1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 static cl::opt<bool> EnableIndVarRegisterHeur(
311     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
312     cl::desc("Count the induction variable only once when interleaving"));
313 
314 static cl::opt<bool> EnableCondStoresVectorization(
315     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
316     cl::desc("Enable if predication of stores during vectorization."));
317 
318 static cl::opt<unsigned> MaxNestedScalarReductionIC(
319     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
320     cl::desc("The maximum interleave count to use when interleaving a scalar "
321              "reduction in a nested loop."));
322 
323 static cl::opt<bool>
324     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
325                            cl::Hidden,
326                            cl::desc("Prefer in-loop vector reductions, "
327                                     "overriding the targets preference."));
328 
329 static cl::opt<bool> ForceOrderedReductions(
330     "force-ordered-reductions", cl::init(false), cl::Hidden,
331     cl::desc("Enable the vectorisation of loops with in-order (strict) "
332              "FP reductions"));
333 
334 static cl::opt<bool> PreferPredicatedReductionSelect(
335     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
336     cl::desc(
337         "Prefer predicating a reduction operation over an after loop select."));
338 
339 cl::opt<bool> EnableVPlanNativePath(
340     "enable-vplan-native-path", cl::init(false), cl::Hidden,
341     cl::desc("Enable VPlan-native vectorization path with "
342              "support for outer loop vectorization."));
343 
344 // FIXME: Remove this switch once we have divergence analysis. Currently we
345 // assume divergent non-backedge branches when this switch is true.
346 cl::opt<bool> EnableVPlanPredication(
347     "enable-vplan-predication", cl::init(false), cl::Hidden,
348     cl::desc("Enable VPlan-native vectorization path predicator with "
349              "support for outer loop vectorization."));
350 
351 // This flag enables the stress testing of the VPlan H-CFG construction in the
352 // VPlan-native vectorization path. It must be used in conjuction with
353 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
354 // verification of the H-CFGs built.
355 static cl::opt<bool> VPlanBuildStressTest(
356     "vplan-build-stress-test", cl::init(false), cl::Hidden,
357     cl::desc(
358         "Build VPlan for every supported loop nest in the function and bail "
359         "out right after the build (stress test the VPlan H-CFG construction "
360         "in the VPlan-native vectorization path)."));
361 
362 cl::opt<bool> llvm::EnableLoopInterleaving(
363     "interleave-loops", cl::init(true), cl::Hidden,
364     cl::desc("Enable loop interleaving in Loop vectorization passes"));
365 cl::opt<bool> llvm::EnableLoopVectorization(
366     "vectorize-loops", cl::init(true), cl::Hidden,
367     cl::desc("Run the Loop vectorization passes"));
368 
369 cl::opt<bool> PrintVPlansInDotFormat(
370     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
371     cl::desc("Use dot format instead of plain text when dumping VPlans"));
372 
373 /// A helper function that returns true if the given type is irregular. The
374 /// type is irregular if its allocated size doesn't equal the store size of an
375 /// element of the corresponding vector type.
376 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
377   // Determine if an array of N elements of type Ty is "bitcast compatible"
378   // with a <N x Ty> vector.
379   // This is only true if there is no padding between the array elements.
380   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
381 }
382 
383 /// A helper function that returns the reciprocal of the block probability of
384 /// predicated blocks. If we return X, we are assuming the predicated block
385 /// will execute once for every X iterations of the loop header.
386 ///
387 /// TODO: We should use actual block probability here, if available. Currently,
388 ///       we always assume predicated blocks have a 50% chance of executing.
389 static unsigned getReciprocalPredBlockProb() { return 2; }
390 
391 /// A helper function that returns an integer or floating-point constant with
392 /// value C.
393 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
394   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
395                            : ConstantFP::get(Ty, C);
396 }
397 
398 /// Returns "best known" trip count for the specified loop \p L as defined by
399 /// the following procedure:
400 ///   1) Returns exact trip count if it is known.
401 ///   2) Returns expected trip count according to profile data if any.
402 ///   3) Returns upper bound estimate if it is known.
403 ///   4) Returns None if all of the above failed.
404 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
405   // Check if exact trip count is known.
406   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
407     return ExpectedTC;
408 
409   // Check if there is an expected trip count available from profile data.
410   if (LoopVectorizeWithBlockFrequency)
411     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
412       return EstimatedTC;
413 
414   // Check if upper bound estimate is known.
415   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
416     return ExpectedTC;
417 
418   return None;
419 }
420 
421 // Forward declare GeneratedRTChecks.
422 class GeneratedRTChecks;
423 
424 namespace llvm {
425 
426 AnalysisKey ShouldRunExtraVectorPasses::Key;
427 
428 /// InnerLoopVectorizer vectorizes loops which contain only one basic
429 /// block to a specified vectorization factor (VF).
430 /// This class performs the widening of scalars into vectors, or multiple
431 /// scalars. This class also implements the following features:
432 /// * It inserts an epilogue loop for handling loops that don't have iteration
433 ///   counts that are known to be a multiple of the vectorization factor.
434 /// * It handles the code generation for reduction variables.
435 /// * Scalarization (implementation using scalars) of un-vectorizable
436 ///   instructions.
437 /// InnerLoopVectorizer does not perform any vectorization-legality
438 /// checks, and relies on the caller to check for the different legality
439 /// aspects. The InnerLoopVectorizer relies on the
440 /// LoopVectorizationLegality class to provide information about the induction
441 /// and reduction variables that were found to a given vectorization factor.
442 class InnerLoopVectorizer {
443 public:
444   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
445                       LoopInfo *LI, DominatorTree *DT,
446                       const TargetLibraryInfo *TLI,
447                       const TargetTransformInfo *TTI, AssumptionCache *AC,
448                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
449                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
450                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
451                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
452       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
453         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
454         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
455         PSI(PSI), RTChecks(RTChecks) {
456     // Query this against the original loop and save it here because the profile
457     // of the original loop header may change as the transformation happens.
458     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
459         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
460   }
461 
462   virtual ~InnerLoopVectorizer() = default;
463 
464   /// Create a new empty loop that will contain vectorized instructions later
465   /// on, while the old loop will be used as the scalar remainder. Control flow
466   /// is generated around the vectorized (and scalar epilogue) loops consisting
467   /// of various checks and bypasses. Return the pre-header block of the new
468   /// loop and the start value for the canonical induction, if it is != 0. The
469   /// latter is the case when vectorizing the epilogue loop. In the case of
470   /// epilogue vectorization, this function is overriden to handle the more
471   /// complex control flow around the loops.
472   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
473 
474   /// Widen a single call instruction within the innermost loop.
475   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
476                             VPTransformState &State);
477 
478   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
479   void fixVectorizedLoop(VPTransformState &State);
480 
481   // Return true if any runtime check is added.
482   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
483 
484   /// A type for vectorized values in the new loop. Each value from the
485   /// original loop, when vectorized, is represented by UF vector values in the
486   /// new unrolled loop, where UF is the unroll factor.
487   using VectorParts = SmallVector<Value *, 2>;
488 
489   /// Vectorize a single first-order recurrence or pointer induction PHINode in
490   /// a block. This method handles the induction variable canonicalization. It
491   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
492   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
493                            VPTransformState &State);
494 
495   /// A helper function to scalarize a single Instruction in the innermost loop.
496   /// Generates a sequence of scalar instances for each lane between \p MinLane
497   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
498   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
499   /// Instr's operands.
500   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
501                             const VPIteration &Instance, bool IfPredicateInstr,
502                             VPTransformState &State);
503 
504   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
505   /// is provided, the integer induction variable will first be truncated to
506   /// the corresponding type. \p CanonicalIV is the scalar value generated for
507   /// the canonical induction variable.
508   void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def,
509                              VPTransformState &State, Value *CanonicalIV);
510 
511   /// Construct the vector value of a scalarized value \p V one lane at a time.
512   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
513                                  VPTransformState &State);
514 
515   /// Try to vectorize interleaved access group \p Group with the base address
516   /// given in \p Addr, optionally masking the vector operations if \p
517   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
518   /// values in the vectorized loop.
519   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
520                                 ArrayRef<VPValue *> VPDefs,
521                                 VPTransformState &State, VPValue *Addr,
522                                 ArrayRef<VPValue *> StoredValues,
523                                 VPValue *BlockInMask = nullptr);
524 
525   /// Set the debug location in the builder \p Ptr using the debug location in
526   /// \p V. If \p Ptr is None then it uses the class member's Builder.
527   void setDebugLocFromInst(const Value *V,
528                            Optional<IRBuilderBase *> CustomBuilder = None);
529 
530   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
531   void fixNonInductionPHIs(VPTransformState &State);
532 
533   /// Returns true if the reordering of FP operations is not allowed, but we are
534   /// able to vectorize with strict in-order reductions for the given RdxDesc.
535   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
536 
537   /// Create a broadcast instruction. This method generates a broadcast
538   /// instruction (shuffle) for loop invariant values and for the induction
539   /// value. If this is the induction variable then we extend it to N, N+1, ...
540   /// this is needed because each iteration in the loop corresponds to a SIMD
541   /// element.
542   virtual Value *getBroadcastInstrs(Value *V);
543 
544   /// Add metadata from one instruction to another.
545   ///
546   /// This includes both the original MDs from \p From and additional ones (\see
547   /// addNewMetadata).  Use this for *newly created* instructions in the vector
548   /// loop.
549   void addMetadata(Instruction *To, Instruction *From);
550 
551   /// Similar to the previous function but it adds the metadata to a
552   /// vector of instructions.
553   void addMetadata(ArrayRef<Value *> To, Instruction *From);
554 
555   // Returns the resume value (bc.merge.rdx) for a reduction as
556   // generated by fixReduction.
557   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
558 
559 protected:
560   friend class LoopVectorizationPlanner;
561 
562   /// A small list of PHINodes.
563   using PhiVector = SmallVector<PHINode *, 4>;
564 
565   /// A type for scalarized values in the new loop. Each value from the
566   /// original loop, when scalarized, is represented by UF x VF scalar values
567   /// in the new unrolled loop, where UF is the unroll factor and VF is the
568   /// vectorization factor.
569   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
570 
571   /// Set up the values of the IVs correctly when exiting the vector loop.
572   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
573                     Value *CountRoundDown, Value *EndValue,
574                     BasicBlock *MiddleBlock);
575 
576   /// Introduce a conditional branch (on true, condition to be set later) at the
577   /// end of the header=latch connecting it to itself (across the backedge) and
578   /// to the exit block of \p L.
579   void createHeaderBranch(Loop *L);
580 
581   /// Handle all cross-iteration phis in the header.
582   void fixCrossIterationPHIs(VPTransformState &State);
583 
584   /// Create the exit value of first order recurrences in the middle block and
585   /// update their users.
586   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
587                                VPTransformState &State);
588 
589   /// Create code for the loop exit value of the reduction.
590   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
591 
592   /// Clear NSW/NUW flags from reduction instructions if necessary.
593   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
594                                VPTransformState &State);
595 
596   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
597   /// means we need to add the appropriate incoming value from the middle
598   /// block as exiting edges from the scalar epilogue loop (if present) are
599   /// already in place, and we exit the vector loop exclusively to the middle
600   /// block.
601   void fixLCSSAPHIs(VPTransformState &State);
602 
603   /// Iteratively sink the scalarized operands of a predicated instruction into
604   /// the block that was created for it.
605   void sinkScalarOperands(Instruction *PredInst);
606 
607   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
608   /// represented as.
609   void truncateToMinimalBitwidths(VPTransformState &State);
610 
611   /// Create a vector induction phi node based on an existing scalar one. \p
612   /// EntryVal is the value from the original loop that maps to the vector phi
613   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
614   /// truncate instruction, instead of widening the original IV, we widen a
615   /// version of the IV truncated to \p EntryVal's type.
616   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
617                                        Value *Step, Value *Start,
618                                        Instruction *EntryVal, VPValue *Def,
619                                        VPTransformState &State);
620 
621   /// Returns (and creates if needed) the original loop trip count.
622   Value *getOrCreateTripCount(Loop *NewLoop);
623 
624   /// Returns (and creates if needed) the trip count of the widened loop.
625   Value *getOrCreateVectorTripCount(Loop *NewLoop);
626 
627   /// Returns a bitcasted value to the requested vector type.
628   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
629   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
630                                 const DataLayout &DL);
631 
632   /// Emit a bypass check to see if the vector trip count is zero, including if
633   /// it overflows.
634   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
635 
636   /// Emit a bypass check to see if all of the SCEV assumptions we've
637   /// had to make are correct. Returns the block containing the checks or
638   /// nullptr if no checks have been added.
639   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
640 
641   /// Emit bypass checks to check any memory assumptions we may have made.
642   /// Returns the block containing the checks or nullptr if no checks have been
643   /// added.
644   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
645 
646   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
647   /// vector loop preheader, middle block and scalar preheader. Also
648   /// allocate a loop object for the new vector loop and return it.
649   Loop *createVectorLoopSkeleton(StringRef Prefix);
650 
651   /// Create new phi nodes for the induction variables to resume iteration count
652   /// in the scalar epilogue, from where the vectorized loop left off.
653   /// In cases where the loop skeleton is more complicated (eg. epilogue
654   /// vectorization) and the resume values can come from an additional bypass
655   /// block, the \p AdditionalBypass pair provides information about the bypass
656   /// block and the end value on the edge from bypass to this loop.
657   void createInductionResumeValues(
658       Loop *L,
659       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
660 
661   /// Complete the loop skeleton by adding debug MDs, creating appropriate
662   /// conditional branches in the middle block, preparing the builder and
663   /// running the verifier. Take in the vector loop \p L as argument, and return
664   /// the preheader of the completed vector loop.
665   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
666 
667   /// Add additional metadata to \p To that was not present on \p Orig.
668   ///
669   /// Currently this is used to add the noalias annotations based on the
670   /// inserted memchecks.  Use this for instructions that are *cloned* into the
671   /// vector loop.
672   void addNewMetadata(Instruction *To, const Instruction *Orig);
673 
674   /// Collect poison-generating recipes that may generate a poison value that is
675   /// used after vectorization, even when their operands are not poison. Those
676   /// recipes meet the following conditions:
677   ///  * Contribute to the address computation of a recipe generating a widen
678   ///    memory load/store (VPWidenMemoryInstructionRecipe or
679   ///    VPInterleaveRecipe).
680   ///  * Such a widen memory load/store has at least one underlying Instruction
681   ///    that is in a basic block that needs predication and after vectorization
682   ///    the generated instruction won't be predicated.
683   void collectPoisonGeneratingRecipes(VPTransformState &State);
684 
685   /// Allow subclasses to override and print debug traces before/after vplan
686   /// execution, when trace information is requested.
687   virtual void printDebugTracesAtStart(){};
688   virtual void printDebugTracesAtEnd(){};
689 
690   /// The original loop.
691   Loop *OrigLoop;
692 
693   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
694   /// dynamic knowledge to simplify SCEV expressions and converts them to a
695   /// more usable form.
696   PredicatedScalarEvolution &PSE;
697 
698   /// Loop Info.
699   LoopInfo *LI;
700 
701   /// Dominator Tree.
702   DominatorTree *DT;
703 
704   /// Alias Analysis.
705   AAResults *AA;
706 
707   /// Target Library Info.
708   const TargetLibraryInfo *TLI;
709 
710   /// Target Transform Info.
711   const TargetTransformInfo *TTI;
712 
713   /// Assumption Cache.
714   AssumptionCache *AC;
715 
716   /// Interface to emit optimization remarks.
717   OptimizationRemarkEmitter *ORE;
718 
719   /// LoopVersioning.  It's only set up (non-null) if memchecks were
720   /// used.
721   ///
722   /// This is currently only used to add no-alias metadata based on the
723   /// memchecks.  The actually versioning is performed manually.
724   std::unique_ptr<LoopVersioning> LVer;
725 
726   /// The vectorization SIMD factor to use. Each vector will have this many
727   /// vector elements.
728   ElementCount VF;
729 
730   /// The vectorization unroll factor to use. Each scalar is vectorized to this
731   /// many different vector instructions.
732   unsigned UF;
733 
734   /// The builder that we use
735   IRBuilder<> Builder;
736 
737   // --- Vectorization state ---
738 
739   /// The vector-loop preheader.
740   BasicBlock *LoopVectorPreHeader;
741 
742   /// The scalar-loop preheader.
743   BasicBlock *LoopScalarPreHeader;
744 
745   /// Middle Block between the vector and the scalar.
746   BasicBlock *LoopMiddleBlock;
747 
748   /// The unique ExitBlock of the scalar loop if one exists.  Note that
749   /// there can be multiple exiting edges reaching this block.
750   BasicBlock *LoopExitBlock;
751 
752   /// The vector loop body.
753   BasicBlock *LoopVectorBody;
754 
755   /// The scalar loop body.
756   BasicBlock *LoopScalarBody;
757 
758   /// A list of all bypass blocks. The first block is the entry of the loop.
759   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
760 
761   /// Store instructions that were predicated.
762   SmallVector<Instruction *, 4> PredicatedInstructions;
763 
764   /// Trip count of the original loop.
765   Value *TripCount = nullptr;
766 
767   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
768   Value *VectorTripCount = nullptr;
769 
770   /// The legality analysis.
771   LoopVectorizationLegality *Legal;
772 
773   /// The profitablity analysis.
774   LoopVectorizationCostModel *Cost;
775 
776   // Record whether runtime checks are added.
777   bool AddedSafetyChecks = false;
778 
779   // Holds the end values for each induction variable. We save the end values
780   // so we can later fix-up the external users of the induction variables.
781   DenseMap<PHINode *, Value *> IVEndValues;
782 
783   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
784   // fixed up at the end of vector code generation.
785   SmallVector<PHINode *, 8> OrigPHIsToFix;
786 
787   /// BFI and PSI are used to check for profile guided size optimizations.
788   BlockFrequencyInfo *BFI;
789   ProfileSummaryInfo *PSI;
790 
791   // Whether this loop should be optimized for size based on profile guided size
792   // optimizatios.
793   bool OptForSizeBasedOnProfile;
794 
795   /// Structure to hold information about generated runtime checks, responsible
796   /// for cleaning the checks, if vectorization turns out unprofitable.
797   GeneratedRTChecks &RTChecks;
798 
799   // Holds the resume values for reductions in the loops, used to set the
800   // correct start value of reduction PHIs when vectorizing the epilogue.
801   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
802       ReductionResumeValues;
803 };
804 
805 class InnerLoopUnroller : public InnerLoopVectorizer {
806 public:
807   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
808                     LoopInfo *LI, DominatorTree *DT,
809                     const TargetLibraryInfo *TLI,
810                     const TargetTransformInfo *TTI, AssumptionCache *AC,
811                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
812                     LoopVectorizationLegality *LVL,
813                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
814                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
815       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
816                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
817                             BFI, PSI, Check) {}
818 
819 private:
820   Value *getBroadcastInstrs(Value *V) override;
821 };
822 
823 /// Encapsulate information regarding vectorization of a loop and its epilogue.
824 /// This information is meant to be updated and used across two stages of
825 /// epilogue vectorization.
826 struct EpilogueLoopVectorizationInfo {
827   ElementCount MainLoopVF = ElementCount::getFixed(0);
828   unsigned MainLoopUF = 0;
829   ElementCount EpilogueVF = ElementCount::getFixed(0);
830   unsigned EpilogueUF = 0;
831   BasicBlock *MainLoopIterationCountCheck = nullptr;
832   BasicBlock *EpilogueIterationCountCheck = nullptr;
833   BasicBlock *SCEVSafetyCheck = nullptr;
834   BasicBlock *MemSafetyCheck = nullptr;
835   Value *TripCount = nullptr;
836   Value *VectorTripCount = nullptr;
837 
838   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
839                                 ElementCount EVF, unsigned EUF)
840       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
841     assert(EUF == 1 &&
842            "A high UF for the epilogue loop is likely not beneficial.");
843   }
844 };
845 
846 /// An extension of the inner loop vectorizer that creates a skeleton for a
847 /// vectorized loop that has its epilogue (residual) also vectorized.
848 /// The idea is to run the vplan on a given loop twice, firstly to setup the
849 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
850 /// from the first step and vectorize the epilogue.  This is achieved by
851 /// deriving two concrete strategy classes from this base class and invoking
852 /// them in succession from the loop vectorizer planner.
853 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
854 public:
855   InnerLoopAndEpilogueVectorizer(
856       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
857       DominatorTree *DT, const TargetLibraryInfo *TLI,
858       const TargetTransformInfo *TTI, AssumptionCache *AC,
859       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
860       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
861       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
862       GeneratedRTChecks &Checks)
863       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
864                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
865                             Checks),
866         EPI(EPI) {}
867 
868   // Override this function to handle the more complex control flow around the
869   // three loops.
870   std::pair<BasicBlock *, Value *>
871   createVectorizedLoopSkeleton() final override {
872     return createEpilogueVectorizedLoopSkeleton();
873   }
874 
875   /// The interface for creating a vectorized skeleton using one of two
876   /// different strategies, each corresponding to one execution of the vplan
877   /// as described above.
878   virtual std::pair<BasicBlock *, Value *>
879   createEpilogueVectorizedLoopSkeleton() = 0;
880 
881   /// Holds and updates state information required to vectorize the main loop
882   /// and its epilogue in two separate passes. This setup helps us avoid
883   /// regenerating and recomputing runtime safety checks. It also helps us to
884   /// shorten the iteration-count-check path length for the cases where the
885   /// iteration count of the loop is so small that the main vector loop is
886   /// completely skipped.
887   EpilogueLoopVectorizationInfo &EPI;
888 };
889 
890 /// A specialized derived class of inner loop vectorizer that performs
891 /// vectorization of *main* loops in the process of vectorizing loops and their
892 /// epilogues.
893 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
894 public:
895   EpilogueVectorizerMainLoop(
896       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
897       DominatorTree *DT, const TargetLibraryInfo *TLI,
898       const TargetTransformInfo *TTI, AssumptionCache *AC,
899       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
900       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
901       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
902       GeneratedRTChecks &Check)
903       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
904                                        EPI, LVL, CM, BFI, PSI, Check) {}
905   /// Implements the interface for creating a vectorized skeleton using the
906   /// *main loop* strategy (ie the first pass of vplan execution).
907   std::pair<BasicBlock *, Value *>
908   createEpilogueVectorizedLoopSkeleton() final override;
909 
910 protected:
911   /// Emits an iteration count bypass check once for the main loop (when \p
912   /// ForEpilogue is false) and once for the epilogue loop (when \p
913   /// ForEpilogue is true).
914   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
915                                              bool ForEpilogue);
916   void printDebugTracesAtStart() override;
917   void printDebugTracesAtEnd() override;
918 };
919 
920 // A specialized derived class of inner loop vectorizer that performs
921 // vectorization of *epilogue* loops in the process of vectorizing loops and
922 // their epilogues.
923 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
924 public:
925   EpilogueVectorizerEpilogueLoop(
926       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
927       DominatorTree *DT, const TargetLibraryInfo *TLI,
928       const TargetTransformInfo *TTI, AssumptionCache *AC,
929       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
930       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
931       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
932       GeneratedRTChecks &Checks)
933       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
934                                        EPI, LVL, CM, BFI, PSI, Checks) {}
935   /// Implements the interface for creating a vectorized skeleton using the
936   /// *epilogue loop* strategy (ie the second pass of vplan execution).
937   std::pair<BasicBlock *, Value *>
938   createEpilogueVectorizedLoopSkeleton() final override;
939 
940 protected:
941   /// Emits an iteration count bypass check after the main vector loop has
942   /// finished to see if there are any iterations left to execute by either
943   /// the vector epilogue or the scalar epilogue.
944   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
945                                                       BasicBlock *Bypass,
946                                                       BasicBlock *Insert);
947   void printDebugTracesAtStart() override;
948   void printDebugTracesAtEnd() override;
949 };
950 } // end namespace llvm
951 
952 /// Look for a meaningful debug location on the instruction or it's
953 /// operands.
954 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
955   if (!I)
956     return I;
957 
958   DebugLoc Empty;
959   if (I->getDebugLoc() != Empty)
960     return I;
961 
962   for (Use &Op : I->operands()) {
963     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
964       if (OpInst->getDebugLoc() != Empty)
965         return OpInst;
966   }
967 
968   return I;
969 }
970 
971 void InnerLoopVectorizer::setDebugLocFromInst(
972     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
973   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
974   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
975     const DILocation *DIL = Inst->getDebugLoc();
976 
977     // When a FSDiscriminator is enabled, we don't need to add the multiply
978     // factors to the discriminators.
979     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
980         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
981       // FIXME: For scalable vectors, assume vscale=1.
982       auto NewDIL =
983           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
984       if (NewDIL)
985         B->SetCurrentDebugLocation(NewDIL.getValue());
986       else
987         LLVM_DEBUG(dbgs()
988                    << "Failed to create new discriminator: "
989                    << DIL->getFilename() << " Line: " << DIL->getLine());
990     } else
991       B->SetCurrentDebugLocation(DIL);
992   } else
993     B->SetCurrentDebugLocation(DebugLoc());
994 }
995 
996 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
997 /// is passed, the message relates to that particular instruction.
998 #ifndef NDEBUG
999 static void debugVectorizationMessage(const StringRef Prefix,
1000                                       const StringRef DebugMsg,
1001                                       Instruction *I) {
1002   dbgs() << "LV: " << Prefix << DebugMsg;
1003   if (I != nullptr)
1004     dbgs() << " " << *I;
1005   else
1006     dbgs() << '.';
1007   dbgs() << '\n';
1008 }
1009 #endif
1010 
1011 /// Create an analysis remark that explains why vectorization failed
1012 ///
1013 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1014 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1015 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1016 /// the location of the remark.  \return the remark object that can be
1017 /// streamed to.
1018 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1019     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1020   Value *CodeRegion = TheLoop->getHeader();
1021   DebugLoc DL = TheLoop->getStartLoc();
1022 
1023   if (I) {
1024     CodeRegion = I->getParent();
1025     // If there is no debug location attached to the instruction, revert back to
1026     // using the loop's.
1027     if (I->getDebugLoc())
1028       DL = I->getDebugLoc();
1029   }
1030 
1031   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1032 }
1033 
1034 namespace llvm {
1035 
1036 /// Return a value for Step multiplied by VF.
1037 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1038                        int64_t Step) {
1039   assert(Ty->isIntegerTy() && "Expected an integer step");
1040   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1041   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1042 }
1043 
1044 /// Return the runtime value for VF.
1045 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1046   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1047   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1048 }
1049 
1050 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1051                                   ElementCount VF) {
1052   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1053   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1054   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1055   return B.CreateUIToFP(RuntimeVF, FTy);
1056 }
1057 
1058 void reportVectorizationFailure(const StringRef DebugMsg,
1059                                 const StringRef OREMsg, const StringRef ORETag,
1060                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1061                                 Instruction *I) {
1062   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1063   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1064   ORE->emit(
1065       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1066       << "loop not vectorized: " << OREMsg);
1067 }
1068 
1069 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1070                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1071                              Instruction *I) {
1072   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1073   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1074   ORE->emit(
1075       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1076       << Msg);
1077 }
1078 
1079 } // end namespace llvm
1080 
1081 #ifndef NDEBUG
1082 /// \return string containing a file name and a line # for the given loop.
1083 static std::string getDebugLocString(const Loop *L) {
1084   std::string Result;
1085   if (L) {
1086     raw_string_ostream OS(Result);
1087     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1088       LoopDbgLoc.print(OS);
1089     else
1090       // Just print the module name.
1091       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1092     OS.flush();
1093   }
1094   return Result;
1095 }
1096 #endif
1097 
1098 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1099                                          const Instruction *Orig) {
1100   // If the loop was versioned with memchecks, add the corresponding no-alias
1101   // metadata.
1102   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1103     LVer->annotateInstWithNoAlias(To, Orig);
1104 }
1105 
1106 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1107     VPTransformState &State) {
1108 
1109   // Collect recipes in the backward slice of `Root` that may generate a poison
1110   // value that is used after vectorization.
1111   SmallPtrSet<VPRecipeBase *, 16> Visited;
1112   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1113     SmallVector<VPRecipeBase *, 16> Worklist;
1114     Worklist.push_back(Root);
1115 
1116     // Traverse the backward slice of Root through its use-def chain.
1117     while (!Worklist.empty()) {
1118       VPRecipeBase *CurRec = Worklist.back();
1119       Worklist.pop_back();
1120 
1121       if (!Visited.insert(CurRec).second)
1122         continue;
1123 
1124       // Prune search if we find another recipe generating a widen memory
1125       // instruction. Widen memory instructions involved in address computation
1126       // will lead to gather/scatter instructions, which don't need to be
1127       // handled.
1128       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1129           isa<VPInterleaveRecipe>(CurRec) ||
1130           isa<VPCanonicalIVPHIRecipe>(CurRec))
1131         continue;
1132 
1133       // This recipe contributes to the address computation of a widen
1134       // load/store. Collect recipe if its underlying instruction has
1135       // poison-generating flags.
1136       Instruction *Instr = CurRec->getUnderlyingInstr();
1137       if (Instr && Instr->hasPoisonGeneratingFlags())
1138         State.MayGeneratePoisonRecipes.insert(CurRec);
1139 
1140       // Add new definitions to the worklist.
1141       for (VPValue *operand : CurRec->operands())
1142         if (VPDef *OpDef = operand->getDef())
1143           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1144     }
1145   });
1146 
1147   // Traverse all the recipes in the VPlan and collect the poison-generating
1148   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1149   // VPInterleaveRecipe.
1150   auto Iter = depth_first(
1151       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1152   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1153     for (VPRecipeBase &Recipe : *VPBB) {
1154       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1155         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1156         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1157         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1158             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1159           collectPoisonGeneratingInstrsInBackwardSlice(
1160               cast<VPRecipeBase>(AddrDef));
1161       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1162         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1163         if (AddrDef) {
1164           // Check if any member of the interleave group needs predication.
1165           const InterleaveGroup<Instruction> *InterGroup =
1166               InterleaveRec->getInterleaveGroup();
1167           bool NeedPredication = false;
1168           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1169                I < NumMembers; ++I) {
1170             Instruction *Member = InterGroup->getMember(I);
1171             if (Member)
1172               NeedPredication |=
1173                   Legal->blockNeedsPredication(Member->getParent());
1174           }
1175 
1176           if (NeedPredication)
1177             collectPoisonGeneratingInstrsInBackwardSlice(
1178                 cast<VPRecipeBase>(AddrDef));
1179         }
1180       }
1181     }
1182   }
1183 }
1184 
1185 void InnerLoopVectorizer::addMetadata(Instruction *To,
1186                                       Instruction *From) {
1187   propagateMetadata(To, From);
1188   addNewMetadata(To, From);
1189 }
1190 
1191 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1192                                       Instruction *From) {
1193   for (Value *V : To) {
1194     if (Instruction *I = dyn_cast<Instruction>(V))
1195       addMetadata(I, From);
1196   }
1197 }
1198 
1199 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1200     const RecurrenceDescriptor &RdxDesc) {
1201   auto It = ReductionResumeValues.find(&RdxDesc);
1202   assert(It != ReductionResumeValues.end() &&
1203          "Expected to find a resume value for the reduction.");
1204   return It->second;
1205 }
1206 
1207 namespace llvm {
1208 
1209 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1210 // lowered.
1211 enum ScalarEpilogueLowering {
1212 
1213   // The default: allowing scalar epilogues.
1214   CM_ScalarEpilogueAllowed,
1215 
1216   // Vectorization with OptForSize: don't allow epilogues.
1217   CM_ScalarEpilogueNotAllowedOptSize,
1218 
1219   // A special case of vectorisation with OptForSize: loops with a very small
1220   // trip count are considered for vectorization under OptForSize, thereby
1221   // making sure the cost of their loop body is dominant, free of runtime
1222   // guards and scalar iteration overheads.
1223   CM_ScalarEpilogueNotAllowedLowTripLoop,
1224 
1225   // Loop hint predicate indicating an epilogue is undesired.
1226   CM_ScalarEpilogueNotNeededUsePredicate,
1227 
1228   // Directive indicating we must either tail fold or not vectorize
1229   CM_ScalarEpilogueNotAllowedUsePredicate
1230 };
1231 
1232 /// ElementCountComparator creates a total ordering for ElementCount
1233 /// for the purposes of using it in a set structure.
1234 struct ElementCountComparator {
1235   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1236     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1237            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1238   }
1239 };
1240 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1241 
1242 /// LoopVectorizationCostModel - estimates the expected speedups due to
1243 /// vectorization.
1244 /// In many cases vectorization is not profitable. This can happen because of
1245 /// a number of reasons. In this class we mainly attempt to predict the
1246 /// expected speedup/slowdowns due to the supported instruction set. We use the
1247 /// TargetTransformInfo to query the different backends for the cost of
1248 /// different operations.
1249 class LoopVectorizationCostModel {
1250 public:
1251   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1252                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1253                              LoopVectorizationLegality *Legal,
1254                              const TargetTransformInfo &TTI,
1255                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1256                              AssumptionCache *AC,
1257                              OptimizationRemarkEmitter *ORE, const Function *F,
1258                              const LoopVectorizeHints *Hints,
1259                              InterleavedAccessInfo &IAI)
1260       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1261         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1262         Hints(Hints), InterleaveInfo(IAI) {}
1263 
1264   /// \return An upper bound for the vectorization factors (both fixed and
1265   /// scalable). If the factors are 0, vectorization and interleaving should be
1266   /// avoided up front.
1267   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1268 
1269   /// \return True if runtime checks are required for vectorization, and false
1270   /// otherwise.
1271   bool runtimeChecksRequired();
1272 
1273   /// \return The most profitable vectorization factor and the cost of that VF.
1274   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1275   /// then this vectorization factor will be selected if vectorization is
1276   /// possible.
1277   VectorizationFactor
1278   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1279 
1280   VectorizationFactor
1281   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1282                                     const LoopVectorizationPlanner &LVP);
1283 
1284   /// Setup cost-based decisions for user vectorization factor.
1285   /// \return true if the UserVF is a feasible VF to be chosen.
1286   bool selectUserVectorizationFactor(ElementCount UserVF) {
1287     collectUniformsAndScalars(UserVF);
1288     collectInstsToScalarize(UserVF);
1289     return expectedCost(UserVF).first.isValid();
1290   }
1291 
1292   /// \return The size (in bits) of the smallest and widest types in the code
1293   /// that needs to be vectorized. We ignore values that remain scalar such as
1294   /// 64 bit loop indices.
1295   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1296 
1297   /// \return The desired interleave count.
1298   /// If interleave count has been specified by metadata it will be returned.
1299   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1300   /// are the selected vectorization factor and the cost of the selected VF.
1301   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1302 
1303   /// Memory access instruction may be vectorized in more than one way.
1304   /// Form of instruction after vectorization depends on cost.
1305   /// This function takes cost-based decisions for Load/Store instructions
1306   /// and collects them in a map. This decisions map is used for building
1307   /// the lists of loop-uniform and loop-scalar instructions.
1308   /// The calculated cost is saved with widening decision in order to
1309   /// avoid redundant calculations.
1310   void setCostBasedWideningDecision(ElementCount VF);
1311 
1312   /// A struct that represents some properties of the register usage
1313   /// of a loop.
1314   struct RegisterUsage {
1315     /// Holds the number of loop invariant values that are used in the loop.
1316     /// The key is ClassID of target-provided register class.
1317     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1318     /// Holds the maximum number of concurrent live intervals in the loop.
1319     /// The key is ClassID of target-provided register class.
1320     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1321   };
1322 
1323   /// \return Returns information about the register usages of the loop for the
1324   /// given vectorization factors.
1325   SmallVector<RegisterUsage, 8>
1326   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1327 
1328   /// Collect values we want to ignore in the cost model.
1329   void collectValuesToIgnore();
1330 
1331   /// Collect all element types in the loop for which widening is needed.
1332   void collectElementTypesForWidening();
1333 
1334   /// Split reductions into those that happen in the loop, and those that happen
1335   /// outside. In loop reductions are collected into InLoopReductionChains.
1336   void collectInLoopReductions();
1337 
1338   /// Returns true if we should use strict in-order reductions for the given
1339   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1340   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1341   /// of FP operations.
1342   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1343     return !Hints->allowReordering() && RdxDesc.isOrdered();
1344   }
1345 
1346   /// \returns The smallest bitwidth each instruction can be represented with.
1347   /// The vector equivalents of these instructions should be truncated to this
1348   /// type.
1349   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1350     return MinBWs;
1351   }
1352 
1353   /// \returns True if it is more profitable to scalarize instruction \p I for
1354   /// vectorization factor \p VF.
1355   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1356     assert(VF.isVector() &&
1357            "Profitable to scalarize relevant only for VF > 1.");
1358 
1359     // Cost model is not run in the VPlan-native path - return conservative
1360     // result until this changes.
1361     if (EnableVPlanNativePath)
1362       return false;
1363 
1364     auto Scalars = InstsToScalarize.find(VF);
1365     assert(Scalars != InstsToScalarize.end() &&
1366            "VF not yet analyzed for scalarization profitability");
1367     return Scalars->second.find(I) != Scalars->second.end();
1368   }
1369 
1370   /// Returns true if \p I is known to be uniform after vectorization.
1371   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1372     if (VF.isScalar())
1373       return true;
1374 
1375     // Cost model is not run in the VPlan-native path - return conservative
1376     // result until this changes.
1377     if (EnableVPlanNativePath)
1378       return false;
1379 
1380     auto UniformsPerVF = Uniforms.find(VF);
1381     assert(UniformsPerVF != Uniforms.end() &&
1382            "VF not yet analyzed for uniformity");
1383     return UniformsPerVF->second.count(I);
1384   }
1385 
1386   /// Returns true if \p I is known to be scalar after vectorization.
1387   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1388     if (VF.isScalar())
1389       return true;
1390 
1391     // Cost model is not run in the VPlan-native path - return conservative
1392     // result until this changes.
1393     if (EnableVPlanNativePath)
1394       return false;
1395 
1396     auto ScalarsPerVF = Scalars.find(VF);
1397     assert(ScalarsPerVF != Scalars.end() &&
1398            "Scalar values are not calculated for VF");
1399     return ScalarsPerVF->second.count(I);
1400   }
1401 
1402   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1403   /// for vectorization factor \p VF.
1404   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1405     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1406            !isProfitableToScalarize(I, VF) &&
1407            !isScalarAfterVectorization(I, VF);
1408   }
1409 
1410   /// Decision that was taken during cost calculation for memory instruction.
1411   enum InstWidening {
1412     CM_Unknown,
1413     CM_Widen,         // For consecutive accesses with stride +1.
1414     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1415     CM_Interleave,
1416     CM_GatherScatter,
1417     CM_Scalarize
1418   };
1419 
1420   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1421   /// instruction \p I and vector width \p VF.
1422   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1423                            InstructionCost Cost) {
1424     assert(VF.isVector() && "Expected VF >=2");
1425     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1426   }
1427 
1428   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1429   /// interleaving group \p Grp and vector width \p VF.
1430   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1431                            ElementCount VF, InstWidening W,
1432                            InstructionCost Cost) {
1433     assert(VF.isVector() && "Expected VF >=2");
1434     /// Broadcast this decicion to all instructions inside the group.
1435     /// But the cost will be assigned to one instruction only.
1436     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1437       if (auto *I = Grp->getMember(i)) {
1438         if (Grp->getInsertPos() == I)
1439           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1440         else
1441           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1442       }
1443     }
1444   }
1445 
1446   /// Return the cost model decision for the given instruction \p I and vector
1447   /// width \p VF. Return CM_Unknown if this instruction did not pass
1448   /// through the cost modeling.
1449   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1450     assert(VF.isVector() && "Expected VF to be a vector VF");
1451     // Cost model is not run in the VPlan-native path - return conservative
1452     // result until this changes.
1453     if (EnableVPlanNativePath)
1454       return CM_GatherScatter;
1455 
1456     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1457     auto Itr = WideningDecisions.find(InstOnVF);
1458     if (Itr == WideningDecisions.end())
1459       return CM_Unknown;
1460     return Itr->second.first;
1461   }
1462 
1463   /// Return the vectorization cost for the given instruction \p I and vector
1464   /// width \p VF.
1465   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1466     assert(VF.isVector() && "Expected VF >=2");
1467     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1468     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1469            "The cost is not calculated");
1470     return WideningDecisions[InstOnVF].second;
1471   }
1472 
1473   /// Return True if instruction \p I is an optimizable truncate whose operand
1474   /// is an induction variable. Such a truncate will be removed by adding a new
1475   /// induction variable with the destination type.
1476   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1477     // If the instruction is not a truncate, return false.
1478     auto *Trunc = dyn_cast<TruncInst>(I);
1479     if (!Trunc)
1480       return false;
1481 
1482     // Get the source and destination types of the truncate.
1483     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1484     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1485 
1486     // If the truncate is free for the given types, return false. Replacing a
1487     // free truncate with an induction variable would add an induction variable
1488     // update instruction to each iteration of the loop. We exclude from this
1489     // check the primary induction variable since it will need an update
1490     // instruction regardless.
1491     Value *Op = Trunc->getOperand(0);
1492     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1493       return false;
1494 
1495     // If the truncated value is not an induction variable, return false.
1496     return Legal->isInductionPhi(Op);
1497   }
1498 
1499   /// Collects the instructions to scalarize for each predicated instruction in
1500   /// the loop.
1501   void collectInstsToScalarize(ElementCount VF);
1502 
1503   /// Collect Uniform and Scalar values for the given \p VF.
1504   /// The sets depend on CM decision for Load/Store instructions
1505   /// that may be vectorized as interleave, gather-scatter or scalarized.
1506   void collectUniformsAndScalars(ElementCount VF) {
1507     // Do the analysis once.
1508     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1509       return;
1510     setCostBasedWideningDecision(VF);
1511     collectLoopUniforms(VF);
1512     collectLoopScalars(VF);
1513   }
1514 
1515   /// Returns true if the target machine supports masked store operation
1516   /// for the given \p DataType and kind of access to \p Ptr.
1517   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1518     return Legal->isConsecutivePtr(DataType, Ptr) &&
1519            TTI.isLegalMaskedStore(DataType, Alignment);
1520   }
1521 
1522   /// Returns true if the target machine supports masked load operation
1523   /// for the given \p DataType and kind of access to \p Ptr.
1524   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1525     return Legal->isConsecutivePtr(DataType, Ptr) &&
1526            TTI.isLegalMaskedLoad(DataType, Alignment);
1527   }
1528 
1529   /// Returns true if the target machine can represent \p V as a masked gather
1530   /// or scatter operation.
1531   bool isLegalGatherOrScatter(Value *V,
1532                               ElementCount VF = ElementCount::getFixed(1)) {
1533     bool LI = isa<LoadInst>(V);
1534     bool SI = isa<StoreInst>(V);
1535     if (!LI && !SI)
1536       return false;
1537     auto *Ty = getLoadStoreType(V);
1538     Align Align = getLoadStoreAlignment(V);
1539     if (VF.isVector())
1540       Ty = VectorType::get(Ty, VF);
1541     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1542            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1543   }
1544 
1545   /// Returns true if the target machine supports all of the reduction
1546   /// variables found for the given VF.
1547   bool canVectorizeReductions(ElementCount VF) const {
1548     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1549       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1550       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1551     }));
1552   }
1553 
1554   /// Returns true if \p I is an instruction that will be scalarized with
1555   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1556   /// instructions include conditional stores and instructions that may divide
1557   /// by zero.
1558   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1559 
1560   // Returns true if \p I is an instruction that will be predicated either
1561   // through scalar predication or masked load/store or masked gather/scatter.
