1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 static cl::opt<bool> EnableIndVarRegisterHeur( 311 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 312 cl::desc("Count the induction variable only once when interleaving")); 313 314 static cl::opt<bool> EnableCondStoresVectorization( 315 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 316 cl::desc("Enable if predication of stores during vectorization.")); 317 318 static cl::opt<unsigned> MaxNestedScalarReductionIC( 319 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 320 cl::desc("The maximum interleave count to use when interleaving a scalar " 321 "reduction in a nested loop.")); 322 323 static cl::opt<bool> 324 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 325 cl::Hidden, 326 cl::desc("Prefer in-loop vector reductions, " 327 "overriding the targets preference.")); 328 329 static cl::opt<bool> ForceOrderedReductions( 330 "force-ordered-reductions", cl::init(false), cl::Hidden, 331 cl::desc("Enable the vectorisation of loops with in-order (strict) " 332 "FP reductions")); 333 334 static cl::opt<bool> PreferPredicatedReductionSelect( 335 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 336 cl::desc( 337 "Prefer predicating a reduction operation over an after loop select.")); 338 339 cl::opt<bool> EnableVPlanNativePath( 340 "enable-vplan-native-path", cl::init(false), cl::Hidden, 341 cl::desc("Enable VPlan-native vectorization path with " 342 "support for outer loop vectorization.")); 343 344 // FIXME: Remove this switch once we have divergence analysis. Currently we 345 // assume divergent non-backedge branches when this switch is true. 346 cl::opt<bool> EnableVPlanPredication( 347 "enable-vplan-predication", cl::init(false), cl::Hidden, 348 cl::desc("Enable VPlan-native vectorization path predicator with " 349 "support for outer loop vectorization.")); 350 351 // This flag enables the stress testing of the VPlan H-CFG construction in the 352 // VPlan-native vectorization path. It must be used in conjuction with 353 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 354 // verification of the H-CFGs built. 355 static cl::opt<bool> VPlanBuildStressTest( 356 "vplan-build-stress-test", cl::init(false), cl::Hidden, 357 cl::desc( 358 "Build VPlan for every supported loop nest in the function and bail " 359 "out right after the build (stress test the VPlan H-CFG construction " 360 "in the VPlan-native vectorization path).")); 361 362 cl::opt<bool> llvm::EnableLoopInterleaving( 363 "interleave-loops", cl::init(true), cl::Hidden, 364 cl::desc("Enable loop interleaving in Loop vectorization passes")); 365 cl::opt<bool> llvm::EnableLoopVectorization( 366 "vectorize-loops", cl::init(true), cl::Hidden, 367 cl::desc("Run the Loop vectorization passes")); 368 369 cl::opt<bool> PrintVPlansInDotFormat( 370 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 371 cl::desc("Use dot format instead of plain text when dumping VPlans")); 372 373 /// A helper function that returns true if the given type is irregular. The 374 /// type is irregular if its allocated size doesn't equal the store size of an 375 /// element of the corresponding vector type. 376 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 377 // Determine if an array of N elements of type Ty is "bitcast compatible" 378 // with a <N x Ty> vector. 379 // This is only true if there is no padding between the array elements. 380 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 381 } 382 383 /// A helper function that returns the reciprocal of the block probability of 384 /// predicated blocks. If we return X, we are assuming the predicated block 385 /// will execute once for every X iterations of the loop header. 386 /// 387 /// TODO: We should use actual block probability here, if available. Currently, 388 /// we always assume predicated blocks have a 50% chance of executing. 389 static unsigned getReciprocalPredBlockProb() { return 2; } 390 391 /// A helper function that returns an integer or floating-point constant with 392 /// value C. 393 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 394 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 395 : ConstantFP::get(Ty, C); 396 } 397 398 /// Returns "best known" trip count for the specified loop \p L as defined by 399 /// the following procedure: 400 /// 1) Returns exact trip count if it is known. 401 /// 2) Returns expected trip count according to profile data if any. 402 /// 3) Returns upper bound estimate if it is known. 403 /// 4) Returns None if all of the above failed. 404 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 405 // Check if exact trip count is known. 406 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 407 return ExpectedTC; 408 409 // Check if there is an expected trip count available from profile data. 410 if (LoopVectorizeWithBlockFrequency) 411 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 412 return EstimatedTC; 413 414 // Check if upper bound estimate is known. 415 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 416 return ExpectedTC; 417 418 return None; 419 } 420 421 // Forward declare GeneratedRTChecks. 422 class GeneratedRTChecks; 423 424 namespace llvm { 425 426 AnalysisKey ShouldRunExtraVectorPasses::Key; 427 428 /// InnerLoopVectorizer vectorizes loops which contain only one basic 429 /// block to a specified vectorization factor (VF). 430 /// This class performs the widening of scalars into vectors, or multiple 431 /// scalars. This class also implements the following features: 432 /// * It inserts an epilogue loop for handling loops that don't have iteration 433 /// counts that are known to be a multiple of the vectorization factor. 434 /// * It handles the code generation for reduction variables. 435 /// * Scalarization (implementation using scalars) of un-vectorizable 436 /// instructions. 437 /// InnerLoopVectorizer does not perform any vectorization-legality 438 /// checks, and relies on the caller to check for the different legality 439 /// aspects. The InnerLoopVectorizer relies on the 440 /// LoopVectorizationLegality class to provide information about the induction 441 /// and reduction variables that were found to a given vectorization factor. 442 class InnerLoopVectorizer { 443 public: 444 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 445 LoopInfo *LI, DominatorTree *DT, 446 const TargetLibraryInfo *TLI, 447 const TargetTransformInfo *TTI, AssumptionCache *AC, 448 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 449 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 450 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 451 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 452 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 453 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 454 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 455 PSI(PSI), RTChecks(RTChecks) { 456 // Query this against the original loop and save it here because the profile 457 // of the original loop header may change as the transformation happens. 458 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 459 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 460 } 461 462 virtual ~InnerLoopVectorizer() = default; 463 464 /// Create a new empty loop that will contain vectorized instructions later 465 /// on, while the old loop will be used as the scalar remainder. Control flow 466 /// is generated around the vectorized (and scalar epilogue) loops consisting 467 /// of various checks and bypasses. Return the pre-header block of the new 468 /// loop and the start value for the canonical induction, if it is != 0. The 469 /// latter is the case when vectorizing the epilogue loop. In the case of 470 /// epilogue vectorization, this function is overriden to handle the more 471 /// complex control flow around the loops. 472 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 473 474 /// Widen a single call instruction within the innermost loop. 475 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 476 VPTransformState &State); 477 478 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 479 void fixVectorizedLoop(VPTransformState &State); 480 481 // Return true if any runtime check is added. 482 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 483 484 /// A type for vectorized values in the new loop. Each value from the 485 /// original loop, when vectorized, is represented by UF vector values in the 486 /// new unrolled loop, where UF is the unroll factor. 487 using VectorParts = SmallVector<Value *, 2>; 488 489 /// Vectorize a single first-order recurrence or pointer induction PHINode in 490 /// a block. This method handles the induction variable canonicalization. It 491 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 492 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 493 VPTransformState &State); 494 495 /// A helper function to scalarize a single Instruction in the innermost loop. 496 /// Generates a sequence of scalar instances for each lane between \p MinLane 497 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 498 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 499 /// Instr's operands. 500 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 501 const VPIteration &Instance, bool IfPredicateInstr, 502 VPTransformState &State); 503 504 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 505 /// is provided, the integer induction variable will first be truncated to 506 /// the corresponding type. \p CanonicalIV is the scalar value generated for 507 /// the canonical induction variable. 508 void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, 509 VPTransformState &State, Value *CanonicalIV); 510 511 /// Construct the vector value of a scalarized value \p V one lane at a time. 512 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 513 VPTransformState &State); 514 515 /// Try to vectorize interleaved access group \p Group with the base address 516 /// given in \p Addr, optionally masking the vector operations if \p 517 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 518 /// values in the vectorized loop. 519 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 520 ArrayRef<VPValue *> VPDefs, 521 VPTransformState &State, VPValue *Addr, 522 ArrayRef<VPValue *> StoredValues, 523 VPValue *BlockInMask = nullptr); 524 525 /// Set the debug location in the builder \p Ptr using the debug location in 526 /// \p V. If \p Ptr is None then it uses the class member's Builder. 527 void setDebugLocFromInst(const Value *V, 528 Optional<IRBuilderBase *> CustomBuilder = None); 529 530 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 531 void fixNonInductionPHIs(VPTransformState &State); 532 533 /// Returns true if the reordering of FP operations is not allowed, but we are 534 /// able to vectorize with strict in-order reductions for the given RdxDesc. 535 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 536 537 /// Create a broadcast instruction. This method generates a broadcast 538 /// instruction (shuffle) for loop invariant values and for the induction 539 /// value. If this is the induction variable then we extend it to N, N+1, ... 540 /// this is needed because each iteration in the loop corresponds to a SIMD 541 /// element. 542 virtual Value *getBroadcastInstrs(Value *V); 543 544 /// Add metadata from one instruction to another. 545 /// 546 /// This includes both the original MDs from \p From and additional ones (\see 547 /// addNewMetadata). Use this for *newly created* instructions in the vector 548 /// loop. 549 void addMetadata(Instruction *To, Instruction *From); 550 551 /// Similar to the previous function but it adds the metadata to a 552 /// vector of instructions. 553 void addMetadata(ArrayRef<Value *> To, Instruction *From); 554 555 // Returns the resume value (bc.merge.rdx) for a reduction as 556 // generated by fixReduction. 557 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 558 559 protected: 560 friend class LoopVectorizationPlanner; 561 562 /// A small list of PHINodes. 563 using PhiVector = SmallVector<PHINode *, 4>; 564 565 /// A type for scalarized values in the new loop. Each value from the 566 /// original loop, when scalarized, is represented by UF x VF scalar values 567 /// in the new unrolled loop, where UF is the unroll factor and VF is the 568 /// vectorization factor. 569 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 570 571 /// Set up the values of the IVs correctly when exiting the vector loop. 572 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 573 Value *CountRoundDown, Value *EndValue, 574 BasicBlock *MiddleBlock); 575 576 /// Introduce a conditional branch (on true, condition to be set later) at the 577 /// end of the header=latch connecting it to itself (across the backedge) and 578 /// to the exit block of \p L. 579 void createHeaderBranch(Loop *L); 580 581 /// Handle all cross-iteration phis in the header. 582 void fixCrossIterationPHIs(VPTransformState &State); 583 584 /// Create the exit value of first order recurrences in the middle block and 585 /// update their users. 586 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 587 VPTransformState &State); 588 589 /// Create code for the loop exit value of the reduction. 590 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 591 592 /// Clear NSW/NUW flags from reduction instructions if necessary. 593 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 594 VPTransformState &State); 595 596 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 597 /// means we need to add the appropriate incoming value from the middle 598 /// block as exiting edges from the scalar epilogue loop (if present) are 599 /// already in place, and we exit the vector loop exclusively to the middle 600 /// block. 601 void fixLCSSAPHIs(VPTransformState &State); 602 603 /// Iteratively sink the scalarized operands of a predicated instruction into 604 /// the block that was created for it. 605 void sinkScalarOperands(Instruction *PredInst); 606 607 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 608 /// represented as. 609 void truncateToMinimalBitwidths(VPTransformState &State); 610 611 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 612 /// variable on which to base the steps, \p Step is the size of the step, and 613 /// \p EntryVal is the value from the original loop that maps to the steps. 614 /// Note that \p EntryVal doesn't have to be an induction variable - it 615 /// can also be a truncate instruction. 616 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 617 const InductionDescriptor &ID, VPValue *Def, 618 VPTransformState &State); 619 620 /// Create a vector induction phi node based on an existing scalar one. \p 621 /// EntryVal is the value from the original loop that maps to the vector phi 622 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 623 /// truncate instruction, instead of widening the original IV, we widen a 624 /// version of the IV truncated to \p EntryVal's type. 625 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 626 Value *Step, Value *Start, 627 Instruction *EntryVal, VPValue *Def, 628 VPTransformState &State); 629 630 /// Returns (and creates if needed) the original loop trip count. 631 Value *getOrCreateTripCount(Loop *NewLoop); 632 633 /// Returns (and creates if needed) the trip count of the widened loop. 634 Value *getOrCreateVectorTripCount(Loop *NewLoop); 635 636 /// Returns a bitcasted value to the requested vector type. 637 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 638 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 639 const DataLayout &DL); 640 641 /// Emit a bypass check to see if the vector trip count is zero, including if 642 /// it overflows. 643 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 644 645 /// Emit a bypass check to see if all of the SCEV assumptions we've 646 /// had to make are correct. Returns the block containing the checks or 647 /// nullptr if no checks have been added. 648 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 649 650 /// Emit bypass checks to check any memory assumptions we may have made. 651 /// Returns the block containing the checks or nullptr if no checks have been 652 /// added. 653 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 654 655 /// Compute the transformed value of Index at offset StartValue using step 656 /// StepValue. 657 /// For integer induction, returns StartValue + Index * StepValue. 658 /// For pointer induction, returns StartValue[Index * StepValue]. 659 /// FIXME: The newly created binary instructions should contain nsw/nuw 660 /// flags, which can be found from the original scalar operations. 