257 } 5258 5259 // Insert the forced scalars. 5260 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5261 // induction variable when the PHI user is scalarized. 5262 auto ForcedScalar = ForcedScalars.find(VF); 5263 if (ForcedScalar != ForcedScalars.end()) 5264 for (auto *I : ForcedScalar->second) 5265 Worklist.insert(I); 5266 5267 // Expand the worklist by looking through any bitcasts and getelementptr 5268 // instructions we've already identified as scalar. This is similar to the 5269 // expansion step in collectLoopUniforms(); however, here we're only 5270 // expanding to include additional bitcasts and getelementptr instructions. 5271 unsigned Idx = 0; 5272 while (Idx != Worklist.size()) { 5273 Instruction *Dst = Worklist[Idx++]; 5274 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5275 continue; 5276 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5277 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5278 auto *J = cast<Instruction>(U); 5279 return !TheLoop->contains(J) || Worklist.count(J) || 5280 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5281 isScalarUse(J, Src)); 5282 })) { 5283 Worklist.insert(Src); 5284 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5285 } 5286 } 5287 5288 // An induction variable will remain scalar if all users of the induction 5289 // variable and induction variable update remain scalar. 5290 for (auto &Induction : Legal->getInductionVars()) { 5291 auto *Ind = Induction.first; 5292 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5293 5294 // If tail-folding is applied, the primary induction variable will be used 5295 // to feed a vector compare. 5296 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5297 continue; 5298 5299 // Determine if all users of the induction variable are scalar after 5300 // vectorization. 5301 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5302 auto *I = cast<Instruction>(U); 5303 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5304 }); 5305 if (!ScalarInd) 5306 continue; 5307 5308 // Determine if all users of the induction variable update instruction are 5309 // scalar after vectorization. 5310 auto ScalarIndUpdate = 5311 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5312 auto *I = cast<Instruction>(U); 5313 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5314 }); 5315 if (!ScalarIndUpdate) 5316 continue; 5317 5318 // The induction variable and its update instruction will remain scalar. 5319 Worklist.insert(Ind); 5320 Worklist.insert(IndUpdate); 5321 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5322 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5323 << "\n"); 5324 } 5325 5326 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5327 } 5328 5329 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5330 if (!blockNeedsPredication(I->getParent())) 5331 return false; 5332 switch(I->getOpcode()) { 5333 default: 5334 break; 5335 case Instruction::Load: 5336 case Instruction::Store: { 5337 if (!Legal->isMaskRequired(I)) 5338 return false; 5339 auto *Ptr = getLoadStorePointerOperand(I); 5340 auto *Ty = getLoadStoreType(I); 5341 const Align Alignment = getLoadStoreAlignment(I); 5342 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5343 TTI.isLegalMaskedGather(Ty, Alignment)) 5344 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5345 TTI.isLegalMaskedScatter(Ty, Alignment)); 5346 } 5347 case Instruction::UDiv: 5348 case Instruction::SDiv: 5349 case Instruction::SRem: 5350 case Instruction::URem: 5351 return mayDivideByZero(*I); 5352 } 5353 return false; 5354 } 5355 5356 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5357 Instruction *I, ElementCount VF) { 5358 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5359 assert(getWideningDecision(I, VF) == CM_Unknown && 5360 "Decision should not be set yet."); 5361 auto *Group = getInterleavedAccessGroup(I); 5362 assert(Group && "Must have a group."); 5363 5364 // If the instruction's allocated size doesn't equal it's type size, it 5365 // requires padding and will be scalarized. 5366 auto &DL = I->getModule()->getDataLayout(); 5367 auto *ScalarTy = getLoadStoreType(I); 5368 if (hasIrregularType(ScalarTy, DL)) 5369 return false; 5370 5371 // Check if masking is required. 5372 // A Group may need masking for one of two reasons: it resides in a block that 5373 // needs predication, or it was decided to use masking to deal with gaps. 5374 bool PredicatedAccessRequiresMasking = 5375 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5376 bool AccessWithGapsRequiresMasking = 5377 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5378 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5379 return true; 5380 5381 // If masked interleaving is required, we expect that the user/target had 5382 // enabled it, because otherwise it either wouldn't have been created or 5383 // it should have been invalidated by the CostModel. 5384 assert(useMaskedInterleavedAccesses(TTI) && 5385 "Masked interleave-groups for predicated accesses are not enabled."); 5386 5387 auto *Ty = getLoadStoreType(I); 5388 const Align Alignment = getLoadStoreAlignment(I); 5389 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5390 : TTI.isLegalMaskedStore(Ty, Alignment); 5391 } 5392 5393 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5394 Instruction *I, ElementCount VF) { 5395 // Get and ensure we have a valid memory instruction. 5396 LoadInst *LI = dyn_cast<LoadInst>(I); 5397 StoreInst *SI = dyn_cast<StoreInst>(I); 5398 assert((LI || SI) && "Invalid memory instruction"); 5399 5400 auto *Ptr = getLoadStorePointerOperand(I); 5401 5402 // In order to be widened, the pointer should be consecutive, first of all. 5403 if (!Legal->isConsecutivePtr(Ptr)) 5404 return false; 5405 5406 // If the instruction is a store located in a predicated block, it will be 5407 // scalarized. 5408 if (isScalarWithPredication(I)) 5409 return false; 5410 5411 // If the instruction's allocated size doesn't equal it's type size, it 5412 // requires padding and will be scalarized. 5413 auto &DL = I->getModule()->getDataLayout(); 5414 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5415 if (hasIrregularType(ScalarTy, DL)) 5416 return false; 5417 5418 return true; 5419 } 5420 5421 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5422 // We should not collect Uniforms more than once per VF. Right now, 5423 // this function is called from collectUniformsAndScalars(), which 5424 // already does this check. Collecting Uniforms for VF=1 does not make any 5425 // sense. 5426 5427 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5428 "This function should not be visited twice for the same VF"); 5429 5430 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5431 // not analyze again. Uniforms.count(VF) will return 1. 5432 Uniforms[VF].clear(); 5433 5434 // We now know that the loop is vectorizable! 5435 // Collect instructions inside the loop that will remain uniform after 5436 // vectorization. 5437 5438 // Global values, params and instructions outside of current loop are out of 5439 // scope. 5440 auto isOutOfScope = [&](Value *V) -> bool { 5441 Instruction *I = dyn_cast<Instruction>(V); 5442 return (!I || !TheLoop->contains(I)); 5443 }; 5444 5445 SetVector<Instruction *> Worklist; 5446 BasicBlock *Latch = TheLoop->getLoopLatch(); 5447 5448 // Instructions that are scalar with predication must not be considered 5449 // uniform after vectorization, because that would create an erroneous 5450 // replicating region where only a single instance out of VF should be formed. 5451 // TODO: optimize such seldom cases if found important, see PR40816. 5452 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5453 if (isOutOfScope(I)) { 5454 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5455 << *I << "\n"); 5456 return; 5457 } 5458 if (isScalarWithPredication(I)) { 5459 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5460 << *I << "\n"); 5461 return; 5462 } 5463 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5464 Worklist.insert(I); 5465 }; 5466 5467 // Start with the conditional branch. If the branch condition is an 5468 // instruction contained in the loop that is only used by the branch, it is 5469 // uniform. 5470 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5471 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5472 addToWorklistIfAllowed(Cmp); 5473 5474 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5475 InstWidening WideningDecision = getWideningDecision(I, VF); 5476 assert(WideningDecision != CM_Unknown && 5477 "Widening decision should be ready at this moment"); 5478 5479 // A uniform memory op is itself uniform. We exclude uniform stores 5480 // here as they demand the last lane, not the first one. 5481 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5482 assert(WideningDecision == CM_Scalarize); 5483 return true; 5484 } 5485 5486 return (WideningDecision == CM_Widen || 5487 WideningDecision == CM_Widen_Reverse || 5488 WideningDecision == CM_Interleave); 5489 }; 5490 5491 5492 // Returns true if Ptr is the pointer operand of a memory access instruction 5493 // I, and I is known to not require scalarization. 5494 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5495 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5496 }; 5497 5498 // Holds a list of values which are known to have at least one uniform use. 5499 // Note that there may be other uses which aren't uniform. A "uniform use" 5500 // here is something which only demands lane 0 of the unrolled iterations; 5501 // it does not imply that all lanes produce the same value (e.g. this is not 5502 // the usual meaning of uniform) 5503 SetVector<Value *> HasUniformUse; 5504 5505 // Scan the loop for instructions which are either a) known to have only 5506 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5507 for (auto *BB : TheLoop->blocks()) 5508 for (auto &I : *BB) { 5509 // If there's no pointer operand, there's nothing to do. 5510 auto *Ptr = getLoadStorePointerOperand(&I); 5511 if (!Ptr) 5512 continue; 5513 5514 // A uniform memory op is itself uniform. We exclude uniform stores 5515 // here as they demand the last lane, not the first one. 5516 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5517 addToWorklistIfAllowed(&I); 5518 5519 if (isUniformDecision(&I, VF)) { 5520 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5521 HasUniformUse.insert(Ptr); 5522 } 5523 } 5524 5525 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5526 // demanding) users. Since loops are assumed to be in LCSSA form, this 5527 // disallows uses outside the loop as well. 5528 for (auto *V : HasUniformUse) { 5529 if (isOutOfScope(V)) 5530 continue; 5531 auto *I = cast<Instruction>(V); 5532 auto UsersAreMemAccesses = 5533 llvm::all_of(I->users(), [&](User *U) -> bool { 5534 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5535 }); 5536 if (UsersAreMemAccesses) 5537 addToWorklistIfAllowed(I); 5538 } 5539 5540 // Expand Worklist in topological order: whenever a new instruction 5541 // is added , its users should be already inside Worklist. It ensures 5542 // a uniform instruction will only be used by uniform instructions. 5543 unsigned idx = 0; 5544 while (idx != Worklist.size()) { 5545 Instruction *I = Worklist[idx++]; 5546 5547 for (auto OV : I->operand_values()) { 5548 // isOutOfScope operands cannot be uniform instructions. 5549 if (isOutOfScope(OV)) 5550 continue; 5551 // First order recurrence Phi's should typically be considered 5552 // non-uniform. 5553 auto *OP = dyn_cast<PHINode>(OV); 5554 if (OP && Legal->isFirstOrderRecurrence(OP)) 5555 continue; 5556 // If all the users of the operand are uniform, then add the 5557 // operand into the uniform worklist. 5558 auto *OI = cast<Instruction>(OV); 5559 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5560 auto *J = cast<Instruction>(U); 5561 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5562 })) 5563 addToWorklistIfAllowed(OI); 5564 } 5565 } 5566 5567 // For an instruction to be added into Worklist above, all its users inside 5568 // the loop should also be in Worklist. However, this condition cannot be 5569 // true for phi nodes that form a cyclic dependence. We must process phi 5570 // nodes separately. An induction variable will remain uniform if all users 5571 // of the induction variable and induction variable update remain uniform. 5572 // The code below handles both pointer and non-pointer induction variables. 5573 for (auto &Induction : Legal->getInductionVars()) { 5574 auto *Ind = Induction.first; 5575 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5576 5577 // Determine if all users of the induction variable are uniform after 5578 // vectorization. 5579 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5580 auto *I = cast<Instruction>(U); 5581 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5582 isVectorizedMemAccessUse(I, Ind); 5583 }); 5584 if (!UniformInd) 5585 continue; 5586 5587 // Determine if all users of the induction variable update instruction are 5588 // uniform after vectorization. 5589 auto UniformIndUpdate = 5590 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5591 auto *I = cast<Instruction>(U); 5592 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5593 isVectorizedMemAccessUse(I, IndUpdate); 5594 }); 5595 if (!UniformIndUpdate) 5596 continue; 5597 5598 // The induction variable and its update instruction will remain uniform. 5599 addToWorklistIfAllowed(Ind); 5600 addToWorklistIfAllowed(IndUpdate); 5601 } 5602 5603 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5604 } 5605 5606 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5607 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5608 5609 if (Legal->getRuntimePointerChecking()->Need) { 5610 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5611 "runtime pointer checks needed. Enable vectorization of this " 5612 "loop with '#pragma clang loop vectorize(enable)' when " 5613 "compiling with -Os/-Oz", 5614 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5615 return true; 5616 } 5617 5618 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5619 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5620 "runtime SCEV checks needed. Enable vectorization of this " 5621 "loop with '#pragma clang loop vectorize(enable)' when " 5622 "compiling with -Os/-Oz", 5623 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5624 return true; 5625 } 5626 5627 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5628 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5629 reportVectorizationFailure("Runtime stride check for small trip count", 5630 "runtime stride == 1 checks needed. Enable vectorization of " 5631 "this loop without such check by compiling with -Os/-Oz", 5632 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5633 return true; 5634 } 5635 5636 return false; 5637 } 5638 5639 ElementCount 5640 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5641 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5642 reportVectorizationInfo( 5643 "Disabling scalable vectorization, because target does not " 5644 "support scalable vectors.", 5645 "ScalableVectorsUnsupported", ORE, TheLoop); 5646 return ElementCount::getScalable(0); 5647 } 5648 5649 if (Hints->isScalableVectorizationDisabled()) { 5650 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5651 "ScalableVectorizationDisabled", ORE, TheLoop); 5652 return ElementCount::getScalable(0); 5653 } 5654 5655 auto MaxScalableVF = ElementCount::getScalable( 5656 std::numeric_limits<ElementCount::ScalarTy>::max()); 5657 5658 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5659 // FIXME: While for scalable vectors this is currently sufficient, this should 5660 // be replaced by a more detailed mechanism that filters out specific VFs, 5661 // instead of invalidating vectorization for a whole set of VFs based on the 5662 // MaxVF. 5663 5664 // Disable scalable vectorization if the loop contains unsupported reductions. 5665 if (!canVectorizeReductions(MaxScalableVF)) { 5666 reportVectorizationInfo( 5667 "Scalable vectorization not supported for the reduction " 5668 "operations found in this loop.", 5669 "ScalableVFUnfeasible", ORE, TheLoop); 5670 return ElementCount::getScalable(0); 5671 } 5672 5673 // Disable scalable vectorization if the loop contains any instructions 5674 // with element types not supported for scalable vectors. 5675 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5676 return !Ty->isVoidTy() && 5677 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5678 })) { 5679 reportVectorizationInfo("Scalable vectorization is not supported " 5680 "for all element types found in this loop.", 5681 "ScalableVFUnfeasible", ORE, TheLoop); 5682 return ElementCount::getScalable(0); 5683 } 5684 5685 if (Legal->isSafeForAnyVectorWidth()) 5686 return MaxScalableVF; 5687 5688 // Limit MaxScalableVF by the maximum safe dependence distance. 5689 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5690 MaxScalableVF = ElementCount::getScalable( 5691 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5692 if (!MaxScalableVF) 5693 reportVectorizationInfo( 5694 "Max legal vector width too small, scalable vectorization " 5695 "unfeasible.", 5696 "ScalableVFUnfeasible", ORE, TheLoop); 5697 5698 return MaxScalableVF; 5699 } 5700 5701 FixedScalableVFPair 5702 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5703 ElementCount UserVF) { 5704 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5705 unsigned SmallestType, WidestType; 5706 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5707 5708 // Get the maximum safe dependence distance in bits computed by LAA. 5709 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5710 // the memory accesses that is most restrictive (involved in the smallest 5711 // dependence distance). 5712 unsigned MaxSafeElements = 5713 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5714 5715 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5716 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5717 5718 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5719 << ".\n"); 5720 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5721 << ".\n"); 5722 5723 // First analyze the UserVF, fall back if the UserVF should be ignored. 5724 if (UserVF) { 5725 auto MaxSafeUserVF = 5726 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5727 5728 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) 5729 return UserVF; 5730 5731 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5732 5733 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5734 // is better to ignore the hint and let the compiler choose a suitable VF. 5735 if (!UserVF.isScalable()) { 5736 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5737 << " is unsafe, clamping to max safe VF=" 5738 << MaxSafeFixedVF << ".\n"); 5739 ORE->emit([&]() { 5740 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5741 TheLoop->getStartLoc(), 5742 TheLoop->getHeader()) 5743 << "User-specified vectorization factor " 5744 << ore::NV("UserVectorizationFactor", UserVF) 5745 << " is unsafe, clamping to maximum safe vectorization factor " 5746 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5747 }); 5748 return MaxSafeFixedVF; 5749 } 5750 5751 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5752 << " is unsafe. Ignoring scalable UserVF.\n"); 5753 ORE->emit([&]() { 5754 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5755 TheLoop->getStartLoc(), 5756 TheLoop->getHeader()) 5757 << "User-specified vectorization factor " 5758 << ore::NV("UserVectorizationFactor", UserVF) 5759 << " is unsafe. Ignoring the hint to let the compiler pick a " 5760 "suitable VF."; 5761 }); 5762 } 5763 5764 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5765 << " / " << WidestType << " bits.\n"); 5766 5767 FixedScalableVFPair Result(ElementCount::getFixed(1), 5768 ElementCount::getScalable(0)); 5769 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5770 WidestType, MaxSafeFixedVF)) 5771 Result.FixedVF = MaxVF; 5772 5773 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5774 WidestType, MaxSafeScalableVF)) 5775 if (MaxVF.isScalable()) { 5776 Result.ScalableVF = MaxVF; 5777 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5778 << "\n"); 5779 } 5780 5781 return Result; 5782 } 5783 5784 FixedScalableVFPair 5785 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5786 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5787 // TODO: It may by useful to do since it's still likely to be dynamically 5788 // uniform if the target can skip. 5789 reportVectorizationFailure( 5790 "Not inserting runtime ptr check for divergent target", 5791 "runtime pointer checks needed. Not enabled for divergent target", 5792 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5793 return FixedScalableVFPair::getNone(); 5794 } 5795 5796 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5797 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5798 if (TC == 1) { 5799 reportVectorizationFailure("Single iteration (non) loop", 5800 "loop trip count is one, irrelevant for vectorization", 5801 "SingleIterationLoop", ORE, TheLoop); 5802 return FixedScalableVFPair::getNone(); 5803 } 5804 5805 switch (ScalarEpilogueStatus) { 5806 case CM_ScalarEpilogueAllowed: 5807 return computeFeasibleMaxVF(TC, UserVF); 5808 case CM_ScalarEpilogueNotAllowedUsePredicate: 5809 LLVM_FALLTHROUGH; 5810 case CM_ScalarEpilogueNotNeededUsePredicate: 5811 LLVM_DEBUG( 5812 dbgs() << "LV: vector predicate hint/switch found.\n" 5813 << "LV: Not allowing scalar epilogue, creating predicated " 5814 << "vector loop.\n"); 5815 break; 5816 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5817 // fallthrough as a special case of OptForSize 5818 case CM_ScalarEpilogueNotAllowedOptSize: 5819 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5820 LLVM_DEBUG( 5821 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5822 else 5823 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5824 << "count.\n"); 5825 5826 // Bail if runtime checks are required, which are not good when optimising 5827 // for size. 5828 if (runtimeChecksRequired()) 5829 return FixedScalableVFPair::getNone(); 5830 5831 break; 5832 } 5833 5834 // The only loops we can vectorize without a scalar epilogue, are loops with 5835 // a bottom-test and a single exiting block. We'd have to handle the fact 5836 // that not every instruction executes on the last iteration. This will 5837 // require a lane mask which varies through the vector loop body. (TODO) 5838 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5839 // If there was a tail-folding hint/switch, but we can't fold the tail by 5840 // masking, fallback to a vectorization with a scalar epilogue. 5841 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5842 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5843 "scalar epilogue instead.\n"); 5844 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5845 return computeFeasibleMaxVF(TC, UserVF); 5846 } 5847 return FixedScalableVFPair::getNone(); 5848 } 5849 5850 // Now try the tail folding 5851 5852 // Invalidate interleave groups that require an epilogue if we can't mask 5853 // the interleave-group. 5854 if (!useMaskedInterleavedAccesses(TTI)) { 5855 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5856 "No decisions should have been taken at this point"); 5857 // Note: There is no need to invalidate any cost modeling decisions here, as 5858 // non where taken so far. 5859 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5860 } 5861 5862 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5863 // Avoid tail folding if the trip count is known to be a multiple of any VF 5864 // we chose. 5865 // FIXME: The condition below pessimises the case for fixed-width vectors, 5866 // when scalable VFs are also candidates for vectorization. 5867 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5868 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5869 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5870 "MaxFixedVF must be a power of 2"); 5871 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5872 : MaxFixedVF.getFixedValue(); 5873 ScalarEvolution *SE = PSE.getSE(); 5874 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5875 const SCEV *ExitCount = SE->getAddExpr( 5876 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5877 const SCEV *Rem = SE->getURemExpr( 5878 SE->applyLoopGuards(ExitCount, TheLoop), 5879 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5880 if (Rem->isZero()) { 5881 // Accept MaxFixedVF if we do not have a tail. 5882 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5883 return MaxFactors; 5884 } 5885 } 5886 5887 // If we don't know the precise trip count, or if the trip count that we 5888 // found modulo the vectorization factor is not zero, try to fold the tail 5889 // by masking. 5890 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5891 if (Legal->prepareToFoldTailByMasking()) { 5892 FoldTailByMasking = true; 5893 return MaxFactors; 5894 } 5895 5896 // If there was a tail-folding hint/switch, but we can't fold the tail by 5897 // masking, fallback to a vectorization with a scalar epilogue. 5898 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5899 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5900 "scalar epilogue instead.