1562   // \p VF is the vectorization factor that will be used to vectorize \p I.
1563   // Superset of instructions that return true for isScalarWithPredication.
1564   bool isPredicatedInst(Instruction *I, ElementCount VF,
1565                         bool IsKnownUniform = false) {
1566     // When we know the load is uniform and the original scalar loop was not
1567     // predicated we don't need to mark it as a predicated instruction. Any
1568     // vectorised blocks created when tail-folding are something artificial we
1569     // have introduced and we know there is always at least one active lane.
1570     // That's why we call Legal->blockNeedsPredication here because it doesn't
1571     // query tail-folding.
1572     if (IsKnownUniform && isa<LoadInst>(I) &&
1573         !Legal->blockNeedsPredication(I->getParent()))
1574       return false;
1575     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1576       return false;
1577     // Loads and stores that need some form of masked operation are predicated
1578     // instructions.
1579     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1580       return Legal->isMaskRequired(I);
1581     return isScalarWithPredication(I, VF);
1582   }
1583 
1584   /// Returns true if \p I is a memory instruction with consecutive memory
1585   /// access that can be widened.
1586   bool
1587   memoryInstructionCanBeWidened(Instruction *I,
1588                                 ElementCount VF = ElementCount::getFixed(1));
1589 
1590   /// Returns true if \p I is a memory instruction in an interleaved-group
1591   /// of memory accesses that can be vectorized with wide vector loads/stores
1592   /// and shuffles.
1593   bool
1594   interleavedAccessCanBeWidened(Instruction *I,
1595                                 ElementCount VF = ElementCount::getFixed(1));
1596 
1597   /// Check if \p Instr belongs to any interleaved access group.
1598   bool isAccessInterleaved(Instruction *Instr) {
1599     return InterleaveInfo.isInterleaved(Instr);
1600   }
1601 
1602   /// Get the interleaved access group that \p Instr belongs to.
1603   const InterleaveGroup<Instruction> *
1604   getInterleavedAccessGroup(Instruction *Instr) {
1605     return InterleaveInfo.getInterleaveGroup(Instr);
1606   }
1607 
1608   /// Returns true if we're required to use a scalar epilogue for at least
1609   /// the final iteration of the original loop.
1610   bool requiresScalarEpilogue(ElementCount VF) const {
1611     if (!isScalarEpilogueAllowed())
1612       return false;
1613     // If we might exit from anywhere but the latch, must run the exiting
1614     // iteration in scalar form.
1615     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1616       return true;
1617     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1618   }
1619 
1620   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1621   /// loop hint annotation.
1622   bool isScalarEpilogueAllowed() const {
1623     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1624   }
1625 
1626   /// Returns true if all loop blocks should be masked to fold tail loop.
1627   bool foldTailByMasking() const { return FoldTailByMasking; }
1628 
1629   /// Returns true if the instructions in this block requires predication
1630   /// for any reason, e.g. because tail folding now requires a predicate
1631   /// or because the block in the original loop was predicated.
1632   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1633     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1634   }
1635 
1636   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1637   /// nodes to the chain of instructions representing the reductions. Uses a
1638   /// MapVector to ensure deterministic iteration order.
1639   using ReductionChainMap =
1640       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1641 
1642   /// Return the chain of instructions representing an inloop reduction.
1643   const ReductionChainMap &getInLoopReductionChains() const {
1644     return InLoopReductionChains;
1645   }
1646 
1647   /// Returns true if the Phi is part of an inloop reduction.
1648   bool isInLoopReduction(PHINode *Phi) const {
1649     return InLoopReductionChains.count(Phi);
1650   }
1651 
1652   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1653   /// with factor VF.  Return the cost of the instruction, including
1654   /// scalarization overhead if it's needed.
1655   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1656 
1657   /// Estimate cost of a call instruction CI if it were vectorized with factor
1658   /// VF. Return the cost of the instruction, including scalarization overhead
1659   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1660   /// scalarized -
1661   /// i.e. either vector version isn't available, or is too expensive.
1662   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1663                                     bool &NeedToScalarize) const;
1664 
1665   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1666   /// that of B.
1667   bool isMoreProfitable(const VectorizationFactor &A,
1668                         const VectorizationFactor &B) const;
1669 
1670   /// Invalidates decisions already taken by the cost model.
1671   void invalidateCostModelingDecisions() {
1672     WideningDecisions.clear();
1673     Uniforms.clear();
1674     Scalars.clear();
1675   }
1676 
1677 private:
1678   unsigned NumPredStores = 0;
1679 
1680   /// Convenience function that returns the value of vscale_range iff
1681   /// vscale_range.min == vscale_range.max or otherwise returns the value
1682   /// returned by the corresponding TLI method.
1683   Optional<unsigned> getVScaleForTuning() const;
1684 
1685   /// \return An upper bound for the vectorization factors for both
1686   /// fixed and scalable vectorization, where the minimum-known number of
1687   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1688   /// disabled or unsupported, then the scalable part will be equal to
1689   /// ElementCount::getScalable(0).
1690   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1691                                            ElementCount UserVF,
1692                                            bool FoldTailByMasking);
1693 
1694   /// \return the maximized element count based on the targets vector
1695   /// registers and the loop trip-count, but limited to a maximum safe VF.
1696   /// This is a helper function of computeFeasibleMaxVF.
1697   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1698   /// issue that occurred on one of the buildbots which cannot be reproduced
1699   /// without having access to the properietary compiler (see comments on
1700   /// D98509). The issue is currently under investigation and this workaround
1701   /// will be removed as soon as possible.
1702   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1703                                        unsigned SmallestType,
1704                                        unsigned WidestType,
1705                                        const ElementCount &MaxSafeVF,
1706                                        bool FoldTailByMasking);
1707 
1708   /// \return the maximum legal scalable VF, based on the safe max number
1709   /// of elements.
1710   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1711 
1712   /// The vectorization cost is a combination of the cost itself and a boolean
1713   /// indicating whether any of the contributing operations will actually
1714   /// operate on vector values after type legalization in the backend. If this
1715   /// latter value is false, then all operations will be scalarized (i.e. no
1716   /// vectorization has actually taken place).
1717   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1718 
1719   /// Returns the expected execution cost. The unit of the cost does
1720   /// not matter because we use the 'cost' units to compare different
1721   /// vector widths. The cost that is returned is *not* normalized by
1722   /// the factor width. If \p Invalid is not nullptr, this function
1723   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1724   /// each instruction that has an Invalid cost for the given VF.
1725   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1726   VectorizationCostTy
1727   expectedCost(ElementCount VF,
1728                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1729 
1730   /// Returns the execution time cost of an instruction for a given vector
1731   /// width. Vector width of one means scalar.
1732   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1733 
1734   /// The cost-computation logic from getInstructionCost which provides
1735   /// the vector type as an output parameter.
1736   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1737                                      Type *&VectorTy);
1738 
1739   /// Return the cost of instructions in an inloop reduction pattern, if I is
1740   /// part of that pattern.
1741   Optional<InstructionCost>
1742   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1743                           TTI::TargetCostKind CostKind);
1744 
1745   /// Calculate vectorization cost of memory instruction \p I.
1746   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1747 
1748   /// The cost computation for scalarized memory instruction.
1749   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1750 
1751   /// The cost computation for interleaving group of memory instructions.
1752   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1753 
1754   /// The cost computation for Gather/Scatter instruction.
1755   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1756 
1757   /// The cost computation for widening instruction \p I with consecutive
1758   /// memory access.
1759   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1760 
1761   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1762   /// Load: scalar load + broadcast.
1763   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1764   /// element)
1765   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1766 
1767   /// Estimate the overhead of scalarizing an instruction. This is a
1768   /// convenience wrapper for the type-based getScalarizationOverhead API.
1769   InstructionCost getScalarizationOverhead(Instruction *I,
1770                                            ElementCount VF) const;
1771 
1772   /// Returns whether the instruction is a load or store and will be a emitted
1773   /// as a vector operation.
1774   bool isConsecutiveLoadOrStore(Instruction *I);
1775 
1776   /// Map of scalar integer values to the smallest bitwidth they can be legally
1777   /// represented as. The vector equivalents of these values should be truncated
1778   /// to this type.
1779   MapVector<Instruction *, uint64_t> MinBWs;
1780 
1781   /// A type representing the costs for instructions if they were to be
1782   /// scalarized rather than vectorized. The entries are Instruction-Cost
1783   /// pairs.
1784   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1785 
1786   /// A set containing all BasicBlocks that are known to present after
1787   /// vectorization as a predicated block.
1788   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1789 
1790   /// Records whether it is allowed to have the original scalar loop execute at
1791   /// least once. This may be needed as a fallback loop in case runtime
1792   /// aliasing/dependence checks fail, or to handle the tail/remainder
1793   /// iterations when the trip count is unknown or doesn't divide by the VF,
1794   /// or as a peel-loop to handle gaps in interleave-groups.
1795   /// Under optsize and when the trip count is very small we don't allow any
1796   /// iterations to execute in the scalar loop.
1797   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1798 
1799   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1800   bool FoldTailByMasking = false;
1801 
1802   /// A map holding scalar costs for different vectorization factors. The
1803   /// presence of a cost for an instruction in the mapping indicates that the
1804   /// instruction will be scalarized when vectorizing with the associated
1805   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1806   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1807 
1808   /// Holds the instructions known to be uniform after vectorization.
1809   /// The data is collected per VF.
1810   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1811 
1812   /// Holds the instructions known to be scalar after vectorization.
1813   /// The data is collected per VF.
1814   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1815 
1816   /// Holds the instructions (address computations) that are forced to be
1817   /// scalarized.
1818   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1819 
1820   /// PHINodes of the reductions that should be expanded in-loop along with
1821   /// their associated chains of reduction operations, in program order from top
1822   /// (PHI) to bottom
1823   ReductionChainMap InLoopReductionChains;
1824 
1825   /// A Map of inloop reduction operations and their immediate chain operand.
1826   /// FIXME: This can be removed once reductions can be costed correctly in
1827   /// vplan. This was added to allow quick lookup to the inloop operations,
1828   /// without having to loop through InLoopReductionChains.
1829   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1830 
1831   /// Returns the expected difference in cost from scalarizing the expression
1832   /// feeding a predicated instruction \p PredInst. The instructions to
1833   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1834   /// non-negative return value implies the expression will be scalarized.
1835   /// Currently, only single-use chains are considered for scalarization.
1836   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1837                               ElementCount VF);
1838 
1839   /// Collect the instructions that are uniform after vectorization. An
1840   /// instruction is uniform if we represent it with a single scalar value in
1841   /// the vectorized loop corresponding to each vector iteration. Examples of
1842   /// uniform instructions include pointer operands of consecutive or
1843   /// interleaved memory accesses. Note that although uniformity implies an
1844   /// instruction will be scalar, the reverse is not true. In general, a
1845   /// scalarized instruction will be represented by VF scalar values in the
1846   /// vectorized loop, each corresponding to an iteration of the original
1847   /// scalar loop.
1848   void collectLoopUniforms(ElementCount VF);
1849 
1850   /// Collect the instructions that are scalar after vectorization. An
1851   /// instruction is scalar if it is known to be uniform or will be scalarized
1852   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1853   /// to the list if they are used by a load/store instruction that is marked as
1854   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1855   /// VF values in the vectorized loop, each corresponding to an iteration of
1856   /// the original scalar loop.
1857   void collectLoopScalars(ElementCount VF);
1858 
1859   /// Keeps cost model vectorization decision and cost for instructions.
1860   /// Right now it is used for memory instructions only.
1861   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1862                                 std::pair<InstWidening, InstructionCost>>;
1863 
1864   DecisionList WideningDecisions;
1865 
1866   /// Returns true if \p V is expected to be vectorized and it needs to be
1867   /// extracted.
1868   bool needsExtract(Value *V, ElementCount VF) const {
1869     Instruction *I = dyn_cast<Instruction>(V);
1870     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1871         TheLoop->isLoopInvariant(I))
1872       return false;
1873 
1874     // Assume we can vectorize V (and hence we need extraction) if the
1875     // scalars are not computed yet. This can happen, because it is called
1876     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1877     // the scalars are collected. That should be a safe assumption in most
1878     // cases, because we check if the operands have vectorizable types
1879     // beforehand in LoopVectorizationLegality.
1880     return Scalars.find(VF) == Scalars.end() ||
1881            !isScalarAfterVectorization(I, VF);
1882   };
1883 
1884   /// Returns a range containing only operands needing to be extracted.
1885   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1886                                                    ElementCount VF) const {
1887     return SmallVector<Value *, 4>(make_filter_range(
1888         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1889   }
1890 
1891   /// Determines if we have the infrastructure to vectorize loop \p L and its
1892   /// epilogue, assuming the main loop is vectorized by \p VF.
1893   bool isCandidateForEpilogueVectorization(const Loop &L,
1894                                            const ElementCount VF) const;
1895 
1896   /// Returns true if epilogue vectorization is considered profitable, and
1897   /// false otherwise.
1898   /// \p VF is the vectorization factor chosen for the original loop.
1899   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1900 
1901 public:
1902   /// The loop that we evaluate.
1903   Loop *TheLoop;
1904 
1905   /// Predicated scalar evolution analysis.
1906   PredicatedScalarEvolution &PSE;
1907 
1908   /// Loop Info analysis.
1909   LoopInfo *LI;
1910 
1911   /// Vectorization legality.
1912   LoopVectorizationLegality *Legal;
1913 
1914   /// Vector target information.
1915   const TargetTransformInfo &TTI;
1916 
1917   /// Target Library Info.
1918   const TargetLibraryInfo *TLI;
1919 
1920   /// Demanded bits analysis.
1921   DemandedBits *DB;
1922 
1923   /// Assumption cache.
1924   AssumptionCache *AC;
1925 
1926   /// Interface to emit optimization remarks.
1927   OptimizationRemarkEmitter *ORE;
1928 
1929   const Function *TheFunction;
1930 
1931   /// Loop Vectorize Hint.
1932   const LoopVectorizeHints *Hints;
1933 
1934   /// The interleave access information contains groups of interleaved accesses
1935   /// with the same stride and close to each other.
1936   InterleavedAccessInfo &InterleaveInfo;
1937 
1938   /// Values to ignore in the cost model.
1939   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1940 
1941   /// Values to ignore in the cost model when VF > 1.
1942   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1943 
1944   /// All element types found in the loop.
1945   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1946 
1947   /// Profitable vector factors.
1948   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1949 };
1950 } // end namespace llvm
1951 
1952 /// Helper struct to manage generating runtime checks for vectorization.
1953 ///
1954 /// The runtime checks are created up-front in temporary blocks to allow better
1955 /// estimating the cost and un-linked from the existing IR. After deciding to
1956 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1957 /// temporary blocks are completely removed.
1958 class GeneratedRTChecks {
1959   /// Basic block which contains the generated SCEV checks, if any.
1960   BasicBlock *SCEVCheckBlock = nullptr;
1961 
1962   /// The value representing the result of the generated SCEV checks. If it is
1963   /// nullptr, either no SCEV checks have been generated or they have been used.
1964   Value *SCEVCheckCond = nullptr;
1965 
1966   /// Basic block which contains the generated memory runtime checks, if any.
1967   BasicBlock *MemCheckBlock = nullptr;
1968 
1969   /// The value representing the result of the generated memory runtime checks.
1970   /// If it is nullptr, either no memory runtime checks have been generated or
1971   /// they have been used.
1972   Value *MemRuntimeCheckCond = nullptr;
1973 
1974   DominatorTree *DT;
1975   LoopInfo *LI;
1976 
1977   SCEVExpander SCEVExp;
1978   SCEVExpander MemCheckExp;
1979 
1980 public:
1981   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1982                     const DataLayout &DL)
1983       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1984         MemCheckExp(SE, DL, "scev.check") {}
1985 
1986   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1987   /// accurately estimate the cost of the runtime checks. The blocks are
1988   /// un-linked from the IR and is added back during vector code generation. If
1989   /// there is no vector code generation, the check blocks are removed
1990   /// completely.
1991   void Create(Loop *L, const LoopAccessInfo &LAI,
1992               const SCEVUnionPredicate &UnionPred) {
1993 
1994     BasicBlock *LoopHeader = L->getHeader();
1995     BasicBlock *Preheader = L->getLoopPreheader();
1996 
1997     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1998     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1999     // may be used by SCEVExpander. The blocks will be un-linked from their
2000     // predecessors and removed from LI & DT at the end of the function.
2001     if (!UnionPred.isAlwaysTrue()) {
2002       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2003                                   nullptr, "vector.scevcheck");
2004 
2005       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2006           &UnionPred, SCEVCheckBlock->getTerminator());
2007     }
2008 
2009     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2010     if (RtPtrChecking.Need) {
2011       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2012       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2013                                  "vector.memcheck");
2014 
2015       MemRuntimeCheckCond =
2016           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2017                            RtPtrChecking.getChecks(), MemCheckExp);
2018       assert(MemRuntimeCheckCond &&
2019              "no RT checks generated although RtPtrChecking "
2020              "claimed checks are required");
2021     }
2022 
2023     if (!MemCheckBlock && !SCEVCheckBlock)
2024       return;
2025 
2026     // Unhook the temporary block with the checks, update various places
2027     // accordingly.
2028     if (SCEVCheckBlock)
2029       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2030     if (MemCheckBlock)
2031       MemCheckBlock->replaceAllUsesWith(Preheader);
2032 
2033     if (SCEVCheckBlock) {
2034       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2035       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2036       Preheader->getTerminator()->eraseFromParent();
2037     }
2038     if (MemCheckBlock) {
2039       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2040       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2041       Preheader->getTerminator()->eraseFromParent();
2042     }
2043 
2044     DT->changeImmediateDominator(LoopHeader, Preheader);
2045     if (MemCheckBlock) {
2046       DT->eraseNode(MemCheckBlock);
2047       LI->removeBlock(MemCheckBlock);
2048     }
2049     if (SCEVCheckBlock) {
2050       DT->eraseNode(SCEVCheckBlock);
2051       LI->removeBlock(SCEVCheckBlock);
2052     }
2053   }
2054 
2055   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2056   /// unused.
2057   ~GeneratedRTChecks() {
2058     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2059     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2060     if (!SCEVCheckCond)
2061       SCEVCleaner.markResultUsed();
2062 
2063     if (!MemRuntimeCheckCond)
2064       MemCheckCleaner.markResultUsed();
2065 
2066     if (MemRuntimeCheckCond) {
2067       auto &SE = *MemCheckExp.getSE();
2068       // Memory runtime check generation creates compares that use expanded
2069       // values. Remove them before running the SCEVExpanderCleaners.
2070       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2071         if (MemCheckExp.isInsertedInstruction(&I))
2072           continue;
2073         SE.forgetValue(&I);
2074         I.eraseFromParent();
2075       }
2076     }
2077     MemCheckCleaner.cleanup();
2078     SCEVCleaner.cleanup();
2079 
2080     if (SCEVCheckCond)
2081       SCEVCheckBlock->eraseFromParent();
2082     if (MemRuntimeCheckCond)
2083       MemCheckBlock->eraseFromParent();
2084   }
2085 
2086   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2087   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2088   /// depending on the generated condition.
2089   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2090                              BasicBlock *LoopVectorPreHeader,
2091                              BasicBlock *LoopExitBlock) {
2092     if (!SCEVCheckCond)
2093       return nullptr;
2094     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2095       if (C->isZero())
2096         return nullptr;
2097 
2098     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2099 
2100     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2101     // Create new preheader for vector loop.
2102     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2103       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2104 
2105     SCEVCheckBlock->getTerminator()->eraseFromParent();
2106     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2107     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2108                                                 SCEVCheckBlock);
2109 
2110     DT->addNewBlock(SCEVCheckBlock, Pred);
2111     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2112 
2113     ReplaceInstWithInst(
2114         SCEVCheckBlock->getTerminator(),
2115         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2116     // Mark the check as used, to prevent it from being removed during cleanup.
2117     SCEVCheckCond = nullptr;
2118     return SCEVCheckBlock;
2119   }
2120 
2121   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2122   /// the branches to branch to the vector preheader or \p Bypass, depending on
2123   /// the generated condition.
2124   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2125                                    BasicBlock *LoopVectorPreHeader) {
2126     // Check if we generated code that checks in runtime if arrays overlap.
2127     if (!MemRuntimeCheckCond)
2128       return nullptr;
2129 
2130     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2131     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2132                                                 MemCheckBlock);
2133 
2134     DT->addNewBlock(MemCheckBlock, Pred);
2135     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2136     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2137 
2138     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2139       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2140 
2141     ReplaceInstWithInst(
2142         MemCheckBlock->getTerminator(),
2143         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2144     MemCheckBlock->getTerminator()->setDebugLoc(
2145         Pred->getTerminator()->getDebugLoc());
2146 
2147     // Mark the check as used, to prevent it from being removed during cleanup.
2148     MemRuntimeCheckCond = nullptr;
2149     return MemCheckBlock;
2150   }
2151 };
2152 
2153 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2154 // vectorization. The loop needs to be annotated with #pragma omp simd
2155 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2156 // vector length information is not provided, vectorization is not considered
2157 // explicit. Interleave hints are not allowed either. These limitations will be
2158 // relaxed in the future.
2159 // Please, note that we are currently forced to abuse the pragma 'clang
2160 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2161 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2162 // provides *explicit vectorization hints* (LV can bypass legal checks and
2163 // assume that vectorization is legal). However, both hints are implemented
2164 // using the same metadata (llvm.loop.vectorize, processed by
2165 // LoopVectorizeHints). This will be fixed in the future when the native IR
2166 // representation for pragma 'omp simd' is introduced.
2167 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2168                                    OptimizationRemarkEmitter *ORE) {
2169   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2170   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2171 
2172   // Only outer loops with an explicit vectorization hint are supported.
2173   // Unannotated outer loops are ignored.
2174   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2175     return false;
2176 
2177   Function *Fn = OuterLp->getHeader()->getParent();
2178   if (!Hints.allowVectorization(Fn, OuterLp,
2179                                 true /*VectorizeOnlyWhenForced*/)) {
2180     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2181     return false;
2182   }
2183 
2184   if (Hints.getInterleave() > 1) {
2185     // TODO: Interleave support is future work.
2186     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2187                          "outer loops.\n");
2188     Hints.emitRemarkWithHints();
2189     return false;
2190   }
2191 
2192   return true;
2193 }
2194 
2195 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2196                                   OptimizationRemarkEmitter *ORE,
2197                                   SmallVectorImpl<Loop *> &V) {
2198   // Collect inner loops and outer loops without irreducible control flow. For
2199   // now, only collect outer loops that have explicit vectorization hints. If we
2200   // are stress testing the VPlan H-CFG construction, we collect the outermost
2201   // loop of every loop nest.
2202   if (L.isInnermost() || VPlanBuildStressTest ||
2203       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2204     LoopBlocksRPO RPOT(&L);
2205     RPOT.perform(LI);
2206     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2207       V.push_back(&L);
2208       // TODO: Collect inner loops inside marked outer loops in case
2209       // vectorization fails for the outer loop. Do not invoke
2210       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2211       // already known to be reducible. We can use an inherited attribute for
2212       // that.
2213       return;
2214     }
2215   }
2216   for (Loop *InnerL : L)
2217     collectSupportedLoops(*InnerL, LI, ORE, V);
2218 }
2219 
2220 namespace {
2221 
2222 /// The LoopVectorize Pass.
2223 struct LoopVectorize : public FunctionPass {
2224   /// Pass identification, replacement for typeid
2225   static char ID;
2226 
2227   LoopVectorizePass Impl;
2228 
2229   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2230                          bool VectorizeOnlyWhenForced = false)
2231       : FunctionPass(ID),
2232         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2233     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2234   }
2235 
2236   bool runOnFunction(Function &F) override {
2237     if (skipFunction(F))
2238       return false;
2239 
2240     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2241     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2242     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2243     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2244     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2245     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2246     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2247     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2248     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2249     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2250     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2251     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2252     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2253 
2254     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2255         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2256 
2257     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2258                         GetLAA, *ORE, PSI).MadeAnyChange;
2259   }
2260 
2261   void getAnalysisUsage(AnalysisUsage &AU) const override {
2262     AU.addRequired<AssumptionCacheTracker>();
2263     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2264     AU.addRequired<DominatorTreeWrapperPass>();
2265     AU.addRequired<LoopInfoWrapperPass>();
2266     AU.addRequired<ScalarEvolutionWrapperPass>();
2267     AU.addRequired<TargetTransformInfoWrapperPass>();
2268     AU.addRequired<AAResultsWrapperPass>();
2269     AU.addRequired<LoopAccessLegacyAnalysis>();
2270     AU.addRequired<DemandedBitsWrapperPass>();
2271     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2272     AU.addRequired<InjectTLIMappingsLegacy>();
2273 
2274     // We currently do not preserve loopinfo/dominator analyses with outer loop
2275     // vectorization. Until this is addressed, mark these analyses as preserved
2276     // only for non-VPlan-native path.
2277     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2278     if (!EnableVPlanNativePath) {
2279       AU.addPreserved<LoopInfoWrapperPass>();
2280       AU.addPreserved<DominatorTreeWrapperPass>();
2281     }
2282 
2283     AU.addPreserved<BasicAAWrapperPass>();
2284     AU.addPreserved<GlobalsAAWrapperPass>();
2285     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2286   }
2287 };
2288 
2289 } // end anonymous namespace
2290 
2291 //===----------------------------------------------------------------------===//
2292 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2293 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2294 //===----------------------------------------------------------------------===//
2295 
2296 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2297   // We need to place the broadcast of invariant variables outside the loop,
2298   // but only if it's proven safe to do so. Else, broadcast will be inside
2299   // vector loop body.
2300   Instruction *Instr = dyn_cast<Instruction>(V);
2301   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2302                      (!Instr ||
2303                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2304   // Place the code for broadcasting invariant variables in the new preheader.
2305   IRBuilder<>::InsertPointGuard Guard(Builder);
2306   if (SafeToHoist)
2307     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2308 
2309   // Broadcast the scalar into all locations in the vector.
2310   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2311 
2312   return Shuf;
2313 }
2314 
2315 /// This function adds
2316 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2317 /// to each vector element of Val. The sequence starts at StartIndex.
2318 /// \p Opcode is relevant for FP induction variable.
2319 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2320                             Instruction::BinaryOps BinOp, ElementCount VF,
2321                             IRBuilderBase &Builder) {
2322   assert(VF.isVector() && "only vector VFs are supported");
2323 
2324   // Create and check the types.
2325   auto *ValVTy = cast<VectorType>(Val->getType());
2326   ElementCount VLen = ValVTy->getElementCount();
2327 
2328   Type *STy = Val->getType()->getScalarType();
2329   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2330          "Induction Step must be an integer or FP");
2331   assert(Step->getType() == STy && "Step has wrong type");
2332 
2333   SmallVector<Constant *, 8> Indices;
2334 
2335   // Create a vector of consecutive numbers from zero to VF.
2336   VectorType *InitVecValVTy = ValVTy;
2337   Type *InitVecValSTy = STy;
2338   if (STy->isFloatingPointTy()) {
2339     InitVecValSTy =
2340         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2341     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2342   }
2343   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2344 
2345   // Splat the StartIdx
2346   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2347 
2348   if (STy->isIntegerTy()) {
2349     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2350     Step = Builder.CreateVectorSplat(VLen, Step);
2351     assert(Step->getType() == Val->getType() && "Invalid step vec");
2352     // FIXME: The newly created binary instructions should contain nsw/nuw
2353     // flags, which can be found from the original scalar operations.
2354     Step = Builder.CreateMul(InitVec, Step);
2355     return Builder.CreateAdd(Val, Step, "induction");
2356   }
2357 
2358   // Floating point induction.
2359   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2360          "Binary Opcode should be specified for FP induction");
2361   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2362   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2363 
2364   Step = Builder.CreateVectorSplat(VLen, Step);
2365   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2366   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2367 }
2368 
2369 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2370     const InductionDescriptor &II, Value *Step, Value *Start,
2371     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2372   IRBuilderBase &Builder = State.Builder;
2373   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2374          "Expected either an induction phi-node or a truncate of it!");
2375 
2376   // Construct the initial value of the vector IV in the vector loop preheader
2377   auto CurrIP = Builder.saveIP();
2378   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2379   if (isa<TruncInst>(EntryVal)) {
2380     assert(Start->getType()->isIntegerTy() &&
2381            "Truncation requires an integer type");
2382     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2383     Step = Builder.CreateTrunc(Step, TruncType);
2384     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2385   }
2386 
2387   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2388   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2389   Value *SteppedStart = getStepVector(
2390       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2391 
2392   // We create vector phi nodes for both integer and floating-point induction
2393   // variables. Here, we determine the kind of arithmetic we will perform.
2394   Instruction::BinaryOps AddOp;
2395   Instruction::BinaryOps MulOp;
2396   if (Step->getType()->isIntegerTy()) {
2397     AddOp = Instruction::Add;
2398     MulOp = Instruction::Mul;
2399   } else {
2400     AddOp = II.getInductionOpcode();
2401     MulOp = Instruction::FMul;
2402   }
2403 
2404   // Multiply the vectorization factor by the step using integer or
2405   // floating-point arithmetic as appropriate.
2406   Type *StepType = Step->getType();
2407   Value *RuntimeVF;
2408   if (Step->getType()->isFloatingPointTy())
2409     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2410   else
2411     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2412   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2413 
2414   // Create a vector splat to use in the induction update.
2415   //
2416   // FIXME: If the step is non-constant, we create the vector splat with
2417   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2418   //        handle a constant vector splat.
2419   Value *SplatVF = isa<Constant>(Mul)
2420                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2421                        : Builder.CreateVectorSplat(State.VF, Mul);
2422   Builder.restoreIP(CurrIP);
2423 
2424   // We may need to add the step a number of times, depending on the unroll
2425   // factor. The last of those goes into the PHI.
2426   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2427                                     &*LoopVectorBody->getFirstInsertionPt());
2428   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2429   Instruction *LastInduction = VecInd;
2430   for (unsigned Part = 0; Part < UF; ++Part) {
2431     State.set(Def, LastInduction, Part);
2432 
2433     if (isa<TruncInst>(EntryVal))
2434       addMetadata(LastInduction, EntryVal);
2435 
2436     LastInduction = cast<Instruction>(
2437         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2438     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2439   }
2440 
2441   // Move the last step to the end of the latch block. This ensures consistent
2442   // placement of all induction updates.
2443   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2444   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2445   LastInduction->moveBefore(Br);
2446   LastInduction->setName("vec.ind.next");
2447 
2448   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2449   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2450 }
2451 
2452 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2453 /// variable on which to base the steps, \p Step is the size of the step, and
2454 /// \p EntryVal is the value from the original loop that maps to the steps.
2455 /// Note that \p EntryVal doesn't have to be an induction variable - it
2456 /// can also be a truncate instruction.
2457 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2458                              Instruction *EntryVal,
2459                              const InductionDescriptor &ID, VPValue *Def,
2460                              VPTransformState &State) {
2461   IRBuilderBase &Builder = State.Builder;
2462   // We shouldn't have to build scalar steps if we aren't vectorizing.
2463   assert(State.VF.isVector() && "VF should be greater than one");
2464   // Get the value type and ensure it and the step have the same integer type.
2465   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2466   assert(ScalarIVTy == Step->getType() &&
2467          "Val and Step should have the same type");
2468 
2469   // We build scalar steps for both integer and floating-point induction
2470   // variables. Here, we determine the kind of arithmetic we will perform.
2471   Instruction::BinaryOps AddOp;
2472   Instruction::BinaryOps MulOp;
2473   if (ScalarIVTy->isIntegerTy()) {
2474     AddOp = Instruction::Add;
2475     MulOp = Instruction::Mul;
2476   } else {
2477     AddOp = ID.getInductionOpcode();
2478     MulOp = Instruction::FMul;
2479   }
2480 
2481   // Determine the number of scalars we need to generate for each unroll
2482   // iteration.
2483   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2484   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2485   // Compute the scalar steps and save the results in State.
2486   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2487                                      ScalarIVTy->getScalarSizeInBits());
2488   Type *VecIVTy = nullptr;
2489   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2490   if (!FirstLaneOnly && State.VF.isScalable()) {
2491     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2492     UnitStepVec =
2493         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2494     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2495     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2496   }
2497 
2498   for (unsigned Part = 0; Part < State.UF; ++Part) {
2499     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2500 
2501     if (!FirstLaneOnly && State.VF.isScalable()) {
2502       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2503       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2504       if (ScalarIVTy->isFloatingPointTy())
2505         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2506       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2507       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2508       State.set(Def, Add, Part);
2509       // It's useful to record the lane values too for the known minimum number
2510       // of elements so we do those below. This improves the code quality when
2511       // trying to extract the first element, for example.
2512     }
2513 
2514     if (ScalarIVTy->isFloatingPointTy())
2515       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2516 
2517     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2518       Value *StartIdx = Builder.CreateBinOp(
2519           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2520       // The step returned by `createStepForVF` is a runtime-evaluated value
2521       // when VF is scalable. Otherwise, it should be folded into a Constant.
2522       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2523              "Expected StartIdx to be folded to a constant when VF is not "
2524              "scalable");
2525       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2526       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2527       State.set(Def, Add, VPIteration(Part, Lane));
2528     }
2529   }
2530 }
2531 
2532 // Generate code for the induction step. Note that induction steps are
2533 // required to be loop-invariant
2534 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2535                               Instruction *InsertBefore,
2536                               Loop *OrigLoop = nullptr) {
2537   const DataLayout &DL = SE.getDataLayout();
2538   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2539          "Induction step should be loop invariant");
2540   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2541     return E->getValue();
2542 
2543   SCEVExpander Exp(SE, DL, "induction");
2544   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2545 }
2546 
2547 /// Compute the transformed value of Index at offset StartValue using step
2548 /// StepValue.
2549 /// For integer induction, returns StartValue + Index * StepValue.
2550 /// For pointer induction, returns StartValue[Index * StepValue].
2551 /// FIXME: The newly created binary instructions should contain nsw/nuw
2552 /// flags, which can be found from the original scalar operations.
2553 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *Step,
2554                                    const InductionDescriptor &ID) {
2555 
2556   auto StartValue = ID.getStartValue();
2557   assert(Index->getType()->getScalarType() == Step->getType() &&
2558          "Index scalar type does not match StepValue type");
2559 
2560   // Note: the IR at this point is broken. We cannot use SE to create any new
2561   // SCEV and then expand it, hoping that SCEV's simplification will give us
2562   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2563   // lead to various SCEV crashes. So all we can do is to use builder and rely
2564   // on InstCombine for future simplifications. Here we handle some trivial
2565   // cases only.
2566   auto CreateAdd = [&B](Value *X, Value *Y) {
2567     assert(X->getType() == Y->getType() && "Types don't match!");
2568     if (auto *CX = dyn_cast<ConstantInt>(X))
2569       if (CX->isZero())
2570         return Y;
2571     if (auto *CY = dyn_cast<ConstantInt>(Y))
2572       if (CY->isZero())
2573         return X;
2574     return B.CreateAdd(X, Y);
2575   };
2576 
2577   // We allow X to be a vector type, in which case Y will potentially be
2578   // splatted into a vector with the same element count.
2579   auto CreateMul = [&B](Value *X, Value *Y) {
2580     assert(X->getType()->getScalarType() == Y->getType() &&
2581            "Types don't match!");
2582     if (auto *CX = dyn_cast<ConstantInt>(X))
2583       if (CX->isOne())
2584         return Y;
2585     if (auto *CY = dyn_cast<ConstantInt>(Y))
2586       if (CY->isOne())
2587         return X;
2588     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2589     if (XVTy && !isa<VectorType>(Y->getType()))
2590       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2591     return B.CreateMul(X, Y);
2592   };
2593 
2594   switch (ID.getKind()) {
2595   case InductionDescriptor::IK_IntInduction: {
2596     assert(!isa<VectorType>(Index->getType()) &&
2597            "Vector indices not supported for integer inductions yet");
2598     assert(Index->getType() == StartValue->getType() &&
2599            "Index type does not match StartValue type");
2600     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2601       return B.CreateSub(StartValue, Index);
2602     auto *Offset = CreateMul(Index, Step);
2603     return CreateAdd(StartValue, Offset);
2604   }
2605   case InductionDescriptor::IK_PtrInduction: {
2606     assert(isa<Constant>(Step) &&
2607            "Expected constant step for pointer induction");
2608     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2609   }
2610   case InductionDescriptor::IK_FpInduction: {
2611     assert(!isa<VectorType>(Index->getType()) &&
2612            "Vector indices not supported for FP inductions yet");
2613     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2614     auto InductionBinOp = ID.getInductionBinOp();
2615     assert(InductionBinOp &&
2616            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2617             InductionBinOp->getOpcode() == Instruction::FSub) &&
2618            "Original bin op should be defined for FP induction");
2619 
2620     Value *MulExp = B.CreateFMul(Step, Index);
2621     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2622                          "induction");
2623   }
2624   case InductionDescriptor::IK_NoInduction:
2625     return nullptr;
2626   }
2627   llvm_unreachable("invalid enum");
2628 }
2629 
2630 void InnerLoopVectorizer::widenIntOrFpInduction(
2631     PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State,
2632     Value *CanonicalIV) {
2633   Value *Start = Def->getStartValue()->getLiveInIRValue();
2634   const InductionDescriptor &ID = Def->getInductionDescriptor();
2635   TruncInst *Trunc = Def->getTruncInst();
2636   IRBuilderBase &Builder = State.Builder;
2637   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2638   assert(!State.VF.isZero() && "VF must be non-zero");
2639 
2640   // The value from the original loop to which we are mapping the new induction
2641   // variable.
2642   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2643 
2644   auto &DL = EntryVal->getModule()->getDataLayout();
2645 
2646   // Generate code for the induction step. Note that induction steps are
2647   // required to be loop-invariant
2648   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2649     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2650            "Induction step should be loop invariant");
2651     if (PSE.getSE()->isSCEVable(IV->getType())) {
2652       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2653       return Exp.expandCodeFor(Step, Step->getType(),
2654                                State.CFG.VectorPreHeader->getTerminator());
2655     }
2656     return cast<SCEVUnknown>(Step)->getValue();
2657   };
2658 
2659   // The scalar value to broadcast. This is derived from the canonical
2660   // induction variable. If a truncation type is given, truncate the canonical
2661   // induction variable and step. Otherwise, derive these values from the
2662   // induction descriptor.
2663   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2664     Value *ScalarIV = CanonicalIV;
2665     Type *NeededType = IV->getType();
2666     if (!Def->isCanonical() || ScalarIV->getType() != NeededType) {
2667       ScalarIV =
2668           NeededType->isIntegerTy()
2669               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2670               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2671       ScalarIV = emitTransformedIndex(Builder, ScalarIV, Step, ID);
2672       ScalarIV->setName("offset.idx");
2673     }
2674     if (Trunc) {
2675       auto *TruncType = cast<IntegerType>(Trunc->getType());
2676       assert(Step->getType()->isIntegerTy() &&
2677              "Truncation requires an integer step");
2678       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2679       Step = Builder.CreateTrunc(Step, TruncType);
2680     }
2681     return ScalarIV;
2682   };
2683 
2684   // Fast-math-flags propagate from the original induction instruction.
2685   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2686   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2687     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2688 
2689   // Now do the actual transformations, and start with creating the step value.
2690   Value *Step = CreateStepValue(ID.getStep());
2691   if (State.VF.isScalar()) {
2692     Value *ScalarIV = CreateScalarIV(Step);
2693     Type *ScalarTy = IntegerType::get(ScalarIV->getContext(),
2694                                       Step->getType()->getScalarSizeInBits());
2695 
2696     Instruction::BinaryOps IncOp = ID.getInductionOpcode();
2697     if (IncOp == Instruction::BinaryOpsEnd)
2698       IncOp = Instruction::Add;
2699     for (unsigned Part = 0; Part < UF; ++Part) {
2700       Value *StartIdx = ConstantInt::get(ScalarTy, Part);
2701       Instruction::BinaryOps MulOp = Instruction::Mul;
2702       if (Step->getType()->isFloatingPointTy()) {
2703         StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType());
2704         MulOp = Instruction::FMul;
2705       }
2706 
2707       Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2708       Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction");
2709       State.set(Def, EntryPart, Part);
2710       if (Trunc) {
2711         assert(!Step->getType()->isFloatingPointTy() &&
2712                "fp inductions shouldn't be truncated");
2713         addMetadata(EntryPart, Trunc);
2714       }
2715     }
2716     return;
2717   }
2718 
2719   // Create a new independent vector induction variable, if one is needed.
2720   if (Def->needsVectorIV())
2721     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2722 
2723   if (Def->needsScalarIV()) {
2724     // Create scalar steps that can be used by instructions we will later
2725     // scalarize. Note that the addition of the scalar steps will not increase
2726     // the number of instructions in the loop in the common case prior to
2727     // InstCombine. We will be trading one vector extract for each scalar step.
2728     Value *ScalarIV = CreateScalarIV(Step);
2729     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2730   }
2731 }
2732 
2733 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2734                                                     const VPIteration &Instance,
2735                                                     VPTransformState &State) {
2736   Value *ScalarInst = State.get(Def, Instance);
2737   Value *VectorValue = State.get(Def, Instance.Part);
2738   VectorValue = Builder.CreateInsertElement(
2739       VectorValue, ScalarInst,
2740       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2741   State.set(Def, VectorValue, Instance.Part);
2742 }
2743 
2744 // Return whether we allow using masked interleave-groups (for dealing with
2745 // strided loads/stores that reside in predicated blocks, or for dealing
2746 // with gaps).
2747 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2748   // If an override option has been passed in for interleaved accesses, use it.
2749   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2750     return EnableMaskedInterleavedMemAccesses;
2751 
2752   return TTI.enableMaskedInterleavedAccessVectorization();
2753 }
2754 
2755 // Try to vectorize the interleave group that \p Instr belongs to.
2756 //
2757 // E.g. Translate following interleaved load group (factor = 3):
2758 //   for (i = 0; i < N; i+=3) {
2759 //     R = Pic[i];             // Member of index 0
2760 //     G = Pic[i+1];           // Member of index 1
2761 //     B = Pic[i+2];           // Member of index 2
2762 //     ... // do something to R, G, B
2763 //   }
2764 // To:
2765 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2766 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2767 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2768 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2769 //
2770 // Or translate following interleaved store group (factor = 3):
2771 //   for (i = 0; i < N; i+=3) {
2772 //     ... do something to R, G, B
2773 //     Pic[i]   = R;           // Member of index 0
2774 //     Pic[i+1] = G;           // Member of index 1
2775 //     Pic[i+2] = B;           // Member of index 2
2776 //   }
2777 // To:
2778 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2779 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2780 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2781 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2782 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2783 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2784     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2785     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2786     VPValue *BlockInMask) {
2787   Instruction *Instr = Group->getInsertPos();
2788   const DataLayout &DL = Instr->getModule()->getDataLayout();
2789 
2790   // Prepare for the vector type of the interleaved load/store.
2791   Type *ScalarTy = getLoadStoreType(Instr);
2792   unsigned InterleaveFactor = Group->getFactor();
2793   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2794   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2795 
2796   // Prepare for the new pointers.
2797   SmallVector<Value *, 2> AddrParts;
2798   unsigned Index = Group->getIndex(Instr);
2799 
2800   // TODO: extend the masked interleaved-group support to reversed access.