661 Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 662 ScalarEvolution *SE, const DataLayout &DL, 663 const InductionDescriptor &ID, 664 BasicBlock *VectorHeader) const; 665 666 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 667 /// vector loop preheader, middle block and scalar preheader. Also 668 /// allocate a loop object for the new vector loop and return it. 669 Loop *createVectorLoopSkeleton(StringRef Prefix); 670 671 /// Create new phi nodes for the induction variables to resume iteration count 672 /// in the scalar epilogue, from where the vectorized loop left off. 673 /// In cases where the loop skeleton is more complicated (eg. epilogue 674 /// vectorization) and the resume values can come from an additional bypass 675 /// block, the \p AdditionalBypass pair provides information about the bypass 676 /// block and the end value on the edge from bypass to this loop. 677 void createInductionResumeValues( 678 Loop *L, 679 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 680 681 /// Complete the loop skeleton by adding debug MDs, creating appropriate 682 /// conditional branches in the middle block, preparing the builder and 683 /// running the verifier. Take in the vector loop \p L as argument, and return 684 /// the preheader of the completed vector loop. 685 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 686 687 /// Add additional metadata to \p To that was not present on \p Orig. 688 /// 689 /// Currently this is used to add the noalias annotations based on the 690 /// inserted memchecks. Use this for instructions that are *cloned* into the 691 /// vector loop. 692 void addNewMetadata(Instruction *To, const Instruction *Orig); 693 694 /// Collect poison-generating recipes that may generate a poison value that is 695 /// used after vectorization, even when their operands are not poison. Those 696 /// recipes meet the following conditions: 697 /// * Contribute to the address computation of a recipe generating a widen 698 /// memory load/store (VPWidenMemoryInstructionRecipe or 699 /// VPInterleaveRecipe). 700 /// * Such a widen memory load/store has at least one underlying Instruction 701 /// that is in a basic block that needs predication and after vectorization 702 /// the generated instruction won't be predicated. 703 void collectPoisonGeneratingRecipes(VPTransformState &State); 704 705 /// Allow subclasses to override and print debug traces before/after vplan 706 /// execution, when trace information is requested. 707 virtual void printDebugTracesAtStart(){}; 708 virtual void printDebugTracesAtEnd(){}; 709 710 /// The original loop. 711 Loop *OrigLoop; 712 713 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 714 /// dynamic knowledge to simplify SCEV expressions and converts them to a 715 /// more usable form. 716 PredicatedScalarEvolution &PSE; 717 718 /// Loop Info. 719 LoopInfo *LI; 720 721 /// Dominator Tree. 722 DominatorTree *DT; 723 724 /// Alias Analysis. 725 AAResults *AA; 726 727 /// Target Library Info. 728 const TargetLibraryInfo *TLI; 729 730 /// Target Transform Info. 731 const TargetTransformInfo *TTI; 732 733 /// Assumption Cache. 734 AssumptionCache *AC; 735 736 /// Interface to emit optimization remarks. 737 OptimizationRemarkEmitter *ORE; 738 739 /// LoopVersioning. It's only set up (non-null) if memchecks were 740 /// used. 741 /// 742 /// This is currently only used to add no-alias metadata based on the 743 /// memchecks. The actually versioning is performed manually. 744 std::unique_ptr<LoopVersioning> LVer; 745 746 /// The vectorization SIMD factor to use. Each vector will have this many 747 /// vector elements. 748 ElementCount VF; 749 750 /// The vectorization unroll factor to use. Each scalar is vectorized to this 751 /// many different vector instructions. 752 unsigned UF; 753 754 /// The builder that we use 755 IRBuilder<> Builder; 756 757 // --- Vectorization state --- 758 759 /// The vector-loop preheader. 760 BasicBlock *LoopVectorPreHeader; 761 762 /// The scalar-loop preheader. 763 BasicBlock *LoopScalarPreHeader; 764 765 /// Middle Block between the vector and the scalar. 766 BasicBlock *LoopMiddleBlock; 767 768 /// The unique ExitBlock of the scalar loop if one exists. Note that 769 /// there can be multiple exiting edges reaching this block. 770 BasicBlock *LoopExitBlock; 771 772 /// The vector loop body. 773 BasicBlock *LoopVectorBody; 774 775 /// The scalar loop body. 776 BasicBlock *LoopScalarBody; 777 778 /// A list of all bypass blocks. The first block is the entry of the loop. 779 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 780 781 /// Store instructions that were predicated. 782 SmallVector<Instruction *, 4> PredicatedInstructions; 783 784 /// Trip count of the original loop. 785 Value *TripCount = nullptr; 786 787 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 788 Value *VectorTripCount = nullptr; 789 790 /// The legality analysis. 791 LoopVectorizationLegality *Legal; 792 793 /// The profitablity analysis. 794 LoopVectorizationCostModel *Cost; 795 796 // Record whether runtime checks are added. 797 bool AddedSafetyChecks = false; 798 799 // Holds the end values for each induction variable. We save the end values 800 // so we can later fix-up the external users of the induction variables. 801 DenseMap<PHINode *, Value *> IVEndValues; 802 803 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 804 // fixed up at the end of vector code generation. 805 SmallVector<PHINode *, 8> OrigPHIsToFix; 806 807 /// BFI and PSI are used to check for profile guided size optimizations. 808 BlockFrequencyInfo *BFI; 809 ProfileSummaryInfo *PSI; 810 811 // Whether this loop should be optimized for size based on profile guided size 812 // optimizatios. 813 bool OptForSizeBasedOnProfile; 814 815 /// Structure to hold information about generated runtime checks, responsible 816 /// for cleaning the checks, if vectorization turns out unprofitable. 817 GeneratedRTChecks &RTChecks; 818 819 // Holds the resume values for reductions in the loops, used to set the 820 // correct start value of reduction PHIs when vectorizing the epilogue. 821 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 822 ReductionResumeValues; 823 }; 824 825 class InnerLoopUnroller : public InnerLoopVectorizer { 826 public: 827 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 828 LoopInfo *LI, DominatorTree *DT, 829 const TargetLibraryInfo *TLI, 830 const TargetTransformInfo *TTI, AssumptionCache *AC, 831 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 832 LoopVectorizationLegality *LVL, 833 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 834 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 835 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 836 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 837 BFI, PSI, Check) {} 838 839 private: 840 Value *getBroadcastInstrs(Value *V) override; 841 }; 842 843 /// Encapsulate information regarding vectorization of a loop and its epilogue. 844 /// This information is meant to be updated and used across two stages of 845 /// epilogue vectorization. 846 struct EpilogueLoopVectorizationInfo { 847 ElementCount MainLoopVF = ElementCount::getFixed(0); 848 unsigned MainLoopUF = 0; 849 ElementCount EpilogueVF = ElementCount::getFixed(0); 850 unsigned EpilogueUF = 0; 851 BasicBlock *MainLoopIterationCountCheck = nullptr; 852 BasicBlock *EpilogueIterationCountCheck = nullptr; 853 BasicBlock *SCEVSafetyCheck = nullptr; 854 BasicBlock *MemSafetyCheck = nullptr; 855 Value *TripCount = nullptr; 856 Value *VectorTripCount = nullptr; 857 858 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 859 ElementCount EVF, unsigned EUF) 860 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 861 assert(EUF == 1 && 862 "A high UF for the epilogue loop is likely not beneficial."); 863 } 864 }; 865 866 /// An extension of the inner loop vectorizer that creates a skeleton for a 867 /// vectorized loop that has its epilogue (residual) also vectorized. 868 /// The idea is to run the vplan on a given loop twice, firstly to setup the 869 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 870 /// from the first step and vectorize the epilogue. This is achieved by 871 /// deriving two concrete strategy classes from this base class and invoking 872 /// them in succession from the loop vectorizer planner. 873 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 874 public: 875 InnerLoopAndEpilogueVectorizer( 876 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 877 DominatorTree *DT, const TargetLibraryInfo *TLI, 878 const TargetTransformInfo *TTI, AssumptionCache *AC, 879 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 880 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 881 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 882 GeneratedRTChecks &Checks) 883 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 884 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 885 Checks), 886 EPI(EPI) {} 887 888 // Override this function to handle the more complex control flow around the 889 // three loops. 890 std::pair<BasicBlock *, Value *> 891 createVectorizedLoopSkeleton() final override { 892 return createEpilogueVectorizedLoopSkeleton(); 893 } 894 895 /// The interface for creating a vectorized skeleton using one of two 896 /// different strategies, each corresponding to one execution of the vplan 897 /// as described above. 898 virtual std::pair<BasicBlock *, Value *> 899 createEpilogueVectorizedLoopSkeleton() = 0; 900 901 /// Holds and updates state information required to vectorize the main loop 902 /// and its epilogue in two separate passes. This setup helps us avoid 903 /// regenerating and recomputing runtime safety checks. It also helps us to 904 /// shorten the iteration-count-check path length for the cases where the 905 /// iteration count of the loop is so small that the main vector loop is 906 /// completely skipped. 907 EpilogueLoopVectorizationInfo &EPI; 908 }; 909 910 /// A specialized derived class of inner loop vectorizer that performs 911 /// vectorization of *main* loops in the process of vectorizing loops and their 912 /// epilogues. 913 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 914 public: 915 EpilogueVectorizerMainLoop( 916 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 917 DominatorTree *DT, const TargetLibraryInfo *TLI, 918 const TargetTransformInfo *TTI, AssumptionCache *AC, 919 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 920 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 921 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 922 GeneratedRTChecks &Check) 923 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 924 EPI, LVL, CM, BFI, PSI, Check) {} 925 /// Implements the interface for creating a vectorized skeleton using the 926 /// *main loop* strategy (ie the first pass of vplan execution). 927 std::pair<BasicBlock *, Value *> 928 createEpilogueVectorizedLoopSkeleton() final override; 929 930 protected: 931 /// Emits an iteration count bypass check once for the main loop (when \p 932 /// ForEpilogue is false) and once for the epilogue loop (when \p 933 /// ForEpilogue is true). 934 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 935 bool ForEpilogue); 936 void printDebugTracesAtStart() override; 937 void printDebugTracesAtEnd() override; 938 }; 939 940 // A specialized derived class of inner loop vectorizer that performs 941 // vectorization of *epilogue* loops in the process of vectorizing loops and 942 // their epilogues. 943 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 944 public: 945 EpilogueVectorizerEpilogueLoop( 946 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 947 DominatorTree *DT, const TargetLibraryInfo *TLI, 948 const TargetTransformInfo *TTI, AssumptionCache *AC, 949 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 950 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 951 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 952 GeneratedRTChecks &Checks) 953 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 954 EPI, LVL, CM, BFI, PSI, Checks) {} 955 /// Implements the interface for creating a vectorized skeleton using the 956 /// *epilogue loop* strategy (ie the second pass of vplan execution). 957 std::pair<BasicBlock *, Value *> 958 createEpilogueVectorizedLoopSkeleton() final override; 959 960 protected: 961 /// Emits an iteration count bypass check after the main vector loop has 962 /// finished to see if there are any iterations left to execute by either 963 /// the vector epilogue or the scalar epilogue. 964 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 965 BasicBlock *Bypass, 966 BasicBlock *Insert); 967 void printDebugTracesAtStart() override; 968 void printDebugTracesAtEnd() override; 969 }; 970 } // end namespace llvm 971 972 /// Look for a meaningful debug location on the instruction or it's 973 /// operands. 974 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 975 if (!I) 976 return I; 977 978 DebugLoc Empty; 979 if (I->getDebugLoc() != Empty) 980 return I; 981 982 for (Use &Op : I->operands()) { 983 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 984 if (OpInst->getDebugLoc() != Empty) 985 return OpInst; 986 } 987 988 return I; 989 } 990 991 void InnerLoopVectorizer::setDebugLocFromInst( 992 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 993 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 994 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 995 const DILocation *DIL = Inst->getDebugLoc(); 996 997 // When a FSDiscriminator is enabled, we don't need to add the multiply 998 // factors to the discriminators. 999 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1000 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1001 // FIXME: For scalable vectors, assume vscale=1. 1002 auto NewDIL = 1003 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1004 if (NewDIL) 1005 B->SetCurrentDebugLocation(NewDIL.getValue()); 1006 else 1007 LLVM_DEBUG(dbgs() 1008 << "Failed to create new discriminator: " 1009 << DIL->getFilename() << " Line: " << DIL->getLine()); 1010 } else 1011 B->SetCurrentDebugLocation(DIL); 1012 } else 1013 B->SetCurrentDebugLocation(DebugLoc()); 1014 } 1015 1016 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1017 /// is passed, the message relates to that particular instruction. 1018 #ifndef NDEBUG 1019 static void debugVectorizationMessage(const StringRef Prefix, 1020 const StringRef DebugMsg, 1021 Instruction *I) { 1022 dbgs() << "LV: " << Prefix << DebugMsg; 1023 if (I != nullptr) 1024 dbgs() << " " << *I; 1025 else 1026 dbgs() << '.'; 1027 dbgs() << '\n'; 1028 } 1029 #endif 1030 1031 /// Create an analysis remark that explains why vectorization failed 1032 /// 1033 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1034 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1035 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1036 /// the location of the remark. \return the remark object that can be 1037 /// streamed to. 1038 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1039 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1040 Value *CodeRegion = TheLoop->getHeader(); 1041 DebugLoc DL = TheLoop->getStartLoc(); 1042 1043 if (I) { 1044 CodeRegion = I->getParent(); 1045 // If there is no debug location attached to the instruction, revert back to 1046 // using the loop's. 1047 if (I->getDebugLoc()) 1048 DL = I->getDebugLoc(); 1049 } 1050 1051 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1052 } 1053 1054 namespace llvm { 1055 1056 /// Return a value for Step multiplied by VF. 1057 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1058 int64_t Step) { 1059 assert(Ty->isIntegerTy() && "Expected an integer step"); 1060 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1061 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1062 } 1063 1064 /// Return the runtime value for VF. 1065 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1066 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1067 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1068 } 1069 1070 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1071 ElementCount VF) { 1072 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1073 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1074 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1075 return B.CreateUIToFP(RuntimeVF, FTy); 1076 } 1077 1078 void reportVectorizationFailure(const StringRef DebugMsg, 1079 const StringRef OREMsg, const StringRef ORETag, 1080 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1081 Instruction *I) { 1082 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1083 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1084 ORE->emit( 1085 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1086 << "loop not vectorized: " << OREMsg); 1087 } 1088 1089 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1090 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1091 Instruction *I) { 1092 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1093 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1094 ORE->emit( 1095 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1096 << Msg); 1097 } 1098 1099 } // end namespace llvm 1100 1101 #ifndef NDEBUG 1102 /// \return string containing a file name and a line # for the given loop. 1103 static std::string getDebugLocString(const Loop *L) { 1104 std::string Result; 1105 if (L) { 1106 raw_string_ostream OS(Result); 1107 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1108 LoopDbgLoc.print(OS); 1109 else 1110 // Just print the module name. 1111 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1112 OS.flush(); 1113 } 1114 return Result; 1115 } 1116 #endif 1117 1118 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1119 const Instruction *Orig) { 1120 // If the loop was versioned with memchecks, add the corresponding no-alias 1121 // metadata. 1122 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1123 LVer->annotateInstWithNoAlias(To, Orig); 1124 } 1125 1126 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1127 VPTransformState &State) { 1128 1129 // Collect recipes in the backward slice of `Root` that may generate a poison 1130 // value that is used after vectorization. 