\n"); 5901 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5902 return MaxFactors; 5903 } 5904 5905 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5906 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5907 return FixedScalableVFPair::getNone(); 5908 } 5909 5910 if (TC == 0) { 5911 reportVectorizationFailure( 5912 "Unable to calculate the loop count due to complex control flow", 5913 "unable to calculate the loop count due to complex control flow", 5914 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5915 return FixedScalableVFPair::getNone(); 5916 } 5917 5918 reportVectorizationFailure( 5919 "Cannot optimize for size and vectorize at the same time.", 5920 "cannot optimize for size and vectorize at the same time. " 5921 "Enable vectorization of this loop with '#pragma clang loop " 5922 "vectorize(enable)' when compiling with -Os/-Oz", 5923 "NoTailLoopWithOptForSize", ORE, TheLoop); 5924 return FixedScalableVFPair::getNone(); 5925 } 5926 5927 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5928 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5929 const ElementCount &MaxSafeVF) { 5930 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5931 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5932 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5933 : TargetTransformInfo::RGK_FixedWidthVector); 5934 5935 // Convenience function to return the minimum of two ElementCounts. 5936 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5937 assert((LHS.isScalable() == RHS.isScalable()) && 5938 "Scalable flags must match"); 5939 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5940 }; 5941 5942 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5943 // Note that both WidestRegister and WidestType may not be a powers of 2. 5944 auto MaxVectorElementCount = ElementCount::get( 5945 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5946 ComputeScalableMaxVF); 5947 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5948 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5949 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5950 5951 if (!MaxVectorElementCount) { 5952 LLVM_DEBUG(dbgs() << "LV: The target has no " 5953 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5954 << " vector registers.\n"); 5955 return ElementCount::getFixed(1); 5956 } 5957 5958 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5959 if (ConstTripCount && 5960 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5961 isPowerOf2_32(ConstTripCount)) { 5962 // We need to clamp the VF to be the ConstTripCount. There is no point in 5963 // choosing a higher viable VF as done in the loop below. If 5964 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5965 // the TC is less than or equal to the known number of lanes. 5966 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5967 << ConstTripCount << "\n"); 5968 return TripCountEC; 5969 } 5970 5971 ElementCount MaxVF = MaxVectorElementCount; 5972 if (TTI.shouldMaximizeVectorBandwidth() || 5973 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5974 auto MaxVectorElementCountMaxBW = ElementCount::get( 5975 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5976 ComputeScalableMaxVF); 5977 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5978 5979 // Collect all viable vectorization factors larger than the default MaxVF 5980 // (i.e. MaxVectorElementCount). 5981 SmallVector<ElementCount, 8> VFs; 5982 for (ElementCount VS = MaxVectorElementCount * 2; 5983 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5984 VFs.push_back(VS); 5985 5986 // For each VF calculate its register usage. 5987 auto RUs = calculateRegisterUsage(VFs); 5988 5989 // Select the largest VF which doesn't require more registers than existing 5990 // ones. 5991 for (int i = RUs.size() - 1; i >= 0; --i) { 5992 bool Selected = true; 5993 for (auto &pair : RUs[i].MaxLocalUsers) { 5994 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5995 if (pair.second > TargetNumRegisters) 5996 Selected = false; 5997 } 5998 if (Selected) { 5999 MaxVF = VFs[i]; 6000 break; 6001 } 6002 } 6003 if (ElementCount MinVF = 6004 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6005 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6006 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6007 << ") with target's minimum: " << MinVF << '\n'); 6008 MaxVF = MinVF; 6009 } 6010 } 6011 } 6012 return MaxVF; 6013 } 6014 6015 bool LoopVectorizationCostModel::isMoreProfitable( 6016 const VectorizationFactor &A, const VectorizationFactor &B) const { 6017 InstructionCost::CostType CostA = *A.Cost.getValue(); 6018 InstructionCost::CostType CostB = *B.Cost.getValue(); 6019 6020 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6021 6022 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6023 MaxTripCount) { 6024 // If we are folding the tail and the trip count is a known (possibly small) 6025 // constant, the trip count will be rounded up to an integer number of 6026 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6027 // which we compare directly. When not folding the tail, the total cost will 6028 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6029 // approximated with the per-lane cost below instead of using the tripcount 6030 // as here. 6031 int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6032 int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6033 return RTCostA < RTCostB; 6034 } 6035 6036 // When set to preferred, for now assume vscale may be larger than 1, so 6037 // that scalable vectorization is slightly favorable over fixed-width 6038 // vectorization. 6039 if (Hints->isScalableVectorizationPreferred()) 6040 if (A.Width.isScalable() && !B.Width.isScalable()) 6041 return (CostA * B.Width.getKnownMinValue()) <= 6042 (CostB * A.Width.getKnownMinValue()); 6043 6044 // To avoid the need for FP division: 6045 // (CostA / A.Width) < (CostB / B.Width) 6046 // <=> (CostA * B.Width) < (CostB * A.Width) 6047 return (CostA * B.Width.getKnownMinValue()) < 6048 (CostB * A.Width.getKnownMinValue()); 6049 } 6050 6051 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6052 const ElementCountSet &VFCandidates) { 6053 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6054 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6055 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6056 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6057 "Expected Scalar VF to be a candidate"); 6058 6059 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6060 VectorizationFactor ChosenFactor = ScalarCost; 6061 6062 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6063 if (ForceVectorization && VFCandidates.size() > 1) { 6064 // Ignore scalar width, because the user explicitly wants vectorization. 6065 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6066 // evaluation. 6067 ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max(); 6068 } 6069 6070 for (const auto &i : VFCandidates) { 6071 // The cost for scalar VF=1 is already calculated, so ignore it. 6072 if (i.isScalar()) 6073 continue; 6074 6075 // Notice that the vector loop needs to be executed less times, so 6076 // we need to divide the cost of the vector loops by the width of 6077 // the vector elements. 6078 VectorizationCostTy C = expectedCost(i); 6079 6080 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 6081 VectorizationFactor Candidate(i, C.first); 6082 LLVM_DEBUG( 6083 dbgs() << "LV: Vector loop of width " << i << " costs: " 6084 << (*Candidate.Cost.getValue() / 6085 Candidate.Width.getKnownMinValue()) 6086 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6087 << ".\n"); 6088 6089 if (!C.second && !ForceVectorization) { 6090 LLVM_DEBUG( 6091 dbgs() << "LV: Not considering vector loop of width " << i 6092 << " because it will not generate any vector instructions.\n"); 6093 continue; 6094 } 6095 6096 // If profitable add it to ProfitableVF list. 6097 if (isMoreProfitable(Candidate, ScalarCost)) 6098 ProfitableVFs.push_back(Candidate); 6099 6100 if (isMoreProfitable(Candidate, ChosenFactor)) 6101 ChosenFactor = Candidate; 6102 } 6103 6104 if (!EnableCondStoresVectorization && NumPredStores) { 6105 reportVectorizationFailure("There are conditional stores.", 6106 "store that is conditionally executed prevents vectorization", 6107 "ConditionalStore", ORE, TheLoop); 6108 ChosenFactor = ScalarCost; 6109 } 6110 6111 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6112 *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) 6113 dbgs() 6114 << "LV: Vectorization seems to be not beneficial, " 6115 << "but was forced by a user.\n"); 6116 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6117 return ChosenFactor; 6118 } 6119 6120 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6121 const Loop &L, ElementCount VF) const { 6122 // Cross iteration phis such as reductions need special handling and are 6123 // currently unsupported. 6124 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6125 return Legal->isFirstOrderRecurrence(&Phi) || 6126 Legal->isReductionVariable(&Phi); 6127 })) 6128 return false; 6129 6130 // Phis with uses outside of the loop require special handling and are 6131 // currently unsupported. 6132 for (auto &Entry : Legal->getInductionVars()) { 6133 // Look for uses of the value of the induction at the last iteration. 6134 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6135 for (User *U : PostInc->users()) 6136 if (!L.contains(cast<Instruction>(U))) 6137 return false; 6138 // Look for uses of penultimate value of the induction. 6139 for (User *U : Entry.first->users()) 6140 if (!L.contains(cast<Instruction>(U))) 6141 return false; 6142 } 6143 6144 // Induction variables that are widened require special handling that is 6145 // currently not supported. 6146 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6147 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6148 this->isProfitableToScalarize(Entry.first, VF)); 6149 })) 6150 return false; 6151 6152 // Epilogue vectorization code has not been auditted to ensure it handles 6153 // non-latch exits properly. It may be fine, but it needs auditted and 6154 // tested. 6155 if (L.getExitingBlock() != L.getLoopLatch()) 6156 return false; 6157 6158 return true; 6159 } 6160 6161 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6162 const ElementCount VF) const { 6163 // FIXME: We need a much better cost-model to take different parameters such 6164 // as register pressure, code size increase and cost of extra branches into 6165 // account. For now we apply a very crude heuristic and only consider loops 6166 // with vectorization factors larger than a certain value. 6167 // We also consider epilogue vectorization unprofitable for targets that don't 6168 // consider interleaving beneficial (eg. MVE). 6169 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6170 return false; 6171 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6172 return true; 6173 return false; 6174 } 6175 6176 VectorizationFactor 6177 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6178 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6179 VectorizationFactor Result = VectorizationFactor::Disabled(); 6180 if (!EnableEpilogueVectorization) { 6181 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6182 return Result; 6183 } 6184 6185 if (!isScalarEpilogueAllowed()) { 6186 LLVM_DEBUG( 6187 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6188 "allowed.\n";); 6189 return Result; 6190 } 6191 6192 // FIXME: This can be fixed for scalable vectors later, because at this stage 6193 // the LoopVectorizer will only consider vectorizing a loop with scalable 6194 // vectors when the loop has a hint to enable vectorization for a given VF. 6195 if (MainLoopVF.isScalable()) { 6196 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6197 "yet supported.\n"); 6198 return Result; 6199 } 6200 6201 // Not really a cost consideration, but check for unsupported cases here to 6202 // simplify the logic. 6203 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6204 LLVM_DEBUG( 6205 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6206 "not a supported candidate.\n";); 6207 return Result; 6208 } 6209 6210 if (EpilogueVectorizationForceVF > 1) { 6211 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6212 if (LVP.hasPlanWithVFs( 6213 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6214 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6215 else { 6216 LLVM_DEBUG( 6217 dbgs() 6218 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6219 return Result; 6220 } 6221 } 6222 6223 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6224 TheLoop->getHeader()->getParent()->hasMinSize()) { 6225 LLVM_DEBUG( 6226 dbgs() 6227 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6228 return Result; 6229 } 6230 6231 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6232 return Result; 6233 6234 for (auto &NextVF : ProfitableVFs) 6235 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6236 (Result.Width.getFixedValue() == 1 || 6237 isMoreProfitable(NextVF, Result)) && 6238 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6239 Result = NextVF; 6240 6241 if (Result != VectorizationFactor::Disabled()) 6242 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6243 << Result.Width.getFixedValue() << "\n";); 6244 return Result; 6245 } 6246 6247 std::pair<unsigned, unsigned> 6248 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6249 unsigned MinWidth = -1U; 6250 unsigned MaxWidth = 8; 6251 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6252 for (Type *T : ElementTypesInLoop) { 6253 MinWidth = std::min<unsigned>( 6254 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6255 MaxWidth = std::max<unsigned>( 6256 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6257 } 6258 return {MinWidth, MaxWidth}; 6259 } 6260 6261 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6262 ElementTypesInLoop.clear(); 6263 // For each block. 6264 for (BasicBlock *BB : TheLoop->blocks()) { 6265 // For each instruction in the loop. 6266 for (Instruction &I : BB->instructionsWithoutDebug()) { 6267 Type *T = I.getType(); 6268 6269 // Skip ignored values. 6270 if (ValuesToIgnore.count(&I)) 6271 continue; 6272 6273 // Only examine Loads, Stores and PHINodes. 6274 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6275 continue; 6276 6277 // Examine PHI nodes that are reduction variables. Update the type to 6278 // account for the recurrence type. 6279 if (auto *PN = dyn_cast<PHINode>(&I)) { 6280 if (!Legal->isReductionVariable(PN)) 6281 continue; 6282 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6283 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6284 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6285 RdxDesc.getRecurrenceType(), 6286 TargetTransformInfo::ReductionFlags())) 6287 continue; 6288 T = RdxDesc.getRecurrenceType(); 6289 } 6290 6291 // Examine the stored values. 6292 if (auto *ST = dyn_cast<StoreInst>(&I)) 6293 T = ST->getValueOperand()->getType(); 6294 6295 // Ignore loaded pointer types and stored pointer types that are not 6296 // vectorizable. 6297 // 6298 // FIXME: The check here attempts to predict whether a load or store will 6299 // be vectorized. We only know this for certain after a VF has 6300 // been selected. Here, we assume that if an access can be 6301 // vectorized, it will be. We should also look at extending this 6302 // optimization to non-pointer types. 6303 // 6304 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6305 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6306 continue; 6307 6308 ElementTypesInLoop.insert(T); 6309 } 6310 } 6311 } 6312 6313 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6314 unsigned LoopCost) { 6315 // -- The interleave heuristics -- 6316 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6317 // There are many micro-architectural considerations that we can't predict 6318 // at this level. For example, frontend pressure (on decode or fetch) due to 6319 // code size, or the number and capabilities of the execution ports. 6320 // 6321 // We use the following heuristics to select the interleave count: 6322 // 1. If the code has reductions, then we interleave to break the cross 6323 // iteration dependency. 6324 // 2. If the loop is really small, then we interleave to reduce the loop 6325 // overhead. 6326 // 3. We don't interleave if we think that we will spill registers to memory 6327 // due to the increased register pressure. 6328 6329 if (!isScalarEpilogueAllowed()) 6330 return 1; 6331 6332 // We used the distance for the interleave count. 6333 if (Legal->getMaxSafeDepDistBytes() != -1U) 6334 return 1; 6335 6336 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6337 const bool HasReductions = !Legal->getReductionVars().empty(); 6338 // Do not interleave loops with a relatively small known or estimated trip 6339 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6340 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6341 // because with the above conditions interleaving can expose ILP and break 6342 // cross iteration dependences for reductions. 6343 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6344 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6345 return 1; 6346 6347 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6348 // We divide by these constants so assume that we have at least one 6349 // instruction that uses at least one register. 6350 for (auto& pair : R.MaxLocalUsers) { 6351 pair.second = std::max(pair.second, 1U); 6352 } 6353 6354 // We calculate the interleave count using the following formula. 6355 // Subtract the number of loop invariants from the number of available 6356 // registers. These registers are used by all of the interleaved instances. 6357 // Next, divide the remaining registers by the number of registers that is 6358 // required by the loop, in order to estimate how many parallel instances 6359 // fit without causing spills. All of this is rounded down if necessary to be 6360 // a power of two. We want power of two interleave count to simplify any 6361 // addressing operations or alignment considerations. 6362 // We also want power of two interleave counts to ensure that the induction 6363 // variable of the vector loop wraps to zero, when tail is folded by masking; 6364 // this currently happens when OptForSize, in which case IC is set to 1 above. 6365 unsigned IC = UINT_MAX; 6366 6367 for (auto& pair : R.MaxLocalUsers) { 6368 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6369 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6370 << " registers of " 6371 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6372 if (VF.isScalar()) { 6373 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6374 TargetNumRegisters = ForceTargetNumScalarRegs; 6375 } else { 6376 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6377 TargetNumRegisters = ForceTargetNumVectorRegs; 6378 } 6379 unsigned MaxLocalUsers = pair.second; 6380 unsigned LoopInvariantRegs = 0; 6381 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6382 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6383 6384 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6385 // Don't count the induction variable as interleaved. 6386 if (EnableIndVarRegisterHeur) { 6387 TmpIC = 6388 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6389 std::max(1U, (MaxLocalUsers - 1))); 6390 } 6391 6392 IC = std::min(IC, TmpIC); 6393 } 6394 6395 // Clamp the interleave ranges to reasonable counts. 6396 unsigned MaxInterleaveCount = 6397 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6398 6399 // Check if the user has overridden the max. 6400 if (VF.isScalar()) { 6401 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6402 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6403 } else { 6404 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6405 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6406 } 6407 6408 // If trip count is known or estimated compile time constant, limit the 6409 // interleave count to be less than the trip count divided by VF, provided it 6410 // is at least 1. 6411 // 6412 // For scalable vectors we can't know if interleaving is beneficial. It may 6413 // not be beneficial for small loops if none of the lanes in the second vector 6414 // iterations is enabled. However, for larger loops, there is likely to be a 6415 // similar benefit as for fixed-width vectors. For now, we choose to leave 6416 // the InterleaveCount as if vscale is '1', although if some information about 6417 // the vector is known (e.g. min vector size), we can make a better decision. 6418 if (BestKnownTC) { 6419 MaxInterleaveCount = 6420 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6421 // Make sure MaxInterleaveCount is greater than 0. 6422 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6423 } 6424 6425 assert(MaxInterleaveCount > 0 && 6426 "Maximum interleave count must be greater than 0"); 6427 6428 // Clamp the calculated IC to be between the 1 and the max interleave count 6429 // that the target and trip count allows. 6430 if (IC > MaxInterleaveCount) 6431 IC = MaxInterleaveCount; 6432 else 6433 // Make sure IC is greater than 0. 6434 IC = std::max(1u, IC); 6435 6436 assert(IC > 0 && "Interleave count must be greater than 0."); 6437 6438 // If we did not calculate the cost for VF (because the user selected the VF) 6439 // then we calculate the cost of VF here. 6440 if (LoopCost == 0) { 6441 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6442 LoopCost = *expectedCost(VF).first.getValue(); 6443 } 6444 6445 assert(LoopCost && "Non-zero loop cost expected"); 6446 6447 // Interleave if we vectorized this loop and there is a reduction that could 6448 // benefit from interleaving. 6449 if (VF.isVector() && HasReductions) { 6450 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6451 return IC; 6452 } 6453 6454 // Note that if we've already vectorized the loop we will have done the 6455 // runtime check and so interleaving won't require further checks. 6456 bool InterleavingRequiresRuntimePointerCheck = 6457 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6458 6459 // We want to interleave small loops in order to reduce the loop overhead and 6460 // potentially expose ILP opportunities. 6461 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6462 << "LV: IC is " << IC << '\n' 6463 << "LV: VF is " << VF << '\n'); 6464 const bool AggressivelyInterleaveReductions = 6465 TTI.enableAggressiveInterleaving(HasReductions); 6466 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6467 // We assume that the cost overhead is 1 and we use the cost model 6468 // to estimate the cost of the loop and interleave until the cost of the 6469 // loop overhead is about 5% of the cost of the loop. 6470 unsigned SmallIC = 6471 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6472 6473 // Interleave until store/load ports (estimated by max interleave count) are 6474 // saturated. 6475 unsigned NumStores = Legal->getNumStores(); 6476 unsigned NumLoads = Legal->getNumLoads(); 6477 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6478 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6479 6480 // If we have a scalar reduction (vector reductions are already dealt with 6481 // by this point), we can increase the critical path length if the loop 6482 // we're interleaving is inside another loop. Limit, by default to 2, so the 6483 // critical path only gets increased by one reduction operation. 6484 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6485 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6486 SmallIC = std::min(SmallIC, F); 6487 StoresIC = std::min(StoresIC, F); 6488 LoadsIC = std::min(LoadsIC, F); 6489 } 6490 6491 if (EnableLoadStoreRuntimeInterleave && 6492 std::max(StoresIC, LoadsIC) > SmallIC) { 6493 LLVM_DEBUG( 6494 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6495 return std::max(StoresIC, LoadsIC); 6496 } 6497 6498 // If there are scalar reductions and TTI has enabled aggressive 6499 // interleaving for reductions, we will interleave to expose ILP. 6500 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6501 AggressivelyInterleaveReductions) { 6502 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6503 // Interleave no less than SmallIC but not as aggressive as the normal IC 6504 // to satisfy the rare situation when resources are too limited. 6505 return std::max(IC / 2, SmallIC); 6506 } else { 6507 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6508 return SmallIC; 6509 } 6510 } 6511 6512 // Interleave if this is a large loop (small loops are already dealt with by 6513 // this point) that could benefit from interleaving. 6514 if (AggressivelyInterleaveReductions) { 6515 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6516 return IC; 6517 } 6518 6519 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6520 return 1; 6521 } 6522 6523 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6524 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6525 // This function calculates the register usage by measuring the highest number 6526 // of values that are alive at a single location. Obviously, this is a very 6527 // rough estimation. We scan the loop in a topological order in order and 6528 // assign a number to each instruction. We use RPO to ensure that defs are 6529 // met before their users. We assume that each instruction that has in-loop 6530 // users starts an interval. We record every time that an in-loop value is 6531 // used, so we have a list of the first and last occurrences of each 6532 // instruction. Next, we transpose this data structure into a multi map that 6533 // holds the list of intervals that *end* at a specific location. This multi 6534 // map allows us to perform a linear search. We scan the instructions linearly 6535 // and record each time that a new interval starts, by placing it in a set. 6536 // If we find this value in the multi-map then we remove it from the set. 6537 // The max register usage is the maximum size of the set. 6538 // We also search for instructions that are defined outside the loop, but are 6539 // used inside the loop. We need this number separately from the max-interval 6540 // usage number because when we unroll, loop-invariant values do not take 6541 // more register. 