1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #define LV_NAME "loop-vectorize" 46 #define DEBUG_TYPE LV_NAME 47 48 #include "llvm/Transforms/Vectorize.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/EquivalenceClasses.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/Analysis/AliasAnalysis.h" 58 #include "llvm/Analysis/Dominators.h" 59 #include "llvm/Analysis/LoopInfo.h" 60 #include "llvm/Analysis/LoopIterator.h" 61 #include "llvm/Analysis/LoopPass.h" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/Analysis/ScalarEvolutionExpander.h" 64 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/Analysis/ValueTracking.h" 67 #include "llvm/Analysis/Verifier.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/LLVMContext.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/IR/Type.h" 78 #include "llvm/IR/Value.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/PatternMatch.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Support/ValueHandle.h" 85 #include "llvm/Target/TargetLibraryInfo.h" 86 #include "llvm/Transforms/Scalar.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/Local.h" 89 #include <algorithm> 90 #include <map> 91 92 using namespace llvm; 93 using namespace llvm::PatternMatch; 94 95 static cl::opt<unsigned> 96 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 97 cl::desc("Sets the SIMD width. Zero is autoselect.")); 98 99 static cl::opt<unsigned> 100 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 101 cl::desc("Sets the vectorization unroll count. " 102 "Zero is autoselect.")); 103 104 static cl::opt<bool> 105 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 106 cl::desc("Enable if-conversion during vectorization.")); 107 108 /// We don't vectorize loops with a known constant trip count below this number. 109 static cl::opt<unsigned> 110 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 111 cl::Hidden, 112 cl::desc("Don't vectorize loops with a constant " 113 "trip count that is smaller than this " 114 "value.")); 115 116 /// We don't unroll loops with a known constant trip count below this number. 117 static const unsigned TinyTripCountUnrollThreshold = 128; 118 119 /// When performing memory disambiguation checks at runtime do not make more 120 /// than this number of comparisons. 121 static const unsigned RuntimeMemoryCheckThreshold = 8; 122 123 /// Maximum simd width. 124 static const unsigned MaxVectorWidth = 64; 125 126 /// Maximum vectorization unroll count. 127 static const unsigned MaxUnrollFactor = 16; 128 129 /// The cost of a loop that is considered 'small' by the unroller. 130 static const unsigned SmallLoopCost = 20; 131 132 namespace { 133 134 // Forward declarations. 135 class LoopVectorizationLegality; 136 class LoopVectorizationCostModel; 137 138 /// InnerLoopVectorizer vectorizes loops which contain only one basic 139 /// block to a specified vectorization factor (VF). 140 /// This class performs the widening of scalars into vectors, or multiple 141 /// scalars. This class also implements the following features: 142 /// * It inserts an epilogue loop for handling loops that don't have iteration 143 /// counts that are known to be a multiple of the vectorization factor. 144 /// * It handles the code generation for reduction variables. 145 /// * Scalarization (implementation using scalars) of un-vectorizable 146 /// instructions. 147 /// InnerLoopVectorizer does not perform any vectorization-legality 148 /// checks, and relies on the caller to check for the different legality 149 /// aspects. The InnerLoopVectorizer relies on the 150 /// LoopVectorizationLegality class to provide information about the induction 151 /// and reduction variables that were found to a given vectorization factor. 152 class InnerLoopVectorizer { 153 public: 154 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 155 DominatorTree *DT, DataLayout *DL, 156 const TargetLibraryInfo *TLI, unsigned VecWidth, 157 unsigned UnrollFactor) 158 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 159 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0), 160 OldInduction(0), WidenMap(UnrollFactor) {} 161 162 // Perform the actual loop widening (vectorization). 163 void vectorize(LoopVectorizationLegality *Legal) { 164 // Create a new empty loop. Unlink the old loop and connect the new one. 165 createEmptyLoop(Legal); 166 // Widen each instruction in the old loop to a new one in the new loop. 167 // Use the Legality module to find the induction and reduction variables. 168 vectorizeLoop(Legal); 169 // Register the new loop and update the analysis passes. 170 updateAnalysis(); 171 } 172 173 virtual ~InnerLoopVectorizer() {} 174 175 protected: 176 /// A small list of PHINodes. 177 typedef SmallVector<PHINode*, 4> PhiVector; 178 /// When we unroll loops we have multiple vector values for each scalar. 179 /// This data structure holds the unrolled and vectorized values that 180 /// originated from one scalar instruction. 181 typedef SmallVector<Value*, 2> VectorParts; 182 183 // When we if-convert we need create edge masks. We have to cache values so 184 // that we don't end up with exponential recursion/IR. 185 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 186 VectorParts> EdgeMaskCache; 187 188 /// Add code that checks at runtime if the accessed arrays overlap. 189 /// Returns the comparator value or NULL if no check is needed. 190 Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal, 191 Instruction *Loc); 192 /// Create an empty loop, based on the loop ranges of the old loop. 193 void createEmptyLoop(LoopVectorizationLegality *Legal); 194 /// Copy and widen the instructions from the old loop. 195 virtual void vectorizeLoop(LoopVectorizationLegality *Legal); 196 197 /// \brief The Loop exit block may have single value PHI nodes where the 198 /// incoming value is 'Undef'. While vectorizing we only handled real values 199 /// that were defined inside the loop. Here we fix the 'undef case'. 200 /// See PR14725. 201 void fixLCSSAPHIs(); 202 203 /// A helper function that computes the predicate of the block BB, assuming 204 /// that the header block of the loop is set to True. It returns the *entry* 205 /// mask for the block BB. 206 VectorParts createBlockInMask(BasicBlock *BB); 207 /// A helper function that computes the predicate of the edge between SRC 208 /// and DST. 209 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 210 211 /// A helper function to vectorize a single BB within the innermost loop. 212 void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB, 213 PhiVector *PV); 214 215 /// Vectorize a single PHINode in a block. This method handles the induction 216 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 217 /// arbitrary length vectors. 218 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 219 LoopVectorizationLegality *Legal, 220 unsigned UF, unsigned VF, PhiVector *PV); 221 222 /// Insert the new loop to the loop hierarchy and pass manager 223 /// and update the analysis passes. 224 void updateAnalysis(); 225 226 /// This instruction is un-vectorizable. Implement it as a sequence 227 /// of scalars. 228 virtual void scalarizeInstruction(Instruction *Instr); 229 230 /// Vectorize Load and Store instructions, 231 virtual void vectorizeMemoryInstruction(Instruction *Instr, 232 LoopVectorizationLegality *Legal); 233 234 /// Create a broadcast instruction. This method generates a broadcast 235 /// instruction (shuffle) for loop invariant values and for the induction 236 /// value. If this is the induction variable then we extend it to N, N+1, ... 237 /// this is needed because each iteration in the loop corresponds to a SIMD 238 /// element. 239 virtual Value *getBroadcastInstrs(Value *V); 240 241 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 242 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 243 /// The sequence starts at StartIndex. 244 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 245 246 /// When we go over instructions in the basic block we rely on previous 247 /// values within the current basic block or on loop invariant values. 248 /// When we widen (vectorize) values we place them in the map. If the values 249 /// are not within the map, they have to be loop invariant, so we simply 250 /// broadcast them into a vector. 251 VectorParts &getVectorValue(Value *V); 252 253 /// Generate a shuffle sequence that will reverse the vector Vec. 254 virtual Value *reverseVector(Value *Vec); 255 256 /// This is a helper class that holds the vectorizer state. It maps scalar 257 /// instructions to vector instructions. When the code is 'unrolled' then 258 /// then a single scalar value is mapped to multiple vector parts. The parts 259 /// are stored in the VectorPart type. 260 struct ValueMap { 261 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 262 /// are mapped. 263 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 264 265 /// \return True if 'Key' is saved in the Value Map. 266 bool has(Value *Key) const { return MapStorage.count(Key); } 267 268 /// Initializes a new entry in the map. Sets all of the vector parts to the 269 /// save value in 'Val'. 270 /// \return A reference to a vector with splat values. 271 VectorParts &splat(Value *Key, Value *Val) { 272 VectorParts &Entry = MapStorage[Key]; 273 Entry.assign(UF, Val); 274 return Entry; 275 } 276 277 ///\return A reference to the value that is stored at 'Key'. 278 VectorParts &get(Value *Key) { 279 VectorParts &Entry = MapStorage[Key]; 280 if (Entry.empty()) 281 Entry.resize(UF); 282 assert(Entry.size() == UF); 283 return Entry; 284 } 285 286 private: 287 /// The unroll factor. Each entry in the map stores this number of vector 288 /// elements. 289 unsigned UF; 290 291 /// Map storage. We use std::map and not DenseMap because insertions to a 292 /// dense map invalidates its iterators. 293 std::map<Value *, VectorParts> MapStorage; 294 }; 295 296 /// The original loop. 297 Loop *OrigLoop; 298 /// Scev analysis to use. 299 ScalarEvolution *SE; 300 /// Loop Info. 301 LoopInfo *LI; 302 /// Dominator Tree. 303 DominatorTree *DT; 304 /// Data Layout. 305 DataLayout *DL; 306 /// Target Library Info. 307 const TargetLibraryInfo *TLI; 308 309 /// The vectorization SIMD factor to use. Each vector will have this many 310 /// vector elements. 311 unsigned VF; 312 313 protected: 314 /// The vectorization unroll factor to use. Each scalar is vectorized to this 315 /// many different vector instructions. 316 unsigned UF; 317 318 /// The builder that we use 319 IRBuilder<> Builder; 320 321 // --- Vectorization state --- 322 323 /// The vector-loop preheader. 324 BasicBlock *LoopVectorPreHeader; 325 /// The scalar-loop preheader. 326 BasicBlock *LoopScalarPreHeader; 327 /// Middle Block between the vector and the scalar. 328 BasicBlock *LoopMiddleBlock; 329 ///The ExitBlock of the scalar loop. 330 BasicBlock *LoopExitBlock; 331 ///The vector loop body. 332 BasicBlock *LoopVectorBody; 333 ///The scalar loop body. 334 BasicBlock *LoopScalarBody; 335 /// A list of all bypass blocks. The first block is the entry of the loop. 336 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 337 338 /// The new Induction variable which was added to the new block. 339 PHINode *Induction; 340 /// The induction variable of the old basic block. 341 PHINode *OldInduction; 342 /// Holds the extended (to the widest induction type) start index. 343 Value *ExtendedIdx; 344 /// Maps scalars to widened vectors. 345 ValueMap WidenMap; 346 EdgeMaskCache MaskCache; 347 }; 348 349 class InnerLoopUnroller : public InnerLoopVectorizer { 350 public: 351 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 352 DominatorTree *DT, DataLayout *DL, 353 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 354 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 355 356 private: 357 virtual void scalarizeInstruction(Instruction *Instr); 358 virtual void vectorizeMemoryInstruction(Instruction *Instr, 359 LoopVectorizationLegality *Legal); 360 virtual Value *getBroadcastInstrs(Value *V); 361 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 362 virtual Value *reverseVector(Value *Vec); 363 }; 364 365 /// \brief Look for a meaningful debug location on the instruction or it's 366 /// operands. 367 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 368 if (!I) 369 return I; 370 371 DebugLoc Empty; 372 if (I->getDebugLoc() != Empty) 373 return I; 374 375 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 376 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 377 if (OpInst->getDebugLoc() != Empty) 378 return OpInst; 379 } 380 381 return I; 382 } 383 384 /// \brief Set the debug location in the builder using the debug location in the 385 /// instruction. 386 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 387 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 388 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 389 else 390 B.SetCurrentDebugLocation(DebugLoc()); 391 } 392 393 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 394 /// to what vectorization factor. 395 /// This class does not look at the profitability of vectorization, only the 396 /// legality. This class has two main kinds of checks: 397 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 398 /// will change the order of memory accesses in a way that will change the 399 /// correctness of the program. 400 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 401 /// checks for a number of different conditions, such as the availability of a 402 /// single induction variable, that all types are supported and vectorize-able, 403 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 404 /// This class is also used by InnerLoopVectorizer for identifying 405 /// induction variable and the different reduction variables. 406 class LoopVectorizationLegality { 407 public: 408 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL, 409 DominatorTree *DT, TargetLibraryInfo *TLI) 410 : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI), 411 Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false), 412 MaxSafeDepDistBytes(-1U) {} 413 414 /// This enum represents the kinds of reductions that we support. 415 enum ReductionKind { 416 RK_NoReduction, ///< Not a reduction. 417 RK_IntegerAdd, ///< Sum of integers. 418 RK_IntegerMult, ///< Product of integers. 419 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 420 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 421 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 422 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 423 RK_FloatAdd, ///< Sum of floats. 424 RK_FloatMult, ///< Product of floats. 425 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 426 }; 427 428 /// This enum represents the kinds of inductions that we support. 429 enum InductionKind { 430 IK_NoInduction, ///< Not an induction variable. 431 IK_IntInduction, ///< Integer induction variable. Step = 1. 432 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 433 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 434 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 435 }; 436 437 // This enum represents the kind of minmax reduction. 438 enum MinMaxReductionKind { 439 MRK_Invalid, 440 MRK_UIntMin, 441 MRK_UIntMax, 442 MRK_SIntMin, 443 MRK_SIntMax, 444 MRK_FloatMin, 445 MRK_FloatMax 446 }; 447 448 /// This POD struct holds information about reduction variables. 449 struct ReductionDescriptor { 450 ReductionDescriptor() : StartValue(0), LoopExitInstr(0), 451 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 452 453 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 454 MinMaxReductionKind MK) 455 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 456 457 // The starting value of the reduction. 458 // It does not have to be zero! 459 TrackingVH<Value> StartValue; 460 // The instruction who's value is used outside the loop. 461 Instruction *LoopExitInstr; 462 // The kind of the reduction. 463 ReductionKind Kind; 464 // If this a min/max reduction the kind of reduction. 465 MinMaxReductionKind MinMaxKind; 466 }; 467 468 /// This POD struct holds information about a potential reduction operation. 469 struct ReductionInstDesc { 470 ReductionInstDesc(bool IsRedux, Instruction *I) : 471 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 472 473 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 474 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 475 476 // Is this instruction a reduction candidate. 477 bool IsReduction; 478 // The last instruction in a min/max pattern (select of the select(icmp()) 479 // pattern), or the current reduction instruction otherwise. 480 Instruction *PatternLastInst; 481 // If this is a min/max pattern the comparison predicate. 482 MinMaxReductionKind MinMaxKind; 483 }; 484 485 // This POD struct holds information about the memory runtime legality 486 // check that a group of pointers do not overlap. 487 struct RuntimePointerCheck { 488 RuntimePointerCheck() : Need(false) {} 489 490 /// Reset the state of the pointer runtime information. 491 void reset() { 492 Need = false; 493 Pointers.clear(); 494 Starts.clear(); 495 Ends.clear(); 496 } 497 498 /// Insert a pointer and calculate the start and end SCEVs. 499 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 500 unsigned DepSetId); 501 502 /// This flag indicates if we need to add the runtime check. 503 bool Need; 504 /// Holds the pointers that we need to check. 505 SmallVector<TrackingVH<Value>, 2> Pointers; 506 /// Holds the pointer value at the beginning of the loop. 507 SmallVector<const SCEV*, 2> Starts; 508 /// Holds the pointer value at the end of the loop. 509 SmallVector<const SCEV*, 2> Ends; 510 /// Holds the information if this pointer is used for writing to memory. 511 SmallVector<bool, 2> IsWritePtr; 512 /// Holds the id of the set of pointers that could be dependent because of a 513 /// shared underlying object. 514 SmallVector<unsigned, 2> DependencySetId; 515 }; 516 517 /// A POD for saving information about induction variables. 518 struct InductionInfo { 519 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 520 InductionInfo() : StartValue(0), IK(IK_NoInduction) {} 521 /// Start value. 522 TrackingVH<Value> StartValue; 523 /// Induction kind. 524 InductionKind IK; 525 }; 526 527 /// ReductionList contains the reduction descriptors for all 528 /// of the reductions that were found in the loop. 529 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 530 531 /// InductionList saves induction variables and maps them to the 532 /// induction descriptor. 533 typedef MapVector<PHINode*, InductionInfo> InductionList; 534 535 /// Returns true if it is legal to vectorize this loop. 536 /// This does not mean that it is profitable to vectorize this 537 /// loop, only that it is legal to do so. 538 bool canVectorize(); 539 540 /// Returns the Induction variable. 541 PHINode *getInduction() { return Induction; } 542 543 /// Returns the reduction variables found in the loop. 544 ReductionList *getReductionVars() { return &Reductions; } 545 546 /// Returns the induction variables found in the loop. 547 InductionList *getInductionVars() { return &Inductions; } 548 549 /// Returns the widest induction type. 550 Type *getWidestInductionType() { return WidestIndTy; } 551 552 /// Returns True if V is an induction variable in this loop. 553 bool isInductionVariable(const Value *V); 554 555 /// Return true if the block BB needs to be predicated in order for the loop 556 /// to be vectorized. 557 bool blockNeedsPredication(BasicBlock *BB); 558 559 /// Check if this pointer is consecutive when vectorizing. This happens 560 /// when the last index of the GEP is the induction variable, or that the 561 /// pointer itself is an induction variable. 562 /// This check allows us to vectorize A[idx] into a wide load/store. 563 /// Returns: 564 /// 0 - Stride is unknown or non consecutive. 565 /// 1 - Address is consecutive. 566 /// -1 - Address is consecutive, and decreasing. 567 int isConsecutivePtr(Value *Ptr); 568 569 /// Returns true if the value V is uniform within the loop. 570 bool isUniform(Value *V); 571 572 /// Returns true if this instruction will remain scalar after vectorization. 573 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 574 575 /// Returns the information that we collected about runtime memory check. 576 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 577 578 /// This function returns the identity element (or neutral element) for 579 /// the operation K. 580 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 581 582 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 583 584 private: 585 /// Check if a single basic block loop is vectorizable. 586 /// At this point we know that this is a loop with a constant trip count 587 /// and we only need to check individual instructions. 588 bool canVectorizeInstrs(); 589 590 /// When we vectorize loops we may change the order in which 591 /// we read and write from memory. This method checks if it is 592 /// legal to vectorize the code, considering only memory constrains. 593 /// Returns true if the loop is vectorizable 594 bool canVectorizeMemory(); 595 596 /// Return true if we can vectorize this loop using the IF-conversion 597 /// transformation. 598 bool canVectorizeWithIfConvert(); 599 600 /// Collect the variables that need to stay uniform after vectorization. 601 void collectLoopUniforms(); 602 603 /// Return true if all of the instructions in the block can be speculatively 604 /// executed. \p SafePtrs is a list of addresses that are known to be legal 605 /// and we know that we can read from them without segfault. 606 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 607 608 /// Returns True, if 'Phi' is the kind of reduction variable for type 609 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 610 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 611 /// Returns a struct describing if the instruction 'I' can be a reduction 612 /// variable of type 'Kind'. If the reduction is a min/max pattern of 613 /// select(icmp()) this function advances the instruction pointer 'I' from the 614 /// compare instruction to the select instruction and stores this pointer in 615 /// 'PatternLastInst' member of the returned struct. 