1131 SmallPtrSet<VPRecipeBase *, 16> Visited; 1132 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1133 SmallVector<VPRecipeBase *, 16> Worklist; 1134 Worklist.push_back(Root); 1135 1136 // Traverse the backward slice of Root through its use-def chain. 1137 while (!Worklist.empty()) { 1138 VPRecipeBase *CurRec = Worklist.back(); 1139 Worklist.pop_back(); 1140 1141 if (!Visited.insert(CurRec).second) 1142 continue; 1143 1144 // Prune search if we find another recipe generating a widen memory 1145 // instruction. Widen memory instructions involved in address computation 1146 // will lead to gather/scatter instructions, which don't need to be 1147 // handled. 1148 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1149 isa<VPInterleaveRecipe>(CurRec) || 1150 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1151 continue; 1152 1153 // This recipe contributes to the address computation of a widen 1154 // load/store. Collect recipe if its underlying instruction has 1155 // poison-generating flags. 1156 Instruction *Instr = CurRec->getUnderlyingInstr(); 1157 if (Instr && Instr->hasPoisonGeneratingFlags()) 1158 State.MayGeneratePoisonRecipes.insert(CurRec); 1159 1160 // Add new definitions to the worklist. 1161 for (VPValue *operand : CurRec->operands()) 1162 if (VPDef *OpDef = operand->getDef()) 1163 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1164 } 1165 }); 1166 1167 // Traverse all the recipes in the VPlan and collect the poison-generating 1168 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1169 // VPInterleaveRecipe. 1170 auto Iter = depth_first( 1171 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1172 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1173 for (VPRecipeBase &Recipe : *VPBB) { 1174 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1175 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1176 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1177 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1178 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1179 collectPoisonGeneratingInstrsInBackwardSlice( 1180 cast<VPRecipeBase>(AddrDef)); 1181 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1182 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1183 if (AddrDef) { 1184 // Check if any member of the interleave group needs predication. 1185 const InterleaveGroup<Instruction> *InterGroup = 1186 InterleaveRec->getInterleaveGroup(); 1187 bool NeedPredication = false; 1188 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1189 I < NumMembers; ++I) { 1190 Instruction *Member = InterGroup->getMember(I); 1191 if (Member) 1192 NeedPredication |= 1193 Legal->blockNeedsPredication(Member->getParent()); 1194 } 1195 1196 if (NeedPredication) 1197 collectPoisonGeneratingInstrsInBackwardSlice( 1198 cast<VPRecipeBase>(AddrDef)); 1199 } 1200 } 1201 } 1202 } 1203 } 1204 1205 void InnerLoopVectorizer::addMetadata(Instruction *To, 1206 Instruction *From) { 1207 propagateMetadata(To, From); 1208 addNewMetadata(To, From); 1209 } 1210 1211 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1212 Instruction *From) { 1213 for (Value *V : To) { 1214 if (Instruction *I = dyn_cast<Instruction>(V)) 1215 addMetadata(I, From); 1216 } 1217 } 1218 1219 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1220 const RecurrenceDescriptor &RdxDesc) { 1221 auto It = ReductionResumeValues.find(&RdxDesc); 1222 assert(It != ReductionResumeValues.end() && 1223 "Expected to find a resume value for the reduction."); 1224 return It->second; 1225 } 1226 1227 namespace llvm { 1228 1229 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1230 // lowered. 1231 enum ScalarEpilogueLowering { 1232 1233 // The default: allowing scalar epilogues. 1234 CM_ScalarEpilogueAllowed, 1235 1236 // Vectorization with OptForSize: don't allow epilogues. 1237 CM_ScalarEpilogueNotAllowedOptSize, 1238 1239 // A special case of vectorisation with OptForSize: loops with a very small 1240 // trip count are considered for vectorization under OptForSize, thereby 1241 // making sure the cost of their loop body is dominant, free of runtime 1242 // guards and scalar iteration overheads. 1243 CM_ScalarEpilogueNotAllowedLowTripLoop, 1244 1245 // Loop hint predicate indicating an epilogue is undesired. 1246 CM_ScalarEpilogueNotNeededUsePredicate, 1247 1248 // Directive indicating we must either tail fold or not vectorize 1249 CM_ScalarEpilogueNotAllowedUsePredicate 1250 }; 1251 1252 /// ElementCountComparator creates a total ordering for ElementCount 1253 /// for the purposes of using it in a set structure. 1254 struct ElementCountComparator { 1255 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1256 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1257 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1258 } 1259 }; 1260 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1261 1262 /// LoopVectorizationCostModel - estimates the expected speedups due to 1263 /// vectorization. 1264 /// In many cases vectorization is not profitable. This can happen because of 1265 /// a number of reasons. In this class we mainly attempt to predict the 1266 /// expected speedup/slowdowns due to the supported instruction set. We use the 1267 /// TargetTransformInfo to query the different backends for the cost of 1268 /// different operations. 1269 class LoopVectorizationCostModel { 1270 public: 1271 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1272 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1273 LoopVectorizationLegality *Legal, 1274 const TargetTransformInfo &TTI, 1275 const TargetLibraryInfo *TLI, DemandedBits *DB, 1276 AssumptionCache *AC, 1277 OptimizationRemarkEmitter *ORE, const Function *F, 1278 const LoopVectorizeHints *Hints, 1279 InterleavedAccessInfo &IAI) 1280 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1281 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1282 Hints(Hints), InterleaveInfo(IAI) {} 1283 1284 /// \return An upper bound for the vectorization factors (both fixed and 1285 /// scalable). If the factors are 0, vectorization and interleaving should be 1286 /// avoided up front. 1287 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1288 1289 /// \return True if runtime checks are required for vectorization, and false 1290 /// otherwise. 1291 bool runtimeChecksRequired(); 1292 1293 /// \return The most profitable vectorization factor and the cost of that VF. 1294 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1295 /// then this vectorization factor will be selected if vectorization is 1296 /// possible. 1297 VectorizationFactor 1298 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1299 1300 VectorizationFactor 1301 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1302 const LoopVectorizationPlanner &LVP); 1303 1304 /// Setup cost-based decisions for user vectorization factor. 1305 /// \return true if the UserVF is a feasible VF to be chosen. 1306 bool selectUserVectorizationFactor(ElementCount UserVF) { 1307 collectUniformsAndScalars(UserVF); 1308 collectInstsToScalarize(UserVF); 1309 return expectedCost(UserVF).first.isValid(); 1310 } 1311 1312 /// \return The size (in bits) of the smallest and widest types in the code 1313 /// that needs to be vectorized. We ignore values that remain scalar such as 1314 /// 64 bit loop indices. 1315 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1316 1317 /// \return The desired interleave count. 1318 /// If interleave count has been specified by metadata it will be returned. 1319 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1320 /// are the selected vectorization factor and the cost of the selected VF. 1321 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1322 1323 /// Memory access instruction may be vectorized in more than one way. 1324 /// Form of instruction after vectorization depends on cost. 1325 /// This function takes cost-based decisions for Load/Store instructions 1326 /// and collects them in a map. This decisions map is used for building 1327 /// the lists of loop-uniform and loop-scalar instructions. 1328 /// The calculated cost is saved with widening decision in order to 1329 /// avoid redundant calculations. 1330 void setCostBasedWideningDecision(ElementCount VF); 1331 1332 /// A struct that represents some properties of the register usage 1333 /// of a loop. 1334 struct RegisterUsage { 1335 /// Holds the number of loop invariant values that are used in the loop. 1336 /// The key is ClassID of target-provided register class. 1337 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1338 /// Holds the maximum number of concurrent live intervals in the loop. 1339 /// The key is ClassID of target-provided register class. 1340 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1341 }; 1342 1343 /// \return Returns information about the register usages of the loop for the 1344 /// given vectorization factors. 1345 SmallVector<RegisterUsage, 8> 1346 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1347 1348 /// Collect values we want to ignore in the cost model. 1349 void collectValuesToIgnore(); 1350 1351 /// Collect all element types in the loop for which widening is needed. 1352 void collectElementTypesForWidening(); 1353 1354 /// Split reductions into those that happen in the loop, and those that happen 1355 /// outside. In loop reductions are collected into InLoopReductionChains. 1356 void collectInLoopReductions(); 1357 1358 /// Returns true if we should use strict in-order reductions for the given 1359 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1360 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1361 /// of FP operations. 1362 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1363 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1364 } 1365 1366 /// \returns The smallest bitwidth each instruction can be represented with. 1367 /// The vector equivalents of these instructions should be truncated to this 1368 /// type. 1369 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1370 return MinBWs; 1371 } 1372 1373 /// \returns True if it is more profitable to scalarize instruction \p I for 1374 /// vectorization factor \p VF. 1375 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1376 assert(VF.isVector() && 1377 "Profitable to scalarize relevant only for VF > 1."); 1378 1379 // Cost model is not run in the VPlan-native path - return conservative 1380 // result until this changes. 1381 if (EnableVPlanNativePath) 1382 return false; 1383 1384 auto Scalars = InstsToScalarize.find(VF); 1385 assert(Scalars != InstsToScalarize.end() && 1386 "VF not yet analyzed for scalarization profitability"); 1387 return Scalars->second.find(I) != Scalars->second.end(); 1388 } 1389 1390 /// Returns true if \p I is known to be uniform after vectorization. 1391 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1392 if (VF.isScalar()) 1393 return true; 1394 1395 // Cost model is not run in the VPlan-native path - return conservative 1396 // result until this changes. 1397 if (EnableVPlanNativePath) 1398 return false; 1399 1400 auto UniformsPerVF = Uniforms.find(VF); 1401 assert(UniformsPerVF != Uniforms.end() && 1402 "VF not yet analyzed for uniformity"); 1403 return UniformsPerVF->second.count(I); 1404 } 1405 1406 /// Returns true if \p I is known to be scalar after vectorization. 1407 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1408 if (VF.isScalar()) 1409 return true; 1410 1411 // Cost model is not run in the VPlan-native path - return conservative 1412 // result until this changes. 1413 if (EnableVPlanNativePath) 1414 return false; 1415 1416 auto ScalarsPerVF = Scalars.find(VF); 1417 assert(ScalarsPerVF != Scalars.end() && 1418 "Scalar values are not calculated for VF"); 1419 return ScalarsPerVF->second.count(I); 1420 } 1421 1422 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1423 /// for vectorization factor \p VF. 1424 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1425 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1426 !isProfitableToScalarize(I, VF) && 1427 !isScalarAfterVectorization(I, VF); 1428 } 1429 1430 /// Decision that was taken during cost calculation for memory instruction. 1431 enum InstWidening { 1432 CM_Unknown, 1433 CM_Widen, // For consecutive accesses with stride +1. 1434 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1435 CM_Interleave, 1436 CM_GatherScatter, 1437 CM_Scalarize 1438 }; 1439 1440 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1441 /// instruction \p I and vector width \p VF. 1442 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1443 InstructionCost Cost) { 1444 assert(VF.isVector() && "Expected VF >=2"); 1445 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1446 } 1447 1448 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1449 /// interleaving group \p Grp and vector width \p VF. 1450 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1451 ElementCount VF, InstWidening W, 1452 InstructionCost Cost) { 1453 assert(VF.isVector() && "Expected VF >=2"); 1454 /// Broadcast this decicion to all instructions inside the group. 1455 /// But the cost will be assigned to one instruction only. 1456 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1457 if (auto *I = Grp->getMember(i)) { 1458 if (Grp->getInsertPos() == I) 1459 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1460 else 1461 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1462 } 1463 } 1464 } 1465 1466 /// Return the cost model decision for the given instruction \p I and vector 1467 /// width \p VF. Return CM_Unknown if this instruction did not pass 1468 /// through the cost modeling. 1469 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1470 assert(VF.isVector() && "Expected VF to be a vector VF"); 1471 // Cost model is not run in the VPlan-native path - return conservative 1472 // result until this changes. 1473 if (EnableVPlanNativePath) 1474 return CM_GatherScatter; 1475 1476 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1477 auto Itr = WideningDecisions.find(InstOnVF); 1478 if (Itr == WideningDecisions.end()) 1479 return CM_Unknown; 1480 return Itr->second.first; 1481 } 1482 1483 /// Return the vectorization cost for the given instruction \p I and vector 1484 /// width \p VF. 1485 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1486 assert(VF.isVector() && "Expected VF >=2"); 1487 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1488 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1489 "The cost is not calculated"); 1490 return WideningDecisions[InstOnVF].second; 1491 } 1492 1493 /// Return True if instruction \p I is an optimizable truncate whose operand 1494 /// is an induction variable. Such a truncate will be removed by adding a new 1495 /// induction variable with the destination type. 1496 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1497 // If the instruction is not a truncate, return false. 1498 auto *Trunc = dyn_cast<TruncInst>(I); 1499 if (!Trunc) 1500 return false; 1501 1502 // Get the source and destination types of the truncate. 1503 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1504 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1505 1506 // If the truncate is free for the given types, return false. Replacing a 1507 // free truncate with an induction variable would add an induction variable 1508 // update instruction to each iteration of the loop. We exclude from this 1509 // check the primary induction variable since it will need an update 1510 // instruction regardless. 1511 Value *Op = Trunc->getOperand(0); 1512 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1513 return false; 1514 1515 // If the truncated value is not an induction variable, return false. 1516 return Legal->isInductionPhi(Op); 1517 } 1518 1519 /// Collects the instructions to scalarize for each predicated instruction in 1520 /// the loop. 1521 void collectInstsToScalarize(ElementCount VF); 1522 1523 /// Collect Uniform and Scalar values for the given \p VF. 1524 /// The sets depend on CM decision for Load/Store instructions 1525 /// that may be vectorized as interleave, gather-scatter or scalarized. 1526 void collectUniformsAndScalars(ElementCount VF) { 1527 // Do the analysis once. 1528 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1529 return; 1530 setCostBasedWideningDecision(VF); 1531 collectLoopUniforms(VF); 1532 collectLoopScalars(VF); 1533 } 1534 1535 /// Returns true if the target machine supports masked store operation 1536 /// for the given \p DataType and kind of access to \p Ptr. 1537 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1538 return Legal->isConsecutivePtr(DataType, Ptr) && 1539 TTI.isLegalMaskedStore(DataType, Alignment); 1540 } 1541 1542 /// Returns true if the target machine supports masked load operation 1543 /// for the given \p DataType and kind of access to \p Ptr. 1544 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1545 return Legal->isConsecutivePtr(DataType, Ptr) && 1546 TTI.isLegalMaskedLoad(DataType, Alignment); 1547 } 1548 1549 /// Returns true if the target machine can represent \p V as a masked gather 1550 /// or scatter operation. 