2801   assert((!BlockInMask || !Group->isReverse()) &&
2802          "Reversed masked interleave-group not supported.");
2803 
2804   // If the group is reverse, adjust the index to refer to the last vector lane
2805   // instead of the first. We adjust the index from the first vector lane,
2806   // rather than directly getting the pointer for lane VF - 1, because the
2807   // pointer operand of the interleaved access is supposed to be uniform. For
2808   // uniform instructions, we're only required to generate a value for the
2809   // first vector lane in each unroll iteration.
2810   if (Group->isReverse())
2811     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2812 
2813   for (unsigned Part = 0; Part < UF; Part++) {
2814     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2815     setDebugLocFromInst(AddrPart);
2816 
2817     // Notice current instruction could be any index. Need to adjust the address
2818     // to the member of index 0.
2819     //
2820     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2821     //       b = A[i];       // Member of index 0
2822     // Current pointer is pointed to A[i+1], adjust it to A[i].
2823     //
2824     // E.g.  A[i+1] = a;     // Member of index 1
2825     //       A[i]   = b;     // Member of index 0
2826     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2827     // Current pointer is pointed to A[i+2], adjust it to A[i].
2828 
2829     bool InBounds = false;
2830     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2831       InBounds = gep->isInBounds();
2832     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2833     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2834 
2835     // Cast to the vector pointer type.
2836     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2837     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2838     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2839   }
2840 
2841   setDebugLocFromInst(Instr);
2842   Value *PoisonVec = PoisonValue::get(VecTy);
2843 
2844   Value *MaskForGaps = nullptr;
2845   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2846     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2847     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2848   }
2849 
2850   // Vectorize the interleaved load group.
2851   if (isa<LoadInst>(Instr)) {
2852     // For each unroll part, create a wide load for the group.
2853     SmallVector<Value *, 2> NewLoads;
2854     for (unsigned Part = 0; Part < UF; Part++) {
2855       Instruction *NewLoad;
2856       if (BlockInMask || MaskForGaps) {
2857         assert(useMaskedInterleavedAccesses(*TTI) &&
2858                "masked interleaved groups are not allowed.");
2859         Value *GroupMask = MaskForGaps;
2860         if (BlockInMask) {
2861           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2862           Value *ShuffledMask = Builder.CreateShuffleVector(
2863               BlockInMaskPart,
2864               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2865               "interleaved.mask");
2866           GroupMask = MaskForGaps
2867                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2868                                                 MaskForGaps)
2869                           : ShuffledMask;
2870         }
2871         NewLoad =
2872             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2873                                      GroupMask, PoisonVec, "wide.masked.vec");
2874       }
2875       else
2876         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2877                                             Group->getAlign(), "wide.vec");
2878       Group->addMetadata(NewLoad);
2879       NewLoads.push_back(NewLoad);
2880     }
2881 
2882     // For each member in the group, shuffle out the appropriate data from the
2883     // wide loads.
2884     unsigned J = 0;
2885     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2886       Instruction *Member = Group->getMember(I);
2887 
2888       // Skip the gaps in the group.
2889       if (!Member)
2890         continue;
2891 
2892       auto StrideMask =
2893           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2894       for (unsigned Part = 0; Part < UF; Part++) {
2895         Value *StridedVec = Builder.CreateShuffleVector(
2896             NewLoads[Part], StrideMask, "strided.vec");
2897 
2898         // If this member has different type, cast the result type.
2899         if (Member->getType() != ScalarTy) {
2900           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2901           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2902           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2903         }
2904 
2905         if (Group->isReverse())
2906           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2907 
2908         State.set(VPDefs[J], StridedVec, Part);
2909       }
2910       ++J;
2911     }
2912     return;
2913   }
2914 
2915   // The sub vector type for current instruction.
2916   auto *SubVT = VectorType::get(ScalarTy, VF);
2917 
2918   // Vectorize the interleaved store group.
2919   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2920   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2921          "masked interleaved groups are not allowed.");
2922   assert((!MaskForGaps || !VF.isScalable()) &&
2923          "masking gaps for scalable vectors is not yet supported.");
2924   for (unsigned Part = 0; Part < UF; Part++) {
2925     // Collect the stored vector from each member.
2926     SmallVector<Value *, 4> StoredVecs;
2927     for (unsigned i = 0; i < InterleaveFactor; i++) {
2928       assert((Group->getMember(i) || MaskForGaps) &&
2929              "Fail to get a member from an interleaved store group");
2930       Instruction *Member = Group->getMember(i);
2931 
2932       // Skip the gaps in the group.
2933       if (!Member) {
2934         Value *Undef = PoisonValue::get(SubVT);
2935         StoredVecs.push_back(Undef);
2936         continue;
2937       }
2938 
2939       Value *StoredVec = State.get(StoredValues[i], Part);
2940 
2941       if (Group->isReverse())
2942         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2943 
2944       // If this member has different type, cast it to a unified type.
2945 
2946       if (StoredVec->getType() != SubVT)
2947         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2948 
2949       StoredVecs.push_back(StoredVec);
2950     }
2951 
2952     // Concatenate all vectors into a wide vector.
2953     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2954 
2955     // Interleave the elements in the wide vector.
2956     Value *IVec = Builder.CreateShuffleVector(
2957         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2958         "interleaved.vec");
2959 
2960     Instruction *NewStoreInstr;
2961     if (BlockInMask || MaskForGaps) {
2962       Value *GroupMask = MaskForGaps;
2963       if (BlockInMask) {
2964         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2965         Value *ShuffledMask = Builder.CreateShuffleVector(
2966             BlockInMaskPart,
2967             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2968             "interleaved.mask");
2969         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2970                                                       ShuffledMask, MaskForGaps)
2971                                 : ShuffledMask;
2972       }
2973       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2974                                                 Group->getAlign(), GroupMask);
2975     } else
2976       NewStoreInstr =
2977           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2978 
2979     Group->addMetadata(NewStoreInstr);
2980   }
2981 }
2982 
2983 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2984                                                VPReplicateRecipe *RepRecipe,
2985                                                const VPIteration &Instance,
2986                                                bool IfPredicateInstr,
2987                                                VPTransformState &State) {
2988   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2989 
2990   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2991   // the first lane and part.
2992   if (isa<NoAliasScopeDeclInst>(Instr))
2993     if (!Instance.isFirstIteration())
2994       return;
2995 
2996   setDebugLocFromInst(Instr);
2997 
2998   // Does this instruction return a value ?
2999   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3000 
3001   Instruction *Cloned = Instr->clone();
3002   if (!IsVoidRetTy)
3003     Cloned->setName(Instr->getName() + ".cloned");
3004 
3005   // If the scalarized instruction contributes to the address computation of a
3006   // widen masked load/store which was in a basic block that needed predication
3007   // and is not predicated after vectorization, we can't propagate
3008   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
3009   // instruction could feed a poison value to the base address of the widen
3010   // load/store.
3011   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
3012     Cloned->dropPoisonGeneratingFlags();
3013 
3014   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3015                                Builder.GetInsertPoint());
3016   // Replace the operands of the cloned instructions with their scalar
3017   // equivalents in the new loop.
3018   for (auto &I : enumerate(RepRecipe->operands())) {
3019     auto InputInstance = Instance;
3020     VPValue *Operand = I.value();
3021     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
3022     if (OperandR && OperandR->isUniform())
3023       InputInstance.Lane = VPLane::getFirstLane();
3024     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
3025   }
3026   addNewMetadata(Cloned, Instr);
3027 
3028   // Place the cloned scalar in the new loop.
3029   Builder.Insert(Cloned);
3030 
3031   State.set(RepRecipe, Cloned, Instance);
3032 
3033   // If we just cloned a new assumption, add it the assumption cache.
3034   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3035     AC->registerAssumption(II);
3036 
3037   // End if-block.
3038   if (IfPredicateInstr)
3039     PredicatedInstructions.push_back(Cloned);
3040 }
3041 
3042 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
3043   BasicBlock *Header = L->getHeader();
3044   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
3045 
3046   IRBuilder<> B(Header->getTerminator());
3047   Instruction *OldInst =
3048       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
3049   setDebugLocFromInst(OldInst, &B);
3050 
3051   // Connect the header to the exit and header blocks and replace the old
3052   // terminator.
3053   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
3054 
3055   // Now we have two terminators. Remove the old one from the block.
3056   Header->getTerminator()->eraseFromParent();
3057 }
3058 
3059 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3060   if (TripCount)
3061     return TripCount;
3062 
3063   assert(L && "Create Trip Count for null loop.");
3064   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3065   // Find the loop boundaries.
3066   ScalarEvolution *SE = PSE.getSE();
3067   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3068   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3069          "Invalid loop count");
3070 
3071   Type *IdxTy = Legal->getWidestInductionType();
3072   assert(IdxTy && "No type for induction");
3073 
3074   // The exit count might have the type of i64 while the phi is i32. This can
3075   // happen if we have an induction variable that is sign extended before the
3076   // compare. The only way that we get a backedge taken count is that the
3077   // induction variable was signed and as such will not overflow. In such a case
3078   // truncation is legal.
3079   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3080       IdxTy->getPrimitiveSizeInBits())
3081     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3082   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3083 
3084   // Get the total trip count from the count by adding 1.
3085   const SCEV *ExitCount = SE->getAddExpr(
3086       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3087 
3088   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3089 
3090   // Expand the trip count and place the new instructions in the preheader.
3091   // Notice that the pre-header does not change, only the loop body.
3092   SCEVExpander Exp(*SE, DL, "induction");
3093 
3094   // Count holds the overall loop count (N).
3095   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3096                                 L->getLoopPreheader()->getTerminator());
3097 
3098   if (TripCount->getType()->isPointerTy())
3099     TripCount =
3100         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3101                                     L->getLoopPreheader()->getTerminator());
3102 
3103   return TripCount;
3104 }
3105 
3106 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3107   if (VectorTripCount)
3108     return VectorTripCount;
3109 
3110   Value *TC = getOrCreateTripCount(L);
3111   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3112 
3113   Type *Ty = TC->getType();
3114   // This is where we can make the step a runtime constant.
3115   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3116 
3117   // If the tail is to be folded by masking, round the number of iterations N
3118   // up to a multiple of Step instead of rounding down. This is done by first
3119   // adding Step-1 and then rounding down. Note that it's ok if this addition
3120   // overflows: the vector induction variable will eventually wrap to zero given
3121   // that it starts at zero and its Step is a power of two; the loop will then
3122   // exit, with the last early-exit vector comparison also producing all-true.
3123   if (Cost->foldTailByMasking()) {
3124     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3125            "VF*UF must be a power of 2 when folding tail by masking");
3126     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3127     TC = Builder.CreateAdd(
3128         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3129   }
3130 
3131   // Now we need to generate the expression for the part of the loop that the
3132   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3133   // iterations are not required for correctness, or N - Step, otherwise. Step
3134   // is equal to the vectorization factor (number of SIMD elements) times the
3135   // unroll factor (number of SIMD instructions).
3136   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3137 
3138   // There are cases where we *must* run at least one iteration in the remainder
3139   // loop.  See the cost model for when this can happen.  If the step evenly
3140   // divides the trip count, we set the remainder to be equal to the step. If
3141   // the step does not evenly divide the trip count, no adjustment is necessary
3142   // since there will already be scalar iterations. Note that the minimum
3143   // iterations check ensures that N >= Step.
3144   if (Cost->requiresScalarEpilogue(VF)) {
3145     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3146     R = Builder.CreateSelect(IsZero, Step, R);
3147   }
3148 
3149   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3150 
3151   return VectorTripCount;
3152 }
3153 
3154 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3155                                                    const DataLayout &DL) {
3156   // Verify that V is a vector type with same number of elements as DstVTy.
3157   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3158   unsigned VF = DstFVTy->getNumElements();
3159   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3160   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3161   Type *SrcElemTy = SrcVecTy->getElementType();
3162   Type *DstElemTy = DstFVTy->getElementType();
3163   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3164          "Vector elements must have same size");
3165 
3166   // Do a direct cast if element types are castable.
3167   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3168     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3169   }
3170   // V cannot be directly casted to desired vector type.
3171   // May happen when V is a floating point vector but DstVTy is a vector of
3172   // pointers or vice-versa. Handle this using a two-step bitcast using an
3173   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3174   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3175          "Only one type should be a pointer type");
3176   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3177          "Only one type should be a floating point type");
3178   Type *IntTy =
3179       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3180   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3181   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3182   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3183 }
3184 
3185 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3186                                                          BasicBlock *Bypass) {
3187   Value *Count = getOrCreateTripCount(L);
3188   // Reuse existing vector loop preheader for TC checks.
3189   // Note that new preheader block is generated for vector loop.
3190   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3191   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3192 
3193   // Generate code to check if the loop's trip count is less than VF * UF, or
3194   // equal to it in case a scalar epilogue is required; this implies that the
3195   // vector trip count is zero. This check also covers the case where adding one
3196   // to the backedge-taken count overflowed leading to an incorrect trip count
3197   // of zero. In this case we will also jump to the scalar loop.
3198   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3199                                             : ICmpInst::ICMP_ULT;
3200 
3201   // If tail is to be folded, vector loop takes care of all iterations.
3202   Value *CheckMinIters = Builder.getFalse();
3203   if (!Cost->foldTailByMasking()) {
3204     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3205     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3206   }
3207   // Create new preheader for vector loop.
3208   LoopVectorPreHeader =
3209       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3210                  "vector.ph");
3211 
3212   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3213                                DT->getNode(Bypass)->getIDom()) &&
3214          "TC check is expected to dominate Bypass");
3215 
3216   // Update dominator for Bypass & LoopExit (if needed).
3217   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3218   if (!Cost->requiresScalarEpilogue(VF))
3219     // If there is an epilogue which must run, there's no edge from the
3220     // middle block to exit blocks  and thus no need to update the immediate
3221     // dominator of the exit blocks.
3222     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3223 
3224   ReplaceInstWithInst(
3225       TCCheckBlock->getTerminator(),
3226       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3227   LoopBypassBlocks.push_back(TCCheckBlock);
3228 }
3229 
3230 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3231 
3232   BasicBlock *const SCEVCheckBlock =
3233       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3234   if (!SCEVCheckBlock)
3235     return nullptr;
3236 
3237   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3238            (OptForSizeBasedOnProfile &&
3239             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3240          "Cannot SCEV check stride or overflow when optimizing for size");
3241 
3242 
3243   // Update dominator only if this is first RT check.
3244   if (LoopBypassBlocks.empty()) {
3245     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3246     if (!Cost->requiresScalarEpilogue(VF))
3247       // If there is an epilogue which must run, there's no edge from the
3248       // middle block to exit blocks  and thus no need to update the immediate
3249       // dominator of the exit blocks.
3250       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3251   }
3252 
3253   LoopBypassBlocks.push_back(SCEVCheckBlock);
3254   AddedSafetyChecks = true;
3255   return SCEVCheckBlock;
3256 }
3257 
3258 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3259                                                       BasicBlock *Bypass) {
3260   // VPlan-native path does not do any analysis for runtime checks currently.
3261   if (EnableVPlanNativePath)
3262     return nullptr;
3263 
3264   BasicBlock *const MemCheckBlock =
3265       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3266 
3267   // Check if we generated code that checks in runtime if arrays overlap. We put
3268   // the checks into a separate block to make the more common case of few
3269   // elements faster.
3270   if (!MemCheckBlock)
3271     return nullptr;
3272 
3273   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3274     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3275            "Cannot emit memory checks when optimizing for size, unless forced "
3276            "to vectorize.");
3277     ORE->emit([&]() {
3278       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3279                                         L->getStartLoc(), L->getHeader())
3280              << "Code-size may be reduced by not forcing "
3281                 "vectorization, or by source-code modifications "
3282                 "eliminating the need for runtime checks "
3283                 "(e.g., adding 'restrict').";
3284     });
3285   }
3286 
3287   LoopBypassBlocks.push_back(MemCheckBlock);
3288 
3289   AddedSafetyChecks = true;
3290 
3291   // We currently don't use LoopVersioning for the actual loop cloning but we
3292   // still use it to add the noalias metadata.
3293   LVer = std::make_unique<LoopVersioning>(
3294       *Legal->getLAI(),
3295       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3296       DT, PSE.getSE());
3297   LVer->prepareNoAliasMetadata();
3298   return MemCheckBlock;
3299 }
3300 
3301 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3302   LoopScalarBody = OrigLoop->getHeader();
3303   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3304   assert(LoopVectorPreHeader && "Invalid loop structure");
3305   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3306   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3307          "multiple exit loop without required epilogue?");
3308 
3309   LoopMiddleBlock =
3310       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3311                  LI, nullptr, Twine(Prefix) + "middle.block");
3312   LoopScalarPreHeader =
3313       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3314                  nullptr, Twine(Prefix) + "scalar.ph");
3315 
3316   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3317 
3318   // Set up the middle block terminator.  Two cases:
3319   // 1) If we know that we must execute the scalar epilogue, emit an
3320   //    unconditional branch.
3321   // 2) Otherwise, we must have a single unique exit block (due to how we
3322   //    implement the multiple exit case).  In this case, set up a conditonal
3323   //    branch from the middle block to the loop scalar preheader, and the
3324   //    exit block.  completeLoopSkeleton will update the condition to use an
3325   //    iteration check, if required to decide whether to execute the remainder.
3326   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3327     BranchInst::Create(LoopScalarPreHeader) :
3328     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3329                        Builder.getTrue());
3330   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3331   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3332 
3333   // We intentionally don't let SplitBlock to update LoopInfo since
3334   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3335   // LoopVectorBody is explicitly added to the correct place few lines later.
3336   LoopVectorBody =
3337       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3338                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3339 
3340   // Update dominator for loop exit.
3341   if (!Cost->requiresScalarEpilogue(VF))
3342     // If there is an epilogue which must run, there's no edge from the
3343     // middle block to exit blocks  and thus no need to update the immediate
3344     // dominator of the exit blocks.
3345     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3346 
3347   // Create and register the new vector loop.
3348   Loop *Lp = LI->AllocateLoop();
3349   Loop *ParentLoop = OrigLoop->getParentLoop();
3350 
3351   // Insert the new loop into the loop nest and register the new basic blocks
3352   // before calling any utilities such as SCEV that require valid LoopInfo.
3353   if (ParentLoop) {
3354     ParentLoop->addChildLoop(Lp);
3355   } else {
3356     LI->addTopLevelLoop(Lp);
3357   }
3358   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3359   return Lp;
3360 }
3361 
3362 void InnerLoopVectorizer::createInductionResumeValues(
3363     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3364   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3365           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3366          "Inconsistent information about additional bypass.");
3367 
3368   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3369   assert(VectorTripCount && L && "Expected valid arguments");
3370   // We are going to resume the execution of the scalar loop.
3371   // Go over all of the induction variables that we found and fix the
3372   // PHIs that are left in the scalar version of the loop.
3373   // The starting values of PHI nodes depend on the counter of the last
3374   // iteration in the vectorized loop.
3375   // If we come from a bypass edge then we need to start from the original
3376   // start value.
3377   Instruction *OldInduction = Legal->getPrimaryInduction();
3378   for (auto &InductionEntry : Legal->getInductionVars()) {
3379     PHINode *OrigPhi = InductionEntry.first;
3380     InductionDescriptor II = InductionEntry.second;
3381 
3382     // Create phi nodes to merge from the  backedge-taken check block.
3383     PHINode *BCResumeVal =
3384         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3385                         LoopScalarPreHeader->getTerminator());
3386     // Copy original phi DL over to the new one.
3387     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3388     Value *&EndValue = IVEndValues[OrigPhi];
3389     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3390     if (OrigPhi == OldInduction) {
3391       // We know what the end value is.
3392       EndValue = VectorTripCount;
3393     } else {
3394       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3395 
3396       // Fast-math-flags propagate from the original induction instruction.
3397       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3398         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3399 
3400       Type *StepType = II.getStep()->getType();
3401       Instruction::CastOps CastOp =
3402           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3403       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3404       Value *Step =
3405           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3406       EndValue = emitTransformedIndex(B, CRD, Step, II);
3407       EndValue->setName("ind.end");
3408 
3409       // Compute the end value for the additional bypass (if applicable).
3410       if (AdditionalBypass.first) {
3411         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3412         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3413                                          StepType, true);
3414         Value *Step =
3415             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3416         CRD =
3417             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3418         EndValueFromAdditionalBypass = emitTransformedIndex(B, CRD, Step, II);
3419         EndValueFromAdditionalBypass->setName("ind.end");
3420       }
3421     }
3422     // The new PHI merges the original incoming value, in case of a bypass,
3423     // or the value at the end of the vectorized loop.
3424     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3425 
3426     // Fix the scalar body counter (PHI node).
3427     // The old induction's phi node in the scalar body needs the truncated
3428     // value.
3429     for (BasicBlock *BB : LoopBypassBlocks)
3430       BCResumeVal->addIncoming(II.getStartValue(), BB);
3431 
3432     if (AdditionalBypass.first)
3433       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3434                                             EndValueFromAdditionalBypass);
3435 
3436     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3437   }
3438 }
3439 
3440 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3441                                                       MDNode *OrigLoopID) {
3442   assert(L && "Expected valid loop.");
3443 
3444   // The trip counts should be cached by now.
3445   Value *Count = getOrCreateTripCount(L);
3446   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3447 
3448   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3449 
3450   // Add a check in the middle block to see if we have completed
3451   // all of the iterations in the first vector loop.  Three cases:
3452   // 1) If we require a scalar epilogue, there is no conditional branch as
3453   //    we unconditionally branch to the scalar preheader.  Do nothing.
3454   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3455   //    Thus if tail is to be folded, we know we don't need to run the
3456   //    remainder and we can use the previous value for the condition (true).
3457   // 3) Otherwise, construct a runtime check.
3458   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3459     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3460                                         Count, VectorTripCount, "cmp.n",
3461                                         LoopMiddleBlock->getTerminator());
3462 
3463     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3464     // of the corresponding compare because they may have ended up with
3465     // different line numbers and we want to avoid awkward line stepping while
3466     // debugging. Eg. if the compare has got a line number inside the loop.
3467     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3468     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3469   }
3470 
3471   // Get ready to start creating new instructions into the vectorized body.
3472   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3473          "Inconsistent vector loop preheader");
3474   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3475 
3476 #ifdef EXPENSIVE_CHECKS
3477   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3478   LI->verify(*DT);
3479 #endif
3480 
3481   return LoopVectorPreHeader;
3482 }
3483 
3484 std::pair<BasicBlock *, Value *>
3485 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3486   /*
3487    In this function we generate a new loop. The new loop will contain
3488    the vectorized instructions while the old loop will continue to run the
3489    scalar remainder.
3490 
3491        [ ] <-- loop iteration number check.
3492     /   |
3493    /    v
3494   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3495   |  /  |
3496   | /   v
3497   ||   [ ]     <-- vector pre header.
3498   |/    |
3499   |     v
3500   |    [  ] \
3501   |    [  ]_|   <-- vector loop.
3502   |     |
3503   |     v
3504   \   -[ ]   <--- middle-block.
3505    \/   |
3506    /\   v
3507    | ->[ ]     <--- new preheader.
3508    |    |
3509  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3510    |   [ ] \
3511    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3512     \   |
3513      \  v
3514       >[ ]     <-- exit block(s).
3515    ...
3516    */
3517 
3518   // Get the metadata of the original loop before it gets modified.
3519   MDNode *OrigLoopID = OrigLoop->getLoopID();
3520 
3521   // Workaround!  Compute the trip count of the original loop and cache it
3522   // before we start modifying the CFG.  This code has a systemic problem
3523   // wherein it tries to run analysis over partially constructed IR; this is
3524   // wrong, and not simply for SCEV.  The trip count of the original loop
3525   // simply happens to be prone to hitting this in practice.  In theory, we
3526   // can hit the same issue for any SCEV, or ValueTracking query done during
3527   // mutation.  See PR49900.
3528   getOrCreateTripCount(OrigLoop);
3529 
3530   // Create an empty vector loop, and prepare basic blocks for the runtime
3531   // checks.
3532   Loop *Lp = createVectorLoopSkeleton("");
3533 
3534   // Now, compare the new count to zero. If it is zero skip the vector loop and
3535   // jump to the scalar loop. This check also covers the case where the
3536   // backedge-taken count is uint##_max: adding one to it will overflow leading
3537   // to an incorrect trip count of zero. In this (rare) case we will also jump
3538   // to the scalar loop.
3539   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3540 
3541   // Generate the code to check any assumptions that we've made for SCEV
3542   // expressions.
3543   emitSCEVChecks(Lp, LoopScalarPreHeader);
3544 
3545   // Generate the code that checks in runtime if arrays overlap. We put the
3546   // checks into a separate block to make the more common case of few elements
3547   // faster.
3548   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3549 
3550   createHeaderBranch(Lp);
3551 
3552   // Emit phis for the new starting index of the scalar loop.
3553   createInductionResumeValues(Lp);
3554 
3555   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3556 }
3557 
3558 // Fix up external users of the induction variable. At this point, we are
3559 // in LCSSA form, with all external PHIs that use the IV having one input value,
3560 // coming from the remainder loop. We need those PHIs to also have a correct
3561 // value for the IV when arriving directly from the middle block.
3562 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3563                                        const InductionDescriptor &II,
3564                                        Value *CountRoundDown, Value *EndValue,
3565                                        BasicBlock *MiddleBlock) {
3566   // There are two kinds of external IV usages - those that use the value
3567   // computed in the last iteration (the PHI) and those that use the penultimate
3568   // value (the value that feeds into the phi from the loop latch).
3569   // We allow both, but they, obviously, have different values.
3570 
3571   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3572 
3573   DenseMap<Value *, Value *> MissingVals;
3574 
3575   // An external user of the last iteration's value should see the value that
3576   // the remainder loop uses to initialize its own IV.
3577   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3578   for (User *U : PostInc->users()) {
3579     Instruction *UI = cast<Instruction>(U);
3580     if (!OrigLoop->contains(UI)) {
3581       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3582       MissingVals[UI] = EndValue;
3583     }
3584   }
3585 
3586   // An external user of the penultimate value need to see EndValue - Step.
3587   // The simplest way to get this is to recompute it from the constituent SCEVs,
3588   // that is Start + (Step * (CRD - 1)).
3589   for (User *U : OrigPhi->users()) {
3590     auto *UI = cast<Instruction>(U);
3591     if (!OrigLoop->contains(UI)) {
3592       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3593 
3594       IRBuilder<> B(MiddleBlock->getTerminator());
3595 
3596       // Fast-math-flags propagate from the original induction instruction.
3597       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3598         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3599 
3600       Value *CountMinusOne = B.CreateSub(
3601           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3602       Value *CMO =
3603           !II.getStep()->getType()->isIntegerTy()
3604               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3605                              II.getStep()->getType())
3606               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3607       CMO->setName("cast.cmo");
3608 
3609       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3610                                     LoopVectorBody->getTerminator());
3611       Value *Escape = emitTransformedIndex(B, CMO, Step, II);
3612       Escape->setName("ind.escape");
3613       MissingVals[UI] = Escape;
3614     }
3615   }
3616 
3617   for (auto &I : MissingVals) {
3618     PHINode *PHI = cast<PHINode>(I.first);
3619     // One corner case we have to handle is two IVs "chasing" each-other,
3620     // that is %IV2 = phi [...], [ %IV1, %latch ]
3621     // In this case, if IV1 has an external use, we need to avoid adding both
3622     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3623     // don't already have an incoming value for the middle block.
3624     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3625       PHI->addIncoming(I.second, MiddleBlock);
3626   }
3627 }
3628 
3629 namespace {
3630 
3631 struct CSEDenseMapInfo {
3632   static bool canHandle(const Instruction *I) {
3633     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3634            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3635   }
3636 
3637   static inline Instruction *getEmptyKey() {
3638     return DenseMapInfo<Instruction *>::getEmptyKey();
3639   }
3640 
3641   static inline Instruction *getTombstoneKey() {
3642     return DenseMapInfo<Instruction *>::getTombstoneKey();
3643   }
3644 
3645   static unsigned getHashValue(const Instruction *I) {
3646     assert(canHandle(I) && "Unknown instruction!");
3647     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3648                                                            I->value_op_end()));
3649   }
3650 
3651   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3652     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3653         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3654       return LHS == RHS;
3655     return LHS->isIdenticalTo(RHS);
3656   }
3657 };
3658 
3659 } // end anonymous namespace
3660 
3661 ///Perform cse of induction variable instructions.
3662 static void cse(BasicBlock *BB) {
3663   // Perform simple cse.
3664   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3665   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3666     if (!CSEDenseMapInfo::canHandle(&In))
3667       continue;
3668 
3669     // Check if we can replace this instruction with any of the
3670     // visited instructions.
3671     if (Instruction *V = CSEMap.lookup(&In)) {
3672       In.replaceAllUsesWith(V);
3673       In.eraseFromParent();
3674       continue;
3675     }
3676 
3677     CSEMap[&In] = &In;
3678   }
3679 }
3680 
3681 InstructionCost
3682 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3683                                               bool &NeedToScalarize) const {
3684   Function *F = CI->getCalledFunction();
3685   Type *ScalarRetTy = CI->getType();
3686   SmallVector<Type *, 4> Tys, ScalarTys;
3687   for (auto &ArgOp : CI->args())
3688     ScalarTys.push_back(ArgOp->getType());
3689 
3690   // Estimate cost of scalarized vector call. The source operands are assumed
3691   // to be vectors, so we need to extract individual elements from there,
3692   // execute VF scalar calls, and then gather the result into the vector return
3693   // value.
3694   InstructionCost ScalarCallCost =
3695       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3696   if (VF.isScalar())
3697     return ScalarCallCost;
3698 
3699   // Compute corresponding vector type for return value and arguments.
3700   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3701   for (Type *ScalarTy : ScalarTys)
3702     Tys.push_back(ToVectorTy(ScalarTy, VF));
3703 
3704   // Compute costs of unpacking argument values for the scalar calls and
3705   // packing the return values to a vector.
3706   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3707 
3708   InstructionCost Cost =
3709       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3710 
3711   // If we can't emit a vector call for this function, then the currently found
3712   // cost is the cost we need to return.
3713   NeedToScalarize = true;
3714   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3715   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3716 
3717   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3718     return Cost;
3719 
3720   // If the corresponding vector cost is cheaper, return its cost.
3721   InstructionCost VectorCallCost =
3722       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3723   if (VectorCallCost < Cost) {
3724     NeedToScalarize = false;
3725     Cost = VectorCallCost;
3726   }
3727   return Cost;
3728 }
3729 
3730 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3731   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3732     return Elt;
3733   return VectorType::get(Elt, VF);
3734 }
3735 
3736 InstructionCost
3737 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3738                                                    ElementCount VF) const {
3739   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3740   assert(ID && "Expected intrinsic call!");
3741   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3742   FastMathFlags FMF;
3743   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3744     FMF = FPMO->getFastMathFlags();
3745 
3746   SmallVector<const Value *> Arguments(CI->args());
3747   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3748   SmallVector<Type *> ParamTys;
3749   std::transform(FTy->param_begin(), FTy->param_end(),
3750                  std::back_inserter(ParamTys),
3751                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3752 
3753   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3754                                     dyn_cast<IntrinsicInst>(CI));
3755   return TTI.getIntrinsicInstrCost(CostAttrs,
3756                                    TargetTransformInfo::TCK_RecipThroughput);
3757 }
3758 
3759 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3760   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3761   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3762   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3763 }
3764 
3765 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3766   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3767   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3768   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3769 }
3770 
3771 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3772   // For every instruction `I` in MinBWs, truncate the operands, create a
3773   // truncated version of `I` and reextend its result. InstCombine runs
3774   // later and will remove any ext/trunc pairs.
3775   SmallPtrSet<Value *, 4> Erased;
3776   for (const auto &KV : Cost->getMinimalBitwidths()) {
3777     // If the value wasn't vectorized, we must maintain the original scalar
3778     // type. The absence of the value from State indicates that it
3779     // wasn't vectorized.
3780     // FIXME: Should not rely on getVPValue at this point.
3781     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3782     if (!State.hasAnyVectorValue(Def))
3783       continue;
3784     for (unsigned Part = 0; Part < UF; ++Part) {
3785       Value *I = State.get(Def, Part);
3786       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3787         continue;
3788       Type *OriginalTy = I->getType();
3789       Type *ScalarTruncatedTy =
3790           IntegerType::get(OriginalTy->getContext(), KV.second);
3791       auto *TruncatedTy = VectorType::get(
3792           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3793       if (TruncatedTy == OriginalTy)
3794         continue;
3795 
3796       IRBuilder<> B(cast<Instruction>(I));
3797       auto ShrinkOperand = [&](Value *V) -> Value * {
3798         if (auto *ZI = dyn_cast<ZExtInst>(V))
3799           if (ZI->getSrcTy() == TruncatedTy)
3800             return ZI->getOperand(0);
3801         return B.CreateZExtOrTrunc(V, TruncatedTy);
3802       };
3803 
3804       // The actual instruction modification depends on the instruction type,
3805       // unfortunately.
3806       Value *NewI = nullptr;
3807       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3808         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3809                              ShrinkOperand(BO->getOperand(1)));
3810 
3811         // Any wrapping introduced by shrinking this operation shouldn't be
3812         // considered undefined behavior. So, we can't unconditionally copy
3813         // arithmetic wrapping flags to NewI.
3814         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3815       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3816         NewI =
3817             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3818                          ShrinkOperand(CI->getOperand(1)));
3819       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3820         NewI = B.CreateSelect(SI->getCondition(),
3821                               ShrinkOperand(SI->getTrueValue()),
3822                               ShrinkOperand(SI->getFalseValue()));
3823       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3824         switch (CI->getOpcode()) {
3825         default:
3826           llvm_unreachable("Unhandled cast!");
3827         case Instruction::Trunc:
3828           NewI = ShrinkOperand(CI->getOperand(0));
3829           break;
3830         case Instruction::SExt:
3831           NewI = B.CreateSExtOrTrunc(
3832               CI->getOperand(0),
3833               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3834           break;
3835         case Instruction::ZExt:
3836           NewI = B.CreateZExtOrTrunc(
3837               CI->getOperand(0),
3838               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3839           break;
3840         }
3841       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3842         auto Elements0 =
3843             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3844         auto *O0 = B.CreateZExtOrTrunc(
3845             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3846         auto Elements1 =
3847             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3848         auto *O1 = B.CreateZExtOrTrunc(
3849             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3850 
3851         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3852       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3853         // Don't do anything with the operands, just extend the result.
3854         continue;
3855       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3856         auto Elements =
3857             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3858         auto *O0 = B.CreateZExtOrTrunc(
3859             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3860         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3861         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3862       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3863         auto Elements =
3864             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3865         auto *O0 = B.CreateZExtOrTrunc(
3866             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3867         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3868       } else {
3869         // If we don't know what to do, be conservative and don't do anything.
3870         continue;
3871       }
3872 
3873       // Lastly, extend the result.
3874       NewI->takeName(cast<Instruction>(I));
3875       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3876       I->replaceAllUsesWith(Res);
3877       cast<Instruction>(I)->eraseFromParent();
3878       Erased.insert(I);
3879       State.reset(Def, Res, Part);
3880     }
3881   }
3882 
3883   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3884   for (const auto &KV : Cost->getMinimalBitwidths()) {
3885     // If the value wasn't vectorized, we must maintain the original scalar
3886     // type. The absence of the value from State indicates that it
3887     // wasn't vectorized.
3888     // FIXME: Should not rely on getVPValue at this point.
3889     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3890     if (!State.hasAnyVectorValue(Def))
3891       continue;
3892     for (unsigned Part = 0; Part < UF; ++Part) {
3893       Value *I = State.get(Def, Part);
3894       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3895       if (Inst && Inst->use_empty()) {
3896         Value *NewI = Inst->getOperand(0);
3897         Inst->eraseFromParent();
3898         State.reset(Def, NewI, Part);
3899       }
3900     }
3901   }
3902 }
3903 
3904 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3905   // Insert truncates and extends for any truncated instructions as hints to
3906   // InstCombine.
3907   if (VF.isVector())
3908     truncateToMinimalBitwidths(State);
3909 
3910   // Fix widened non-induction PHIs by setting up the PHI operands.
3911   if (OrigPHIsToFix.size()) {
3912     assert(EnableVPlanNativePath &&
3913            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3914     fixNonInductionPHIs(State);
3915   }
3916 
3917   // At this point every instruction in the original loop is widened to a
3918   // vector form. Now we need to fix the recurrences in the loop. These PHI
3919   // nodes are currently empty because we did not want to introduce cycles.
3920   // This is the second stage of vectorizing recurrences.
3921   fixCrossIterationPHIs(State);
3922 
3923   // Forget the original basic block.
3924   PSE.getSE()->forgetLoop(OrigLoop);
3925 
3926   // If we inserted an edge from the middle block to the unique exit block,
3927   // update uses outside the loop (phis) to account for the newly inserted
3928   // edge.
3929   if (!Cost->requiresScalarEpilogue(VF)) {
3930     // Fix-up external users of the induction variables.
3931     for (auto &Entry : Legal->getInductionVars())
3932       fixupIVUsers(Entry.first, Entry.second,
3933                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3934                    IVEndValues[Entry.first], LoopMiddleBlock);
3935 
3936     fixLCSSAPHIs(State);
3937   }
3938 
3939   for (Instruction *PI : PredicatedInstructions)
3940     sinkScalarOperands(&*PI);
3941 
3942   // Remove redundant induction instructions.
3943   cse(LoopVectorBody);
3944 
3945   // Set/update profile weights for the vector and remainder loops as original
3946   // loop iterations are now distributed among them. Note that original loop
3947   // represented by LoopScalarBody becomes remainder loop after vectorization.
3948   //
3949   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3950   // end up getting slightly roughened result but that should be OK since
3951   // profile is not inherently precise anyway. Note also possible bypass of
3952   // vector code caused by legality checks is ignored, assigning all the weight
3953   // to the vector loop, optimistically.
3954   //
3955   // For scalable vectorization we can't know at compile time how many iterations
3956   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3957   // vscale of '1'.
3958   setProfileInfoAfterUnrolling(
3959       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3960       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3961 }
3962 
3963 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3964   // In order to support recurrences we need to be able to vectorize Phi nodes.
3965   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3966   // stage #2: We now need to fix the recurrences by adding incoming edges to
3967   // the currently empty PHI nodes. At this point every instruction in the
3968   // original loop is widened to a vector form so we can use them to construct
3969   // the incoming edges.
3970   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
3971   for (VPRecipeBase &R : Header->phis()) {
3972     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3973       fixReduction(ReductionPhi, State);
3974     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3975       fixFirstOrderRecurrence(FOR, State);
3976   }
3977 }
3978 
3979 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3980     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3981   // This is the second phase of vectorizing first-order recurrences. An
3982   // overview of the transformation is described below. Suppose we have the
3983   // following loop.
3984   //
3985   //   for (int i = 0; i < n; ++i)
3986   //     b[i] = a[i] - a[i - 1];
3987   //
3988   // There is a first-order recurrence on "a". For this loop, the shorthand
3989   // scalar IR looks like:
3990   //
3991   //   scalar.ph:
3992   //     s_init = a[-1]
3993   //     br scalar.body
3994   //
3995   //   scalar.body:
3996   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3997   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3998   //     s2 = a[i]
3999   //     b[i] = s2 - s1
4000   //     br cond, scalar.body, ...
4001   //
4002   // In this example, s1 is a recurrence because it's value depends on the
4003   // previous iteration. In the first phase of vectorization, we created a
4004   // vector phi v1 for s1. We now complete the vectorization and produce the
4005   // shorthand vector IR shown below (for VF = 4, UF = 1).
4006   //
4007   //   vector.ph:
4008   //     v_init = vector(..., ..., ..., a[-1])
4009   //     br vector.body
4010   //
4011   //   vector.body
4012   //     i = phi [0, vector.ph], [i+4, vector.body]
4013   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4014   //     v2 = a[i, i+1, i+2, i+3];
4015   //     v3 = vector(v1(3), v2(0, 1, 2))
4016   //     b[i, i+1, i+2, i+3] = v2 - v3
4017   //     br cond, vector.body, middle.block
4018   //
4019   //   middle.block:
4020   //     x = v2(3)
4021   //     br scalar.ph
4022   //
4023   //   scalar.ph:
4024   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4025   //     br scalar.body
4026   //
4027   // After execution completes the vector loop, we extract the next value of
4028   // the recurrence (x) to use as the initial value in the scalar loop.
4029 
4030   // Extract the last vector element in the middle block. This will be the
4031   // initial value for the recurrence when jumping to the scalar loop.
4032   VPValue *PreviousDef = PhiR->getBackedgeValue();
4033   Value *Incoming = State.get(PreviousDef, UF - 1);
4034   auto *ExtractForScalar = Incoming;
4035   auto *IdxTy = Builder.getInt32Ty();
4036   if (VF.isVector()) {
4037     auto *One = ConstantInt::get(IdxTy, 1);
4038     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4039     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4040     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4041     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4042                                                     "vector.recur.extract");
4043   }
4044   // Extract the second last element in the middle block if the
4045   // Phi is used outside the loop. We need to extract the phi itself
4046   // and not the last element (the phi update in the current iteration). This
4047   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4048   // when the scalar loop is not run at all.
4049   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4050   if (VF.isVector()) {
4051     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4052     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4053     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4054         Incoming, Idx, "vector.recur.extract.for.phi");
4055   } else if (UF > 1)
4056     // When loop is unrolled without vectorizing, initialize
4057     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4058     // of `Incoming`. This is analogous to the vectorized case above: extracting
4059     // the second last element when VF > 1.
4060     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4061 
4062   // Fix the initial value of the original recurrence in the scalar loop.
4063   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4064   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4065   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4066   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4067   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4068     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4069     Start->addIncoming(Incoming, BB);
4070   }
4071 
4072   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4073   Phi->setName("scalar.recur");
4074 
4075   // Finally, fix users of the recurrence outside the loop. The users will need
4076   // either the last value of the scalar recurrence or the last value of the
4077   // vector recurrence we extracted in the middle block. Since the loop is in
4078   // LCSSA form, we just need to find all the phi nodes for the original scalar
4079   // recurrence in the exit block, and then add an edge for the middle block.
4080   // Note that LCSSA does not imply single entry when the original scalar loop
4081   // had multiple exiting edges (as we always run the last iteration in the
4082   // scalar epilogue); in that case, there is no edge from middle to exit and
4083   // and thus no phis which needed updated.
4084   if (!Cost->requiresScalarEpilogue(VF))
4085     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4086       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4087         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4088 }
4089 
4090 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4091                                        VPTransformState &State) {
4092   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4093   // Get it's reduction variable descriptor.
4094   assert(Legal->isReductionVariable(OrigPhi) &&
4095          "Unable to find the reduction variable");
4096   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4097 
4098   RecurKind RK = RdxDesc.getRecurrenceKind();
4099   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4100   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4101   setDebugLocFromInst(ReductionStartValue);
4102 
4103   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4104   // This is the vector-clone of the value that leaves the loop.
4105   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4106 
4107   // Wrap flags are in general invalid after vectorization, clear them.
4108   clearReductionWrapFlags(RdxDesc, State);
4109 
4110   // Before each round, move the insertion point right between
4111   // the PHIs and the values we are going to write.
4112   // This allows us to write both PHINodes and the extractelement
4113   // instructions.
4114   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4115 
4116   setDebugLocFromInst(LoopExitInst);
4117 
4118   Type *PhiTy = OrigPhi->getType();
4119   // If tail is folded by masking, the vector value to leave the loop should be
4120   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4121   // instead of the former. For an inloop reduction the reduction will already
4122   // be predicated, and does not need to be handled here.