6542 LoopBlocksDFS DFS(TheLoop); 6543 DFS.perform(LI); 6544 6545 RegisterUsage RU; 6546 6547 // Each 'key' in the map opens a new interval. The values 6548 // of the map are the index of the 'last seen' usage of the 6549 // instruction that is the key. 6550 using IntervalMap = DenseMap<Instruction *, unsigned>; 6551 6552 // Maps instruction to its index. 6553 SmallVector<Instruction *, 64> IdxToInstr; 6554 // Marks the end of each interval. 6555 IntervalMap EndPoint; 6556 // Saves the list of instruction indices that are used in the loop. 6557 SmallPtrSet<Instruction *, 8> Ends; 6558 // Saves the list of values that are used in the loop but are 6559 // defined outside the loop, such as arguments and constants. 6560 SmallPtrSet<Value *, 8> LoopInvariants; 6561 6562 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6563 for (Instruction &I : BB->instructionsWithoutDebug()) { 6564 IdxToInstr.push_back(&I); 6565 6566 // Save the end location of each USE. 6567 for (Value *U : I.operands()) { 6568 auto *Instr = dyn_cast<Instruction>(U); 6569 6570 // Ignore non-instruction values such as arguments, constants, etc. 6571 if (!Instr) 6572 continue; 6573 6574 // If this instruction is outside the loop then record it and continue. 6575 if (!TheLoop->contains(Instr)) { 6576 LoopInvariants.insert(Instr); 6577 continue; 6578 } 6579 6580 // Overwrite previous end points. 6581 EndPoint[Instr] = IdxToInstr.size(); 6582 Ends.insert(Instr); 6583 } 6584 } 6585 } 6586 6587 // Saves the list of intervals that end with the index in 'key'. 6588 using InstrList = SmallVector<Instruction *, 2>; 6589 DenseMap<unsigned, InstrList> TransposeEnds; 6590 6591 // Transpose the EndPoints to a list of values that end at each index. 6592 for (auto &Interval : EndPoint) 6593 TransposeEnds[Interval.second].push_back(Interval.first); 6594 6595 SmallPtrSet<Instruction *, 8> OpenIntervals; 6596 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6597 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6598 6599 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6600 6601 // A lambda that gets the register usage for the given type and VF. 6602 const auto &TTICapture = TTI; 6603 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6604 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6605 return 0; 6606 return *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6607 }; 6608 6609 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6610 Instruction *I = IdxToInstr[i]; 6611 6612 // Remove all of the instructions that end at this location. 6613 InstrList &List = TransposeEnds[i]; 6614 for (Instruction *ToRemove : List) 6615 OpenIntervals.erase(ToRemove); 6616 6617 // Ignore instructions that are never used within the loop. 6618 if (!Ends.count(I)) 6619 continue; 6620 6621 // Skip ignored values. 6622 if (ValuesToIgnore.count(I)) 6623 continue; 6624 6625 // For each VF find the maximum usage of registers. 6626 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6627 // Count the number of live intervals. 6628 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6629 6630 if (VFs[j].isScalar()) { 6631 for (auto Inst : OpenIntervals) { 6632 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6633 if (RegUsage.find(ClassID) == RegUsage.end()) 6634 RegUsage[ClassID] = 1; 6635 else 6636 RegUsage[ClassID] += 1; 6637 } 6638 } else { 6639 collectUniformsAndScalars(VFs[j]); 6640 for (auto Inst : OpenIntervals) { 6641 // Skip ignored values for VF > 1. 6642 if (VecValuesToIgnore.count(Inst)) 6643 continue; 6644 if (isScalarAfterVectorization(Inst, VFs[j])) { 6645 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6646 if (RegUsage.find(ClassID) == RegUsage.end()) 6647 RegUsage[ClassID] = 1; 6648 else 6649 RegUsage[ClassID] += 1; 6650 } else { 6651 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6652 if (RegUsage.find(ClassID) == RegUsage.end()) 6653 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6654 else 6655 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6656 } 6657 } 6658 } 6659 6660 for (auto& pair : RegUsage) { 6661 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6662 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6663 else 6664 MaxUsages[j][pair.first] = pair.second; 6665 } 6666 } 6667 6668 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6669 << OpenIntervals.size() << '\n'); 6670 6671 // Add the current instruction to the list of open intervals. 6672 OpenIntervals.insert(I); 6673 } 6674 6675 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6676 SmallMapVector<unsigned, unsigned, 4> Invariant; 6677 6678 for (auto Inst : LoopInvariants) { 6679 unsigned Usage = 6680 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6681 unsigned ClassID = 6682 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6683 if (Invariant.find(ClassID) == Invariant.end()) 6684 Invariant[ClassID] = Usage; 6685 else 6686 Invariant[ClassID] += Usage; 6687 } 6688 6689 LLVM_DEBUG({ 6690 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6691 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6692 << " item\n"; 6693 for (const auto &pair : MaxUsages[i]) { 6694 dbgs() << "LV(REG): RegisterClass: " 6695 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6696 << " registers\n"; 6697 } 6698 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6699 << " item\n"; 6700 for (const auto &pair : Invariant) { 6701 dbgs() << "LV(REG): RegisterClass: " 6702 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6703 << " registers\n"; 6704 } 6705 }); 6706 6707 RU.LoopInvariantRegs = Invariant; 6708 RU.MaxLocalUsers = MaxUsages[i]; 6709 RUs[i] = RU; 6710 } 6711 6712 return RUs; 6713 } 6714 6715 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6716 // TODO: Cost model for emulated masked load/store is completely 6717 // broken. This hack guides the cost model to use an artificially 6718 // high enough value to practically disable vectorization with such 6719 // operations, except where previously deployed legality hack allowed 6720 // using very low cost values. This is to avoid regressions coming simply 6721 // from moving "masked load/store" check from legality to cost model. 6722 // Masked Load/Gather emulation was previously never allowed. 6723 // Limited number of Masked Store/Scatter emulation was allowed. 6724 assert(isPredicatedInst(I) && 6725 "Expecting a scalar emulated instruction"); 6726 return isa<LoadInst>(I) || 6727 (isa<StoreInst>(I) && 6728 NumPredStores > NumberOfStoresToPredicate); 6729 } 6730 6731 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6732 // If we aren't vectorizing the loop, or if we've already collected the 6733 // instructions to scalarize, there's nothing to do. Collection may already 6734 // have occurred if we have a user-selected VF and are now computing the 6735 // expected cost for interleaving. 6736 if (VF.isScalar() || VF.isZero() || 6737 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6738 return; 6739 6740 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6741 // not profitable to scalarize any instructions, the presence of VF in the 6742 // map will indicate that we've analyzed it already. 6743 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6744 6745 // Find all the instructions that are scalar with predication in the loop and 6746 // determine if it would be better to not if-convert the blocks they are in. 6747 // If so, we also record the instructions to scalarize. 6748 for (BasicBlock *BB : TheLoop->blocks()) { 6749 if (!blockNeedsPredication(BB)) 6750 continue; 6751 for (Instruction &I : *BB) 6752 if (isScalarWithPredication(&I)) { 6753 ScalarCostsTy ScalarCosts; 6754 // Do not apply discount logic if hacked cost is needed 6755 // for emulated masked memrefs. 6756 if (!useEmulatedMaskMemRefHack(&I) && 6757 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6758 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6759 // Remember that BB will remain after vectorization. 6760 PredicatedBBsAfterVectorization.insert(BB); 6761 } 6762 } 6763 } 6764 6765 int LoopVectorizationCostModel::computePredInstDiscount( 6766 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6767 assert(!isUniformAfterVectorization(PredInst, VF) && 6768 "Instruction marked uniform-after-vectorization will be predicated"); 6769 6770 // Initialize the discount to zero, meaning that the scalar version and the 6771 // vector version cost the same. 6772 InstructionCost Discount = 0; 6773 6774 // Holds instructions to analyze. The instructions we visit are mapped in 6775 // ScalarCosts. Those instructions are the ones that would be scalarized if 6776 // we find that the scalar version costs less. 6777 SmallVector<Instruction *, 8> Worklist; 6778 6779 // Returns true if the given instruction can be scalarized. 6780 auto canBeScalarized = [&](Instruction *I) -> bool { 6781 // We only attempt to scalarize instructions forming a single-use chain 6782 // from the original predicated block that would otherwise be vectorized. 6783 // Although not strictly necessary, we give up on instructions we know will 6784 // already be scalar to avoid traversing chains that are unlikely to be 6785 // beneficial. 6786 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6787 isScalarAfterVectorization(I, VF)) 6788 return false; 6789 6790 // If the instruction is scalar with predication, it will be analyzed 6791 // separately. We ignore it within the context of PredInst. 6792 if (isScalarWithPredication(I)) 6793 return false; 6794 6795 // If any of the instruction's operands are uniform after vectorization, 6796 // the instruction cannot be scalarized. This prevents, for example, a 6797 // masked load from being scalarized. 6798 // 6799 // We assume we will only emit a value for lane zero of an instruction 6800 // marked uniform after vectorization, rather than VF identical values. 6801 // Thus, if we scalarize an instruction that uses a uniform, we would 6802 // create uses of values corresponding to the lanes we aren't emitting code 6803 // for. This behavior can be changed by allowing getScalarValue to clone 6804 // the lane zero values for uniforms rather than asserting. 6805 for (Use &U : I->operands()) 6806 if (auto *J = dyn_cast<Instruction>(U.get())) 6807 if (isUniformAfterVectorization(J, VF)) 6808 return false; 6809 6810 // Otherwise, we can scalarize the instruction. 6811 return true; 6812 }; 6813 6814 // Compute the expected cost discount from scalarizing the entire expression 6815 // feeding the predicated instruction. We currently only consider expressions 6816 // that are single-use instruction chains. 6817 Worklist.push_back(PredInst); 6818 while (!Worklist.empty()) { 6819 Instruction *I = Worklist.pop_back_val(); 6820 6821 // If we've already analyzed the instruction, there's nothing to do. 6822 if (ScalarCosts.find(I) != ScalarCosts.end()) 6823 continue; 6824 6825 // Compute the cost of the vector instruction. Note that this cost already 6826 // includes the scalarization overhead of the predicated instruction. 6827 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6828 6829 // Compute the cost of the scalarized instruction. This cost is the cost of 6830 // the instruction as if it wasn't if-converted and instead remained in the 6831 // predicated block. We will scale this cost by block probability after 6832 // computing the scalarization overhead. 6833 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6834 InstructionCost ScalarCost = 6835 VF.getKnownMinValue() * 6836 getInstructionCost(I, ElementCount::getFixed(1)).first; 6837 6838 // Compute the scalarization overhead of needed insertelement instructions 6839 // and phi nodes. 6840 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6841 ScalarCost += TTI.getScalarizationOverhead( 6842 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6843 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6844 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6845 ScalarCost += 6846 VF.getKnownMinValue() * 6847 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6848 } 6849 6850 // Compute the scalarization overhead of needed extractelement 6851 // instructions. For each of the instruction's operands, if the operand can 6852 // be scalarized, add it to the worklist; otherwise, account for the 6853 // overhead. 6854 for (Use &U : I->operands()) 6855 if (auto *J = dyn_cast<Instruction>(U.get())) { 6856 assert(VectorType::isValidElementType(J->getType()) && 6857 "Instruction has non-scalar type"); 6858 if (canBeScalarized(J)) 6859 Worklist.push_back(J); 6860 else if (needsExtract(J, VF)) { 6861 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6862 ScalarCost += TTI.getScalarizationOverhead( 6863 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6864 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6865 } 6866 } 6867 6868 // Scale the total scalar cost by block probability. 6869 ScalarCost /= getReciprocalPredBlockProb(); 6870 6871 // Compute the discount. A non-negative discount means the vector version 6872 // of the instruction costs more, and scalarizing would be beneficial. 6873 Discount += VectorCost - ScalarCost; 6874 ScalarCosts[I] = ScalarCost; 6875 } 6876 6877 return *Discount.getValue(); 6878 } 6879 6880 LoopVectorizationCostModel::VectorizationCostTy 6881 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6882 VectorizationCostTy Cost; 6883 6884 // For each block. 6885 for (BasicBlock *BB : TheLoop->blocks()) { 6886 VectorizationCostTy BlockCost; 6887 6888 // For each instruction in the old loop. 6889 for (Instruction &I : BB->instructionsWithoutDebug()) { 6890 // Skip ignored values. 6891 if (ValuesToIgnore.count(&I) || 6892 (VF.isVector() && VecValuesToIgnore.count(&I))) 6893 continue; 6894 6895 VectorizationCostTy C = getInstructionCost(&I, VF); 6896 6897 // Check if we should override the cost. 6898 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6899 C.first = InstructionCost(ForceTargetInstructionCost); 6900 6901 BlockCost.first += C.first; 6902 BlockCost.second |= C.second; 6903 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6904 << " for VF " << VF << " For instruction: " << I 6905 << '\n'); 6906 } 6907 6908 // If we are vectorizing a predicated block, it will have been 6909 // if-converted. This means that the block's instructions (aside from 6910 // stores and instructions that may divide by zero) will now be 6911 // unconditionally executed. For the scalar case, we may not always execute 6912 // the predicated block, if it is an if-else block. Thus, scale the block's 6913 // cost by the probability of executing it. blockNeedsPredication from 6914 // Legal is used so as to not include all blocks in tail folded loops. 6915 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6916 BlockCost.first /= getReciprocalPredBlockProb(); 6917 6918 Cost.first += BlockCost.first; 6919 Cost.second |= BlockCost.second; 6920 } 6921 6922 return Cost; 6923 } 6924 6925 /// Gets Address Access SCEV after verifying that the access pattern 6926 /// is loop invariant except the induction variable dependence. 6927 /// 6928 /// This SCEV can be sent to the Target in order to estimate the address 6929 /// calculation cost. 6930 static const SCEV *getAddressAccessSCEV( 6931 Value *Ptr, 6932 LoopVectorizationLegality *Legal, 6933 PredicatedScalarEvolution &PSE, 6934 const Loop *TheLoop) { 6935 6936 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6937 if (!Gep) 6938 return nullptr; 6939 6940 // We are looking for a gep with all loop invariant indices except for one 6941 // which should be an induction variable. 6942 auto SE = PSE.getSE(); 6943 unsigned NumOperands = Gep->getNumOperands(); 6944 for (unsigned i = 1; i < NumOperands; ++i) { 6945 Value *Opd = Gep->getOperand(i); 6946 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6947 !Legal->isInductionVariable(Opd)) 6948 return nullptr; 6949 } 6950 6951 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6952 return PSE.getSCEV(Ptr); 6953 } 6954 6955 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6956 return Legal->hasStride(I->getOperand(0)) || 6957 Legal->hasStride(I->getOperand(1)); 6958 } 6959 6960 InstructionCost 6961 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6962 ElementCount VF) { 6963 assert(VF.isVector() && 6964 "Scalarization cost of instruction implies vectorization."); 6965 if (VF.isScalable()) 6966 return InstructionCost::getInvalid(); 6967 6968 Type *ValTy = getLoadStoreType(I); 6969 auto SE = PSE.getSE(); 6970 6971 unsigned AS = getLoadStoreAddressSpace(I); 6972 Value *Ptr = getLoadStorePointerOperand(I); 6973 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6974 6975 // Figure out whether the access is strided and get the stride value 6976 // if it's known in compile time 6977 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6978 6979 // Get the cost of the scalar memory instruction and address computation. 6980 InstructionCost Cost = 6981 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6982 6983 // Don't pass *I here, since it is scalar but will actually be part of a 6984 // vectorized loop where the user of it is a vectorized instruction. 6985 const Align Alignment = getLoadStoreAlignment(I); 6986 Cost += VF.getKnownMinValue() * 6987 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6988 AS, TTI::TCK_RecipThroughput); 6989 6990 // Get the overhead of the extractelement and insertelement instructions 6991 // we might create due to scalarization. 6992 Cost += getScalarizationOverhead(I, VF); 6993 6994 // If we have a predicated load/store, it will need extra i1 extracts and 6995 // conditional branches, but may not be executed for each vector lane. Scale 6996 // the cost by the probability of executing the predicated block. 6997 if (isPredicatedInst(I)) { 6998 Cost /= getReciprocalPredBlockProb(); 6999 7000 // Add the cost of an i1 extract and a branch 7001 auto *Vec_i1Ty = 7002 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7003 Cost += TTI.getScalarizationOverhead( 7004 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7005 /*Insert=*/false, /*Extract=*/true); 7006 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7007 7008 if (useEmulatedMaskMemRefHack(I)) 7009 // Artificially setting to a high enough value to practically disable 7010 // vectorization with such operations. 7011 Cost = 3000000; 7012 } 7013 7014 return Cost; 7015 } 7016 7017 InstructionCost 7018 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7019 ElementCount VF) { 7020 Type *ValTy = getLoadStoreType(I); 7021 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7022 Value *Ptr = getLoadStorePointerOperand(I); 7023 unsigned AS = getLoadStoreAddressSpace(I); 7024 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7025 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7026 7027 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7028 "Stride should be 1 or -1 for consecutive memory access"); 7029 const Align Alignment = getLoadStoreAlignment(I); 7030 InstructionCost Cost = 0; 7031 if (Legal->isMaskRequired(I)) 7032 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7033 CostKind); 7034 else 7035 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7036 CostKind, I); 7037 7038 bool Reverse = ConsecutiveStride < 0; 7039 if (Reverse) 7040 Cost += 7041 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7042 return Cost; 7043 } 7044 7045 InstructionCost 7046 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7047 ElementCount VF) { 7048 assert(Legal->isUniformMemOp(*I)); 7049 7050 Type *ValTy = getLoadStoreType(I); 7051 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7052 const Align Alignment = getLoadStoreAlignment(I); 7053 unsigned AS = getLoadStoreAddressSpace(I); 7054 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7055 if (isa<LoadInst>(I)) { 7056 return TTI.getAddressComputationCost(ValTy) + 7057 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7058 CostKind) + 7059 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7060 } 7061 StoreInst *SI = cast<StoreInst>(I); 7062 7063 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7064 return TTI.getAddressComputationCost(ValTy) + 7065 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7066 CostKind) + 7067 (isLoopInvariantStoreValue 7068 ? 0 7069 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7070 VF.getKnownMinValue() - 1)); 7071 } 7072 7073 InstructionCost 7074 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7075 ElementCount VF) { 7076 Type *ValTy = getLoadStoreType(I); 7077 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7078 const Align Alignment = getLoadStoreAlignment(I); 7079 const Value *Ptr = getLoadStorePointerOperand(I); 7080 7081 return TTI.getAddressComputationCost(VectorTy) + 7082 TTI.getGatherScatterOpCost( 7083 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7084 TargetTransformInfo::TCK_RecipThroughput, I); 7085 } 7086 7087 InstructionCost 7088 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7089 ElementCount VF) { 7090 // TODO: Once we have support for interleaving with scalable vectors 7091 // we can calculate the cost properly here. 7092 if (VF.isScalable()) 7093 return InstructionCost::getInvalid(); 7094 7095 Type *ValTy = getLoadStoreType(I); 7096 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7097 unsigned AS = getLoadStoreAddressSpace(I); 7098 7099 auto Group = getInterleavedAccessGroup(I); 7100 assert(Group && "Fail to get an interleaved access group."); 7101 7102 unsigned InterleaveFactor = Group->getFactor(); 7103 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7104 7105 // Holds the indices of existing members in an interleaved load group. 7106 // An interleaved store group doesn't need this as it doesn't allow gaps. 7107 SmallVector<unsigned, 4> Indices; 7108 if (isa<LoadInst>(I)) { 7109 for (unsigned i = 0; i < InterleaveFactor; i++) 7110 if (Group->getMember(i)) 7111 Indices.push_back(i); 7112 } 7113 7114 // Calculate the cost of the whole interleaved group. 7115 bool UseMaskForGaps = 7116 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7117 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7118 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7119 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7120 7121 if (Group->isReverse()) { 7122 // TODO: Add support for reversed masked interleaved access. 7123 assert(!Legal->isMaskRequired(I) && 7124 "Reverse masked interleaved access not supported."); 7125 Cost += 7126 Group->getNumMembers() * 7127 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7128 } 7129 return Cost; 7130 } 7131 7132 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7133 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7134 // Early exit for no inloop reductions 7135 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7136 return InstructionCost::getInvalid(); 7137 auto *VectorTy = cast<VectorType>(Ty); 7138 7139 // We are looking for a pattern of, and finding the minimal acceptable cost: 7140 // reduce(mul(ext(A), ext(B))) or 7141 // reduce(mul(A, B)) or 7142 // reduce(ext(A)) or 7143 // reduce(A). 7144 // The basic idea is that we walk down the tree to do that, finding the root 7145 // reduction instruction in InLoopReductionImmediateChains. From there we find 7146 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7147 // of the components. If the reduction cost is lower then we return it for the 7148 // reduction instruction and 0 for the other instructions in the pattern. If 7149 // it is not we return an invalid cost specifying the orignal cost method 7150 // should be used. 7151 Instruction *RetI = I; 7152 if ((RetI->getOpcode() == Instruction::SExt || 7153 RetI->getOpcode() == Instruction::ZExt)) { 7154 if (!RetI->hasOneUser()) 7155 return InstructionCost::getInvalid(); 7156 RetI = RetI->user_back(); 7157 } 7158 if (RetI->getOpcode() == Instruction::Mul && 7159 RetI->user_back()->getOpcode() == Instruction::Add) { 7160 if (!RetI->hasOneUser()) 7161 return InstructionCost::getInvalid(); 7162 RetI = RetI->user_back(); 7163 } 7164 7165 // Test if the found instruction is a reduction, and if not return an invalid 7166 // cost specifying the parent to use the original cost modelling. 7167 if (!InLoopReductionImmediateChains.count(RetI)) 7168 return InstructionCost::getInvalid(); 7169 7170 // Find the reduction this chain is a part of and calculate the basic cost of 7171 // the reduction on its own. 7172 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7173 Instruction *ReductionPhi = LastChain; 7174 while (!isa<PHINode>(ReductionPhi)) 7175 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7176 7177 const RecurrenceDescriptor &RdxDesc = 7178 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7179 InstructionCost BaseCost = 7180 TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), VectorTy, CostKind); 7181 7182 // Get the operand that was not the reduction chain and match it to one of the 7183 // patterns, returning the better cost if it is found. 