1551 bool isLegalGatherOrScatter(Value *V, 1552 ElementCount VF = ElementCount::getFixed(1)) { 1553 bool LI = isa<LoadInst>(V); 1554 bool SI = isa<StoreInst>(V); 1555 if (!LI && !SI) 1556 return false; 1557 auto *Ty = getLoadStoreType(V); 1558 Align Align = getLoadStoreAlignment(V); 1559 if (VF.isVector()) 1560 Ty = VectorType::get(Ty, VF); 1561 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1562 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1563 } 1564 1565 /// Returns true if the target machine supports all of the reduction 1566 /// variables found for the given VF. 1567 bool canVectorizeReductions(ElementCount VF) const { 1568 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1569 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1570 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1571 })); 1572 } 1573 1574 /// Returns true if \p I is an instruction that will be scalarized with 1575 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1576 /// instructions include conditional stores and instructions that may divide 1577 /// by zero. 1578 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1579 1580 // Returns true if \p I is an instruction that will be predicated either 1581 // through scalar predication or masked load/store or masked gather/scatter. 1582 // \p VF is the vectorization factor that will be used to vectorize \p I. 1583 // Superset of instructions that return true for isScalarWithPredication. 1584 bool isPredicatedInst(Instruction *I, ElementCount VF, 1585 bool IsKnownUniform = false) { 1586 // When we know the load is uniform and the original scalar loop was not 1587 // predicated we don't need to mark it as a predicated instruction. Any 1588 // vectorised blocks created when tail-folding are something artificial we 1589 // have introduced and we know there is always at least one active lane. 1590 // That's why we call Legal->blockNeedsPredication here because it doesn't 1591 // query tail-folding. 1592 if (IsKnownUniform && isa<LoadInst>(I) && 1593 !Legal->blockNeedsPredication(I->getParent())) 1594 return false; 1595 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1596 return false; 1597 // Loads and stores that need some form of masked operation are predicated 1598 // instructions. 1599 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1600 return Legal->isMaskRequired(I); 1601 return isScalarWithPredication(I, VF); 1602 } 1603 1604 /// Returns true if \p I is a memory instruction with consecutive memory 1605 /// access that can be widened. 1606 bool 1607 memoryInstructionCanBeWidened(Instruction *I, 1608 ElementCount VF = ElementCount::getFixed(1)); 1609 1610 /// Returns true if \p I is a memory instruction in an interleaved-group 1611 /// of memory accesses that can be vectorized with wide vector loads/stores 1612 /// and shuffles. 1613 bool 1614 interleavedAccessCanBeWidened(Instruction *I, 1615 ElementCount VF = ElementCount::getFixed(1)); 1616 1617 /// Check if \p Instr belongs to any interleaved access group. 1618 bool isAccessInterleaved(Instruction *Instr) { 1619 return InterleaveInfo.isInterleaved(Instr); 1620 } 1621 1622 /// Get the interleaved access group that \p Instr belongs to. 1623 const InterleaveGroup<Instruction> * 1624 getInterleavedAccessGroup(Instruction *Instr) { 1625 return InterleaveInfo.getInterleaveGroup(Instr); 1626 } 1627 1628 /// Returns true if we're required to use a scalar epilogue for at least 1629 /// the final iteration of the original loop. 1630 bool requiresScalarEpilogue(ElementCount VF) const { 1631 if (!isScalarEpilogueAllowed()) 1632 return false; 1633 // If we might exit from anywhere but the latch, must run the exiting 1634 // iteration in scalar form. 1635 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1636 return true; 1637 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1638 } 1639 1640 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1641 /// loop hint annotation. 1642 bool isScalarEpilogueAllowed() const { 1643 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1644 } 1645 1646 /// Returns true if all loop blocks should be masked to fold tail loop. 1647 bool foldTailByMasking() const { return FoldTailByMasking; } 1648 1649 /// Returns true if the instructions in this block requires predication 1650 /// for any reason, e.g. because tail folding now requires a predicate 1651 /// or because the block in the original loop was predicated. 1652 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1653 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1654 } 1655 1656 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1657 /// nodes to the chain of instructions representing the reductions. Uses a 1658 /// MapVector to ensure deterministic iteration order. 1659 using ReductionChainMap = 1660 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1661 1662 /// Return the chain of instructions representing an inloop reduction. 1663 const ReductionChainMap &getInLoopReductionChains() const { 1664 return InLoopReductionChains; 1665 } 1666 1667 /// Returns true if the Phi is part of an inloop reduction. 1668 bool isInLoopReduction(PHINode *Phi) const { 1669 return InLoopReductionChains.count(Phi); 1670 } 1671 1672 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1673 /// with factor VF. Return the cost of the instruction, including 1674 /// scalarization overhead if it's needed. 1675 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1676 1677 /// Estimate cost of a call instruction CI if it were vectorized with factor 1678 /// VF. Return the cost of the instruction, including scalarization overhead 1679 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1680 /// scalarized - 1681 /// i.e. either vector version isn't available, or is too expensive. 1682 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1683 bool &NeedToScalarize) const; 1684 1685 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1686 /// that of B. 1687 bool isMoreProfitable(const VectorizationFactor &A, 1688 const VectorizationFactor &B) const; 1689 1690 /// Invalidates decisions already taken by the cost model. 1691 void invalidateCostModelingDecisions() { 1692 WideningDecisions.clear(); 1693 Uniforms.clear(); 1694 Scalars.clear(); 1695 } 1696 1697 private: 1698 unsigned NumPredStores = 0; 1699 1700 /// Convenience function that returns the value of vscale_range iff 1701 /// vscale_range.min == vscale_range.max or otherwise returns the value 1702 /// returned by the corresponding TLI method. 1703 Optional<unsigned> getVScaleForTuning() const; 1704 1705 /// \return An upper bound for the vectorization factors for both 1706 /// fixed and scalable vectorization, where the minimum-known number of 1707 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1708 /// disabled or unsupported, then the scalable part will be equal to 1709 /// ElementCount::getScalable(0). 1710 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1711 ElementCount UserVF, 1712 bool FoldTailByMasking); 1713 1714 /// \return the maximized element count based on the targets vector 1715 /// registers and the loop trip-count, but limited to a maximum safe VF. 1716 /// This is a helper function of computeFeasibleMaxVF. 1717 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1718 /// issue that occurred on one of the buildbots which cannot be reproduced 1719 /// without having access to the properietary compiler (see comments on 1720 /// D98509). The issue is currently under investigation and this workaround 1721 /// will be removed as soon as possible. 1722 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1723 unsigned SmallestType, 1724 unsigned WidestType, 1725 const ElementCount &MaxSafeVF, 1726 bool FoldTailByMasking); 1727 1728 /// \return the maximum legal scalable VF, based on the safe max number 1729 /// of elements. 1730 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1731 1732 /// The vectorization cost is a combination of the cost itself and a boolean 1733 /// indicating whether any of the contributing operations will actually 1734 /// operate on vector values after type legalization in the backend. If this 1735 /// latter value is false, then all operations will be scalarized (i.e. no 1736 /// vectorization has actually taken place). 1737 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1738 1739 /// Returns the expected execution cost. The unit of the cost does 1740 /// not matter because we use the 'cost' units to compare different 1741 /// vector widths. The cost that is returned is *not* normalized by 1742 /// the factor width. If \p Invalid is not nullptr, this function 1743 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1744 /// each instruction that has an Invalid cost for the given VF. 1745 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1746 VectorizationCostTy 1747 expectedCost(ElementCount VF, 1748 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1749 1750 /// Returns the execution time cost of an instruction for a given vector 1751 /// width. Vector width of one means scalar. 1752 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1753 1754 /// The cost-computation logic from getInstructionCost which provides 1755 /// the vector type as an output parameter. 1756 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1757 Type *&VectorTy); 1758 1759 /// Return the cost of instructions in an inloop reduction pattern, if I is 1760 /// part of that pattern. 1761 Optional<InstructionCost> 1762 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1763 TTI::TargetCostKind CostKind); 1764 1765 /// Calculate vectorization cost of memory instruction \p I. 1766 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1767 1768 /// The cost computation for scalarized memory instruction. 1769 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1770 1771 /// The cost computation for interleaving group of memory instructions. 1772 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1773 1774 /// The cost computation for Gather/Scatter instruction. 1775 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1776 1777 /// The cost computation for widening instruction \p I with consecutive 1778 /// memory access. 1779 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1780 1781 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1782 /// Load: scalar load + broadcast. 1783 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1784 /// element) 1785 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1786 1787 /// Estimate the overhead of scalarizing an instruction. This is a 1788 /// convenience wrapper for the type-based getScalarizationOverhead API. 1789 InstructionCost getScalarizationOverhead(Instruction *I, 1790 ElementCount VF) const; 1791 1792 /// Returns whether the instruction is a load or store and will be a emitted 1793 /// as a vector operation. 1794 bool isConsecutiveLoadOrStore(Instruction *I); 1795 1796 /// Map of scalar integer values to the smallest bitwidth they can be legally 1797 /// represented as. The vector equivalents of these values should be truncated 1798 /// to this type. 1799 MapVector<Instruction *, uint64_t> MinBWs; 1800 1801 /// A type representing the costs for instructions if they were to be 1802 /// scalarized rather than vectorized. The entries are Instruction-Cost 1803 /// pairs. 1804 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1805 1806 /// A set containing all BasicBlocks that are known to present after 1807 /// vectorization as a predicated block. 1808 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1809 1810 /// Records whether it is allowed to have the original scalar loop execute at 1811 /// least once. This may be needed as a fallback loop in case runtime 1812 /// aliasing/dependence checks fail, or to handle the tail/remainder 1813 /// iterations when the trip count is unknown or doesn't divide by the VF, 1814 /// or as a peel-loop to handle gaps in interleave-groups. 1815 /// Under optsize and when the trip count is very small we don't allow any 1816 /// iterations to execute in the scalar loop. 1817 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1818 1819 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1820 bool FoldTailByMasking = false; 1821 1822 /// A map holding scalar costs for different vectorization factors. The 1823 /// presence of a cost for an instruction in the mapping indicates that the 1824 /// instruction will be scalarized when vectorizing with the associated 1825 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1826 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1827 1828 /// Holds the instructions known to be uniform after vectorization. 1829 /// The data is collected per VF. 1830 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1831 1832 /// Holds the instructions known to be scalar after vectorization. 1833 /// The data is collected per VF. 1834 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1835 1836 /// Holds the instructions (address computations) that are forced to be 1837 /// scalarized. 1838 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1839 1840 /// PHINodes of the reductions that should be expanded in-loop along with 1841 /// their associated chains of reduction operations, in program order from top 1842 /// (PHI) to bottom 1843 ReductionChainMap InLoopReductionChains; 1844 1845 /// A Map of inloop reduction operations and their immediate chain operand. 1846 /// FIXME: This can be removed once reductions can be costed correctly in 1847 /// vplan. This was added to allow quick lookup to the inloop operations, 1848 /// without having to loop through InLoopReductionChains. 1849 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1850 1851 /// Returns the expected difference in cost from scalarizing the expression 1852 /// feeding a predicated instruction \p PredInst. The instructions to 1853 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1854 /// non-negative return value implies the expression will be scalarized. 1855 /// Currently, only single-use chains are considered for scalarization. 1856 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1857 ElementCount VF); 1858 1859 /// Collect the instructions that are uniform after vectorization. An 1860 /// instruction is uniform if we represent it with a single scalar value in 1861 /// the vectorized loop corresponding to each vector iteration. Examples of 1862 /// uniform instructions include pointer operands of consecutive or 1863 /// interleaved memory accesses. Note that although uniformity implies an 1864 /// instruction will be scalar, the reverse is not true. In general, a 1865 /// scalarized instruction will be represented by VF scalar values in the 1866 /// vectorized loop, each corresponding to an iteration of the original 1867 /// scalar loop. 1868 void collectLoopUniforms(ElementCount VF); 1869 1870 /// Collect the instructions that are scalar after vectorization. An 1871 /// instruction is scalar if it is known to be uniform or will be scalarized 1872 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1873 /// to the list if they are used by a load/store instruction that is marked as 1874 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1875 /// VF values in the vectorized loop, each corresponding to an iteration of 1876 /// the original scalar loop. 1877 void collectLoopScalars(ElementCount VF); 1878 1879 /// Keeps cost model vectorization decision and cost for instructions. 1880 /// Right now it is used for memory instructions only. 1881 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1882 std::pair<InstWidening, InstructionCost>>; 1883 1884 DecisionList WideningDecisions; 1885 1886 /// Returns true if \p V is expected to be vectorized and it needs to be 1887 /// extracted. 1888 bool needsExtract(Value *V, ElementCount VF) const { 1889 Instruction *I = dyn_cast<Instruction>(V); 1890 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1891 TheLoop->isLoopInvariant(I)) 1892 return false; 1893 1894 // Assume we can vectorize V (and hence we need extraction) if the 1895 // scalars are not computed yet. This can happen, because it is called 1896 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1897 // the scalars are collected. That should be a safe assumption in most 1898 // cases, because we check if the operands have vectorizable types 1899 // beforehand in LoopVectorizationLegality. 1900 return Scalars.find(VF) == Scalars.end() || 1901 !isScalarAfterVectorization(I, VF); 1902 }; 1903 1904 /// Returns a range containing only operands needing to be extracted. 1905 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1906 ElementCount VF) const { 1907 return SmallVector<Value *, 4>(make_filter_range( 1908 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1909 } 1910 1911 /// Determines if we have the infrastructure to vectorize loop \p L and its 1912 /// epilogue, assuming the main loop is vectorized by \p VF. 1913 bool isCandidateForEpilogueVectorization(const Loop &L, 1914 const ElementCount VF) const; 1915 1916 /// Returns true if epilogue vectorization is considered profitable, and 1917 /// false otherwise. 1918 /// \p VF is the vectorization factor chosen for the original loop. 1919 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1920 1921 public: 1922 /// The loop that we evaluate. 1923 Loop *TheLoop; 1924 1925 /// Predicated scalar evolution analysis. 1926 PredicatedScalarEvolution &PSE; 1927 1928 /// Loop Info analysis. 1929 LoopInfo *LI; 1930 1931 /// Vectorization legality. 1932 LoopVectorizationLegality *Legal; 1933 1934 /// Vector target information. 1935 const TargetTransformInfo &TTI; 1936 1937 /// Target Library Info. 1938 const TargetLibraryInfo *TLI; 1939 1940 /// Demanded bits analysis. 