616 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 617 ReductionInstDesc &Desc); 618 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 619 /// pattern corresponding to a min(X, Y) or max(X, Y). 620 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 621 ReductionInstDesc &Prev); 622 /// Returns the induction kind of Phi. This function may return NoInduction 623 /// if the PHI is not an induction variable. 624 InductionKind isInductionVariable(PHINode *Phi); 625 626 /// The loop that we evaluate. 627 Loop *TheLoop; 628 /// Scev analysis. 629 ScalarEvolution *SE; 630 /// DataLayout analysis. 631 DataLayout *DL; 632 /// Dominators. 633 DominatorTree *DT; 634 /// Target Library Info. 635 TargetLibraryInfo *TLI; 636 637 // --- vectorization state --- // 638 639 /// Holds the integer induction variable. This is the counter of the 640 /// loop. 641 PHINode *Induction; 642 /// Holds the reduction variables. 643 ReductionList Reductions; 644 /// Holds all of the induction variables that we found in the loop. 645 /// Notice that inductions don't need to start at zero and that induction 646 /// variables can be pointers. 647 InductionList Inductions; 648 /// Holds the widest induction type encountered. 649 Type *WidestIndTy; 650 651 /// Allowed outside users. This holds the reduction 652 /// vars which can be accessed from outside the loop. 653 SmallPtrSet<Value*, 4> AllowedExit; 654 /// This set holds the variables which are known to be uniform after 655 /// vectorization. 656 SmallPtrSet<Instruction*, 4> Uniforms; 657 /// We need to check that all of the pointers in this list are disjoint 658 /// at runtime. 659 RuntimePointerCheck PtrRtCheck; 660 /// Can we assume the absence of NaNs. 661 bool HasFunNoNaNAttr; 662 663 unsigned MaxSafeDepDistBytes; 664 }; 665 666 /// LoopVectorizationCostModel - estimates the expected speedups due to 667 /// vectorization. 668 /// In many cases vectorization is not profitable. This can happen because of 669 /// a number of reasons. In this class we mainly attempt to predict the 670 /// expected speedup/slowdowns due to the supported instruction set. We use the 671 /// TargetTransformInfo to query the different backends for the cost of 672 /// different operations. 673 class LoopVectorizationCostModel { 674 public: 675 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 676 LoopVectorizationLegality *Legal, 677 const TargetTransformInfo &TTI, 678 DataLayout *DL, const TargetLibraryInfo *TLI) 679 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 680 681 /// Information about vectorization costs 682 struct VectorizationFactor { 683 unsigned Width; // Vector width with best cost 684 unsigned Cost; // Cost of the loop with that width 685 }; 686 /// \return The most profitable vectorization factor and the cost of that VF. 687 /// This method checks every power of two up to VF. If UserVF is not ZERO 688 /// then this vectorization factor will be selected if vectorization is 689 /// possible. 690 VectorizationFactor selectVectorizationFactor(bool OptForSize, 691 unsigned UserVF); 692 693 /// \return The size (in bits) of the widest type in the code that 694 /// needs to be vectorized. We ignore values that remain scalar such as 695 /// 64 bit loop indices. 696 unsigned getWidestType(); 697 698 /// \return The most profitable unroll factor. 699 /// If UserUF is non-zero then this method finds the best unroll-factor 700 /// based on register pressure and other parameters. 701 /// VF and LoopCost are the selected vectorization factor and the cost of the 702 /// selected VF. 703 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 704 unsigned LoopCost); 705 706 /// \brief A struct that represents some properties of the register usage 707 /// of a loop. 708 struct RegisterUsage { 709 /// Holds the number of loop invariant values that are used in the loop. 710 unsigned LoopInvariantRegs; 711 /// Holds the maximum number of concurrent live intervals in the loop. 712 unsigned MaxLocalUsers; 713 /// Holds the number of instructions in the loop. 714 unsigned NumInstructions; 715 }; 716 717 /// \return information about the register usage of the loop. 718 RegisterUsage calculateRegisterUsage(); 719 720 private: 721 /// Returns the expected execution cost. The unit of the cost does 722 /// not matter because we use the 'cost' units to compare different 723 /// vector widths. The cost that is returned is *not* normalized by 724 /// the factor width. 725 unsigned expectedCost(unsigned VF); 726 727 /// Returns the execution time cost of an instruction for a given vector 728 /// width. Vector width of one means scalar. 729 unsigned getInstructionCost(Instruction *I, unsigned VF); 730 731 /// A helper function for converting Scalar types to vector types. 732 /// If the incoming type is void, we return void. If the VF is 1, we return 733 /// the scalar type. 734 static Type* ToVectorTy(Type *Scalar, unsigned VF); 735 736 /// Returns whether the instruction is a load or store and will be a emitted 737 /// as a vector operation. 738 bool isConsecutiveLoadOrStore(Instruction *I); 739 740 /// The loop that we evaluate. 741 Loop *TheLoop; 742 /// Scev analysis. 743 ScalarEvolution *SE; 744 /// Loop Info analysis. 745 LoopInfo *LI; 746 /// Vectorization legality. 747 LoopVectorizationLegality *Legal; 748 /// Vector target information. 749 const TargetTransformInfo &TTI; 750 /// Target data layout information. 751 DataLayout *DL; 752 /// Target Library Info. 753 const TargetLibraryInfo *TLI; 754 }; 755 756 /// Utility class for getting and setting loop vectorizer hints in the form 757 /// of loop metadata. 758 struct LoopVectorizeHints { 759 /// Vectorization width. 760 unsigned Width; 761 /// Vectorization unroll factor. 762 unsigned Unroll; 763 764 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 765 : Width(VectorizationFactor) 766 , Unroll(DisableUnrolling ? 1 : VectorizationUnroll) 767 , LoopID(L->getLoopID()) { 768 getHints(L); 769 // The command line options override any loop metadata except for when 770 // width == 1 which is used to indicate the loop is already vectorized. 771 if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1) 772 Width = VectorizationFactor; 773 if (VectorizationUnroll.getNumOccurrences() > 0) 774 Unroll = VectorizationUnroll; 775 776 DEBUG(if (DisableUnrolling && Unroll == 1) 777 dbgs() << "LV: Unrolling disabled by the pass manager\n"); 778 } 779 780 /// Return the loop vectorizer metadata prefix. 781 static StringRef Prefix() { return "llvm.vectorizer."; } 782 783 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) { 784 SmallVector<Value*, 2> Vals; 785 Vals.push_back(MDString::get(Context, Name)); 786 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 787 return MDNode::get(Context, Vals); 788 } 789 790 /// Mark the loop L as already vectorized by setting the width to 1. 791 void setAlreadyVectorized(Loop *L) { 792 LLVMContext &Context = L->getHeader()->getContext(); 793 794 Width = 1; 795 796 // Create a new loop id with one more operand for the already_vectorized 797 // hint. If the loop already has a loop id then copy the existing operands. 798 SmallVector<Value*, 4> Vals(1); 799 if (LoopID) 800 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 801 Vals.push_back(LoopID->getOperand(i)); 802 803 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 804 805 MDNode *NewLoopID = MDNode::get(Context, Vals); 806 // Set operand 0 to refer to the loop id itself. 807 NewLoopID->replaceOperandWith(0, NewLoopID); 808 809 L->setLoopID(NewLoopID); 810 if (LoopID) 811 LoopID->replaceAllUsesWith(NewLoopID); 812 813 LoopID = NewLoopID; 814 } 815 816 private: 817 MDNode *LoopID; 818 819 /// Find hints specified in the loop metadata. 820 void getHints(const Loop *L) { 821 if (!LoopID) 822 return; 823 824 // First operand should refer to the loop id itself. 825 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 826 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 827 828 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 829 const MDString *S = 0; 830 SmallVector<Value*, 4> Args; 831 832 // The expected hint is either a MDString or a MDNode with the first 833 // operand a MDString. 834 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 835 if (!MD || MD->getNumOperands() == 0) 836 continue; 837 S = dyn_cast<MDString>(MD->getOperand(0)); 838 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 839 Args.push_back(MD->getOperand(i)); 840 } else { 841 S = dyn_cast<MDString>(LoopID->getOperand(i)); 842 assert(Args.size() == 0 && "too many arguments for MDString"); 843 } 844 845 if (!S) 846 continue; 847 848 // Check if the hint starts with the vectorizer prefix. 849 StringRef Hint = S->getString(); 850 if (!Hint.startswith(Prefix())) 851 continue; 852 // Remove the prefix. 853 Hint = Hint.substr(Prefix().size(), StringRef::npos); 854 855 if (Args.size() == 1) 856 getHint(Hint, Args[0]); 857 } 858 } 859 860 // Check string hint with one operand. 861 void getHint(StringRef Hint, Value *Arg) { 862 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 863 if (!C) return; 864 unsigned Val = C->getZExtValue(); 865 866 if (Hint == "width") { 867 assert(isPowerOf2_32(Val) && Val <= MaxVectorWidth && 868 "Invalid width metadata"); 869 Width = Val; 870 } else if (Hint == "unroll") { 871 assert(isPowerOf2_32(Val) && Val <= MaxUnrollFactor && 872 "Invalid unroll metadata"); 873 Unroll = Val; 874 } else 875 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint); 876 } 877 }; 878 879 /// The LoopVectorize Pass. 880 struct LoopVectorize : public LoopPass { 881 /// Pass identification, replacement for typeid 882 static char ID; 883 884 explicit LoopVectorize(bool NoUnrolling = false) 885 : LoopPass(ID), DisableUnrolling(NoUnrolling) { 886 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 887 } 888 889 ScalarEvolution *SE; 890 DataLayout *DL; 891 LoopInfo *LI; 892 TargetTransformInfo *TTI; 893 DominatorTree *DT; 894 TargetLibraryInfo *TLI; 895 bool DisableUnrolling; 896 897 virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { 898 // We only vectorize innermost loops. 899 if (!L->empty()) 900 return false; 901 902 SE = &getAnalysis<ScalarEvolution>(); 903 DL = getAnalysisIfAvailable<DataLayout>(); 904 LI = &getAnalysis<LoopInfo>(); 905 TTI = &getAnalysis<TargetTransformInfo>(); 906 DT = &getAnalysis<DominatorTree>(); 907 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 908 909 if (DL == NULL) { 910 DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout"); 911 return false; 912 } 913 914 DEBUG(dbgs() << "LV: Checking a loop in \"" << 915 L->getHeader()->getParent()->getName() << "\"\n"); 916 917 LoopVectorizeHints Hints(L, DisableUnrolling); 918 919 if (Hints.Width == 1 && Hints.Unroll == 1) { 920 DEBUG(dbgs() << "LV: Not vectorizing.\n"); 921 return false; 922 } 923 924 // Check if it is legal to vectorize the loop. 925 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI); 926 if (!LVL.canVectorize()) { 927 DEBUG(dbgs() << "LV: Not vectorizing.\n"); 928 return false; 929 } 930 931 // Use the cost model. 932 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 933 934 // Check the function attributes to find out if this function should be 935 // optimized for size. 936 Function *F = L->getHeader()->getParent(); 937 Attribute::AttrKind SzAttr = Attribute::OptimizeForSize; 938 Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat; 939 unsigned FnIndex = AttributeSet::FunctionIndex; 940 bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr); 941 bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr); 942 943 if (NoFloat) { 944 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 945 "attribute is used.\n"); 946 return false; 947 } 948 949 // Select the optimal vectorization factor. 950 LoopVectorizationCostModel::VectorizationFactor VF; 951 VF = CM.selectVectorizationFactor(OptForSize, Hints.Width); 952 // Select the unroll factor. 953 unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width, 954 VF.Cost); 955 956 if (VF.Width == 1) { 957 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 958 } 959 960 DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<< 961 F->getParent()->getModuleIdentifier()<<"\n"); 962 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n"); 963 964 if (VF.Width == 1) { 965 if (UF == 1) 966 return false; 967 // We decided not to vectorize, but we may want to unroll. 968 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 969 Unroller.vectorize(&LVL); 970 } else { 971 // If we decided that it is *legal* to vectorize the loop then do it. 972 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 973 LB.vectorize(&LVL); 974 } 975 976 // Mark the loop as already vectorized to avoid vectorizing again. 977 Hints.setAlreadyVectorized(L); 978 979 DEBUG(verifyFunction(*L->getHeader()->getParent())); 980 return true; 981 } 982 983 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 984 LoopPass::getAnalysisUsage(AU); 985 AU.addRequiredID(LoopSimplifyID); 986 AU.addRequiredID(LCSSAID); 987 AU.addRequired<DominatorTree>(); 988 AU.addRequired<LoopInfo>(); 989 AU.addRequired<ScalarEvolution>(); 990 AU.addRequired<TargetTransformInfo>(); 991 AU.addPreserved<LoopInfo>(); 992 AU.addPreserved<DominatorTree>(); 993 } 994 995 }; 996 997 } // end anonymous namespace 998 999 //===----------------------------------------------------------------------===// 1000 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1001 // LoopVectorizationCostModel. 1002 //===----------------------------------------------------------------------===// 1003 1004 void 1005 LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE, 1006 Loop *Lp, Value *Ptr, 1007 bool WritePtr, 1008 unsigned DepSetId) { 1009 const SCEV *Sc = SE->getSCEV(Ptr); 1010 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1011 assert(AR && "Invalid addrec expression"); 1012 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1013 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1014 Pointers.push_back(Ptr); 1015 Starts.push_back(AR->getStart()); 1016 Ends.push_back(ScEnd); 1017 IsWritePtr.push_back(WritePtr); 1018 DependencySetId.push_back(DepSetId); 1019 } 1020 1021 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1022 // Save the current insertion location. 1023 Instruction *Loc = Builder.GetInsertPoint(); 1024 1025 // We need to place the broadcast of invariant variables outside the loop. 1026 Instruction *Instr = dyn_cast<Instruction>(V); 1027 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 1028 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1029 1030 // Place the code for broadcasting invariant variables in the new preheader. 1031 if (Invariant) 1032 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1033 1034 // Broadcast the scalar into all locations in the vector. 1035 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1036 1037 // Restore the builder insertion point. 1038 if (Invariant) 1039 Builder.SetInsertPoint(Loc); 1040 1041 return Shuf; 1042 } 1043 1044 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1045 bool Negate) { 1046 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1047 assert(Val->getType()->getScalarType()->isIntegerTy() && 1048 "Elem must be an integer"); 1049 // Create the types. 1050 Type *ITy = Val->getType()->getScalarType(); 1051 VectorType *Ty = cast<VectorType>(Val->getType()); 1052 int VLen = Ty->getNumElements(); 1053 SmallVector<Constant*, 8> Indices; 1054 1055 // Create a vector of consecutive numbers from zero to VF. 1056 for (int i = 0; i < VLen; ++i) { 1057 int64_t Idx = Negate ? (-i) : i; 1058 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1059 } 1060 1061 // Add the consecutive indices to the vector value. 1062 Constant *Cv = ConstantVector::get(Indices); 1063 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1064 return Builder.CreateAdd(Val, Cv, "induction"); 1065 } 1066 1067 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1068 assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr"); 1069 // Make sure that the pointer does not point to structs. 1070 if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType()) 1071 return 0; 1072 1073 // If this value is a pointer induction variable we know it is consecutive. 1074 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1075 if (Phi && Inductions.count(Phi)) { 1076 InductionInfo II = Inductions[Phi]; 1077 if (IK_PtrInduction == II.IK) 1078 return 1; 1079 else if (IK_ReversePtrInduction == II.IK) 1080 return -1; 1081 } 1082 1083 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1084 if (!Gep) 1085 return 0; 1086 1087 unsigned NumOperands = Gep->getNumOperands(); 1088 Value *LastIndex = Gep->getOperand(NumOperands - 1); 1089 1090 Value *GpPtr = Gep->getPointerOperand(); 1091 // If this GEP value is a consecutive pointer induction variable and all of 1092 // the indices are constant then we know it is consecutive. We can 1093 Phi = dyn_cast<PHINode>(GpPtr); 1094 if (Phi && Inductions.count(Phi)) { 1095 1096 // Make sure that the pointer does not point to structs. 1097 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1098 if (GepPtrType->getElementType()->isAggregateType()) 1099 return 0; 1100 1101 // Make sure that all of the index operands are loop invariant. 1102 for (unsigned i = 1; i < NumOperands; ++i) 1103 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1104 return 0; 1105 1106 InductionInfo II = Inductions[Phi]; 1107 if (IK_PtrInduction == II.IK) 1108 return 1; 1109 else if (IK_ReversePtrInduction == II.IK) 1110 return -1; 1111 } 1112 1113 // Check that all of the gep indices are uniform except for the last. 1114 for (unsigned i = 0; i < NumOperands - 1; ++i) 1115 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1116 return 0; 1117 1118 // We can emit wide load/stores only if the last index is the induction 1119 // variable. 1120 const SCEV *Last = SE->getSCEV(LastIndex); 1121 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1122 const SCEV *Step = AR->getStepRecurrence(*SE); 1123 1124 // The memory is consecutive because the last index is consecutive 1125 // and all other indices are loop invariant. 1126 if (Step->isOne()) 1127 return 1; 1128 if (Step->isAllOnesValue()) 1129 return -1; 1130 } 1131 1132 return 0; 1133 } 1134 1135 bool LoopVectorizationLegality::isUniform(Value *V) { 1136 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1137 } 1138 1139 InnerLoopVectorizer::VectorParts& 1140 InnerLoopVectorizer::getVectorValue(Value *V) { 1141 assert(V != Induction && "The new induction variable should not be used."); 1142 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1143 1144 // If we have this scalar in the map, return it. 1145 if (WidenMap.has(V)) 1146 return WidenMap.get(V); 1147 1148 // If this scalar is unknown, assume that it is a constant or that it is 1149 // loop invariant. Broadcast V and save the value for future uses. 1150 Value *B = getBroadcastInstrs(V); 1151 return WidenMap.splat(V, B); 1152 } 1153 1154 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1155 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1156 SmallVector<Constant*, 8> ShuffleMask; 1157 for (unsigned i = 0; i < VF; ++i) 1158 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1159 1160 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1161 ConstantVector::get(ShuffleMask), 1162 "reverse"); 1163 } 1164 1165 1166 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 1167 LoopVectorizationLegality *Legal) { 1168 // Attempt to issue a wide load. 1169 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1170 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1171 1172 assert((LI || SI) && "Invalid Load/Store instruction"); 1173 1174 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1175 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1176 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1177 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1178 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1179 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1180 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1181 1182 if (ScalarAllocatedSize != VectorElementSize) 1183 return scalarizeInstruction(Instr); 1184 1185 // If the pointer is loop invariant or if it is non consecutive, 1186 // scalarize the load. 1187 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1188 bool Reverse = ConsecutiveStride < 0; 1189 bool UniformLoad = LI && Legal->isUniform(Ptr); 1190 if (!ConsecutiveStride || UniformLoad) 1191 return scalarizeInstruction(Instr); 1192 1193 Constant *Zero = Builder.getInt32(0); 1194 VectorParts &Entry = WidenMap.get(Instr); 1195 1196 // Handle consecutive loads/stores. 1197 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1198 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1199 setDebugLocFromInst(Builder, Gep); 1200 Value *PtrOperand = Gep->getPointerOperand(); 1201 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1202 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1203 1204 // Create the new GEP with the new induction variable. 1205 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1206 Gep2->setOperand(0, FirstBasePtr); 1207 Gep2->setName("gep.indvar.base"); 1208 Ptr = Builder.Insert(Gep2); 1209 } else if (Gep) { 1210 setDebugLocFromInst(Builder, Gep); 1211 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1212 OrigLoop) && "Base ptr must be invariant"); 1213 1214 // The last index does not have to be the induction. It can be 1215 // consecutive and be a function of the index. For example A[I+1]; 1216 unsigned NumOperands = Gep->getNumOperands(); 1217 unsigned LastOperand = NumOperands - 1; 1218 // Create the new GEP with the new induction variable. 