4123   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4124     for (unsigned Part = 0; Part < UF; ++Part) {
4125       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4126       Value *Sel = nullptr;
4127       for (User *U : VecLoopExitInst->users()) {
4128         if (isa<SelectInst>(U)) {
4129           assert(!Sel && "Reduction exit feeding two selects");
4130           Sel = U;
4131         } else
4132           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4133       }
4134       assert(Sel && "Reduction exit feeds no select");
4135       State.reset(LoopExitInstDef, Sel, Part);
4136 
4137       // If the target can create a predicated operator for the reduction at no
4138       // extra cost in the loop (for example a predicated vadd), it can be
4139       // cheaper for the select to remain in the loop than be sunk out of it,
4140       // and so use the select value for the phi instead of the old
4141       // LoopExitValue.
4142       if (PreferPredicatedReductionSelect ||
4143           TTI->preferPredicatedReductionSelect(
4144               RdxDesc.getOpcode(), PhiTy,
4145               TargetTransformInfo::ReductionFlags())) {
4146         auto *VecRdxPhi =
4147             cast<PHINode>(State.get(PhiR, Part));
4148         VecRdxPhi->setIncomingValueForBlock(
4149             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4150       }
4151     }
4152   }
4153 
4154   // If the vector reduction can be performed in a smaller type, we truncate
4155   // then extend the loop exit value to enable InstCombine to evaluate the
4156   // entire expression in the smaller type.
4157   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4158     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4159     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4160     Builder.SetInsertPoint(
4161         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4162     VectorParts RdxParts(UF);
4163     for (unsigned Part = 0; Part < UF; ++Part) {
4164       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4165       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4166       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4167                                         : Builder.CreateZExt(Trunc, VecTy);
4168       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4169         if (U != Trunc) {
4170           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4171           RdxParts[Part] = Extnd;
4172         }
4173     }
4174     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4175     for (unsigned Part = 0; Part < UF; ++Part) {
4176       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4177       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4178     }
4179   }
4180 
4181   // Reduce all of the unrolled parts into a single vector.
4182   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4183   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4184 
4185   // The middle block terminator has already been assigned a DebugLoc here (the
4186   // OrigLoop's single latch terminator). We want the whole middle block to
4187   // appear to execute on this line because: (a) it is all compiler generated,
4188   // (b) these instructions are always executed after evaluating the latch
4189   // conditional branch, and (c) other passes may add new predecessors which
4190   // terminate on this line. This is the easiest way to ensure we don't
4191   // accidentally cause an extra step back into the loop while debugging.
4192   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4193   if (PhiR->isOrdered())
4194     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4195   else {
4196     // Floating-point operations should have some FMF to enable the reduction.
4197     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4198     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4199     for (unsigned Part = 1; Part < UF; ++Part) {
4200       Value *RdxPart = State.get(LoopExitInstDef, Part);
4201       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4202         ReducedPartRdx = Builder.CreateBinOp(
4203             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4204       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4205         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4206                                            ReducedPartRdx, RdxPart);
4207       else
4208         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4209     }
4210   }
4211 
4212   // Create the reduction after the loop. Note that inloop reductions create the
4213   // target reduction in the loop using a Reduction recipe.
4214   if (VF.isVector() && !PhiR->isInLoop()) {
4215     ReducedPartRdx =
4216         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4217     // If the reduction can be performed in a smaller type, we need to extend
4218     // the reduction to the wider type before we branch to the original loop.
4219     if (PhiTy != RdxDesc.getRecurrenceType())
4220       ReducedPartRdx = RdxDesc.isSigned()
4221                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4222                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4223   }
4224 
4225   PHINode *ResumePhi =
4226       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4227 
4228   // Create a phi node that merges control-flow from the backedge-taken check
4229   // block and the middle block.
4230   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4231                                         LoopScalarPreHeader->getTerminator());
4232 
4233   // If we are fixing reductions in the epilogue loop then we should already
4234   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4235   // we carry over the incoming values correctly.
4236   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4237     if (Incoming == LoopMiddleBlock)
4238       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4239     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4240       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4241                               Incoming);
4242     else
4243       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4244   }
4245 
4246   // Set the resume value for this reduction
4247   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4248 
4249   // Now, we need to fix the users of the reduction variable
4250   // inside and outside of the scalar remainder loop.
4251 
4252   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4253   // in the exit blocks.  See comment on analogous loop in
4254   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4255   if (!Cost->requiresScalarEpilogue(VF))
4256     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4257       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4258         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4259 
4260   // Fix the scalar loop reduction variable with the incoming reduction sum
4261   // from the vector body and from the backedge value.
4262   int IncomingEdgeBlockIdx =
4263       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4264   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4265   // Pick the other block.
4266   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4267   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4268   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4269 }
4270 
4271 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4272                                                   VPTransformState &State) {
4273   RecurKind RK = RdxDesc.getRecurrenceKind();
4274   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4275     return;
4276 
4277   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4278   assert(LoopExitInstr && "null loop exit instruction");
4279   SmallVector<Instruction *, 8> Worklist;
4280   SmallPtrSet<Instruction *, 8> Visited;
4281   Worklist.push_back(LoopExitInstr);
4282   Visited.insert(LoopExitInstr);
4283 
4284   while (!Worklist.empty()) {
4285     Instruction *Cur = Worklist.pop_back_val();
4286     if (isa<OverflowingBinaryOperator>(Cur))
4287       for (unsigned Part = 0; Part < UF; ++Part) {
4288         // FIXME: Should not rely on getVPValue at this point.
4289         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4290         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4291       }
4292 
4293     for (User *U : Cur->users()) {
4294       Instruction *UI = cast<Instruction>(U);
4295       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4296           Visited.insert(UI).second)
4297         Worklist.push_back(UI);
4298     }
4299   }
4300 }
4301 
4302 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4303   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4304     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4305       // Some phis were already hand updated by the reduction and recurrence
4306       // code above, leave them alone.
4307       continue;
4308 
4309     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4310     // Non-instruction incoming values will have only one value.
4311 
4312     VPLane Lane = VPLane::getFirstLane();
4313     if (isa<Instruction>(IncomingValue) &&
4314         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4315                                            VF))
4316       Lane = VPLane::getLastLaneForVF(VF);
4317 
4318     // Can be a loop invariant incoming value or the last scalar value to be
4319     // extracted from the vectorized loop.
4320     // FIXME: Should not rely on getVPValue at this point.
4321     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4322     Value *lastIncomingValue =
4323         OrigLoop->isLoopInvariant(IncomingValue)
4324             ? IncomingValue
4325             : State.get(State.Plan->getVPValue(IncomingValue, true),
4326                         VPIteration(UF - 1, Lane));
4327     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4328   }
4329 }
4330 
4331 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4332   // The basic block and loop containing the predicated instruction.
4333   auto *PredBB = PredInst->getParent();
4334   auto *VectorLoop = LI->getLoopFor(PredBB);
4335 
4336   // Initialize a worklist with the operands of the predicated instruction.
4337   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4338 
4339   // Holds instructions that we need to analyze again. An instruction may be
4340   // reanalyzed if we don't yet know if we can sink it or not.
4341   SmallVector<Instruction *, 8> InstsToReanalyze;
4342 
4343   // Returns true if a given use occurs in the predicated block. Phi nodes use
4344   // their operands in their corresponding predecessor blocks.
4345   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4346     auto *I = cast<Instruction>(U.getUser());
4347     BasicBlock *BB = I->getParent();
4348     if (auto *Phi = dyn_cast<PHINode>(I))
4349       BB = Phi->getIncomingBlock(
4350           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4351     return BB == PredBB;
4352   };
4353 
4354   // Iteratively sink the scalarized operands of the predicated instruction
4355   // into the block we created for it. When an instruction is sunk, it's
4356   // operands are then added to the worklist. The algorithm ends after one pass
4357   // through the worklist doesn't sink a single instruction.
4358   bool Changed;
4359   do {
4360     // Add the instructions that need to be reanalyzed to the worklist, and
4361     // reset the changed indicator.
4362     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4363     InstsToReanalyze.clear();
4364     Changed = false;
4365 
4366     while (!Worklist.empty()) {
4367       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4368 
4369       // We can't sink an instruction if it is a phi node, is not in the loop,
4370       // or may have side effects.
4371       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4372           I->mayHaveSideEffects())
4373         continue;
4374 
4375       // If the instruction is already in PredBB, check if we can sink its
4376       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4377       // sinking the scalar instruction I, hence it appears in PredBB; but it
4378       // may have failed to sink I's operands (recursively), which we try
4379       // (again) here.
4380       if (I->getParent() == PredBB) {
4381         Worklist.insert(I->op_begin(), I->op_end());
4382         continue;
4383       }
4384 
4385       // It's legal to sink the instruction if all its uses occur in the
4386       // predicated block. Otherwise, there's nothing to do yet, and we may
4387       // need to reanalyze the instruction.
4388       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4389         InstsToReanalyze.push_back(I);
4390         continue;
4391       }
4392 
4393       // Move the instruction to the beginning of the predicated block, and add
4394       // it's operands to the worklist.
4395       I->moveBefore(&*PredBB->getFirstInsertionPt());
4396       Worklist.insert(I->op_begin(), I->op_end());
4397 
4398       // The sinking may have enabled other instructions to be sunk, so we will
4399       // need to iterate.
4400       Changed = true;
4401     }
4402   } while (Changed);
4403 }
4404 
4405 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4406   for (PHINode *OrigPhi : OrigPHIsToFix) {
4407     VPWidenPHIRecipe *VPPhi =
4408         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4409     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4410     // Make sure the builder has a valid insert point.
4411     Builder.SetInsertPoint(NewPhi);
4412     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4413       VPValue *Inc = VPPhi->getIncomingValue(i);
4414       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4415       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4416     }
4417   }
4418 }
4419 
4420 bool InnerLoopVectorizer::useOrderedReductions(
4421     const RecurrenceDescriptor &RdxDesc) {
4422   return Cost->useOrderedReductions(RdxDesc);
4423 }
4424 
4425 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4426                                               VPWidenPHIRecipe *PhiR,
4427                                               VPTransformState &State) {
4428   PHINode *P = cast<PHINode>(PN);
4429   if (EnableVPlanNativePath) {
4430     // Currently we enter here in the VPlan-native path for non-induction
4431     // PHIs where all control flow is uniform. We simply widen these PHIs.
4432     // Create a vector phi with no operands - the vector phi operands will be
4433     // set at the end of vector code generation.
4434     Type *VecTy = (State.VF.isScalar())
4435                       ? PN->getType()
4436                       : VectorType::get(PN->getType(), State.VF);
4437     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4438     State.set(PhiR, VecPhi, 0);
4439     OrigPHIsToFix.push_back(P);
4440 
4441     return;
4442   }
4443 
4444   assert(PN->getParent() == OrigLoop->getHeader() &&
4445          "Non-header phis should have been handled elsewhere");
4446 
4447   // In order to support recurrences we need to be able to vectorize Phi nodes.
4448   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4449   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4450   // this value when we vectorize all of the instructions that use the PHI.
4451 
4452   assert(!Legal->isReductionVariable(P) &&
4453          "reductions should be handled elsewhere");
4454 
4455   setDebugLocFromInst(P);
4456 
4457   // This PHINode must be an induction variable.
4458   // Make sure that we know about it.
4459   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4460 
4461   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4462   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4463 
4464   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4465   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4466 
4467   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4468   // which can be found from the original scalar operations.
4469   switch (II.getKind()) {
4470   case InductionDescriptor::IK_NoInduction:
4471     llvm_unreachable("Unknown induction");
4472   case InductionDescriptor::IK_IntInduction:
4473   case InductionDescriptor::IK_FpInduction:
4474     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4475   case InductionDescriptor::IK_PtrInduction: {
4476     // Handle the pointer induction variable case.
4477     assert(P->getType()->isPointerTy() && "Unexpected type.");
4478 
4479     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4480       // This is the normalized GEP that starts counting at zero.
4481       Value *PtrInd =
4482           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4483       // Determine the number of scalars we need to generate for each unroll
4484       // iteration. If the instruction is uniform, we only need to generate the
4485       // first lane. Otherwise, we generate all VF values.
4486       bool IsUniform = vputils::onlyFirstLaneUsed(PhiR);
4487       assert((IsUniform || !State.VF.isScalable()) &&
4488              "Cannot scalarize a scalable VF");
4489       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4490 
4491       for (unsigned Part = 0; Part < UF; ++Part) {
4492         Value *PartStart =
4493             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4494 
4495         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4496           Value *Idx = Builder.CreateAdd(
4497               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4498           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4499 
4500           Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
4501                                         State.CFG.PrevBB->getTerminator());
4502           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, Step, II);
4503           SclrGep->setName("next.gep");
4504           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4505         }
4506       }
4507       return;
4508     }
4509     assert(isa<SCEVConstant>(II.getStep()) &&
4510            "Induction step not a SCEV constant!");
4511     Type *PhiType = II.getStep()->getType();
4512 
4513     // Build a pointer phi
4514     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4515     Type *ScStValueType = ScalarStartValue->getType();
4516     PHINode *NewPointerPhi =
4517         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4518     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4519 
4520     // A pointer induction, performed by using a gep
4521     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4522     Instruction *InductionLoc = LoopLatch->getTerminator();
4523     const SCEV *ScalarStep = II.getStep();
4524     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4525     Value *ScalarStepValue =
4526         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4527     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4528     Value *NumUnrolledElems =
4529         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4530     Value *InductionGEP = GetElementPtrInst::Create(
4531         II.getElementType(), NewPointerPhi,
4532         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4533         InductionLoc);
4534     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4535 
4536     // Create UF many actual address geps that use the pointer
4537     // phi as base and a vectorized version of the step value
4538     // (<step*0, ..., step*N>) as offset.
4539     for (unsigned Part = 0; Part < State.UF; ++Part) {
4540       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4541       Value *StartOffsetScalar =
4542           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4543       Value *StartOffset =
4544           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4545       // Create a vector of consecutive numbers from zero to VF.
4546       StartOffset =
4547           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4548 
4549       Value *GEP = Builder.CreateGEP(
4550           II.getElementType(), NewPointerPhi,
4551           Builder.CreateMul(
4552               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4553               "vector.gep"));
4554       State.set(PhiR, GEP, Part);
4555     }
4556   }
4557   }
4558 }
4559 
4560 /// A helper function for checking whether an integer division-related
4561 /// instruction may divide by zero (in which case it must be predicated if
4562 /// executed conditionally in the scalar code).
4563 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4564 /// Non-zero divisors that are non compile-time constants will not be
4565 /// converted into multiplication, so we will still end up scalarizing
4566 /// the division, but can do so w/o predication.
4567 static bool mayDivideByZero(Instruction &I) {
4568   assert((I.getOpcode() == Instruction::UDiv ||
4569           I.getOpcode() == Instruction::SDiv ||
4570           I.getOpcode() == Instruction::URem ||
4571           I.getOpcode() == Instruction::SRem) &&
4572          "Unexpected instruction");
4573   Value *Divisor = I.getOperand(1);
4574   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4575   return !CInt || CInt->isZero();
4576 }
4577 
4578 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4579                                                VPUser &ArgOperands,
4580                                                VPTransformState &State) {
4581   assert(!isa<DbgInfoIntrinsic>(I) &&
4582          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4583   setDebugLocFromInst(&I);
4584 
4585   Module *M = I.getParent()->getParent()->getParent();
4586   auto *CI = cast<CallInst>(&I);
4587 
4588   SmallVector<Type *, 4> Tys;
4589   for (Value *ArgOperand : CI->args())
4590     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4591 
4592   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4593 
4594   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4595   // version of the instruction.
4596   // Is it beneficial to perform intrinsic call compared to lib call?
4597   bool NeedToScalarize = false;
4598   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4599   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4600   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4601   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4602          "Instruction should be scalarized elsewhere.");
4603   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4604          "Either the intrinsic cost or vector call cost must be valid");
4605 
4606   for (unsigned Part = 0; Part < UF; ++Part) {
4607     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4608     SmallVector<Value *, 4> Args;
4609     for (auto &I : enumerate(ArgOperands.operands())) {
4610       // Some intrinsics have a scalar argument - don't replace it with a
4611       // vector.
4612       Value *Arg;
4613       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4614         Arg = State.get(I.value(), Part);
4615       else {
4616         Arg = State.get(I.value(), VPIteration(0, 0));
4617         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4618           TysForDecl.push_back(Arg->getType());
4619       }
4620       Args.push_back(Arg);
4621     }
4622 
4623     Function *VectorF;
4624     if (UseVectorIntrinsic) {
4625       // Use vector version of the intrinsic.
4626       if (VF.isVector())
4627         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4628       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4629       assert(VectorF && "Can't retrieve vector intrinsic.");
4630     } else {
4631       // Use vector version of the function call.
4632       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4633 #ifndef NDEBUG
4634       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4635              "Can't create vector function.");
4636 #endif
4637         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4638     }
4639       SmallVector<OperandBundleDef, 1> OpBundles;
4640       CI->getOperandBundlesAsDefs(OpBundles);
4641       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4642 
4643       if (isa<FPMathOperator>(V))
4644         V->copyFastMathFlags(CI);
4645 
4646       State.set(Def, V, Part);
4647       addMetadata(V, &I);
4648   }
4649 }
4650 
4651 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4652   // We should not collect Scalars more than once per VF. Right now, this
4653   // function is called from collectUniformsAndScalars(), which already does
4654   // this check. Collecting Scalars for VF=1 does not make any sense.
4655   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4656          "This function should not be visited twice for the same VF");
4657 
4658   SmallSetVector<Instruction *, 8> Worklist;
4659 
4660   // These sets are used to seed the analysis with pointers used by memory
4661   // accesses that will remain scalar.
4662   SmallSetVector<Instruction *, 8> ScalarPtrs;
4663   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4664   auto *Latch = TheLoop->getLoopLatch();
4665 
4666   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4667   // The pointer operands of loads and stores will be scalar as long as the
4668   // memory access is not a gather or scatter operation. The value operand of a
4669   // store will remain scalar if the store is scalarized.
4670   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4671     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4672     assert(WideningDecision != CM_Unknown &&
4673            "Widening decision should be ready at this moment");
4674     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4675       if (Ptr == Store->getValueOperand())
4676         return WideningDecision == CM_Scalarize;
4677     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4678            "Ptr is neither a value or pointer operand");
4679     return WideningDecision != CM_GatherScatter;
4680   };
4681 
4682   // A helper that returns true if the given value is a bitcast or
4683   // getelementptr instruction contained in the loop.
4684   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4685     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4686             isa<GetElementPtrInst>(V)) &&
4687            !TheLoop->isLoopInvariant(V);
4688   };
4689 
4690   // A helper that evaluates a memory access's use of a pointer. If the use will
4691   // be a scalar use and the pointer is only used by memory accesses, we place
4692   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4693   // PossibleNonScalarPtrs.
4694   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4695     // We only care about bitcast and getelementptr instructions contained in
4696     // the loop.
4697     if (!isLoopVaryingBitCastOrGEP(Ptr))
4698       return;
4699 
4700     // If the pointer has already been identified as scalar (e.g., if it was
4701     // also identified as uniform), there's nothing to do.
4702     auto *I = cast<Instruction>(Ptr);
4703     if (Worklist.count(I))
4704       return;
4705 
4706     // If the use of the pointer will be a scalar use, and all users of the
4707     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4708     // place the pointer in PossibleNonScalarPtrs.
4709     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4710           return isa<LoadInst>(U) || isa<StoreInst>(U);
4711         }))
4712       ScalarPtrs.insert(I);
4713     else
4714       PossibleNonScalarPtrs.insert(I);
4715   };
4716 
4717   // We seed the scalars analysis with three classes of instructions: (1)
4718   // instructions marked uniform-after-vectorization and (2) bitcast,
4719   // getelementptr and (pointer) phi instructions used by memory accesses
4720   // requiring a scalar use.
4721   //
4722   // (1) Add to the worklist all instructions that have been identified as
4723   // uniform-after-vectorization.
4724   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4725 
4726   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4727   // memory accesses requiring a scalar use. The pointer operands of loads and
4728   // stores will be scalar as long as the memory accesses is not a gather or
4729   // scatter operation. The value operand of a store will remain scalar if the
4730   // store is scalarized.
4731   for (auto *BB : TheLoop->blocks())
4732     for (auto &I : *BB) {
4733       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4734         evaluatePtrUse(Load, Load->getPointerOperand());
4735       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4736         evaluatePtrUse(Store, Store->getPointerOperand());
4737         evaluatePtrUse(Store, Store->getValueOperand());
4738       }
4739     }
4740   for (auto *I : ScalarPtrs)
4741     if (!PossibleNonScalarPtrs.count(I)) {
4742       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4743       Worklist.insert(I);
4744     }
4745 
4746   // Insert the forced scalars.
4747   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4748   // induction variable when the PHI user is scalarized.
4749   auto ForcedScalar = ForcedScalars.find(VF);
4750   if (ForcedScalar != ForcedScalars.end())
4751     for (auto *I : ForcedScalar->second)
4752       Worklist.insert(I);
4753 
4754   // Expand the worklist by looking through any bitcasts and getelementptr
4755   // instructions we've already identified as scalar. This is similar to the
4756   // expansion step in collectLoopUniforms(); however, here we're only
4757   // expanding to include additional bitcasts and getelementptr instructions.
4758   unsigned Idx = 0;
4759   while (Idx != Worklist.size()) {
4760     Instruction *Dst = Worklist[Idx++];
4761     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4762       continue;
4763     auto *Src = cast<Instruction>(Dst->getOperand(0));
4764     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4765           auto *J = cast<Instruction>(U);
4766           return !TheLoop->contains(J) || Worklist.count(J) ||
4767                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4768                   isScalarUse(J, Src));
4769         })) {
4770       Worklist.insert(Src);
4771       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4772     }
4773   }
4774 
4775   // An induction variable will remain scalar if all users of the induction
4776   // variable and induction variable update remain scalar.
4777   for (auto &Induction : Legal->getInductionVars()) {
4778     auto *Ind = Induction.first;
4779     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4780 
4781     // If tail-folding is applied, the primary induction variable will be used
4782     // to feed a vector compare.
4783     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4784       continue;
4785 
4786     // Returns true if \p Indvar is a pointer induction that is used directly by
4787     // load/store instruction \p I.
4788     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4789                                               Instruction *I) {
4790       return Induction.second.getKind() ==
4791                  InductionDescriptor::IK_PtrInduction &&
4792              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4793              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4794     };
4795 
4796     // Determine if all users of the induction variable are scalar after
4797     // vectorization.
4798     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4799       auto *I = cast<Instruction>(U);
4800       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4801              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4802     });
4803     if (!ScalarInd)
4804       continue;
4805 
4806     // Determine if all users of the induction variable update instruction are
4807     // scalar after vectorization.
4808     auto ScalarIndUpdate =
4809         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4810           auto *I = cast<Instruction>(U);
4811           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4812                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4813         });
4814     if (!ScalarIndUpdate)
4815       continue;
4816 
4817     // The induction variable and its update instruction will remain scalar.
4818     Worklist.insert(Ind);
4819     Worklist.insert(IndUpdate);
4820     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4821     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4822                       << "\n");
4823   }
4824 
4825   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4826 }
4827 
4828 bool LoopVectorizationCostModel::isScalarWithPredication(
4829     Instruction *I, ElementCount VF) const {
4830   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4831     return false;
4832   switch(I->getOpcode()) {
4833   default:
4834     break;
4835   case Instruction::Load:
4836   case Instruction::Store: {
4837     if (!Legal->isMaskRequired(I))
4838       return false;
4839     auto *Ptr = getLoadStorePointerOperand(I);
4840     auto *Ty = getLoadStoreType(I);
4841     Type *VTy = Ty;
4842     if (VF.isVector())
4843       VTy = VectorType::get(Ty, VF);
4844     const Align Alignment = getLoadStoreAlignment(I);
4845     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4846                                 TTI.isLegalMaskedGather(VTy, Alignment))
4847                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4848                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4849   }
4850   case Instruction::UDiv:
4851   case Instruction::SDiv:
4852   case Instruction::SRem:
4853   case Instruction::URem:
4854     return mayDivideByZero(*I);
4855   }
4856   return false;
4857 }
4858 
4859 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4860     Instruction *I, ElementCount VF) {
4861   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4862   assert(getWideningDecision(I, VF) == CM_Unknown &&
4863          "Decision should not be set yet.");
4864   auto *Group = getInterleavedAccessGroup(I);
4865   assert(Group && "Must have a group.");
4866 
4867   // If the instruction's allocated size doesn't equal it's type size, it
4868   // requires padding and will be scalarized.
4869   auto &DL = I->getModule()->getDataLayout();
4870   auto *ScalarTy = getLoadStoreType(I);
4871   if (hasIrregularType(ScalarTy, DL))
4872     return false;
4873 
4874   // Check if masking is required.
4875   // A Group may need masking for one of two reasons: it resides in a block that
4876   // needs predication, or it was decided to use masking to deal with gaps
4877   // (either a gap at the end of a load-access that may result in a speculative
4878   // load, or any gaps in a store-access).
4879   bool PredicatedAccessRequiresMasking =
4880       blockNeedsPredicationForAnyReason(I->getParent()) &&
4881       Legal->isMaskRequired(I);
4882   bool LoadAccessWithGapsRequiresEpilogMasking =
4883       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4884       !isScalarEpilogueAllowed();
4885   bool StoreAccessWithGapsRequiresMasking =
4886       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4887   if (!PredicatedAccessRequiresMasking &&
4888       !LoadAccessWithGapsRequiresEpilogMasking &&
4889       !StoreAccessWithGapsRequiresMasking)
4890     return true;
4891 
4892   // If masked interleaving is required, we expect that the user/target had
4893   // enabled it, because otherwise it either wouldn't have been created or
4894   // it should have been invalidated by the CostModel.
4895   assert(useMaskedInterleavedAccesses(TTI) &&
4896          "Masked interleave-groups for predicated accesses are not enabled.");
4897 
4898   if (Group->isReverse())
4899     return false;
4900 
4901   auto *Ty = getLoadStoreType(I);
4902   const Align Alignment = getLoadStoreAlignment(I);
4903   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4904                           : TTI.isLegalMaskedStore(Ty, Alignment);
4905 }
4906 
4907 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4908     Instruction *I, ElementCount VF) {
4909   // Get and ensure we have a valid memory instruction.
4910   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4911 
4912   auto *Ptr = getLoadStorePointerOperand(I);
4913   auto *ScalarTy = getLoadStoreType(I);
4914 
4915   // In order to be widened, the pointer should be consecutive, first of all.
4916   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4917     return false;
4918 
4919   // If the instruction is a store located in a predicated block, it will be
4920   // scalarized.
4921   if (isScalarWithPredication(I, VF))
4922     return false;
4923 
4924   // If the instruction's allocated size doesn't equal it's type size, it
4925   // requires padding and will be scalarized.
4926   auto &DL = I->getModule()->getDataLayout();
4927   if (hasIrregularType(ScalarTy, DL))
4928     return false;
4929 
4930   return true;
4931 }
4932 
4933 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4934   // We should not collect Uniforms more than once per VF. Right now,
4935   // this function is called from collectUniformsAndScalars(), which
4936   // already does this check. Collecting Uniforms for VF=1 does not make any
4937   // sense.
4938 
4939   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4940          "This function should not be visited twice for the same VF");
4941 
4942   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4943   // not analyze again.  Uniforms.count(VF) will return 1.
4944   Uniforms[VF].clear();
4945 
4946   // We now know that the loop is vectorizable!
4947   // Collect instructions inside the loop that will remain uniform after
4948   // vectorization.
4949 
4950   // Global values, params and instructions outside of current loop are out of
4951   // scope.
4952   auto isOutOfScope = [&](Value *V) -> bool {
4953     Instruction *I = dyn_cast<Instruction>(V);
4954     return (!I || !TheLoop->contains(I));
4955   };
4956 
4957   // Worklist containing uniform instructions demanding lane 0.
4958   SetVector<Instruction *> Worklist;
4959   BasicBlock *Latch = TheLoop->getLoopLatch();
4960 
4961   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4962   // that are scalar with predication must not be considered uniform after
4963   // vectorization, because that would create an erroneous replicating region
4964   // where only a single instance out of VF should be formed.
4965   // TODO: optimize such seldom cases if found important, see PR40816.
4966   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4967     if (isOutOfScope(I)) {
4968       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4969                         << *I << "\n");
4970       return;
4971     }
4972     if (isScalarWithPredication(I, VF)) {
4973       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4974                         << *I << "\n");
4975       return;
4976     }
4977     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4978     Worklist.insert(I);
4979   };
4980 
4981   // Start with the conditional branch. If the branch condition is an
4982   // instruction contained in the loop that is only used by the branch, it is
4983   // uniform.
4984   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4985   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4986     addToWorklistIfAllowed(Cmp);
4987 
4988   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4989     InstWidening WideningDecision = getWideningDecision(I, VF);
4990     assert(WideningDecision != CM_Unknown &&
4991            "Widening decision should be ready at this moment");
4992 
4993     // A uniform memory op is itself uniform.  We exclude uniform stores
4994     // here as they demand the last lane, not the first one.
4995     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4996       assert(WideningDecision == CM_Scalarize);
4997       return true;
4998     }
4999 
5000     return (WideningDecision == CM_Widen ||
5001             WideningDecision == CM_Widen_Reverse ||
5002             WideningDecision == CM_Interleave);
5003   };
5004 
5005 
5006   // Returns true if Ptr is the pointer operand of a memory access instruction
5007   // I, and I is known to not require scalarization.
5008   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5009     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5010   };
5011 
5012   // Holds a list of values which are known to have at least one uniform use.
5013   // Note that there may be other uses which aren't uniform.  A "uniform use"
5014   // here is something which only demands lane 0 of the unrolled iterations;
5015   // it does not imply that all lanes produce the same value (e.g. this is not
5016   // the usual meaning of uniform)
5017   SetVector<Value *> HasUniformUse;
5018 
5019   // Scan the loop for instructions which are either a) known to have only
5020   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5021   for (auto *BB : TheLoop->blocks())
5022     for (auto &I : *BB) {
5023       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5024         switch (II->getIntrinsicID()) {
5025         case Intrinsic::sideeffect:
5026         case Intrinsic::experimental_noalias_scope_decl:
5027         case Intrinsic::assume:
5028         case Intrinsic::lifetime_start:
5029         case Intrinsic::lifetime_end:
5030           if (TheLoop->hasLoopInvariantOperands(&I))
5031             addToWorklistIfAllowed(&I);
5032           break;
5033         default:
5034           break;
5035         }
5036       }
5037 
5038       // ExtractValue instructions must be uniform, because the operands are
5039       // known to be loop-invariant.
5040       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5041         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5042                "Expected aggregate value to be loop invariant");
5043         addToWorklistIfAllowed(EVI);
5044         continue;
5045       }
5046 
5047       // If there's no pointer operand, there's nothing to do.
5048       auto *Ptr = getLoadStorePointerOperand(&I);
5049       if (!Ptr)
5050         continue;
5051 
5052       // A uniform memory op is itself uniform.  We exclude uniform stores
5053       // here as they demand the last lane, not the first one.
5054       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5055         addToWorklistIfAllowed(&I);
5056 
5057       if (isUniformDecision(&I, VF)) {
5058         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5059         HasUniformUse.insert(Ptr);
5060       }
5061     }
5062 
5063   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5064   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5065   // disallows uses outside the loop as well.
5066   for (auto *V : HasUniformUse) {
5067     if (isOutOfScope(V))
5068       continue;
5069     auto *I = cast<Instruction>(V);
5070     auto UsersAreMemAccesses =
5071       llvm::all_of(I->users(), [&](User *U) -> bool {
5072         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5073       });
5074     if (UsersAreMemAccesses)
5075       addToWorklistIfAllowed(I);
5076   }
5077 
5078   // Expand Worklist in topological order: whenever a new instruction
5079   // is added , its users should be already inside Worklist.  It ensures
5080   // a uniform instruction will only be used by uniform instructions.
5081   unsigned idx = 0;
5082   while (idx != Worklist.size()) {
5083     Instruction *I = Worklist[idx++];
5084 
5085     for (auto OV : I->operand_values()) {
5086       // isOutOfScope operands cannot be uniform instructions.
5087       if (isOutOfScope(OV))
5088         continue;
5089       // First order recurrence Phi's should typically be considered
5090       // non-uniform.
5091       auto *OP = dyn_cast<PHINode>(OV);
5092       if (OP && Legal->isFirstOrderRecurrence(OP))
5093         continue;
5094       // If all the users of the operand are uniform, then add the
5095       // operand into the uniform worklist.
5096       auto *OI = cast<Instruction>(OV);
5097       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5098             auto *J = cast<Instruction>(U);
5099             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5100           }))
5101         addToWorklistIfAllowed(OI);
5102     }
5103   }
5104 
5105   // For an instruction to be added into Worklist above, all its users inside
5106   // the loop should also be in Worklist. However, this condition cannot be
5107   // true for phi nodes that form a cyclic dependence. We must process phi
5108   // nodes separately. An induction variable will remain uniform if all users
5109   // of the induction variable and induction variable update remain uniform.
5110   // The code below handles both pointer and non-pointer induction variables.
5111   for (auto &Induction : Legal->getInductionVars()) {
5112     auto *Ind = Induction.first;
5113     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5114 
5115     // Determine if all users of the induction variable are uniform after
5116     // vectorization.
5117     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5118       auto *I = cast<Instruction>(U);
5119       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5120              isVectorizedMemAccessUse(I, Ind);
5121     });
5122     if (!UniformInd)
5123       continue;
5124 
5125     // Determine if all users of the induction variable update instruction are
5126     // uniform after vectorization.
5127     auto UniformIndUpdate =
5128         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5129           auto *I = cast<Instruction>(U);
5130           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5131                  isVectorizedMemAccessUse(I, IndUpdate);
5132         });
5133     if (!UniformIndUpdate)
5134       continue;
5135 
5136     // The induction variable and its update instruction will remain uniform.
5137     addToWorklistIfAllowed(Ind);
5138     addToWorklistIfAllowed(IndUpdate);
5139   }
5140 
5141   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5142 }
5143 
5144 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5145   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5146 
5147   if (Legal->getRuntimePointerChecking()->Need) {
5148     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5149         "runtime pointer checks needed. Enable vectorization of this "
5150         "loop with '#pragma clang loop vectorize(enable)' when "
5151         "compiling with -Os/-Oz",
5152         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5153     return true;
5154   }
5155 
5156   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5157     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5158         "runtime SCEV checks needed. Enable vectorization of this "
5159         "loop with '#pragma clang loop vectorize(enable)' when "
5160         "compiling with -Os/-Oz",
5161         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5162     return true;
5163   }
5164 
5165   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5166   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5167     reportVectorizationFailure("Runtime stride check for small trip count",
5168         "runtime stride == 1 checks needed. Enable vectorization of "
5169         "this loop without such check by compiling with -Os/-Oz",
5170         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5171     return true;
5172   }
5173 
5174   return false;
5175 }
5176 
5177 ElementCount
5178 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5179   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5180     return ElementCount::getScalable(0);
5181 
5182   if (Hints->isScalableVectorizationDisabled()) {
5183     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5184                             "ScalableVectorizationDisabled", ORE, TheLoop);
5185     return ElementCount::getScalable(0);
5186   }
5187 
5188   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5189 
5190   auto MaxScalableVF = ElementCount::getScalable(
5191       std::numeric_limits<ElementCount::ScalarTy>::max());
5192 
5193   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5194   // FIXME: While for scalable vectors this is currently sufficient, this should
5195   // be replaced by a more detailed mechanism that filters out specific VFs,
5196   // instead of invalidating vectorization for a whole set of VFs based on the
5197   // MaxVF.
5198 
5199   // Disable scalable vectorization if the loop contains unsupported reductions.
5200   if (!canVectorizeReductions(MaxScalableVF)) {
5201     reportVectorizationInfo(
5202         "Scalable vectorization not supported for the reduction "
5203         "operations found in this loop.",
5204         "ScalableVFUnfeasible", ORE, TheLoop);
5205     return ElementCount::getScalable(0);
5206   }
5207 
5208   // Disable scalable vectorization if the loop contains any instructions
5209   // with element types not supported for scalable vectors.
5210   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5211         return !Ty->isVoidTy() &&
5212                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5213       })) {
5214     reportVectorizationInfo("Scalable vectorization is not supported "
5215                             "for all element types found in this loop.",
5216                             "ScalableVFUnfeasible", ORE, TheLoop);
5217     return ElementCount::getScalable(0);
5218   }
5219 
5220   if (Legal->isSafeForAnyVectorWidth())
5221     return MaxScalableVF;
5222 
5223   // Limit MaxScalableVF by the maximum safe dependence distance.
5224   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5225   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5226     MaxVScale =
5227         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5228   MaxScalableVF = ElementCount::getScalable(
5229       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5230   if (!MaxScalableVF)
5231     reportVectorizationInfo(
5232         "Max legal vector width too small, scalable vectorization "
5233         "unfeasible.",
5234         "ScalableVFUnfeasible", ORE, TheLoop);
5235 
5236   return MaxScalableVF;
5237 }
5238 
5239 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5240     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5241   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5242   unsigned SmallestType, WidestType;
5243   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5244 
5245   // Get the maximum safe dependence distance in bits computed by LAA.
5246   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5247   // the memory accesses that is most restrictive (involved in the smallest
5248   // dependence distance).
5249   unsigned MaxSafeElements =
5250       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5251 
5252   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5253   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5254 
5255   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5256                     << ".\n");
5257   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5258                     << ".\n");
5259 
5260   // First analyze the UserVF, fall back if the UserVF should be ignored.
5261   if (UserVF) {
5262     auto MaxSafeUserVF =
5263         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5264 
5265     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5266       // If `VF=vscale x N` is safe, then so is `VF=N`
5267       if (UserVF.isScalable())
5268         return FixedScalableVFPair(
5269             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5270       else
5271         return UserVF;
5272     }
5273 
5274     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5275 
5276     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5277     // is better to ignore the hint and let the compiler choose a suitable VF.
5278     if (!UserVF.isScalable()) {
5279       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5280                         << " is unsafe, clamping to max safe VF="
5281                         << MaxSafeFixedVF << ".\n");
5282       ORE->emit([&]() {
5283         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5284                                           TheLoop->getStartLoc(),
5285                                           TheLoop->getHeader())
5286                << "User-specified vectorization factor "
5287                << ore::NV("UserVectorizationFactor", UserVF)
5288                << " is unsafe, clamping to maximum safe vectorization factor "
5289                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5290       });
5291       return MaxSafeFixedVF;
5292     }
5293 
5294     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5295       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5296                         << " is ignored because scalable vectors are not "
5297                            "available.\n");
5298       ORE->emit([&]() {
5299         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5300                                           TheLoop->getStartLoc(),
5301                                           TheLoop->getHeader())
5302                << "User-specified vectorization factor "
5303                << ore::NV("UserVectorizationFactor", UserVF)
5304                << " is ignored because the target does not support scalable "
5305                   "vectors. The compiler will pick a more suitable value.";
5306       });
5307     } else {
5308       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5309                         << " is unsafe. Ignoring scalable UserVF.\n");
5310       ORE->emit([&]() {
5311         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5312                                           TheLoop->getStartLoc(),
5313                                           TheLoop->getHeader())
5314                << "User-specified vectorization factor "
5315                << ore::NV("UserVectorizationFactor", UserVF)
5316                << " is unsafe. Ignoring the hint to let the compiler pick a "
5317                   "more suitable value.";
5318       });
5319     }
5320   }
5321 
5322   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5323                     << " / " << WidestType << " bits.\n");
5324 
5325   FixedScalableVFPair Result(ElementCount::getFixed(1),
5326                              ElementCount::getScalable(0));
5327   if (auto MaxVF =
5328           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5329                                   MaxSafeFixedVF, FoldTailByMasking))
5330     Result.FixedVF = MaxVF;
5331 
5332   if (auto MaxVF =
5333           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5334                                   MaxSafeScalableVF, FoldTailByMasking))
5335     if (MaxVF.isScalable()) {
5336       Result.ScalableVF = MaxVF;
5337       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5338                         << "\n");
5339     }
5340 
5341   return Result;
5342 }
5343 
5344 FixedScalableVFPair
5345 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5346   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5347     // TODO: It may by useful to do since it's still likely to be dynamically
5348     // uniform if the target can skip.
5349     reportVectorizationFailure(
5350         "Not inserting runtime ptr check for divergent target",
5351         "runtime pointer checks needed. Not enabled for divergent target",
5352         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5353     return FixedScalableVFPair::getNone();
5354   }
5355 
5356   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5357   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5358   if (TC == 1) {
5359     reportVectorizationFailure("Single iteration (non) loop",
5360         "loop trip count is one, irrelevant for vectorization",
5361         "SingleIterationLoop", ORE, TheLoop);
5362     return FixedScalableVFPair::getNone();
5363   }
5364 
5365   switch (ScalarEpilogueStatus) {
5366   case CM_ScalarEpilogueAllowed:
5367     return computeFeasibleMaxVF(TC, UserVF, false);
5368   case CM_ScalarEpilogueNotAllowedUsePredicate:
5369     LLVM_FALLTHROUGH;
5370   case CM_ScalarEpilogueNotNeededUsePredicate:
5371     LLVM_DEBUG(
5372         dbgs() << "LV: vector predicate hint/switch found.\n"
5373                << "LV: Not allowing scalar epilogue, creating predicated "
5374                << "vector loop.\n");
5375     break;
5376   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5377     // fallthrough as a special case of OptForSize
5378   case CM_ScalarEpilogueNotAllowedOptSize:
5379     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5380       LLVM_DEBUG(
5381           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5382     else
5383       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5384                         << "count.\n");
5385 
5386     // Bail if runtime checks are required, which are not good when optimising
5387     // for size.
5388     if (runtimeChecksRequired())
5389       return FixedScalableVFPair::getNone();
5390 
5391     break;
5392   }
5393 
5394   // The only loops we can vectorize without a scalar epilogue, are loops with
5395   // a bottom-test and a single exiting block. We'd have to handle the fact
5396   // that not every instruction executes on the last iteration.  This will
5397   // require a lane mask which varies through the vector loop body.  (TODO)
5398   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5399     // If there was a tail-folding hint/switch, but we can't fold the tail by
5400     // masking, fallback to a vectorization with a scalar epilogue.
5401     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5402       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5403                            "scalar epilogue instead.\n");
5404       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5405       return computeFeasibleMaxVF(TC, UserVF, false);
5406     }
5407     return FixedScalableVFPair::getNone();
5408   }
5409 
5410   // Now try the tail folding
5411 
5412   // Invalidate interleave groups that require an epilogue if we can't mask
5413   // the interleave-group.
5414   if (!useMaskedInterleavedAccesses(TTI)) {
5415     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5416            "No decisions should have been taken at this point");
5417     // Note: There is no need to invalidate any cost modeling decisions here, as
5418     // non where taken so far.
5419     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5420   }
5421 
5422   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5423   // Avoid tail folding if the trip count is known to be a multiple of any VF
5424   // we chose.
5425   // FIXME: The condition below pessimises the case for fixed-width vectors,
5426   // when scalable VFs are also candidates for vectorization.
5427   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5428     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5429     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5430            "MaxFixedVF must be a power of 2");
5431     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5432                                    : MaxFixedVF.getFixedValue();
5433     ScalarEvolution *SE = PSE.getSE();
5434     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5435     const SCEV *ExitCount = SE->getAddExpr(
5436         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5437     const SCEV *Rem = SE->getURemExpr(
5438         SE->applyLoopGuards(ExitCount, TheLoop),
5439         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5440     if (Rem->isZero()) {
5441       // Accept MaxFixedVF if we do not have a tail.