1941 DemandedBits *DB; 1942 1943 /// Assumption cache. 1944 AssumptionCache *AC; 1945 1946 /// Interface to emit optimization remarks. 1947 OptimizationRemarkEmitter *ORE; 1948 1949 const Function *TheFunction; 1950 1951 /// Loop Vectorize Hint. 1952 const LoopVectorizeHints *Hints; 1953 1954 /// The interleave access information contains groups of interleaved accesses 1955 /// with the same stride and close to each other. 1956 InterleavedAccessInfo &InterleaveInfo; 1957 1958 /// Values to ignore in the cost model. 1959 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1960 1961 /// Values to ignore in the cost model when VF > 1. 1962 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1963 1964 /// All element types found in the loop. 1965 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1966 1967 /// Profitable vector factors. 1968 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1969 }; 1970 } // end namespace llvm 1971 1972 /// Helper struct to manage generating runtime checks for vectorization. 1973 /// 1974 /// The runtime checks are created up-front in temporary blocks to allow better 1975 /// estimating the cost and un-linked from the existing IR. After deciding to 1976 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1977 /// temporary blocks are completely removed. 1978 class GeneratedRTChecks { 1979 /// Basic block which contains the generated SCEV checks, if any. 1980 BasicBlock *SCEVCheckBlock = nullptr; 1981 1982 /// The value representing the result of the generated SCEV checks. If it is 1983 /// nullptr, either no SCEV checks have been generated or they have been used. 1984 Value *SCEVCheckCond = nullptr; 1985 1986 /// Basic block which contains the generated memory runtime checks, if any. 1987 BasicBlock *MemCheckBlock = nullptr; 1988 1989 /// The value representing the result of the generated memory runtime checks. 1990 /// If it is nullptr, either no memory runtime checks have been generated or 1991 /// they have been used. 1992 Value *MemRuntimeCheckCond = nullptr; 1993 1994 DominatorTree *DT; 1995 LoopInfo *LI; 1996 1997 SCEVExpander SCEVExp; 1998 SCEVExpander MemCheckExp; 1999 2000 public: 2001 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 2002 const DataLayout &DL) 2003 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 2004 MemCheckExp(SE, DL, "scev.check") {} 2005 2006 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2007 /// accurately estimate the cost of the runtime checks. The blocks are 2008 /// un-linked from the IR and is added back during vector code generation. If 2009 /// there is no vector code generation, the check blocks are removed 2010 /// completely. 2011 void Create(Loop *L, const LoopAccessInfo &LAI, 2012 const SCEVUnionPredicate &UnionPred) { 2013 2014 BasicBlock *LoopHeader = L->getHeader(); 2015 BasicBlock *Preheader = L->getLoopPreheader(); 2016 2017 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2018 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2019 // may be used by SCEVExpander. The blocks will be un-linked from their 2020 // predecessors and removed from LI & DT at the end of the function. 2021 if (!UnionPred.isAlwaysTrue()) { 2022 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2023 nullptr, "vector.scevcheck"); 2024 2025 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2026 &UnionPred, SCEVCheckBlock->getTerminator()); 2027 } 2028 2029 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2030 if (RtPtrChecking.Need) { 2031 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2032 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2033 "vector.memcheck"); 2034 2035 MemRuntimeCheckCond = 2036 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2037 RtPtrChecking.getChecks(), MemCheckExp); 2038 assert(MemRuntimeCheckCond && 2039 "no RT checks generated although RtPtrChecking " 2040 "claimed checks are required"); 2041 } 2042 2043 if (!MemCheckBlock && !SCEVCheckBlock) 2044 return; 2045 2046 // Unhook the temporary block with the checks, update various places 2047 // accordingly. 2048 if (SCEVCheckBlock) 2049 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2050 if (MemCheckBlock) 2051 MemCheckBlock->replaceAllUsesWith(Preheader); 2052 2053 if (SCEVCheckBlock) { 2054 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2055 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2056 Preheader->getTerminator()->eraseFromParent(); 2057 } 2058 if (MemCheckBlock) { 2059 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2060 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2061 Preheader->getTerminator()->eraseFromParent(); 2062 } 2063 2064 DT->changeImmediateDominator(LoopHeader, Preheader); 2065 if (MemCheckBlock) { 2066 DT->eraseNode(MemCheckBlock); 2067 LI->removeBlock(MemCheckBlock); 2068 } 2069 if (SCEVCheckBlock) { 2070 DT->eraseNode(SCEVCheckBlock); 2071 LI->removeBlock(SCEVCheckBlock); 2072 } 2073 } 2074 2075 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2076 /// unused. 2077 ~GeneratedRTChecks() { 2078 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2079 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2080 if (!SCEVCheckCond) 2081 SCEVCleaner.markResultUsed(); 2082 2083 if (!MemRuntimeCheckCond) 2084 MemCheckCleaner.markResultUsed(); 2085 2086 if (MemRuntimeCheckCond) { 2087 auto &SE = *MemCheckExp.getSE(); 2088 // Memory runtime check generation creates compares that use expanded 2089 // values. Remove them before running the SCEVExpanderCleaners. 2090 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2091 if (MemCheckExp.isInsertedInstruction(&I)) 2092 continue; 2093 SE.forgetValue(&I); 2094 I.eraseFromParent(); 2095 } 2096 } 2097 MemCheckCleaner.cleanup(); 2098 SCEVCleaner.cleanup(); 2099 2100 if (SCEVCheckCond) 2101 SCEVCheckBlock->eraseFromParent(); 2102 if (MemRuntimeCheckCond) 2103 MemCheckBlock->eraseFromParent(); 2104 } 2105 2106 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2107 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2108 /// depending on the generated condition. 2109 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2110 BasicBlock *LoopVectorPreHeader, 2111 BasicBlock *LoopExitBlock) { 2112 if (!SCEVCheckCond) 2113 return nullptr; 2114 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2115 if (C->isZero()) 2116 return nullptr; 2117 2118 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2119 2120 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2121 // Create new preheader for vector loop. 2122 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2123 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2124 2125 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2126 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2127 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2128 SCEVCheckBlock); 2129 2130 DT->addNewBlock(SCEVCheckBlock, Pred); 2131 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2132 2133 ReplaceInstWithInst( 2134 SCEVCheckBlock->getTerminator(), 2135 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2136 // Mark the check as used, to prevent it from being removed during cleanup. 2137 SCEVCheckCond = nullptr; 2138 return SCEVCheckBlock; 2139 } 2140 2141 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2142 /// the branches to branch to the vector preheader or \p Bypass, depending on 2143 /// the generated condition. 2144 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2145 BasicBlock *LoopVectorPreHeader) { 2146 // Check if we generated code that checks in runtime if arrays overlap. 2147 if (!MemRuntimeCheckCond) 2148 return nullptr; 2149 2150 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2151 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2152 MemCheckBlock); 2153 2154 DT->addNewBlock(MemCheckBlock, Pred); 2155 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2156 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2157 2158 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2159 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2160 2161 ReplaceInstWithInst( 2162 MemCheckBlock->getTerminator(), 2163 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2164 MemCheckBlock->getTerminator()->setDebugLoc( 2165 Pred->getTerminator()->getDebugLoc()); 2166 2167 // Mark the check as used, to prevent it from being removed during cleanup. 2168 MemRuntimeCheckCond = nullptr; 2169 return MemCheckBlock; 2170 } 2171 }; 2172 2173 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2174 // vectorization. The loop needs to be annotated with #pragma omp simd 2175 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2176 // vector length information is not provided, vectorization is not considered 2177 // explicit. Interleave hints are not allowed either. These limitations will be 2178 // relaxed in the future. 2179 // Please, note that we are currently forced to abuse the pragma 'clang 2180 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2181 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2182 // provides *explicit vectorization hints* (LV can bypass legal checks and 2183 // assume that vectorization is legal). However, both hints are implemented 2184 // using the same metadata (llvm.loop.vectorize, processed by 2185 // LoopVectorizeHints). This will be fixed in the future when the native IR 2186 // representation for pragma 'omp simd' is introduced. 2187 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2188 OptimizationRemarkEmitter *ORE) { 2189 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2190 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2191 2192 // Only outer loops with an explicit vectorization hint are supported. 2193 // Unannotated outer loops are ignored. 2194 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2195 return false; 2196 2197 Function *Fn = OuterLp->getHeader()->getParent(); 2198 if (!Hints.allowVectorization(Fn, OuterLp, 2199 true /*VectorizeOnlyWhenForced*/)) { 2200 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2201 return false; 2202 } 2203 2204 if (Hints.getInterleave() > 1) { 2205 // TODO: Interleave support is future work. 2206 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2207 "outer loops.\n"); 2208 Hints.emitRemarkWithHints(); 2209 return false; 2210 } 2211 2212 return true; 2213 } 2214 2215 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2216 OptimizationRemarkEmitter *ORE, 2217 SmallVectorImpl<Loop *> &V) { 2218 // Collect inner loops and outer loops without irreducible control flow. For 2219 // now, only collect outer loops that have explicit vectorization hints. If we 2220 // are stress testing the VPlan H-CFG construction, we collect the outermost 2221 // loop of every loop nest. 2222 if (L.isInnermost() || VPlanBuildStressTest || 2223 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2224 LoopBlocksRPO RPOT(&L); 2225 RPOT.perform(LI); 2226 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2227 V.push_back(&L); 2228 // TODO: Collect inner loops inside marked outer loops in case 2229 // vectorization fails for the outer loop. Do not invoke 2230 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2231 // already known to be reducible. We can use an inherited attribute for 2232 // that. 2233 return; 2234 } 2235 } 2236 for (Loop *InnerL : L) 2237 collectSupportedLoops(*InnerL, LI, ORE, V); 2238 } 2239 2240 namespace { 2241 2242 /// The LoopVectorize Pass. 2243 struct LoopVectorize : public FunctionPass { 2244 /// Pass identification, replacement for typeid 2245 static char ID; 2246 2247 LoopVectorizePass Impl; 2248 2249 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2250 bool VectorizeOnlyWhenForced = false) 2251 : FunctionPass(ID), 2252 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2253 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2254 } 2255 2256 bool runOnFunction(Function &F) override { 2257 if (skipFunction(F)) 2258 return false; 2259 2260 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2261 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2262 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2263 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2264 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2265 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2266 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2267 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2268 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2269 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2270 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2271 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2272 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2273 2274 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2275 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2276 2277 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2278 GetLAA, *ORE, PSI).MadeAnyChange; 2279 } 2280 2281 void getAnalysisUsage(AnalysisUsage &AU) const override { 2282 AU.addRequired<AssumptionCacheTracker>(); 2283 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2284 AU.addRequired<DominatorTreeWrapperPass>(); 2285 AU.addRequired<LoopInfoWrapperPass>(); 2286 AU.addRequired<ScalarEvolutionWrapperPass>(); 2287 AU.addRequired<TargetTransformInfoWrapperPass>(); 2288 AU.addRequired<AAResultsWrapperPass>(); 2289 AU.addRequired<LoopAccessLegacyAnalysis>(); 2290 AU.addRequired<DemandedBitsWrapperPass>(); 2291 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2292 AU.addRequired<InjectTLIMappingsLegacy>(); 2293 2294 // We currently do not preserve loopinfo/dominator analyses with outer loop 2295 // vectorization. Until this is addressed, mark these analyses as preserved 2296 // only for non-VPlan-native path. 2297 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2298 if (!EnableVPlanNativePath) { 2299 AU.addPreserved<LoopInfoWrapperPass>(); 2300 AU.addPreserved<DominatorTreeWrapperPass>(); 2301 } 2302 2303 AU.addPreserved<BasicAAWrapperPass>(); 2304 AU.addPreserved<GlobalsAAWrapperPass>(); 2305 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2306 } 2307 }; 2308 2309 } // end anonymous namespace 2310 2311 //===----------------------------------------------------------------------===// 2312 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2313 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2314 //===----------------------------------------------------------------------===// 2315 2316 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2317 // We need to place the broadcast of invariant variables outside the loop, 2318 // but only if it's proven safe to do so. Else, broadcast will be inside 2319 // vector loop body. 2320 Instruction *Instr = dyn_cast<Instruction>(V); 2321 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2322 (!Instr || 2323 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2324 // Place the code for broadcasting invariant variables in the new preheader. 2325 IRBuilder<>::InsertPointGuard Guard(Builder); 2326 if (SafeToHoist) 2327 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2328 2329 // Broadcast the scalar into all locations in the vector. 2330 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2331 2332 return Shuf; 2333 } 2334 2335 /// This function adds 2336 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2337 /// to each vector element of Val. The sequence starts at StartIndex. 2338 /// \p Opcode is relevant for FP induction variable. 2339 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2340 Instruction::BinaryOps BinOp, ElementCount VF, 2341 IRBuilderBase &Builder) { 2342 assert(VF.isVector() && "only vector VFs are supported"); 2343 2344 // Create and check the types. 2345 auto *ValVTy = cast<VectorType>(Val->getType()); 2346 ElementCount VLen = ValVTy->getElementCount(); 2347 2348 Type *STy = Val->getType()->getScalarType(); 2349 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2350 "Induction Step must be an integer or FP"); 2351 assert(Step->getType() == STy && "Step has wrong type"); 2352 2353 SmallVector<Constant *, 8> Indices; 2354 2355 // Create a vector of consecutive numbers from zero to VF. 2356 VectorType *InitVecValVTy = ValVTy; 2357 Type *InitVecValSTy = STy; 2358 if (STy->isFloatingPointTy()) { 2359 InitVecValSTy = 2360 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2361 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2362 } 2363 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2364 2365 // Splat the StartIdx 2366 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2367 2368 if (STy->isIntegerTy()) { 2369 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2370 Step = Builder.CreateVectorSplat(VLen, Step); 2371 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2372 // FIXME: The newly created binary instructions should contain nsw/nuw 2373 // flags, which can be found from the original scalar operations. 2374 Step = Builder.CreateMul(InitVec, Step); 2375 return Builder.CreateAdd(Val, Step, "induction"); 2376 } 2377 2378 // Floating point induction. 