1219 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1220 1221 for (unsigned i = 0; i < NumOperands; ++i) { 1222 Value *GepOperand = Gep->getOperand(i); 1223 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1224 1225 // Update last index or loop invariant instruction anchored in loop. 1226 if (i == LastOperand || 1227 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1228 assert((i == LastOperand || 1229 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1230 "Must be last index or loop invariant"); 1231 1232 VectorParts &GEPParts = getVectorValue(GepOperand); 1233 Value *Index = GEPParts[0]; 1234 Index = Builder.CreateExtractElement(Index, Zero); 1235 Gep2->setOperand(i, Index); 1236 Gep2->setName("gep.indvar.idx"); 1237 } 1238 } 1239 Ptr = Builder.Insert(Gep2); 1240 } else { 1241 // Use the induction element ptr. 1242 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1243 setDebugLocFromInst(Builder, Ptr); 1244 VectorParts &PtrVal = getVectorValue(Ptr); 1245 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1246 } 1247 1248 // Handle Stores: 1249 if (SI) { 1250 assert(!Legal->isUniform(SI->getPointerOperand()) && 1251 "We do not allow storing to uniform addresses"); 1252 setDebugLocFromInst(Builder, SI); 1253 // We don't want to update the value in the map as it might be used in 1254 // another expression. So don't use a reference type for "StoredVal". 1255 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1256 1257 for (unsigned Part = 0; Part < UF; ++Part) { 1258 // Calculate the pointer for the specific unroll-part. 1259 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1260 1261 if (Reverse) { 1262 // If we store to reverse consecutive memory locations then we need 1263 // to reverse the order of elements in the stored value. 1264 StoredVal[Part] = reverseVector(StoredVal[Part]); 1265 // If the address is consecutive but reversed, then the 1266 // wide store needs to start at the last vector element. 1267 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1268 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1269 } 1270 1271 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1272 DataTy->getPointerTo(AddressSpace)); 1273 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1274 } 1275 return; 1276 } 1277 1278 // Handle loads. 1279 assert(LI && "Must have a load instruction"); 1280 setDebugLocFromInst(Builder, LI); 1281 for (unsigned Part = 0; Part < UF; ++Part) { 1282 // Calculate the pointer for the specific unroll-part. 1283 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1284 1285 if (Reverse) { 1286 // If the address is consecutive but reversed, then the 1287 // wide store needs to start at the last vector element. 1288 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1289 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1290 } 1291 1292 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1293 DataTy->getPointerTo(AddressSpace)); 1294 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1295 cast<LoadInst>(LI)->setAlignment(Alignment); 1296 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1297 } 1298 } 1299 1300 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) { 1301 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1302 // Holds vector parameters or scalars, in case of uniform vals. 1303 SmallVector<VectorParts, 4> Params; 1304 1305 setDebugLocFromInst(Builder, Instr); 1306 1307 // Find all of the vectorized parameters. 1308 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1309 Value *SrcOp = Instr->getOperand(op); 1310 1311 // If we are accessing the old induction variable, use the new one. 1312 if (SrcOp == OldInduction) { 1313 Params.push_back(getVectorValue(SrcOp)); 1314 continue; 1315 } 1316 1317 // Try using previously calculated values. 1318 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1319 1320 // If the src is an instruction that appeared earlier in the basic block 1321 // then it should already be vectorized. 1322 if (SrcInst && OrigLoop->contains(SrcInst)) { 1323 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1324 // The parameter is a vector value from earlier. 1325 Params.push_back(WidenMap.get(SrcInst)); 1326 } else { 1327 // The parameter is a scalar from outside the loop. Maybe even a constant. 1328 VectorParts Scalars; 1329 Scalars.append(UF, SrcOp); 1330 Params.push_back(Scalars); 1331 } 1332 } 1333 1334 assert(Params.size() == Instr->getNumOperands() && 1335 "Invalid number of operands"); 1336 1337 // Does this instruction return a value ? 1338 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1339 1340 Value *UndefVec = IsVoidRetTy ? 0 : 1341 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1342 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1343 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1344 1345 // For each vector unroll 'part': 1346 for (unsigned Part = 0; Part < UF; ++Part) { 1347 // For each scalar that we create: 1348 for (unsigned Width = 0; Width < VF; ++Width) { 1349 Instruction *Cloned = Instr->clone(); 1350 if (!IsVoidRetTy) 1351 Cloned->setName(Instr->getName() + ".cloned"); 1352 // Replace the operands of the cloned instrucions with extracted scalars. 1353 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1354 Value *Op = Params[op][Part]; 1355 // Param is a vector. Need to extract the right lane. 1356 if (Op->getType()->isVectorTy()) 1357 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1358 Cloned->setOperand(op, Op); 1359 } 1360 1361 // Place the cloned scalar in the new loop. 1362 Builder.Insert(Cloned); 1363 1364 // If the original scalar returns a value we need to place it in a vector 1365 // so that future users will be able to use it. 1366 if (!IsVoidRetTy) 1367 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1368 Builder.getInt32(Width)); 1369 } 1370 } 1371 } 1372 1373 Instruction * 1374 InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal, 1375 Instruction *Loc) { 1376 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1377 Legal->getRuntimePointerCheck(); 1378 1379 if (!PtrRtCheck->Need) 1380 return NULL; 1381 1382 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1383 SmallVector<TrackingVH<Value> , 2> Starts; 1384 SmallVector<TrackingVH<Value> , 2> Ends; 1385 1386 SCEVExpander Exp(*SE, "induction"); 1387 1388 // Use this type for pointer arithmetic. 1389 Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0); 1390 1391 for (unsigned i = 0; i < NumPointers; ++i) { 1392 Value *Ptr = PtrRtCheck->Pointers[i]; 1393 const SCEV *Sc = SE->getSCEV(Ptr); 1394 1395 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1396 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1397 *Ptr <<"\n"); 1398 Starts.push_back(Ptr); 1399 Ends.push_back(Ptr); 1400 } else { 1401 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n"); 1402 1403 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1404 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1405 Starts.push_back(Start); 1406 Ends.push_back(End); 1407 } 1408 } 1409 1410 IRBuilder<> ChkBuilder(Loc); 1411 // Our instructions might fold to a constant. 1412 Value *MemoryRuntimeCheck = 0; 1413 for (unsigned i = 0; i < NumPointers; ++i) { 1414 for (unsigned j = i+1; j < NumPointers; ++j) { 1415 // No need to check if two readonly pointers intersect. 1416 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1417 continue; 1418 1419 // Only need to check pointers between two different dependency sets. 1420 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1421 continue; 1422 1423 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc"); 1424 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc"); 1425 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy, "bc"); 1426 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy, "bc"); 1427 1428 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1429 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1430 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1431 if (MemoryRuntimeCheck) 1432 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1433 "conflict.rdx"); 1434 MemoryRuntimeCheck = IsConflict; 1435 } 1436 } 1437 1438 // We have to do this trickery because the IRBuilder might fold the check to a 1439 // constant expression in which case there is no Instruction anchored in a 1440 // the block. 1441 LLVMContext &Ctx = Loc->getContext(); 1442 Instruction * Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1443 ConstantInt::getTrue(Ctx)); 1444 ChkBuilder.Insert(Check, "memcheck.conflict"); 1445 return Check; 1446 } 1447 1448 void 1449 InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) { 1450 /* 1451 In this function we generate a new loop. The new loop will contain 1452 the vectorized instructions while the old loop will continue to run the 1453 scalar remainder. 1454 1455 [ ] <-- vector loop bypass (may consist of multiple blocks). 1456 / | 1457 / v 1458 | [ ] <-- vector pre header. 1459 | | 1460 | v 1461 | [ ] \ 1462 | [ ]_| <-- vector loop. 1463 | | 1464 \ v 1465 >[ ] <--- middle-block. 1466 / | 1467 / v 1468 | [ ] <--- new preheader. 1469 | | 1470 | v 1471 | [ ] \ 1472 | [ ]_| <-- old scalar loop to handle remainder. 1473 \ | 1474 \ v 1475 >[ ] <-- exit block. 1476 ... 1477 */ 1478 1479 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 1480 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 1481 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 1482 assert(ExitBlock && "Must have an exit block"); 1483 1484 // Some loops have a single integer induction variable, while other loops 1485 // don't. One example is c++ iterators that often have multiple pointer 1486 // induction variables. In the code below we also support a case where we 1487 // don't have a single induction variable. 1488 OldInduction = Legal->getInduction(); 1489 Type *IdxTy = Legal->getWidestInductionType(); 1490 1491 // Find the loop boundaries. 1492 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 1493 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 1494 1495 // Get the total trip count from the count by adding 1. 1496 ExitCount = SE->getAddExpr(ExitCount, 1497 SE->getConstant(ExitCount->getType(), 1)); 1498 1499 // Expand the trip count and place the new instructions in the preheader. 1500 // Notice that the pre-header does not change, only the loop body. 1501 SCEVExpander Exp(*SE, "induction"); 1502 1503 // Count holds the overall loop count (N). 1504 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 1505 BypassBlock->getTerminator()); 1506 1507 // The loop index does not have to start at Zero. Find the original start 1508 // value from the induction PHI node. If we don't have an induction variable 1509 // then we know that it starts at zero. 1510 Builder.SetInsertPoint(BypassBlock->getTerminator()); 1511 Value *StartIdx = ExtendedIdx = OldInduction ? 1512 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 1513 IdxTy): 1514 ConstantInt::get(IdxTy, 0); 1515 1516 assert(BypassBlock && "Invalid loop structure"); 1517 LoopBypassBlocks.push_back(BypassBlock); 1518 1519 // Split the single block loop into the two loop structure described above. 1520 BasicBlock *VectorPH = 1521 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 1522 BasicBlock *VecBody = 1523 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 1524 BasicBlock *MiddleBlock = 1525 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 1526 BasicBlock *ScalarPH = 1527 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 1528 1529 // Create and register the new vector loop. 1530 Loop* Lp = new Loop(); 1531 Loop *ParentLoop = OrigLoop->getParentLoop(); 1532 1533 // Insert the new loop into the loop nest and register the new basic blocks 1534 // before calling any utilities such as SCEV that require valid LoopInfo. 1535 if (ParentLoop) { 1536 ParentLoop->addChildLoop(Lp); 1537 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 1538 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 1539 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 1540 } else { 1541 LI->addTopLevelLoop(Lp); 1542 } 1543 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 1544 1545 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 1546 // inside the loop. 1547 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 1548 1549 // Generate the induction variable. 1550 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 1551 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 1552 // The loop step is equal to the vectorization factor (num of SIMD elements) 1553 // times the unroll factor (num of SIMD instructions). 1554 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 1555 1556 // This is the IR builder that we use to add all of the logic for bypassing 1557 // the new vector loop. 1558 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 1559 setDebugLocFromInst(BypassBuilder, 1560 getDebugLocFromInstOrOperands(OldInduction)); 1561 1562 // We may need to extend the index in case there is a type mismatch. 1563 // We know that the count starts at zero and does not overflow. 1564 if (Count->getType() != IdxTy) { 1565 // The exit count can be of pointer type. Convert it to the correct 1566 // integer type. 1567 if (ExitCount->getType()->isPointerTy()) 1568 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 1569 else 1570 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 1571 } 1572 1573 // Add the start index to the loop count to get the new end index. 1574 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 1575 1576 // Now we need to generate the expression for N - (N % VF), which is 1577 // the part that the vectorized body will execute. 1578 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 1579 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 1580 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 1581 "end.idx.rnd.down"); 1582 1583 // Now, compare the new count to zero. If it is zero skip the vector loop and 1584 // jump to the scalar loop. 1585 Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, 1586 "cmp.zero"); 1587 1588 BasicBlock *LastBypassBlock = BypassBlock; 1589 1590 // Generate the code that checks in runtime if arrays overlap. We put the 1591 // checks into a separate block to make the more common case of few elements 1592 // faster. 1593 Instruction *MemRuntimeCheck = addRuntimeCheck(Legal, 1594 BypassBlock->getTerminator()); 1595 if (MemRuntimeCheck) { 1596 // Create a new block containing the memory check. 1597 BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck, 1598 "vector.memcheck"); 1599 if (ParentLoop) 1600 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 1601 LoopBypassBlocks.push_back(CheckBlock); 1602 1603 // Replace the branch into the memory check block with a conditional branch 1604 // for the "few elements case". 1605 Instruction *OldTerm = BypassBlock->getTerminator(); 1606 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 1607 OldTerm->eraseFromParent(); 1608 1609 Cmp = MemRuntimeCheck; 1610 LastBypassBlock = CheckBlock; 1611 } 1612 1613 LastBypassBlock->getTerminator()->eraseFromParent(); 1614 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 1615 LastBypassBlock); 1616 1617 // We are going to resume the execution of the scalar loop. 1618 // Go over all of the induction variables that we found and fix the 1619 // PHIs that are left in the scalar version of the loop. 1620 // The starting values of PHI nodes depend on the counter of the last 1621 // iteration in the vectorized loop. 1622 // If we come from a bypass edge then we need to start from the original 1623 // start value. 1624 1625 // This variable saves the new starting index for the scalar loop. 1626 PHINode *ResumeIndex = 0; 1627 LoopVectorizationLegality::InductionList::iterator I, E; 1628 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 1629 // Set builder to point to last bypass block. 1630 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 1631 for (I = List->begin(), E = List->end(); I != E; ++I) { 1632 PHINode *OrigPhi = I->first; 1633 LoopVectorizationLegality::InductionInfo II = I->second; 1634 1635 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 1636 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 1637 MiddleBlock->getTerminator()); 1638 // We might have extended the type of the induction variable but we need a 1639 // truncated version for the scalar loop. 1640 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 1641 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 1642 MiddleBlock->getTerminator()) : 0; 1643 1644 Value *EndValue = 0; 1645 switch (II.IK) { 1646 case LoopVectorizationLegality::IK_NoInduction: 1647 llvm_unreachable("Unknown induction"); 1648 case LoopVectorizationLegality::IK_IntInduction: { 1649 // Handle the integer induction counter. 1650 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 1651 1652 // We have the canonical induction variable. 1653 if (OrigPhi == OldInduction) { 1654 // Create a truncated version of the resume value for the scalar loop, 1655 // we might have promoted the type to a larger width. 1656 EndValue = 1657 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 1658 // The new PHI merges the original incoming value, in case of a bypass, 1659 // or the value at the end of the vectorized loop. 1660 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 1661 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 1662 TruncResumeVal->addIncoming(EndValue, VecBody); 1663 1664 // We know what the end value is. 1665 EndValue = IdxEndRoundDown; 1666 // We also know which PHI node holds it. 1667 ResumeIndex = ResumeVal; 1668 break; 1669 } 1670 1671 // Not the canonical induction variable - add the vector loop count to the 1672 // start value. 1673 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 1674 II.StartValue->getType(), 1675 "cast.crd"); 1676 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 1677 break; 1678 } 1679 case LoopVectorizationLegality::IK_ReverseIntInduction: { 1680 // Convert the CountRoundDown variable to the PHI size. 1681 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 1682 II.StartValue->getType(), 1683 "cast.crd"); 1684 // Handle reverse integer induction counter. 1685 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 1686 break; 1687 } 1688 case LoopVectorizationLegality::IK_PtrInduction: { 1689 // For pointer induction variables, calculate the offset using 1690 // the end index. 1691 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 1692 "ptr.ind.end"); 1693 break; 1694 } 1695 case LoopVectorizationLegality::IK_ReversePtrInduction: { 1696 // The value at the end of the loop for the reverse pointer is calculated 1697 // by creating a GEP with a negative index starting from the start value. 1698 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 1699 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 1700 "rev.ind.end"); 1701 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 1702 "rev.ptr.ind.end"); 1703 break; 1704 } 1705 }// end of case 1706 1707 // The new PHI merges the original incoming value, in case of a bypass, 1708 // or the value at the end of the vectorized loop. 1709 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) { 1710 if (OrigPhi == OldInduction) 1711 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 1712 else 1713 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 1714 } 1715 ResumeVal->addIncoming(EndValue, VecBody); 1716 1717 // Fix the scalar body counter (PHI node). 1718 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 1719 // The old inductions phi node in the scalar body needs the truncated value. 1720 if (OrigPhi == OldInduction) 1721 OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal); 1722 else 1723 OrigPhi->setIncomingValue(BlockIdx, ResumeVal); 1724 } 1725 1726 // If we are generating a new induction variable then we also need to 1727 // generate the code that calculates the exit value. This value is not 1728 // simply the end of the counter because we may skip the vectorized body 1729 // in case of a runtime check. 1730 if (!OldInduction){ 1731 assert(!ResumeIndex && "Unexpected resume value found"); 1732 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 1733 MiddleBlock->getTerminator()); 1734 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 1735 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 1736 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 1737 } 1738 1739 // Make sure that we found the index where scalar loop needs to continue. 1740 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 1741 "Invalid resume Index"); 1742 1743 // Add a check in the middle block to see if we have completed 1744 // all of the iterations in the first vector loop. 1745 // If (N - N%VF) == N, then we *don't* need to run the remainder. 1746 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 1747 ResumeIndex, "cmp.n", 1748 MiddleBlock->getTerminator()); 1749 1750 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 1751 // Remove the old terminator. 1752 MiddleBlock->getTerminator()->eraseFromParent(); 1753 1754 // Create i+1 and fill the PHINode. 1755 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 1756 Induction->addIncoming(StartIdx, VectorPH); 1757 Induction->addIncoming(NextIdx, VecBody); 1758 // Create the compare. 1759 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 1760 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 1761 1762 // Now we have two terminators. Remove the old one from the block. 1763 VecBody->getTerminator()->eraseFromParent(); 1764 1765 // Get ready to start creating new instructions into the vectorized body. 1766 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 1767 1768 // Save the state. 1769 LoopVectorPreHeader = VectorPH; 1770 LoopScalarPreHeader = ScalarPH; 1771 LoopMiddleBlock = MiddleBlock; 1772 LoopExitBlock = ExitBlock; 1773 LoopVectorBody = VecBody; 1774 LoopScalarBody = OldBasicBlock; 1775 } 1776 1777 /// This function returns the identity element (or neutral element) for 1778 /// the operation K. 1779 Constant* 1780 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 1781 switch (K) { 1782 case RK_IntegerXor: 1783 case RK_IntegerAdd: 1784 case RK_IntegerOr: 1785 // Adding, Xoring, Oring zero to a number does not change it. 1786 return ConstantInt::get(Tp, 0); 1787 case RK_IntegerMult: 1788 // Multiplying a number by 1 does not change it. 1789 return ConstantInt::get(Tp, 1); 1790 case RK_IntegerAnd: 1791 // AND-ing a number with an all-1 value does not change it. 1792 return ConstantInt::get(Tp, -1, true); 1793 case RK_FloatMult: 1794 // Multiplying a number by 1 does not change it. 1795 return ConstantFP::get(Tp, 1.0L); 1796 case RK_FloatAdd: 1797 // Adding zero to a number does not change it. 1798 return ConstantFP::get(Tp, 0.0L); 1799 default: 1800 llvm_unreachable("Unknown reduction kind"); 1801 } 1802 } 1803 1804 static Intrinsic::ID 1805 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) { 1806 // If we have an intrinsic call, check if it is trivially vectorizable. 