5442       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5443       return MaxFactors;
5444     }
5445   }
5446 
5447   // For scalable vectors don't use tail folding for low trip counts or
5448   // optimizing for code size. We only permit this if the user has explicitly
5449   // requested it.
5450   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5451       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5452       MaxFactors.ScalableVF.isVector())
5453     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5454 
5455   // If we don't know the precise trip count, or if the trip count that we
5456   // found modulo the vectorization factor is not zero, try to fold the tail
5457   // by masking.
5458   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5459   if (Legal->prepareToFoldTailByMasking()) {
5460     FoldTailByMasking = true;
5461     return MaxFactors;
5462   }
5463 
5464   // If there was a tail-folding hint/switch, but we can't fold the tail by
5465   // masking, fallback to a vectorization with a scalar epilogue.
5466   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5467     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5468                          "scalar epilogue instead.\n");
5469     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5470     return MaxFactors;
5471   }
5472 
5473   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5474     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5475     return FixedScalableVFPair::getNone();
5476   }
5477 
5478   if (TC == 0) {
5479     reportVectorizationFailure(
5480         "Unable to calculate the loop count due to complex control flow",
5481         "unable to calculate the loop count due to complex control flow",
5482         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5483     return FixedScalableVFPair::getNone();
5484   }
5485 
5486   reportVectorizationFailure(
5487       "Cannot optimize for size and vectorize at the same time.",
5488       "cannot optimize for size and vectorize at the same time. "
5489       "Enable vectorization of this loop with '#pragma clang loop "
5490       "vectorize(enable)' when compiling with -Os/-Oz",
5491       "NoTailLoopWithOptForSize", ORE, TheLoop);
5492   return FixedScalableVFPair::getNone();
5493 }
5494 
5495 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5496     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5497     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5498   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5499   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5500       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5501                            : TargetTransformInfo::RGK_FixedWidthVector);
5502 
5503   // Convenience function to return the minimum of two ElementCounts.
5504   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5505     assert((LHS.isScalable() == RHS.isScalable()) &&
5506            "Scalable flags must match");
5507     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5508   };
5509 
5510   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5511   // Note that both WidestRegister and WidestType may not be a powers of 2.
5512   auto MaxVectorElementCount = ElementCount::get(
5513       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5514       ComputeScalableMaxVF);
5515   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5516   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5517                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5518 
5519   if (!MaxVectorElementCount) {
5520     LLVM_DEBUG(dbgs() << "LV: The target has no "
5521                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5522                       << " vector registers.\n");
5523     return ElementCount::getFixed(1);
5524   }
5525 
5526   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5527   if (ConstTripCount &&
5528       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5529       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5530     // If loop trip count (TC) is known at compile time there is no point in
5531     // choosing VF greater than TC (as done in the loop below). Select maximum
5532     // power of two which doesn't exceed TC.
5533     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5534     // when the TC is less than or equal to the known number of lanes.
5535     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5536     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5537                          "exceeding the constant trip count: "
5538                       << ClampedConstTripCount << "\n");
5539     return ElementCount::getFixed(ClampedConstTripCount);
5540   }
5541 
5542   ElementCount MaxVF = MaxVectorElementCount;
5543   if (TTI.shouldMaximizeVectorBandwidth() ||
5544       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5545     auto MaxVectorElementCountMaxBW = ElementCount::get(
5546         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5547         ComputeScalableMaxVF);
5548     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5549 
5550     // Collect all viable vectorization factors larger than the default MaxVF
5551     // (i.e. MaxVectorElementCount).
5552     SmallVector<ElementCount, 8> VFs;
5553     for (ElementCount VS = MaxVectorElementCount * 2;
5554          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5555       VFs.push_back(VS);
5556 
5557     // For each VF calculate its register usage.
5558     auto RUs = calculateRegisterUsage(VFs);
5559 
5560     // Select the largest VF which doesn't require more registers than existing
5561     // ones.
5562     for (int i = RUs.size() - 1; i >= 0; --i) {
5563       bool Selected = true;
5564       for (auto &pair : RUs[i].MaxLocalUsers) {
5565         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5566         if (pair.second > TargetNumRegisters)
5567           Selected = false;
5568       }
5569       if (Selected) {
5570         MaxVF = VFs[i];
5571         break;
5572       }
5573     }
5574     if (ElementCount MinVF =
5575             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5576       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5577         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5578                           << ") with target's minimum: " << MinVF << '\n');
5579         MaxVF = MinVF;
5580       }
5581     }
5582   }
5583   return MaxVF;
5584 }
5585 
5586 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5587   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5588     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5589     auto Min = Attr.getVScaleRangeMin();
5590     auto Max = Attr.getVScaleRangeMax();
5591     if (Max && Min == Max)
5592       return Max;
5593   }
5594 
5595   return TTI.getVScaleForTuning();
5596 }
5597 
5598 bool LoopVectorizationCostModel::isMoreProfitable(
5599     const VectorizationFactor &A, const VectorizationFactor &B) const {
5600   InstructionCost CostA = A.Cost;
5601   InstructionCost CostB = B.Cost;
5602 
5603   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5604 
5605   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5606       MaxTripCount) {
5607     // If we are folding the tail and the trip count is a known (possibly small)
5608     // constant, the trip count will be rounded up to an integer number of
5609     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5610     // which we compare directly. When not folding the tail, the total cost will
5611     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5612     // approximated with the per-lane cost below instead of using the tripcount
5613     // as here.
5614     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5615     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5616     return RTCostA < RTCostB;
5617   }
5618 
5619   // Improve estimate for the vector width if it is scalable.
5620   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5621   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5622   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5623     if (A.Width.isScalable())
5624       EstimatedWidthA *= VScale.getValue();
5625     if (B.Width.isScalable())
5626       EstimatedWidthB *= VScale.getValue();
5627   }
5628 
5629   // Assume vscale may be larger than 1 (or the value being tuned for),
5630   // so that scalable vectorization is slightly favorable over fixed-width
5631   // vectorization.
5632   if (A.Width.isScalable() && !B.Width.isScalable())
5633     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5634 
5635   // To avoid the need for FP division:
5636   //      (CostA / A.Width) < (CostB / B.Width)
5637   // <=>  (CostA * B.Width) < (CostB * A.Width)
5638   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5639 }
5640 
5641 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5642     const ElementCountSet &VFCandidates) {
5643   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5644   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5645   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5646   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5647          "Expected Scalar VF to be a candidate");
5648 
5649   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5650   VectorizationFactor ChosenFactor = ScalarCost;
5651 
5652   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5653   if (ForceVectorization && VFCandidates.size() > 1) {
5654     // Ignore scalar width, because the user explicitly wants vectorization.
5655     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5656     // evaluation.
5657     ChosenFactor.Cost = InstructionCost::getMax();
5658   }
5659 
5660   SmallVector<InstructionVFPair> InvalidCosts;
5661   for (const auto &i : VFCandidates) {
5662     // The cost for scalar VF=1 is already calculated, so ignore it.
5663     if (i.isScalar())
5664       continue;
5665 
5666     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5667     VectorizationFactor Candidate(i, C.first);
5668 
5669 #ifndef NDEBUG
5670     unsigned AssumedMinimumVscale = 1;
5671     if (Optional<unsigned> VScale = getVScaleForTuning())
5672       AssumedMinimumVscale = VScale.getValue();
5673     unsigned Width =
5674         Candidate.Width.isScalable()
5675             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5676             : Candidate.Width.getFixedValue();
5677     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5678                       << " costs: " << (Candidate.Cost / Width));
5679     if (i.isScalable())
5680       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5681                         << AssumedMinimumVscale << ")");
5682     LLVM_DEBUG(dbgs() << ".\n");
5683 #endif
5684 
5685     if (!C.second && !ForceVectorization) {
5686       LLVM_DEBUG(
5687           dbgs() << "LV: Not considering vector loop of width " << i
5688                  << " because it will not generate any vector instructions.\n");
5689       continue;
5690     }
5691 
5692     // If profitable add it to ProfitableVF list.
5693     if (isMoreProfitable(Candidate, ScalarCost))
5694       ProfitableVFs.push_back(Candidate);
5695 
5696     if (isMoreProfitable(Candidate, ChosenFactor))
5697       ChosenFactor = Candidate;
5698   }
5699 
5700   // Emit a report of VFs with invalid costs in the loop.
5701   if (!InvalidCosts.empty()) {
5702     // Group the remarks per instruction, keeping the instruction order from
5703     // InvalidCosts.
5704     std::map<Instruction *, unsigned> Numbering;
5705     unsigned I = 0;
5706     for (auto &Pair : InvalidCosts)
5707       if (!Numbering.count(Pair.first))
5708         Numbering[Pair.first] = I++;
5709 
5710     // Sort the list, first on instruction(number) then on VF.
5711     llvm::sort(InvalidCosts,
5712                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5713                  if (Numbering[A.first] != Numbering[B.first])
5714                    return Numbering[A.first] < Numbering[B.first];
5715                  ElementCountComparator ECC;
5716                  return ECC(A.second, B.second);
5717                });
5718 
5719     // For a list of ordered instruction-vf pairs:
5720     //   [(load, vf1), (load, vf2), (store, vf1)]
5721     // Group the instructions together to emit separate remarks for:
5722     //   load  (vf1, vf2)
5723     //   store (vf1)
5724     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5725     auto Subset = ArrayRef<InstructionVFPair>();
5726     do {
5727       if (Subset.empty())
5728         Subset = Tail.take_front(1);
5729 
5730       Instruction *I = Subset.front().first;
5731 
5732       // If the next instruction is different, or if there are no other pairs,
5733       // emit a remark for the collated subset. e.g.
5734       //   [(load, vf1), (load, vf2))]
5735       // to emit:
5736       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5737       if (Subset == Tail || Tail[Subset.size()].first != I) {
5738         std::string OutString;
5739         raw_string_ostream OS(OutString);
5740         assert(!Subset.empty() && "Unexpected empty range");
5741         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5742         for (auto &Pair : Subset)
5743           OS << (Pair.second == Subset.front().second ? "" : ", ")
5744              << Pair.second;
5745         OS << "):";
5746         if (auto *CI = dyn_cast<CallInst>(I))
5747           OS << " call to " << CI->getCalledFunction()->getName();
5748         else
5749           OS << " " << I->getOpcodeName();
5750         OS.flush();
5751         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5752         Tail = Tail.drop_front(Subset.size());
5753         Subset = {};
5754       } else
5755         // Grow the subset by one element
5756         Subset = Tail.take_front(Subset.size() + 1);
5757     } while (!Tail.empty());
5758   }
5759 
5760   if (!EnableCondStoresVectorization && NumPredStores) {
5761     reportVectorizationFailure("There are conditional stores.",
5762         "store that is conditionally executed prevents vectorization",
5763         "ConditionalStore", ORE, TheLoop);
5764     ChosenFactor = ScalarCost;
5765   }
5766 
5767   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5768                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5769              << "LV: Vectorization seems to be not beneficial, "
5770              << "but was forced by a user.\n");
5771   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5772   return ChosenFactor;
5773 }
5774 
5775 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5776     const Loop &L, ElementCount VF) const {
5777   // Cross iteration phis such as reductions need special handling and are
5778   // currently unsupported.
5779   if (any_of(L.getHeader()->phis(),
5780              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5781     return false;
5782 
5783   // Phis with uses outside of the loop require special handling and are
5784   // currently unsupported.
5785   for (auto &Entry : Legal->getInductionVars()) {
5786     // Look for uses of the value of the induction at the last iteration.
5787     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5788     for (User *U : PostInc->users())
5789       if (!L.contains(cast<Instruction>(U)))
5790         return false;
5791     // Look for uses of penultimate value of the induction.
5792     for (User *U : Entry.first->users())
5793       if (!L.contains(cast<Instruction>(U)))
5794         return false;
5795   }
5796 
5797   // Induction variables that are widened require special handling that is
5798   // currently not supported.
5799   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5800         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5801                  this->isProfitableToScalarize(Entry.first, VF));
5802       }))
5803     return false;
5804 
5805   // Epilogue vectorization code has not been auditted to ensure it handles
5806   // non-latch exits properly.  It may be fine, but it needs auditted and
5807   // tested.
5808   if (L.getExitingBlock() != L.getLoopLatch())
5809     return false;
5810 
5811   return true;
5812 }
5813 
5814 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5815     const ElementCount VF) const {
5816   // FIXME: We need a much better cost-model to take different parameters such
5817   // as register pressure, code size increase and cost of extra branches into
5818   // account. For now we apply a very crude heuristic and only consider loops
5819   // with vectorization factors larger than a certain value.
5820   // We also consider epilogue vectorization unprofitable for targets that don't
5821   // consider interleaving beneficial (eg. MVE).
5822   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5823     return false;
5824   // FIXME: We should consider changing the threshold for scalable
5825   // vectors to take VScaleForTuning into account.
5826   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5827     return true;
5828   return false;
5829 }
5830 
5831 VectorizationFactor
5832 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5833     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5834   VectorizationFactor Result = VectorizationFactor::Disabled();
5835   if (!EnableEpilogueVectorization) {
5836     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5837     return Result;
5838   }
5839 
5840   if (!isScalarEpilogueAllowed()) {
5841     LLVM_DEBUG(
5842         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5843                   "allowed.\n";);
5844     return Result;
5845   }
5846 
5847   // Not really a cost consideration, but check for unsupported cases here to
5848   // simplify the logic.
5849   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5850     LLVM_DEBUG(
5851         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5852                   "not a supported candidate.\n";);
5853     return Result;
5854   }
5855 
5856   if (EpilogueVectorizationForceVF > 1) {
5857     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5858     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5859     if (LVP.hasPlanWithVF(ForcedEC))
5860       return {ForcedEC, 0};
5861     else {
5862       LLVM_DEBUG(
5863           dbgs()
5864               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5865       return Result;
5866     }
5867   }
5868 
5869   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5870       TheLoop->getHeader()->getParent()->hasMinSize()) {
5871     LLVM_DEBUG(
5872         dbgs()
5873             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5874     return Result;
5875   }
5876 
5877   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5878     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5879                          "this loop\n");
5880     return Result;
5881   }
5882 
5883   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5884   // the main loop handles 8 lanes per iteration. We could still benefit from
5885   // vectorizing the epilogue loop with VF=4.
5886   ElementCount EstimatedRuntimeVF = MainLoopVF;
5887   if (MainLoopVF.isScalable()) {
5888     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5889     if (Optional<unsigned> VScale = getVScaleForTuning())
5890       EstimatedRuntimeVF *= VScale.getValue();
5891   }
5892 
5893   for (auto &NextVF : ProfitableVFs)
5894     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5895           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5896          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5897         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5898         LVP.hasPlanWithVF(NextVF.Width))
5899       Result = NextVF;
5900 
5901   if (Result != VectorizationFactor::Disabled())
5902     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5903                       << Result.Width << "\n";);
5904   return Result;
5905 }
5906 
5907 std::pair<unsigned, unsigned>
5908 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5909   unsigned MinWidth = -1U;
5910   unsigned MaxWidth = 8;
5911   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5912   // For in-loop reductions, no element types are added to ElementTypesInLoop
5913   // if there are no loads/stores in the loop. In this case, check through the
5914   // reduction variables to determine the maximum width.
5915   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5916     // Reset MaxWidth so that we can find the smallest type used by recurrences
5917     // in the loop.
5918     MaxWidth = -1U;
5919     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5920       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5921       // When finding the min width used by the recurrence we need to account
5922       // for casts on the input operands of the recurrence.
5923       MaxWidth = std::min<unsigned>(
5924           MaxWidth, std::min<unsigned>(
5925                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5926                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5927     }
5928   } else {
5929     for (Type *T : ElementTypesInLoop) {
5930       MinWidth = std::min<unsigned>(
5931           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5932       MaxWidth = std::max<unsigned>(
5933           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5934     }
5935   }
5936   return {MinWidth, MaxWidth};
5937 }
5938 
5939 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5940   ElementTypesInLoop.clear();
5941   // For each block.
5942   for (BasicBlock *BB : TheLoop->blocks()) {
5943     // For each instruction in the loop.
5944     for (Instruction &I : BB->instructionsWithoutDebug()) {
5945       Type *T = I.getType();
5946 
5947       // Skip ignored values.
5948       if (ValuesToIgnore.count(&I))
5949         continue;
5950 
5951       // Only examine Loads, Stores and PHINodes.
5952       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5953         continue;
5954 
5955       // Examine PHI nodes that are reduction variables. Update the type to
5956       // account for the recurrence type.
5957       if (auto *PN = dyn_cast<PHINode>(&I)) {
5958         if (!Legal->isReductionVariable(PN))
5959           continue;
5960         const RecurrenceDescriptor &RdxDesc =
5961             Legal->getReductionVars().find(PN)->second;
5962         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5963             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5964                                       RdxDesc.getRecurrenceType(),
5965                                       TargetTransformInfo::ReductionFlags()))
5966           continue;
5967         T = RdxDesc.getRecurrenceType();
5968       }
5969 
5970       // Examine the stored values.
5971       if (auto *ST = dyn_cast<StoreInst>(&I))
5972         T = ST->getValueOperand()->getType();
5973 
5974       assert(T->isSized() &&
5975              "Expected the load/store/recurrence type to be sized");
5976 
5977       ElementTypesInLoop.insert(T);
5978     }
5979   }
5980 }
5981 
5982 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5983                                                            unsigned LoopCost) {
5984   // -- The interleave heuristics --
5985   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5986   // There are many micro-architectural considerations that we can't predict
5987   // at this level. For example, frontend pressure (on decode or fetch) due to
5988   // code size, or the number and capabilities of the execution ports.
5989   //
5990   // We use the following heuristics to select the interleave count:
5991   // 1. If the code has reductions, then we interleave to break the cross
5992   // iteration dependency.
5993   // 2. If the loop is really small, then we interleave to reduce the loop
5994   // overhead.
5995   // 3. We don't interleave if we think that we will spill registers to memory
5996   // due to the increased register pressure.
5997 
5998   if (!isScalarEpilogueAllowed())
5999     return 1;
6000 
6001   // We used the distance for the interleave count.
6002   if (Legal->getMaxSafeDepDistBytes() != -1U)
6003     return 1;
6004 
6005   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6006   const bool HasReductions = !Legal->getReductionVars().empty();
6007   // Do not interleave loops with a relatively small known or estimated trip
6008   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6009   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6010   // because with the above conditions interleaving can expose ILP and break
6011   // cross iteration dependences for reductions.
6012   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6013       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6014     return 1;
6015 
6016   RegisterUsage R = calculateRegisterUsage({VF})[0];
6017   // We divide by these constants so assume that we have at least one
6018   // instruction that uses at least one register.
6019   for (auto& pair : R.MaxLocalUsers) {
6020     pair.second = std::max(pair.second, 1U);
6021   }
6022 
6023   // We calculate the interleave count using the following formula.
6024   // Subtract the number of loop invariants from the number of available
6025   // registers. These registers are used by all of the interleaved instances.
6026   // Next, divide the remaining registers by the number of registers that is
6027   // required by the loop, in order to estimate how many parallel instances
6028   // fit without causing spills. All of this is rounded down if necessary to be
6029   // a power of two. We want power of two interleave count to simplify any
6030   // addressing operations or alignment considerations.
6031   // We also want power of two interleave counts to ensure that the induction
6032   // variable of the vector loop wraps to zero, when tail is folded by masking;
6033   // this currently happens when OptForSize, in which case IC is set to 1 above.
6034   unsigned IC = UINT_MAX;
6035 
6036   for (auto& pair : R.MaxLocalUsers) {
6037     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6038     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6039                       << " registers of "
6040                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6041     if (VF.isScalar()) {
6042       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6043         TargetNumRegisters = ForceTargetNumScalarRegs;
6044     } else {
6045       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6046         TargetNumRegisters = ForceTargetNumVectorRegs;
6047     }
6048     unsigned MaxLocalUsers = pair.second;
6049     unsigned LoopInvariantRegs = 0;
6050     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6051       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6052 
6053     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6054     // Don't count the induction variable as interleaved.
6055     if (EnableIndVarRegisterHeur) {
6056       TmpIC =
6057           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6058                         std::max(1U, (MaxLocalUsers - 1)));
6059     }
6060 
6061     IC = std::min(IC, TmpIC);
6062   }
6063 
6064   // Clamp the interleave ranges to reasonable counts.
6065   unsigned MaxInterleaveCount =
6066       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6067 
6068   // Check if the user has overridden the max.
6069   if (VF.isScalar()) {
6070     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6071       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6072   } else {
6073     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6074       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6075   }
6076 
6077   // If trip count is known or estimated compile time constant, limit the
6078   // interleave count to be less than the trip count divided by VF, provided it
6079   // is at least 1.
6080   //
6081   // For scalable vectors we can't know if interleaving is beneficial. It may
6082   // not be beneficial for small loops if none of the lanes in the second vector
6083   // iterations is enabled. However, for larger loops, there is likely to be a
6084   // similar benefit as for fixed-width vectors. For now, we choose to leave
6085   // the InterleaveCount as if vscale is '1', although if some information about
6086   // the vector is known (e.g. min vector size), we can make a better decision.
6087   if (BestKnownTC) {
6088     MaxInterleaveCount =
6089         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6090     // Make sure MaxInterleaveCount is greater than 0.
6091     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6092   }
6093 
6094   assert(MaxInterleaveCount > 0 &&
6095          "Maximum interleave count must be greater than 0");
6096 
6097   // Clamp the calculated IC to be between the 1 and the max interleave count
6098   // that the target and trip count allows.
6099   if (IC > MaxInterleaveCount)
6100     IC = MaxInterleaveCount;
6101   else
6102     // Make sure IC is greater than 0.
6103     IC = std::max(1u, IC);
6104 
6105   assert(IC > 0 && "Interleave count must be greater than 0.");
6106 
6107   // If we did not calculate the cost for VF (because the user selected the VF)
6108   // then we calculate the cost of VF here.
6109   if (LoopCost == 0) {
6110     InstructionCost C = expectedCost(VF).first;
6111     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6112     LoopCost = *C.getValue();
6113   }
6114 
6115   assert(LoopCost && "Non-zero loop cost expected");
6116 
6117   // Interleave if we vectorized this loop and there is a reduction that could
6118   // benefit from interleaving.
6119   if (VF.isVector() && HasReductions) {
6120     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6121     return IC;
6122   }
6123 
6124   // For any scalar loop that either requires runtime checks or predication we
6125   // are better off leaving this to the unroller. Note that if we've already
6126   // vectorized the loop we will have done the runtime check and so interleaving
6127   // won't require further checks.
6128   bool ScalarInterleavingRequiresPredication =
6129       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
6130          return Legal->blockNeedsPredication(BB);
6131        }));
6132   bool ScalarInterleavingRequiresRuntimePointerCheck =
6133       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6134 
6135   // We want to interleave small loops in order to reduce the loop overhead and
6136   // potentially expose ILP opportunities.
6137   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6138                     << "LV: IC is " << IC << '\n'
6139                     << "LV: VF is " << VF << '\n');
6140   const bool AggressivelyInterleaveReductions =
6141       TTI.enableAggressiveInterleaving(HasReductions);
6142   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
6143       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
6144     // We assume that the cost overhead is 1 and we use the cost model
6145     // to estimate the cost of the loop and interleave until the cost of the
6146     // loop overhead is about 5% of the cost of the loop.
6147     unsigned SmallIC =
6148         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6149 
6150     // Interleave until store/load ports (estimated by max interleave count) are
6151     // saturated.
6152     unsigned NumStores = Legal->getNumStores();
6153     unsigned NumLoads = Legal->getNumLoads();
6154     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6155     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6156 
6157     // There is little point in interleaving for reductions containing selects
6158     // and compares when VF=1 since it may just create more overhead than it's
6159     // worth for loops with small trip counts. This is because we still have to
6160     // do the final reduction after the loop.
6161     bool HasSelectCmpReductions =
6162         HasReductions &&
6163         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6164           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6165           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6166               RdxDesc.getRecurrenceKind());
6167         });
6168     if (HasSelectCmpReductions) {
6169       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6170       return 1;
6171     }
6172 
6173     // If we have a scalar reduction (vector reductions are already dealt with
6174     // by this point), we can increase the critical path length if the loop
6175     // we're interleaving is inside another loop. For tree-wise reductions
6176     // set the limit to 2, and for ordered reductions it's best to disable
6177     // interleaving entirely.
6178     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6179       bool HasOrderedReductions =
6180           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6181             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6182             return RdxDesc.isOrdered();
6183           });
6184       if (HasOrderedReductions) {
6185         LLVM_DEBUG(
6186             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6187         return 1;
6188       }
6189 
6190       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6191       SmallIC = std::min(SmallIC, F);
6192       StoresIC = std::min(StoresIC, F);
6193       LoadsIC = std::min(LoadsIC, F);
6194     }
6195 
6196     if (EnableLoadStoreRuntimeInterleave &&
6197         std::max(StoresIC, LoadsIC) > SmallIC) {
6198       LLVM_DEBUG(
6199           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6200       return std::max(StoresIC, LoadsIC);
6201     }
6202 
6203     // If there are scalar reductions and TTI has enabled aggressive
6204     // interleaving for reductions, we will interleave to expose ILP.
6205     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6206         AggressivelyInterleaveReductions) {
6207       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6208       // Interleave no less than SmallIC but not as aggressive as the normal IC
6209       // to satisfy the rare situation when resources are too limited.
6210       return std::max(IC / 2, SmallIC);
6211     } else {
6212       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6213       return SmallIC;
6214     }
6215   }
6216 
6217   // Interleave if this is a large loop (small loops are already dealt with by
6218   // this point) that could benefit from interleaving.
6219   if (AggressivelyInterleaveReductions) {
6220     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6221     return IC;
6222   }
6223 
6224   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6225   return 1;
6226 }
6227 
6228 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6229 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6230   // This function calculates the register usage by measuring the highest number
6231   // of values that are alive at a single location. Obviously, this is a very
6232   // rough estimation. We scan the loop in a topological order in order and
6233   // assign a number to each instruction. We use RPO to ensure that defs are
6234   // met before their users. We assume that each instruction that has in-loop
6235   // users starts an interval. We record every time that an in-loop value is
6236   // used, so we have a list of the first and last occurrences of each
6237   // instruction. Next, we transpose this data structure into a multi map that
6238   // holds the list of intervals that *end* at a specific location. This multi
6239   // map allows us to perform a linear search. We scan the instructions linearly
6240   // and record each time that a new interval starts, by placing it in a set.
6241   // If we find this value in the multi-map then we remove it from the set.
6242   // The max register usage is the maximum size of the set.
6243   // We also search for instructions that are defined outside the loop, but are
6244   // used inside the loop. We need this number separately from the max-interval
6245   // usage number because when we unroll, loop-invariant values do not take
6246   // more register.
6247   LoopBlocksDFS DFS(TheLoop);
6248   DFS.perform(LI);
6249 
6250   RegisterUsage RU;
6251 
6252   // Each 'key' in the map opens a new interval. The values
6253   // of the map are the index of the 'last seen' usage of the
6254   // instruction that is the key.
6255   using IntervalMap = DenseMap<Instruction *, unsigned>;
6256 
6257   // Maps instruction to its index.
6258   SmallVector<Instruction *, 64> IdxToInstr;
6259   // Marks the end of each interval.
6260   IntervalMap EndPoint;
6261   // Saves the list of instruction indices that are used in the loop.
6262   SmallPtrSet<Instruction *, 8> Ends;
6263   // Saves the list of values that are used in the loop but are
6264   // defined outside the loop, such as arguments and constants.
6265   SmallPtrSet<Value *, 8> LoopInvariants;
6266 
6267   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6268     for (Instruction &I : BB->instructionsWithoutDebug()) {
6269       IdxToInstr.push_back(&I);
6270 
6271       // Save the end location of each USE.
6272       for (Value *U : I.operands()) {
6273         auto *Instr = dyn_cast<Instruction>(U);
6274 
6275         // Ignore non-instruction values such as arguments, constants, etc.
6276         if (!Instr)
6277           continue;
6278 
6279         // If this instruction is outside the loop then record it and continue.
6280         if (!TheLoop->contains(Instr)) {
6281           LoopInvariants.insert(Instr);
6282           continue;
6283         }
6284 
6285         // Overwrite previous end points.
6286         EndPoint[Instr] = IdxToInstr.size();
6287         Ends.insert(Instr);
6288       }
6289     }
6290   }
6291 
6292   // Saves the list of intervals that end with the index in 'key'.
6293   using InstrList = SmallVector<Instruction *, 2>;
6294   DenseMap<unsigned, InstrList> TransposeEnds;
6295 
6296   // Transpose the EndPoints to a list of values that end at each index.
6297   for (auto &Interval : EndPoint)
6298     TransposeEnds[Interval.second].push_back(Interval.first);
6299 
6300   SmallPtrSet<Instruction *, 8> OpenIntervals;
6301   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6302   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6303 
6304   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6305 
6306   // A lambda that gets the register usage for the given type and VF.
6307   const auto &TTICapture = TTI;
6308   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6309     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6310       return 0;
6311     InstructionCost::CostType RegUsage =
6312         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6313     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6314            "Nonsensical values for register usage.");
6315     return RegUsage;
6316   };
6317 
6318   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6319     Instruction *I = IdxToInstr[i];
6320 
6321     // Remove all of the instructions that end at this location.
6322     InstrList &List = TransposeEnds[i];
6323     for (Instruction *ToRemove : List)
6324       OpenIntervals.erase(ToRemove);
6325 
6326     // Ignore instructions that are never used within the loop.
6327     if (!Ends.count(I))
6328       continue;
6329 
6330     // Skip ignored values.
6331     if (ValuesToIgnore.count(I))
6332       continue;
6333 
6334     // For each VF find the maximum usage of registers.
6335     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6336       // Count the number of live intervals.
6337       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6338 
6339       if (VFs[j].isScalar()) {
6340         for (auto Inst : OpenIntervals) {
6341           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6342           if (RegUsage.find(ClassID) == RegUsage.end())
6343             RegUsage[ClassID] = 1;
6344           else
6345             RegUsage[ClassID] += 1;
6346         }
6347       } else {
6348         collectUniformsAndScalars(VFs[j]);
6349         for (auto Inst : OpenIntervals) {
6350           // Skip ignored values for VF > 1.
6351           if (VecValuesToIgnore.count(Inst))
6352             continue;
6353           if (isScalarAfterVectorization(Inst, VFs[j])) {
6354             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6355             if (RegUsage.find(ClassID) == RegUsage.end())
6356               RegUsage[ClassID] = 1;
6357             else
6358               RegUsage[ClassID] += 1;
6359           } else {
6360             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6361             if (RegUsage.find(ClassID) == RegUsage.end())
6362               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6363             else
6364               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6365           }
6366         }
6367       }
6368 
6369       for (auto& pair : RegUsage) {
6370         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6371           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6372         else
6373           MaxUsages[j][pair.first] = pair.second;
6374       }
6375     }
6376 
6377     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6378                       << OpenIntervals.size() << '\n');
6379 
6380     // Add the current instruction to the list of open intervals.
6381     OpenIntervals.insert(I);
6382   }
6383 
6384   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6385     SmallMapVector<unsigned, unsigned, 4> Invariant;
6386 
6387     for (auto Inst : LoopInvariants) {
6388       unsigned Usage =
6389           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6390       unsigned ClassID =
6391           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6392       if (Invariant.find(ClassID) == Invariant.end())
6393         Invariant[ClassID] = Usage;
6394       else
6395         Invariant[ClassID] += Usage;
6396     }
6397 
6398     LLVM_DEBUG({
6399       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6400       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6401              << " item\n";
6402       for (const auto &pair : MaxUsages[i]) {
6403         dbgs() << "LV(REG): RegisterClass: "
6404                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6405                << " registers\n";
6406       }
6407       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6408              << " item\n";
6409       for (const auto &pair : Invariant) {
6410         dbgs() << "LV(REG): RegisterClass: "
6411                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6412                << " registers\n";
6413       }
6414     });
6415 
6416     RU.LoopInvariantRegs = Invariant;
6417     RU.MaxLocalUsers = MaxUsages[i];
6418     RUs[i] = RU;
6419   }
6420 
6421   return RUs;
6422 }
6423 
6424 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6425   // If we aren't vectorizing the loop, or if we've already collected the
6426   // instructions to scalarize, there's nothing to do. Collection may already
6427   // have occurred if we have a user-selected VF and are now computing the
6428   // expected cost for interleaving.
6429   if (VF.isScalar() || VF.isZero() ||
6430       InstsToScalarize.find(VF) != InstsToScalarize.end())
6431     return;
6432 
6433   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6434   // not profitable to scalarize any instructions, the presence of VF in the
6435   // map will indicate that we've analyzed it already.
6436   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6437 
6438   // Find all the instructions that are scalar with predication in the loop and
6439   // determine if it would be better to not if-convert the blocks they are in.
6440   // If so, we also record the instructions to scalarize.
6441   for (BasicBlock *BB : TheLoop->blocks()) {
6442     if (!blockNeedsPredicationForAnyReason(BB))
6443       continue;
6444     for (Instruction &I : *BB)
6445       if (isScalarWithPredication(&I, VF)) {
6446         ScalarCostsTy ScalarCosts;
6447         // Do not apply discount if scalable, because that would lead to
6448         // invalid scalarization costs.
6449         if (!VF.isScalable() &&
6450             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6451           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6452         // Remember that BB will remain after vectorization.
6453         PredicatedBBsAfterVectorization.insert(BB);
6454       }
6455   }
6456 }
6457 
6458 int LoopVectorizationCostModel::computePredInstDiscount(
6459     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6460   assert(!isUniformAfterVectorization(PredInst, VF) &&
6461          "Instruction marked uniform-after-vectorization will be predicated");
6462 
6463   // Initialize the discount to zero, meaning that the scalar version and the
6464   // vector version cost the same.
6465   InstructionCost Discount = 0;
6466 
6467   // Holds instructions to analyze. The instructions we visit are mapped in
6468   // ScalarCosts. Those instructions are the ones that would be scalarized if
6469   // we find that the scalar version costs less.
6470   SmallVector<Instruction *, 8> Worklist;
6471 
6472   // Returns true if the given instruction can be scalarized.
6473   auto canBeScalarized = [&](Instruction *I) -> bool {
6474     // We only attempt to scalarize instructions forming a single-use chain
6475     // from the original predicated block that would otherwise be vectorized.
6476     // Although not strictly necessary, we give up on instructions we know will
6477     // already be scalar to avoid traversing chains that are unlikely to be
6478     // beneficial.
6479     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6480         isScalarAfterVectorization(I, VF))
6481       return false;
6482 
6483     // If the instruction is scalar with predication, it will be analyzed
6484     // separately. We ignore it within the context of PredInst.
6485     if (isScalarWithPredication(I, VF))
6486       return false;
6487 
6488     // If any of the instruction's operands are uniform after vectorization,
6489     // the instruction cannot be scalarized. This prevents, for example, a
6490     // masked load from being scalarized.
6491     //
6492     // We assume we will only emit a value for lane zero of an instruction
6493     // marked uniform after vectorization, rather than VF identical values.
6494     // Thus, if we scalarize an instruction that uses a uniform, we would
6495     // create uses of values corresponding to the lanes we aren't emitting code
6496     // for. This behavior can be changed by allowing getScalarValue to clone
6497     // the lane zero values for uniforms rather than asserting.
6498     for (Use &U : I->operands())
6499       if (auto *J = dyn_cast<Instruction>(U.get()))
6500         if (isUniformAfterVectorization(J, VF))
6501           return false;
6502 
6503     // Otherwise, we can scalarize the instruction.
6504     return true;
6505   };
6506 
6507   // Compute the expected cost discount from scalarizing the entire expression
6508   // feeding the predicated instruction. We currently only consider expressions
6509   // that are single-use instruction chains.
6510   Worklist.push_back(PredInst);
6511   while (!Worklist.empty()) {
6512     Instruction *I = Worklist.pop_back_val();
6513 
6514     // If we've already analyzed the instruction, there's nothing to do.
6515     if (ScalarCosts.find(I) != ScalarCosts.end())
6516       continue;
6517 
6518     // Compute the cost of the vector instruction. Note that this cost already
6519     // includes the scalarization overhead of the predicated instruction.
6520     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6521 
6522     // Compute the cost of the scalarized instruction. This cost is the cost of
6523     // the instruction as if it wasn't if-converted and instead remained in the
6524     // predicated block. We will scale this cost by block probability after
6525     // computing the scalarization overhead.
6526     InstructionCost ScalarCost =
6527         VF.getFixedValue() *
6528         getInstructionCost(I, ElementCount::getFixed(1)).first;
6529 
6530     // Compute the scalarization overhead of needed insertelement instructions
6531     // and phi nodes.
6532     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6533       ScalarCost += TTI.getScalarizationOverhead(
6534           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6535           APInt::getAllOnes(VF.getFixedValue()), true, false);
6536       ScalarCost +=
6537           VF.getFixedValue() *
6538           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6539     }
6540 
6541     // Compute the scalarization overhead of needed extractelement
6542     // instructions. For each of the instruction's operands, if the operand can
6543     // be scalarized, add it to the worklist; otherwise, account for the
6544     // overhead.
6545     for (Use &U : I->operands())
6546       if (auto *J = dyn_cast<Instruction>(U.get())) {
6547         assert(VectorType::isValidElementType(J->getType()) &&
6548                "Instruction has non-scalar type");
6549         if (canBeScalarized(J))
6550           Worklist.push_back(J);
6551         else if (needsExtract(J, VF)) {
6552           ScalarCost += TTI.getScalarizationOverhead(
6553               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6554               APInt::getAllOnes(VF.getFixedValue()), false, true);
6555         }
6556       }
6557 
6558     // Scale the total scalar cost by block probability.
6559     ScalarCost /= getReciprocalPredBlockProb();
6560 
6561     // Compute the discount. A non-negative discount means the vector version
6562     // of the instruction costs more, and scalarizing would be beneficial.
6563     Discount += VectorCost - ScalarCost;
6564     ScalarCosts[I] = ScalarCost;
6565   }
6566 
6567   return *Discount.getValue();
6568 }
6569 
6570 LoopVectorizationCostModel::VectorizationCostTy
6571 LoopVectorizationCostModel::expectedCost(
6572     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6573   VectorizationCostTy Cost;
6574 
6575   // For each block.
6576   for (BasicBlock *BB : TheLoop->blocks()) {
6577     VectorizationCostTy BlockCost;
6578 
6579     // For each instruction in the old loop.
6580     for (Instruction &I : BB->instructionsWithoutDebug()) {
6581       // Skip ignored values.
6582       if (ValuesToIgnore.count(&I) ||
6583           (VF.isVector() && VecValuesToIgnore.count(&I)))
6584         continue;
6585 
6586       VectorizationCostTy C = getInstructionCost(&I, VF);
6587 
6588       // Check if we should override the cost.
6589       if (C.first.isValid() &&
6590           ForceTargetInstructionCost.getNumOccurrences() > 0)
6591         C.first = InstructionCost(ForceTargetInstructionCost);
6592 
6593       // Keep a list of instructions with invalid costs.
6594       if (Invalid && !C.first.isValid())
6595         Invalid->emplace_back(&I, VF);
6596 
6597       BlockCost.first += C.first;
6598       BlockCost.second |= C.second;
6599       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6600                         << " for VF " << VF << " For instruction: " << I
6601                         << '\n');
6602     }
6603 
6604     // If we are vectorizing a predicated block, it will have been
6605     // if-converted. This means that the block's instructions (aside from
6606     // stores and instructions that may divide by zero) will now be
6607     // unconditionally executed. For the scalar case, we may not always execute
6608     // the predicated block, if it is an if-else block. Thus, scale the block's
6609     // cost by the probability of executing it. blockNeedsPredication from
6610     // Legal is used so as to not include all blocks in tail folded loops.
6611     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6612       BlockCost.first /= getReciprocalPredBlockProb();
6613 
6614     Cost.first += BlockCost.first;
6615     Cost.second |= BlockCost.second;
6616   }
6617 
6618   return Cost;
6619 }
6620 
6621 /// Gets Address Access SCEV after verifying that the access pattern
6622 /// is loop invariant except the induction variable dependence.
6623 ///
6624 /// This SCEV can be sent to the Target in order to estimate the address
6625 /// calculation cost.
6626 static const SCEV *getAddressAccessSCEV(
6627               Value *Ptr,
6628               LoopVectorizationLegality *Legal,
6629               PredicatedScalarEvolution &PSE,
6630               const Loop *TheLoop) {
6631 
6632   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6633   if (!Gep)
6634     return nullptr;
6635 
6636   // We are looking for a gep with all loop invariant indices except for one
6637   // which should be an induction variable.
6638   auto SE = PSE.getSE();
6639   unsigned NumOperands = Gep->getNumOperands();
6640   for (unsigned i = 1; i < NumOperands; ++i) {
6641     Value *Opd = Gep->getOperand(i);
6642     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6643         !Legal->isInductionVariable(Opd))
6644       return nullptr;
6645   }
6646 
6647   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6648   return PSE.getSCEV(Ptr);
6649 }
6650 
6651 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6652   return Legal->hasStride(I->getOperand(0)) ||
6653          Legal->hasStride(I->getOperand(1));
6654 }
6655 
6656 InstructionCost
6657 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6658                                                         ElementCount VF) {
6659   assert(VF.isVector() &&
6660          "Scalarization cost of instruction implies vectorization.");
6661   if (VF.isScalable())
6662     return InstructionCost::getInvalid();
6663 
6664   Type *ValTy = getLoadStoreType(I);
6665   auto SE = PSE.getSE();
6666 
6667   unsigned AS = getLoadStoreAddressSpace(I);
6668   Value *Ptr = getLoadStorePointerOperand(I);
6669   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6670   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6671   //       that it is being called from this specific place.
6672 
6673   // Figure out whether the access is strided and get the stride value
6674   // if it's known in compile time
6675   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6676 
6677   // Get the cost of the scalar memory instruction and address computation.
6678   InstructionCost Cost =
6679       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6680 
6681   // Don't pass *I here, since it is scalar but will actually be part of a
6682   // vectorized loop where the user of it is a vectorized instruction.
6683   const Align Alignment = getLoadStoreAlignment(I);
6684   Cost += VF.getKnownMinValue() *
6685           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6686                               AS, TTI::TCK_RecipThroughput);
6687 
6688   // Get the overhead of the extractelement and insertelement instructions
6689   // we might create due to scalarization.
6690   Cost += getScalarizationOverhead(I, VF);
6691 
6692   // If we have a predicated load/store, it will need extra i1 extracts and
6693   // conditional branches, but may not be executed for each vector lane. Scale
6694   // the cost by the probability of executing the predicated block.