2379 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2380 "Binary Opcode should be specified for FP induction"); 2381 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2382 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2383 2384 Step = Builder.CreateVectorSplat(VLen, Step); 2385 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2386 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2387 } 2388 2389 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2390 const InductionDescriptor &II, Value *Step, Value *Start, 2391 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2392 IRBuilderBase &Builder = State.Builder; 2393 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2394 "Expected either an induction phi-node or a truncate of it!"); 2395 2396 // Construct the initial value of the vector IV in the vector loop preheader 2397 auto CurrIP = Builder.saveIP(); 2398 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2399 if (isa<TruncInst>(EntryVal)) { 2400 assert(Start->getType()->isIntegerTy() && 2401 "Truncation requires an integer type"); 2402 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2403 Step = Builder.CreateTrunc(Step, TruncType); 2404 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2405 } 2406 2407 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2408 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2409 Value *SteppedStart = getStepVector( 2410 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2411 2412 // We create vector phi nodes for both integer and floating-point induction 2413 // variables. Here, we determine the kind of arithmetic we will perform. 2414 Instruction::BinaryOps AddOp; 2415 Instruction::BinaryOps MulOp; 2416 if (Step->getType()->isIntegerTy()) { 2417 AddOp = Instruction::Add; 2418 MulOp = Instruction::Mul; 2419 } else { 2420 AddOp = II.getInductionOpcode(); 2421 MulOp = Instruction::FMul; 2422 } 2423 2424 // Multiply the vectorization factor by the step using integer or 2425 // floating-point arithmetic as appropriate. 2426 Type *StepType = Step->getType(); 2427 Value *RuntimeVF; 2428 if (Step->getType()->isFloatingPointTy()) 2429 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2430 else 2431 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2432 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2433 2434 // Create a vector splat to use in the induction update. 2435 // 2436 // FIXME: If the step is non-constant, we create the vector splat with 2437 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2438 // handle a constant vector splat. 2439 Value *SplatVF = isa<Constant>(Mul) 2440 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2441 : Builder.CreateVectorSplat(State.VF, Mul); 2442 Builder.restoreIP(CurrIP); 2443 2444 // We may need to add the step a number of times, depending on the unroll 2445 // factor. The last of those goes into the PHI. 2446 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2447 &*LoopVectorBody->getFirstInsertionPt()); 2448 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2449 Instruction *LastInduction = VecInd; 2450 for (unsigned Part = 0; Part < UF; ++Part) { 2451 State.set(Def, LastInduction, Part); 2452 2453 if (isa<TruncInst>(EntryVal)) 2454 addMetadata(LastInduction, EntryVal); 2455 2456 LastInduction = cast<Instruction>( 2457 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2458 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2459 } 2460 2461 // Move the last step to the end of the latch block. This ensures consistent 2462 // placement of all induction updates. 2463 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2464 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2465 LastInduction->moveBefore(Br); 2466 LastInduction->setName("vec.ind.next"); 2467 2468 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2469 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2470 } 2471 2472 void InnerLoopVectorizer::widenIntOrFpInduction( 2473 PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State, 2474 Value *CanonicalIV) { 2475 Value *Start = Def->getStartValue()->getLiveInIRValue(); 2476 const InductionDescriptor &ID = Def->getInductionDescriptor(); 2477 TruncInst *Trunc = Def->getTruncInst(); 2478 IRBuilderBase &Builder = State.Builder; 2479 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2480 assert(!State.VF.isZero() && "VF must be non-zero"); 2481 2482 // The value from the original loop to which we are mapping the new induction 2483 // variable. 2484 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2485 2486 auto &DL = EntryVal->getModule()->getDataLayout(); 2487 2488 // Generate code for the induction step. Note that induction steps are 2489 // required to be loop-invariant 2490 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2491 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2492 "Induction step should be loop invariant"); 2493 if (PSE.getSE()->isSCEVable(IV->getType())) { 2494 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2495 return Exp.expandCodeFor(Step, Step->getType(), 2496 State.CFG.VectorPreHeader->getTerminator()); 2497 } 2498 return cast<SCEVUnknown>(Step)->getValue(); 2499 }; 2500 2501 // The scalar value to broadcast. This is derived from the canonical 2502 // induction variable. If a truncation type is given, truncate the canonical 2503 // induction variable and step. Otherwise, derive these values from the 2504 // induction descriptor. 2505 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2506 Value *ScalarIV = CanonicalIV; 2507 Type *NeededType = IV->getType(); 2508 if (!Def->isCanonical() || ScalarIV->getType() != NeededType) { 2509 ScalarIV = 2510 NeededType->isIntegerTy() 2511 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2512 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2513 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2514 State.CFG.PrevBB); 2515 ScalarIV->setName("offset.idx"); 2516 } 2517 if (Trunc) { 2518 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2519 assert(Step->getType()->isIntegerTy() && 2520 "Truncation requires an integer step"); 2521 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2522 Step = Builder.CreateTrunc(Step, TruncType); 2523 } 2524 return ScalarIV; 2525 }; 2526 2527 // Fast-math-flags propagate from the original induction instruction. 2528 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2529 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2530 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2531 2532 // Now do the actual transformations, and start with creating the step value. 2533 Value *Step = CreateStepValue(ID.getStep()); 2534 if (State.VF.isScalar()) { 2535 Value *ScalarIV = CreateScalarIV(Step); 2536 Type *ScalarTy = IntegerType::get(ScalarIV->getContext(), 2537 Step->getType()->getScalarSizeInBits()); 2538 2539 Instruction::BinaryOps IncOp = ID.getInductionOpcode(); 2540 if (IncOp == Instruction::BinaryOpsEnd) 2541 IncOp = Instruction::Add; 2542 for (unsigned Part = 0; Part < UF; ++Part) { 2543 Value *StartIdx = ConstantInt::get(ScalarTy, Part); 2544 Instruction::BinaryOps MulOp = Instruction::Mul; 2545 if (Step->getType()->isFloatingPointTy()) { 2546 StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType()); 2547 MulOp = Instruction::FMul; 2548 } 2549 2550 Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2551 Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction"); 2552 State.set(Def, EntryPart, Part); 2553 if (Trunc) { 2554 assert(!Step->getType()->isFloatingPointTy() && 2555 "fp inductions shouldn't be truncated"); 2556 addMetadata(EntryPart, Trunc); 2557 } 2558 } 2559 return; 2560 } 2561 2562 // Create a new independent vector induction variable, if one is needed. 2563 if (Def->needsVectorIV()) 2564 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2565 2566 if (Def->needsScalarIV()) { 2567 // Create scalar steps that can be used by instructions we will later 2568 // scalarize. Note that the addition of the scalar steps will not increase 2569 // the number of instructions in the loop in the common case prior to 2570 // InstCombine. We will be trading one vector extract for each scalar step. 2571 Value *ScalarIV = CreateScalarIV(Step); 2572 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2573 } 2574 } 2575 2576 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2577 Instruction *EntryVal, 2578 const InductionDescriptor &ID, 2579 VPValue *Def, 2580 VPTransformState &State) { 2581 IRBuilderBase &Builder = State.Builder; 2582 // We shouldn't have to build scalar steps if we aren't vectorizing. 2583 assert(State.VF.isVector() && "VF should be greater than one"); 2584 // Get the value type and ensure it and the step have the same integer type. 2585 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2586 assert(ScalarIVTy == Step->getType() && 2587 "Val and Step should have the same type"); 2588 2589 // We build scalar steps for both integer and floating-point induction 2590 // variables. Here, we determine the kind of arithmetic we will perform. 2591 Instruction::BinaryOps AddOp; 2592 Instruction::BinaryOps MulOp; 2593 if (ScalarIVTy->isIntegerTy()) { 2594 AddOp = Instruction::Add; 2595 MulOp = Instruction::Mul; 2596 } else { 2597 AddOp = ID.getInductionOpcode(); 2598 MulOp = Instruction::FMul; 2599 } 2600 2601 // Determine the number of scalars we need to generate for each unroll 2602 // iteration. 2603 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2604 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2605 // Compute the scalar steps and save the results in State. 2606 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2607 ScalarIVTy->getScalarSizeInBits()); 2608 Type *VecIVTy = nullptr; 2609 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2610 if (!FirstLaneOnly && State.VF.isScalable()) { 2611 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2612 UnitStepVec = 2613 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2614 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2615 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2616 } 2617 2618 for (unsigned Part = 0; Part < State.UF; ++Part) { 2619 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2620 2621 if (!FirstLaneOnly && State.VF.isScalable()) { 2622 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2623 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2624 if (ScalarIVTy->isFloatingPointTy()) 2625 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2626 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2627 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2628 State.set(Def, Add, Part); 2629 // It's useful to record the lane values too for the known minimum number 2630 // of elements so we do those below. This improves the code quality when 2631 // trying to extract the first element, for example. 2632 } 2633 2634 if (ScalarIVTy->isFloatingPointTy()) 2635 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2636 2637 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2638 Value *StartIdx = Builder.CreateBinOp( 2639 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2640 // The step returned by `createStepForVF` is a runtime-evaluated value 2641 // when VF is scalable. Otherwise, it should be folded into a Constant. 2642 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2643 "Expected StartIdx to be folded to a constant when VF is not " 2644 "scalable"); 2645 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2646 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2647 State.set(Def, Add, VPIteration(Part, Lane)); 2648 } 2649 } 2650 } 2651 2652 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2653 const VPIteration &Instance, 2654 VPTransformState &State) { 2655 Value *ScalarInst = State.get(Def, Instance); 2656 Value *VectorValue = State.get(Def, Instance.Part); 2657 VectorValue = Builder.CreateInsertElement( 2658 VectorValue, ScalarInst, 2659 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2660 State.set(Def, VectorValue, Instance.Part); 2661 } 2662 2663 // Return whether we allow using masked interleave-groups (for dealing with 2664 // strided loads/stores that reside in predicated blocks, or for dealing 2665 // with gaps). 2666 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2667 // If an override option has been passed in for interleaved accesses, use it. 2668 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2669 return EnableMaskedInterleavedMemAccesses; 2670 2671 return TTI.enableMaskedInterleavedAccessVectorization(); 2672 } 2673 2674 // Try to vectorize the interleave group that \p Instr belongs to. 2675 // 2676 // E.g. Translate following interleaved load group (factor = 3): 2677 // for (i = 0; i < N; i+=3) { 2678 // R = Pic[i]; // Member of index 0 2679 // G = Pic[i+1]; // Member of index 1 2680 // B = Pic[i+2]; // Member of index 2 2681 // ... // do something to R, G, B 2682 // } 2683 // To: 2684 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2685 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2686 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2687 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2688 // 2689 // Or translate following interleaved store group (factor = 3): 2690 // for (i = 0; i < N; i+=3) { 2691 // ... do something to R, G, B 2692 // Pic[i] = R; // Member of index 0 2693 // Pic[i+1] = G; // Member of index 1 2694 // Pic[i+2] = B; // Member of index 2 2695 // } 2696 // To: 2697 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2698 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2699 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2700 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2701 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2702 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2703 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2704 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2705 VPValue *BlockInMask) { 2706 Instruction *Instr = Group->getInsertPos(); 2707 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2708 2709 // Prepare for the vector type of the interleaved load/store. 2710 Type *ScalarTy = getLoadStoreType(Instr); 2711 unsigned InterleaveFactor = Group->getFactor(); 2712 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2713 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2714 2715 // Prepare for the new pointers. 2716 SmallVector<Value *, 2> AddrParts; 2717 unsigned Index = Group->getIndex(Instr); 2718 2719 // TODO: extend the masked interleaved-group support to reversed access. 2720 assert((!BlockInMask || !Group->isReverse()) && 2721 "Reversed masked interleave-group not supported."); 2722 2723 // If the group is reverse, adjust the index to refer to the last vector lane 2724 // instead of the first. We adjust the index from the first vector lane, 2725 // rather than directly getting the pointer for lane VF - 1, because the 2726 // pointer operand of the interleaved access is supposed to be uniform. For 2727 // uniform instructions, we're only required to generate a value for the 2728 // first vector lane in each unroll iteration. 2729 if (Group->isReverse()) 2730 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2731 2732 for (unsigned Part = 0; Part < UF; Part++) { 2733 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2734 setDebugLocFromInst(AddrPart); 2735 2736 // Notice current instruction could be any index. Need to adjust the address 2737 // to the member of index 0. 2738 // 2739 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2740 // b = A[i]; // Member of index 0 2741 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2742 // 2743 // E.g. A[i+1] = a; // Member of index 1 2744 // A[i] = b; // Member of index 0 2745 // A[i+2] = c; // Member of index 2 (Current instruction) 2746 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2747 2748 bool InBounds = false; 2749 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2750 InBounds = gep->isInBounds(); 2751 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2752 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2753 2754 // Cast to the vector pointer type. 2755 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2756 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2757 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2758 } 2759 2760 setDebugLocFromInst(Instr); 2761 Value *PoisonVec = PoisonValue::get(VecTy); 2762 2763 Value *MaskForGaps = nullptr; 2764 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2765 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2766 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2767 } 2768 2769 // Vectorize the interleaved load group. 2770 if (isa<LoadInst>(Instr)) { 2771 // For each unroll part, create a wide load for the group. 2772 SmallVector<Value *, 2> NewLoads; 2773 for (unsigned Part = 0; Part < UF; Part++) { 2774 Instruction *NewLoad; 2775 if (BlockInMask || MaskForGaps) { 2776 assert(useMaskedInterleavedAccesses(*TTI) && 2777 "masked interleaved groups are not allowed."); 2778 Value *GroupMask = MaskForGaps; 2779 if (BlockInMask) { 2780 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2781 Value *ShuffledMask = Builder.CreateShuffleVector( 2782 BlockInMaskPart, 2783 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2784 "interleaved.mask"); 2785 GroupMask = MaskForGaps 2786 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2787 MaskForGaps) 2788 : ShuffledMask; 2789 } 2790 NewLoad = 2791 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2792 GroupMask, PoisonVec, "wide.masked.vec"); 2793 } 2794 else 2795 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2796 Group->getAlign(), "wide.vec"); 2797 Group->addMetadata(NewLoad); 2798 NewLoads.push_back(NewLoad); 2799 } 2800 2801 // For each member in the group, shuffle out the appropriate data from the 2802 // wide loads. 