7184 Instruction *RedOp = RetI->getOperand(1) == LastChain 7185 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7186 : dyn_cast<Instruction>(RetI->getOperand(1)); 7187 7188 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7189 7190 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7191 !TheLoop->isLoopInvariant(RedOp)) { 7192 bool IsUnsigned = isa<ZExtInst>(RedOp); 7193 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7194 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7195 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7196 CostKind); 7197 7198 InstructionCost ExtCost = 7199 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7200 TTI::CastContextHint::None, CostKind, RedOp); 7201 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7202 return I == RetI ? *RedCost.getValue() : 0; 7203 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7204 Instruction *Mul = RedOp; 7205 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7206 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7207 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7208 Op0->getOpcode() == Op1->getOpcode() && 7209 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7210 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7211 bool IsUnsigned = isa<ZExtInst>(Op0); 7212 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7213 // reduce(mul(ext, ext)) 7214 InstructionCost ExtCost = 7215 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7216 TTI::CastContextHint::None, CostKind, Op0); 7217 InstructionCost MulCost = 7218 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7219 7220 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7221 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7222 CostKind); 7223 7224 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7225 return I == RetI ? *RedCost.getValue() : 0; 7226 } else { 7227 InstructionCost MulCost = 7228 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7229 7230 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7231 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7232 CostKind); 7233 7234 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7235 return I == RetI ? *RedCost.getValue() : 0; 7236 } 7237 } 7238 7239 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7240 } 7241 7242 InstructionCost 7243 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7244 ElementCount VF) { 7245 // Calculate scalar cost only. Vectorization cost should be ready at this 7246 // moment. 7247 if (VF.isScalar()) { 7248 Type *ValTy = getLoadStoreType(I); 7249 const Align Alignment = getLoadStoreAlignment(I); 7250 unsigned AS = getLoadStoreAddressSpace(I); 7251 7252 return TTI.getAddressComputationCost(ValTy) + 7253 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7254 TTI::TCK_RecipThroughput, I); 7255 } 7256 return getWideningCost(I, VF); 7257 } 7258 7259 LoopVectorizationCostModel::VectorizationCostTy 7260 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7261 ElementCount VF) { 7262 // If we know that this instruction will remain uniform, check the cost of 7263 // the scalar version. 7264 if (isUniformAfterVectorization(I, VF)) 7265 VF = ElementCount::getFixed(1); 7266 7267 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7268 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7269 7270 // Forced scalars do not have any scalarization overhead. 7271 auto ForcedScalar = ForcedScalars.find(VF); 7272 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7273 auto InstSet = ForcedScalar->second; 7274 if (InstSet.count(I)) 7275 return VectorizationCostTy( 7276 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7277 VF.getKnownMinValue()), 7278 false); 7279 } 7280 7281 Type *VectorTy; 7282 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7283 7284 bool TypeNotScalarized = 7285 VF.isVector() && VectorTy->isVectorTy() && 7286 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7287 return VectorizationCostTy(C, TypeNotScalarized); 7288 } 7289 7290 InstructionCost 7291 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7292 ElementCount VF) const { 7293 7294 if (VF.isScalable()) 7295 return InstructionCost::getInvalid(); 7296 7297 if (VF.isScalar()) 7298 return 0; 7299 7300 InstructionCost Cost = 0; 7301 Type *RetTy = ToVectorTy(I->getType(), VF); 7302 if (!RetTy->isVoidTy() && 7303 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7304 Cost += TTI.getScalarizationOverhead( 7305 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7306 true, false); 7307 7308 // Some targets keep addresses scalar. 7309 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7310 return Cost; 7311 7312 // Some targets support efficient element stores. 7313 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7314 return Cost; 7315 7316 // Collect operands to consider. 7317 CallInst *CI = dyn_cast<CallInst>(I); 7318 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7319 7320 // Skip operands that do not require extraction/scalarization and do not incur 7321 // any overhead. 7322 SmallVector<Type *> Tys; 7323 for (auto *V : filterExtractingOperands(Ops, VF)) 7324 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7325 return Cost + TTI.getOperandsScalarizationOverhead( 7326 filterExtractingOperands(Ops, VF), Tys); 7327 } 7328 7329 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7330 if (VF.isScalar()) 7331 return; 7332 NumPredStores = 0; 7333 for (BasicBlock *BB : TheLoop->blocks()) { 7334 // For each instruction in the old loop. 7335 for (Instruction &I : *BB) { 7336 Value *Ptr = getLoadStorePointerOperand(&I); 7337 if (!Ptr) 7338 continue; 7339 7340 // TODO: We should generate better code and update the cost model for 7341 // predicated uniform stores. Today they are treated as any other 7342 // predicated store (see added test cases in 7343 // invariant-store-vectorization.ll). 7344 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7345 NumPredStores++; 7346 7347 if (Legal->isUniformMemOp(I)) { 7348 // TODO: Avoid replicating loads and stores instead of 7349 // relying on instcombine to remove them. 7350 // Load: Scalar load + broadcast 7351 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7352 InstructionCost Cost; 7353 if (isa<StoreInst>(&I) && VF.isScalable() && 7354 isLegalGatherOrScatter(&I)) { 7355 Cost = getGatherScatterCost(&I, VF); 7356 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7357 } else { 7358 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7359 "Cannot yet scalarize uniform stores"); 7360 Cost = getUniformMemOpCost(&I, VF); 7361 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7362 } 7363 continue; 7364 } 7365 7366 // We assume that widening is the best solution when possible. 7367 if (memoryInstructionCanBeWidened(&I, VF)) { 7368 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7369 int ConsecutiveStride = 7370 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7371 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7372 "Expected consecutive stride."); 7373 InstWidening Decision = 7374 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7375 setWideningDecision(&I, VF, Decision, Cost); 7376 continue; 7377 } 7378 7379 // Choose between Interleaving, Gather/Scatter or Scalarization. 7380 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7381 unsigned NumAccesses = 1; 7382 if (isAccessInterleaved(&I)) { 7383 auto Group = getInterleavedAccessGroup(&I); 7384 assert(Group && "Fail to get an interleaved access group."); 7385 7386 // Make one decision for the whole group. 7387 if (getWideningDecision(&I, VF) != CM_Unknown) 7388 continue; 7389 7390 NumAccesses = Group->getNumMembers(); 7391 if (interleavedAccessCanBeWidened(&I, VF)) 7392 InterleaveCost = getInterleaveGroupCost(&I, VF); 7393 } 7394 7395 InstructionCost GatherScatterCost = 7396 isLegalGatherOrScatter(&I) 7397 ? getGatherScatterCost(&I, VF) * NumAccesses 7398 : InstructionCost::getInvalid(); 7399 7400 InstructionCost ScalarizationCost = 7401 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7402 7403 // Choose better solution for the current VF, 7404 // write down this decision and use it during vectorization. 7405 InstructionCost Cost; 7406 InstWidening Decision; 7407 if (InterleaveCost <= GatherScatterCost && 7408 InterleaveCost < ScalarizationCost) { 7409 Decision = CM_Interleave; 7410 Cost = InterleaveCost; 7411 } else if (GatherScatterCost < ScalarizationCost) { 7412 Decision = CM_GatherScatter; 7413 Cost = GatherScatterCost; 7414 } else { 7415 assert(!VF.isScalable() && 7416 "We cannot yet scalarise for scalable vectors"); 7417 Decision = CM_Scalarize; 7418 Cost = ScalarizationCost; 7419 } 7420 // If the instructions belongs to an interleave group, the whole group 7421 // receives the same decision. The whole group receives the cost, but 7422 // the cost will actually be assigned to one instruction. 7423 if (auto Group = getInterleavedAccessGroup(&I)) 7424 setWideningDecision(Group, VF, Decision, Cost); 7425 else 7426 setWideningDecision(&I, VF, Decision, Cost); 7427 } 7428 } 7429 7430 // Make sure that any load of address and any other address computation 7431 // remains scalar unless there is gather/scatter support. This avoids 7432 // inevitable extracts into address registers, and also has the benefit of 7433 // activating LSR more, since that pass can't optimize vectorized 7434 // addresses. 7435 if (TTI.prefersVectorizedAddressing()) 7436 return; 7437 7438 // Start with all scalar pointer uses. 7439 SmallPtrSet<Instruction *, 8> AddrDefs; 7440 for (BasicBlock *BB : TheLoop->blocks()) 7441 for (Instruction &I : *BB) { 7442 Instruction *PtrDef = 7443 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7444 if (PtrDef && TheLoop->contains(PtrDef) && 7445 getWideningDecision(&I, VF) != CM_GatherScatter) 7446 AddrDefs.insert(PtrDef); 7447 } 7448 7449 // Add all instructions used to generate the addresses. 7450 SmallVector<Instruction *, 4> Worklist; 7451 append_range(Worklist, AddrDefs); 7452 while (!Worklist.empty()) { 7453 Instruction *I = Worklist.pop_back_val(); 7454 for (auto &Op : I->operands()) 7455 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7456 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7457 AddrDefs.insert(InstOp).second) 7458 Worklist.push_back(InstOp); 7459 } 7460 7461 for (auto *I : AddrDefs) { 7462 if (isa<LoadInst>(I)) { 7463 // Setting the desired widening decision should ideally be handled in 7464 // by cost functions, but since this involves the task of finding out 7465 // if the loaded register is involved in an address computation, it is 7466 // instead changed here when we know this is the case. 7467 InstWidening Decision = getWideningDecision(I, VF); 7468 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7469 // Scalarize a widened load of address. 7470 setWideningDecision( 7471 I, VF, CM_Scalarize, 7472 (VF.getKnownMinValue() * 7473 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7474 else if (auto Group = getInterleavedAccessGroup(I)) { 7475 // Scalarize an interleave group of address loads. 7476 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7477 if (Instruction *Member = Group->getMember(I)) 7478 setWideningDecision( 7479 Member, VF, CM_Scalarize, 7480 (VF.getKnownMinValue() * 7481 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7482 } 7483 } 7484 } else 7485 // Make sure I gets scalarized and a cost estimate without 7486 // scalarization overhead. 7487 ForcedScalars[VF].insert(I); 7488 } 7489 } 7490 7491 InstructionCost 7492 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7493 Type *&VectorTy) { 7494 Type *RetTy = I->getType(); 7495 if (canTruncateToMinimalBitwidth(I, VF)) 7496 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7497 auto SE = PSE.getSE(); 7498 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7499 7500 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7501 ElementCount VF) -> bool { 7502 if (VF.isScalar()) 7503 return true; 7504 7505 auto Scalarized = InstsToScalarize.find(VF); 7506 assert(Scalarized != InstsToScalarize.end() && 7507 "VF not yet analyzed for scalarization profitability"); 7508 return !Scalarized->second.count(I) && 7509 llvm::all_of(I->users(), [&](User *U) { 7510 auto *UI = cast<Instruction>(U); 7511 return !Scalarized->second.count(UI); 7512 }); 7513 }; 7514 (void) hasSingleCopyAfterVectorization; 7515 7516 if (isScalarAfterVectorization(I, VF)) { 7517 // With the exception of GEPs and PHIs, after scalarization there should 7518 // only be one copy of the instruction generated in the loop. This is 7519 // because the VF is either 1, or any instructions that need scalarizing 7520 // have already been dealt with by the the time we get here. As a result, 7521 // it means we don't have to multiply the instruction cost by VF. 7522 assert(I->getOpcode() == Instruction::GetElementPtr || 7523 I->getOpcode() == Instruction::PHI || 7524 (I->getOpcode() == Instruction::BitCast && 7525 I->getType()->isPointerTy()) || 7526 hasSingleCopyAfterVectorization(I, VF)); 7527 VectorTy = RetTy; 7528 } else 7529 VectorTy = ToVectorTy(RetTy, VF); 7530 7531 // TODO: We need to estimate the cost of intrinsic calls. 7532 switch (I->getOpcode()) { 7533 case Instruction::GetElementPtr: 7534 // We mark this instruction as zero-cost because the cost of GEPs in 7535 // vectorized code depends on whether the corresponding memory instruction 7536 // is scalarized or not. Therefore, we handle GEPs with the memory 7537 // instruction cost. 7538 return 0; 7539 case Instruction::Br: { 7540 // In cases of scalarized and predicated instructions, there will be VF 7541 // predicated blocks in the vectorized loop. Each branch around these 7542 // blocks requires also an extract of its vector compare i1 element. 7543 bool ScalarPredicatedBB = false; 7544 BranchInst *BI = cast<BranchInst>(I); 7545 if (VF.isVector() && BI->isConditional() && 7546 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7547 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7548 ScalarPredicatedBB = true; 7549 7550 if (ScalarPredicatedBB) { 7551 // Return cost for branches around scalarized and predicated blocks. 7552 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7553 auto *Vec_i1Ty = 7554 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7555 return (TTI.getScalarizationOverhead( 7556 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7557 false, true) + 7558 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7559 VF.getKnownMinValue())); 7560 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7561 // The back-edge branch will remain, as will all scalar branches. 7562 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7563 else 7564 // This branch will be eliminated by if-conversion. 7565 return 0; 7566 // Note: We currently assume zero cost for an unconditional branch inside 7567 // a predicated block since it will become a fall-through, although we 7568 // may decide in the future to call TTI for all branches. 7569 } 7570 case Instruction::PHI: { 7571 auto *Phi = cast<PHINode>(I); 7572 7573 // First-order recurrences are replaced by vector shuffles inside the loop. 7574 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7575 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7576 return TTI.getShuffleCost( 7577 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7578 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7579 7580 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7581 // converted into select instructions. We require N - 1 selects per phi 7582 // node, where N is the number of incoming values. 7583 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7584 return (Phi->getNumIncomingValues() - 1) * 7585 TTI.getCmpSelInstrCost( 7586 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7587 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7588 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7589 7590 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7591 } 7592 case Instruction::UDiv: 7593 case Instruction::SDiv: 7594 case Instruction::URem: 7595 case Instruction::SRem: 7596 // If we have a predicated instruction, it may not be executed for each 7597 // vector lane. Get the scalarization cost and scale this amount by the 7598 // probability of executing the predicated block. If the instruction is not 7599 // predicated, we fall through to the next case. 7600 if (VF.isVector() && isScalarWithPredication(I)) { 7601 InstructionCost Cost = 0; 7602 7603 // These instructions have a non-void type, so account for the phi nodes 7604 // that we will create. This cost is likely to be zero. The phi node 7605 // cost, if any, should be scaled by the block probability because it 7606 // models a copy at the end of each predicated block. 7607 Cost += VF.getKnownMinValue() * 7608 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7609 7610 // The cost of the non-predicated instruction. 7611 Cost += VF.getKnownMinValue() * 7612 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7613 7614 // The cost of insertelement and extractelement instructions needed for 7615 // scalarization. 7616 Cost += getScalarizationOverhead(I, VF); 7617 7618 // Scale the cost by the probability of executing the predicated blocks. 7619 // This assumes the predicated block for each vector lane is equally 7620 // likely. 7621 return Cost / getReciprocalPredBlockProb(); 7622 } 7623 LLVM_FALLTHROUGH; 7624 case Instruction::Add: 7625 case Instruction::FAdd: 7626 case Instruction::Sub: 7627 case Instruction::FSub: 7628 case Instruction::Mul: 7629 case Instruction::FMul: 7630 case Instruction::FDiv: 7631 case Instruction::FRem: 7632 case Instruction::Shl: 7633 case Instruction::LShr: 7634 case Instruction::AShr: 7635 case Instruction::And: 7636 case Instruction::Or: 7637 case Instruction::Xor: { 7638 // Since we will replace the stride by 1 the multiplication should go away. 7639 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7640 return 0; 7641 7642 // Detect reduction patterns 7643 InstructionCost RedCost; 7644 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7645 .isValid()) 7646 return RedCost; 7647 7648 // Certain instructions can be cheaper to vectorize if they have a constant 7649 // second vector operand. One example of this are shifts on x86. 7650 Value *Op2 = I->getOperand(1); 7651 TargetTransformInfo::OperandValueProperties Op2VP; 7652 TargetTransformInfo::OperandValueKind Op2VK = 7653 TTI.getOperandInfo(Op2, Op2VP); 7654 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7655 Op2VK = TargetTransformInfo::OK_UniformValue; 7656 7657 SmallVector<const Value *, 4> Operands(I->operand_values()); 7658 return TTI.getArithmeticInstrCost( 7659 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7660 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7661 } 7662 case Instruction::FNeg: { 7663 return TTI.getArithmeticInstrCost( 7664 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7665 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7666 TargetTransformInfo::OP_None, I->getOperand(0), I); 7667 } 7668 case Instruction::Select: { 7669 SelectInst *SI = cast<SelectInst>(I); 7670 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7671 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7672 7673 const Value *Op0, *Op1; 7674 using namespace llvm::PatternMatch; 7675 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7676 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7677 // select x, y, false --> x & y 7678 // select x, true, y --> x | y 7679 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7680 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7681 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7682 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7683 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7684 Op1->getType()->getScalarSizeInBits() == 1); 7685 7686 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7687 return TTI.getArithmeticInstrCost( 7688 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7689 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7690 } 7691 7692 Type *CondTy = SI->getCondition()->getType(); 7693 if (!ScalarCond) 7694 CondTy = VectorType::get(CondTy, VF); 7695 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7696 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7697 } 7698 case Instruction::ICmp: 7699 case Instruction::FCmp: { 7700 Type *ValTy = I->getOperand(0)->getType(); 7701 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7702 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7703 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7704 VectorTy = ToVectorTy(ValTy, VF); 7705 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7706 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7707 } 7708 case Instruction::Store: 7709 case Instruction::Load: { 7710 ElementCount Width = VF; 7711 if (Width.isVector()) { 7712 InstWidening Decision = getWideningDecision(I, Width); 7713 assert(Decision != CM_Unknown && 7714 "CM decision should be taken at this point"); 7715 if (Decision == CM_Scalarize) 7716 Width = ElementCount::getFixed(1); 7717 } 7718 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7719 return getMemoryInstructionCost(I, VF); 7720 } 7721 case Instruction::BitCast: 7722 if (I->getType()->isPointerTy()) 7723 return 0; 7724 LLVM_FALLTHROUGH; 7725 case Instruction::ZExt: 7726 case Instruction::SExt: 7727 case Instruction::FPToUI: 7728 case Instruction::FPToSI: 7729 case Instruction::FPExt: 7730 case Instruction::PtrToInt: 7731 case Instruction::IntToPtr: 7732 case Instruction::SIToFP: 7733 case Instruction::UIToFP: 7734 case Instruction::Trunc: 7735 case Instruction::FPTrunc: { 7736 // Computes the CastContextHint from a Load/Store instruction. 7737 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7738 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7739 "Expected a load or a store!"); 7740 7741 if (VF.isScalar() || !TheLoop->contains(I)) 7742 return TTI::CastContextHint::Normal; 7743 7744 switch (getWideningDecision(I, VF)) { 7745 case LoopVectorizationCostModel::CM_GatherScatter: 7746 return TTI::CastContextHint::GatherScatter; 7747 case LoopVectorizationCostModel::CM_Interleave: 7748 return TTI::CastContextHint::Interleave; 7749 case LoopVectorizationCostModel::CM_Scalarize: 7750 case LoopVectorizationCostModel::CM_Widen: 7751 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7752 : TTI::CastContextHint::Normal; 7753 case LoopVectorizationCostModel::CM_Widen_Reverse: 7754 return TTI::CastContextHint::Reversed; 7755 case LoopVectorizationCostModel::CM_Unknown: 7756 llvm_unreachable("Instr did not go through cost modelling?"); 7757 } 7758 7759 llvm_unreachable("Unhandled case!"); 7760 }; 7761 7762 unsigned Opcode = I->getOpcode(); 7763 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7764 // For Trunc, the context is the only user, which must be a StoreInst. 7765 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7766 if (I->hasOneUse()) 7767 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7768 CCH = ComputeCCH(Store); 7769 } 7770 // For Z/Sext, the context is the operand, which must be a LoadInst. 7771 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7772 Opcode == Instruction::FPExt) { 7773 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7774 CCH = ComputeCCH(Load); 7775 } 7776 7777 // We optimize the truncation of induction variables having constant 7778 // integer steps. The cost of these truncations is the same as the scalar 7779 // operation. 7780 if (isOptimizableIVTruncate(I, VF)) { 7781 auto *Trunc = cast<TruncInst>(I); 7782 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7783 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7784 } 7785 7786 // Detect reduction patterns 7787 InstructionCost RedCost; 7788 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7789 .isValid()) 7790 return RedCost; 7791 7792 Type *SrcScalarTy = I->getOperand(0)->getType(); 7793 Type *SrcVecTy = 7794 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7795 if (canTruncateToMinimalBitwidth(I, VF)) { 7796 // This cast is going to be shrunk. This may remove the cast or it might 7797 // turn it into slightly different cast. For example, if MinBW == 16, 7798 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7799 // 7800 // Calculate the modified src and dest types. 7801 Type *MinVecTy = VectorTy; 7802 if (Opcode == Instruction::Trunc) { 7803 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7804 VectorTy = 7805 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7806 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7807 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7808 VectorTy = 7809 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7810 } 7811 } 7812 7813 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7814 } 7815 case Instruction::Call: { 7816 bool NeedToScalarize; 7817 CallInst *CI = cast<CallInst>(I); 7818 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7819 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7820 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7821 return std::min(CallCost, IntrinsicCost); 7822 } 7823 return CallCost; 7824 } 7825 case Instruction::ExtractValue: 7826 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7827 default: 7828 // This opcode is unknown. Assume that it is the same as 'mul'. 7829 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7830 } // end of switch. 