1807 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1808 switch (II->getIntrinsicID()) { 1809 case Intrinsic::sqrt: 1810 case Intrinsic::sin: 1811 case Intrinsic::cos: 1812 case Intrinsic::exp: 1813 case Intrinsic::exp2: 1814 case Intrinsic::log: 1815 case Intrinsic::log10: 1816 case Intrinsic::log2: 1817 case Intrinsic::fabs: 1818 case Intrinsic::copysign: 1819 case Intrinsic::floor: 1820 case Intrinsic::ceil: 1821 case Intrinsic::trunc: 1822 case Intrinsic::rint: 1823 case Intrinsic::nearbyint: 1824 case Intrinsic::round: 1825 case Intrinsic::pow: 1826 case Intrinsic::fma: 1827 case Intrinsic::fmuladd: 1828 case Intrinsic::lifetime_start: 1829 case Intrinsic::lifetime_end: 1830 return II->getIntrinsicID(); 1831 default: 1832 return Intrinsic::not_intrinsic; 1833 } 1834 } 1835 1836 if (!TLI) 1837 return Intrinsic::not_intrinsic; 1838 1839 LibFunc::Func Func; 1840 Function *F = CI->getCalledFunction(); 1841 // We're going to make assumptions on the semantics of the functions, check 1842 // that the target knows that it's available in this environment. 1843 if (!F || !TLI->getLibFunc(F->getName(), Func)) 1844 return Intrinsic::not_intrinsic; 1845 1846 // Otherwise check if we have a call to a function that can be turned into a 1847 // vector intrinsic. 1848 switch (Func) { 1849 default: 1850 break; 1851 case LibFunc::sin: 1852 case LibFunc::sinf: 1853 case LibFunc::sinl: 1854 return Intrinsic::sin; 1855 case LibFunc::cos: 1856 case LibFunc::cosf: 1857 case LibFunc::cosl: 1858 return Intrinsic::cos; 1859 case LibFunc::exp: 1860 case LibFunc::expf: 1861 case LibFunc::expl: 1862 return Intrinsic::exp; 1863 case LibFunc::exp2: 1864 case LibFunc::exp2f: 1865 case LibFunc::exp2l: 1866 return Intrinsic::exp2; 1867 case LibFunc::log: 1868 case LibFunc::logf: 1869 case LibFunc::logl: 1870 return Intrinsic::log; 1871 case LibFunc::log10: 1872 case LibFunc::log10f: 1873 case LibFunc::log10l: 1874 return Intrinsic::log10; 1875 case LibFunc::log2: 1876 case LibFunc::log2f: 1877 case LibFunc::log2l: 1878 return Intrinsic::log2; 1879 case LibFunc::fabs: 1880 case LibFunc::fabsf: 1881 case LibFunc::fabsl: 1882 return Intrinsic::fabs; 1883 case LibFunc::copysign: 1884 case LibFunc::copysignf: 1885 case LibFunc::copysignl: 1886 return Intrinsic::copysign; 1887 case LibFunc::floor: 1888 case LibFunc::floorf: 1889 case LibFunc::floorl: 1890 return Intrinsic::floor; 1891 case LibFunc::ceil: 1892 case LibFunc::ceilf: 1893 case LibFunc::ceill: 1894 return Intrinsic::ceil; 1895 case LibFunc::trunc: 1896 case LibFunc::truncf: 1897 case LibFunc::truncl: 1898 return Intrinsic::trunc; 1899 case LibFunc::rint: 1900 case LibFunc::rintf: 1901 case LibFunc::rintl: 1902 return Intrinsic::rint; 1903 case LibFunc::nearbyint: 1904 case LibFunc::nearbyintf: 1905 case LibFunc::nearbyintl: 1906 return Intrinsic::nearbyint; 1907 case LibFunc::round: 1908 case LibFunc::roundf: 1909 case LibFunc::roundl: 1910 return Intrinsic::round; 1911 case LibFunc::pow: 1912 case LibFunc::powf: 1913 case LibFunc::powl: 1914 return Intrinsic::pow; 1915 } 1916 1917 return Intrinsic::not_intrinsic; 1918 } 1919 1920 /// This function translates the reduction kind to an LLVM binary operator. 1921 static unsigned 1922 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 1923 switch (Kind) { 1924 case LoopVectorizationLegality::RK_IntegerAdd: 1925 return Instruction::Add; 1926 case LoopVectorizationLegality::RK_IntegerMult: 1927 return Instruction::Mul; 1928 case LoopVectorizationLegality::RK_IntegerOr: 1929 return Instruction::Or; 1930 case LoopVectorizationLegality::RK_IntegerAnd: 1931 return Instruction::And; 1932 case LoopVectorizationLegality::RK_IntegerXor: 1933 return Instruction::Xor; 1934 case LoopVectorizationLegality::RK_FloatMult: 1935 return Instruction::FMul; 1936 case LoopVectorizationLegality::RK_FloatAdd: 1937 return Instruction::FAdd; 1938 case LoopVectorizationLegality::RK_IntegerMinMax: 1939 return Instruction::ICmp; 1940 case LoopVectorizationLegality::RK_FloatMinMax: 1941 return Instruction::FCmp; 1942 default: 1943 llvm_unreachable("Unknown reduction operation"); 1944 } 1945 } 1946 1947 Value *createMinMaxOp(IRBuilder<> &Builder, 1948 LoopVectorizationLegality::MinMaxReductionKind RK, 1949 Value *Left, 1950 Value *Right) { 1951 CmpInst::Predicate P = CmpInst::ICMP_NE; 1952 switch (RK) { 1953 default: 1954 llvm_unreachable("Unknown min/max reduction kind"); 1955 case LoopVectorizationLegality::MRK_UIntMin: 1956 P = CmpInst::ICMP_ULT; 1957 break; 1958 case LoopVectorizationLegality::MRK_UIntMax: 1959 P = CmpInst::ICMP_UGT; 1960 break; 1961 case LoopVectorizationLegality::MRK_SIntMin: 1962 P = CmpInst::ICMP_SLT; 1963 break; 1964 case LoopVectorizationLegality::MRK_SIntMax: 1965 P = CmpInst::ICMP_SGT; 1966 break; 1967 case LoopVectorizationLegality::MRK_FloatMin: 1968 P = CmpInst::FCMP_OLT; 1969 break; 1970 case LoopVectorizationLegality::MRK_FloatMax: 1971 P = CmpInst::FCMP_OGT; 1972 break; 1973 } 1974 1975 Value *Cmp; 1976 if (RK == LoopVectorizationLegality::MRK_FloatMin || 1977 RK == LoopVectorizationLegality::MRK_FloatMax) 1978 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 1979 else 1980 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 1981 1982 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 1983 return Select; 1984 } 1985 1986 void 1987 InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) { 1988 //===------------------------------------------------===// 1989 // 1990 // Notice: any optimization or new instruction that go 1991 // into the code below should be also be implemented in 1992 // the cost-model. 1993 // 1994 //===------------------------------------------------===// 1995 Constant *Zero = Builder.getInt32(0); 1996 1997 // In order to support reduction variables we need to be able to vectorize 1998 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 1999 // stages. First, we create a new vector PHI node with no incoming edges. 2000 // We use this value when we vectorize all of the instructions that use the 2001 // PHI. Next, after all of the instructions in the block are complete we 2002 // add the new incoming edges to the PHI. At this point all of the 2003 // instructions in the basic block are vectorized, so we can use them to 2004 // construct the PHI. 2005 PhiVector RdxPHIsToFix; 2006 2007 // Scan the loop in a topological order to ensure that defs are vectorized 2008 // before users. 2009 LoopBlocksDFS DFS(OrigLoop); 2010 DFS.perform(LI); 2011 2012 // Vectorize all of the blocks in the original loop. 2013 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2014 be = DFS.endRPO(); bb != be; ++bb) 2015 vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix); 2016 2017 // At this point every instruction in the original loop is widened to 2018 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2019 // that we vectorized. The PHI nodes are currently empty because we did 2020 // not want to introduce cycles. Notice that the remaining PHI nodes 2021 // that we need to fix are reduction variables. 2022 2023 // Create the 'reduced' values for each of the induction vars. 2024 // The reduced values are the vector values that we scalarize and combine 2025 // after the loop is finished. 2026 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2027 it != e; ++it) { 2028 PHINode *RdxPhi = *it; 2029 assert(RdxPhi && "Unable to recover vectorized PHI"); 2030 2031 // Find the reduction variable descriptor. 2032 assert(Legal->getReductionVars()->count(RdxPhi) && 2033 "Unable to find the reduction variable"); 2034 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2035 (*Legal->getReductionVars())[RdxPhi]; 2036 2037 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2038 2039 // We need to generate a reduction vector from the incoming scalar. 2040 // To do so, we need to generate the 'identity' vector and overide 2041 // one of the elements with the incoming scalar reduction. We need 2042 // to do it in the vector-loop preheader. 2043 Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator()); 2044 2045 // This is the vector-clone of the value that leaves the loop. 2046 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2047 Type *VecTy = VectorExit[0]->getType(); 2048 2049 // Find the reduction identity variable. Zero for addition, or, xor, 2050 // one for multiplication, -1 for And. 2051 Value *Identity; 2052 Value *VectorStart; 2053 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2054 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2055 // MinMax reduction have the start value as their identify. 2056 if (VF == 1) { 2057 VectorStart = Identity = RdxDesc.StartValue; 2058 } else { 2059 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2060 RdxDesc.StartValue, 2061 "minmax.ident"); 2062 } 2063 } else { 2064 // Handle other reduction kinds: 2065 Constant *Iden = 2066 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2067 VecTy->getScalarType()); 2068 if (VF == 1) { 2069 Identity = Iden; 2070 // This vector is the Identity vector where the first element is the 2071 // incoming scalar reduction. 2072 VectorStart = RdxDesc.StartValue; 2073 } else { 2074 Identity = ConstantVector::getSplat(VF, Iden); 2075 2076 // This vector is the Identity vector where the first element is the 2077 // incoming scalar reduction. 2078 VectorStart = Builder.CreateInsertElement(Identity, 2079 RdxDesc.StartValue, Zero); 2080 } 2081 } 2082 2083 // Fix the vector-loop phi. 2084 // We created the induction variable so we know that the 2085 // preheader is the first entry. 2086 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2087 2088 // Reductions do not have to start at zero. They can start with 2089 // any loop invariant values. 2090 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2091 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2092 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2093 VectorParts &Val = getVectorValue(LoopVal); 2094 for (unsigned part = 0; part < UF; ++part) { 2095 // Make sure to add the reduction stat value only to the 2096 // first unroll part. 2097 Value *StartVal = (part == 0) ? VectorStart : Identity; 2098 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2099 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody); 2100 } 2101 2102 // Before each round, move the insertion point right between 2103 // the PHIs and the values we are going to write. 2104 // This allows us to write both PHINodes and the extractelement 2105 // instructions. 2106 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2107 2108 VectorParts RdxParts; 2109 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2110 for (unsigned part = 0; part < UF; ++part) { 2111 // This PHINode contains the vectorized reduction variable, or 2112 // the initial value vector, if we bypass the vector loop. 2113 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2114 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2115 Value *StartVal = (part == 0) ? VectorStart : Identity; 2116 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2117 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2118 NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody); 2119 RdxParts.push_back(NewPhi); 2120 } 2121 2122 // Reduce all of the unrolled parts into a single vector. 2123 Value *ReducedPartRdx = RdxParts[0]; 2124 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2125 setDebugLocFromInst(Builder, ReducedPartRdx); 2126 for (unsigned part = 1; part < UF; ++part) { 2127 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2128 ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op, 2129 RdxParts[part], ReducedPartRdx, 2130 "bin.rdx"); 2131 else 2132 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2133 ReducedPartRdx, RdxParts[part]); 2134 } 2135 2136 if (VF > 1) { 2137 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2138 // and vector ops, reducing the set of values being computed by half each 2139 // round. 2140 assert(isPowerOf2_32(VF) && 2141 "Reduction emission only supported for pow2 vectors!"); 2142 Value *TmpVec = ReducedPartRdx; 2143 SmallVector<Constant*, 32> ShuffleMask(VF, 0); 2144 for (unsigned i = VF; i != 1; i >>= 1) { 2145 // Move the upper half of the vector to the lower half. 2146 for (unsigned j = 0; j != i/2; ++j) 2147 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2148 2149 // Fill the rest of the mask with undef. 2150 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2151 UndefValue::get(Builder.getInt32Ty())); 2152 2153 Value *Shuf = 2154 Builder.CreateShuffleVector(TmpVec, 2155 UndefValue::get(TmpVec->getType()), 2156 ConstantVector::get(ShuffleMask), 2157 "rdx.shuf"); 2158 2159 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2160 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 2161 "bin.rdx"); 2162 else 2163 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2164 } 2165 2166 // The result is in the first element of the vector. 2167 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2168 Builder.getInt32(0)); 2169 } 2170 2171 // Now, we need to fix the users of the reduction variable 2172 // inside and outside of the scalar remainder loop. 2173 // We know that the loop is in LCSSA form. We need to update the 2174 // PHI nodes in the exit blocks. 2175 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2176 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2177 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2178 if (!LCSSAPhi) continue; 2179 2180 // All PHINodes need to have a single entry edge, or two if 2181 // we already fixed them. 2182 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2183 2184 // We found our reduction value exit-PHI. Update it with the 2185 // incoming bypass edge. 2186 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2187 // Add an edge coming from the bypass. 2188 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2189 break; 2190 } 2191 }// end of the LCSSA phi scan. 2192 2193 // Fix the scalar loop reduction variable with the incoming reduction sum 2194 // from the vector body and from the backedge value. 2195 int IncomingEdgeBlockIdx = 2196 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2197 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2198 // Pick the other block. 2199 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2200 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx); 2201 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2202 }// end of for each redux variable. 2203 2204 fixLCSSAPHIs(); 2205 } 2206 2207 void InnerLoopVectorizer::fixLCSSAPHIs() { 2208 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2209 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2210 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2211 if (!LCSSAPhi) continue; 2212 if (LCSSAPhi->getNumIncomingValues() == 1) 2213 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2214 LoopMiddleBlock); 2215 } 2216 } 2217 2218 InnerLoopVectorizer::VectorParts 2219 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2220 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2221 "Invalid edge"); 2222 2223 // Look for cached value. 2224 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2225 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2226 if (ECEntryIt != MaskCache.end()) 2227 return ECEntryIt->second; 2228 2229 VectorParts SrcMask = createBlockInMask(Src); 2230 2231 // The terminator has to be a branch inst! 2232 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2233 assert(BI && "Unexpected terminator found"); 2234 2235 if (BI->isConditional()) { 2236 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2237 2238 if (BI->getSuccessor(0) != Dst) 2239 for (unsigned part = 0; part < UF; ++part) 2240 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2241 2242 for (unsigned part = 0; part < UF; ++part) 2243 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2244 2245 MaskCache[Edge] = EdgeMask; 2246 return EdgeMask; 2247 } 2248 2249 MaskCache[Edge] = SrcMask; 2250 return SrcMask; 2251 } 2252 2253 InnerLoopVectorizer::VectorParts 2254 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2255 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2256 2257 // Loop incoming mask is all-one. 2258 if (OrigLoop->getHeader() == BB) { 2259 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2260 return getVectorValue(C); 2261 } 2262 2263 // This is the block mask. We OR all incoming edges, and with zero. 2264 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2265 VectorParts BlockMask = getVectorValue(Zero); 2266 2267 // For each pred: 2268 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2269 VectorParts EM = createEdgeMask(*it, BB); 2270 for (unsigned part = 0; part < UF; ++part) 2271 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2272 } 2273 2274 return BlockMask; 2275 } 2276 2277 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2278 InnerLoopVectorizer::VectorParts &Entry, 2279 LoopVectorizationLegality *Legal, 2280 unsigned UF, unsigned VF, PhiVector *PV) { 2281 PHINode* P = cast<PHINode>(PN); 2282 // Handle reduction variables: 2283 if (Legal->getReductionVars()->count(P)) { 2284 for (unsigned part = 0; part < UF; ++part) { 2285 // This is phase one of vectorizing PHIs. 2286 Type *VecTy = (VF == 1) ? PN->getType() : 2287 VectorType::get(PN->getType(), VF); 2288 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2289 LoopVectorBody-> getFirstInsertionPt()); 2290 } 2291 PV->push_back(P); 2292 return; 2293 } 2294 2295 setDebugLocFromInst(Builder, P); 2296 // Check for PHI nodes that are lowered to vector selects. 2297 if (P->getParent() != OrigLoop->getHeader()) { 2298 // We know that all PHIs in non header blocks are converted into 2299 // selects, so we don't have to worry about the insertion order and we 2300 // can just use the builder. 2301 // At this point we generate the predication tree. There may be 2302 // duplications since this is a simple recursive scan, but future 2303 // optimizations will clean it up. 2304 2305 unsigned NumIncoming = P->getNumIncomingValues(); 2306 2307 // Generate a sequence of selects of the form: 2308 // SELECT(Mask3, In3, 2309 // SELECT(Mask2, In2, 2310 // ( ...))) 2311 for (unsigned In = 0; In < NumIncoming; In++) { 2312 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2313 P->getParent()); 2314 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2315 2316 for (unsigned part = 0; part < UF; ++part) { 2317 // We might have single edge PHIs (blocks) - use an identity 2318 // 'select' for the first PHI operand. 2319 if (In == 0) 2320 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2321 In0[part]); 2322 else 2323 // Select between the current value and the previous incoming edge 2324 // based on the incoming mask. 2325 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2326 Entry[part], "predphi"); 2327 } 2328 } 2329 return; 2330 } 2331 2332 // This PHINode must be an induction variable. 2333 // Make sure that we know about it. 2334 assert(Legal->getInductionVars()->count(P) && 2335 "Not an induction variable"); 2336 2337 LoopVectorizationLegality::InductionInfo II = 2338 Legal->getInductionVars()->lookup(P); 2339 2340 switch (II.IK) { 2341 case LoopVectorizationLegality::IK_NoInduction: 2342 llvm_unreachable("Unknown induction"); 2343 case LoopVectorizationLegality::IK_IntInduction: { 2344 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2345 Type *PhiTy = P->getType(); 2346 Value *Broadcasted; 2347 if (P == OldInduction) { 2348 // Handle the canonical induction variable. We might have had to 2349 // extend the type. 2350 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2351 } else { 2352 // Handle other induction variables that are now based on the 2353 // canonical one. 2354 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2355 "normalized.idx"); 2356 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2357 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2358 "offset.idx"); 2359 } 2360 Broadcasted = getBroadcastInstrs(Broadcasted); 2361 // After broadcasting the induction variable we need to make the vector 2362 // consecutive by adding 0, 1, 2, etc. 2363 for (unsigned part = 0; part < UF; ++part) 2364 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 2365 return; 2366 } 2367 case LoopVectorizationLegality::IK_ReverseIntInduction: 2368 case LoopVectorizationLegality::IK_PtrInduction: 2369 case LoopVectorizationLegality::IK_ReversePtrInduction: 2370 // Handle reverse integer and pointer inductions. 2371 Value *StartIdx = ExtendedIdx; 2372 // This is the normalized GEP that starts counting at zero. 2373 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 2374 "normalized.idx"); 2375 2376 // Handle the reverse integer induction variable case. 2377 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 2378 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 2379 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 2380 "resize.norm.idx"); 2381 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 2382 "reverse.idx"); 2383 2384 // This is a new value so do not hoist it out. 2385 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 2386 // After broadcasting the induction variable we need to make the 2387 // vector consecutive by adding ... -3, -2, -1, 0. 