2803 unsigned J = 0; 2804 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2805 Instruction *Member = Group->getMember(I); 2806 2807 // Skip the gaps in the group. 2808 if (!Member) 2809 continue; 2810 2811 auto StrideMask = 2812 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2813 for (unsigned Part = 0; Part < UF; Part++) { 2814 Value *StridedVec = Builder.CreateShuffleVector( 2815 NewLoads[Part], StrideMask, "strided.vec"); 2816 2817 // If this member has different type, cast the result type. 2818 if (Member->getType() != ScalarTy) { 2819 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2820 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2821 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2822 } 2823 2824 if (Group->isReverse()) 2825 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2826 2827 State.set(VPDefs[J], StridedVec, Part); 2828 } 2829 ++J; 2830 } 2831 return; 2832 } 2833 2834 // The sub vector type for current instruction. 2835 auto *SubVT = VectorType::get(ScalarTy, VF); 2836 2837 // Vectorize the interleaved store group. 2838 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2839 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2840 "masked interleaved groups are not allowed."); 2841 assert((!MaskForGaps || !VF.isScalable()) && 2842 "masking gaps for scalable vectors is not yet supported."); 2843 for (unsigned Part = 0; Part < UF; Part++) { 2844 // Collect the stored vector from each member. 2845 SmallVector<Value *, 4> StoredVecs; 2846 for (unsigned i = 0; i < InterleaveFactor; i++) { 2847 assert((Group->getMember(i) || MaskForGaps) && 2848 "Fail to get a member from an interleaved store group"); 2849 Instruction *Member = Group->getMember(i); 2850 2851 // Skip the gaps in the group. 2852 if (!Member) { 2853 Value *Undef = PoisonValue::get(SubVT); 2854 StoredVecs.push_back(Undef); 2855 continue; 2856 } 2857 2858 Value *StoredVec = State.get(StoredValues[i], Part); 2859 2860 if (Group->isReverse()) 2861 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2862 2863 // If this member has different type, cast it to a unified type. 2864 2865 if (StoredVec->getType() != SubVT) 2866 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2867 2868 StoredVecs.push_back(StoredVec); 2869 } 2870 2871 // Concatenate all vectors into a wide vector. 2872 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2873 2874 // Interleave the elements in the wide vector. 2875 Value *IVec = Builder.CreateShuffleVector( 2876 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2877 "interleaved.vec"); 2878 2879 Instruction *NewStoreInstr; 2880 if (BlockInMask || MaskForGaps) { 2881 Value *GroupMask = MaskForGaps; 2882 if (BlockInMask) { 2883 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2884 Value *ShuffledMask = Builder.CreateShuffleVector( 2885 BlockInMaskPart, 2886 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2887 "interleaved.mask"); 2888 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2889 ShuffledMask, MaskForGaps) 2890 : ShuffledMask; 2891 } 2892 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2893 Group->getAlign(), GroupMask); 2894 } else 2895 NewStoreInstr = 2896 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2897 2898 Group->addMetadata(NewStoreInstr); 2899 } 2900 } 2901 2902 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2903 VPReplicateRecipe *RepRecipe, 2904 const VPIteration &Instance, 2905 bool IfPredicateInstr, 2906 VPTransformState &State) { 2907 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2908 2909 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2910 // the first lane and part. 2911 if (isa<NoAliasScopeDeclInst>(Instr)) 2912 if (!Instance.isFirstIteration()) 2913 return; 2914 2915 setDebugLocFromInst(Instr); 2916 2917 // Does this instruction return a value ? 2918 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2919 2920 Instruction *Cloned = Instr->clone(); 2921 if (!IsVoidRetTy) 2922 Cloned->setName(Instr->getName() + ".cloned"); 2923 2924 // If the scalarized instruction contributes to the address computation of a 2925 // widen masked load/store which was in a basic block that needed predication 2926 // and is not predicated after vectorization, we can't propagate 2927 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2928 // instruction could feed a poison value to the base address of the widen 2929 // load/store. 2930 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2931 Cloned->dropPoisonGeneratingFlags(); 2932 2933 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2934 Builder.GetInsertPoint()); 2935 // Replace the operands of the cloned instructions with their scalar 2936 // equivalents in the new loop. 2937 for (auto &I : enumerate(RepRecipe->operands())) { 2938 auto InputInstance = Instance; 2939 VPValue *Operand = I.value(); 2940 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2941 if (OperandR && OperandR->isUniform()) 2942 InputInstance.Lane = VPLane::getFirstLane(); 2943 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2944 } 2945 addNewMetadata(Cloned, Instr); 2946 2947 // Place the cloned scalar in the new loop. 2948 Builder.Insert(Cloned); 2949 2950 State.set(RepRecipe, Cloned, Instance); 2951 2952 // If we just cloned a new assumption, add it the assumption cache. 2953 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2954 AC->registerAssumption(II); 2955 2956 // End if-block. 2957 if (IfPredicateInstr) 2958 PredicatedInstructions.push_back(Cloned); 2959 } 2960 2961 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2962 BasicBlock *Header = L->getHeader(); 2963 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2964 2965 IRBuilder<> B(Header->getTerminator()); 2966 Instruction *OldInst = 2967 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2968 setDebugLocFromInst(OldInst, &B); 2969 2970 // Connect the header to the exit and header blocks and replace the old 2971 // terminator. 2972 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2973 2974 // Now we have two terminators. Remove the old one from the block. 2975 Header->getTerminator()->eraseFromParent(); 2976 } 2977 2978 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2979 if (TripCount) 2980 return TripCount; 2981 2982 assert(L && "Create Trip Count for null loop."); 2983 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2984 // Find the loop boundaries. 2985 ScalarEvolution *SE = PSE.getSE(); 2986 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2987 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2988 "Invalid loop count"); 2989 2990 Type *IdxTy = Legal->getWidestInductionType(); 2991 assert(IdxTy && "No type for induction"); 2992 2993 // The exit count might have the type of i64 while the phi is i32. This can 2994 // happen if we have an induction variable that is sign extended before the 2995 // compare. The only way that we get a backedge taken count is that the 2996 // induction variable was signed and as such will not overflow. In such a case 2997 // truncation is legal. 2998 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2999 IdxTy->getPrimitiveSizeInBits()) 3000 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3001 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3002 3003 // Get the total trip count from the count by adding 1. 3004 const SCEV *ExitCount = SE->getAddExpr( 3005 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3006 3007 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3008 3009 // Expand the trip count and place the new instructions in the preheader. 3010 // Notice that the pre-header does not change, only the loop body. 3011 SCEVExpander Exp(*SE, DL, "induction"); 3012 3013 // Count holds the overall loop count (N). 3014 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3015 L->getLoopPreheader()->getTerminator()); 3016 3017 if (TripCount->getType()->isPointerTy()) 3018 TripCount = 3019 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3020 L->getLoopPreheader()->getTerminator()); 3021 3022 return TripCount; 3023 } 3024 3025 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3026 if (VectorTripCount) 3027 return VectorTripCount; 3028 3029 Value *TC = getOrCreateTripCount(L); 3030 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3031 3032 Type *Ty = TC->getType(); 3033 // This is where we can make the step a runtime constant. 3034 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3035 3036 // If the tail is to be folded by masking, round the number of iterations N 3037 // up to a multiple of Step instead of rounding down. This is done by first 3038 // adding Step-1 and then rounding down. Note that it's ok if this addition 3039 // overflows: the vector induction variable will eventually wrap to zero given 3040 // that it starts at zero and its Step is a power of two; the loop will then 3041 // exit, with the last early-exit vector comparison also producing all-true. 3042 if (Cost->foldTailByMasking()) { 3043 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3044 "VF*UF must be a power of 2 when folding tail by masking"); 3045 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3046 TC = Builder.CreateAdd( 3047 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3048 } 3049 3050 // Now we need to generate the expression for the part of the loop that the 3051 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3052 // iterations are not required for correctness, or N - Step, otherwise. Step 3053 // is equal to the vectorization factor (number of SIMD elements) times the 3054 // unroll factor (number of SIMD instructions). 3055 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3056 3057 // There are cases where we *must* run at least one iteration in the remainder 3058 // loop. See the cost model for when this can happen. If the step evenly 3059 // divides the trip count, we set the remainder to be equal to the step. If 3060 // the step does not evenly divide the trip count, no adjustment is necessary 3061 // since there will already be scalar iterations. Note that the minimum 3062 // iterations check ensures that N >= Step. 3063 if (Cost->requiresScalarEpilogue(VF)) { 3064 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3065 R = Builder.CreateSelect(IsZero, Step, R); 3066 } 3067 3068 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3069 3070 return VectorTripCount; 3071 } 3072 3073 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3074 const DataLayout &DL) { 3075 // Verify that V is a vector type with same number of elements as DstVTy. 3076 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3077 unsigned VF = DstFVTy->getNumElements(); 3078 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3079 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3080 Type *SrcElemTy = SrcVecTy->getElementType(); 3081 Type *DstElemTy = DstFVTy->getElementType(); 3082 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3083 "Vector elements must have same size"); 3084 3085 // Do a direct cast if element types are castable. 3086 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3087 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3088 } 3089 // V cannot be directly casted to desired vector type. 3090 // May happen when V is a floating point vector but DstVTy is a vector of 3091 // pointers or vice-versa. Handle this using a two-step bitcast using an 3092 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3093 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3094 "Only one type should be a pointer type"); 3095 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3096 "Only one type should be a floating point type"); 3097 Type *IntTy = 3098 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3099 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3100 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3101 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3102 } 3103 3104 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3105 BasicBlock *Bypass) { 3106 Value *Count = getOrCreateTripCount(L); 3107 // Reuse existing vector loop preheader for TC checks. 3108 // Note that new preheader block is generated for vector loop. 3109 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3110 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3111 3112 // Generate code to check if the loop's trip count is less than VF * UF, or 3113 // equal to it in case a scalar epilogue is required; this implies that the 3114 // vector trip count is zero. This check also covers the case where adding one 3115 // to the backedge-taken count overflowed leading to an incorrect trip count 3116 // of zero. In this case we will also jump to the scalar loop. 3117 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3118 : ICmpInst::ICMP_ULT; 3119 3120 // If tail is to be folded, vector loop takes care of all iterations. 3121 Value *CheckMinIters = Builder.getFalse(); 3122 if (!Cost->foldTailByMasking()) { 3123 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3124 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3125 } 3126 // Create new preheader for vector loop. 3127 LoopVectorPreHeader = 3128 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3129 "vector.ph"); 3130 3131 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3132 DT->getNode(Bypass)->getIDom()) && 3133 "TC check is expected to dominate Bypass"); 3134 3135 // Update dominator for Bypass & LoopExit (if needed). 3136 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3137 if (!Cost->requiresScalarEpilogue(VF)) 3138 // If there is an epilogue which must run, there's no edge from the 3139 // middle block to exit blocks and thus no need to update the immediate 3140 // dominator of the exit blocks. 3141 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3142 3143 ReplaceInstWithInst( 3144 TCCheckBlock->getTerminator(), 3145 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3146 LoopBypassBlocks.push_back(TCCheckBlock); 3147 } 3148 3149 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3150 3151 BasicBlock *const SCEVCheckBlock = 3152 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3153 if (!SCEVCheckBlock) 3154 return nullptr; 3155 3156 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3157 (OptForSizeBasedOnProfile && 3158 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3159 "Cannot SCEV check stride or overflow when optimizing for size"); 3160 3161 3162 // Update dominator only if this is first RT check. 3163 if (LoopBypassBlocks.empty()) { 3164 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3165 if (!Cost->requiresScalarEpilogue(VF)) 3166 // If there is an epilogue which must run, there's no edge from the 3167 // middle block to exit blocks and thus no need to update the immediate 3168 // dominator of the exit blocks. 3169 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3170 } 3171 3172 LoopBypassBlocks.push_back(SCEVCheckBlock); 3173 AddedSafetyChecks = true; 3174 return SCEVCheckBlock; 3175 } 3176 3177 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3178 BasicBlock *Bypass) { 3179 // VPlan-native path does not do any analysis for runtime checks currently. 3180 if (EnableVPlanNativePath) 3181 return nullptr; 3182 3183 BasicBlock *const MemCheckBlock = 3184 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3185 3186 // Check if we generated code that checks in runtime if arrays overlap. We put 3187 // the checks into a separate block to make the more common case of few 3188 // elements faster. 3189 if (!MemCheckBlock) 3190 return nullptr; 3191 3192 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3193 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3194 "Cannot emit memory checks when optimizing for size, unless forced " 3195 "to vectorize."); 3196 ORE->emit([&]() { 3197 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3198 L->getStartLoc(), L->getHeader()) 3199 << "Code-size may be reduced by not forcing " 3200 "vectorization, or by source-code modifications " 3201 "eliminating the need for runtime checks " 3202 "(e.g., adding 'restrict')."; 3203 }); 3204 } 3205 3206 LoopBypassBlocks.push_back(MemCheckBlock); 3207 3208 AddedSafetyChecks = true; 3209 3210 // We currently don't use LoopVersioning for the actual loop cloning but we 3211 // still use it to add the noalias metadata. 3212 LVer = std::make_unique<LoopVersioning>( 3213 *Legal->getLAI(), 3214 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3215 DT, PSE.getSE()); 3216 LVer->prepareNoAliasMetadata(); 3217 return MemCheckBlock; 3218 } 3219 3220 Value *InnerLoopVectorizer::emitTransformedIndex( 3221 IRBuilderBase &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3222 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3223 3224 SCEVExpander Exp(*SE, DL, "induction"); 3225 auto Step = ID.getStep(); 3226 auto StartValue = ID.getStartValue(); 3227 assert(Index->getType()->getScalarType() == Step->getType() && 3228 "Index scalar type does not match StepValue type"); 3229 3230 // Note: the IR at this point is broken. We cannot use SE to create any new 3231 // SCEV and then expand it, hoping that SCEV's simplification will give us 3232 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3233 // lead to various SCEV crashes. So all we can do is to use builder and rely 3234 // on InstCombine for future simplifications. Here we handle some trivial 3235 // cases only. 3236 auto CreateAdd = [&B](Value *X, Value *Y) { 3237 assert(X->getType() == Y->getType() && "Types don't match!"); 3238 if (auto *CX = dyn_cast<ConstantInt>(X)) 3239 if (CX->isZero()) 3240 return Y; 3241 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3242 if (CY->isZero()) 3243 return X; 3244 return B.CreateAdd(X, Y); 3245 }; 3246 3247 // We allow X to be a vector type, in which case Y will potentially be 3248 // splatted into a vector with the same element count. 