7831 } 7832 7833 char LoopVectorize::ID = 0; 7834 7835 static const char lv_name[] = "Loop Vectorization"; 7836 7837 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7838 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7839 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7840 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7841 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7842 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7843 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7844 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7845 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7846 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7847 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7848 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7849 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7850 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7851 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7852 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7853 7854 namespace llvm { 7855 7856 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7857 7858 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7859 bool VectorizeOnlyWhenForced) { 7860 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7861 } 7862 7863 } // end namespace llvm 7864 7865 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7866 // Check if the pointer operand of a load or store instruction is 7867 // consecutive. 7868 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7869 return Legal->isConsecutivePtr(Ptr); 7870 return false; 7871 } 7872 7873 void LoopVectorizationCostModel::collectValuesToIgnore() { 7874 // Ignore ephemeral values. 7875 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7876 7877 // Ignore type-promoting instructions we identified during reduction 7878 // detection. 7879 for (auto &Reduction : Legal->getReductionVars()) { 7880 RecurrenceDescriptor &RedDes = Reduction.second; 7881 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7882 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7883 } 7884 // Ignore type-casting instructions we identified during induction 7885 // detection. 7886 for (auto &Induction : Legal->getInductionVars()) { 7887 InductionDescriptor &IndDes = Induction.second; 7888 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7889 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7890 } 7891 } 7892 7893 void LoopVectorizationCostModel::collectInLoopReductions() { 7894 for (auto &Reduction : Legal->getReductionVars()) { 7895 PHINode *Phi = Reduction.first; 7896 RecurrenceDescriptor &RdxDesc = Reduction.second; 7897 7898 // We don't collect reductions that are type promoted (yet). 7899 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7900 continue; 7901 7902 // If the target would prefer this reduction to happen "in-loop", then we 7903 // want to record it as such. 7904 unsigned Opcode = RdxDesc.getOpcode(); 7905 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7906 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7907 TargetTransformInfo::ReductionFlags())) 7908 continue; 7909 7910 // Check that we can correctly put the reductions into the loop, by 7911 // finding the chain of operations that leads from the phi to the loop 7912 // exit value. 7913 SmallVector<Instruction *, 4> ReductionOperations = 7914 RdxDesc.getReductionOpChain(Phi, TheLoop); 7915 bool InLoop = !ReductionOperations.empty(); 7916 if (InLoop) { 7917 InLoopReductionChains[Phi] = ReductionOperations; 7918 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7919 Instruction *LastChain = Phi; 7920 for (auto *I : ReductionOperations) { 7921 InLoopReductionImmediateChains[I] = LastChain; 7922 LastChain = I; 7923 } 7924 } 7925 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7926 << " reduction for phi: " << *Phi << "\n"); 7927 } 7928 } 7929 7930 // TODO: we could return a pair of values that specify the max VF and 7931 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7932 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7933 // doesn't have a cost model that can choose which plan to execute if 7934 // more than one is generated. 7935 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7936 LoopVectorizationCostModel &CM) { 7937 unsigned WidestType; 7938 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7939 return WidestVectorRegBits / WidestType; 7940 } 7941 7942 VectorizationFactor 7943 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7944 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7945 ElementCount VF = UserVF; 7946 // Outer loop handling: They may require CFG and instruction level 7947 // transformations before even evaluating whether vectorization is profitable. 7948 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7949 // the vectorization pipeline. 7950 if (!OrigLoop->isInnermost()) { 7951 // If the user doesn't provide a vectorization factor, determine a 7952 // reasonable one. 7953 if (UserVF.isZero()) { 7954 VF = ElementCount::getFixed(determineVPlanVF( 7955 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7956 .getFixedSize(), 7957 CM)); 7958 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7959 7960 // Make sure we have a VF > 1 for stress testing. 7961 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7962 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7963 << "overriding computed VF.\n"); 7964 VF = ElementCount::getFixed(4); 7965 } 7966 } 7967 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7968 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7969 "VF needs to be a power of two"); 7970 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7971 << "VF " << VF << " to build VPlans.\n"); 7972 buildVPlans(VF, VF); 7973 7974 // For VPlan build stress testing, we bail out after VPlan construction. 7975 if (VPlanBuildStressTest) 7976 return VectorizationFactor::Disabled(); 7977 7978 return {VF, 0 /*Cost*/}; 7979 } 7980 7981 LLVM_DEBUG( 7982 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7983 "VPlan-native path.\n"); 7984 return VectorizationFactor::Disabled(); 7985 } 7986 7987 Optional<VectorizationFactor> 7988 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7989 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7990 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7991 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7992 return None; 7993 7994 // Invalidate interleave groups if all blocks of loop will be predicated. 7995 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7996 !useMaskedInterleavedAccesses(*TTI)) { 7997 LLVM_DEBUG( 7998 dbgs() 7999 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8000 "which requires masked-interleaved support.\n"); 8001 if (CM.InterleaveInfo.invalidateGroups()) 8002 // Invalidating interleave groups also requires invalidating all decisions 8003 // based on them, which includes widening decisions and uniform and scalar 8004 // values. 8005 CM.invalidateCostModelingDecisions(); 8006 } 8007 8008 ElementCount MaxUserVF = 8009 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8010 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8011 if (!UserVF.isZero() && UserVFIsLegal) { 8012 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 8013 << " VF " << UserVF << ".\n"); 8014 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8015 "VF needs to be a power of two"); 8016 // Collect the instructions (and their associated costs) that will be more 8017 // profitable to scalarize. 8018 CM.selectUserVectorizationFactor(UserVF); 8019 CM.collectInLoopReductions(); 8020 buildVPlansWithVPRecipes(UserVF, UserVF); 8021 LLVM_DEBUG(printPlans(dbgs())); 8022 return {{UserVF, 0}}; 8023 } 8024 8025 // Populate the set of Vectorization Factor Candidates. 8026 ElementCountSet VFCandidates; 8027 for (auto VF = ElementCount::getFixed(1); 8028 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8029 VFCandidates.insert(VF); 8030 for (auto VF = ElementCount::getScalable(1); 8031 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8032 VFCandidates.insert(VF); 8033 8034 for (const auto &VF : VFCandidates) { 8035 // Collect Uniform and Scalar instructions after vectorization with VF. 8036 CM.collectUniformsAndScalars(VF); 8037 8038 // Collect the instructions (and their associated costs) that will be more 8039 // profitable to scalarize. 8040 if (VF.isVector()) 8041 CM.collectInstsToScalarize(VF); 8042 } 8043 8044 CM.collectInLoopReductions(); 8045 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8046 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8047 8048 LLVM_DEBUG(printPlans(dbgs())); 8049 if (!MaxFactors.hasVector()) 8050 return VectorizationFactor::Disabled(); 8051 8052 // Select the optimal vectorization factor. 8053 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8054 8055 // Check if it is profitable to vectorize with runtime checks. 8056 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8057 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8058 bool PragmaThresholdReached = 8059 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8060 bool ThresholdReached = 8061 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8062 if ((ThresholdReached && !Hints.allowReordering()) || 8063 PragmaThresholdReached) { 8064 ORE->emit([&]() { 8065 return OptimizationRemarkAnalysisAliasing( 8066 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8067 OrigLoop->getHeader()) 8068 << "loop not vectorized: cannot prove it is safe to reorder " 8069 "memory operations"; 8070 }); 8071 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8072 Hints.emitRemarkWithHints(); 8073 return VectorizationFactor::Disabled(); 8074 } 8075 } 8076 return SelectedVF; 8077 } 8078 8079 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8080 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8081 << '\n'); 8082 BestVF = VF; 8083 BestUF = UF; 8084 8085 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8086 return !Plan->hasVF(VF); 8087 }); 8088 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8089 } 8090 8091 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8092 DominatorTree *DT) { 8093 // Perform the actual loop transformation. 8094 8095 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8096 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8097 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8098 8099 VPTransformState State{ 8100 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8101 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8102 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8103 State.CanonicalIV = ILV.Induction; 8104 8105 ILV.printDebugTracesAtStart(); 8106 8107 //===------------------------------------------------===// 8108 // 8109 // Notice: any optimization or new instruction that go 8110 // into the code below should also be implemented in 8111 // the cost-model. 8112 // 8113 //===------------------------------------------------===// 8114 8115 // 2. Copy and widen instructions from the old loop into the new loop. 8116 VPlans.front()->execute(&State); 8117 8118 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8119 // predication, updating analyses. 8120 ILV.fixVectorizedLoop(State); 8121 8122 ILV.printDebugTracesAtEnd(); 8123 } 8124 8125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8126 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8127 for (const auto &Plan : VPlans) 8128 if (PrintVPlansInDotFormat) 8129 Plan->printDOT(O); 8130 else 8131 Plan->print(O); 8132 } 8133 #endif 8134 8135 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8136 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8137 8138 // We create new control-flow for the vectorized loop, so the original exit 8139 // conditions will be dead after vectorization if it's only used by the 8140 // terminator 8141 SmallVector<BasicBlock*> ExitingBlocks; 8142 OrigLoop->getExitingBlocks(ExitingBlocks); 8143 for (auto *BB : ExitingBlocks) { 8144 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8145 if (!Cmp || !Cmp->hasOneUse()) 8146 continue; 8147 8148 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8149 if (!DeadInstructions.insert(Cmp).second) 8150 continue; 8151 8152 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8153 // TODO: can recurse through operands in general 8154 for (Value *Op : Cmp->operands()) { 8155 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8156 DeadInstructions.insert(cast<Instruction>(Op)); 8157 } 8158 } 8159 8160 // We create new "steps" for induction variable updates to which the original 8161 // induction variables map. An original update instruction will be dead if 8162 // all its users except the induction variable are dead. 8163 auto *Latch = OrigLoop->getLoopLatch(); 8164 for (auto &Induction : Legal->getInductionVars()) { 8165 PHINode *Ind = Induction.first; 8166 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8167 8168 // If the tail is to be folded by masking, the primary induction variable, 8169 // if exists, isn't dead: it will be used for masking. Don't kill it. 8170 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8171 continue; 8172 8173 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8174 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8175 })) 8176 DeadInstructions.insert(IndUpdate); 8177 8178 // We record as "Dead" also the type-casting instructions we had identified 8179 // during induction analysis. We don't need any handling for them in the 8180 // vectorized loop because we have proven that, under a proper runtime 8181 // test guarding the vectorized loop, the value of the phi, and the casted 8182 // value of the phi, are the same. The last instruction in this casting chain 8183 // will get its scalar/vector/widened def from the scalar/vector/widened def 8184 // of the respective phi node. Any other casts in the induction def-use chain 8185 // have no other uses outside the phi update chain, and will be ignored. 8186 InductionDescriptor &IndDes = Induction.second; 8187 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8188 DeadInstructions.insert(Casts.begin(), Casts.end()); 8189 } 8190 } 8191 8192 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8193 8194 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8195 8196 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8197 Instruction::BinaryOps BinOp) { 8198 // When unrolling and the VF is 1, we only need to add a simple scalar. 8199 Type *Ty = Val->getType(); 8200 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8201 8202 if (Ty->isFloatingPointTy()) { 8203 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8204 8205 // Floating-point operations inherit FMF via the builder's flags. 8206 Value *MulOp = Builder.CreateFMul(C, Step); 8207 return Builder.CreateBinOp(BinOp, Val, MulOp); 8208 } 8209 Constant *C = ConstantInt::get(Ty, StartIdx); 8210 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8211 } 8212 8213 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8214 SmallVector<Metadata *, 4> MDs; 8215 // Reserve first location for self reference to the LoopID metadata node. 8216 MDs.push_back(nullptr); 8217 bool IsUnrollMetadata = false; 8218 MDNode *LoopID = L->getLoopID(); 8219 if (LoopID) { 8220 // First find existing loop unrolling disable metadata. 8221 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8222 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8223 if (MD) { 8224 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8225 IsUnrollMetadata = 8226 S && S->getString().startswith("llvm.loop.unroll.disable"); 8227 } 8228 MDs.push_back(LoopID->getOperand(i)); 8229 } 8230 } 8231 8232 if (!IsUnrollMetadata) { 8233 // Add runtime unroll disable metadata. 8234 LLVMContext &Context = L->getHeader()->getContext(); 8235 SmallVector<Metadata *, 1> DisableOperands; 8236 DisableOperands.push_back( 8237 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8238 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8239 MDs.push_back(DisableNode); 8240 MDNode *NewLoopID = MDNode::get(Context, MDs); 8241 // Set operand 0 to refer to the loop id itself. 8242 NewLoopID->replaceOperandWith(0, NewLoopID); 8243 L->setLoopID(NewLoopID); 8244 } 8245 } 8246 8247 //===--------------------------------------------------------------------===// 8248 // EpilogueVectorizerMainLoop 8249 //===--------------------------------------------------------------------===// 8250 8251 /// This function is partially responsible for generating the control flow 8252 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8253 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8254 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8255 Loop *Lp = createVectorLoopSkeleton(""); 8256 8257 // Generate the code to check the minimum iteration count of the vector 8258 // epilogue (see below). 8259 EPI.EpilogueIterationCountCheck = 8260 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8261 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8262 8263 // Generate the code to check any assumptions that we've made for SCEV 8264 // expressions. 8265 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8266 8267 // Generate the code that checks at runtime if arrays overlap. We put the 8268 // checks into a separate block to make the more common case of few elements 8269 // faster. 8270 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8271 8272 // Generate the iteration count check for the main loop, *after* the check 8273 // for the epilogue loop, so that the path-length is shorter for the case 8274 // that goes directly through the vector epilogue. The longer-path length for 8275 // the main loop is compensated for, by the gain from vectorizing the larger 8276 // trip count. Note: the branch will get updated later on when we vectorize 8277 // the epilogue. 8278 EPI.MainLoopIterationCountCheck = 8279 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8280 8281 // Generate the induction variable. 8282 OldInduction = Legal->getPrimaryInduction(); 8283 Type *IdxTy = Legal->getWidestInductionType(); 8284 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8285 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8286 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8287 EPI.VectorTripCount = CountRoundDown; 8288 Induction = 8289 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8290 getDebugLocFromInstOrOperands(OldInduction)); 8291 8292 // Skip induction resume value creation here because they will be created in 8293 // the second pass. If we created them here, they wouldn't be used anyway, 8294 // because the vplan in the second pass still contains the inductions from the 8295 // original loop. 8296 8297 return completeLoopSkeleton(Lp, OrigLoopID); 8298 } 8299 8300 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8301 LLVM_DEBUG({ 8302 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8303 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8304 << ", Main Loop UF:" << EPI.MainLoopUF 8305 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8306 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8307 }); 8308 } 8309 8310 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8311 DEBUG_WITH_TYPE(VerboseDebug, { 8312 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8313 }); 8314 } 8315 8316 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8317 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8318 assert(L && "Expected valid Loop."); 8319 assert(Bypass && "Expected valid bypass basic block."); 8320 unsigned VFactor = 8321 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8322 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8323 Value *Count = getOrCreateTripCount(L); 8324 // Reuse existing vector loop preheader for TC checks. 8325 // Note that new preheader block is generated for vector loop. 8326 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8327 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8328 8329 // Generate code to check if the loop's trip count is less than VF * UF of the 8330 // main vector loop. 8331 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8332 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8333 8334 Value *CheckMinIters = Builder.CreateICmp( 8335 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8336 "min.iters.check"); 8337 8338 if (!ForEpilogue) 8339 TCCheckBlock->setName("vector.main.loop.iter.check"); 8340 8341 // Create new preheader for vector loop. 8342 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8343 DT, LI, nullptr, "vector.ph"); 8344 8345 if (ForEpilogue) { 8346 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8347 DT->getNode(Bypass)->getIDom()) && 8348 "TC check is expected to dominate Bypass"); 8349 8350 // Update dominator for Bypass & LoopExit. 8351 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8352 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8353 // For loops with multiple exits, there's no edge from the middle block 8354 // to exit blocks (as the epilogue must run) and thus no need to update 8355 // the immediate dominator of the exit blocks. 8356 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8357 8358 LoopBypassBlocks.push_back(TCCheckBlock); 8359 8360 // Save the trip count so we don't have to regenerate it in the 8361 // vec.epilog.iter.check. This is safe to do because the trip count 8362 // generated here dominates the vector epilog iter check. 8363 EPI.TripCount = Count; 8364 } 8365 8366 ReplaceInstWithInst( 8367 TCCheckBlock->getTerminator(), 8368 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8369 8370 return TCCheckBlock; 8371 } 8372 8373 //===--------------------------------------------------------------------===// 8374 // EpilogueVectorizerEpilogueLoop 8375 //===--------------------------------------------------------------------===// 8376 8377 /// This function is partially responsible for generating the control flow 8378 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8379 BasicBlock * 8380 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8381 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8382 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8383 8384 // Now, compare the remaining count and if there aren't enough iterations to 8385 // execute the vectorized epilogue skip to the scalar part. 8386 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8387 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8388 LoopVectorPreHeader = 8389 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8390 LI, nullptr, "vec.epilog.ph"); 8391 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8392 VecEpilogueIterationCountCheck); 8393 8394 // Adjust the control flow taking the state info from the main loop 8395 // vectorization into account. 8396 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8397 "expected this to be saved from the previous pass."); 8398 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8399 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8400 8401 DT->changeImmediateDominator(LoopVectorPreHeader, 8402 EPI.MainLoopIterationCountCheck); 8403 8404 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8405 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8406 8407 if (EPI.SCEVSafetyCheck) 8408 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8409 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8410 if (EPI.MemSafetyCheck) 8411 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8412 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8413 8414 DT->changeImmediateDominator( 8415 VecEpilogueIterationCountCheck, 8416 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8417 8418 DT->changeImmediateDominator(LoopScalarPreHeader, 8419 EPI.EpilogueIterationCountCheck); 8420 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8421 // If there is an epilogue which must run, there's no edge from the 8422 // middle block to exit blocks and thus no need to update the immediate 8423 // dominator of the exit blocks. 8424 DT->changeImmediateDominator(LoopExitBlock, 8425 EPI.EpilogueIterationCountCheck); 8426 8427 // Keep track of bypass blocks, as they feed start values to the induction 8428 // phis in the scalar loop preheader. 8429 if (EPI.SCEVSafetyCheck) 8430 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8431 if (EPI.MemSafetyCheck) 8432 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8433 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8434 8435 // Generate a resume induction for the vector epilogue and put it in the 8436 // vector epilogue preheader 8437 Type *IdxTy = Legal->getWidestInductionType(); 8438 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8439 LoopVectorPreHeader->getFirstNonPHI()); 8440 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8441 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8442 EPI.MainLoopIterationCountCheck); 8443 8444 // Generate the induction variable. 8445 OldInduction = Legal->getPrimaryInduction(); 8446 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8447 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8448 Value *StartIdx = EPResumeVal; 8449 Induction = 8450 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8451 getDebugLocFromInstOrOperands(OldInduction)); 8452 8453 // Generate induction resume values. These variables save the new starting 8454 // indexes for the scalar loop. They are used to test if there are any tail 8455 // iterations left once the vector loop has completed. 8456 // Note that when the vectorized epilogue is skipped due to iteration count 8457 // check, then the resume value for the induction variable comes from 8458 // the trip count of the main vector loop, hence passing the AdditionalBypass 8459 // argument. 