2388 for (unsigned part = 0; part < UF; ++part) 2389 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 2390 true); 2391 return; 2392 } 2393 2394 // Handle the pointer induction variable case. 2395 assert(P->getType()->isPointerTy() && "Unexpected type."); 2396 2397 // Is this a reverse induction ptr or a consecutive induction ptr. 2398 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 2399 II.IK); 2400 2401 // This is the vector of results. Notice that we don't generate 2402 // vector geps because scalar geps result in better code. 2403 for (unsigned part = 0; part < UF; ++part) { 2404 if (VF == 1) { 2405 int EltIndex = (part) * (Reverse ? -1 : 1); 2406 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2407 Value *GlobalIdx; 2408 if (Reverse) 2409 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2410 else 2411 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2412 2413 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2414 "next.gep"); 2415 Entry[part] = SclrGep; 2416 continue; 2417 } 2418 2419 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 2420 for (unsigned int i = 0; i < VF; ++i) { 2421 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 2422 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2423 Value *GlobalIdx; 2424 if (!Reverse) 2425 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2426 else 2427 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2428 2429 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2430 "next.gep"); 2431 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 2432 Builder.getInt32(i), 2433 "insert.gep"); 2434 } 2435 Entry[part] = VecVal; 2436 } 2437 return; 2438 } 2439 } 2440 2441 void 2442 InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal, 2443 BasicBlock *BB, PhiVector *PV) { 2444 // For each instruction in the old loop. 2445 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2446 VectorParts &Entry = WidenMap.get(it); 2447 switch (it->getOpcode()) { 2448 case Instruction::Br: 2449 // Nothing to do for PHIs and BR, since we already took care of the 2450 // loop control flow instructions. 2451 continue; 2452 case Instruction::PHI:{ 2453 // Vectorize PHINodes. 2454 widenPHIInstruction(it, Entry, Legal, UF, VF, PV); 2455 continue; 2456 }// End of PHI. 2457 2458 case Instruction::Add: 2459 case Instruction::FAdd: 2460 case Instruction::Sub: 2461 case Instruction::FSub: 2462 case Instruction::Mul: 2463 case Instruction::FMul: 2464 case Instruction::UDiv: 2465 case Instruction::SDiv: 2466 case Instruction::FDiv: 2467 case Instruction::URem: 2468 case Instruction::SRem: 2469 case Instruction::FRem: 2470 case Instruction::Shl: 2471 case Instruction::LShr: 2472 case Instruction::AShr: 2473 case Instruction::And: 2474 case Instruction::Or: 2475 case Instruction::Xor: { 2476 // Just widen binops. 2477 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 2478 setDebugLocFromInst(Builder, BinOp); 2479 VectorParts &A = getVectorValue(it->getOperand(0)); 2480 VectorParts &B = getVectorValue(it->getOperand(1)); 2481 2482 // Use this vector value for all users of the original instruction. 2483 for (unsigned Part = 0; Part < UF; ++Part) { 2484 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 2485 2486 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 2487 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 2488 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 2489 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 2490 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 2491 } 2492 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 2493 VecOp->setIsExact(BinOp->isExact()); 2494 2495 Entry[Part] = V; 2496 } 2497 break; 2498 } 2499 case Instruction::Select: { 2500 // Widen selects. 2501 // If the selector is loop invariant we can create a select 2502 // instruction with a scalar condition. Otherwise, use vector-select. 2503 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 2504 OrigLoop); 2505 setDebugLocFromInst(Builder, it); 2506 2507 // The condition can be loop invariant but still defined inside the 2508 // loop. This means that we can't just use the original 'cond' value. 2509 // We have to take the 'vectorized' value and pick the first lane. 2510 // Instcombine will make this a no-op. 2511 VectorParts &Cond = getVectorValue(it->getOperand(0)); 2512 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 2513 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 2514 2515 Value *ScalarCond = (VF == 1) ? Cond[0] : 2516 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 2517 2518 for (unsigned Part = 0; Part < UF; ++Part) { 2519 Entry[Part] = Builder.CreateSelect( 2520 InvariantCond ? ScalarCond : Cond[Part], 2521 Op0[Part], 2522 Op1[Part]); 2523 } 2524 break; 2525 } 2526 2527 case Instruction::ICmp: 2528 case Instruction::FCmp: { 2529 // Widen compares. Generate vector compares. 2530 bool FCmp = (it->getOpcode() == Instruction::FCmp); 2531 CmpInst *Cmp = dyn_cast<CmpInst>(it); 2532 setDebugLocFromInst(Builder, it); 2533 VectorParts &A = getVectorValue(it->getOperand(0)); 2534 VectorParts &B = getVectorValue(it->getOperand(1)); 2535 for (unsigned Part = 0; Part < UF; ++Part) { 2536 Value *C = 0; 2537 if (FCmp) 2538 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 2539 else 2540 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 2541 Entry[Part] = C; 2542 } 2543 break; 2544 } 2545 2546 case Instruction::Store: 2547 case Instruction::Load: 2548 vectorizeMemoryInstruction(it, Legal); 2549 break; 2550 case Instruction::ZExt: 2551 case Instruction::SExt: 2552 case Instruction::FPToUI: 2553 case Instruction::FPToSI: 2554 case Instruction::FPExt: 2555 case Instruction::PtrToInt: 2556 case Instruction::IntToPtr: 2557 case Instruction::SIToFP: 2558 case Instruction::UIToFP: 2559 case Instruction::Trunc: 2560 case Instruction::FPTrunc: 2561 case Instruction::BitCast: { 2562 CastInst *CI = dyn_cast<CastInst>(it); 2563 setDebugLocFromInst(Builder, it); 2564 /// Optimize the special case where the source is the induction 2565 /// variable. Notice that we can only optimize the 'trunc' case 2566 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 2567 /// c. other casts depend on pointer size. 2568 if (CI->getOperand(0) == OldInduction && 2569 it->getOpcode() == Instruction::Trunc) { 2570 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 2571 CI->getType()); 2572 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 2573 for (unsigned Part = 0; Part < UF; ++Part) 2574 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 2575 break; 2576 } 2577 /// Vectorize casts. 2578 Type *DestTy = (VF == 1) ? CI->getType() : 2579 VectorType::get(CI->getType(), VF); 2580 2581 VectorParts &A = getVectorValue(it->getOperand(0)); 2582 for (unsigned Part = 0; Part < UF; ++Part) 2583 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 2584 break; 2585 } 2586 2587 case Instruction::Call: { 2588 // Ignore dbg intrinsics. 2589 if (isa<DbgInfoIntrinsic>(it)) 2590 break; 2591 setDebugLocFromInst(Builder, it); 2592 2593 Module *M = BB->getParent()->getParent(); 2594 CallInst *CI = cast<CallInst>(it); 2595 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2596 assert(ID && "Not an intrinsic call!"); 2597 switch (ID) { 2598 case Intrinsic::lifetime_end: 2599 case Intrinsic::lifetime_start: 2600 scalarizeInstruction(it); 2601 break; 2602 default: 2603 for (unsigned Part = 0; Part < UF; ++Part) { 2604 SmallVector<Value *, 4> Args; 2605 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 2606 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 2607 Args.push_back(Arg[Part]); 2608 } 2609 Type *Tys[] = {CI->getType()}; 2610 if (VF > 1) 2611 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 2612 2613 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 2614 Entry[Part] = Builder.CreateCall(F, Args); 2615 } 2616 break; 2617 } 2618 break; 2619 } 2620 2621 default: 2622 // All other instructions are unsupported. Scalarize them. 2623 scalarizeInstruction(it); 2624 break; 2625 }// end of switch. 2626 }// end of for_each instr. 2627 } 2628 2629 void InnerLoopVectorizer::updateAnalysis() { 2630 // Forget the original basic block. 2631 SE->forgetLoop(OrigLoop); 2632 2633 // Update the dominator tree information. 2634 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 2635 "Entry does not dominate exit."); 2636 2637 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2638 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 2639 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 2640 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 2641 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front()); 2642 DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock); 2643 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 2644 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2645 2646 DEBUG(DT->verifyAnalysis()); 2647 } 2648 2649 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 2650 if (!EnableIfConversion) 2651 return false; 2652 2653 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 2654 std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector(); 2655 2656 // A list of pointers that we can safely read and write to. 2657 SmallPtrSet<Value *, 8> SafePointes; 2658 2659 // Collect safe addresses. 2660 for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) { 2661 BasicBlock *BB = LoopBlocks[i]; 2662 2663 if (blockNeedsPredication(BB)) 2664 continue; 2665 2666 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 2667 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 2668 SafePointes.insert(LI->getPointerOperand()); 2669 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 2670 SafePointes.insert(SI->getPointerOperand()); 2671 } 2672 } 2673 2674 // Collect the blocks that need predication. 2675 for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) { 2676 BasicBlock *BB = LoopBlocks[i]; 2677 2678 // We don't support switch statements inside loops. 2679 if (!isa<BranchInst>(BB->getTerminator())) 2680 return false; 2681 2682 // We must be able to predicate all blocks that need to be predicated. 2683 if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes)) 2684 return false; 2685 } 2686 2687 // We can if-convert this loop. 2688 return true; 2689 } 2690 2691 bool LoopVectorizationLegality::canVectorize() { 2692 // We must have a loop in canonical form. Loops with indirectbr in them cannot 2693 // be canonicalized. 2694 if (!TheLoop->getLoopPreheader()) 2695 return false; 2696 2697 // We can only vectorize innermost loops. 2698 if (TheLoop->getSubLoopsVector().size()) 2699 return false; 2700 2701 // We must have a single backedge. 2702 if (TheLoop->getNumBackEdges() != 1) 2703 return false; 2704 2705 // We must have a single exiting block. 2706 if (!TheLoop->getExitingBlock()) 2707 return false; 2708 2709 unsigned NumBlocks = TheLoop->getNumBlocks(); 2710 2711 // Check if we can if-convert non single-bb loops. 2712 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 2713 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 2714 return false; 2715 } 2716 2717 // We need to have a loop header. 2718 BasicBlock *Latch = TheLoop->getLoopLatch(); 2719 DEBUG(dbgs() << "LV: Found a loop: " << 2720 TheLoop->getHeader()->getName() << "\n"); 2721 2722 // ScalarEvolution needs to be able to find the exit count. 2723 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 2724 if (ExitCount == SE->getCouldNotCompute()) { 2725 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 2726 return false; 2727 } 2728 2729 // Do not loop-vectorize loops with a tiny trip count. 2730 unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch); 2731 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 2732 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << 2733 "This loop is not worth vectorizing.\n"); 2734 return false; 2735 } 2736 2737 // Check if we can vectorize the instructions and CFG in this loop. 2738 if (!canVectorizeInstrs()) { 2739 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 2740 return false; 2741 } 2742 2743 // Go over each instruction and look at memory deps. 2744 if (!canVectorizeMemory()) { 2745 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 2746 return false; 2747 } 2748 2749 // Collect all of the variables that remain uniform after vectorization. 2750 collectLoopUniforms(); 2751 2752 DEBUG(dbgs() << "LV: We can vectorize this loop" << 2753 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 2754 <<"!\n"); 2755 2756 // Okay! We can vectorize. At this point we don't have any other mem analysis 2757 // which may limit our maximum vectorization factor, so just return true with 2758 // no restrictions. 2759 return true; 2760 } 2761 2762 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) { 2763 if (Ty->isPointerTy()) 2764 return DL.getIntPtrType(Ty); 2765 2766 return Ty; 2767 } 2768 2769 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) { 2770 Ty0 = convertPointerToIntegerType(DL, Ty0); 2771 Ty1 = convertPointerToIntegerType(DL, Ty1); 2772 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 2773 return Ty0; 2774 return Ty1; 2775 } 2776 2777 /// \brief Check that the instruction has outside loop users and is not an 2778 /// identified reduction variable. 2779 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 2780 SmallPtrSet<Value *, 4> &Reductions) { 2781 // Reduction instructions are allowed to have exit users. All other 2782 // instructions must not have external users. 2783 if (!Reductions.count(Inst)) 2784 //Check that all of the users of the loop are inside the BB. 2785 for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); 2786 I != E; ++I) { 2787 Instruction *U = cast<Instruction>(*I); 2788 // This user may be a reduction exit value. 2789 if (!TheLoop->contains(U)) { 2790 DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n"); 2791 return true; 2792 } 2793 } 2794 return false; 2795 } 2796 2797 bool LoopVectorizationLegality::canVectorizeInstrs() { 2798 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 2799 BasicBlock *Header = TheLoop->getHeader(); 2800 2801 // Look for the attribute signaling the absence of NaNs. 2802 Function &F = *Header->getParent(); 2803 if (F.hasFnAttribute("no-nans-fp-math")) 2804 HasFunNoNaNAttr = F.getAttributes().getAttribute( 2805 AttributeSet::FunctionIndex, 2806 "no-nans-fp-math").getValueAsString() == "true"; 2807 2808 // For each block in the loop. 2809 for (Loop::block_iterator bb = TheLoop->block_begin(), 2810 be = TheLoop->block_end(); bb != be; ++bb) { 2811 2812 // Scan the instructions in the block and look for hazards. 2813 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 2814 ++it) { 2815 2816 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 2817 Type *PhiTy = Phi->getType(); 2818 // Check that this PHI type is allowed. 2819 if (!PhiTy->isIntegerTy() && 2820 !PhiTy->isFloatingPointTy() && 2821 !PhiTy->isPointerTy()) { 2822 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 2823 return false; 2824 } 2825 2826 // If this PHINode is not in the header block, then we know that we 2827 // can convert it to select during if-conversion. No need to check if 2828 // the PHIs in this block are induction or reduction variables. 2829 if (*bb != Header) { 2830 // Check that this instruction has no outside users or is an 2831 // identified reduction value with an outside user. 2832 if(!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 2833 continue; 2834 return false; 2835 } 2836 2837 // We only allow if-converted PHIs with more than two incoming values. 2838 if (Phi->getNumIncomingValues() != 2) { 2839 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 2840 return false; 2841 } 2842 2843 // This is the value coming from the preheader. 2844 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 2845 // Check if this is an induction variable. 2846 InductionKind IK = isInductionVariable(Phi); 2847 2848 if (IK_NoInduction != IK) { 2849 // Get the widest type. 2850 if (!WidestIndTy) 2851 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 2852 else 2853 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 2854 2855 // Int inductions are special because we only allow one IV. 2856 if (IK == IK_IntInduction) { 2857 // Use the phi node with the widest type as induction. Use the last 2858 // one if there are multiple (no good reason for doing this other 2859 // than it is expedient). 2860 if (!Induction || PhiTy == WidestIndTy) 2861 Induction = Phi; 2862 } 2863 2864 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 2865 Inductions[Phi] = InductionInfo(StartValue, IK); 2866 continue; 2867 } 2868 2869 if (AddReductionVar(Phi, RK_IntegerAdd)) { 2870 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 2871 continue; 2872 } 2873 if (AddReductionVar(Phi, RK_IntegerMult)) { 2874 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 2875 continue; 2876 } 2877 if (AddReductionVar(Phi, RK_IntegerOr)) { 2878 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 2879 continue; 2880 } 2881 if (AddReductionVar(Phi, RK_IntegerAnd)) { 2882 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 2883 continue; 2884 } 2885 if (AddReductionVar(Phi, RK_IntegerXor)) { 2886 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 2887 continue; 2888 } 2889 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 2890 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 2891 continue; 2892 } 2893 if (AddReductionVar(Phi, RK_FloatMult)) { 2894 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 2895 continue; 2896 } 2897 if (AddReductionVar(Phi, RK_FloatAdd)) { 2898 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 2899 continue; 2900 } 2901 if (AddReductionVar(Phi, RK_FloatMinMax)) { 2902 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 2903 "\n"); 2904 continue; 2905 } 2906 2907 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 2908 return false; 2909 }// end of PHI handling 2910 2911 // We still don't handle functions. However, we can ignore dbg intrinsic 2912 // calls and we do handle certain intrinsic and libm functions. 2913 CallInst *CI = dyn_cast<CallInst>(it); 2914 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 2915 DEBUG(dbgs() << "LV: Found a call site.\n"); 2916 return false; 2917 } 2918 2919 // Check that the instruction return type is vectorizable. 2920 if (!VectorType::isValidElementType(it->getType()) && 2921 !it->getType()->isVoidTy()) { 2922 DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n"); 2923 return false; 2924 } 2925 2926 // Check that the stored type is vectorizable. 2927 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 2928 Type *T = ST->getValueOperand()->getType(); 2929 if (!VectorType::isValidElementType(T)) 2930 return false; 2931 } 2932 2933 // Reduction instructions are allowed to have exit users. 2934 // All other instructions must not have external users. 2935 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 2936 return false; 2937 2938 } // next instr. 2939 2940 } 2941 2942 if (!Induction) { 2943 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 2944 if (Inductions.empty()) 2945 return false; 2946 } 2947 2948 return true; 2949 } 2950 2951 void LoopVectorizationLegality::collectLoopUniforms() { 2952 // We now know that the loop is vectorizable! 2953 // Collect variables that will remain uniform after vectorization. 2954 std::vector<Value*> Worklist; 2955 BasicBlock *Latch = TheLoop->getLoopLatch(); 2956 2957 // Start with the conditional branch and walk up the block. 2958 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 2959 2960 while (Worklist.size()) { 2961 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 2962 Worklist.pop_back(); 2963 2964 // Look at instructions inside this loop. 2965 // Stop when reaching PHI nodes. 2966 // TODO: we need to follow values all over the loop, not only in this block. 2967 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 2968 continue; 2969 2970 // This is a known uniform. 2971 Uniforms.insert(I); 2972 2973 // Insert all operands. 2974 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 2975 } 2976 } 2977 2978 namespace { 2979 /// \brief Analyses memory accesses in a loop. 2980 /// 2981 /// Checks whether run time pointer checks are needed and builds sets for data 2982 /// dependence checking. 2983 class AccessAnalysis { 2984 public: 2985 /// \brief Read or write access location. 2986 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 2987 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 2988 2989 /// \brief Set of potential dependent memory accesses. 2990 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 2991 2992 AccessAnalysis(DataLayout *Dl, DepCandidates &DA) : 2993 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 2994 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 2995 2996 /// \brief Register a load and whether it is only read from. 2997 void addLoad(Value *Ptr, bool IsReadOnly) { 2998 Accesses.insert(MemAccessInfo(Ptr, false)); 2999 if (IsReadOnly) 3000 ReadOnlyPtr.insert(Ptr); 3001 } 3002 3003 /// \brief Register a store. 3004 void addStore(Value *Ptr) { 3005 Accesses.insert(MemAccessInfo(Ptr, true)); 3006 } 3007 3008 /// \brief Check whether we can check the pointers at runtime for 3009 /// non-intersection. 3010 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3011 unsigned &NumComparisons, ScalarEvolution *SE, 3012 Loop *TheLoop); 3013 3014 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3015 /// and builds sets of dependent accesses. 3016 void buildDependenceSets() { 3017 // Process read-write pointers first. 3018 processMemAccesses(false); 3019 // Next, process read pointers. 3020 processMemAccesses(true); 3021 } 3022 3023 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3024 3025 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3026 3027 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3028 3029 private: 3030 typedef SetVector<MemAccessInfo> PtrAccessSet; 3031 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 3032 3033 /// \brief Go over all memory access or only the deferred ones if 3034 /// \p UseDeferred is true and check whether runtime pointer checks are needed 3035 /// and build sets of dependency check candidates. 3036 void processMemAccesses(bool UseDeferred); 3037 3038 /// Set of all accesses. 3039 PtrAccessSet Accesses; 3040 3041 /// Set of access to check after all writes have been processed. 3042 PtrAccessSet DeferredAccesses; 3043 3044 /// Map of pointers to last access encountered. 3045 UnderlyingObjToAccessMap ObjToLastAccess; 3046 3047 /// Set of accesses that need a further dependence check. 3048 MemAccessInfoSet CheckDeps; 3049 3050 /// Set of pointers that are read only. 3051 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3052 3053 /// Set of underlying objects already written to. 3054 SmallPtrSet<Value*, 16> WriteObjects; 3055 3056 DataLayout *DL; 3057 3058 /// Sets of potentially dependent accesses - members of one set share an 3059 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 3060 /// dependence check. 3061 DepCandidates &DepCands; 3062 3063 bool AreAllWritesIdentified; 3064 bool AreAllReadsIdentified; 3065 bool IsRTCheckNeeded; 3066 }; 3067 3068 } // end anonymous namespace 3069 3070 /// \brief Check whether a pointer can participate in a runtime bounds check. 