6695   if (isPredicatedInst(I, VF)) {
6696     Cost /= getReciprocalPredBlockProb();
6697 
6698     // Add the cost of an i1 extract and a branch
6699     auto *Vec_i1Ty =
6700         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6701     Cost += TTI.getScalarizationOverhead(
6702         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6703         /*Insert=*/false, /*Extract=*/true);
6704     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6705   }
6706 
6707   return Cost;
6708 }
6709 
6710 InstructionCost
6711 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6712                                                     ElementCount VF) {
6713   Type *ValTy = getLoadStoreType(I);
6714   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6715   Value *Ptr = getLoadStorePointerOperand(I);
6716   unsigned AS = getLoadStoreAddressSpace(I);
6717   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6718   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6719 
6720   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6721          "Stride should be 1 or -1 for consecutive memory access");
6722   const Align Alignment = getLoadStoreAlignment(I);
6723   InstructionCost Cost = 0;
6724   if (Legal->isMaskRequired(I))
6725     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6726                                       CostKind);
6727   else
6728     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6729                                 CostKind, I);
6730 
6731   bool Reverse = ConsecutiveStride < 0;
6732   if (Reverse)
6733     Cost +=
6734         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6735   return Cost;
6736 }
6737 
6738 InstructionCost
6739 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6740                                                 ElementCount VF) {
6741   assert(Legal->isUniformMemOp(*I));
6742 
6743   Type *ValTy = getLoadStoreType(I);
6744   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6745   const Align Alignment = getLoadStoreAlignment(I);
6746   unsigned AS = getLoadStoreAddressSpace(I);
6747   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6748   if (isa<LoadInst>(I)) {
6749     return TTI.getAddressComputationCost(ValTy) +
6750            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6751                                CostKind) +
6752            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6753   }
6754   StoreInst *SI = cast<StoreInst>(I);
6755 
6756   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6757   return TTI.getAddressComputationCost(ValTy) +
6758          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6759                              CostKind) +
6760          (isLoopInvariantStoreValue
6761               ? 0
6762               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6763                                        VF.getKnownMinValue() - 1));
6764 }
6765 
6766 InstructionCost
6767 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6768                                                  ElementCount VF) {
6769   Type *ValTy = getLoadStoreType(I);
6770   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6771   const Align Alignment = getLoadStoreAlignment(I);
6772   const Value *Ptr = getLoadStorePointerOperand(I);
6773 
6774   return TTI.getAddressComputationCost(VectorTy) +
6775          TTI.getGatherScatterOpCost(
6776              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6777              TargetTransformInfo::TCK_RecipThroughput, I);
6778 }
6779 
6780 InstructionCost
6781 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6782                                                    ElementCount VF) {
6783   // TODO: Once we have support for interleaving with scalable vectors
6784   // we can calculate the cost properly here.
6785   if (VF.isScalable())
6786     return InstructionCost::getInvalid();
6787 
6788   Type *ValTy = getLoadStoreType(I);
6789   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6790   unsigned AS = getLoadStoreAddressSpace(I);
6791 
6792   auto Group = getInterleavedAccessGroup(I);
6793   assert(Group && "Fail to get an interleaved access group.");
6794 
6795   unsigned InterleaveFactor = Group->getFactor();
6796   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6797 
6798   // Holds the indices of existing members in the interleaved group.
6799   SmallVector<unsigned, 4> Indices;
6800   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6801     if (Group->getMember(IF))
6802       Indices.push_back(IF);
6803 
6804   // Calculate the cost of the whole interleaved group.
6805   bool UseMaskForGaps =
6806       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6807       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6808   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6809       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6810       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6811 
6812   if (Group->isReverse()) {
6813     // TODO: Add support for reversed masked interleaved access.
6814     assert(!Legal->isMaskRequired(I) &&
6815            "Reverse masked interleaved access not supported.");
6816     Cost +=
6817         Group->getNumMembers() *
6818         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6819   }
6820   return Cost;
6821 }
6822 
6823 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6824     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6825   using namespace llvm::PatternMatch;
6826   // Early exit for no inloop reductions
6827   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6828     return None;
6829   auto *VectorTy = cast<VectorType>(Ty);
6830 
6831   // We are looking for a pattern of, and finding the minimal acceptable cost:
6832   //  reduce(mul(ext(A), ext(B))) or
6833   //  reduce(mul(A, B)) or
6834   //  reduce(ext(A)) or
6835   //  reduce(A).
6836   // The basic idea is that we walk down the tree to do that, finding the root
6837   // reduction instruction in InLoopReductionImmediateChains. From there we find
6838   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6839   // of the components. If the reduction cost is lower then we return it for the
6840   // reduction instruction and 0 for the other instructions in the pattern. If
6841   // it is not we return an invalid cost specifying the orignal cost method
6842   // should be used.
6843   Instruction *RetI = I;
6844   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6845     if (!RetI->hasOneUser())
6846       return None;
6847     RetI = RetI->user_back();
6848   }
6849   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6850       RetI->user_back()->getOpcode() == Instruction::Add) {
6851     if (!RetI->hasOneUser())
6852       return None;
6853     RetI = RetI->user_back();
6854   }
6855 
6856   // Test if the found instruction is a reduction, and if not return an invalid
6857   // cost specifying the parent to use the original cost modelling.
6858   if (!InLoopReductionImmediateChains.count(RetI))
6859     return None;
6860 
6861   // Find the reduction this chain is a part of and calculate the basic cost of
6862   // the reduction on its own.
6863   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6864   Instruction *ReductionPhi = LastChain;
6865   while (!isa<PHINode>(ReductionPhi))
6866     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6867 
6868   const RecurrenceDescriptor &RdxDesc =
6869       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6870 
6871   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6872       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6873 
6874   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6875   // normal fmul instruction to the cost of the fadd reduction.
6876   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6877     BaseCost +=
6878         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6879 
6880   // If we're using ordered reductions then we can just return the base cost
6881   // here, since getArithmeticReductionCost calculates the full ordered
6882   // reduction cost when FP reassociation is not allowed.
6883   if (useOrderedReductions(RdxDesc))
6884     return BaseCost;
6885 
6886   // Get the operand that was not the reduction chain and match it to one of the
6887   // patterns, returning the better cost if it is found.
6888   Instruction *RedOp = RetI->getOperand(1) == LastChain
6889                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6890                            : dyn_cast<Instruction>(RetI->getOperand(1));
6891 
6892   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6893 
6894   Instruction *Op0, *Op1;
6895   if (RedOp &&
6896       match(RedOp,
6897             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6898       match(Op0, m_ZExtOrSExt(m_Value())) &&
6899       Op0->getOpcode() == Op1->getOpcode() &&
6900       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6901       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6902       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6903 
6904     // Matched reduce(ext(mul(ext(A), ext(B)))
6905     // Note that the extend opcodes need to all match, or if A==B they will have
6906     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6907     // which is equally fine.
6908     bool IsUnsigned = isa<ZExtInst>(Op0);
6909     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6910     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6911 
6912     InstructionCost ExtCost =
6913         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6914                              TTI::CastContextHint::None, CostKind, Op0);
6915     InstructionCost MulCost =
6916         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6917     InstructionCost Ext2Cost =
6918         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6919                              TTI::CastContextHint::None, CostKind, RedOp);
6920 
6921     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6922         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6923         CostKind);
6924 
6925     if (RedCost.isValid() &&
6926         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6927       return I == RetI ? RedCost : 0;
6928   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6929              !TheLoop->isLoopInvariant(RedOp)) {
6930     // Matched reduce(ext(A))
6931     bool IsUnsigned = isa<ZExtInst>(RedOp);
6932     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6933     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6934         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6935         CostKind);
6936 
6937     InstructionCost ExtCost =
6938         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6939                              TTI::CastContextHint::None, CostKind, RedOp);
6940     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6941       return I == RetI ? RedCost : 0;
6942   } else if (RedOp &&
6943              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6944     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6945         Op0->getOpcode() == Op1->getOpcode() &&
6946         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6947       bool IsUnsigned = isa<ZExtInst>(Op0);
6948       Type *Op0Ty = Op0->getOperand(0)->getType();
6949       Type *Op1Ty = Op1->getOperand(0)->getType();
6950       Type *LargestOpTy =
6951           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6952                                                                     : Op0Ty;
6953       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6954 
6955       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6956       // different sizes. We take the largest type as the ext to reduce, and add
6957       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6958       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6959           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6960           TTI::CastContextHint::None, CostKind, Op0);
6961       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6962           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6963           TTI::CastContextHint::None, CostKind, Op1);
6964       InstructionCost MulCost =
6965           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6966 
6967       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6968           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6969           CostKind);
6970       InstructionCost ExtraExtCost = 0;
6971       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6972         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6973         ExtraExtCost = TTI.getCastInstrCost(
6974             ExtraExtOp->getOpcode(), ExtType,
6975             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6976             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6977       }
6978 
6979       if (RedCost.isValid() &&
6980           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6981         return I == RetI ? RedCost : 0;
6982     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6983       // Matched reduce(mul())
6984       InstructionCost MulCost =
6985           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6986 
6987       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6988           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6989           CostKind);
6990 
6991       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6992         return I == RetI ? RedCost : 0;
6993     }
6994   }
6995 
6996   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6997 }
6998 
6999 InstructionCost
7000 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7001                                                      ElementCount VF) {
7002   // Calculate scalar cost only. Vectorization cost should be ready at this
7003   // moment.
7004   if (VF.isScalar()) {
7005     Type *ValTy = getLoadStoreType(I);
7006     const Align Alignment = getLoadStoreAlignment(I);
7007     unsigned AS = getLoadStoreAddressSpace(I);
7008 
7009     return TTI.getAddressComputationCost(ValTy) +
7010            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7011                                TTI::TCK_RecipThroughput, I);
7012   }
7013   return getWideningCost(I, VF);
7014 }
7015 
7016 LoopVectorizationCostModel::VectorizationCostTy
7017 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7018                                                ElementCount VF) {
7019   // If we know that this instruction will remain uniform, check the cost of
7020   // the scalar version.
7021   if (isUniformAfterVectorization(I, VF))
7022     VF = ElementCount::getFixed(1);
7023 
7024   if (VF.isVector() && isProfitableToScalarize(I, VF))
7025     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7026 
7027   // Forced scalars do not have any scalarization overhead.
7028   auto ForcedScalar = ForcedScalars.find(VF);
7029   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7030     auto InstSet = ForcedScalar->second;
7031     if (InstSet.count(I))
7032       return VectorizationCostTy(
7033           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7034            VF.getKnownMinValue()),
7035           false);
7036   }
7037 
7038   Type *VectorTy;
7039   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7040 
7041   bool TypeNotScalarized = false;
7042   if (VF.isVector() && VectorTy->isVectorTy()) {
7043     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7044     if (NumParts)
7045       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7046     else
7047       C = InstructionCost::getInvalid();
7048   }
7049   return VectorizationCostTy(C, TypeNotScalarized);
7050 }
7051 
7052 InstructionCost
7053 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7054                                                      ElementCount VF) const {
7055 
7056   // There is no mechanism yet to create a scalable scalarization loop,
7057   // so this is currently Invalid.
7058   if (VF.isScalable())
7059     return InstructionCost::getInvalid();
7060 
7061   if (VF.isScalar())
7062     return 0;
7063 
7064   InstructionCost Cost = 0;
7065   Type *RetTy = ToVectorTy(I->getType(), VF);
7066   if (!RetTy->isVoidTy() &&
7067       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7068     Cost += TTI.getScalarizationOverhead(
7069         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7070         false);
7071 
7072   // Some targets keep addresses scalar.
7073   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7074     return Cost;
7075 
7076   // Some targets support efficient element stores.
7077   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7078     return Cost;
7079 
7080   // Collect operands to consider.
7081   CallInst *CI = dyn_cast<CallInst>(I);
7082   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7083 
7084   // Skip operands that do not require extraction/scalarization and do not incur
7085   // any overhead.
7086   SmallVector<Type *> Tys;
7087   for (auto *V : filterExtractingOperands(Ops, VF))
7088     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7089   return Cost + TTI.getOperandsScalarizationOverhead(
7090                     filterExtractingOperands(Ops, VF), Tys);
7091 }
7092 
7093 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7094   if (VF.isScalar())
7095     return;
7096   NumPredStores = 0;
7097   for (BasicBlock *BB : TheLoop->blocks()) {
7098     // For each instruction in the old loop.
7099     for (Instruction &I : *BB) {
7100       Value *Ptr =  getLoadStorePointerOperand(&I);
7101       if (!Ptr)
7102         continue;
7103 
7104       // TODO: We should generate better code and update the cost model for
7105       // predicated uniform stores. Today they are treated as any other
7106       // predicated store (see added test cases in
7107       // invariant-store-vectorization.ll).
7108       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
7109         NumPredStores++;
7110 
7111       if (Legal->isUniformMemOp(I)) {
7112         // TODO: Avoid replicating loads and stores instead of
7113         // relying on instcombine to remove them.
7114         // Load: Scalar load + broadcast
7115         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7116         InstructionCost Cost;
7117         if (isa<StoreInst>(&I) && VF.isScalable() &&
7118             isLegalGatherOrScatter(&I, VF)) {
7119           Cost = getGatherScatterCost(&I, VF);
7120           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7121         } else {
7122           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7123                  "Cannot yet scalarize uniform stores");
7124           Cost = getUniformMemOpCost(&I, VF);
7125           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7126         }
7127         continue;
7128       }
7129 
7130       // We assume that widening is the best solution when possible.
7131       if (memoryInstructionCanBeWidened(&I, VF)) {
7132         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7133         int ConsecutiveStride = Legal->isConsecutivePtr(
7134             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7135         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7136                "Expected consecutive stride.");
7137         InstWidening Decision =
7138             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7139         setWideningDecision(&I, VF, Decision, Cost);
7140         continue;
7141       }
7142 
7143       // Choose between Interleaving, Gather/Scatter or Scalarization.
7144       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7145       unsigned NumAccesses = 1;
7146       if (isAccessInterleaved(&I)) {
7147         auto Group = getInterleavedAccessGroup(&I);
7148         assert(Group && "Fail to get an interleaved access group.");
7149 
7150         // Make one decision for the whole group.
7151         if (getWideningDecision(&I, VF) != CM_Unknown)
7152           continue;
7153 
7154         NumAccesses = Group->getNumMembers();
7155         if (interleavedAccessCanBeWidened(&I, VF))
7156           InterleaveCost = getInterleaveGroupCost(&I, VF);
7157       }
7158 
7159       InstructionCost GatherScatterCost =
7160           isLegalGatherOrScatter(&I, VF)
7161               ? getGatherScatterCost(&I, VF) * NumAccesses
7162               : InstructionCost::getInvalid();
7163 
7164       InstructionCost ScalarizationCost =
7165           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7166 
7167       // Choose better solution for the current VF,
7168       // write down this decision and use it during vectorization.
7169       InstructionCost Cost;
7170       InstWidening Decision;
7171       if (InterleaveCost <= GatherScatterCost &&
7172           InterleaveCost < ScalarizationCost) {
7173         Decision = CM_Interleave;
7174         Cost = InterleaveCost;
7175       } else if (GatherScatterCost < ScalarizationCost) {
7176         Decision = CM_GatherScatter;
7177         Cost = GatherScatterCost;
7178       } else {
7179         Decision = CM_Scalarize;
7180         Cost = ScalarizationCost;
7181       }
7182       // If the instructions belongs to an interleave group, the whole group
7183       // receives the same decision. The whole group receives the cost, but
7184       // the cost will actually be assigned to one instruction.
7185       if (auto Group = getInterleavedAccessGroup(&I))
7186         setWideningDecision(Group, VF, Decision, Cost);
7187       else
7188         setWideningDecision(&I, VF, Decision, Cost);
7189     }
7190   }
7191 
7192   // Make sure that any load of address and any other address computation
7193   // remains scalar unless there is gather/scatter support. This avoids
7194   // inevitable extracts into address registers, and also has the benefit of
7195   // activating LSR more, since that pass can't optimize vectorized
7196   // addresses.
7197   if (TTI.prefersVectorizedAddressing())
7198     return;
7199 
7200   // Start with all scalar pointer uses.
7201   SmallPtrSet<Instruction *, 8> AddrDefs;
7202   for (BasicBlock *BB : TheLoop->blocks())
7203     for (Instruction &I : *BB) {
7204       Instruction *PtrDef =
7205         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7206       if (PtrDef && TheLoop->contains(PtrDef) &&
7207           getWideningDecision(&I, VF) != CM_GatherScatter)
7208         AddrDefs.insert(PtrDef);
7209     }
7210 
7211   // Add all instructions used to generate the addresses.
7212   SmallVector<Instruction *, 4> Worklist;
7213   append_range(Worklist, AddrDefs);
7214   while (!Worklist.empty()) {
7215     Instruction *I = Worklist.pop_back_val();
7216     for (auto &Op : I->operands())
7217       if (auto *InstOp = dyn_cast<Instruction>(Op))
7218         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7219             AddrDefs.insert(InstOp).second)
7220           Worklist.push_back(InstOp);
7221   }
7222 
7223   for (auto *I : AddrDefs) {
7224     if (isa<LoadInst>(I)) {
7225       // Setting the desired widening decision should ideally be handled in
7226       // by cost functions, but since this involves the task of finding out
7227       // if the loaded register is involved in an address computation, it is
7228       // instead changed here when we know this is the case.
7229       InstWidening Decision = getWideningDecision(I, VF);
7230       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7231         // Scalarize a widened load of address.
7232         setWideningDecision(
7233             I, VF, CM_Scalarize,
7234             (VF.getKnownMinValue() *
7235              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7236       else if (auto Group = getInterleavedAccessGroup(I)) {
7237         // Scalarize an interleave group of address loads.
7238         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7239           if (Instruction *Member = Group->getMember(I))
7240             setWideningDecision(
7241                 Member, VF, CM_Scalarize,
7242                 (VF.getKnownMinValue() *
7243                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7244         }
7245       }
7246     } else
7247       // Make sure I gets scalarized and a cost estimate without
7248       // scalarization overhead.
7249       ForcedScalars[VF].insert(I);
7250   }
7251 }
7252 
7253 InstructionCost
7254 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7255                                                Type *&VectorTy) {
7256   Type *RetTy = I->getType();
7257   if (canTruncateToMinimalBitwidth(I, VF))
7258     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7259   auto SE = PSE.getSE();
7260   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7261 
7262   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7263                                                 ElementCount VF) -> bool {
7264     if (VF.isScalar())
7265       return true;
7266 
7267     auto Scalarized = InstsToScalarize.find(VF);
7268     assert(Scalarized != InstsToScalarize.end() &&
7269            "VF not yet analyzed for scalarization profitability");
7270     return !Scalarized->second.count(I) &&
7271            llvm::all_of(I->users(), [&](User *U) {
7272              auto *UI = cast<Instruction>(U);
7273              return !Scalarized->second.count(UI);
7274            });
7275   };
7276   (void) hasSingleCopyAfterVectorization;
7277 
7278   if (isScalarAfterVectorization(I, VF)) {
7279     // With the exception of GEPs and PHIs, after scalarization there should
7280     // only be one copy of the instruction generated in the loop. This is
7281     // because the VF is either 1, or any instructions that need scalarizing
7282     // have already been dealt with by the the time we get here. As a result,
7283     // it means we don't have to multiply the instruction cost by VF.
7284     assert(I->getOpcode() == Instruction::GetElementPtr ||
7285            I->getOpcode() == Instruction::PHI ||
7286            (I->getOpcode() == Instruction::BitCast &&
7287             I->getType()->isPointerTy()) ||
7288            hasSingleCopyAfterVectorization(I, VF));
7289     VectorTy = RetTy;
7290   } else
7291     VectorTy = ToVectorTy(RetTy, VF);
7292 
7293   // TODO: We need to estimate the cost of intrinsic calls.
7294   switch (I->getOpcode()) {
7295   case Instruction::GetElementPtr:
7296     // We mark this instruction as zero-cost because the cost of GEPs in
7297     // vectorized code depends on whether the corresponding memory instruction
7298     // is scalarized or not. Therefore, we handle GEPs with the memory
7299     // instruction cost.
7300     return 0;
7301   case Instruction::Br: {
7302     // In cases of scalarized and predicated instructions, there will be VF
7303     // predicated blocks in the vectorized loop. Each branch around these
7304     // blocks requires also an extract of its vector compare i1 element.
7305     bool ScalarPredicatedBB = false;
7306     BranchInst *BI = cast<BranchInst>(I);
7307     if (VF.isVector() && BI->isConditional() &&
7308         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7309          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7310       ScalarPredicatedBB = true;
7311 
7312     if (ScalarPredicatedBB) {
7313       // Not possible to scalarize scalable vector with predicated instructions.
7314       if (VF.isScalable())
7315         return InstructionCost::getInvalid();
7316       // Return cost for branches around scalarized and predicated blocks.
7317       auto *Vec_i1Ty =
7318           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7319       return (
7320           TTI.getScalarizationOverhead(
7321               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7322           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7323     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7324       // The back-edge branch will remain, as will all scalar branches.
7325       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7326     else
7327       // This branch will be eliminated by if-conversion.
7328       return 0;
7329     // Note: We currently assume zero cost for an unconditional branch inside
7330     // a predicated block since it will become a fall-through, although we
7331     // may decide in the future to call TTI for all branches.
7332   }
7333   case Instruction::PHI: {
7334     auto *Phi = cast<PHINode>(I);
7335 
7336     // First-order recurrences are replaced by vector shuffles inside the loop.
7337     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7338     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7339       return TTI.getShuffleCost(
7340           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7341           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7342 
7343     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7344     // converted into select instructions. We require N - 1 selects per phi
7345     // node, where N is the number of incoming values.
7346     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7347       return (Phi->getNumIncomingValues() - 1) *
7348              TTI.getCmpSelInstrCost(
7349                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7350                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7351                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7352 
7353     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7354   }
7355   case Instruction::UDiv:
7356   case Instruction::SDiv:
7357   case Instruction::URem:
7358   case Instruction::SRem:
7359     // If we have a predicated instruction, it may not be executed for each
7360     // vector lane. Get the scalarization cost and scale this amount by the
7361     // probability of executing the predicated block. If the instruction is not
7362     // predicated, we fall through to the next case.
7363     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7364       InstructionCost Cost = 0;
7365 
7366       // These instructions have a non-void type, so account for the phi nodes
7367       // that we will create. This cost is likely to be zero. The phi node
7368       // cost, if any, should be scaled by the block probability because it
7369       // models a copy at the end of each predicated block.
7370       Cost += VF.getKnownMinValue() *
7371               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7372 
7373       // The cost of the non-predicated instruction.
7374       Cost += VF.getKnownMinValue() *
7375               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7376 
7377       // The cost of insertelement and extractelement instructions needed for
7378       // scalarization.
7379       Cost += getScalarizationOverhead(I, VF);
7380 
7381       // Scale the cost by the probability of executing the predicated blocks.
7382       // This assumes the predicated block for each vector lane is equally
7383       // likely.
7384       return Cost / getReciprocalPredBlockProb();
7385     }
7386     LLVM_FALLTHROUGH;
7387   case Instruction::Add:
7388   case Instruction::FAdd:
7389   case Instruction::Sub:
7390   case Instruction::FSub:
7391   case Instruction::Mul:
7392   case Instruction::FMul:
7393   case Instruction::FDiv:
7394   case Instruction::FRem:
7395   case Instruction::Shl:
7396   case Instruction::LShr:
7397   case Instruction::AShr:
7398   case Instruction::And:
7399   case Instruction::Or:
7400   case Instruction::Xor: {
7401     // Since we will replace the stride by 1 the multiplication should go away.
7402     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7403       return 0;
7404 
7405     // Detect reduction patterns
7406     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7407       return *RedCost;
7408 
7409     // Certain instructions can be cheaper to vectorize if they have a constant
7410     // second vector operand. One example of this are shifts on x86.
7411     Value *Op2 = I->getOperand(1);
7412     TargetTransformInfo::OperandValueProperties Op2VP;
7413     TargetTransformInfo::OperandValueKind Op2VK =
7414         TTI.getOperandInfo(Op2, Op2VP);
7415     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7416       Op2VK = TargetTransformInfo::OK_UniformValue;
7417 
7418     SmallVector<const Value *, 4> Operands(I->operand_values());
7419     return TTI.getArithmeticInstrCost(
7420         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7421         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7422   }
7423   case Instruction::FNeg: {
7424     return TTI.getArithmeticInstrCost(
7425         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7426         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7427         TargetTransformInfo::OP_None, I->getOperand(0), I);
7428   }
7429   case Instruction::Select: {
7430     SelectInst *SI = cast<SelectInst>(I);
7431     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7432     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7433 
7434     const Value *Op0, *Op1;
7435     using namespace llvm::PatternMatch;
7436     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7437                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7438       // select x, y, false --> x & y
7439       // select x, true, y --> x | y
7440       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7441       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7442       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7443       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7444       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7445               Op1->getType()->getScalarSizeInBits() == 1);
7446 
7447       SmallVector<const Value *, 2> Operands{Op0, Op1};
7448       return TTI.getArithmeticInstrCost(
7449           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7450           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7451     }
7452 
7453     Type *CondTy = SI->getCondition()->getType();
7454     if (!ScalarCond)
7455       CondTy = VectorType::get(CondTy, VF);
7456 
7457     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7458     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7459       Pred = Cmp->getPredicate();
7460     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7461                                   CostKind, I);
7462   }
7463   case Instruction::ICmp:
7464   case Instruction::FCmp: {
7465     Type *ValTy = I->getOperand(0)->getType();
7466     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7467     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7468       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7469     VectorTy = ToVectorTy(ValTy, VF);
7470     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7471                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7472                                   I);
7473   }
7474   case Instruction::Store:
7475   case Instruction::Load: {
7476     ElementCount Width = VF;
7477     if (Width.isVector()) {
7478       InstWidening Decision = getWideningDecision(I, Width);
7479       assert(Decision != CM_Unknown &&
7480              "CM decision should be taken at this point");
7481       if (Decision == CM_Scalarize)
7482         Width = ElementCount::getFixed(1);
7483     }
7484     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7485     return getMemoryInstructionCost(I, VF);
7486   }
7487   case Instruction::BitCast:
7488     if (I->getType()->isPointerTy())
7489       return 0;
7490     LLVM_FALLTHROUGH;
7491   case Instruction::ZExt:
7492   case Instruction::SExt:
7493   case Instruction::FPToUI:
7494   case Instruction::FPToSI:
7495   case Instruction::FPExt:
7496   case Instruction::PtrToInt:
7497   case Instruction::IntToPtr:
7498   case Instruction::SIToFP:
7499   case Instruction::UIToFP:
7500   case Instruction::Trunc:
7501   case Instruction::FPTrunc: {
7502     // Computes the CastContextHint from a Load/Store instruction.
7503     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7504       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7505              "Expected a load or a store!");
7506 
7507       if (VF.isScalar() || !TheLoop->contains(I))
7508         return TTI::CastContextHint::Normal;
7509 
7510       switch (getWideningDecision(I, VF)) {
7511       case LoopVectorizationCostModel::CM_GatherScatter:
7512         return TTI::CastContextHint::GatherScatter;
7513       case LoopVectorizationCostModel::CM_Interleave:
7514         return TTI::CastContextHint::Interleave;
7515       case LoopVectorizationCostModel::CM_Scalarize:
7516       case LoopVectorizationCostModel::CM_Widen:
7517         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7518                                         : TTI::CastContextHint::Normal;
7519       case LoopVectorizationCostModel::CM_Widen_Reverse:
7520         return TTI::CastContextHint::Reversed;
7521       case LoopVectorizationCostModel::CM_Unknown:
7522         llvm_unreachable("Instr did not go through cost modelling?");
7523       }
7524 
7525       llvm_unreachable("Unhandled case!");
7526     };
7527 
7528     unsigned Opcode = I->getOpcode();
7529     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7530     // For Trunc, the context is the only user, which must be a StoreInst.
7531     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7532       if (I->hasOneUse())
7533         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7534           CCH = ComputeCCH(Store);
7535     }
7536     // For Z/Sext, the context is the operand, which must be a LoadInst.
7537     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7538              Opcode == Instruction::FPExt) {
7539       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7540         CCH = ComputeCCH(Load);
7541     }
7542 
7543     // We optimize the truncation of induction variables having constant
7544     // integer steps. The cost of these truncations is the same as the scalar
7545     // operation.
7546     if (isOptimizableIVTruncate(I, VF)) {
7547       auto *Trunc = cast<TruncInst>(I);
7548       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7549                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7550     }
7551 
7552     // Detect reduction patterns
7553     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7554       return *RedCost;
7555 
7556     Type *SrcScalarTy = I->getOperand(0)->getType();
7557     Type *SrcVecTy =
7558         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7559     if (canTruncateToMinimalBitwidth(I, VF)) {
7560       // This cast is going to be shrunk. This may remove the cast or it might
7561       // turn it into slightly different cast. For example, if MinBW == 16,
7562       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7563       //
7564       // Calculate the modified src and dest types.
7565       Type *MinVecTy = VectorTy;
7566       if (Opcode == Instruction::Trunc) {
7567         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7568         VectorTy =
7569             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7570       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7571         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7572         VectorTy =
7573             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7574       }
7575     }
7576 
7577     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7578   }
7579   case Instruction::Call: {
7580     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7581       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7582         return *RedCost;
7583     bool NeedToScalarize;
7584     CallInst *CI = cast<CallInst>(I);
7585     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7586     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7587       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7588       return std::min(CallCost, IntrinsicCost);
7589     }
7590     return CallCost;
7591   }
7592   case Instruction::ExtractValue:
7593     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7594   case Instruction::Alloca:
7595     // We cannot easily widen alloca to a scalable alloca, as
7596     // the result would need to be a vector of pointers.
7597     if (VF.isScalable())
7598       return InstructionCost::getInvalid();
7599     LLVM_FALLTHROUGH;
7600   default:
7601     // This opcode is unknown. Assume that it is the same as 'mul'.
7602     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7603   } // end of switch.
7604 }
7605 
7606 char LoopVectorize::ID = 0;
7607 
7608 static const char lv_name[] = "Loop Vectorization";
7609 
7610 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7611 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7612 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7613 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7614 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7615 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7616 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7617 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7618 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7619 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7620 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7621 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7622 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7623 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7624 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7625 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7626 
7627 namespace llvm {
7628 
7629 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7630 
7631 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7632                               bool VectorizeOnlyWhenForced) {
7633   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7634 }
7635 
7636 } // end namespace llvm
7637 
7638 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7639   // Check if the pointer operand of a load or store instruction is
7640   // consecutive.
7641   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7642     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7643   return false;
7644 }
7645 
7646 void LoopVectorizationCostModel::collectValuesToIgnore() {
7647   // Ignore ephemeral values.
7648   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7649 
7650   // Ignore type-promoting instructions we identified during reduction
7651   // detection.
7652   for (auto &Reduction : Legal->getReductionVars()) {
7653     const RecurrenceDescriptor &RedDes = Reduction.second;
7654     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7655     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7656   }
7657   // Ignore type-casting instructions we identified during induction
7658   // detection.
7659   for (auto &Induction : Legal->getInductionVars()) {
7660     const InductionDescriptor &IndDes = Induction.second;
7661     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7662     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7663   }
7664 }
7665 
7666 void LoopVectorizationCostModel::collectInLoopReductions() {
7667   for (auto &Reduction : Legal->getReductionVars()) {
7668     PHINode *Phi = Reduction.first;
7669     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7670 
7671     // We don't collect reductions that are type promoted (yet).
7672     if (RdxDesc.getRecurrenceType() != Phi->getType())
7673       continue;
7674 
7675     // If the target would prefer this reduction to happen "in-loop", then we
7676     // want to record it as such.
7677     unsigned Opcode = RdxDesc.getOpcode();
7678     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7679         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7680                                    TargetTransformInfo::ReductionFlags()))
7681       continue;
7682 
7683     // Check that we can correctly put the reductions into the loop, by
7684     // finding the chain of operations that leads from the phi to the loop
7685     // exit value.
7686     SmallVector<Instruction *, 4> ReductionOperations =
7687         RdxDesc.getReductionOpChain(Phi, TheLoop);
7688     bool InLoop = !ReductionOperations.empty();
7689     if (InLoop) {
7690       InLoopReductionChains[Phi] = ReductionOperations;
7691       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7692       Instruction *LastChain = Phi;
7693       for (auto *I : ReductionOperations) {
7694         InLoopReductionImmediateChains[I] = LastChain;
7695         LastChain = I;
7696       }
7697     }
7698     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7699                       << " reduction for phi: " << *Phi << "\n");
7700   }
7701 }
7702 
7703 // TODO: we could return a pair of values that specify the max VF and
7704 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7705 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7706 // doesn't have a cost model that can choose which plan to execute if
7707 // more than one is generated.
7708 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7709                                  LoopVectorizationCostModel &CM) {
7710   unsigned WidestType;
7711   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7712   return WidestVectorRegBits / WidestType;
7713 }
7714 
7715 VectorizationFactor
7716 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7717   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7718   ElementCount VF = UserVF;
7719   // Outer loop handling: They may require CFG and instruction level
7720   // transformations before even evaluating whether vectorization is profitable.
7721   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7722   // the vectorization pipeline.
7723   if (!OrigLoop->isInnermost()) {
7724     // If the user doesn't provide a vectorization factor, determine a
7725     // reasonable one.
7726     if (UserVF.isZero()) {
7727       VF = ElementCount::getFixed(determineVPlanVF(
7728           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7729               .getFixedSize(),
7730           CM));
7731       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7732 
7733       // Make sure we have a VF > 1 for stress testing.
7734       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7735         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7736                           << "overriding computed VF.\n");
7737         VF = ElementCount::getFixed(4);
7738       }
7739     }
7740     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7741     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7742            "VF needs to be a power of two");
7743     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7744                       << "VF " << VF << " to build VPlans.\n");
7745     buildVPlans(VF, VF);
7746 
7747     // For VPlan build stress testing, we bail out after VPlan construction.
7748     if (VPlanBuildStressTest)
7749       return VectorizationFactor::Disabled();
7750 
7751     return {VF, 0 /*Cost*/};
7752   }
7753 
7754   LLVM_DEBUG(
7755       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7756                 "VPlan-native path.\n");
7757   return VectorizationFactor::Disabled();
7758 }
7759 
7760 Optional<VectorizationFactor>
7761 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7762   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7763   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7764   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7765     return None;
7766 
7767   // Invalidate interleave groups if all blocks of loop will be predicated.
7768   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7769       !useMaskedInterleavedAccesses(*TTI)) {
7770     LLVM_DEBUG(
7771         dbgs()
7772         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7773            "which requires masked-interleaved support.\n");
7774     if (CM.InterleaveInfo.invalidateGroups())
7775       // Invalidating interleave groups also requires invalidating all decisions
7776       // based on them, which includes widening decisions and uniform and scalar
7777       // values.
7778       CM.invalidateCostModelingDecisions();
7779   }
7780 
7781   ElementCount MaxUserVF =
7782       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7783   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7784   if (!UserVF.isZero() && UserVFIsLegal) {
7785     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7786            "VF needs to be a power of two");
7787     // Collect the instructions (and their associated costs) that will be more
7788     // profitable to scalarize.
7789     if (CM.selectUserVectorizationFactor(UserVF)) {
7790       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7791       CM.collectInLoopReductions();
7792       buildVPlansWithVPRecipes(UserVF, UserVF);
7793       LLVM_DEBUG(printPlans(dbgs()));
7794       return {{UserVF, 0}};
7795     } else
7796       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7797                               "InvalidCost", ORE, OrigLoop);
7798   }
7799 
7800   // Populate the set of Vectorization Factor Candidates.
7801   ElementCountSet VFCandidates;
7802   for (auto VF = ElementCount::getFixed(1);
7803        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7804     VFCandidates.insert(VF);
7805   for (auto VF = ElementCount::getScalable(1);
7806        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7807     VFCandidates.insert(VF);
7808 
7809   for (const auto &VF : VFCandidates) {
7810     // Collect Uniform and Scalar instructions after vectorization with VF.
7811     CM.collectUniformsAndScalars(VF);
7812 
7813     // Collect the instructions (and their associated costs) that will be more
7814     // profitable to scalarize.
7815     if (VF.isVector())
7816       CM.collectInstsToScalarize(VF);
7817   }
7818 
7819   CM.collectInLoopReductions();
7820   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7821   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7822 
7823   LLVM_DEBUG(printPlans(dbgs()));
7824   if (!MaxFactors.hasVector())
7825     return VectorizationFactor::Disabled();
7826 
7827   // Select the optimal vectorization factor.
7828   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7829 
7830   // Check if it is profitable to vectorize with runtime checks.
7831   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7832   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7833     bool PragmaThresholdReached =
7834         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7835     bool ThresholdReached =
7836         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7837     if ((ThresholdReached && !Hints.allowReordering()) ||
7838         PragmaThresholdReached) {
7839       ORE->emit([&]() {
7840         return OptimizationRemarkAnalysisAliasing(
7841                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7842                    OrigLoop->getHeader())
7843                << "loop not vectorized: cannot prove it is safe to reorder "
7844                   "memory operations";
7845       });
7846       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7847       Hints.emitRemarkWithHints();
7848       return VectorizationFactor::Disabled();
7849     }
7850   }
7851   return SelectedVF;
7852 }
7853 
7854 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7855   assert(count_if(VPlans,
7856                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7857              1 &&
7858          "Best VF has not a single VPlan.");
7859 
7860   for (const VPlanPtr &Plan : VPlans) {
7861     if (Plan->hasVF(VF))
7862       return *Plan.get();
7863   }
7864   llvm_unreachable("No plan found!");
7865 }
7866 
7867 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7868   SmallVector<Metadata *, 4> MDs;
7869   // Reserve first location for self reference to the LoopID metadata node.
7870   MDs.push_back(nullptr);
7871   bool IsUnrollMetadata = false;
7872   MDNode *LoopID = L->getLoopID();
7873   if (LoopID) {
7874     // First find existing loop unrolling disable metadata.
7875     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7876       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7877       if (MD) {
7878         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7879         IsUnrollMetadata =
7880             S && S->getString().startswith("llvm.loop.unroll.disable");
7881       }
7882       MDs.push_back(LoopID->getOperand(i));
7883     }
7884   }
7885 
7886   if (!IsUnrollMetadata) {
7887     // Add runtime unroll disable metadata.
7888     LLVMContext &Context = L->getHeader()->getContext();
7889     SmallVector<Metadata *, 1> DisableOperands;
7890     DisableOperands.push_back(
7891         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7892     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7893     MDs.push_back(DisableNode);
7894     MDNode *NewLoopID = MDNode::get(Context, MDs);
7895     // Set operand 0 to refer to the loop id itself.
7896     NewLoopID->replaceOperandWith(0, NewLoopID);
7897     L->setLoopID(NewLoopID);
7898   }
7899 }
7900 
7901 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7902                                            VPlan &BestVPlan,
7903                                            InnerLoopVectorizer &ILV,
7904                                            DominatorTree *DT) {
7905   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7906                     << '\n');
7907 
7908   // Perform the actual loop transformation.
7909 
7910   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7911   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7912   Value *CanonicalIVStartValue;
7913   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7914       ILV.createVectorizedLoopSkeleton();
7915   ILV.collectPoisonGeneratingRecipes(State);
7916 
7917   ILV.printDebugTracesAtStart();
7918 
7919   //===------------------------------------------------===//
7920   //
7921   // Notice: any optimization or new instruction that go
7922   // into the code below should also be implemented in
7923   // the cost-model.
7924   //
7925   //===------------------------------------------------===//
7926 
7927   // 2. Copy and widen instructions from the old loop into the new loop.
7928   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7929                              ILV.getOrCreateVectorTripCount(nullptr),
7930                              CanonicalIVStartValue, State);
7931   BestVPlan.execute(&State);
7932 
7933   // Keep all loop hints from the original loop on the vector loop (we'll
7934   // replace the vectorizer-specific hints below).
7935   MDNode *OrigLoopID = OrigLoop->getLoopID();
7936 
7937   Optional<MDNode *> VectorizedLoopID =
7938       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7939                                       LLVMLoopVectorizeFollowupVectorized});
7940 
7941   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7942   if (VectorizedLoopID.hasValue())
7943     L->setLoopID(VectorizedLoopID.getValue());
7944   else {
7945     // Keep all loop hints from the original loop on the vector loop (we'll
7946     // replace the vectorizer-specific hints below).
7947     if (MDNode *LID = OrigLoop->getLoopID())
7948       L->setLoopID(LID);
7949 
7950     LoopVectorizeHints Hints(L, true, *ORE);
7951     Hints.setAlreadyVectorized();
7952   }
7953   // Disable runtime unrolling when vectorizing the epilogue loop.
7954   if (CanonicalIVStartValue)
7955     AddRuntimeUnrollDisableMetaData(L);
7956 
7957   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7958   //    predication, updating analyses.
7959   ILV.fixVectorizedLoop(State);
7960 
7961   ILV.printDebugTracesAtEnd();
7962 }
7963 
7964 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7965 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7966   for (const auto &Plan : VPlans)
7967     if (PrintVPlansInDotFormat)
7968       Plan->printDOT(O);
7969     else
7970       Plan->print(O);
7971 }
7972 #endif
7973 
7974 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7975     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7976 
7977   // We create new control-flow for the vectorized loop, so the original exit
7978   // conditions will be dead after vectorization if it's only used by the
7979   // terminator
7980   SmallVector<BasicBlock*> ExitingBlocks;
7981   OrigLoop->getExitingBlocks(ExitingBlocks);
7982   for (auto *BB : ExitingBlocks) {
7983     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7984     if (!Cmp || !Cmp->hasOneUse())
7985       continue;
7986 
7987     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7988     if (!DeadInstructions.insert(Cmp).second)
7989       continue;
7990 
7991     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7992     // TODO: can recurse through operands in general
7993     for (Value *Op : Cmp->operands()) {
7994       if (isa<TruncInst>(Op) && Op->hasOneUse())
7995           DeadInstructions.insert(cast<Instruction>(Op));
7996     }
7997   }
7998 
7999   // We create new "steps" for induction variable updates to which the original
8000   // induction variables map. An original update instruction will be dead if
8001   // all its users except the induction variable are dead.
8002   auto *Latch = OrigLoop->getLoopLatch();
8003   for (auto &Induction : Legal->getInductionVars()) {
8004     PHINode *Ind = Induction.first;
8005     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8006 
8007     // If the tail is to be folded by masking, the primary induction variable,
8008     // if exists, isn't dead: it will be used for masking. Don't kill it.
8009     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8010       continue;
8011 
8012     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8013           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8014         }))
8015       DeadInstructions.insert(IndUpdate);
8016   }
8017 }
8018 
8019 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8020 
8021 //===--------------------------------------------------------------------===//
8022 // EpilogueVectorizerMainLoop
8023 //===--------------------------------------------------------------------===//
8024 
8025 /// This function is partially responsible for generating the control flow
8026 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8027 std::pair<BasicBlock *, Value *>
8028 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8029   MDNode *OrigLoopID = OrigLoop->getLoopID();
8030   Loop *Lp = createVectorLoopSkeleton("");
8031 
8032   // Generate the code to check the minimum iteration count of the vector
8033   // epilogue (see below).
8034   EPI.EpilogueIterationCountCheck =
8035       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8036   EPI.EpilogueIterationCountCheck->setName("iter.check");
8037 
8038   // Generate the code to check any assumptions that we've made for SCEV
8039   // expressions.
8040   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8041 
8042   // Generate the code that checks at runtime if arrays overlap. We put the
8043   // checks into a separate block to make the more common case of few elements
8044   // faster.
8045   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8046 
8047   // Generate the iteration count check for the main loop, *after* the check
8048   // for the epilogue loop, so that the path-length is shorter for the case
8049   // that goes directly through the vector epilogue. The longer-path length for
8050   // the main loop is compensated for, by the gain from vectorizing the larger
8051   // trip count. Note: the branch will get updated later on when we vectorize
8052   // the epilogue.
8053   EPI.MainLoopIterationCountCheck =
8054       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8055 
8056   // Generate the induction variable.
8057   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8058   EPI.VectorTripCount = CountRoundDown;
8059   createHeaderBranch(Lp);
8060 
8061   // Skip induction resume value creation here because they will be created in
8062   // the second pass. If we created them here, they wouldn't be used anyway,
8063   // because the vplan in the second pass still contains the inductions from the
8064   // original loop.