8460 createInductionResumeValues(Lp, CountRoundDown, 8461 {VecEpilogueIterationCountCheck, 8462 EPI.VectorTripCount} /* AdditionalBypass */); 8463 8464 AddRuntimeUnrollDisableMetaData(Lp); 8465 return completeLoopSkeleton(Lp, OrigLoopID); 8466 } 8467 8468 BasicBlock * 8469 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8470 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8471 8472 assert(EPI.TripCount && 8473 "Expected trip count to have been safed in the first pass."); 8474 assert( 8475 (!isa<Instruction>(EPI.TripCount) || 8476 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8477 "saved trip count does not dominate insertion point."); 8478 Value *TC = EPI.TripCount; 8479 IRBuilder<> Builder(Insert->getTerminator()); 8480 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8481 8482 // Generate code to check if the loop's trip count is less than VF * UF of the 8483 // vector epilogue loop. 8484 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8485 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8486 8487 Value *CheckMinIters = Builder.CreateICmp( 8488 P, Count, 8489 ConstantInt::get(Count->getType(), 8490 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8491 "min.epilog.iters.check"); 8492 8493 ReplaceInstWithInst( 8494 Insert->getTerminator(), 8495 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8496 8497 LoopBypassBlocks.push_back(Insert); 8498 return Insert; 8499 } 8500 8501 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8502 LLVM_DEBUG({ 8503 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8504 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8505 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8506 }); 8507 } 8508 8509 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8510 DEBUG_WITH_TYPE(VerboseDebug, { 8511 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8512 }); 8513 } 8514 8515 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8516 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8517 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8518 bool PredicateAtRangeStart = Predicate(Range.Start); 8519 8520 for (ElementCount TmpVF = Range.Start * 2; 8521 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8522 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8523 Range.End = TmpVF; 8524 break; 8525 } 8526 8527 return PredicateAtRangeStart; 8528 } 8529 8530 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8531 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8532 /// of VF's starting at a given VF and extending it as much as possible. Each 8533 /// vectorization decision can potentially shorten this sub-range during 8534 /// buildVPlan(). 8535 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8536 ElementCount MaxVF) { 8537 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8538 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8539 VFRange SubRange = {VF, MaxVFPlusOne}; 8540 VPlans.push_back(buildVPlan(SubRange)); 8541 VF = SubRange.End; 8542 } 8543 } 8544 8545 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8546 VPlanPtr &Plan) { 8547 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8548 8549 // Look for cached value. 8550 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8551 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8552 if (ECEntryIt != EdgeMaskCache.end()) 8553 return ECEntryIt->second; 8554 8555 VPValue *SrcMask = createBlockInMask(Src, Plan); 8556 8557 // The terminator has to be a branch inst! 8558 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8559 assert(BI && "Unexpected terminator found"); 8560 8561 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8562 return EdgeMaskCache[Edge] = SrcMask; 8563 8564 // If source is an exiting block, we know the exit edge is dynamically dead 8565 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8566 // adding uses of an otherwise potentially dead instruction. 8567 if (OrigLoop->isLoopExiting(Src)) 8568 return EdgeMaskCache[Edge] = SrcMask; 8569 8570 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8571 assert(EdgeMask && "No Edge Mask found for condition"); 8572 8573 if (BI->getSuccessor(0) != Dst) 8574 EdgeMask = Builder.createNot(EdgeMask); 8575 8576 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8577 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8578 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8579 // The select version does not introduce new UB if SrcMask is false and 8580 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8581 VPValue *False = Plan->getOrAddVPValue( 8582 ConstantInt::getFalse(BI->getCondition()->getType())); 8583 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8584 } 8585 8586 return EdgeMaskCache[Edge] = EdgeMask; 8587 } 8588 8589 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8590 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8591 8592 // Look for cached value. 8593 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8594 if (BCEntryIt != BlockMaskCache.end()) 8595 return BCEntryIt->second; 8596 8597 // All-one mask is modelled as no-mask following the convention for masked 8598 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8599 VPValue *BlockMask = nullptr; 8600 8601 if (OrigLoop->getHeader() == BB) { 8602 if (!CM.blockNeedsPredication(BB)) 8603 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8604 8605 // Create the block in mask as the first non-phi instruction in the block. 8606 VPBuilder::InsertPointGuard Guard(Builder); 8607 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8608 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8609 8610 // Introduce the early-exit compare IV <= BTC to form header block mask. 8611 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8612 // Start by constructing the desired canonical IV. 8613 VPValue *IV = nullptr; 8614 if (Legal->getPrimaryInduction()) 8615 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8616 else { 8617 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8618 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8619 IV = IVRecipe->getVPSingleValue(); 8620 } 8621 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8622 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8623 8624 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8625 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8626 // as a second argument, we only pass the IV here and extract the 8627 // tripcount from the transform state where codegen of the VP instructions 8628 // happen. 8629 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8630 } else { 8631 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8632 } 8633 return BlockMaskCache[BB] = BlockMask; 8634 } 8635 8636 // This is the block mask. We OR all incoming edges. 8637 for (auto *Predecessor : predecessors(BB)) { 8638 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8639 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8640 return BlockMaskCache[BB] = EdgeMask; 8641 8642 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8643 BlockMask = EdgeMask; 8644 continue; 8645 } 8646 8647 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8648 } 8649 8650 return BlockMaskCache[BB] = BlockMask; 8651 } 8652 8653 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8654 ArrayRef<VPValue *> Operands, 8655 VFRange &Range, 8656 VPlanPtr &Plan) { 8657 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8658 "Must be called with either a load or store"); 8659 8660 auto willWiden = [&](ElementCount VF) -> bool { 8661 if (VF.isScalar()) 8662 return false; 8663 LoopVectorizationCostModel::InstWidening Decision = 8664 CM.getWideningDecision(I, VF); 8665 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8666 "CM decision should be taken at this point."); 8667 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8668 return true; 8669 if (CM.isScalarAfterVectorization(I, VF) || 8670 CM.isProfitableToScalarize(I, VF)) 8671 return false; 8672 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8673 }; 8674 8675 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8676 return nullptr; 8677 8678 VPValue *Mask = nullptr; 8679 if (Legal->isMaskRequired(I)) 8680 Mask = createBlockInMask(I->getParent(), Plan); 8681 8682 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8683 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8684 8685 StoreInst *Store = cast<StoreInst>(I); 8686 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8687 Mask); 8688 } 8689 8690 VPWidenIntOrFpInductionRecipe * 8691 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8692 ArrayRef<VPValue *> Operands) const { 8693 // Check if this is an integer or fp induction. If so, build the recipe that 8694 // produces its scalar and vector values. 8695 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8696 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8697 II.getKind() == InductionDescriptor::IK_FpInduction) { 8698 assert(II.getStartValue() == 8699 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8700 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8701 return new VPWidenIntOrFpInductionRecipe( 8702 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8703 } 8704 8705 return nullptr; 8706 } 8707 8708 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8709 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8710 VPlan &Plan) const { 8711 // Optimize the special case where the source is a constant integer 8712 // induction variable. Notice that we can only optimize the 'trunc' case 8713 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8714 // (c) other casts depend on pointer size. 8715 8716 // Determine whether \p K is a truncation based on an induction variable that 8717 // can be optimized. 8718 auto isOptimizableIVTruncate = 8719 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8720 return [=](ElementCount VF) -> bool { 8721 return CM.isOptimizableIVTruncate(K, VF); 8722 }; 8723 }; 8724 8725 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8726 isOptimizableIVTruncate(I), Range)) { 8727 8728 InductionDescriptor II = 8729 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8730 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8731 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8732 Start, nullptr, I); 8733 } 8734 return nullptr; 8735 } 8736 8737 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8738 ArrayRef<VPValue *> Operands, 8739 VPlanPtr &Plan) { 8740 // If all incoming values are equal, the incoming VPValue can be used directly 8741 // instead of creating a new VPBlendRecipe. 8742 VPValue *FirstIncoming = Operands[0]; 8743 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8744 return FirstIncoming == Inc; 8745 })) { 8746 return Operands[0]; 8747 } 8748 8749 // We know that all PHIs in non-header blocks are converted into selects, so 8750 // we don't have to worry about the insertion order and we can just use the 8751 // builder. At this point we generate the predication tree. There may be 8752 // duplications since this is a simple recursive scan, but future 8753 // optimizations will clean it up. 8754 SmallVector<VPValue *, 2> OperandsWithMask; 8755 unsigned NumIncoming = Phi->getNumIncomingValues(); 8756 8757 for (unsigned In = 0; In < NumIncoming; In++) { 8758 VPValue *EdgeMask = 8759 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8760 assert((EdgeMask || NumIncoming == 1) && 8761 "Multiple predecessors with one having a full mask"); 8762 OperandsWithMask.push_back(Operands[In]); 8763 if (EdgeMask) 8764 OperandsWithMask.push_back(EdgeMask); 8765 } 8766 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8767 } 8768 8769 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8770 ArrayRef<VPValue *> Operands, 8771 VFRange &Range) const { 8772 8773 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8774 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8775 Range); 8776 8777 if (IsPredicated) 8778 return nullptr; 8779 8780 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8781 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8782 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8783 ID == Intrinsic::pseudoprobe || 8784 ID == Intrinsic::experimental_noalias_scope_decl)) 8785 return nullptr; 8786 8787 auto willWiden = [&](ElementCount VF) -> bool { 8788 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8789 // The following case may be scalarized depending on the VF. 8790 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8791 // version of the instruction. 8792 // Is it beneficial to perform intrinsic call compared to lib call? 8793 bool NeedToScalarize = false; 8794 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8795 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8796 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8797 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8798 "Either the intrinsic cost or vector call cost must be valid"); 8799 return UseVectorIntrinsic || !NeedToScalarize; 8800 }; 8801 8802 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8803 return nullptr; 8804 8805 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8806 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8807 } 8808 8809 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8810 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8811 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8812 // Instruction should be widened, unless it is scalar after vectorization, 8813 // scalarization is profitable or it is predicated. 8814 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8815 return CM.isScalarAfterVectorization(I, VF) || 8816 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8817 }; 8818 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8819 Range); 8820 } 8821 8822 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8823 ArrayRef<VPValue *> Operands) const { 8824 auto IsVectorizableOpcode = [](unsigned Opcode) { 8825 switch (Opcode) { 8826 case Instruction::Add: 8827 case Instruction::And: 8828 case Instruction::AShr: 8829 case Instruction::BitCast: 8830 case Instruction::FAdd: 8831 case Instruction::FCmp: 8832 case Instruction::FDiv: 8833 case Instruction::FMul: 8834 case Instruction::FNeg: 8835 case Instruction::FPExt: 8836 case Instruction::FPToSI: 8837 case Instruction::FPToUI: 8838 case Instruction::FPTrunc: 8839 case Instruction::FRem: 8840 case Instruction::FSub: 8841 case Instruction::ICmp: 8842 case Instruction::IntToPtr: 8843 case Instruction::LShr: 8844 case Instruction::Mul: 8845 case Instruction::Or: 8846 case Instruction::PtrToInt: 8847 case Instruction::SDiv: 8848 case Instruction::Select: 8849 case Instruction::SExt: 8850 case Instruction::Shl: 8851 case Instruction::SIToFP: 8852 case Instruction::SRem: 8853 case Instruction::Sub: 8854 case Instruction::Trunc: 8855 case Instruction::UDiv: 8856 case Instruction::UIToFP: 8857 case Instruction::URem: 8858 case Instruction::Xor: 8859 case Instruction::ZExt: 8860 return true; 8861 } 8862 return false; 8863 }; 8864 8865 if (!IsVectorizableOpcode(I->getOpcode())) 8866 return nullptr; 8867 8868 // Success: widen this instruction. 8869 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8870 } 8871 8872 void VPRecipeBuilder::fixHeaderPhis() { 8873 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8874 for (VPWidenPHIRecipe *R : PhisToFix) { 8875 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8876 VPRecipeBase *IncR = 8877 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8878 R->addOperand(IncR->getVPSingleValue()); 8879 } 8880 } 8881 8882 VPBasicBlock *VPRecipeBuilder::handleReplication( 8883 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8884 VPlanPtr &Plan) { 8885 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8886 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8887 Range); 8888 8889 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8890 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8891 8892 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8893 IsUniform, IsPredicated); 8894 setRecipe(I, Recipe); 8895 Plan->addVPValue(I, Recipe); 8896 8897 // Find if I uses a predicated instruction. If so, it will use its scalar 8898 // value. Avoid hoisting the insert-element which packs the scalar value into 8899 // a vector value, as that happens iff all users use the vector value. 8900 for (VPValue *Op : Recipe->operands()) { 8901 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8902 if (!PredR) 8903 continue; 8904 auto *RepR = 8905 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8906 assert(RepR->isPredicated() && 8907 "expected Replicate recipe to be predicated"); 8908 RepR->setAlsoPack(false); 8909 } 8910 8911 // Finalize the recipe for Instr, first if it is not predicated. 8912 if (!IsPredicated) { 8913 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8914 VPBB->appendRecipe(Recipe); 8915 return VPBB; 8916 } 8917 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8918 assert(VPBB->getSuccessors().empty() && 8919 "VPBB has successors when handling predicated replication."); 8920 // Record predicated instructions for above packing optimizations. 8921 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8922 VPBlockUtils::insertBlockAfter(Region, VPBB); 8923 auto *RegSucc = new VPBasicBlock(); 8924 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8925 return RegSucc; 8926 } 8927 8928 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8929 VPRecipeBase *PredRecipe, 8930 VPlanPtr &Plan) { 8931 // Instructions marked for predication are replicated and placed under an 8932 // if-then construct to prevent side-effects. 8933 8934 // Generate recipes to compute the block mask for this region. 8935 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8936 8937 // Build the triangular if-then region. 8938 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8939 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8940 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8941 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8942 auto *PHIRecipe = Instr->getType()->isVoidTy() 8943 ? nullptr 8944 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8945 if (PHIRecipe) { 8946 Plan->removeVPValueFor(Instr); 8947 Plan->addVPValue(Instr, PHIRecipe); 8948 } 8949 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8950 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8951 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8952 8953 // Note: first set Entry as region entry and then connect successors starting 8954 // from it in order, to propagate the "parent" of each VPBasicBlock. 8955 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8956 VPBlockUtils::connectBlocks(Pred, Exit); 8957 8958 return Region; 8959 } 8960 8961 VPRecipeOrVPValueTy 8962 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8963 ArrayRef<VPValue *> Operands, 8964 VFRange &Range, VPlanPtr &Plan) { 8965 // First, check for specific widening recipes that deal with calls, memory 8966 // operations, inductions and Phi nodes. 8967 if (auto *CI = dyn_cast<CallInst>(Instr)) 8968 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8969 8970 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8971 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8972 8973 VPRecipeBase *Recipe; 8974 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8975 if (Phi->getParent() != OrigLoop->getHeader()) 8976 return tryToBlend(Phi, Operands, Plan); 8977 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8978 return toVPRecipeResult(Recipe); 8979 8980 VPWidenPHIRecipe *PhiRecipe = nullptr; 8981 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8982 VPValue *StartV = Operands[0]; 8983 if (Legal->isReductionVariable(Phi)) { 8984 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8985 assert(RdxDesc.getRecurrenceStartValue() == 8986 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8987 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8988 CM.isInLoopReduction(Phi), 8989 CM.useOrderedReductions(RdxDesc)); 8990 } else { 8991 PhiRecipe = new VPWidenPHIRecipe(Phi, *StartV); 8992 } 8993 8994 // Record the incoming value from the backedge, so we can add the incoming 8995 // value from the backedge after all recipes have been created. 8996 recordRecipeOf(cast<Instruction>( 8997 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8998 PhisToFix.push_back(PhiRecipe); 8999 } else { 9000 // TODO: record start and backedge value for remaining pointer induction 9001 // phis. 9002 assert(Phi->getType()->isPointerTy() && 9003 "only pointer phis should be handled here"); 9004 PhiRecipe = new VPWidenPHIRecipe(Phi); 9005 } 9006 9007 return toVPRecipeResult(PhiRecipe); 9008 } 9009 9010 if (isa<TruncInst>(Instr) && 9011 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9012 Range, *Plan))) 9013 return toVPRecipeResult(Recipe); 9014 9015 if (!shouldWiden(Instr, Range)) 9016 return nullptr; 9017 9018 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9019 return toVPRecipeResult(new VPWidenGEPRecipe( 9020 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9021 9022 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9023 bool InvariantCond = 9024 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9025 return toVPRecipeResult(new VPWidenSelectRecipe( 9026 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9027 } 9028 9029 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9030 } 9031 9032 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9033 ElementCount MaxVF) { 9034 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9035 9036 // Collect instructions from the original loop that will become trivially dead 9037 // in the vectorized loop. We don't need to vectorize these instructions. For 9038 // example, original induction update instructions can become dead because we 9039 // separately emit induction "steps" when generating code for the new loop. 9040 // Similarly, we create a new latch condition when setting up the structure 9041 // of the new loop, so the old one can become dead. 9042 SmallPtrSet<Instruction *, 4> DeadInstructions; 9043 collectTriviallyDeadInstructions(DeadInstructions); 9044 9045 // Add assume instructions we need to drop to DeadInstructions, to prevent 9046 // them from being added to the VPlan. 9047 // TODO: We only need to drop assumes in blocks that get flattend. If the 9048 // control flow is preserved, we should keep them. 9049 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9050 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9051 9052 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9053 // Dead instructions do not need sinking. Remove them from SinkAfter. 9054 for (Instruction *I : DeadInstructions) 9055 SinkAfter.erase(I); 9056 9057 // Cannot sink instructions after dead instructions (there won't be any 9058 // recipes for them). Instead, find the first non-dead previous instruction. 9059 for (auto &P : Legal->getSinkAfter()) { 9060 Instruction *SinkTarget = P.second; 9061 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9062 (void)FirstInst; 9063 while (DeadInstructions.contains(SinkTarget)) { 9064 assert( 9065 SinkTarget != FirstInst && 9066 "Must find a live instruction (at least the one feeding the " 9067 "first-order recurrence PHI) before reaching beginning of the block"); 9068 SinkTarget = SinkTarget->getPrevNode(); 9069 assert(SinkTarget != P.first && 9070 "sink source equals target, no sinking required"); 9071 } 9072 P.second = SinkTarget; 9073 } 9074 9075 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9076 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9077 VFRange SubRange = {VF, MaxVFPlusOne}; 9078 VPlans.push_back( 9079 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9080 VF = SubRange.End; 9081 } 9082 } 9083 9084 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9085 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9086 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9087 9088 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9089 9090 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9091 9092 // --------------------------------------------------------------------------- 9093 // Pre-construction: record ingredients whose recipes we'll need to further 9094 // process after constructing the initial VPlan. 9095 // --------------------------------------------------------------------------- 9096 9097 // Mark instructions we'll need to sink later and their targets as 9098 // ingredients whose recipe we'll need to record. 9099 for (auto &Entry : SinkAfter) { 9100 RecipeBuilder.recordRecipeOf(Entry.first); 9101 RecipeBuilder.recordRecipeOf(Entry.second); 9102 } 9103 for (auto &Reduction : CM.getInLoopReductionChains()) { 9104 PHINode *Phi = Reduction.first; 9105 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9106 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9107 9108 RecipeBuilder.recordRecipeOf(Phi); 9109 for (auto &R : ReductionOperations) { 9110 RecipeBuilder.recordRecipeOf(R); 9111 // For min/max reducitons, where we have a pair of icmp/select, we also 9112 // need to record the ICmp recipe, so it can be removed later. 9113 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9114 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9115 } 9116 } 9117 9118 // For each interleave group which is relevant for this (possibly trimmed) 9119 // Range, add it to the set of groups to be later applied to the VPlan and add 9120 // placeholders for its members' Recipes which we'll be replacing with a 9121 // single VPInterleaveRecipe. 