3071 static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) { 3072 const SCEV *PtrScev = SE->getSCEV(Ptr); 3073 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3074 if (!AR) 3075 return false; 3076 3077 return AR->isAffine(); 3078 } 3079 3080 bool AccessAnalysis::canCheckPtrAtRT( 3081 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3082 unsigned &NumComparisons, ScalarEvolution *SE, 3083 Loop *TheLoop) { 3084 // Find pointers with computable bounds. We are going to use this information 3085 // to place a runtime bound check. 3086 unsigned NumReadPtrChecks = 0; 3087 unsigned NumWritePtrChecks = 0; 3088 bool CanDoRT = true; 3089 3090 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 3091 // We assign consecutive id to access from different dependence sets. 3092 // Accesses within the same set don't need a runtime check. 3093 unsigned RunningDepId = 1; 3094 DenseMap<Value *, unsigned> DepSetId; 3095 3096 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 3097 AI != AE; ++AI) { 3098 const MemAccessInfo &Access = *AI; 3099 Value *Ptr = Access.getPointer(); 3100 bool IsWrite = Access.getInt(); 3101 3102 // Just add write checks if we have both. 3103 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true))) 3104 continue; 3105 3106 if (IsWrite) 3107 ++NumWritePtrChecks; 3108 else 3109 ++NumReadPtrChecks; 3110 3111 if (hasComputableBounds(SE, Ptr)) { 3112 // The id of the dependence set. 3113 unsigned DepId; 3114 3115 if (IsDepCheckNeeded) { 3116 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 3117 unsigned &LeaderId = DepSetId[Leader]; 3118 if (!LeaderId) 3119 LeaderId = RunningDepId++; 3120 DepId = LeaderId; 3121 } else 3122 // Each access has its own dependence set. 3123 DepId = RunningDepId++; 3124 3125 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId); 3126 3127 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr <<"\n"); 3128 } else { 3129 CanDoRT = false; 3130 } 3131 } 3132 3133 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 3134 NumComparisons = 0; // Only one dependence set. 3135 else 3136 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 3137 NumWritePtrChecks - 1)); 3138 return CanDoRT; 3139 } 3140 3141 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 3142 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 3143 } 3144 3145 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 3146 // We process the set twice: first we process read-write pointers, last we 3147 // process read-only pointers. This allows us to skip dependence tests for 3148 // read-only pointers. 3149 3150 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 3151 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 3152 const MemAccessInfo &Access = *AI; 3153 Value *Ptr = Access.getPointer(); 3154 bool IsWrite = Access.getInt(); 3155 3156 DepCands.insert(Access); 3157 3158 // Memorize read-only pointers for later processing and skip them in the 3159 // first round (they need to be checked after we have seen all write 3160 // pointers). Note: we also mark pointer that are not consecutive as 3161 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 3162 // second check for "!IsWrite". 3163 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 3164 if (!UseDeferred && IsReadOnlyPtr) { 3165 DeferredAccesses.insert(Access); 3166 continue; 3167 } 3168 3169 bool NeedDepCheck = false; 3170 // Check whether there is the possiblity of dependency because of underlying 3171 // objects being the same. 3172 typedef SmallVector<Value*, 16> ValueVector; 3173 ValueVector TempObjects; 3174 GetUnderlyingObjects(Ptr, TempObjects, DL); 3175 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 3176 UI != UE; ++UI) { 3177 Value *UnderlyingObj = *UI; 3178 3179 // If this is a write then it needs to be an identified object. If this a 3180 // read and all writes (so far) are identified function scope objects we 3181 // don't need an identified underlying object but only an Argument (the 3182 // next write is going to invalidate this assumption if it is 3183 // unidentified). 3184 // This is a micro-optimization for the case where all writes are 3185 // identified and we have one argument pointer. 3186 // Otherwise, we do need a runtime check. 3187 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 3188 (!IsWrite && (!AreAllWritesIdentified || 3189 !isa<Argument>(UnderlyingObj)) && 3190 !isIdentifiedObject(UnderlyingObj))) { 3191 DEBUG(dbgs() << "LV: Found an unidentified " << 3192 (IsWrite ? "write" : "read" ) << " ptr:" << *UnderlyingObj << 3193 "\n"); 3194 IsRTCheckNeeded = (IsRTCheckNeeded || 3195 !isIdentifiedObject(UnderlyingObj) || 3196 !AreAllReadsIdentified); 3197 3198 if (IsWrite) 3199 AreAllWritesIdentified = false; 3200 if (!IsWrite) 3201 AreAllReadsIdentified = false; 3202 } 3203 3204 // If this is a write - check other reads and writes for conflicts. If 3205 // this is a read only check other writes for conflicts (but only if there 3206 // is no other write to the ptr - this is an optimization to catch "a[i] = 3207 // a[i] + " without having to do a dependence check). 3208 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 3209 NeedDepCheck = true; 3210 3211 if (IsWrite) 3212 WriteObjects.insert(UnderlyingObj); 3213 3214 // Create sets of pointers connected by shared underlying objects. 3215 UnderlyingObjToAccessMap::iterator Prev = 3216 ObjToLastAccess.find(UnderlyingObj); 3217 if (Prev != ObjToLastAccess.end()) 3218 DepCands.unionSets(Access, Prev->second); 3219 3220 ObjToLastAccess[UnderlyingObj] = Access; 3221 } 3222 3223 if (NeedDepCheck) 3224 CheckDeps.insert(Access); 3225 } 3226 } 3227 3228 namespace { 3229 /// \brief Checks memory dependences among accesses to the same underlying 3230 /// object to determine whether there vectorization is legal or not (and at 3231 /// which vectorization factor). 3232 /// 3233 /// This class works under the assumption that we already checked that memory 3234 /// locations with different underlying pointers are "must-not alias". 3235 /// We use the ScalarEvolution framework to symbolically evalutate access 3236 /// functions pairs. Since we currently don't restructure the loop we can rely 3237 /// on the program order of memory accesses to determine their safety. 3238 /// At the moment we will only deem accesses as safe for: 3239 /// * A negative constant distance assuming program order. 3240 /// 3241 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 3242 /// a[i] = tmp; y = a[i]; 3243 /// 3244 /// The latter case is safe because later checks guarantuee that there can't 3245 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 3246 /// the same variable: a header phi can only be an induction or a reduction, a 3247 /// reduction can't have a memory sink, an induction can't have a memory 3248 /// source). This is important and must not be violated (or we have to 3249 /// resort to checking for cycles through memory). 3250 /// 3251 /// * A positive constant distance assuming program order that is bigger 3252 /// than the biggest memory access. 3253 /// 3254 /// tmp = a[i] OR b[i] = x 3255 /// a[i+2] = tmp y = b[i+2]; 3256 /// 3257 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 3258 /// 3259 /// * Zero distances and all accesses have the same size. 3260 /// 3261 class MemoryDepChecker { 3262 public: 3263 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3264 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3265 3266 MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) : 3267 SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0) {} 3268 3269 /// \brief Register the location (instructions are given increasing numbers) 3270 /// of a write access. 3271 void addAccess(StoreInst *SI) { 3272 Value *Ptr = SI->getPointerOperand(); 3273 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 3274 InstMap.push_back(SI); 3275 ++AccessIdx; 3276 } 3277 3278 /// \brief Register the location (instructions are given increasing numbers) 3279 /// of a write access. 3280 void addAccess(LoadInst *LI) { 3281 Value *Ptr = LI->getPointerOperand(); 3282 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 3283 InstMap.push_back(LI); 3284 ++AccessIdx; 3285 } 3286 3287 /// \brief Check whether the dependencies between the accesses are safe. 3288 /// 3289 /// Only checks sets with elements in \p CheckDeps. 3290 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 3291 MemAccessInfoSet &CheckDeps); 3292 3293 /// \brief The maximum number of bytes of a vector register we can vectorize 3294 /// the accesses safely with. 3295 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 3296 3297 private: 3298 ScalarEvolution *SE; 3299 DataLayout *DL; 3300 const Loop *InnermostLoop; 3301 3302 /// \brief Maps access locations (ptr, read/write) to program order. 3303 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 3304 3305 /// \brief Memory access instructions in program order. 3306 SmallVector<Instruction *, 16> InstMap; 3307 3308 /// \brief The program order index to be used for the next instruction. 3309 unsigned AccessIdx; 3310 3311 // We can access this many bytes in parallel safely. 3312 unsigned MaxSafeDepDistBytes; 3313 3314 /// \brief Check whether there is a plausible dependence between the two 3315 /// accesses. 3316 /// 3317 /// Access \p A must happen before \p B in program order. The two indices 3318 /// identify the index into the program order map. 3319 /// 3320 /// This function checks whether there is a plausible dependence (or the 3321 /// absence of such can't be proved) between the two accesses. If there is a 3322 /// plausible dependence but the dependence distance is bigger than one 3323 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 3324 /// distance is smaller than any other distance encountered so far). 3325 /// Otherwise, this function returns true signaling a possible dependence. 3326 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 3327 const MemAccessInfo &B, unsigned BIdx); 3328 3329 /// \brief Check whether the data dependence could prevent store-load 3330 /// forwarding. 3331 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 3332 }; 3333 3334 } // end anonymous namespace 3335 3336 static bool isInBoundsGep(Value *Ptr) { 3337 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 3338 return GEP->isInBounds(); 3339 return false; 3340 } 3341 3342 /// \brief Check whether the access through \p Ptr has a constant stride. 3343 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr, 3344 const Loop *Lp) { 3345 const Type *Ty = Ptr->getType(); 3346 assert(Ty->isPointerTy() && "Unexpected non ptr"); 3347 3348 // Make sure that the pointer does not point to aggregate types. 3349 const PointerType *PtrTy = cast<PointerType>(Ty); 3350 if (PtrTy->getElementType()->isAggregateType()) { 3351 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 3352 "\n"); 3353 return 0; 3354 } 3355 3356 const SCEV *PtrScev = SE->getSCEV(Ptr); 3357 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3358 if (!AR) { 3359 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 3360 << *Ptr << " SCEV: " << *PtrScev << "\n"); 3361 return 0; 3362 } 3363 3364 // The accesss function must stride over the innermost loop. 3365 if (Lp != AR->getLoop()) { 3366 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 3367 *Ptr << " SCEV: " << *PtrScev << "\n"); 3368 } 3369 3370 // The address calculation must not wrap. Otherwise, a dependence could be 3371 // inverted. 3372 // An inbounds getelementptr that is a AddRec with a unit stride 3373 // cannot wrap per definition. The unit stride requirement is checked later. 3374 // An getelementptr without an inbounds attribute and unit stride would have 3375 // to access the pointer value "0" which is undefined behavior in address 3376 // space 0, therefore we can also vectorize this case. 3377 bool IsInBoundsGEP = isInBoundsGep(Ptr); 3378 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 3379 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 3380 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 3381 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 3382 << *Ptr << " SCEV: " << *PtrScev << "\n"); 3383 return 0; 3384 } 3385 3386 // Check the step is constant. 3387 const SCEV *Step = AR->getStepRecurrence(*SE); 3388 3389 // Calculate the pointer stride and check if it is consecutive. 3390 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 3391 if (!C) { 3392 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 3393 " SCEV: " << *PtrScev << "\n"); 3394 return 0; 3395 } 3396 3397 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 3398 const APInt &APStepVal = C->getValue()->getValue(); 3399 3400 // Huge step value - give up. 3401 if (APStepVal.getBitWidth() > 64) 3402 return 0; 3403 3404 int64_t StepVal = APStepVal.getSExtValue(); 3405 3406 // Strided access. 3407 int64_t Stride = StepVal / Size; 3408 int64_t Rem = StepVal % Size; 3409 if (Rem) 3410 return 0; 3411 3412 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 3413 // know we can't "wrap around the address space". In case of address space 3414 // zero we know that this won't happen without triggering undefined behavior. 3415 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 3416 Stride != 1 && Stride != -1) 3417 return 0; 3418 3419 return Stride; 3420 } 3421 3422 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 3423 unsigned TypeByteSize) { 3424 // If loads occur at a distance that is not a multiple of a feasible vector 3425 // factor store-load forwarding does not take place. 3426 // Positive dependences might cause troubles because vectorizing them might 3427 // prevent store-load forwarding making vectorized code run a lot slower. 3428 // a[i] = a[i-3] ^ a[i-8]; 3429 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 3430 // hence on your typical architecture store-load forwarding does not take 3431 // place. Vectorizing in such cases does not make sense. 3432 // Store-load forwarding distance. 3433 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 3434 // Maximum vector factor. 3435 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 3436 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 3437 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 3438 3439 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 3440 vf *= 2) { 3441 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 3442 MaxVFWithoutSLForwardIssues = (vf >>=1); 3443 break; 3444 } 3445 } 3446 3447 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 3448 DEBUG(dbgs() << "LV: Distance " << Distance << 3449 " that could cause a store-load forwarding conflict\n"); 3450 return true; 3451 } 3452 3453 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 3454 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 3455 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 3456 return false; 3457 } 3458 3459 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 3460 const MemAccessInfo &B, unsigned BIdx) { 3461 assert (AIdx < BIdx && "Must pass arguments in program order"); 3462 3463 Value *APtr = A.getPointer(); 3464 Value *BPtr = B.getPointer(); 3465 bool AIsWrite = A.getInt(); 3466 bool BIsWrite = B.getInt(); 3467 3468 // Two reads are independent. 3469 if (!AIsWrite && !BIsWrite) 3470 return false; 3471 3472 const SCEV *AScev = SE->getSCEV(APtr); 3473 const SCEV *BScev = SE->getSCEV(BPtr); 3474 3475 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop); 3476 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop); 3477 3478 const SCEV *Src = AScev; 3479 const SCEV *Sink = BScev; 3480 3481 // If the induction step is negative we have to invert source and sink of the 3482 // dependence. 3483 if (StrideAPtr < 0) { 3484 //Src = BScev; 3485 //Sink = AScev; 3486 std::swap(APtr, BPtr); 3487 std::swap(Src, Sink); 3488 std::swap(AIsWrite, BIsWrite); 3489 std::swap(AIdx, BIdx); 3490 std::swap(StrideAPtr, StrideBPtr); 3491 } 3492 3493 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 3494 3495 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 3496 << "(Induction step: " << StrideAPtr << ")\n"); 3497 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 3498 << *InstMap[BIdx] << ": " << *Dist << "\n"); 3499 3500 // Need consecutive accesses. We don't want to vectorize 3501 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 3502 // the address space. 3503 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 3504 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 3505 return true; 3506 } 3507 3508 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 3509 if (!C) { 3510 DEBUG(dbgs() << "LV: Dependence because of non constant distance\n"); 3511 return true; 3512 } 3513 3514 Type *ATy = APtr->getType()->getPointerElementType(); 3515 Type *BTy = BPtr->getType()->getPointerElementType(); 3516 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 3517 3518 // Negative distances are not plausible dependencies. 3519 const APInt &Val = C->getValue()->getValue(); 3520 if (Val.isNegative()) { 3521 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 3522 if (IsTrueDataDependence && 3523 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 3524 ATy != BTy)) 3525 return true; 3526 3527 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 3528 return false; 3529 } 3530 3531 // Write to the same location with the same size. 3532 // Could be improved to assert type sizes are the same (i32 == float, etc). 3533 if (Val == 0) { 3534 if (ATy == BTy) 3535 return false; 3536 DEBUG(dbgs() << "LV: Zero dependence difference but different types"); 3537 return true; 3538 } 3539 3540 assert(Val.isStrictlyPositive() && "Expect a positive value"); 3541 3542 // Positive distance bigger than max vectorization factor. 3543 if (ATy != BTy) { 3544 DEBUG(dbgs() << 3545 "LV: ReadWrite-Write positive dependency with different types"); 3546 return false; 3547 } 3548 3549 unsigned Distance = (unsigned) Val.getZExtValue(); 3550 3551 // Bail out early if passed-in parameters make vectorization not feasible. 3552 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 3553 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 3554 3555 // The distance must be bigger than the size needed for a vectorized version 3556 // of the operation and the size of the vectorized operation must not be 3557 // bigger than the currrent maximum size. 3558 if (Distance < 2*TypeByteSize || 3559 2*TypeByteSize > MaxSafeDepDistBytes || 3560 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 3561 DEBUG(dbgs() << "LV: Failure because of Positive distance " 3562 << Val.getSExtValue() << "\n"); 3563 return true; 3564 } 3565 3566 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 3567 Distance : MaxSafeDepDistBytes; 3568 3569 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 3570 if (IsTrueDataDependence && 3571 couldPreventStoreLoadForward(Distance, TypeByteSize)) 3572 return true; 3573 3574 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 3575 " with max VF=" << MaxSafeDepDistBytes/TypeByteSize << "\n"); 3576 3577 return false; 3578 } 3579 3580 bool 3581 MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 3582 MemAccessInfoSet &CheckDeps) { 3583 3584 MaxSafeDepDistBytes = -1U; 3585 while (!CheckDeps.empty()) { 3586 MemAccessInfo CurAccess = *CheckDeps.begin(); 3587 3588 // Get the relevant memory access set. 3589 EquivalenceClasses<MemAccessInfo>::iterator I = 3590 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 3591 3592 // Check accesses within this set. 3593 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 3594 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 3595 3596 // Check every access pair. 3597 while (AI != AE) { 3598 CheckDeps.erase(*AI); 3599 EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI); 3600 while (OI != AE) { 3601 // Check every accessing instruction pair in program order. 3602 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 3603 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 3604 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 3605 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 3606 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2)) 3607 return false; 3608 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1)) 3609 return false; 3610 } 3611 ++OI; 3612 } 3613 AI++; 3614 } 3615 } 3616 return true; 3617 } 3618 3619 bool LoopVectorizationLegality::canVectorizeMemory() { 3620 3621 typedef SmallVector<Value*, 16> ValueVector; 3622 typedef SmallPtrSet<Value*, 16> ValueSet; 3623 3624 // Holds the Load and Store *instructions*. 3625 ValueVector Loads; 3626 ValueVector Stores; 3627 3628 // Holds all the different accesses in the loop. 3629 unsigned NumReads = 0; 3630 unsigned NumReadWrites = 0; 3631 3632 PtrRtCheck.Pointers.clear(); 3633 PtrRtCheck.Need = false; 3634 3635 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 3636 MemoryDepChecker DepChecker(SE, DL, TheLoop); 3637 3638 // For each block. 3639 for (Loop::block_iterator bb = TheLoop->block_begin(), 3640 be = TheLoop->block_end(); bb != be; ++bb) { 3641 3642 // Scan the BB and collect legal loads and stores. 3643 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3644 ++it) { 3645 3646 // If this is a load, save it. If this instruction can read from memory 3647 // but is not a load, then we quit. Notice that we don't handle function 3648 // calls that read or write. 3649 if (it->mayReadFromMemory()) { 3650 // Many math library functions read the rounding mode. We will only 3651 // vectorize a loop if it contains known function calls that don't set 3652 // the flag. Therefore, it is safe to ignore this read from memory. 3653 CallInst *Call = dyn_cast<CallInst>(it); 3654 if (Call && getIntrinsicIDForCall(Call, TLI)) 3655 continue; 3656 3657 LoadInst *Ld = dyn_cast<LoadInst>(it); 3658 if (!Ld) return false; 3659 if (!Ld->isSimple() && !IsAnnotatedParallel) { 3660 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 3661 return false; 3662 } 3663 Loads.push_back(Ld); 3664 DepChecker.addAccess(Ld); 3665 continue; 3666 } 3667 3668 // Save 'store' instructions. Abort if other instructions write to memory. 3669 if (it->mayWriteToMemory()) { 3670 StoreInst *St = dyn_cast<StoreInst>(it); 3671 if (!St) return false; 3672 if (!St->isSimple() && !IsAnnotatedParallel) { 3673 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 3674 return false; 3675 } 3676 Stores.push_back(St); 3677 DepChecker.addAccess(St); 3678 } 3679 } // next instr. 