8065 
8066   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8067 }
8068 
8069 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8070   LLVM_DEBUG({
8071     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8072            << "Main Loop VF:" << EPI.MainLoopVF
8073            << ", Main Loop UF:" << EPI.MainLoopUF
8074            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8075            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8076   });
8077 }
8078 
8079 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8080   DEBUG_WITH_TYPE(VerboseDebug, {
8081     dbgs() << "intermediate fn:\n"
8082            << *OrigLoop->getHeader()->getParent() << "\n";
8083   });
8084 }
8085 
8086 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8087     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8088   assert(L && "Expected valid Loop.");
8089   assert(Bypass && "Expected valid bypass basic block.");
8090   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8091   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8092   Value *Count = getOrCreateTripCount(L);
8093   // Reuse existing vector loop preheader for TC checks.
8094   // Note that new preheader block is generated for vector loop.
8095   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8096   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8097 
8098   // Generate code to check if the loop's trip count is less than VF * UF of the
8099   // main vector loop.
8100   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8101       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8102 
8103   Value *CheckMinIters = Builder.CreateICmp(
8104       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8105       "min.iters.check");
8106 
8107   if (!ForEpilogue)
8108     TCCheckBlock->setName("vector.main.loop.iter.check");
8109 
8110   // Create new preheader for vector loop.
8111   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8112                                    DT, LI, nullptr, "vector.ph");
8113 
8114   if (ForEpilogue) {
8115     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8116                                  DT->getNode(Bypass)->getIDom()) &&
8117            "TC check is expected to dominate Bypass");
8118 
8119     // Update dominator for Bypass & LoopExit.
8120     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8121     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8122       // For loops with multiple exits, there's no edge from the middle block
8123       // to exit blocks (as the epilogue must run) and thus no need to update
8124       // the immediate dominator of the exit blocks.
8125       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8126 
8127     LoopBypassBlocks.push_back(TCCheckBlock);
8128 
8129     // Save the trip count so we don't have to regenerate it in the
8130     // vec.epilog.iter.check. This is safe to do because the trip count
8131     // generated here dominates the vector epilog iter check.
8132     EPI.TripCount = Count;
8133   }
8134 
8135   ReplaceInstWithInst(
8136       TCCheckBlock->getTerminator(),
8137       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8138 
8139   return TCCheckBlock;
8140 }
8141 
8142 //===--------------------------------------------------------------------===//
8143 // EpilogueVectorizerEpilogueLoop
8144 //===--------------------------------------------------------------------===//
8145 
8146 /// This function is partially responsible for generating the control flow
8147 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8148 std::pair<BasicBlock *, Value *>
8149 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8150   MDNode *OrigLoopID = OrigLoop->getLoopID();
8151   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8152 
8153   // Now, compare the remaining count and if there aren't enough iterations to
8154   // execute the vectorized epilogue skip to the scalar part.
8155   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8156   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8157   LoopVectorPreHeader =
8158       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8159                  LI, nullptr, "vec.epilog.ph");
8160   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8161                                           VecEpilogueIterationCountCheck);
8162 
8163   // Adjust the control flow taking the state info from the main loop
8164   // vectorization into account.
8165   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8166          "expected this to be saved from the previous pass.");
8167   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8168       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8169 
8170   DT->changeImmediateDominator(LoopVectorPreHeader,
8171                                EPI.MainLoopIterationCountCheck);
8172 
8173   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8174       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8175 
8176   if (EPI.SCEVSafetyCheck)
8177     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8178         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8179   if (EPI.MemSafetyCheck)
8180     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8181         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8182 
8183   DT->changeImmediateDominator(
8184       VecEpilogueIterationCountCheck,
8185       VecEpilogueIterationCountCheck->getSinglePredecessor());
8186 
8187   DT->changeImmediateDominator(LoopScalarPreHeader,
8188                                EPI.EpilogueIterationCountCheck);
8189   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8190     // If there is an epilogue which must run, there's no edge from the
8191     // middle block to exit blocks  and thus no need to update the immediate
8192     // dominator of the exit blocks.
8193     DT->changeImmediateDominator(LoopExitBlock,
8194                                  EPI.EpilogueIterationCountCheck);
8195 
8196   // Keep track of bypass blocks, as they feed start values to the induction
8197   // phis in the scalar loop preheader.
8198   if (EPI.SCEVSafetyCheck)
8199     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8200   if (EPI.MemSafetyCheck)
8201     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8202   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8203 
8204   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8205   // merge control-flow from the latch block and the middle block. Update the
8206   // incoming values here and move the Phi into the preheader.
8207   SmallVector<PHINode *, 4> PhisInBlock;
8208   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8209     PhisInBlock.push_back(&Phi);
8210 
8211   for (PHINode *Phi : PhisInBlock) {
8212     Phi->replaceIncomingBlockWith(
8213         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8214         VecEpilogueIterationCountCheck);
8215     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8216     if (EPI.SCEVSafetyCheck)
8217       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8218     if (EPI.MemSafetyCheck)
8219       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8220     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8221   }
8222 
8223   // Generate a resume induction for the vector epilogue and put it in the
8224   // vector epilogue preheader
8225   Type *IdxTy = Legal->getWidestInductionType();
8226   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8227                                          LoopVectorPreHeader->getFirstNonPHI());
8228   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8229   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8230                            EPI.MainLoopIterationCountCheck);
8231 
8232   // Generate the induction variable.
8233   createHeaderBranch(Lp);
8234 
8235   // Generate induction resume values. These variables save the new starting
8236   // indexes for the scalar loop. They are used to test if there are any tail
8237   // iterations left once the vector loop has completed.
8238   // Note that when the vectorized epilogue is skipped due to iteration count
8239   // check, then the resume value for the induction variable comes from
8240   // the trip count of the main vector loop, hence passing the AdditionalBypass
8241   // argument.
8242   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8243                                    EPI.VectorTripCount} /* AdditionalBypass */);
8244 
8245   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8246 }
8247 
8248 BasicBlock *
8249 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8250     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8251 
8252   assert(EPI.TripCount &&
8253          "Expected trip count to have been safed in the first pass.");
8254   assert(
8255       (!isa<Instruction>(EPI.TripCount) ||
8256        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8257       "saved trip count does not dominate insertion point.");
8258   Value *TC = EPI.TripCount;
8259   IRBuilder<> Builder(Insert->getTerminator());
8260   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8261 
8262   // Generate code to check if the loop's trip count is less than VF * UF of the
8263   // vector epilogue loop.
8264   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8265       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8266 
8267   Value *CheckMinIters =
8268       Builder.CreateICmp(P, Count,
8269                          createStepForVF(Builder, Count->getType(),
8270                                          EPI.EpilogueVF, EPI.EpilogueUF),
8271                          "min.epilog.iters.check");
8272 
8273   ReplaceInstWithInst(
8274       Insert->getTerminator(),
8275       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8276 
8277   LoopBypassBlocks.push_back(Insert);
8278   return Insert;
8279 }
8280 
8281 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8282   LLVM_DEBUG({
8283     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8284            << "Epilogue Loop VF:" << EPI.EpilogueVF
8285            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8286   });
8287 }
8288 
8289 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8290   DEBUG_WITH_TYPE(VerboseDebug, {
8291     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8292   });
8293 }
8294 
8295 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8296     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8297   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8298   bool PredicateAtRangeStart = Predicate(Range.Start);
8299 
8300   for (ElementCount TmpVF = Range.Start * 2;
8301        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8302     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8303       Range.End = TmpVF;
8304       break;
8305     }
8306 
8307   return PredicateAtRangeStart;
8308 }
8309 
8310 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8311 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8312 /// of VF's starting at a given VF and extending it as much as possible. Each
8313 /// vectorization decision can potentially shorten this sub-range during
8314 /// buildVPlan().
8315 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8316                                            ElementCount MaxVF) {
8317   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8318   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8319     VFRange SubRange = {VF, MaxVFPlusOne};
8320     VPlans.push_back(buildVPlan(SubRange));
8321     VF = SubRange.End;
8322   }
8323 }
8324 
8325 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8326                                          VPlanPtr &Plan) {
8327   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8328 
8329   // Look for cached value.
8330   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8331   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8332   if (ECEntryIt != EdgeMaskCache.end())
8333     return ECEntryIt->second;
8334 
8335   VPValue *SrcMask = createBlockInMask(Src, Plan);
8336 
8337   // The terminator has to be a branch inst!
8338   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8339   assert(BI && "Unexpected terminator found");
8340 
8341   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8342     return EdgeMaskCache[Edge] = SrcMask;
8343 
8344   // If source is an exiting block, we know the exit edge is dynamically dead
8345   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8346   // adding uses of an otherwise potentially dead instruction.
8347   if (OrigLoop->isLoopExiting(Src))
8348     return EdgeMaskCache[Edge] = SrcMask;
8349 
8350   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8351   assert(EdgeMask && "No Edge Mask found for condition");
8352 
8353   if (BI->getSuccessor(0) != Dst)
8354     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8355 
8356   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8357     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8358     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8359     // The select version does not introduce new UB if SrcMask is false and
8360     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8361     VPValue *False = Plan->getOrAddVPValue(
8362         ConstantInt::getFalse(BI->getCondition()->getType()));
8363     EdgeMask =
8364         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8365   }
8366 
8367   return EdgeMaskCache[Edge] = EdgeMask;
8368 }
8369 
8370 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8371   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8372 
8373   // Look for cached value.
8374   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8375   if (BCEntryIt != BlockMaskCache.end())
8376     return BCEntryIt->second;
8377 
8378   // All-one mask is modelled as no-mask following the convention for masked
8379   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8380   VPValue *BlockMask = nullptr;
8381 
8382   if (OrigLoop->getHeader() == BB) {
8383     if (!CM.blockNeedsPredicationForAnyReason(BB))
8384       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8385 
8386     // Introduce the early-exit compare IV <= BTC to form header block mask.
8387     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8388     // constructing the desired canonical IV in the header block as its first
8389     // non-phi instructions.
8390     assert(CM.foldTailByMasking() && "must fold the tail");
8391     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8392     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8393     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8394     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8395 
8396     VPBuilder::InsertPointGuard Guard(Builder);
8397     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8398     if (CM.TTI.emitGetActiveLaneMask()) {
8399       VPValue *TC = Plan->getOrCreateTripCount();
8400       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8401     } else {
8402       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8403       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8404     }
8405     return BlockMaskCache[BB] = BlockMask;
8406   }
8407 
8408   // This is the block mask. We OR all incoming edges.
8409   for (auto *Predecessor : predecessors(BB)) {
8410     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8411     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8412       return BlockMaskCache[BB] = EdgeMask;
8413 
8414     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8415       BlockMask = EdgeMask;
8416       continue;
8417     }
8418 
8419     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8420   }
8421 
8422   return BlockMaskCache[BB] = BlockMask;
8423 }
8424 
8425 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8426                                                 ArrayRef<VPValue *> Operands,
8427                                                 VFRange &Range,
8428                                                 VPlanPtr &Plan) {
8429   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8430          "Must be called with either a load or store");
8431 
8432   auto willWiden = [&](ElementCount VF) -> bool {
8433     if (VF.isScalar())
8434       return false;
8435     LoopVectorizationCostModel::InstWidening Decision =
8436         CM.getWideningDecision(I, VF);
8437     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8438            "CM decision should be taken at this point.");
8439     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8440       return true;
8441     if (CM.isScalarAfterVectorization(I, VF) ||
8442         CM.isProfitableToScalarize(I, VF))
8443       return false;
8444     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8445   };
8446 
8447   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8448     return nullptr;
8449 
8450   VPValue *Mask = nullptr;
8451   if (Legal->isMaskRequired(I))
8452     Mask = createBlockInMask(I->getParent(), Plan);
8453 
8454   // Determine if the pointer operand of the access is either consecutive or
8455   // reverse consecutive.
8456   LoopVectorizationCostModel::InstWidening Decision =
8457       CM.getWideningDecision(I, Range.Start);
8458   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8459   bool Consecutive =
8460       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8461 
8462   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8463     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8464                                               Consecutive, Reverse);
8465 
8466   StoreInst *Store = cast<StoreInst>(I);
8467   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8468                                             Mask, Consecutive, Reverse);
8469 }
8470 
8471 static VPWidenIntOrFpInductionRecipe *
8472 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8473                            VPValue *Start, const InductionDescriptor &IndDesc,
8474                            LoopVectorizationCostModel &CM, Loop &OrigLoop,
8475                            VFRange &Range) {
8476   // Returns true if an instruction \p I should be scalarized instead of
8477   // vectorized for the chosen vectorization factor.
8478   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8479     return CM.isScalarAfterVectorization(I, VF) ||
8480            CM.isProfitableToScalarize(I, VF);
8481   };
8482 
8483   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8484       [&](ElementCount VF) {
8485         // Returns true if we should generate a scalar version of \p IV.
8486         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8487           return true;
8488         auto isScalarInst = [&](User *U) -> bool {
8489           auto *I = cast<Instruction>(U);
8490           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8491         };
8492         return any_of(PhiOrTrunc->users(), isScalarInst);
8493       },
8494       Range);
8495   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8496       [&](ElementCount VF) {
8497         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8498       },
8499       Range);
8500   assert(IndDesc.getStartValue() ==
8501          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8502   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8503     return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI,
8504                                              NeedsScalarIV, !NeedsScalarIVOnly);
8505   }
8506   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8507   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8508                                            !NeedsScalarIVOnly);
8509 }
8510 
8511 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8512     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8513 
8514   // Check if this is an integer or fp induction. If so, build the recipe that
8515   // produces its scalar and vector values.
8516   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8517     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop,
8518                                       Range);
8519 
8520   return nullptr;
8521 }
8522 
8523 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8524     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8525     VPlan &Plan) const {
8526   // Optimize the special case where the source is a constant integer
8527   // induction variable. Notice that we can only optimize the 'trunc' case
8528   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8529   // (c) other casts depend on pointer size.
8530 
8531   // Determine whether \p K is a truncation based on an induction variable that
8532   // can be optimized.
8533   auto isOptimizableIVTruncate =
8534       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8535     return [=](ElementCount VF) -> bool {
8536       return CM.isOptimizableIVTruncate(K, VF);
8537     };
8538   };
8539 
8540   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8541           isOptimizableIVTruncate(I), Range)) {
8542 
8543     auto *Phi = cast<PHINode>(I->getOperand(0));
8544     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8545     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8546     return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range);
8547   }
8548   return nullptr;
8549 }
8550 
8551 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8552                                                 ArrayRef<VPValue *> Operands,
8553                                                 VPlanPtr &Plan) {
8554   // If all incoming values are equal, the incoming VPValue can be used directly
8555   // instead of creating a new VPBlendRecipe.
8556   VPValue *FirstIncoming = Operands[0];
8557   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8558         return FirstIncoming == Inc;
8559       })) {
8560     return Operands[0];
8561   }
8562 
8563   // We know that all PHIs in non-header blocks are converted into selects, so
8564   // we don't have to worry about the insertion order and we can just use the
8565   // builder. At this point we generate the predication tree. There may be
8566   // duplications since this is a simple recursive scan, but future
8567   // optimizations will clean it up.
8568   SmallVector<VPValue *, 2> OperandsWithMask;
8569   unsigned NumIncoming = Phi->getNumIncomingValues();
8570 
8571   for (unsigned In = 0; In < NumIncoming; In++) {
8572     VPValue *EdgeMask =
8573       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8574     assert((EdgeMask || NumIncoming == 1) &&
8575            "Multiple predecessors with one having a full mask");
8576     OperandsWithMask.push_back(Operands[In]);
8577     if (EdgeMask)
8578       OperandsWithMask.push_back(EdgeMask);
8579   }
8580   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8581 }
8582 
8583 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8584                                                    ArrayRef<VPValue *> Operands,
8585                                                    VFRange &Range) const {
8586 
8587   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8588       [this, CI](ElementCount VF) {
8589         return CM.isScalarWithPredication(CI, VF);
8590       },
8591       Range);
8592 
8593   if (IsPredicated)
8594     return nullptr;
8595 
8596   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8597   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8598              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8599              ID == Intrinsic::pseudoprobe ||
8600              ID == Intrinsic::experimental_noalias_scope_decl))
8601     return nullptr;
8602 
8603   auto willWiden = [&](ElementCount VF) -> bool {
8604     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8605     // The following case may be scalarized depending on the VF.
8606     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8607     // version of the instruction.
8608     // Is it beneficial to perform intrinsic call compared to lib call?
8609     bool NeedToScalarize = false;
8610     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8611     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8612     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8613     return UseVectorIntrinsic || !NeedToScalarize;
8614   };
8615 
8616   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8617     return nullptr;
8618 
8619   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8620   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8621 }
8622 
8623 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8624   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8625          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8626   // Instruction should be widened, unless it is scalar after vectorization,
8627   // scalarization is profitable or it is predicated.
8628   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8629     return CM.isScalarAfterVectorization(I, VF) ||
8630            CM.isProfitableToScalarize(I, VF) ||
8631            CM.isScalarWithPredication(I, VF);
8632   };
8633   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8634                                                              Range);
8635 }
8636 
8637 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8638                                            ArrayRef<VPValue *> Operands) const {
8639   auto IsVectorizableOpcode = [](unsigned Opcode) {
8640     switch (Opcode) {
8641     case Instruction::Add:
8642     case Instruction::And:
8643     case Instruction::AShr:
8644     case Instruction::BitCast:
8645     case Instruction::FAdd:
8646     case Instruction::FCmp:
8647     case Instruction::FDiv:
8648     case Instruction::FMul:
8649     case Instruction::FNeg:
8650     case Instruction::FPExt:
8651     case Instruction::FPToSI:
8652     case Instruction::FPToUI:
8653     case Instruction::FPTrunc:
8654     case Instruction::FRem:
8655     case Instruction::FSub:
8656     case Instruction::ICmp:
8657     case Instruction::IntToPtr:
8658     case Instruction::LShr:
8659     case Instruction::Mul:
8660     case Instruction::Or:
8661     case Instruction::PtrToInt:
8662     case Instruction::SDiv:
8663     case Instruction::Select:
8664     case Instruction::SExt:
8665     case Instruction::Shl:
8666     case Instruction::SIToFP:
8667     case Instruction::SRem:
8668     case Instruction::Sub:
8669     case Instruction::Trunc:
8670     case Instruction::UDiv:
8671     case Instruction::UIToFP:
8672     case Instruction::URem:
8673     case Instruction::Xor:
8674     case Instruction::ZExt:
8675       return true;
8676     }
8677     return false;
8678   };
8679 
8680   if (!IsVectorizableOpcode(I->getOpcode()))
8681     return nullptr;
8682 
8683   // Success: widen this instruction.
8684   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8685 }
8686 
8687 void VPRecipeBuilder::fixHeaderPhis() {
8688   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8689   for (VPHeaderPHIRecipe *R : PhisToFix) {
8690     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8691     VPRecipeBase *IncR =
8692         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8693     R->addOperand(IncR->getVPSingleValue());
8694   }
8695 }
8696 
8697 VPBasicBlock *VPRecipeBuilder::handleReplication(
8698     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8699     VPlanPtr &Plan) {
8700   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8701       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8702       Range);
8703 
8704   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8705       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8706       Range);
8707 
8708   // Even if the instruction is not marked as uniform, there are certain
8709   // intrinsic calls that can be effectively treated as such, so we check for
8710   // them here. Conservatively, we only do this for scalable vectors, since
8711   // for fixed-width VFs we can always fall back on full scalarization.
8712   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8713     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8714     case Intrinsic::assume:
8715     case Intrinsic::lifetime_start:
8716     case Intrinsic::lifetime_end:
8717       // For scalable vectors if one of the operands is variant then we still
8718       // want to mark as uniform, which will generate one instruction for just
8719       // the first lane of the vector. We can't scalarize the call in the same
8720       // way as for fixed-width vectors because we don't know how many lanes
8721       // there are.
8722       //
8723       // The reasons for doing it this way for scalable vectors are:
8724       //   1. For the assume intrinsic generating the instruction for the first
8725       //      lane is still be better than not generating any at all. For
8726       //      example, the input may be a splat across all lanes.
8727       //   2. For the lifetime start/end intrinsics the pointer operand only
8728       //      does anything useful when the input comes from a stack object,
8729       //      which suggests it should always be uniform. For non-stack objects
8730       //      the effect is to poison the object, which still allows us to
8731       //      remove the call.
8732       IsUniform = true;
8733       break;
8734     default:
8735       break;
8736     }
8737   }
8738 
8739   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8740                                        IsUniform, IsPredicated);
8741   setRecipe(I, Recipe);
8742   Plan->addVPValue(I, Recipe);
8743 
8744   // Find if I uses a predicated instruction. If so, it will use its scalar
8745   // value. Avoid hoisting the insert-element which packs the scalar value into
8746   // a vector value, as that happens iff all users use the vector value.
8747   for (VPValue *Op : Recipe->operands()) {
8748     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8749     if (!PredR)
8750       continue;
8751     auto *RepR =
8752         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8753     assert(RepR->isPredicated() &&
8754            "expected Replicate recipe to be predicated");
8755     RepR->setAlsoPack(false);
8756   }
8757 
8758   // Finalize the recipe for Instr, first if it is not predicated.
8759   if (!IsPredicated) {
8760     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8761     VPBB->appendRecipe(Recipe);
8762     return VPBB;
8763   }
8764   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8765 
8766   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8767   assert(SingleSucc && "VPBB must have a single successor when handling "
8768                        "predicated replication.");
8769   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8770   // Record predicated instructions for above packing optimizations.
8771   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8772   VPBlockUtils::insertBlockAfter(Region, VPBB);
8773   auto *RegSucc = new VPBasicBlock();
8774   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8775   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8776   return RegSucc;
8777 }
8778 
8779 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8780                                                       VPRecipeBase *PredRecipe,
8781                                                       VPlanPtr &Plan) {
8782   // Instructions marked for predication are replicated and placed under an
8783   // if-then construct to prevent side-effects.
8784 
8785   // Generate recipes to compute the block mask for this region.
8786   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8787 
8788   // Build the triangular if-then region.
8789   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8790   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8791   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8792   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8793   auto *PHIRecipe = Instr->getType()->isVoidTy()
8794                         ? nullptr
8795                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8796   if (PHIRecipe) {
8797     Plan->removeVPValueFor(Instr);
8798     Plan->addVPValue(Instr, PHIRecipe);
8799   }
8800   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8801   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8802   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8803 
8804   // Note: first set Entry as region entry and then connect successors starting
8805   // from it in order, to propagate the "parent" of each VPBasicBlock.
8806   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8807   VPBlockUtils::connectBlocks(Pred, Exit);
8808 
8809   return Region;
8810 }
8811 
8812 VPRecipeOrVPValueTy
8813 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8814                                         ArrayRef<VPValue *> Operands,
8815                                         VFRange &Range, VPlanPtr &Plan) {
8816   // First, check for specific widening recipes that deal with calls, memory
8817   // operations, inductions and Phi nodes.
8818   if (auto *CI = dyn_cast<CallInst>(Instr))
8819     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8820 
8821   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8822     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8823 
8824   VPRecipeBase *Recipe;
8825   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8826     if (Phi->getParent() != OrigLoop->getHeader())
8827       return tryToBlend(Phi, Operands, Plan);
8828     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8829       return toVPRecipeResult(Recipe);
8830 
8831     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8832     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8833       VPValue *StartV = Operands[0];
8834       if (Legal->isReductionVariable(Phi)) {
8835         const RecurrenceDescriptor &RdxDesc =
8836             Legal->getReductionVars().find(Phi)->second;
8837         assert(RdxDesc.getRecurrenceStartValue() ==
8838                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8839         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8840                                              CM.isInLoopReduction(Phi),
8841                                              CM.useOrderedReductions(RdxDesc));
8842       } else {
8843         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8844       }
8845 
8846       // Record the incoming value from the backedge, so we can add the incoming
8847       // value from the backedge after all recipes have been created.
8848       recordRecipeOf(cast<Instruction>(
8849           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8850       PhisToFix.push_back(PhiRecipe);
8851     } else {
8852       // TODO: record backedge value for remaining pointer induction phis.
8853       assert(Phi->getType()->isPointerTy() &&
8854              "only pointer phis should be handled here");
8855       assert(Legal->getInductionVars().count(Phi) &&
8856              "Not an induction variable");
8857       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8858       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8859       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8860     }
8861 
8862     return toVPRecipeResult(PhiRecipe);
8863   }
8864 
8865   if (isa<TruncInst>(Instr) &&
8866       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8867                                                Range, *Plan)))
8868     return toVPRecipeResult(Recipe);
8869 
8870   if (!shouldWiden(Instr, Range))
8871     return nullptr;
8872 
8873   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8874     return toVPRecipeResult(new VPWidenGEPRecipe(
8875         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8876 
8877   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8878     bool InvariantCond =
8879         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8880     return toVPRecipeResult(new VPWidenSelectRecipe(
8881         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8882   }
8883 
8884   return toVPRecipeResult(tryToWiden(Instr, Operands));
8885 }
8886 
8887 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8888                                                         ElementCount MaxVF) {
8889   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8890 
8891   // Collect instructions from the original loop that will become trivially dead
8892   // in the vectorized loop. We don't need to vectorize these instructions. For
8893   // example, original induction update instructions can become dead because we
8894   // separately emit induction "steps" when generating code for the new loop.
8895   // Similarly, we create a new latch condition when setting up the structure
8896   // of the new loop, so the old one can become dead.
8897   SmallPtrSet<Instruction *, 4> DeadInstructions;
8898   collectTriviallyDeadInstructions(DeadInstructions);
8899 
8900   // Add assume instructions we need to drop to DeadInstructions, to prevent
8901   // them from being added to the VPlan.
8902   // TODO: We only need to drop assumes in blocks that get flattend. If the
8903   // control flow is preserved, we should keep them.
8904   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8905   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8906 
8907   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8908   // Dead instructions do not need sinking. Remove them from SinkAfter.
8909   for (Instruction *I : DeadInstructions)
8910     SinkAfter.erase(I);
8911 
8912   // Cannot sink instructions after dead instructions (there won't be any
8913   // recipes for them). Instead, find the first non-dead previous instruction.
8914   for (auto &P : Legal->getSinkAfter()) {
8915     Instruction *SinkTarget = P.second;
8916     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8917     (void)FirstInst;
8918     while (DeadInstructions.contains(SinkTarget)) {
8919       assert(
8920           SinkTarget != FirstInst &&
8921           "Must find a live instruction (at least the one feeding the "
8922           "first-order recurrence PHI) before reaching beginning of the block");
8923       SinkTarget = SinkTarget->getPrevNode();
8924       assert(SinkTarget != P.first &&
8925              "sink source equals target, no sinking required");
8926     }
8927     P.second = SinkTarget;
8928   }
8929 
8930   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8931   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8932     VFRange SubRange = {VF, MaxVFPlusOne};
8933     VPlans.push_back(
8934         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8935     VF = SubRange.End;
8936   }
8937 }
8938 
8939 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8940 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8941 // BranchOnCount VPInstruction to the latch.
8942 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8943                                   bool HasNUW, bool IsVPlanNative) {
8944   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8945   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8946 
8947   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8948   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8949   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8950   if (IsVPlanNative)
8951     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8952   Header->insert(CanonicalIVPHI, Header->begin());
8953 
8954   auto *CanonicalIVIncrement =
8955       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8956                                : VPInstruction::CanonicalIVIncrement,
8957                         {CanonicalIVPHI}, DL);
8958   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8959 
8960   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8961   if (IsVPlanNative) {
8962     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
8963     EB->setCondBit(nullptr);
8964   }
8965   EB->appendRecipe(CanonicalIVIncrement);
8966 
8967   auto *BranchOnCount =
8968       new VPInstruction(VPInstruction::BranchOnCount,
8969                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8970   EB->appendRecipe(BranchOnCount);
8971 }
8972 
8973 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8974     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8975     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8976 
8977   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8978 
8979   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8980 
8981   // ---------------------------------------------------------------------------
8982   // Pre-construction: record ingredients whose recipes we'll need to further
8983   // process after constructing the initial VPlan.
8984   // ---------------------------------------------------------------------------
8985 
8986   // Mark instructions we'll need to sink later and their targets as
8987   // ingredients whose recipe we'll need to record.
8988   for (auto &Entry : SinkAfter) {
8989     RecipeBuilder.recordRecipeOf(Entry.first);
8990     RecipeBuilder.recordRecipeOf(Entry.second);
8991   }
8992   for (auto &Reduction : CM.getInLoopReductionChains()) {
8993     PHINode *Phi = Reduction.first;
8994     RecurKind Kind =
8995         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8996     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8997 
8998     RecipeBuilder.recordRecipeOf(Phi);
8999     for (auto &R : ReductionOperations) {
9000       RecipeBuilder.recordRecipeOf(R);
9001       // For min/max reducitons, where we have a pair of icmp/select, we also
9002       // need to record the ICmp recipe, so it can be removed later.
9003       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9004              "Only min/max recurrences allowed for inloop reductions");
9005       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9006         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9007     }
9008   }
9009 
9010   // For each interleave group which is relevant for this (possibly trimmed)
9011   // Range, add it to the set of groups to be later applied to the VPlan and add
9012   // placeholders for its members' Recipes which we'll be replacing with a
9013   // single VPInterleaveRecipe.
9014   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9015     auto applyIG = [IG, this](ElementCount VF) -> bool {
9016       return (VF.isVector() && // Query is illegal for VF == 1
9017               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9018                   LoopVectorizationCostModel::CM_Interleave);
9019     };
9020     if (!getDecisionAndClampRange(applyIG, Range))
9021       continue;
9022     InterleaveGroups.insert(IG);
9023     for (unsigned i = 0; i < IG->getFactor(); i++)
9024       if (Instruction *Member = IG->getMember(i))
9025         RecipeBuilder.recordRecipeOf(Member);
9026   };
9027 
9028   // ---------------------------------------------------------------------------
9029   // Build initial VPlan: Scan the body of the loop in a topological order to
9030   // visit each basic block after having visited its predecessor basic blocks.
9031   // ---------------------------------------------------------------------------
9032 
9033   // Create initial VPlan skeleton, with separate header and latch blocks.
9034   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9035   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9036   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9037   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9038   auto Plan = std::make_unique<VPlan>(TopRegion);
9039 
9040   Instruction *DLInst =
9041       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9042   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9043                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9044                         !CM.foldTailByMasking(), false);
9045 
9046   // Scan the body of the loop in a topological order to visit each basic block
9047   // after having visited its predecessor basic blocks.
9048   LoopBlocksDFS DFS(OrigLoop);
9049   DFS.perform(LI);
9050 
9051   VPBasicBlock *VPBB = HeaderVPBB;
9052   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9053   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9054     // Relevant instructions from basic block BB will be grouped into VPRecipe
9055     // ingredients and fill a new VPBasicBlock.
9056     unsigned VPBBsForBB = 0;
9057     VPBB->setName(BB->getName());
9058     Builder.setInsertPoint(VPBB);
9059 
9060     // Introduce each ingredient into VPlan.
9061     // TODO: Model and preserve debug instrinsics in VPlan.
9062     for (Instruction &I : BB->instructionsWithoutDebug()) {
9063       Instruction *Instr = &I;
9064 
9065       // First filter out irrelevant instructions, to ensure no recipes are
9066       // built for them.
9067       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9068         continue;
9069 
9070       SmallVector<VPValue *, 4> Operands;
9071       auto *Phi = dyn_cast<PHINode>(Instr);
9072       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9073         Operands.push_back(Plan->getOrAddVPValue(
9074             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9075       } else {
9076         auto OpRange = Plan->mapToVPValues(Instr->operands());
9077         Operands = {OpRange.begin(), OpRange.end()};
9078       }
9079       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9080               Instr, Operands, Range, Plan)) {
9081         // If Instr can be simplified to an existing VPValue, use it.
9082         if (RecipeOrValue.is<VPValue *>()) {
9083           auto *VPV = RecipeOrValue.get<VPValue *>();
9084           Plan->addVPValue(Instr, VPV);
9085           // If the re-used value is a recipe, register the recipe for the
9086           // instruction, in case the recipe for Instr needs to be recorded.
9087           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9088             RecipeBuilder.setRecipe(Instr, R);
9089           continue;
9090         }
9091         // Otherwise, add the new recipe.
9092         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9093         for (auto *Def : Recipe->definedValues()) {
9094           auto *UV = Def->getUnderlyingValue();
9095           Plan->addVPValue(UV, Def);
9096         }
9097 
9098         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9099             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9100           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9101           // of the header block. That can happen for truncates of induction
9102           // variables. Those recipes are moved to the phi section of the header
9103           // block after applying SinkAfter, which relies on the original
9104           // position of the trunc.
9105           assert(isa<TruncInst>(Instr));
9106           InductionsToMove.push_back(
9107               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9108         }
9109         RecipeBuilder.setRecipe(Instr, Recipe);
9110         VPBB->appendRecipe(Recipe);
9111         continue;
9112       }
9113 
9114       // Otherwise, if all widening options failed, Instruction is to be
9115       // replicated. This may create a successor for VPBB.
9116       VPBasicBlock *NextVPBB =
9117           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9118       if (NextVPBB != VPBB) {
9119         VPBB = NextVPBB;
9120         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9121                                     : "");
9122       }
9123     }
9124 
9125     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9126     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9127   }
9128 
9129   // Fold the last, empty block into its predecessor.
9130   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9131   assert(VPBB && "expected to fold last (empty) block");
9132   // After here, VPBB should not be used.
9133   VPBB = nullptr;
9134 
9135   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9136          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9137          "entry block must be set to a VPRegionBlock having a non-empty entry "
9138          "VPBasicBlock");
9139   RecipeBuilder.fixHeaderPhis();
9140 
9141   // ---------------------------------------------------------------------------
9142   // Transform initial VPlan: Apply previously taken decisions, in order, to
9143   // bring the VPlan to its final state.
9144   // ---------------------------------------------------------------------------
9145 
9146   // Apply Sink-After legal constraints.
9147   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9148     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9149     if (Region && Region->isReplicator()) {
9150       assert(Region->getNumSuccessors() == 1 &&
9151              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9152       assert(R->getParent()->size() == 1 &&
9153              "A recipe in an original replicator region must be the only "
9154              "recipe in its block");
9155       return Region;
9156     }
9157     return nullptr;
9158   };
9159   for (auto &Entry : SinkAfter) {
9160     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9161     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9162 
9163     auto *TargetRegion = GetReplicateRegion(Target);
9164     auto *SinkRegion = GetReplicateRegion(Sink);
9165     if (!SinkRegion) {
9166       // If the sink source is not a replicate region, sink the recipe directly.
9167       if (TargetRegion) {
9168         // The target is in a replication region, make sure to move Sink to
9169         // the block after it, not into the replication region itself.
9170         VPBasicBlock *NextBlock =
9171             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9172         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9173       } else
9174         Sink->moveAfter(Target);
9175       continue;
9176     }
9177 
9178     // The sink source is in a replicate region. Unhook the region from the CFG.
9179     auto *SinkPred = SinkRegion->getSinglePredecessor();
9180     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9181     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9182     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9183     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9184 
9185     if (TargetRegion) {
9186       // The target recipe is also in a replicate region, move the sink region
9187       // after the target region.
9188       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9189       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9190       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9191       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9192     } else {
9193       // The sink source is in a replicate region, we need to move the whole
9194       // replicate region, which should only contain a single recipe in the
9195       // main block.
9196       auto *SplitBlock =
9197           Target->getParent()->splitAt(std::next(Target->getIterator()));
9198 
9199       auto *SplitPred = SplitBlock->getSinglePredecessor();
9200 
9201       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9202       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9203       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9204     }
9205   }
9206 
9207   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9208   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9209 
9210   // Now that sink-after is done, move induction recipes for optimized truncates
9211   // to the phi section of the header block.
9212   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9213     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9214 
9215   // Adjust the recipes for any inloop reductions.
9216   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9217                              RecipeBuilder, Range.Start);
9218 
9219   // Introduce a recipe to combine the incoming and previous values of a
9220   // first-order recurrence.
9221   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9222     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9223     if (!RecurPhi)
9224       continue;
9225 
9226     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9227     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9228     auto *Region = GetReplicateRegion(PrevRecipe);
9229     if (Region)
9230       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9231     if (Region || PrevRecipe->isPhi())
9232       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9233     else
9234       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9235 
9236     auto *RecurSplice = cast<VPInstruction>(
9237         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9238                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9239 
9240     RecurPhi->replaceAllUsesWith(RecurSplice);
9241     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9242     // all users.
9243     RecurSplice->setOperand(0, RecurPhi);
9244   }
9245 
9246   // Interleave memory: for each Interleave Group we marked earlier as relevant
9247   // for this VPlan, replace the Recipes widening its memory instructions with a
9248   // single VPInterleaveRecipe at its insertion point.
9249   for (auto IG : InterleaveGroups) {
9250     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9251         RecipeBuilder.getRecipe(IG->getInsertPos()));
9252     SmallVector<VPValue *, 4> StoredValues;
9253     for (unsigned i = 0; i < IG->getFactor(); ++i)
9254       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9255         auto *StoreR =
9256             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9257         StoredValues.push_back(StoreR->getStoredValue());
9258       }
9259 
9260     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9261                                         Recipe->getMask());
9262     VPIG->insertBefore(Recipe);
9263     unsigned J = 0;
9264     for (unsigned i = 0; i < IG->getFactor(); ++i)
9265       if (Instruction *Member = IG->getMember(i)) {
9266         if (!Member->getType()->isVoidTy()) {
9267           VPValue *OriginalV = Plan->getVPValue(Member);
9268           Plan->removeVPValueFor(Member);
9269           Plan->addVPValue(Member, VPIG->getVPValue(J));
9270           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9271           J++;
9272         }
9273         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9274       }
9275   }
9276 
9277   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9278   // in ways that accessing values using original IR values is incorrect.
9279   Plan->disableValue2VPValue();
9280 
9281   VPlanTransforms::sinkScalarOperands(*Plan);
9282   VPlanTransforms::mergeReplicateRegions(*Plan);
9283 
9284   std::string PlanName;
9285   raw_string_ostream RSO(PlanName);
9286   ElementCount VF = Range.Start;
9287   Plan->addVF(VF);
9288   RSO << "Initial VPlan for VF={" << VF;
9289   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9290     Plan->addVF(VF);
9291     RSO << "," << VF;
9292   }
9293   RSO << "},UF>=1";
9294   RSO.flush();
9295   Plan->setName(PlanName);
9296 
9297   // Fold Exit block into its predecessor if possible.
9298   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9299   // VPBasicBlock as exit.
9300   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9301 
9302   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9303   return Plan;
9304 }
9305 
9306 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9307   // Outer loop handling: They may require CFG and instruction level
9308   // transformations before even evaluating whether vectorization is profitable.
9309   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9310   // the vectorization pipeline.
9311   assert(!OrigLoop->isInnermost());
9312   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9313 
9314   // Create new empty VPlan
9315   auto Plan = std::make_unique<VPlan>();
9316 
9317   // Build hierarchical CFG
9318   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9319   HCFGBuilder.buildHierarchicalCFG();
9320 
9321   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9322        VF *= 2)
9323     Plan->addVF(VF);
9324 
9325   if (EnableVPlanPredication) {
9326     VPlanPredicator VPP(*Plan);
9327     VPP.predicate();
9328 
9329     // Avoid running transformation to recipes until masked code generation in
9330     // VPlan-native path is in place.
9331     return Plan;
9332   }
9333 
9334   SmallPtrSet<Instruction *, 1> DeadInstructions;
9335   VPlanTransforms::VPInstructionsToVPRecipes(
9336       OrigLoop, Plan,
9337       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9338       DeadInstructions, *PSE.getSE());
9339 
9340   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9341                         true, true);
9342   return Plan;
9343 }
9344 
9345 // Adjust the recipes for reductions. For in-loop reductions the chain of
9346 // instructions leading from the loop exit instr to the phi need to be converted
9347 // to reductions, with one operand being vector and the other being the scalar
9348 // reduction chain. For other reductions, a select is introduced between the phi
9349 // and live-out recipes when folding the tail.
9350 void LoopVectorizationPlanner::adjustRecipesForReductions(
9351     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9352     ElementCount MinVF) {
9353   for (auto &Reduction : CM.getInLoopReductionChains()) {
9354     PHINode *Phi = Reduction.first;
9355     const RecurrenceDescriptor &RdxDesc =
9356         Legal->getReductionVars().find(Phi)->second;
9357     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9358 
9359     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9360       continue;
9361 
9362     // ReductionOperations are orders top-down from the phi's use to the
9363     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9364     // which of the two operands will remain scalar and which will be reduced.
9365     // For minmax the chain will be the select instructions.
9366     Instruction *Chain = Phi;
9367     for (Instruction *R : ReductionOperations) {
9368       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9369       RecurKind Kind = RdxDesc.getRecurrenceKind();
9370 
9371       VPValue *ChainOp = Plan->getVPValue(Chain);
9372       unsigned FirstOpId;
9373       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9374              "Only min/max recurrences allowed for inloop reductions");
9375       // Recognize a call to the llvm.fmuladd intrinsic.
9376       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9377       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9378              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9379       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9380         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9381                "Expected to replace a VPWidenSelectSC");
9382         FirstOpId = 1;
9383       } else {
9384         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9385                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9386                "Expected to replace a VPWidenSC");
9387         FirstOpId = 0;
9388       }
9389       unsigned VecOpId =
9390           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9391       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9392 
9393       auto *CondOp = CM.foldTailByMasking()
9394                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9395                          : nullptr;
9396 
9397       if (IsFMulAdd) {
9398         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9399         // need to create an fmul recipe to use as the vector operand for the
9400         // fadd reduction.
9401         VPInstruction *FMulRecipe = new VPInstruction(
9402             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9403         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9404         WidenRecipe->getParent()->insert(FMulRecipe,
9405                                          WidenRecipe->getIterator());
9406         VecOp = FMulRecipe;
9407       }
9408       VPReductionRecipe *RedRecipe =
9409           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9410       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9411       Plan->removeVPValueFor(R);
9412       Plan->addVPValue(R, RedRecipe);
9413       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9414       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9415       WidenRecipe->eraseFromParent();
9416 
9417       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9418         VPRecipeBase *CompareRecipe =
9419             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9420         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9421                "Expected to replace a VPWidenSC");
9422         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9423                "Expected no remaining users");
9424         CompareRecipe->eraseFromParent();
9425       }
9426       Chain = R;
9427     }
9428   }
9429 
9430   // If tail is folded by masking, introduce selects between the phi
9431   // and the live-out instruction of each reduction, at the beginning of the
9432   // dedicated latch block.
9433   if (CM.foldTailByMasking()) {
9434     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9435     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9436       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9437       if (!PhiR || PhiR->isInLoop())
9438         continue;
9439       VPValue *Cond =
9440           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9441       VPValue *Red = PhiR->getBackedgeValue();
9442       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9443              "reduction recipe must be defined before latch");
9444       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9445     }
9446   }
9447 }
9448 
9449 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9450 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9451                                VPSlotTracker &SlotTracker) const {
9452   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9453   IG->getInsertPos()->printAsOperand(O, false);
9454   O << ", ";
9455   getAddr()->printAsOperand(O, SlotTracker);
9456   VPValue *Mask = getMask();
9457   if (Mask) {
9458     O << ", ";
9459     Mask->printAsOperand(O, SlotTracker);
9460   }
9461 
9462   unsigned OpIdx = 0;
9463   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9464     if (!IG->getMember(i))
9465       continue;
9466     if (getNumStoreOperands() > 0) {
9467       O << "\n" << Indent << "  store ";
9468       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9469       O << " to index " << i;
9470     } else {
9471       O << "\n" << Indent << "  ";
9472       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9473       O << " = load from index " << i;
9474     }
9475     ++OpIdx;
9476   }
9477 }
9478 #endif
9479 
9480 void VPWidenCallRecipe::execute(VPTransformState &State) {
9481   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9482                                   *this, State);
9483 }
9484 
9485 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9486   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9487   State.ILV->setDebugLocFromInst(&I);
9488 
9489   // The condition can be loop invariant  but still defined inside the
9490   // loop. This means that we can't just use the original 'cond' value.