9122 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9123 auto applyIG = [IG, this](ElementCount VF) -> bool { 9124 return (VF.isVector() && // Query is illegal for VF == 1 9125 CM.getWideningDecision(IG->getInsertPos(), VF) == 9126 LoopVectorizationCostModel::CM_Interleave); 9127 }; 9128 if (!getDecisionAndClampRange(applyIG, Range)) 9129 continue; 9130 InterleaveGroups.insert(IG); 9131 for (unsigned i = 0; i < IG->getFactor(); i++) 9132 if (Instruction *Member = IG->getMember(i)) 9133 RecipeBuilder.recordRecipeOf(Member); 9134 }; 9135 9136 // --------------------------------------------------------------------------- 9137 // Build initial VPlan: Scan the body of the loop in a topological order to 9138 // visit each basic block after having visited its predecessor basic blocks. 9139 // --------------------------------------------------------------------------- 9140 9141 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9142 auto Plan = std::make_unique<VPlan>(); 9143 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9144 Plan->setEntry(VPBB); 9145 9146 // Scan the body of the loop in a topological order to visit each basic block 9147 // after having visited its predecessor basic blocks. 9148 LoopBlocksDFS DFS(OrigLoop); 9149 DFS.perform(LI); 9150 9151 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9152 // Relevant instructions from basic block BB will be grouped into VPRecipe 9153 // ingredients and fill a new VPBasicBlock. 9154 unsigned VPBBsForBB = 0; 9155 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9156 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9157 VPBB = FirstVPBBForBB; 9158 Builder.setInsertPoint(VPBB); 9159 9160 // Introduce each ingredient into VPlan. 9161 // TODO: Model and preserve debug instrinsics in VPlan. 9162 for (Instruction &I : BB->instructionsWithoutDebug()) { 9163 Instruction *Instr = &I; 9164 9165 // First filter out irrelevant instructions, to ensure no recipes are 9166 // built for them. 9167 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9168 continue; 9169 9170 SmallVector<VPValue *, 4> Operands; 9171 auto *Phi = dyn_cast<PHINode>(Instr); 9172 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9173 Operands.push_back(Plan->getOrAddVPValue( 9174 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9175 } else { 9176 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9177 Operands = {OpRange.begin(), OpRange.end()}; 9178 } 9179 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9180 Instr, Operands, Range, Plan)) { 9181 // If Instr can be simplified to an existing VPValue, use it. 9182 if (RecipeOrValue.is<VPValue *>()) { 9183 auto *VPV = RecipeOrValue.get<VPValue *>(); 9184 Plan->addVPValue(Instr, VPV); 9185 // If the re-used value is a recipe, register the recipe for the 9186 // instruction, in case the recipe for Instr needs to be recorded. 9187 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9188 RecipeBuilder.setRecipe(Instr, R); 9189 continue; 9190 } 9191 // Otherwise, add the new recipe. 9192 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9193 for (auto *Def : Recipe->definedValues()) { 9194 auto *UV = Def->getUnderlyingValue(); 9195 Plan->addVPValue(UV, Def); 9196 } 9197 9198 RecipeBuilder.setRecipe(Instr, Recipe); 9199 VPBB->appendRecipe(Recipe); 9200 continue; 9201 } 9202 9203 // Otherwise, if all widening options failed, Instruction is to be 9204 // replicated. This may create a successor for VPBB. 9205 VPBasicBlock *NextVPBB = 9206 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9207 if (NextVPBB != VPBB) { 9208 VPBB = NextVPBB; 9209 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9210 : ""); 9211 } 9212 } 9213 } 9214 9215 RecipeBuilder.fixHeaderPhis(); 9216 9217 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9218 // may also be empty, such as the last one VPBB, reflecting original 9219 // basic-blocks with no recipes. 9220 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9221 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9222 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9223 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9224 delete PreEntry; 9225 9226 // --------------------------------------------------------------------------- 9227 // Transform initial VPlan: Apply previously taken decisions, in order, to 9228 // bring the VPlan to its final state. 9229 // --------------------------------------------------------------------------- 9230 9231 // Apply Sink-After legal constraints. 9232 for (auto &Entry : SinkAfter) { 9233 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9234 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9235 9236 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9237 auto *Region = 9238 dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9239 if (Region && Region->isReplicator()) { 9240 assert(Region->getNumSuccessors() == 1 && 9241 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9242 assert(R->getParent()->size() == 1 && 9243 "A recipe in an original replicator region must be the only " 9244 "recipe in its block"); 9245 return Region; 9246 } 9247 return nullptr; 9248 }; 9249 auto *TargetRegion = GetReplicateRegion(Target); 9250 auto *SinkRegion = GetReplicateRegion(Sink); 9251 if (!SinkRegion) { 9252 // If the sink source is not a replicate region, sink the recipe directly. 9253 if (TargetRegion) { 9254 // The target is in a replication region, make sure to move Sink to 9255 // the block after it, not into the replication region itself. 9256 VPBasicBlock *NextBlock = 9257 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9258 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9259 } else 9260 Sink->moveAfter(Target); 9261 continue; 9262 } 9263 9264 // The sink source is in a replicate region. Unhook the region from the CFG. 9265 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9266 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9267 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9268 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9269 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9270 9271 if (TargetRegion) { 9272 // The target recipe is also in a replicate region, move the sink region 9273 // after the target region. 9274 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9275 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9276 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9277 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9278 } else { 9279 // The sink source is in a replicate region, we need to move the whole 9280 // replicate region, which should only contain a single recipe in the main 9281 // block. 9282 auto *SplitBlock = 9283 Target->getParent()->splitAt(std::next(Target->getIterator())); 9284 9285 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9286 9287 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9288 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9289 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9290 if (VPBB == SplitPred) 9291 VPBB = SplitBlock; 9292 } 9293 } 9294 9295 // Interleave memory: for each Interleave Group we marked earlier as relevant 9296 // for this VPlan, replace the Recipes widening its memory instructions with a 9297 // single VPInterleaveRecipe at its insertion point. 9298 for (auto IG : InterleaveGroups) { 9299 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9300 RecipeBuilder.getRecipe(IG->getInsertPos())); 9301 SmallVector<VPValue *, 4> StoredValues; 9302 for (unsigned i = 0; i < IG->getFactor(); ++i) 9303 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9304 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9305 9306 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9307 Recipe->getMask()); 9308 VPIG->insertBefore(Recipe); 9309 unsigned J = 0; 9310 for (unsigned i = 0; i < IG->getFactor(); ++i) 9311 if (Instruction *Member = IG->getMember(i)) { 9312 if (!Member->getType()->isVoidTy()) { 9313 VPValue *OriginalV = Plan->getVPValue(Member); 9314 Plan->removeVPValueFor(Member); 9315 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9316 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9317 J++; 9318 } 9319 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9320 } 9321 } 9322 9323 // Adjust the recipes for any inloop reductions. 9324 adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start); 9325 9326 // Finally, if tail is folded by masking, introduce selects between the phi 9327 // and the live-out instruction of each reduction, at the end of the latch. 9328 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9329 Builder.setInsertPoint(VPBB); 9330 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9331 for (auto &Reduction : Legal->getReductionVars()) { 9332 if (CM.isInLoopReduction(Reduction.first)) 9333 continue; 9334 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9335 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9336 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9337 } 9338 } 9339 9340 VPlanTransforms::sinkScalarOperands(*Plan); 9341 VPlanTransforms::mergeReplicateRegions(*Plan); 9342 9343 std::string PlanName; 9344 raw_string_ostream RSO(PlanName); 9345 ElementCount VF = Range.Start; 9346 Plan->addVF(VF); 9347 RSO << "Initial VPlan for VF={" << VF; 9348 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9349 Plan->addVF(VF); 9350 RSO << "," << VF; 9351 } 9352 RSO << "},UF>=1"; 9353 RSO.flush(); 9354 Plan->setName(PlanName); 9355 9356 return Plan; 9357 } 9358 9359 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9360 // Outer loop handling: They may require CFG and instruction level 9361 // transformations before even evaluating whether vectorization is profitable. 9362 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9363 // the vectorization pipeline. 9364 assert(!OrigLoop->isInnermost()); 9365 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9366 9367 // Create new empty VPlan 9368 auto Plan = std::make_unique<VPlan>(); 9369 9370 // Build hierarchical CFG 9371 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9372 HCFGBuilder.buildHierarchicalCFG(); 9373 9374 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9375 VF *= 2) 9376 Plan->addVF(VF); 9377 9378 if (EnableVPlanPredication) { 9379 VPlanPredicator VPP(*Plan); 9380 VPP.predicate(); 9381 9382 // Avoid running transformation to recipes until masked code generation in 9383 // VPlan-native path is in place. 9384 return Plan; 9385 } 9386 9387 SmallPtrSet<Instruction *, 1> DeadInstructions; 9388 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9389 Legal->getInductionVars(), 9390 DeadInstructions, *PSE.getSE()); 9391 return Plan; 9392 } 9393 9394 // Adjust the recipes for any inloop reductions. The chain of instructions 9395 // leading from the loop exit instr to the phi need to be converted to 9396 // reductions, with one operand being vector and the other being the scalar 9397 // reduction chain. 9398 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9399 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) { 9400 for (auto &Reduction : CM.getInLoopReductionChains()) { 9401 PHINode *Phi = Reduction.first; 9402 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9403 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9404 9405 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9406 continue; 9407 9408 // ReductionOperations are orders top-down from the phi's use to the 9409 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9410 // which of the two operands will remain scalar and which will be reduced. 9411 // For minmax the chain will be the select instructions. 9412 Instruction *Chain = Phi; 9413 for (Instruction *R : ReductionOperations) { 9414 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9415 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9416 9417 VPValue *ChainOp = Plan->getVPValue(Chain); 9418 unsigned FirstOpId; 9419 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9420 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9421 "Expected to replace a VPWidenSelectSC"); 9422 FirstOpId = 1; 9423 } else { 9424 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9425 "Expected to replace a VPWidenSC"); 9426 FirstOpId = 0; 9427 } 9428 unsigned VecOpId = 9429 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9430 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9431 9432 auto *CondOp = CM.foldTailByMasking() 9433 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9434 : nullptr; 9435 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9436 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9437 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9438 Plan->removeVPValueFor(R); 9439 Plan->addVPValue(R, RedRecipe); 9440 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9441 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9442 WidenRecipe->eraseFromParent(); 9443 9444 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9445 VPRecipeBase *CompareRecipe = 9446 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9447 assert(isa<VPWidenRecipe>(CompareRecipe) && 9448 "Expected to replace a VPWidenSC"); 9449 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9450 "Expected no remaining users"); 9451 CompareRecipe->eraseFromParent(); 9452 } 9453 Chain = R; 9454 } 9455 } 9456 } 9457 9458 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9459 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9460 VPSlotTracker &SlotTracker) const { 9461 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9462 IG->getInsertPos()->printAsOperand(O, false); 9463 O << ", "; 9464 getAddr()->printAsOperand(O, SlotTracker); 9465 VPValue *Mask = getMask(); 9466 if (Mask) { 9467 O << ", "; 9468 Mask->printAsOperand(O, SlotTracker); 9469 } 9470 for (unsigned i = 0; i < IG->getFactor(); ++i) 9471 if (Instruction *I = IG->getMember(i)) 9472 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9473 } 9474 #endif 9475 9476 void VPWidenCallRecipe::execute(VPTransformState &State) { 9477 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9478 *this, State); 9479 } 9480 9481 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9482 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9483 this, *this, InvariantCond, State); 9484 } 9485 9486 void VPWidenRecipe::execute(VPTransformState &State) { 9487 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9488 } 9489 9490 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9491 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9492 *this, State.UF, State.VF, IsPtrLoopInvariant, 9493 IsIndexLoopInvariant, State); 9494 } 9495 9496 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9497 assert(!State.Instance && "Int or FP induction being replicated."); 9498 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9499 getTruncInst(), getVPValue(0), 9500 getCastValue(), State); 9501 } 9502 9503 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9504 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9505 State); 9506 } 9507 9508 void VPBlendRecipe::execute(VPTransformState &State) { 9509 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9510 // We know that all PHIs in non-header blocks are converted into 9511 // selects, so we don't have to worry about the insertion order and we 9512 // can just use the builder. 9513 // At this point we generate the predication tree. There may be 9514 // duplications since this is a simple recursive scan, but future 9515 // optimizations will clean it up. 9516 9517 unsigned NumIncoming = getNumIncomingValues(); 9518 9519 // Generate a sequence of selects of the form: 9520 // SELECT(Mask3, In3, 9521 // SELECT(Mask2, In2, 9522 // SELECT(Mask1, In1, 9523 // In0))) 9524 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9525 // are essentially undef are taken from In0. 9526 InnerLoopVectorizer::VectorParts Entry(State.UF); 9527 for (unsigned In = 0; In < NumIncoming; ++In) { 9528 for (unsigned Part = 0; Part < State.UF; ++Part) { 9529 // We might have single edge PHIs (blocks) - use an identity 9530 // 'select' for the first PHI operand. 9531 Value *In0 = State.get(getIncomingValue(In), Part); 9532 if (In == 0) 9533 Entry[Part] = In0; // Initialize with the first incoming value. 9534 else { 9535 // Select between the current value and the previous incoming edge 9536 // based on the incoming mask. 9537 Value *Cond = State.get(getMask(In), Part); 9538 Entry[Part] = 9539 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9540 } 9541 } 9542 } 9543 for (unsigned Part = 0; Part < State.UF; ++Part) 9544 State.set(this, Entry[Part], Part); 9545 } 9546 9547 void VPInterleaveRecipe::execute(VPTransformState &State) { 9548 assert(!State.Instance && "Interleave group being replicated."); 9549 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9550 getStoredValues(), getMask()); 9551 } 9552 9553 void VPReductionRecipe::execute(VPTransformState &State) { 9554 assert(!State.Instance && "Reduction being replicated."); 9555 Value *PrevInChain = State.get(getChainOp(), 0); 9556 for (unsigned Part = 0; Part < State.UF; ++Part) { 9557 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9558 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9559 Value *NewVecOp = State.get(getVecOp(), Part); 9560 if (VPValue *Cond = getCondOp()) { 9561 Value *NewCond = State.get(Cond, Part); 9562 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9563 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9564 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9565 Constant *IdenVec = 9566 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9567 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9568 NewVecOp = Select; 9569 } 9570 Value *NewRed; 9571 Value *NextInChain; 9572 if (IsOrdered) { 9573 if (State.VF.isVector()) 9574 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9575 PrevInChain); 9576 else 9577 NewRed = State.Builder.CreateBinOp( 9578 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9579 PrevInChain, NewVecOp); 9580 PrevInChain = NewRed; 9581 } else { 9582 PrevInChain = State.get(getChainOp(), Part); 9583 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9584 } 9585 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9586 NextInChain = 9587 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9588 NewRed, PrevInChain); 9589 } else if (IsOrdered) 9590 NextInChain = NewRed; 9591 else { 9592 NextInChain = State.Builder.CreateBinOp( 9593 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9594 PrevInChain); 9595 } 9596 State.set(this, NextInChain, Part); 9597 } 9598 } 9599 9600 void VPReplicateRecipe::execute(VPTransformState &State) { 9601 if (State.Instance) { // Generate a single instance. 9602 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9603 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9604 *State.Instance, IsPredicated, State); 9605 // Insert scalar instance packing it into a vector. 9606 if (AlsoPack && State.VF.isVector()) { 9607 // If we're constructing lane 0, initialize to start from poison. 9608 if (State.Instance->Lane.isFirstLane()) { 9609 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9610 Value *Poison = PoisonValue::get( 9611 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9612 State.set(this, Poison, State.Instance->Part); 9613 } 9614 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9615 } 9616 return; 9617 } 9618 9619 // Generate scalar instances for all VF lanes of all UF parts, unless the 9620 // instruction is uniform inwhich case generate only the first lane for each 9621 // of the UF parts. 9622 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9623 assert((!State.VF.isScalable() || IsUniform) && 9624 "Can't scalarize a scalable vector"); 9625 for (unsigned Part = 0; Part < State.UF; ++Part) 9626 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9627 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9628 VPIteration(Part, Lane), IsPredicated, 9629 State); 9630 } 9631 9632 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9633 assert(State.Instance && "Branch on Mask works only on single instance."); 9634 9635 unsigned Part = State.Instance->Part; 9636 unsigned Lane = State.Instance->Lane.getKnownLane(); 9637 9638 Value *ConditionBit = nullptr; 9639 VPValue *BlockInMask = getMask(); 9640 if (BlockInMask) { 9641 ConditionBit = State.get(BlockInMask, Part); 9642 if (ConditionBit->getType()->isVectorTy()) 9643 ConditionBit = State.Builder.CreateExtractElement( 9644 ConditionBit, State.Builder.getInt32(Lane)); 9645 } else // Block in mask is all-one. 9646 ConditionBit = State.Builder.getTrue(); 9647 9648 // Replace the temporary unreachable terminator with a new conditional branch, 9649 // whose two destinations will be set later when they are created. 9650 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9651 assert(isa<UnreachableInst>(CurrentTerminator) && 9652 "Expected to replace unreachable terminator with conditional branch."); 9653 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9654 CondBr->setSuccessor(0, nullptr); 9655 ReplaceInstWithInst(CurrentTerminator, CondBr); 9656 } 9657 9658 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9659 assert(State.Instance && "Predicated instruction PHI works per instance."); 9660 Instruction *ScalarPredInst = 9661 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9662 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9663 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9664 assert(PredicatingBB && "Predicated block has no single predecessor."); 9665 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9666 "operand must be VPReplicateRecipe"); 9667 9668 // By current pack/unpack logic we need to generate only a single phi node: if 9669 // a vector value for the predicated instruction exists at this point it means 9670 // the instruction has vector users only, and a phi for the vector value is 9671 // needed. In this case the recipe of the predicated instruction is marked to 9672 // also do that packing, thereby "hoisting" the insert-element sequence. 9673 // Otherwise, a phi node for the scalar value is needed. 9674 unsigned Part = State.Instance->Part; 9675 if (State.hasVectorValue(getOperand(0), Part)) { 9676 Value *VectorValue = State.get(getOperand(0), Part); 9677 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9678 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9679 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9680 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9681 if (State.hasVectorValue(this, Part)) 9682 State.reset(this, VPhi, Part); 9683 else 9684 State.set(this, VPhi, Part); 9685 // NOTE: Currently we need to update the value of the operand, so the next 9686 // predicated iteration inserts its generated value in the correct vector. 9687 State.reset(getOperand(0), VPhi, Part); 9688 } else { 9689 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9690 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9691 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9692 PredicatingBB); 9693 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9694 if (State.hasScalarValue(this, *State.Instance)) 9695 State.reset(this, Phi, *State.Instance); 9696 else 9697 State.set(this, Phi, *State.Instance); 9698 // NOTE: Currently we need to update the value of the operand, so the next 9699 // predicated iteration inserts its generated value in the correct vector. 9700 State.reset(getOperand(0), Phi, *State.Instance); 9701 } 9702 } 9703 9704 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9705 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9706 State.ILV->vectorizeMemoryInstruction( 9707 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9708 StoredValue, getMask()); 9709 } 9710 9711 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9712 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9713 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9714 // for predication. 9715 static ScalarEpilogueLowering getScalarEpilogueLowering( 9716 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9717 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9718 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9719 LoopVectorizationLegality &LVL) { 9720 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9721 // don't look at hints or options, and don't request a scalar epilogue. 9722 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9723 // LoopAccessInfo (due to code dependency and not being able to reliably get 9724 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9725 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9726 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9727 // back to the old way and vectorize with versioning when forced. See D81345.) 9728 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9729 PGSOQueryType::IRPass) && 9730 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9731 return CM_ScalarEpilogueNotAllowedOptSize; 9732 9733 // 2) If set, obey the directives 9734 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9735 switch (PreferPredicateOverEpilogue) { 9736 case PreferPredicateTy::ScalarEpilogue: 9737 return CM_ScalarEpilogueAllowed; 9738 case PreferPredicateTy::PredicateElseScalarEpilogue: 9739 return CM_ScalarEpilogueNotNeededUsePredicate; 9740 case PreferPredicateTy::PredicateOrDontVectorize: 9741 return CM_ScalarEpilogueNotAllowedUsePredicate; 9742 }; 9743 } 9744 9745 // 3) If set, obey the hints 9746 switch (Hints.getPredicate()) { 9747 case LoopVectorizeHints::FK_Enabled: 9748 return CM_ScalarEpilogueNotNeededUsePredicate; 9749 case LoopVectorizeHints::FK_Disabled: 9750 return CM_ScalarEpilogueAllowed; 9751 }; 9752 9753 // 4) if the TTI hook indicates this is profitable, request predication. 