3680 } // next block. 3681 3682 // Now we have two lists that hold the loads and the stores. 3683 // Next, we find the pointers that they use. 3684 3685 // Check if we see any stores. If there are no stores, then we don't 3686 // care if the pointers are *restrict*. 3687 if (!Stores.size()) { 3688 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 3689 return true; 3690 } 3691 3692 AccessAnalysis::DepCandidates DependentAccesses; 3693 AccessAnalysis Accesses(DL, DependentAccesses); 3694 3695 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 3696 // multiple times on the same object. If the ptr is accessed twice, once 3697 // for read and once for write, it will only appear once (on the write 3698 // list). This is okay, since we are going to check for conflicts between 3699 // writes and between reads and writes, but not between reads and reads. 3700 ValueSet Seen; 3701 3702 ValueVector::iterator I, IE; 3703 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 3704 StoreInst *ST = cast<StoreInst>(*I); 3705 Value* Ptr = ST->getPointerOperand(); 3706 3707 if (isUniform(Ptr)) { 3708 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 3709 return false; 3710 } 3711 3712 // If we did *not* see this pointer before, insert it to the read-write 3713 // list. At this phase it is only a 'write' list. 3714 if (Seen.insert(Ptr)) { 3715 ++NumReadWrites; 3716 Accesses.addStore(Ptr); 3717 } 3718 } 3719 3720 if (IsAnnotatedParallel) { 3721 DEBUG(dbgs() 3722 << "LV: A loop annotated parallel, ignore memory dependency " 3723 << "checks.\n"); 3724 return true; 3725 } 3726 3727 SmallPtrSet<Value *, 16> ReadOnlyPtr; 3728 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 3729 LoadInst *LD = cast<LoadInst>(*I); 3730 Value* Ptr = LD->getPointerOperand(); 3731 // If we did *not* see this pointer before, insert it to the 3732 // read list. If we *did* see it before, then it is already in 3733 // the read-write list. This allows us to vectorize expressions 3734 // such as A[i] += x; Because the address of A[i] is a read-write 3735 // pointer. This only works if the index of A[i] is consecutive. 3736 // If the address of i is unknown (for example A[B[i]]) then we may 3737 // read a few words, modify, and write a few words, and some of the 3738 // words may be written to the same address. 3739 bool IsReadOnlyPtr = false; 3740 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) { 3741 ++NumReads; 3742 IsReadOnlyPtr = true; 3743 } 3744 Accesses.addLoad(Ptr, IsReadOnlyPtr); 3745 } 3746 3747 // If we write (or read-write) to a single destination and there are no 3748 // other reads in this loop then is it safe to vectorize. 3749 if (NumReadWrites == 1 && NumReads == 0) { 3750 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 3751 return true; 3752 } 3753 3754 // Build dependence sets and check whether we need a runtime pointer bounds 3755 // check. 3756 Accesses.buildDependenceSets(); 3757 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 3758 3759 // Find pointers with computable bounds. We are going to use this information 3760 // to place a runtime bound check. 3761 unsigned NumComparisons = 0; 3762 bool CanDoRT = false; 3763 if (NeedRTCheck) 3764 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop); 3765 3766 3767 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 3768 " pointer comparisons.\n"); 3769 3770 // If we only have one set of dependences to check pointers among we don't 3771 // need a runtime check. 3772 if (NumComparisons == 0 && NeedRTCheck) 3773 NeedRTCheck = false; 3774 3775 // Check that we did not collect too many pointers or found a unsizeable 3776 // pointer. 3777 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 3778 PtrRtCheck.reset(); 3779 CanDoRT = false; 3780 } 3781 3782 if (CanDoRT) { 3783 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 3784 } 3785 3786 if (NeedRTCheck && !CanDoRT) { 3787 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 3788 "the array bounds.\n"); 3789 PtrRtCheck.reset(); 3790 return false; 3791 } 3792 3793 PtrRtCheck.Need = NeedRTCheck; 3794 3795 bool CanVecMem = true; 3796 if (Accesses.isDependencyCheckNeeded()) { 3797 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 3798 CanVecMem = DepChecker.areDepsSafe(DependentAccesses, 3799 Accesses.getDependenciesToCheck()); 3800 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 3801 } 3802 3803 DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") << 3804 " need a runtime memory check.\n"); 3805 3806 return CanVecMem; 3807 } 3808 3809 static bool hasMultipleUsesOf(Instruction *I, 3810 SmallPtrSet<Instruction *, 8> &Insts) { 3811 unsigned NumUses = 0; 3812 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 3813 if (Insts.count(dyn_cast<Instruction>(*Use))) 3814 ++NumUses; 3815 if (NumUses > 1) 3816 return true; 3817 } 3818 3819 return false; 3820 } 3821 3822 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 3823 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 3824 if (!Set.count(dyn_cast<Instruction>(*Use))) 3825 return false; 3826 return true; 3827 } 3828 3829 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 3830 ReductionKind Kind) { 3831 if (Phi->getNumIncomingValues() != 2) 3832 return false; 3833 3834 // Reduction variables are only found in the loop header block. 3835 if (Phi->getParent() != TheLoop->getHeader()) 3836 return false; 3837 3838 // Obtain the reduction start value from the value that comes from the loop 3839 // preheader. 3840 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 3841 3842 // ExitInstruction is the single value which is used outside the loop. 3843 // We only allow for a single reduction value to be used outside the loop. 3844 // This includes users of the reduction, variables (which form a cycle 3845 // which ends in the phi node). 3846 Instruction *ExitInstruction = 0; 3847 // Indicates that we found a reduction operation in our scan. 3848 bool FoundReduxOp = false; 3849 3850 // We start with the PHI node and scan for all of the users of this 3851 // instruction. All users must be instructions that can be used as reduction 3852 // variables (such as ADD). We must have a single out-of-block user. The cycle 3853 // must include the original PHI. 3854 bool FoundStartPHI = false; 3855 3856 // To recognize min/max patterns formed by a icmp select sequence, we store 3857 // the number of instruction we saw from the recognized min/max pattern, 3858 // to make sure we only see exactly the two instructions. 3859 unsigned NumCmpSelectPatternInst = 0; 3860 ReductionInstDesc ReduxDesc(false, 0); 3861 3862 SmallPtrSet<Instruction *, 8> VisitedInsts; 3863 SmallVector<Instruction *, 8> Worklist; 3864 Worklist.push_back(Phi); 3865 VisitedInsts.insert(Phi); 3866 3867 // A value in the reduction can be used: 3868 // - By the reduction: 3869 // - Reduction operation: 3870 // - One use of reduction value (safe). 3871 // - Multiple use of reduction value (not safe). 3872 // - PHI: 3873 // - All uses of the PHI must be the reduction (safe). 3874 // - Otherwise, not safe. 3875 // - By one instruction outside of the loop (safe). 3876 // - By further instructions outside of the loop (not safe). 3877 // - By an instruction that is not part of the reduction (not safe). 3878 // This is either: 3879 // * An instruction type other than PHI or the reduction operation. 3880 // * A PHI in the header other than the initial PHI. 3881 while (!Worklist.empty()) { 3882 Instruction *Cur = Worklist.back(); 3883 Worklist.pop_back(); 3884 3885 // No Users. 3886 // If the instruction has no users then this is a broken chain and can't be 3887 // a reduction variable. 3888 if (Cur->use_empty()) 3889 return false; 3890 3891 bool IsAPhi = isa<PHINode>(Cur); 3892 3893 // A header PHI use other than the original PHI. 3894 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 3895 return false; 3896 3897 // Reductions of instructions such as Div, and Sub is only possible if the 3898 // LHS is the reduction variable. 3899 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 3900 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 3901 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 3902 return false; 3903 3904 // Any reduction instruction must be of one of the allowed kinds. 3905 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 3906 if (!ReduxDesc.IsReduction) 3907 return false; 3908 3909 // A reduction operation must only have one use of the reduction value. 3910 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 3911 hasMultipleUsesOf(Cur, VisitedInsts)) 3912 return false; 3913 3914 // All inputs to a PHI node must be a reduction value. 3915 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 3916 return false; 3917 3918 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 3919 isa<SelectInst>(Cur))) 3920 ++NumCmpSelectPatternInst; 3921 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 3922 isa<SelectInst>(Cur))) 3923 ++NumCmpSelectPatternInst; 3924 3925 // Check whether we found a reduction operator. 3926 FoundReduxOp |= !IsAPhi; 3927 3928 // Process users of current instruction. Push non PHI nodes after PHI nodes 3929 // onto the stack. This way we are going to have seen all inputs to PHI 3930 // nodes once we get to them. 3931 SmallVector<Instruction *, 8> NonPHIs; 3932 SmallVector<Instruction *, 8> PHIs; 3933 for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E; 3934 ++UI) { 3935 Instruction *Usr = cast<Instruction>(*UI); 3936 3937 // Check if we found the exit user. 3938 BasicBlock *Parent = Usr->getParent(); 3939 if (!TheLoop->contains(Parent)) { 3940 // Exit if you find multiple outside users or if the header phi node is 3941 // being used. In this case the user uses the value of the previous 3942 // iteration, in which case we would loose "VF-1" iterations of the 3943 // reduction operation if we vectorize. 3944 if (ExitInstruction != 0 || Cur == Phi) 3945 return false; 3946 3947 ExitInstruction = Cur; 3948 continue; 3949 } 3950 3951 // Process instructions only once (termination). 3952 if (VisitedInsts.insert(Usr)) { 3953 if (isa<PHINode>(Usr)) 3954 PHIs.push_back(Usr); 3955 else 3956 NonPHIs.push_back(Usr); 3957 } 3958 // Remember that we completed the cycle. 3959 if (Usr == Phi) 3960 FoundStartPHI = true; 3961 } 3962 Worklist.append(PHIs.begin(), PHIs.end()); 3963 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 3964 } 3965 3966 // This means we have seen one but not the other instruction of the 3967 // pattern or more than just a select and cmp. 3968 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 3969 NumCmpSelectPatternInst != 2) 3970 return false; 3971 3972 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 3973 return false; 3974 3975 // We found a reduction var if we have reached the original phi node and we 3976 // only have a single instruction with out-of-loop users. 3977 3978 // This instruction is allowed to have out-of-loop users. 3979 AllowedExit.insert(ExitInstruction); 3980 3981 // Save the description of this reduction variable. 3982 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 3983 ReduxDesc.MinMaxKind); 3984 Reductions[Phi] = RD; 3985 // We've ended the cycle. This is a reduction variable if we have an 3986 // outside user and it has a binary op. 3987 3988 return true; 3989 } 3990 3991 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 3992 /// pattern corresponding to a min(X, Y) or max(X, Y). 3993 LoopVectorizationLegality::ReductionInstDesc 3994 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 3995 ReductionInstDesc &Prev) { 3996 3997 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 3998 "Expect a select instruction"); 3999 Instruction *Cmp = 0; 4000 SelectInst *Select = 0; 4001 4002 // We must handle the select(cmp()) as a single instruction. Advance to the 4003 // select. 4004 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4005 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin()))) 4006 return ReductionInstDesc(false, I); 4007 return ReductionInstDesc(Select, Prev.MinMaxKind); 4008 } 4009 4010 // Only handle single use cases for now. 4011 if (!(Select = dyn_cast<SelectInst>(I))) 4012 return ReductionInstDesc(false, I); 4013 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4014 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4015 return ReductionInstDesc(false, I); 4016 if (!Cmp->hasOneUse()) 4017 return ReductionInstDesc(false, I); 4018 4019 Value *CmpLeft; 4020 Value *CmpRight; 4021 4022 // Look for a min/max pattern. 4023 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4024 return ReductionInstDesc(Select, MRK_UIntMin); 4025 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4026 return ReductionInstDesc(Select, MRK_UIntMax); 4027 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4028 return ReductionInstDesc(Select, MRK_SIntMax); 4029 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4030 return ReductionInstDesc(Select, MRK_SIntMin); 4031 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4032 return ReductionInstDesc(Select, MRK_FloatMin); 4033 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4034 return ReductionInstDesc(Select, MRK_FloatMax); 4035 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4036 return ReductionInstDesc(Select, MRK_FloatMin); 4037 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4038 return ReductionInstDesc(Select, MRK_FloatMax); 4039 4040 return ReductionInstDesc(false, I); 4041 } 4042 4043 LoopVectorizationLegality::ReductionInstDesc 4044 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4045 ReductionKind Kind, 4046 ReductionInstDesc &Prev) { 4047 bool FP = I->getType()->isFloatingPointTy(); 4048 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 4049 switch (I->getOpcode()) { 4050 default: 4051 return ReductionInstDesc(false, I); 4052 case Instruction::PHI: 4053 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4054 Kind != RK_FloatMinMax)) 4055 return ReductionInstDesc(false, I); 4056 return ReductionInstDesc(I, Prev.MinMaxKind); 4057 case Instruction::Sub: 4058 case Instruction::Add: 4059 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4060 case Instruction::Mul: 4061 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4062 case Instruction::And: 4063 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4064 case Instruction::Or: 4065 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4066 case Instruction::Xor: 4067 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4068 case Instruction::FMul: 4069 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4070 case Instruction::FAdd: 4071 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4072 case Instruction::FCmp: 4073 case Instruction::ICmp: 4074 case Instruction::Select: 4075 if (Kind != RK_IntegerMinMax && 4076 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4077 return ReductionInstDesc(false, I); 4078 return isMinMaxSelectCmpPattern(I, Prev); 4079 } 4080 } 4081 4082 LoopVectorizationLegality::InductionKind 4083 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 4084 Type *PhiTy = Phi->getType(); 4085 // We only handle integer and pointer inductions variables. 4086 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4087 return IK_NoInduction; 4088 4089 // Check that the PHI is consecutive. 4090 const SCEV *PhiScev = SE->getSCEV(Phi); 4091 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4092 if (!AR) { 4093 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4094 return IK_NoInduction; 4095 } 4096 const SCEV *Step = AR->getStepRecurrence(*SE); 4097 4098 // Integer inductions need to have a stride of one. 4099 if (PhiTy->isIntegerTy()) { 4100 if (Step->isOne()) 4101 return IK_IntInduction; 4102 if (Step->isAllOnesValue()) 4103 return IK_ReverseIntInduction; 4104 return IK_NoInduction; 4105 } 4106 4107 // Calculate the pointer stride and check if it is consecutive. 4108 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4109 if (!C) 4110 return IK_NoInduction; 4111 4112 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4113 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 4114 if (C->getValue()->equalsInt(Size)) 4115 return IK_PtrInduction; 4116 else if (C->getValue()->equalsInt(0 - Size)) 4117 return IK_ReversePtrInduction; 4118 4119 return IK_NoInduction; 4120 } 4121 4122 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4123 Value *In0 = const_cast<Value*>(V); 4124 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4125 if (!PN) 4126 return false; 4127 4128 return Inductions.count(PN); 4129 } 4130 4131 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4132 assert(TheLoop->contains(BB) && "Unknown block used"); 4133 4134 // Blocks that do not dominate the latch need predication. 4135 BasicBlock* Latch = TheLoop->getLoopLatch(); 4136 return !DT->dominates(BB, Latch); 4137 } 4138 4139 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4140 SmallPtrSet<Value *, 8>& SafePtrs) { 4141 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4142 // We might be able to hoist the load. 4143 if (it->mayReadFromMemory()) { 4144 LoadInst *LI = dyn_cast<LoadInst>(it); 4145 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 4146 return false; 4147 } 4148 4149 // We don't predicate stores at the moment. 4150 if (it->mayWriteToMemory() || it->mayThrow()) 4151 return false; 4152 4153 // The instructions below can trap. 4154 switch (it->getOpcode()) { 4155 default: continue; 4156 case Instruction::UDiv: 4157 case Instruction::SDiv: 4158 case Instruction::URem: 4159 case Instruction::SRem: 4160 return false; 4161 } 4162 } 4163 4164 return true; 4165 } 4166 4167 LoopVectorizationCostModel::VectorizationFactor 4168 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 4169 unsigned UserVF) { 4170 // Width 1 means no vectorize 4171 VectorizationFactor Factor = { 1U, 0U }; 4172 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4173 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4174 return Factor; 4175 } 4176 4177 // Find the trip count. 4178 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 4179 DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n"); 4180 4181 unsigned WidestType = getWidestType(); 4182 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4183 unsigned MaxSafeDepDist = -1U; 4184 if (Legal->getMaxSafeDepDistBytes() != -1U) 4185 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4186 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4187 WidestRegister : MaxSafeDepDist); 4188 unsigned MaxVectorSize = WidestRegister / WidestType; 4189 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4190 DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n"); 4191 4192 if (MaxVectorSize == 0) { 4193 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4194 MaxVectorSize = 1; 4195 } 4196 4197 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 4198 " into one vector!"); 4199 4200 unsigned VF = MaxVectorSize; 4201 4202 // If we optimize the program for size, avoid creating the tail loop. 4203 if (OptForSize) { 4204 // If we are unable to calculate the trip count then don't try to vectorize. 4205 if (TC < 2) { 4206 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4207 return Factor; 4208 } 4209 4210 // Find the maximum SIMD width that can fit within the trip count. 4211 VF = TC % MaxVectorSize; 4212 4213 if (VF == 0) 4214 VF = MaxVectorSize; 4215 4216 // If the trip count that we found modulo the vectorization factor is not 4217 // zero then we require a tail. 4218 if (VF < 2) { 4219 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4220 return Factor; 4221 } 4222 } 4223 4224 if (UserVF != 0) { 4225 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4226 DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n"); 4227 4228 Factor.Width = UserVF; 4229 return Factor; 4230 } 4231 4232 float Cost = expectedCost(1); 4233 unsigned Width = 1; 4234 DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n"); 4235 for (unsigned i=2; i <= VF; i*=2) { 4236 // Notice that the vector loop needs to be executed less times, so 4237 // we need to divide the cost of the vector loops by the width of 4238 // the vector elements. 4239 float VectorCost = expectedCost(i) / (float)i; 4240 DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " << 4241 (int)VectorCost << ".\n"); 4242 if (VectorCost < Cost) { 4243 Cost = VectorCost; 4244 Width = i; 4245 } 4246 } 4247 4248 DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n"); 4249 Factor.Width = Width; 4250 Factor.Cost = Width * Cost; 4251 return Factor; 4252 } 4253 4254 unsigned LoopVectorizationCostModel::getWidestType() { 4255 unsigned MaxWidth = 8; 4256 4257 // For each block. 4258 for (Loop::block_iterator bb = TheLoop->block_begin(), 4259 be = TheLoop->block_end(); bb != be; ++bb) { 4260 BasicBlock *BB = *bb; 4261 4262 // For each instruction in the loop. 4263 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4264 Type *T = it->getType(); 4265 4266 // Only examine Loads, Stores and PHINodes. 4267 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4268 continue; 4269 4270 // Examine PHI nodes that are reduction variables. 4271 if (PHINode *PN = dyn_cast<PHINode>(it)) 4272 if (!Legal->getReductionVars()->count(PN)) 4273 continue; 4274 4275 // Examine the stored values. 4276 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4277 T = ST->getValueOperand()->getType(); 4278 4279 // Ignore loaded pointer types and stored pointer types that are not 4280 // consecutive. However, we do want to take consecutive stores/loads of 4281 // pointer vectors into account. 4282 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4283 continue; 4284 4285 MaxWidth = std::max(MaxWidth, 4286 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 4287 } 4288 } 4289 4290 return MaxWidth; 4291 } 4292 4293 unsigned 4294 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4295 unsigned UserUF, 4296 unsigned VF, 4297 unsigned LoopCost) { 4298 4299 // -- The unroll heuristics -- 4300 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4301 // There are many micro-architectural considerations that we can't predict 4302 // at this level. For example frontend pressure (on decode or fetch) due to 4303 // code size, or the number and capabilities of the execution ports. 