9491   // We have to take the 'vectorized' value and pick the first lane.
9492   // Instcombine will make this a no-op.
9493   auto *InvarCond =
9494       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9495 
9496   for (unsigned Part = 0; Part < State.UF; ++Part) {
9497     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9498     Value *Op0 = State.get(getOperand(1), Part);
9499     Value *Op1 = State.get(getOperand(2), Part);
9500     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9501     State.set(this, Sel, Part);
9502     State.ILV->addMetadata(Sel, &I);
9503   }
9504 }
9505 
9506 void VPWidenRecipe::execute(VPTransformState &State) {
9507   auto &I = *cast<Instruction>(getUnderlyingValue());
9508   auto &Builder = State.Builder;
9509   switch (I.getOpcode()) {
9510   case Instruction::Call:
9511   case Instruction::Br:
9512   case Instruction::PHI:
9513   case Instruction::GetElementPtr:
9514   case Instruction::Select:
9515     llvm_unreachable("This instruction is handled by a different recipe.");
9516   case Instruction::UDiv:
9517   case Instruction::SDiv:
9518   case Instruction::SRem:
9519   case Instruction::URem:
9520   case Instruction::Add:
9521   case Instruction::FAdd:
9522   case Instruction::Sub:
9523   case Instruction::FSub:
9524   case Instruction::FNeg:
9525   case Instruction::Mul:
9526   case Instruction::FMul:
9527   case Instruction::FDiv:
9528   case Instruction::FRem:
9529   case Instruction::Shl:
9530   case Instruction::LShr:
9531   case Instruction::AShr:
9532   case Instruction::And:
9533   case Instruction::Or:
9534   case Instruction::Xor: {
9535     // Just widen unops and binops.
9536     State.ILV->setDebugLocFromInst(&I);
9537 
9538     for (unsigned Part = 0; Part < State.UF; ++Part) {
9539       SmallVector<Value *, 2> Ops;
9540       for (VPValue *VPOp : operands())
9541         Ops.push_back(State.get(VPOp, Part));
9542 
9543       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9544 
9545       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9546         VecOp->copyIRFlags(&I);
9547 
9548         // If the instruction is vectorized and was in a basic block that needed
9549         // predication, we can't propagate poison-generating flags (nuw/nsw,
9550         // exact, etc.). The control flow has been linearized and the
9551         // instruction is no longer guarded by the predicate, which could make
9552         // the flag properties to no longer hold.
9553         if (State.MayGeneratePoisonRecipes.contains(this))
9554           VecOp->dropPoisonGeneratingFlags();
9555       }
9556 
9557       // Use this vector value for all users of the original instruction.
9558       State.set(this, V, Part);
9559       State.ILV->addMetadata(V, &I);
9560     }
9561 
9562     break;
9563   }
9564   case Instruction::ICmp:
9565   case Instruction::FCmp: {
9566     // Widen compares. Generate vector compares.
9567     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9568     auto *Cmp = cast<CmpInst>(&I);
9569     State.ILV->setDebugLocFromInst(Cmp);
9570     for (unsigned Part = 0; Part < State.UF; ++Part) {
9571       Value *A = State.get(getOperand(0), Part);
9572       Value *B = State.get(getOperand(1), Part);
9573       Value *C = nullptr;
9574       if (FCmp) {
9575         // Propagate fast math flags.
9576         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9577         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9578         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9579       } else {
9580         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9581       }
9582       State.set(this, C, Part);
9583       State.ILV->addMetadata(C, &I);
9584     }
9585 
9586     break;
9587   }
9588 
9589   case Instruction::ZExt:
9590   case Instruction::SExt:
9591   case Instruction::FPToUI:
9592   case Instruction::FPToSI:
9593   case Instruction::FPExt:
9594   case Instruction::PtrToInt:
9595   case Instruction::IntToPtr:
9596   case Instruction::SIToFP:
9597   case Instruction::UIToFP:
9598   case Instruction::Trunc:
9599   case Instruction::FPTrunc:
9600   case Instruction::BitCast: {
9601     auto *CI = cast<CastInst>(&I);
9602     State.ILV->setDebugLocFromInst(CI);
9603 
9604     /// Vectorize casts.
9605     Type *DestTy = (State.VF.isScalar())
9606                        ? CI->getType()
9607                        : VectorType::get(CI->getType(), State.VF);
9608 
9609     for (unsigned Part = 0; Part < State.UF; ++Part) {
9610       Value *A = State.get(getOperand(0), Part);
9611       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9612       State.set(this, Cast, Part);
9613       State.ILV->addMetadata(Cast, &I);
9614     }
9615     break;
9616   }
9617   default:
9618     // This instruction is not vectorized by simple widening.
9619     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9620     llvm_unreachable("Unhandled instruction!");
9621   } // end of switch.
9622 }
9623 
9624 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9625   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9626   // Construct a vector GEP by widening the operands of the scalar GEP as
9627   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9628   // results in a vector of pointers when at least one operand of the GEP
9629   // is vector-typed. Thus, to keep the representation compact, we only use
9630   // vector-typed operands for loop-varying values.
9631 
9632   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9633     // If we are vectorizing, but the GEP has only loop-invariant operands,
9634     // the GEP we build (by only using vector-typed operands for
9635     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9636     // produce a vector of pointers, we need to either arbitrarily pick an
9637     // operand to broadcast, or broadcast a clone of the original GEP.
9638     // Here, we broadcast a clone of the original.
9639     //
9640     // TODO: If at some point we decide to scalarize instructions having
9641     //       loop-invariant operands, this special case will no longer be
9642     //       required. We would add the scalarization decision to
9643     //       collectLoopScalars() and teach getVectorValue() to broadcast
9644     //       the lane-zero scalar value.
9645     auto *Clone = State.Builder.Insert(GEP->clone());
9646     for (unsigned Part = 0; Part < State.UF; ++Part) {
9647       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9648       State.set(this, EntryPart, Part);
9649       State.ILV->addMetadata(EntryPart, GEP);
9650     }
9651   } else {
9652     // If the GEP has at least one loop-varying operand, we are sure to
9653     // produce a vector of pointers. But if we are only unrolling, we want
9654     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9655     // produce with the code below will be scalar (if VF == 1) or vector
9656     // (otherwise). Note that for the unroll-only case, we still maintain
9657     // values in the vector mapping with initVector, as we do for other
9658     // instructions.
9659     for (unsigned Part = 0; Part < State.UF; ++Part) {
9660       // The pointer operand of the new GEP. If it's loop-invariant, we
9661       // won't broadcast it.
9662       auto *Ptr = IsPtrLoopInvariant
9663                       ? State.get(getOperand(0), VPIteration(0, 0))
9664                       : State.get(getOperand(0), Part);
9665 
9666       // Collect all the indices for the new GEP. If any index is
9667       // loop-invariant, we won't broadcast it.
9668       SmallVector<Value *, 4> Indices;
9669       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9670         VPValue *Operand = getOperand(I);
9671         if (IsIndexLoopInvariant[I - 1])
9672           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9673         else
9674           Indices.push_back(State.get(Operand, Part));
9675       }
9676 
9677       // If the GEP instruction is vectorized and was in a basic block that
9678       // needed predication, we can't propagate the poison-generating 'inbounds'
9679       // flag. The control flow has been linearized and the GEP is no longer
9680       // guarded by the predicate, which could make the 'inbounds' properties to
9681       // no longer hold.
9682       bool IsInBounds =
9683           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9684 
9685       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9686       // but it should be a vector, otherwise.
9687       auto *NewGEP = IsInBounds
9688                          ? State.Builder.CreateInBoundsGEP(
9689                                GEP->getSourceElementType(), Ptr, Indices)
9690                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9691                                                    Ptr, Indices);
9692       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9693              "NewGEP is not a pointer vector");
9694       State.set(this, NewGEP, Part);
9695       State.ILV->addMetadata(NewGEP, GEP);
9696     }
9697   }
9698 }
9699 
9700 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9701   assert(!State.Instance && "Int or FP induction being replicated.");
9702   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9703   State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV);
9704 }
9705 
9706 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9707   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9708                                  State);
9709 }
9710 
9711 void VPBlendRecipe::execute(VPTransformState &State) {
9712   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9713   // We know that all PHIs in non-header blocks are converted into
9714   // selects, so we don't have to worry about the insertion order and we
9715   // can just use the builder.
9716   // At this point we generate the predication tree. There may be
9717   // duplications since this is a simple recursive scan, but future
9718   // optimizations will clean it up.
9719 
9720   unsigned NumIncoming = getNumIncomingValues();
9721 
9722   // Generate a sequence of selects of the form:
9723   // SELECT(Mask3, In3,
9724   //        SELECT(Mask2, In2,
9725   //               SELECT(Mask1, In1,
9726   //                      In0)))
9727   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9728   // are essentially undef are taken from In0.
9729   InnerLoopVectorizer::VectorParts Entry(State.UF);
9730   for (unsigned In = 0; In < NumIncoming; ++In) {
9731     for (unsigned Part = 0; Part < State.UF; ++Part) {
9732       // We might have single edge PHIs (blocks) - use an identity
9733       // 'select' for the first PHI operand.
9734       Value *In0 = State.get(getIncomingValue(In), Part);
9735       if (In == 0)
9736         Entry[Part] = In0; // Initialize with the first incoming value.
9737       else {
9738         // Select between the current value and the previous incoming edge
9739         // based on the incoming mask.
9740         Value *Cond = State.get(getMask(In), Part);
9741         Entry[Part] =
9742             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9743       }
9744     }
9745   }
9746   for (unsigned Part = 0; Part < State.UF; ++Part)
9747     State.set(this, Entry[Part], Part);
9748 }
9749 
9750 void VPInterleaveRecipe::execute(VPTransformState &State) {
9751   assert(!State.Instance && "Interleave group being replicated.");
9752   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9753                                       getStoredValues(), getMask());
9754 }
9755 
9756 void VPReductionRecipe::execute(VPTransformState &State) {
9757   assert(!State.Instance && "Reduction being replicated.");
9758   Value *PrevInChain = State.get(getChainOp(), 0);
9759   RecurKind Kind = RdxDesc->getRecurrenceKind();
9760   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9761   // Propagate the fast-math flags carried by the underlying instruction.
9762   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9763   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9764   for (unsigned Part = 0; Part < State.UF; ++Part) {
9765     Value *NewVecOp = State.get(getVecOp(), Part);
9766     if (VPValue *Cond = getCondOp()) {
9767       Value *NewCond = State.get(Cond, Part);
9768       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9769       Value *Iden = RdxDesc->getRecurrenceIdentity(
9770           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9771       Value *IdenVec =
9772           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9773       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9774       NewVecOp = Select;
9775     }
9776     Value *NewRed;
9777     Value *NextInChain;
9778     if (IsOrdered) {
9779       if (State.VF.isVector())
9780         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9781                                         PrevInChain);
9782       else
9783         NewRed = State.Builder.CreateBinOp(
9784             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9785             NewVecOp);
9786       PrevInChain = NewRed;
9787     } else {
9788       PrevInChain = State.get(getChainOp(), Part);
9789       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9790     }
9791     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9792       NextInChain =
9793           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9794                          NewRed, PrevInChain);
9795     } else if (IsOrdered)
9796       NextInChain = NewRed;
9797     else
9798       NextInChain = State.Builder.CreateBinOp(
9799           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9800           PrevInChain);
9801     State.set(this, NextInChain, Part);
9802   }
9803 }
9804 
9805 void VPReplicateRecipe::execute(VPTransformState &State) {
9806   if (State.Instance) { // Generate a single instance.
9807     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9808     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9809                                     IsPredicated, State);
9810     // Insert scalar instance packing it into a vector.
9811     if (AlsoPack && State.VF.isVector()) {
9812       // If we're constructing lane 0, initialize to start from poison.
9813       if (State.Instance->Lane.isFirstLane()) {
9814         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9815         Value *Poison = PoisonValue::get(
9816             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9817         State.set(this, Poison, State.Instance->Part);
9818       }
9819       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9820     }
9821     return;
9822   }
9823 
9824   // Generate scalar instances for all VF lanes of all UF parts, unless the
9825   // instruction is uniform inwhich case generate only the first lane for each
9826   // of the UF parts.
9827   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9828   assert((!State.VF.isScalable() || IsUniform) &&
9829          "Can't scalarize a scalable vector");
9830   for (unsigned Part = 0; Part < State.UF; ++Part)
9831     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9832       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9833                                       VPIteration(Part, Lane), IsPredicated,
9834                                       State);
9835 }
9836 
9837 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9838   assert(State.Instance && "Branch on Mask works only on single instance.");
9839 
9840   unsigned Part = State.Instance->Part;
9841   unsigned Lane = State.Instance->Lane.getKnownLane();
9842 
9843   Value *ConditionBit = nullptr;
9844   VPValue *BlockInMask = getMask();
9845   if (BlockInMask) {
9846     ConditionBit = State.get(BlockInMask, Part);
9847     if (ConditionBit->getType()->isVectorTy())
9848       ConditionBit = State.Builder.CreateExtractElement(
9849           ConditionBit, State.Builder.getInt32(Lane));
9850   } else // Block in mask is all-one.
9851     ConditionBit = State.Builder.getTrue();
9852 
9853   // Replace the temporary unreachable terminator with a new conditional branch,
9854   // whose two destinations will be set later when they are created.
9855   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9856   assert(isa<UnreachableInst>(CurrentTerminator) &&
9857          "Expected to replace unreachable terminator with conditional branch.");
9858   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9859   CondBr->setSuccessor(0, nullptr);
9860   ReplaceInstWithInst(CurrentTerminator, CondBr);
9861 }
9862 
9863 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9864   assert(State.Instance && "Predicated instruction PHI works per instance.");
9865   Instruction *ScalarPredInst =
9866       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9867   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9868   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9869   assert(PredicatingBB && "Predicated block has no single predecessor.");
9870   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9871          "operand must be VPReplicateRecipe");
9872 
9873   // By current pack/unpack logic we need to generate only a single phi node: if
9874   // a vector value for the predicated instruction exists at this point it means
9875   // the instruction has vector users only, and a phi for the vector value is
9876   // needed. In this case the recipe of the predicated instruction is marked to
9877   // also do that packing, thereby "hoisting" the insert-element sequence.
9878   // Otherwise, a phi node for the scalar value is needed.
9879   unsigned Part = State.Instance->Part;
9880   if (State.hasVectorValue(getOperand(0), Part)) {
9881     Value *VectorValue = State.get(getOperand(0), Part);
9882     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9883     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9884     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9885     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9886     if (State.hasVectorValue(this, Part))
9887       State.reset(this, VPhi, Part);
9888     else
9889       State.set(this, VPhi, Part);
9890     // NOTE: Currently we need to update the value of the operand, so the next
9891     // predicated iteration inserts its generated value in the correct vector.
9892     State.reset(getOperand(0), VPhi, Part);
9893   } else {
9894     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9895     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9896     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9897                      PredicatingBB);
9898     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9899     if (State.hasScalarValue(this, *State.Instance))
9900       State.reset(this, Phi, *State.Instance);
9901     else
9902       State.set(this, Phi, *State.Instance);
9903     // NOTE: Currently we need to update the value of the operand, so the next
9904     // predicated iteration inserts its generated value in the correct vector.
9905     State.reset(getOperand(0), Phi, *State.Instance);
9906   }
9907 }
9908 
9909 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9910   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9911 
9912   // Attempt to issue a wide load.
9913   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9914   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9915 
9916   assert((LI || SI) && "Invalid Load/Store instruction");
9917   assert((!SI || StoredValue) && "No stored value provided for widened store");
9918   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9919 
9920   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9921 
9922   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9923   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9924   bool CreateGatherScatter = !Consecutive;
9925 
9926   auto &Builder = State.Builder;
9927   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9928   bool isMaskRequired = getMask();
9929   if (isMaskRequired)
9930     for (unsigned Part = 0; Part < State.UF; ++Part)
9931       BlockInMaskParts[Part] = State.get(getMask(), Part);
9932 
9933   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9934     // Calculate the pointer for the specific unroll-part.
9935     GetElementPtrInst *PartPtr = nullptr;
9936 
9937     bool InBounds = false;
9938     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9939       InBounds = gep->isInBounds();
9940     if (Reverse) {
9941       // If the address is consecutive but reversed, then the
9942       // wide store needs to start at the last vector element.
9943       // RunTimeVF =  VScale * VF.getKnownMinValue()
9944       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9945       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9946       // NumElt = -Part * RunTimeVF
9947       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9948       // LastLane = 1 - RunTimeVF
9949       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9950       PartPtr =
9951           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9952       PartPtr->setIsInBounds(InBounds);
9953       PartPtr = cast<GetElementPtrInst>(
9954           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9955       PartPtr->setIsInBounds(InBounds);
9956       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9957         BlockInMaskParts[Part] =
9958             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9959     } else {
9960       Value *Increment =
9961           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9962       PartPtr = cast<GetElementPtrInst>(
9963           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9964       PartPtr->setIsInBounds(InBounds);
9965     }
9966 
9967     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9968     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9969   };
9970 
9971   // Handle Stores:
9972   if (SI) {
9973     State.ILV->setDebugLocFromInst(SI);
9974 
9975     for (unsigned Part = 0; Part < State.UF; ++Part) {
9976       Instruction *NewSI = nullptr;
9977       Value *StoredVal = State.get(StoredValue, Part);
9978       if (CreateGatherScatter) {
9979         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9980         Value *VectorGep = State.get(getAddr(), Part);
9981         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9982                                             MaskPart);
9983       } else {
9984         if (Reverse) {
9985           // If we store to reverse consecutive memory locations, then we need
9986           // to reverse the order of elements in the stored value.
9987           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9988           // We don't want to update the value in the map as it might be used in
9989           // another expression. So don't call resetVectorValue(StoredVal).
9990         }
9991         auto *VecPtr =
9992             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9993         if (isMaskRequired)
9994           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9995                                             BlockInMaskParts[Part]);
9996         else
9997           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9998       }
9999       State.ILV->addMetadata(NewSI, SI);
10000     }
10001     return;
10002   }
10003 
10004   // Handle loads.
10005   assert(LI && "Must have a load instruction");
10006   State.ILV->setDebugLocFromInst(LI);
10007   for (unsigned Part = 0; Part < State.UF; ++Part) {
10008     Value *NewLI;
10009     if (CreateGatherScatter) {
10010       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10011       Value *VectorGep = State.get(getAddr(), Part);
10012       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10013                                          nullptr, "wide.masked.gather");
10014       State.ILV->addMetadata(NewLI, LI);
10015     } else {
10016       auto *VecPtr =
10017           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10018       if (isMaskRequired)
10019         NewLI = Builder.CreateMaskedLoad(
10020             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10021             PoisonValue::get(DataTy), "wide.masked.load");
10022       else
10023         NewLI =
10024             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10025 
10026       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10027       State.ILV->addMetadata(NewLI, LI);
10028       if (Reverse)
10029         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10030     }
10031 
10032     State.set(this, NewLI, Part);
10033   }
10034 }
10035 
10036 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10037 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10038 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10039 // for predication.
10040 static ScalarEpilogueLowering getScalarEpilogueLowering(
10041     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10042     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10043     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10044     LoopVectorizationLegality &LVL) {
10045   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10046   // don't look at hints or options, and don't request a scalar epilogue.
10047   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10048   // LoopAccessInfo (due to code dependency and not being able to reliably get
10049   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10050   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10051   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10052   // back to the old way and vectorize with versioning when forced. See D81345.)
10053   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10054                                                       PGSOQueryType::IRPass) &&
10055                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10056     return CM_ScalarEpilogueNotAllowedOptSize;
10057 
10058   // 2) If set, obey the directives
10059   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10060     switch (PreferPredicateOverEpilogue) {
10061     case PreferPredicateTy::ScalarEpilogue:
10062       return CM_ScalarEpilogueAllowed;
10063     case PreferPredicateTy::PredicateElseScalarEpilogue:
10064       return CM_ScalarEpilogueNotNeededUsePredicate;
10065     case PreferPredicateTy::PredicateOrDontVectorize:
10066       return CM_ScalarEpilogueNotAllowedUsePredicate;
10067     };
10068   }
10069 
10070   // 3) If set, obey the hints
10071   switch (Hints.getPredicate()) {
10072   case LoopVectorizeHints::FK_Enabled:
10073     return CM_ScalarEpilogueNotNeededUsePredicate;
10074   case LoopVectorizeHints::FK_Disabled:
10075     return CM_ScalarEpilogueAllowed;
10076   };
10077 
10078   // 4) if the TTI hook indicates this is profitable, request predication.
10079   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10080                                        LVL.getLAI()))
10081     return CM_ScalarEpilogueNotNeededUsePredicate;
10082 
10083   return CM_ScalarEpilogueAllowed;
10084 }
10085 
10086 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10087   // If Values have been set for this Def return the one relevant for \p Part.
10088   if (hasVectorValue(Def, Part))
10089     return Data.PerPartOutput[Def][Part];
10090 
10091   if (!hasScalarValue(Def, {Part, 0})) {
10092     Value *IRV = Def->getLiveInIRValue();
10093     Value *B = ILV->getBroadcastInstrs(IRV);
10094     set(Def, B, Part);
10095     return B;
10096   }
10097 
10098   Value *ScalarValue = get(Def, {Part, 0});
10099   // If we aren't vectorizing, we can just copy the scalar map values over
10100   // to the vector map.
10101   if (VF.isScalar()) {
10102     set(Def, ScalarValue, Part);
10103     return ScalarValue;
10104   }
10105 
10106   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10107   bool IsUniform = RepR && RepR->isUniform();
10108 
10109   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10110   // Check if there is a scalar value for the selected lane.
10111   if (!hasScalarValue(Def, {Part, LastLane})) {
10112     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10113     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10114            "unexpected recipe found to be invariant");
10115     IsUniform = true;
10116     LastLane = 0;
10117   }
10118 
10119   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10120   // Set the insert point after the last scalarized instruction or after the
10121   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10122   // will directly follow the scalar definitions.
10123   auto OldIP = Builder.saveIP();
10124   auto NewIP =
10125       isa<PHINode>(LastInst)
10126           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10127           : std::next(BasicBlock::iterator(LastInst));
10128   Builder.SetInsertPoint(&*NewIP);
10129 
10130   // However, if we are vectorizing, we need to construct the vector values.
10131   // If the value is known to be uniform after vectorization, we can just
10132   // broadcast the scalar value corresponding to lane zero for each unroll
10133   // iteration. Otherwise, we construct the vector values using
10134   // insertelement instructions. Since the resulting vectors are stored in
10135   // State, we will only generate the insertelements once.
10136   Value *VectorValue = nullptr;
10137   if (IsUniform) {
10138     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10139     set(Def, VectorValue, Part);
10140   } else {
10141     // Initialize packing with insertelements to start from undef.
10142     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10143     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10144     set(Def, Undef, Part);
10145     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10146       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10147     VectorValue = get(Def, Part);
10148   }
10149   Builder.restoreIP(OldIP);
10150   return VectorValue;
10151 }
10152 
10153 // Process the loop in the VPlan-native vectorization path. This path builds
10154 // VPlan upfront in the vectorization pipeline, which allows to apply
10155 // VPlan-to-VPlan transformations from the very beginning without modifying the
10156 // input LLVM IR.
10157 static bool processLoopInVPlanNativePath(
10158     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10159     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10160     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10161     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10162     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10163     LoopVectorizationRequirements &Requirements) {
10164 
10165   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10166     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10167     return false;
10168   }
10169   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10170   Function *F = L->getHeader()->getParent();
10171   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10172 
10173   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10174       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10175 
10176   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10177                                 &Hints, IAI);
10178   // Use the planner for outer loop vectorization.
10179   // TODO: CM is not used at this point inside the planner. Turn CM into an
10180   // optional argument if we don't need it in the future.
10181   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10182                                Requirements, ORE);
10183 
10184   // Get user vectorization factor.
10185   ElementCount UserVF = Hints.getWidth();
10186 
10187   CM.collectElementTypesForWidening();
10188 
10189   // Plan how to best vectorize, return the best VF and its cost.
10190   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10191 
10192   // If we are stress testing VPlan builds, do not attempt to generate vector
10193   // code. Masked vector code generation support will follow soon.
10194   // Also, do not attempt to vectorize if no vector code will be produced.
10195   if (VPlanBuildStressTest || EnableVPlanPredication ||
10196       VectorizationFactor::Disabled() == VF)
10197     return false;
10198 
10199   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10200 
10201   {
10202     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10203                              F->getParent()->getDataLayout());
10204     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10205                            &CM, BFI, PSI, Checks);
10206     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10207                       << L->getHeader()->getParent()->getName() << "\"\n");
10208     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10209   }
10210 
10211   // Mark the loop as already vectorized to avoid vectorizing again.
10212   Hints.setAlreadyVectorized();
10213   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10214   return true;
10215 }
10216 
10217 // Emit a remark if there are stores to floats that required a floating point
10218 // extension. If the vectorized loop was generated with floating point there
10219 // will be a performance penalty from the conversion overhead and the change in
10220 // the vector width.
10221 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10222   SmallVector<Instruction *, 4> Worklist;
10223   for (BasicBlock *BB : L->getBlocks()) {
10224     for (Instruction &Inst : *BB) {
10225       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10226         if (S->getValueOperand()->getType()->isFloatTy())
10227           Worklist.push_back(S);
10228       }
10229     }
10230   }
10231 
10232   // Traverse the floating point stores upwards searching, for floating point
10233   // conversions.
10234   SmallPtrSet<const Instruction *, 4> Visited;
10235   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10236   while (!Worklist.empty()) {
10237     auto *I = Worklist.pop_back_val();
10238     if (!L->contains(I))
10239       continue;
10240     if (!Visited.insert(I).second)
10241       continue;
10242 
10243     // Emit a remark if the floating point store required a floating
10244     // point conversion.
10245     // TODO: More work could be done to identify the root cause such as a
10246     // constant or a function return type and point the user to it.
10247     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10248       ORE->emit([&]() {
10249         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10250                                           I->getDebugLoc(), L->getHeader())
10251                << "floating point conversion changes vector width. "
10252                << "Mixed floating point precision requires an up/down "
10253                << "cast that will negatively impact performance.";
10254       });
10255 
10256     for (Use &Op : I->operands())
10257       if (auto *OpI = dyn_cast<Instruction>(Op))
10258         Worklist.push_back(OpI);
10259   }
10260 }
10261 
10262 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10263     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10264                                !EnableLoopInterleaving),
10265       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10266                               !EnableLoopVectorization) {}
10267 
10268 bool LoopVectorizePass::processLoop(Loop *L) {
10269   assert((EnableVPlanNativePath || L->isInnermost()) &&
10270          "VPlan-native path is not enabled. Only process inner loops.");
10271 
10272 #ifndef NDEBUG
10273   const std::string DebugLocStr = getDebugLocString(L);
10274 #endif /* NDEBUG */
10275 
10276   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10277                     << L->getHeader()->getParent()->getName() << "\" from "
10278                     << DebugLocStr << "\n");
10279 
10280   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10281 
10282   LLVM_DEBUG(
10283       dbgs() << "LV: Loop hints:"
10284              << " force="
10285              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10286                      ? "disabled"
10287                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10288                             ? "enabled"
10289                             : "?"))
10290              << " width=" << Hints.getWidth()
10291              << " interleave=" << Hints.getInterleave() << "\n");
10292 
10293   // Function containing loop
10294   Function *F = L->getHeader()->getParent();
10295 
10296   // Looking at the diagnostic output is the only way to determine if a loop
10297   // was vectorized (other than looking at the IR or machine code), so it
10298   // is important to generate an optimization remark for each loop. Most of
10299   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10300   // generated as OptimizationRemark and OptimizationRemarkMissed are
10301   // less verbose reporting vectorized loops and unvectorized loops that may
10302   // benefit from vectorization, respectively.
10303 
10304   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10305     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10306     return false;
10307   }
10308 
10309   PredicatedScalarEvolution PSE(*SE, *L);
10310 
10311   // Check if it is legal to vectorize the loop.
10312   LoopVectorizationRequirements Requirements;
10313   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10314                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10315   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10316     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10317     Hints.emitRemarkWithHints();
10318     return false;
10319   }
10320 
10321   // Check the function attributes and profiles to find out if this function
10322   // should be optimized for size.
10323   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10324       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10325 
10326   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10327   // here. They may require CFG and instruction level transformations before
10328   // even evaluating whether vectorization is profitable. Since we cannot modify
10329   // the incoming IR, we need to build VPlan upfront in the vectorization
10330   // pipeline.
10331   if (!L->isInnermost())
10332     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10333                                         ORE, BFI, PSI, Hints, Requirements);
10334 
10335   assert(L->isInnermost() && "Inner loop expected.");
10336 
10337   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10338   // count by optimizing for size, to minimize overheads.
10339   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10340   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10341     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10342                       << "This loop is worth vectorizing only if no scalar "
10343                       << "iteration overheads are incurred.");
10344     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10345       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10346     else {
10347       LLVM_DEBUG(dbgs() << "\n");
10348       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10349     }
10350   }
10351 
10352   // Check the function attributes to see if implicit floats are allowed.
10353   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10354   // an integer loop and the vector instructions selected are purely integer
10355   // vector instructions?
10356   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10357     reportVectorizationFailure(
10358         "Can't vectorize when the NoImplicitFloat attribute is used",
10359         "loop not vectorized due to NoImplicitFloat attribute",
10360         "NoImplicitFloat", ORE, L);
10361     Hints.emitRemarkWithHints();
10362     return false;
10363   }
10364 
10365   // Check if the target supports potentially unsafe FP vectorization.
10366   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10367   // for the target we're vectorizing for, to make sure none of the
10368   // additional fp-math flags can help.
10369   if (Hints.isPotentiallyUnsafe() &&
10370       TTI->isFPVectorizationPotentiallyUnsafe()) {
10371     reportVectorizationFailure(
10372         "Potentially unsafe FP op prevents vectorization",
10373         "loop not vectorized due to unsafe FP support.",
10374         "UnsafeFP", ORE, L);
10375     Hints.emitRemarkWithHints();
10376     return false;
10377   }
10378 
10379   bool AllowOrderedReductions;
10380   // If the flag is set, use that instead and override the TTI behaviour.
10381   if (ForceOrderedReductions.getNumOccurrences() > 0)
10382     AllowOrderedReductions = ForceOrderedReductions;
10383   else
10384     AllowOrderedReductions = TTI->enableOrderedReductions();
10385   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10386     ORE->emit([&]() {
10387       auto *ExactFPMathInst = Requirements.getExactFPInst();
10388       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10389                                                  ExactFPMathInst->getDebugLoc(),
10390                                                  ExactFPMathInst->getParent())
10391              << "loop not vectorized: cannot prove it is safe to reorder "
10392                 "floating-point operations";
10393     });
10394     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10395                          "reorder floating-point operations\n");
10396     Hints.emitRemarkWithHints();
10397     return false;
10398   }
10399 
10400   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10401   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10402 
10403   // If an override option has been passed in for interleaved accesses, use it.
10404   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10405     UseInterleaved = EnableInterleavedMemAccesses;
10406 
10407   // Analyze interleaved memory accesses.
10408   if (UseInterleaved) {
10409     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10410   }
10411 
10412   // Use the cost model.
10413   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10414                                 F, &Hints, IAI);
10415   CM.collectValuesToIgnore();
10416   CM.collectElementTypesForWidening();
10417 
10418   // Use the planner for vectorization.
10419   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10420                                Requirements, ORE);
10421 
10422   // Get user vectorization factor and interleave count.
10423   ElementCount UserVF = Hints.getWidth();
10424   unsigned UserIC = Hints.getInterleave();
10425 
10426   // Plan how to best vectorize, return the best VF and its cost.
10427   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10428 
10429   VectorizationFactor VF = VectorizationFactor::Disabled();
10430   unsigned IC = 1;
10431 
10432   if (MaybeVF) {
10433     VF = *MaybeVF;
10434     // Select the interleave count.
10435     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10436   }
10437 
10438   // Identify the diagnostic messages that should be produced.
10439   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10440   bool VectorizeLoop = true, InterleaveLoop = true;
10441   if (VF.Width.isScalar()) {
10442     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10443     VecDiagMsg = std::make_pair(
10444         "VectorizationNotBeneficial",
10445         "the cost-model indicates that vectorization is not beneficial");
10446     VectorizeLoop = false;
10447   }
10448 
10449   if (!MaybeVF && UserIC > 1) {
10450     // Tell the user interleaving was avoided up-front, despite being explicitly
10451     // requested.
10452     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10453                          "interleaving should be avoided up front\n");
10454     IntDiagMsg = std::make_pair(
10455         "InterleavingAvoided",
10456         "Ignoring UserIC, because interleaving was avoided up front");
10457     InterleaveLoop = false;
10458   } else if (IC == 1 && UserIC <= 1) {
10459     // Tell the user interleaving is not beneficial.
10460     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10461     IntDiagMsg = std::make_pair(
10462         "InterleavingNotBeneficial",
10463         "the cost-model indicates that interleaving is not beneficial");
10464     InterleaveLoop = false;
10465     if (UserIC == 1) {
10466       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10467       IntDiagMsg.second +=
10468           " and is explicitly disabled or interleave count is set to 1";
10469     }
10470   } else if (IC > 1 && UserIC == 1) {
10471     // Tell the user interleaving is beneficial, but it explicitly disabled.
10472     LLVM_DEBUG(
10473         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10474     IntDiagMsg = std::make_pair(
10475         "InterleavingBeneficialButDisabled",
10476         "the cost-model indicates that interleaving is beneficial "
10477         "but is explicitly disabled or interleave count is set to 1");
10478     InterleaveLoop = false;
10479   }
10480 
10481   // Override IC if user provided an interleave count.
10482   IC = UserIC > 0 ? UserIC : IC;
10483 
10484   // Emit diagnostic messages, if any.
10485   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10486   if (!VectorizeLoop && !InterleaveLoop) {
10487     // Do not vectorize or interleaving the loop.
10488     ORE->emit([&]() {
10489       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10490                                       L->getStartLoc(), L->getHeader())
10491              << VecDiagMsg.second;
10492     });
10493     ORE->emit([&]() {
10494       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10495                                       L->getStartLoc(), L->getHeader())
10496              << IntDiagMsg.second;
10497     });
10498     return false;
10499   } else if (!VectorizeLoop && InterleaveLoop) {
10500     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10501     ORE->emit([&]() {
10502       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10503                                         L->getStartLoc(), L->getHeader())
10504              << VecDiagMsg.second;
10505     });
10506   } else if (VectorizeLoop && !InterleaveLoop) {
10507     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10508                       << ") in " << DebugLocStr << '\n');
10509     ORE->emit([&]() {
10510       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10511                                         L->getStartLoc(), L->getHeader())
10512              << IntDiagMsg.second;
10513     });
10514   } else if (VectorizeLoop && InterleaveLoop) {
10515     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10516                       << ") in " << DebugLocStr << '\n');
10517     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10518   }
10519 
10520   bool DisableRuntimeUnroll = false;
10521   MDNode *OrigLoopID = L->getLoopID();
10522   {
10523     // Optimistically generate runtime checks. Drop them if they turn out to not
10524     // be profitable. Limit the scope of Checks, so the cleanup happens
10525     // immediately after vector codegeneration is done.
10526     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10527                              F->getParent()->getDataLayout());
10528     if (!VF.Width.isScalar() || IC > 1)
10529       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10530 
10531     using namespace ore;
10532     if (!VectorizeLoop) {
10533       assert(IC > 1 && "interleave count should not be 1 or 0");
10534       // If we decided that it is not legal to vectorize the loop, then
10535       // interleave it.
10536       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10537                                  &CM, BFI, PSI, Checks);
10538 
10539       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10540       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10541 
10542       ORE->emit([&]() {
10543         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10544                                   L->getHeader())
10545                << "interleaved loop (interleaved count: "
10546                << NV("InterleaveCount", IC) << ")";
10547       });
10548     } else {
10549       // If we decided that it is *legal* to vectorize the loop, then do it.
10550 
10551       // Consider vectorizing the epilogue too if it's profitable.
10552       VectorizationFactor EpilogueVF =
10553           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10554       if (EpilogueVF.Width.isVector()) {
10555 
10556         // The first pass vectorizes the main loop and creates a scalar epilogue
10557         // to be vectorized by executing the plan (potentially with a different
10558         // factor) again shortly afterwards.
10559         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10560         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10561                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10562 
10563         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10564         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10565                         DT);
10566         ++LoopsVectorized;
10567 
10568         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10569         formLCSSARecursively(*L, *DT, LI, SE);
10570 
10571         // Second pass vectorizes the epilogue and adjusts the control flow
10572         // edges from the first pass.
10573         EPI.MainLoopVF = EPI.EpilogueVF;
10574         EPI.MainLoopUF = EPI.EpilogueUF;
10575         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10576                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10577                                                  Checks);
10578 
10579         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10580 
10581         // Ensure that the start values for any VPReductionPHIRecipes are
10582         // updated before vectorising the epilogue loop.
10583         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10584         for (VPRecipeBase &R : Header->phis()) {
10585           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10586             if (auto *Resume = MainILV.getReductionResumeValue(
10587                     ReductionPhi->getRecurrenceDescriptor())) {
10588               VPValue *StartVal = new VPValue(Resume);
10589               BestEpiPlan.addExternalDef(StartVal);
10590               ReductionPhi->setOperand(0, StartVal);
10591             }
10592           }
10593         }
10594 
10595         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10596                         DT);
10597         ++LoopsEpilogueVectorized;
10598 
10599         if (!MainILV.areSafetyChecksAdded())
10600           DisableRuntimeUnroll = true;
10601       } else {
10602         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10603                                &LVL, &CM, BFI, PSI, Checks);
10604 
10605         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10606         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10607         ++LoopsVectorized;
10608 
10609         // Add metadata to disable runtime unrolling a scalar loop when there
10610         // are no runtime checks about strides and memory. A scalar loop that is
10611         // rarely used is not worth unrolling.
10612         if (!LB.areSafetyChecksAdded())
10613           DisableRuntimeUnroll = true;
10614       }
10615       // Report the vectorization decision.
10616       ORE->emit([&]() {
10617         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10618                                   L->getHeader())
10619                << "vectorized loop (vectorization width: "
10620                << NV("VectorizationFactor", VF.Width)
10621                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10622       });
10623     }
10624 
10625     if (ORE->allowExtraAnalysis(LV_NAME))
10626       checkMixedPrecision(L, ORE);
10627   }
10628 
10629   Optional<MDNode *> RemainderLoopID =
10630       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10631                                       LLVMLoopVectorizeFollowupEpilogue});
10632   if (RemainderLoopID.hasValue()) {
10633     L->setLoopID(RemainderLoopID.getValue());
10634   } else {
10635     if (DisableRuntimeUnroll)
10636       AddRuntimeUnrollDisableMetaData(L);
10637 
10638     // Mark the loop as already vectorized to avoid vectorizing again.
10639     Hints.setAlreadyVectorized();
10640   }
10641 
10642   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10643   return true;
10644 }
10645 
10646 LoopVectorizeResult LoopVectorizePass::runImpl(
10647     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10648     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10649     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10650     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10651     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10652   SE = &SE_;
10653   LI = &LI_;
10654   TTI = &TTI_;
10655   DT = &DT_;
10656   BFI = &BFI_;
10657   TLI = TLI_;
10658   AA = &AA_;
10659   AC = &AC_;
10660   GetLAA = &GetLAA_;
10661   DB = &DB_;
10662   ORE = &ORE_;
10663   PSI = PSI_;
10664 
10665   // Don't attempt if
10666   // 1. the target claims to have no vector registers, and
10667   // 2. interleaving won't help ILP.
10668   //
10669   // The second condition is necessary because, even if the target has no
10670   // vector registers, loop vectorization may still enable scalar
10671   // interleaving.
10672   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10673       TTI->getMaxInterleaveFactor(1) < 2)
10674     return LoopVectorizeResult(false, false);
10675 
10676   bool Changed = false, CFGChanged = false;
10677 
10678   // The vectorizer requires loops to be in simplified form.
10679   // Since simplification may add new inner loops, it has to run before the
10680   // legality and profitability checks. This means running the loop vectorizer
10681   // will simplify all loops, regardless of whether anything end up being
10682   // vectorized.
10683   for (auto &L : *LI)
10684     Changed |= CFGChanged |=
10685         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10686 
10687   // Build up a worklist of inner-loops to vectorize. This is necessary as
10688   // the act of vectorizing or partially unrolling a loop creates new loops
10689   // and can invalidate iterators across the loops.
10690   SmallVector<Loop *, 8> Worklist;
10691 
10692   for (Loop *L : *LI)
10693     collectSupportedLoops(*L, LI, ORE, Worklist);
10694 
10695   LoopsAnalyzed += Worklist.size();
10696 
10697   // Now walk the identified inner loops.
10698   while (!Worklist.empty()) {
10699     Loop *L = Worklist.pop_back_val();
10700 
10701     // For the inner loops we actually process, form LCSSA to simplify the
10702     // transform.
10703     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10704 
10705     Changed |= CFGChanged |= processLoop(L);
10706   }
10707 
10708   // Process each loop nest in the function.
10709   return LoopVectorizeResult(Changed, CFGChanged);
10710 }
10711 
10712 PreservedAnalyses LoopVectorizePass::run(Function &F,
10713                                          FunctionAnalysisManager &AM) {
10714     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10715     auto &LI = AM.getResult<LoopAnalysis>(F);
10716     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10717     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10718     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10719     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10720     auto &AA = AM.getResult<AAManager>(F);
10721     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10722     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10723     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10724 
10725     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10726     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10727         [&](Loop &L) -> const LoopAccessInfo & {
10728       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10729                                         TLI, TTI, nullptr, nullptr, nullptr};
10730       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10731     };
10732     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10733     ProfileSummaryInfo *PSI =
10734         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10735     LoopVectorizeResult Result =
10736         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10737     if (!Result.MadeAnyChange)
10738       return PreservedAnalyses::all();
10739     PreservedAnalyses PA;
10740 
10741     // We currently do not preserve loopinfo/dominator analyses with outer loop
10742     // vectorization. Until this is addressed, mark these analyses as preserved
10743     // only for non-VPlan-native path.
10744     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10745     if (!EnableVPlanNativePath) {
10746       PA.preserve<LoopAnalysis>();
10747       PA.preserve<DominatorTreeAnalysis>();
10748     }
10749 
10750     if (Result.MadeCFGChange) {
10751       // Making CFG changes likely means a loop got vectorized. Indicate that
10752       // extra simplification passes should be run.
10753       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10754       // be run if runtime checks have been added.
10755       AM.getResult<ShouldRunExtraVectorPasses>(F);
10756       PA.preserve<ShouldRunExtraVectorPasses>();
10757     } else {
10758       PA.preserveSet<CFGAnalyses>();
10759     }
10760     return PA;
10761 }
10762 
10763 void LoopVectorizePass::printPipeline(
10764     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10765   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10766       OS, MapClassName2PassName);
10767 
10768   OS << "<";
10769   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10770   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10771   OS << ">";
10772 }
10773