9754 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9755 LVL.getLAI())) 9756 return CM_ScalarEpilogueNotNeededUsePredicate; 9757 9758 return CM_ScalarEpilogueAllowed; 9759 } 9760 9761 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9762 // If Values have been set for this Def return the one relevant for \p Part. 9763 if (hasVectorValue(Def, Part)) 9764 return Data.PerPartOutput[Def][Part]; 9765 9766 if (!hasScalarValue(Def, {Part, 0})) { 9767 Value *IRV = Def->getLiveInIRValue(); 9768 Value *B = ILV->getBroadcastInstrs(IRV); 9769 set(Def, B, Part); 9770 return B; 9771 } 9772 9773 Value *ScalarValue = get(Def, {Part, 0}); 9774 // If we aren't vectorizing, we can just copy the scalar map values over 9775 // to the vector map. 9776 if (VF.isScalar()) { 9777 set(Def, ScalarValue, Part); 9778 return ScalarValue; 9779 } 9780 9781 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9782 bool IsUniform = RepR && RepR->isUniform(); 9783 9784 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9785 // Check if there is a scalar value for the selected lane. 9786 if (!hasScalarValue(Def, {Part, LastLane})) { 9787 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9788 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9789 "unexpected recipe found to be invariant"); 9790 IsUniform = true; 9791 LastLane = 0; 9792 } 9793 9794 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9795 // Set the insert point after the last scalarized instruction or after the 9796 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9797 // will directly follow the scalar definitions. 9798 auto OldIP = Builder.saveIP(); 9799 auto NewIP = 9800 isa<PHINode>(LastInst) 9801 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9802 : std::next(BasicBlock::iterator(LastInst)); 9803 Builder.SetInsertPoint(&*NewIP); 9804 9805 // However, if we are vectorizing, we need to construct the vector values. 9806 // If the value is known to be uniform after vectorization, we can just 9807 // broadcast the scalar value corresponding to lane zero for each unroll 9808 // iteration. Otherwise, we construct the vector values using 9809 // insertelement instructions. Since the resulting vectors are stored in 9810 // State, we will only generate the insertelements once. 9811 Value *VectorValue = nullptr; 9812 if (IsUniform) { 9813 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9814 set(Def, VectorValue, Part); 9815 } else { 9816 // Initialize packing with insertelements to start from undef. 9817 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9818 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9819 set(Def, Undef, Part); 9820 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9821 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9822 VectorValue = get(Def, Part); 9823 } 9824 Builder.restoreIP(OldIP); 9825 return VectorValue; 9826 } 9827 9828 // Process the loop in the VPlan-native vectorization path. This path builds 9829 // VPlan upfront in the vectorization pipeline, which allows to apply 9830 // VPlan-to-VPlan transformations from the very beginning without modifying the 9831 // input LLVM IR. 9832 static bool processLoopInVPlanNativePath( 9833 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9834 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9835 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9836 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9837 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9838 LoopVectorizationRequirements &Requirements) { 9839 9840 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9841 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9842 return false; 9843 } 9844 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9845 Function *F = L->getHeader()->getParent(); 9846 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9847 9848 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9849 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9850 9851 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9852 &Hints, IAI); 9853 // Use the planner for outer loop vectorization. 9854 // TODO: CM is not used at this point inside the planner. Turn CM into an 9855 // optional argument if we don't need it in the future. 9856 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9857 Requirements, ORE); 9858 9859 // Get user vectorization factor. 9860 ElementCount UserVF = Hints.getWidth(); 9861 9862 CM.collectElementTypesForWidening(); 9863 9864 // Plan how to best vectorize, return the best VF and its cost. 9865 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9866 9867 // If we are stress testing VPlan builds, do not attempt to generate vector 9868 // code. Masked vector code generation support will follow soon. 9869 // Also, do not attempt to vectorize if no vector code will be produced. 9870 if (VPlanBuildStressTest || EnableVPlanPredication || 9871 VectorizationFactor::Disabled() == VF) 9872 return false; 9873 9874 LVP.setBestPlan(VF.Width, 1); 9875 9876 { 9877 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9878 F->getParent()->getDataLayout()); 9879 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9880 &CM, BFI, PSI, Checks); 9881 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9882 << L->getHeader()->getParent()->getName() << "\"\n"); 9883 LVP.executePlan(LB, DT); 9884 } 9885 9886 // Mark the loop as already vectorized to avoid vectorizing again. 9887 Hints.setAlreadyVectorized(); 9888 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9889 return true; 9890 } 9891 9892 // Emit a remark if there are stores to floats that required a floating point 9893 // extension. If the vectorized loop was generated with floating point there 9894 // will be a performance penalty from the conversion overhead and the change in 9895 // the vector width. 9896 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9897 SmallVector<Instruction *, 4> Worklist; 9898 for (BasicBlock *BB : L->getBlocks()) { 9899 for (Instruction &Inst : *BB) { 9900 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9901 if (S->getValueOperand()->getType()->isFloatTy()) 9902 Worklist.push_back(S); 9903 } 9904 } 9905 } 9906 9907 // Traverse the floating point stores upwards searching, for floating point 9908 // conversions. 9909 SmallPtrSet<const Instruction *, 4> Visited; 9910 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9911 while (!Worklist.empty()) { 9912 auto *I = Worklist.pop_back_val(); 9913 if (!L->contains(I)) 9914 continue; 9915 if (!Visited.insert(I).second) 9916 continue; 9917 9918 // Emit a remark if the floating point store required a floating 9919 // point conversion. 9920 // TODO: More work could be done to identify the root cause such as a 9921 // constant or a function return type and point the user to it. 9922 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9923 ORE->emit([&]() { 9924 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9925 I->getDebugLoc(), L->getHeader()) 9926 << "floating point conversion changes vector width. " 9927 << "Mixed floating point precision requires an up/down " 9928 << "cast that will negatively impact performance."; 9929 }); 9930 9931 for (Use &Op : I->operands()) 9932 if (auto *OpI = dyn_cast<Instruction>(Op)) 9933 Worklist.push_back(OpI); 9934 } 9935 } 9936 9937 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9938 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9939 !EnableLoopInterleaving), 9940 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9941 !EnableLoopVectorization) {} 9942 9943 bool LoopVectorizePass::processLoop(Loop *L) { 9944 assert((EnableVPlanNativePath || L->isInnermost()) && 9945 "VPlan-native path is not enabled. Only process inner loops."); 9946 9947 #ifndef NDEBUG 9948 const std::string DebugLocStr = getDebugLocString(L); 9949 #endif /* NDEBUG */ 9950 9951 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9952 << L->getHeader()->getParent()->getName() << "\" from " 9953 << DebugLocStr << "\n"); 9954 9955 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9956 9957 LLVM_DEBUG( 9958 dbgs() << "LV: Loop hints:" 9959 << " force=" 9960 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9961 ? "disabled" 9962 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9963 ? "enabled" 9964 : "?")) 9965 << " width=" << Hints.getWidth() 9966 << " interleave=" << Hints.getInterleave() << "\n"); 9967 9968 // Function containing loop 9969 Function *F = L->getHeader()->getParent(); 9970 9971 // Looking at the diagnostic output is the only way to determine if a loop 9972 // was vectorized (other than looking at the IR or machine code), so it 9973 // is important to generate an optimization remark for each loop. Most of 9974 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9975 // generated as OptimizationRemark and OptimizationRemarkMissed are 9976 // less verbose reporting vectorized loops and unvectorized loops that may 9977 // benefit from vectorization, respectively. 9978 9979 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9980 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9981 return false; 9982 } 9983 9984 PredicatedScalarEvolution PSE(*SE, *L); 9985 9986 // Check if it is legal to vectorize the loop. 9987 LoopVectorizationRequirements Requirements; 9988 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9989 &Requirements, &Hints, DB, AC, BFI, PSI); 9990 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9991 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9992 Hints.emitRemarkWithHints(); 9993 return false; 9994 } 9995 9996 // Check the function attributes and profiles to find out if this function 9997 // should be optimized for size. 9998 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9999 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10000 10001 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10002 // here. They may require CFG and instruction level transformations before 10003 // even evaluating whether vectorization is profitable. Since we cannot modify 10004 // the incoming IR, we need to build VPlan upfront in the vectorization 10005 // pipeline. 10006 if (!L->isInnermost()) 10007 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10008 ORE, BFI, PSI, Hints, Requirements); 10009 10010 assert(L->isInnermost() && "Inner loop expected."); 10011 10012 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10013 // count by optimizing for size, to minimize overheads. 10014 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10015 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10016 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10017 << "This loop is worth vectorizing only if no scalar " 10018 << "iteration overheads are incurred."); 10019 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10020 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10021 else { 10022 LLVM_DEBUG(dbgs() << "\n"); 10023 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10024 } 10025 } 10026 10027 // Check the function attributes to see if implicit floats are allowed. 10028 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10029 // an integer loop and the vector instructions selected are purely integer 10030 // vector instructions? 10031 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10032 reportVectorizationFailure( 10033 "Can't vectorize when the NoImplicitFloat attribute is used", 10034 "loop not vectorized due to NoImplicitFloat attribute", 10035 "NoImplicitFloat", ORE, L); 10036 Hints.emitRemarkWithHints(); 10037 return false; 10038 } 10039 10040 // Check if the target supports potentially unsafe FP vectorization. 10041 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10042 // for the target we're vectorizing for, to make sure none of the 10043 // additional fp-math flags can help. 10044 if (Hints.isPotentiallyUnsafe() && 10045 TTI->isFPVectorizationPotentiallyUnsafe()) { 10046 reportVectorizationFailure( 10047 "Potentially unsafe FP op prevents vectorization", 10048 "loop not vectorized due to unsafe FP support.", 10049 "UnsafeFP", ORE, L); 10050 Hints.emitRemarkWithHints(); 10051 return false; 10052 } 10053 10054 if (!LVL.canVectorizeFPMath(EnableStrictReductions)) { 10055 ORE->emit([&]() { 10056 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10057 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10058 ExactFPMathInst->getDebugLoc(), 10059 ExactFPMathInst->getParent()) 10060 << "loop not vectorized: cannot prove it is safe to reorder " 10061 "floating-point operations"; 10062 }); 10063 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10064 "reorder floating-point operations\n"); 10065 Hints.emitRemarkWithHints(); 10066 return false; 10067 } 10068 10069 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10070 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10071 10072 // If an override option has been passed in for interleaved accesses, use it. 10073 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10074 UseInterleaved = EnableInterleavedMemAccesses; 10075 10076 // Analyze interleaved memory accesses. 10077 if (UseInterleaved) { 10078 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10079 } 10080 10081 // Use the cost model. 10082 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10083 F, &Hints, IAI); 10084 CM.collectValuesToIgnore(); 10085 CM.collectElementTypesForWidening(); 10086 10087 // Use the planner for vectorization. 10088 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10089 Requirements, ORE); 10090 10091 // Get user vectorization factor and interleave count. 10092 ElementCount UserVF = Hints.getWidth(); 10093 unsigned UserIC = Hints.getInterleave(); 10094 10095 // Plan how to best vectorize, return the best VF and its cost. 10096 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10097 10098 VectorizationFactor VF = VectorizationFactor::Disabled(); 10099 unsigned IC = 1; 10100 10101 if (MaybeVF) { 10102 VF = *MaybeVF; 10103 // Select the interleave count. 10104 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10105 } 10106 10107 // Identify the diagnostic messages that should be produced. 10108 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10109 bool VectorizeLoop = true, InterleaveLoop = true; 10110 if (VF.Width.isScalar()) { 10111 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10112 VecDiagMsg = std::make_pair( 10113 "VectorizationNotBeneficial", 10114 "the cost-model indicates that vectorization is not beneficial"); 10115 VectorizeLoop = false; 10116 } 10117 10118 if (!MaybeVF && UserIC > 1) { 10119 // Tell the user interleaving was avoided up-front, despite being explicitly 10120 // requested. 10121 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10122 "interleaving should be avoided up front\n"); 10123 IntDiagMsg = std::make_pair( 10124 "InterleavingAvoided", 10125 "Ignoring UserIC, because interleaving was avoided up front"); 10126 InterleaveLoop = false; 10127 } else if (IC == 1 && UserIC <= 1) { 10128 // Tell the user interleaving is not beneficial. 10129 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10130 IntDiagMsg = std::make_pair( 10131 "InterleavingNotBeneficial", 10132 "the cost-model indicates that interleaving is not beneficial"); 10133 InterleaveLoop = false; 10134 if (UserIC == 1) { 10135 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10136 IntDiagMsg.second += 10137 " and is explicitly disabled or interleave count is set to 1"; 10138 } 10139 } else if (IC > 1 && UserIC == 1) { 10140 // Tell the user interleaving is beneficial, but it explicitly disabled. 10141 LLVM_DEBUG( 10142 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10143 IntDiagMsg = std::make_pair( 10144 "InterleavingBeneficialButDisabled", 10145 "the cost-model indicates that interleaving is beneficial " 10146 "but is explicitly disabled or interleave count is set to 1"); 10147 InterleaveLoop = false; 10148 } 10149 10150 // Override IC if user provided an interleave count. 10151 IC = UserIC > 0 ? UserIC : IC; 10152 10153 // Emit diagnostic messages, if any. 10154 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10155 if (!VectorizeLoop && !InterleaveLoop) { 10156 // Do not vectorize or interleaving the loop. 10157 ORE->emit([&]() { 10158 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10159 L->getStartLoc(), L->getHeader()) 10160 << VecDiagMsg.second; 10161 }); 10162 ORE->emit([&]() { 10163 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10164 L->getStartLoc(), L->getHeader()) 10165 << IntDiagMsg.second; 10166 }); 10167 return false; 10168 } else if (!VectorizeLoop && InterleaveLoop) { 10169 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10170 ORE->emit([&]() { 10171 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10172 L->getStartLoc(), L->getHeader()) 10173 << VecDiagMsg.second; 10174 }); 10175 } else if (VectorizeLoop && !InterleaveLoop) { 10176 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10177 << ") in " << DebugLocStr << '\n'); 10178 ORE->emit([&]() { 10179 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10180 L->getStartLoc(), L->getHeader()) 10181 << IntDiagMsg.second; 10182 }); 10183 } else if (VectorizeLoop && InterleaveLoop) { 10184 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10185 << ") in " << DebugLocStr << '\n'); 10186 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10187 } 10188 10189 bool DisableRuntimeUnroll = false; 10190 MDNode *OrigLoopID = L->getLoopID(); 10191 { 10192 // Optimistically generate runtime checks. Drop them if they turn out to not 10193 // be profitable. Limit the scope of Checks, so the cleanup happens 10194 // immediately after vector codegeneration is done. 10195 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10196 F->getParent()->getDataLayout()); 10197 if (!VF.Width.isScalar() || IC > 1) 10198 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10199 LVP.setBestPlan(VF.Width, IC); 10200 10201 using namespace ore; 10202 if (!VectorizeLoop) { 10203 assert(IC > 1 && "interleave count should not be 1 or 0"); 10204 // If we decided that it is not legal to vectorize the loop, then 10205 // interleave it. 10206 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10207 &CM, BFI, PSI, Checks); 10208 LVP.executePlan(Unroller, DT); 10209 10210 ORE->emit([&]() { 10211 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10212 L->getHeader()) 10213 << "interleaved loop (interleaved count: " 10214 << NV("InterleaveCount", IC) << ")"; 10215 }); 10216 } else { 10217 // If we decided that it is *legal* to vectorize the loop, then do it. 10218 10219 // Consider vectorizing the epilogue too if it's profitable. 10220 VectorizationFactor EpilogueVF = 10221 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10222 if (EpilogueVF.Width.isVector()) { 10223 10224 // The first pass vectorizes the main loop and creates a scalar epilogue 10225 // to be vectorized by executing the plan (potentially with a different 10226 // factor) again shortly afterwards. 10227 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10228 EpilogueVF.Width.getKnownMinValue(), 10229 1); 10230 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10231 EPI, &LVL, &CM, BFI, PSI, Checks); 10232 10233 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10234 LVP.executePlan(MainILV, DT); 10235 ++LoopsVectorized; 10236 10237 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10238 formLCSSARecursively(*L, *DT, LI, SE); 10239 10240 // Second pass vectorizes the epilogue and adjusts the control flow 10241 // edges from the first pass. 10242 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10243 EPI.MainLoopVF = EPI.EpilogueVF; 10244 EPI.MainLoopUF = EPI.EpilogueUF; 10245 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10246 ORE, EPI, &LVL, &CM, BFI, PSI, 10247 Checks); 10248 LVP.executePlan(EpilogILV, DT); 10249 ++LoopsEpilogueVectorized; 10250 10251 if (!MainILV.areSafetyChecksAdded()) 10252 DisableRuntimeUnroll = true; 10253 } else { 10254 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10255 &LVL, &CM, BFI, PSI, Checks); 10256 LVP.executePlan(LB, DT); 10257 ++LoopsVectorized; 10258 10259 // Add metadata to disable runtime unrolling a scalar loop when there 10260 // are no runtime checks about strides and memory. A scalar loop that is 10261 // rarely used is not worth unrolling. 10262 if (!LB.areSafetyChecksAdded()) 10263 DisableRuntimeUnroll = true; 10264 } 10265 // Report the vectorization decision. 10266 ORE->emit([&]() { 10267 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10268 L->getHeader()) 10269 << "vectorized loop (vectorization width: " 10270 << NV("VectorizationFactor", VF.Width) 10271 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10272 }); 10273 } 10274 10275 if (ORE->allowExtraAnalysis(LV_NAME)) 10276 checkMixedPrecision(L, ORE); 10277 } 10278 10279 Optional<MDNode *> RemainderLoopID = 10280 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10281 LLVMLoopVectorizeFollowupEpilogue}); 10282 if (RemainderLoopID.hasValue()) { 10283 L->setLoopID(RemainderLoopID.getValue()); 10284 } else { 10285 if (DisableRuntimeUnroll) 10286 AddRuntimeUnrollDisableMetaData(L); 10287 10288 // Mark the loop as already vectorized to avoid vectorizing again. 10289 Hints.setAlreadyVectorized(); 10290 } 10291 10292 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10293 return true; 10294 } 10295 10296 LoopVectorizeResult LoopVectorizePass::runImpl( 10297 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10298 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10299 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10300 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10301 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10302 SE = &SE_; 10303 LI = &LI_; 10304 TTI = &TTI_; 10305 DT = &DT_; 10306 BFI = &BFI_; 10307 TLI = TLI_; 10308 AA = &AA_; 10309 AC = &AC_; 10310 GetLAA = &GetLAA_; 10311 DB = &DB_; 10312 ORE = &ORE_; 10313 PSI = PSI_; 10314 10315 // Don't attempt if 10316 // 1. the target claims to have no vector registers, and 10317 // 2. interleaving won't help ILP. 10318 // 10319 // The second condition is necessary because, even if the target has no 10320 // vector registers, loop vectorization may still enable scalar 10321 // interleaving. 10322 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10323 TTI->getMaxInterleaveFactor(1) < 2) 10324 return LoopVectorizeResult(false, false); 10325 10326 bool Changed = false, CFGChanged = false; 10327 10328 // The vectorizer requires loops to be in simplified form. 10329 // Since simplification may add new inner loops, it has to run before the 10330 // legality and profitability checks. This means running the loop vectorizer 10331 // will simplify all loops, regardless of whether anything end up being 10332 // vectorized. 10333 for (auto &L : *LI) 10334 Changed |= CFGChanged |= 10335 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10336 10337 // Build up a worklist of inner-loops to vectorize. This is necessary as 10338 // the act of vectorizing or partially unrolling a loop creates new loops 10339 // and can invalidate iterators across the loops. 10340 SmallVector<Loop *, 8> Worklist; 10341 10342 for (Loop *L : *LI) 10343 collectSupportedLoops(*L, LI, ORE, Worklist); 10344 10345 LoopsAnalyzed += Worklist.size(); 10346 10347 // Now walk the identified inner loops. 10348 while (!Worklist.empty()) { 10349 Loop *L = Worklist.pop_back_val(); 10350 10351 // For the inner loops we actually process, form LCSSA to simplify the 10352 // transform. 10353 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10354 10355 Changed |= CFGChanged |= processLoop(L); 10356 } 10357 10358 // Process each loop nest in the function. 10359 return LoopVectorizeResult(Changed, CFGChanged); 10360 } 10361 10362 PreservedAnalyses LoopVectorizePass::run(Function &F, 10363 FunctionAnalysisManager &AM) { 10364 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10365 auto &LI = AM.getResult<LoopAnalysis>(F); 10366 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10367 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10368 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10369 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10370 auto &AA = AM.getResult<AAManager>(F); 10371 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10372 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10373 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10374 MemorySSA *MSSA = EnableMSSALoopDependency 10375 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10376 : nullptr; 10377 10378 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10379 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10380 [&](Loop &L) -> const LoopAccessInfo & { 10381 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10382 TLI, TTI, nullptr, MSSA}; 10383 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10384 }; 10385 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10386 ProfileSummaryInfo *PSI = 10387 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10388 LoopVectorizeResult Result = 10389 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10390 if (!Result.MadeAnyChange) 10391 return PreservedAnalyses::all(); 10392 PreservedAnalyses PA; 10393 10394 // We currently do not preserve loopinfo/dominator analyses with outer loop 10395 // vectorization. Until this is addressed, mark these analyses as preserved 10396 // only for non-VPlan-native path. 10397 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10398 if (!EnableVPlanNativePath) { 10399 PA.preserve<LoopAnalysis>(); 10400 PA.preserve<DominatorTreeAnalysis>(); 10401 } 10402 if (!Result.MadeCFGChange) 10403 PA.preserveSet<CFGAnalyses>(); 10404 return PA; 10405 } 10406