4304 // 4305 // We use the following heuristics to select the unroll factor: 4306 // 1. If the code has reductions the we unroll in order to break the cross 4307 // iteration dependency. 4308 // 2. If the loop is really small then we unroll in order to reduce the loop 4309 // overhead. 4310 // 3. We don't unroll if we think that we will spill registers to memory due 4311 // to the increased register pressure. 4312 4313 // Use the user preference, unless 'auto' is selected. 4314 if (UserUF != 0) 4315 return UserUF; 4316 4317 // When we optimize for size we don't unroll. 4318 if (OptForSize) 4319 return 1; 4320 4321 // We used the distance for the unroll factor. 4322 if (Legal->getMaxSafeDepDistBytes() != -1U) 4323 return 1; 4324 4325 // Do not unroll loops with a relatively small trip count. 4326 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 4327 TheLoop->getLoopLatch()); 4328 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4329 return 1; 4330 4331 unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true); 4332 DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters << 4333 " vector registers\n"); 4334 4335 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4336 // We divide by these constants so assume that we have at least one 4337 // instruction that uses at least one register. 4338 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4339 R.NumInstructions = std::max(R.NumInstructions, 1U); 4340 4341 // We calculate the unroll factor using the following formula. 4342 // Subtract the number of loop invariants from the number of available 4343 // registers. These registers are used by all of the unrolled instances. 4344 // Next, divide the remaining registers by the number of registers that is 4345 // required by the loop, in order to estimate how many parallel instances 4346 // fit without causing spills. 4347 unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers; 4348 4349 // Clamp the unroll factor ranges to reasonable factors. 4350 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 4351 4352 // If we did not calculate the cost for VF (because the user selected the VF) 4353 // then we calculate the cost of VF here. 4354 if (LoopCost == 0) 4355 LoopCost = expectedCost(VF); 4356 4357 // Clamp the calculated UF to be between the 1 and the max unroll factor 4358 // that the target allows. 4359 if (UF > MaxUnrollSize) 4360 UF = MaxUnrollSize; 4361 else if (UF < 1) 4362 UF = 1; 4363 4364 bool HasReductions = Legal->getReductionVars()->size(); 4365 4366 // Decide if we want to unroll if we decided that it is legal to vectorize 4367 // but not profitable. 4368 if (VF == 1) { 4369 if (TheLoop->getNumBlocks() > 1 || !HasReductions || 4370 LoopCost > SmallLoopCost) 4371 return 1; 4372 4373 return UF; 4374 } 4375 4376 if (HasReductions) { 4377 DEBUG(dbgs() << "LV: Unrolling because of reductions. \n"); 4378 return UF; 4379 } 4380 4381 // We want to unroll tiny loops in order to reduce the loop overhead. 4382 // We assume that the cost overhead is 1 and we use the cost model 4383 // to estimate the cost of the loop and unroll until the cost of the 4384 // loop overhead is about 5% of the cost of the loop. 4385 DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n"); 4386 if (LoopCost < SmallLoopCost) { 4387 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n"); 4388 unsigned NewUF = SmallLoopCost / (LoopCost + 1); 4389 return std::min(NewUF, UF); 4390 } 4391 4392 DEBUG(dbgs() << "LV: Not Unrolling. \n"); 4393 return 1; 4394 } 4395 4396 LoopVectorizationCostModel::RegisterUsage 4397 LoopVectorizationCostModel::calculateRegisterUsage() { 4398 // This function calculates the register usage by measuring the highest number 4399 // of values that are alive at a single location. Obviously, this is a very 4400 // rough estimation. We scan the loop in a topological order in order and 4401 // assign a number to each instruction. We use RPO to ensure that defs are 4402 // met before their users. We assume that each instruction that has in-loop 4403 // users starts an interval. We record every time that an in-loop value is 4404 // used, so we have a list of the first and last occurrences of each 4405 // instruction. Next, we transpose this data structure into a multi map that 4406 // holds the list of intervals that *end* at a specific location. This multi 4407 // map allows us to perform a linear search. We scan the instructions linearly 4408 // and record each time that a new interval starts, by placing it in a set. 4409 // If we find this value in the multi-map then we remove it from the set. 4410 // The max register usage is the maximum size of the set. 4411 // We also search for instructions that are defined outside the loop, but are 4412 // used inside the loop. We need this number separately from the max-interval 4413 // usage number because when we unroll, loop-invariant values do not take 4414 // more register. 4415 LoopBlocksDFS DFS(TheLoop); 4416 DFS.perform(LI); 4417 4418 RegisterUsage R; 4419 R.NumInstructions = 0; 4420 4421 // Each 'key' in the map opens a new interval. The values 4422 // of the map are the index of the 'last seen' usage of the 4423 // instruction that is the key. 4424 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4425 // Maps instruction to its index. 4426 DenseMap<unsigned, Instruction*> IdxToInstr; 4427 // Marks the end of each interval. 4428 IntervalMap EndPoint; 4429 // Saves the list of instruction indices that are used in the loop. 4430 SmallSet<Instruction*, 8> Ends; 4431 // Saves the list of values that are used in the loop but are 4432 // defined outside the loop, such as arguments and constants. 4433 SmallPtrSet<Value*, 8> LoopInvariants; 4434 4435 unsigned Index = 0; 4436 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4437 be = DFS.endRPO(); bb != be; ++bb) { 4438 R.NumInstructions += (*bb)->size(); 4439 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4440 ++it) { 4441 Instruction *I = it; 4442 IdxToInstr[Index++] = I; 4443 4444 // Save the end location of each USE. 4445 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4446 Value *U = I->getOperand(i); 4447 Instruction *Instr = dyn_cast<Instruction>(U); 4448 4449 // Ignore non-instruction values such as arguments, constants, etc. 4450 if (!Instr) continue; 4451 4452 // If this instruction is outside the loop then record it and continue. 4453 if (!TheLoop->contains(Instr)) { 4454 LoopInvariants.insert(Instr); 4455 continue; 4456 } 4457 4458 // Overwrite previous end points. 4459 EndPoint[Instr] = Index; 4460 Ends.insert(Instr); 4461 } 4462 } 4463 } 4464 4465 // Saves the list of intervals that end with the index in 'key'. 4466 typedef SmallVector<Instruction*, 2> InstrList; 4467 DenseMap<unsigned, InstrList> TransposeEnds; 4468 4469 // Transpose the EndPoints to a list of values that end at each index. 4470 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4471 it != e; ++it) 4472 TransposeEnds[it->second].push_back(it->first); 4473 4474 SmallSet<Instruction*, 8> OpenIntervals; 4475 unsigned MaxUsage = 0; 4476 4477 4478 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4479 for (unsigned int i = 0; i < Index; ++i) { 4480 Instruction *I = IdxToInstr[i]; 4481 // Ignore instructions that are never used within the loop. 4482 if (!Ends.count(I)) continue; 4483 4484 // Remove all of the instructions that end at this location. 4485 InstrList &List = TransposeEnds[i]; 4486 for (unsigned int j=0, e = List.size(); j < e; ++j) 4487 OpenIntervals.erase(List[j]); 4488 4489 // Count the number of live interals. 4490 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4491 4492 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4493 OpenIntervals.size() <<"\n"); 4494 4495 // Add the current instruction to the list of open intervals. 4496 OpenIntervals.insert(I); 4497 } 4498 4499 unsigned Invariant = LoopInvariants.size(); 4500 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n"); 4501 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n"); 4502 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n"); 4503 4504 R.LoopInvariantRegs = Invariant; 4505 R.MaxLocalUsers = MaxUsage; 4506 return R; 4507 } 4508 4509 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4510 unsigned Cost = 0; 4511 4512 // For each block. 4513 for (Loop::block_iterator bb = TheLoop->block_begin(), 4514 be = TheLoop->block_end(); bb != be; ++bb) { 4515 unsigned BlockCost = 0; 4516 BasicBlock *BB = *bb; 4517 4518 // For each instruction in the old loop. 4519 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4520 // Skip dbg intrinsics. 4521 if (isa<DbgInfoIntrinsic>(it)) 4522 continue; 4523 4524 unsigned C = getInstructionCost(it, VF); 4525 BlockCost += C; 4526 DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " << 4527 VF << " For instruction: "<< *it << "\n"); 4528 } 4529 4530 // We assume that if-converted blocks have a 50% chance of being executed. 4531 // When the code is scalar then some of the blocks are avoided due to CF. 4532 // When the code is vectorized we execute all code paths. 4533 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 4534 BlockCost /= 2; 4535 4536 Cost += BlockCost; 4537 } 4538 4539 return Cost; 4540 } 4541 4542 /// \brief Check whether the address computation for a non-consecutive memory 4543 /// access looks like an unlikely candidate for being merged into the indexing 4544 /// mode. 4545 /// 4546 /// We look for a GEP which has one index that is an induction variable and all 4547 /// other indices are loop invariant. If the stride of this access is also 4548 /// within a small bound we decide that this address computation can likely be 4549 /// merged into the addressing mode. 4550 /// In all other cases, we identify the address computation as complex. 4551 static bool isLikelyComplexAddressComputation(Value *Ptr, 4552 LoopVectorizationLegality *Legal, 4553 ScalarEvolution *SE, 4554 const Loop *TheLoop) { 4555 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 4556 if (!Gep) 4557 return true; 4558 4559 // We are looking for a gep with all loop invariant indices except for one 4560 // which should be an induction variable. 4561 unsigned NumOperands = Gep->getNumOperands(); 4562 for (unsigned i = 1; i < NumOperands; ++i) { 4563 Value *Opd = Gep->getOperand(i); 4564 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 4565 !Legal->isInductionVariable(Opd)) 4566 return true; 4567 } 4568 4569 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 4570 // can likely be merged into the address computation. 4571 unsigned MaxMergeDistance = 64; 4572 4573 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 4574 if (!AddRec) 4575 return true; 4576 4577 // Check the step is constant. 4578 const SCEV *Step = AddRec->getStepRecurrence(*SE); 4579 // Calculate the pointer stride and check if it is consecutive. 4580 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4581 if (!C) 4582 return true; 4583 4584 const APInt &APStepVal = C->getValue()->getValue(); 4585 4586 // Huge step value - give up. 4587 if (APStepVal.getBitWidth() > 64) 4588 return true; 4589 4590 int64_t StepVal = APStepVal.getSExtValue(); 4591 4592 return StepVal > MaxMergeDistance; 4593 } 4594 4595 unsigned 4596 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4597 // If we know that this instruction will remain uniform, check the cost of 4598 // the scalar version. 4599 if (Legal->isUniformAfterVectorization(I)) 4600 VF = 1; 4601 4602 Type *RetTy = I->getType(); 4603 Type *VectorTy = ToVectorTy(RetTy, VF); 4604 4605 // TODO: We need to estimate the cost of intrinsic calls. 4606 switch (I->getOpcode()) { 4607 case Instruction::GetElementPtr: 4608 // We mark this instruction as zero-cost because the cost of GEPs in 4609 // vectorized code depends on whether the corresponding memory instruction 4610 // is scalarized or not. Therefore, we handle GEPs with the memory 4611 // instruction cost. 4612 return 0; 4613 case Instruction::Br: { 4614 return TTI.getCFInstrCost(I->getOpcode()); 4615 } 4616 case Instruction::PHI: 4617 //TODO: IF-converted IFs become selects. 4618 return 0; 4619 case Instruction::Add: 4620 case Instruction::FAdd: 4621 case Instruction::Sub: 4622 case Instruction::FSub: 4623 case Instruction::Mul: 4624 case Instruction::FMul: 4625 case Instruction::UDiv: 4626 case Instruction::SDiv: 4627 case Instruction::FDiv: 4628 case Instruction::URem: 4629 case Instruction::SRem: 4630 case Instruction::FRem: 4631 case Instruction::Shl: 4632 case Instruction::LShr: 4633 case Instruction::AShr: 4634 case Instruction::And: 4635 case Instruction::Or: 4636 case Instruction::Xor: { 4637 // Certain instructions can be cheaper to vectorize if they have a constant 4638 // second vector operand. One example of this are shifts on x86. 4639 TargetTransformInfo::OperandValueKind Op1VK = 4640 TargetTransformInfo::OK_AnyValue; 4641 TargetTransformInfo::OperandValueKind Op2VK = 4642 TargetTransformInfo::OK_AnyValue; 4643 4644 if (isa<ConstantInt>(I->getOperand(1))) 4645 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4646 4647 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 4648 } 4649 case Instruction::Select: { 4650 SelectInst *SI = cast<SelectInst>(I); 4651 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 4652 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 4653 Type *CondTy = SI->getCondition()->getType(); 4654 if (!ScalarCond) 4655 CondTy = VectorType::get(CondTy, VF); 4656 4657 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 4658 } 4659 case Instruction::ICmp: 4660 case Instruction::FCmp: { 4661 Type *ValTy = I->getOperand(0)->getType(); 4662 VectorTy = ToVectorTy(ValTy, VF); 4663 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 4664 } 4665 case Instruction::Store: 4666 case Instruction::Load: { 4667 StoreInst *SI = dyn_cast<StoreInst>(I); 4668 LoadInst *LI = dyn_cast<LoadInst>(I); 4669 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 4670 LI->getType()); 4671 VectorTy = ToVectorTy(ValTy, VF); 4672 4673 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 4674 unsigned AS = SI ? SI->getPointerAddressSpace() : 4675 LI->getPointerAddressSpace(); 4676 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 4677 // We add the cost of address computation here instead of with the gep 4678 // instruction because only here we know whether the operation is 4679 // scalarized. 4680 if (VF == 1) 4681 return TTI.getAddressComputationCost(VectorTy) + 4682 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4683 4684 // Scalarized loads/stores. 4685 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 4686 bool Reverse = ConsecutiveStride < 0; 4687 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 4688 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 4689 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 4690 bool IsComplexComputation = 4691 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 4692 unsigned Cost = 0; 4693 // The cost of extracting from the value vector and pointer vector. 4694 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 4695 for (unsigned i = 0; i < VF; ++i) { 4696 // The cost of extracting the pointer operand. 4697 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 4698 // In case of STORE, the cost of ExtractElement from the vector. 4699 // In case of LOAD, the cost of InsertElement into the returned 4700 // vector. 4701 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 4702 Instruction::InsertElement, 4703 VectorTy, i); 4704 } 4705 4706 // The cost of the scalar loads/stores. 4707 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 4708 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 4709 Alignment, AS); 4710 return Cost; 4711 } 4712 4713 // Wide load/stores. 4714 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 4715 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4716 4717 if (Reverse) 4718 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 4719 VectorTy, 0); 4720 return Cost; 4721 } 4722 case Instruction::ZExt: 4723 case Instruction::SExt: 4724 case Instruction::FPToUI: 4725 case Instruction::FPToSI: 4726 case Instruction::FPExt: 4727 case Instruction::PtrToInt: 4728 case Instruction::IntToPtr: 4729 case Instruction::SIToFP: 4730 case Instruction::UIToFP: 4731 case Instruction::Trunc: 4732 case Instruction::FPTrunc: 4733 case Instruction::BitCast: { 4734 // We optimize the truncation of induction variable. 4735 // The cost of these is the same as the scalar operation. 4736 if (I->getOpcode() == Instruction::Trunc && 4737 Legal->isInductionVariable(I->getOperand(0))) 4738 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 4739 I->getOperand(0)->getType()); 4740 4741 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 4742 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 4743 } 4744 case Instruction::Call: { 4745 CallInst *CI = cast<CallInst>(I); 4746 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 4747 assert(ID && "Not an intrinsic call!"); 4748 Type *RetTy = ToVectorTy(CI->getType(), VF); 4749 SmallVector<Type*, 4> Tys; 4750 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4751 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4752 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 4753 } 4754 default: { 4755 // We are scalarizing the instruction. Return the cost of the scalar 4756 // instruction, plus the cost of insert and extract into vector 4757 // elements, times the vector width. 4758 unsigned Cost = 0; 4759 4760 if (!RetTy->isVoidTy() && VF != 1) { 4761 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 4762 VectorTy); 4763 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 4764 VectorTy); 4765 4766 // The cost of inserting the results plus extracting each one of the 4767 // operands. 4768 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 4769 } 4770 4771 // The cost of executing VF copies of the scalar instruction. This opcode 4772 // is unknown. Assume that it is the same as 'mul'. 4773 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 4774 return Cost; 4775 } 4776 }// end of switch. 4777 } 4778 4779 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 4780 if (Scalar->isVoidTy() || VF == 1) 4781 return Scalar; 4782 return VectorType::get(Scalar, VF); 4783 } 4784 4785 char LoopVectorize::ID = 0; 4786 static const char lv_name[] = "Loop Vectorization"; 4787 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 4788 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 4789 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4790 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4791 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 4792 4793 namespace llvm { 4794 Pass *createLoopVectorizePass(bool NoUnrolling) { 4795 return new LoopVectorize(NoUnrolling); 4796 } 4797 } 4798 4799 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 4800 // Check for a store. 4801 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 4802 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 4803 4804 // Check for a load. 4805 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 4806 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 4807 4808 return false; 4809 } 4810 4811 4812 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) { 4813 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 4814 // Holds vector parameters or scalars, in case of uniform vals. 4815 SmallVector<VectorParts, 4> Params; 4816 4817 setDebugLocFromInst(Builder, Instr); 4818 4819 // Find all of the vectorized parameters. 4820 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 4821 Value *SrcOp = Instr->getOperand(op); 4822 4823 // If we are accessing the old induction variable, use the new one. 4824 if (SrcOp == OldInduction) { 4825 Params.push_back(getVectorValue(SrcOp)); 4826 continue; 4827 } 4828 4829 // Try using previously calculated values. 4830 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 4831 4832 // If the src is an instruction that appeared earlier in the basic block 4833 // then it should already be vectorized. 4834 if (SrcInst && OrigLoop->contains(SrcInst)) { 4835 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 4836 // The parameter is a vector value from earlier. 4837 Params.push_back(WidenMap.get(SrcInst)); 4838 } else { 4839 // The parameter is a scalar from outside the loop. Maybe even a constant. 4840 VectorParts Scalars; 4841 Scalars.append(UF, SrcOp); 4842 Params.push_back(Scalars); 4843 } 4844 } 4845 4846 assert(Params.size() == Instr->getNumOperands() && 4847 "Invalid number of operands"); 4848 4849 // Does this instruction return a value ? 4850 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 4851 4852 Value *UndefVec = IsVoidRetTy ? 0 : 4853 UndefValue::get(Instr->getType()); 4854 // Create a new entry in the WidenMap and initialize it to Undef or Null. 4855 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 4856 4857 // For each vector unroll 'part': 4858 for (unsigned Part = 0; Part < UF; ++Part) { 4859 // For each scalar that we create: 4860 4861 Instruction *Cloned = Instr->clone(); 4862 if (!IsVoidRetTy) 4863 Cloned->setName(Instr->getName() + ".cloned"); 4864 // Replace the operands of the cloned instrucions with extracted scalars. 4865 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 4866 Value *Op = Params[op][Part]; 4867 Cloned->setOperand(op, Op); 4868 } 4869 4870 // Place the cloned scalar in the new loop. 4871 Builder.Insert(Cloned); 4872 4873 // If the original scalar returns a value we need to place it in a vector 4874 // so that future users will be able to use it. 4875 if (!IsVoidRetTy) 4876 VecResults[Part] = Cloned; 4877 } 4878 } 4879 4880 void 4881 InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr, 4882 LoopVectorizationLegality*) { 4883 return scalarizeInstruction(Instr); 4884 } 4885 4886 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 4887 return Vec; 4888 } 4889 4890 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 4891 return V; 4892 } 4893 4894 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 4895 bool Negate) { 4896 // When unrolling and the VF is 1, we only need to add a simple scalar. 4897 Type *ITy = Val->getType(); 4898 assert(!ITy->isVectorTy() && "Val must be a scalar"); 4899 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 4900 return Builder.CreateAdd(Val, C, "induction"); 4901 } 4902 4903