3249 auto CreateMul = [&B](Value *X, Value *Y) { 3250 assert(X->getType()->getScalarType() == Y->getType() && 3251 "Types don't match!"); 3252 if (auto *CX = dyn_cast<ConstantInt>(X)) 3253 if (CX->isOne()) 3254 return Y; 3255 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3256 if (CY->isOne()) 3257 return X; 3258 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3259 if (XVTy && !isa<VectorType>(Y->getType())) 3260 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3261 return B.CreateMul(X, Y); 3262 }; 3263 3264 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3265 // loop, choose the end of the vector loop header (=VectorHeader), because 3266 // the DomTree is not kept up-to-date for additional blocks generated in the 3267 // vector loop. By using the header as insertion point, we guarantee that the 3268 // expanded instructions dominate all their uses. 3269 auto GetInsertPoint = [this, &B, VectorHeader]() { 3270 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3271 if (InsertBB != LoopVectorBody && 3272 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3273 return VectorHeader->getTerminator(); 3274 return &*B.GetInsertPoint(); 3275 }; 3276 3277 switch (ID.getKind()) { 3278 case InductionDescriptor::IK_IntInduction: { 3279 assert(!isa<VectorType>(Index->getType()) && 3280 "Vector indices not supported for integer inductions yet"); 3281 assert(Index->getType() == StartValue->getType() && 3282 "Index type does not match StartValue type"); 3283 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3284 return B.CreateSub(StartValue, Index); 3285 auto *Offset = CreateMul( 3286 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3287 return CreateAdd(StartValue, Offset); 3288 } 3289 case InductionDescriptor::IK_PtrInduction: { 3290 assert(isa<SCEVConstant>(Step) && 3291 "Expected constant step for pointer induction"); 3292 return B.CreateGEP( 3293 ID.getElementType(), StartValue, 3294 CreateMul(Index, 3295 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3296 GetInsertPoint()))); 3297 } 3298 case InductionDescriptor::IK_FpInduction: { 3299 assert(!isa<VectorType>(Index->getType()) && 3300 "Vector indices not supported for FP inductions yet"); 3301 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3302 auto InductionBinOp = ID.getInductionBinOp(); 3303 assert(InductionBinOp && 3304 (InductionBinOp->getOpcode() == Instruction::FAdd || 3305 InductionBinOp->getOpcode() == Instruction::FSub) && 3306 "Original bin op should be defined for FP induction"); 3307 3308 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3309 Value *MulExp = B.CreateFMul(StepValue, Index); 3310 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3311 "induction"); 3312 } 3313 case InductionDescriptor::IK_NoInduction: 3314 return nullptr; 3315 } 3316 llvm_unreachable("invalid enum"); 3317 } 3318 3319 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3320 LoopScalarBody = OrigLoop->getHeader(); 3321 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3322 assert(LoopVectorPreHeader && "Invalid loop structure"); 3323 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3324 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3325 "multiple exit loop without required epilogue?"); 3326 3327 LoopMiddleBlock = 3328 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3329 LI, nullptr, Twine(Prefix) + "middle.block"); 3330 LoopScalarPreHeader = 3331 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3332 nullptr, Twine(Prefix) + "scalar.ph"); 3333 3334 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3335 3336 // Set up the middle block terminator. Two cases: 3337 // 1) If we know that we must execute the scalar epilogue, emit an 3338 // unconditional branch. 3339 // 2) Otherwise, we must have a single unique exit block (due to how we 3340 // implement the multiple exit case). In this case, set up a conditonal 3341 // branch from the middle block to the loop scalar preheader, and the 3342 // exit block. completeLoopSkeleton will update the condition to use an 3343 // iteration check, if required to decide whether to execute the remainder. 3344 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3345 BranchInst::Create(LoopScalarPreHeader) : 3346 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3347 Builder.getTrue()); 3348 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3349 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3350 3351 // We intentionally don't let SplitBlock to update LoopInfo since 3352 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3353 // LoopVectorBody is explicitly added to the correct place few lines later. 3354 LoopVectorBody = 3355 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3356 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3357 3358 // Update dominator for loop exit. 3359 if (!Cost->requiresScalarEpilogue(VF)) 3360 // If there is an epilogue which must run, there's no edge from the 3361 // middle block to exit blocks and thus no need to update the immediate 3362 // dominator of the exit blocks. 3363 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3364 3365 // Create and register the new vector loop. 3366 Loop *Lp = LI->AllocateLoop(); 3367 Loop *ParentLoop = OrigLoop->getParentLoop(); 3368 3369 // Insert the new loop into the loop nest and register the new basic blocks 3370 // before calling any utilities such as SCEV that require valid LoopInfo. 3371 if (ParentLoop) { 3372 ParentLoop->addChildLoop(Lp); 3373 } else { 3374 LI->addTopLevelLoop(Lp); 3375 } 3376 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3377 return Lp; 3378 } 3379 3380 void InnerLoopVectorizer::createInductionResumeValues( 3381 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3382 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3383 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3384 "Inconsistent information about additional bypass."); 3385 3386 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3387 assert(VectorTripCount && L && "Expected valid arguments"); 3388 // We are going to resume the execution of the scalar loop. 3389 // Go over all of the induction variables that we found and fix the 3390 // PHIs that are left in the scalar version of the loop. 3391 // The starting values of PHI nodes depend on the counter of the last 3392 // iteration in the vectorized loop. 3393 // If we come from a bypass edge then we need to start from the original 3394 // start value. 3395 Instruction *OldInduction = Legal->getPrimaryInduction(); 3396 for (auto &InductionEntry : Legal->getInductionVars()) { 3397 PHINode *OrigPhi = InductionEntry.first; 3398 InductionDescriptor II = InductionEntry.second; 3399 3400 // Create phi nodes to merge from the backedge-taken check block. 3401 PHINode *BCResumeVal = 3402 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3403 LoopScalarPreHeader->getTerminator()); 3404 // Copy original phi DL over to the new one. 3405 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3406 Value *&EndValue = IVEndValues[OrigPhi]; 3407 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3408 if (OrigPhi == OldInduction) { 3409 // We know what the end value is. 3410 EndValue = VectorTripCount; 3411 } else { 3412 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3413 3414 // Fast-math-flags propagate from the original induction instruction. 3415 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3416 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3417 3418 Type *StepType = II.getStep()->getType(); 3419 Instruction::CastOps CastOp = 3420 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3421 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3422 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3423 EndValue = 3424 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3425 EndValue->setName("ind.end"); 3426 3427 // Compute the end value for the additional bypass (if applicable). 3428 if (AdditionalBypass.first) { 3429 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3430 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3431 StepType, true); 3432 CRD = 3433 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3434 EndValueFromAdditionalBypass = 3435 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3436 EndValueFromAdditionalBypass->setName("ind.end"); 3437 } 3438 } 3439 // The new PHI merges the original incoming value, in case of a bypass, 3440 // or the value at the end of the vectorized loop. 3441 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3442 3443 // Fix the scalar body counter (PHI node). 3444 // The old induction's phi node in the scalar body needs the truncated 3445 // value. 3446 for (BasicBlock *BB : LoopBypassBlocks) 3447 BCResumeVal->addIncoming(II.getStartValue(), BB); 3448 3449 if (AdditionalBypass.first) 3450 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3451 EndValueFromAdditionalBypass); 3452 3453 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3454 } 3455 } 3456 3457 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3458 MDNode *OrigLoopID) { 3459 assert(L && "Expected valid loop."); 3460 3461 // The trip counts should be cached by now. 3462 Value *Count = getOrCreateTripCount(L); 3463 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3464 3465 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3466 3467 // Add a check in the middle block to see if we have completed 3468 // all of the iterations in the first vector loop. Three cases: 3469 // 1) If we require a scalar epilogue, there is no conditional branch as 3470 // we unconditionally branch to the scalar preheader. Do nothing. 3471 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3472 // Thus if tail is to be folded, we know we don't need to run the 3473 // remainder and we can use the previous value for the condition (true). 3474 // 3) Otherwise, construct a runtime check. 3475 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3476 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3477 Count, VectorTripCount, "cmp.n", 3478 LoopMiddleBlock->getTerminator()); 3479 3480 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3481 // of the corresponding compare because they may have ended up with 3482 // different line numbers and we want to avoid awkward line stepping while 3483 // debugging. Eg. if the compare has got a line number inside the loop. 3484 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3485 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3486 } 3487 3488 // Get ready to start creating new instructions into the vectorized body. 3489 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3490 "Inconsistent vector loop preheader"); 3491 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3492 3493 #ifdef EXPENSIVE_CHECKS 3494 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3495 LI->verify(*DT); 3496 #endif 3497 3498 return LoopVectorPreHeader; 3499 } 3500 3501 std::pair<BasicBlock *, Value *> 3502 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3503 /* 3504 In this function we generate a new loop. The new loop will contain 3505 the vectorized instructions while the old loop will continue to run the 3506 scalar remainder. 3507 3508 [ ] <-- loop iteration number check. 3509 / | 3510 / v 3511 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3512 | / | 3513 | / v 3514 || [ ] <-- vector pre header. 3515 |/ | 3516 | v 3517 | [ ] \ 3518 | [ ]_| <-- vector loop. 3519 | | 3520 | v 3521 \ -[ ] <--- middle-block. 3522 \/ | 3523 /\ v 3524 | ->[ ] <--- new preheader. 3525 | | 3526 (opt) v <-- edge from middle to exit iff epilogue is not required. 3527 | [ ] \ 3528 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3529 \ | 3530 \ v 3531 >[ ] <-- exit block(s). 3532 ... 3533 */ 3534 3535 // Get the metadata of the original loop before it gets modified. 3536 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3537 3538 // Workaround! Compute the trip count of the original loop and cache it 3539 // before we start modifying the CFG. This code has a systemic problem 3540 // wherein it tries to run analysis over partially constructed IR; this is 3541 // wrong, and not simply for SCEV. The trip count of the original loop 3542 // simply happens to be prone to hitting this in practice. In theory, we 3543 // can hit the same issue for any SCEV, or ValueTracking query done during 3544 // mutation. See PR49900. 3545 getOrCreateTripCount(OrigLoop); 3546 3547 // Create an empty vector loop, and prepare basic blocks for the runtime 3548 // checks. 3549 Loop *Lp = createVectorLoopSkeleton(""); 3550 3551 // Now, compare the new count to zero. If it is zero skip the vector loop and 3552 // jump to the scalar loop. This check also covers the case where the 3553 // backedge-taken count is uint##_max: adding one to it will overflow leading 3554 // to an incorrect trip count of zero. In this (rare) case we will also jump 3555 // to the scalar loop. 3556 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3557 3558 // Generate the code to check any assumptions that we've made for SCEV 3559 // expressions. 3560 emitSCEVChecks(Lp, LoopScalarPreHeader); 3561 3562 // Generate the code that checks in runtime if arrays overlap. We put the 3563 // checks into a separate block to make the more common case of few elements 3564 // faster. 3565 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3566 3567 createHeaderBranch(Lp); 3568 3569 // Emit phis for the new starting index of the scalar loop. 3570 createInductionResumeValues(Lp); 3571 3572 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3573 } 3574 3575 // Fix up external users of the induction variable. At this point, we are 3576 // in LCSSA form, with all external PHIs that use the IV having one input value, 3577 // coming from the remainder loop. We need those PHIs to also have a correct 3578 // value for the IV when arriving directly from the middle block. 3579 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3580 const InductionDescriptor &II, 3581 Value *CountRoundDown, Value *EndValue, 3582 BasicBlock *MiddleBlock) { 3583 // There are two kinds of external IV usages - those that use the value 3584 // computed in the last iteration (the PHI) and those that use the penultimate 3585 // value (the value that feeds into the phi from the loop latch). 3586 // We allow both, but they, obviously, have different values. 3587 3588 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3589 3590 DenseMap<Value *, Value *> MissingVals; 3591 3592 // An external user of the last iteration's value should see the value that 3593 // the remainder loop uses to initialize its own IV. 3594 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3595 for (User *U : PostInc->users()) { 3596 Instruction *UI = cast<Instruction>(U); 3597 if (!OrigLoop->contains(UI)) { 3598 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3599 MissingVals[UI] = EndValue; 3600 } 3601 } 3602 3603 // An external user of the penultimate value need to see EndValue - Step. 3604 // The simplest way to get this is to recompute it from the constituent SCEVs, 3605 // that is Start + (Step * (CRD - 1)). 3606 for (User *U : OrigPhi->users()) { 3607 auto *UI = cast<Instruction>(U); 3608 if (!OrigLoop->contains(UI)) { 3609 const DataLayout &DL = 3610 OrigLoop->getHeader()->getModule()->getDataLayout(); 3611 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3612 3613 IRBuilder<> B(MiddleBlock->getTerminator()); 3614 3615 // Fast-math-flags propagate from the original induction instruction. 3616 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3617 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3618 3619 Value *CountMinusOne = B.CreateSub( 3620 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3621 Value *CMO = 3622 !II.getStep()->getType()->isIntegerTy() 3623 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3624 II.getStep()->getType()) 3625 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3626 CMO->setName("cast.cmo"); 3627 Value *Escape = 3628 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3629 Escape->setName("ind.escape"); 3630 MissingVals[UI] = Escape; 3631 } 3632 } 3633 3634 for (auto &I : MissingVals) { 3635 PHINode *PHI = cast<PHINode>(I.first); 3636 // One corner case we have to handle is two IVs "chasing" each-other, 3637 // that is %IV2 = phi [...], [ %IV1, %latch ] 3638 // In this case, if IV1 has an external use, we need to avoid adding both 3639 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3640 // don't already have an incoming value for the middle block. 3641 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3642 PHI->addIncoming(I.second, MiddleBlock); 3643 } 3644 } 3645 3646 namespace { 3647 3648 struct CSEDenseMapInfo { 3649 static bool canHandle(const Instruction *I) { 3650 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3651 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3652 } 3653 3654 static inline Instruction *getEmptyKey() { 3655 return DenseMapInfo<Instruction *>::getEmptyKey(); 3656 } 3657 3658 static inline Instruction *getTombstoneKey() { 3659 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3660 } 3661 3662 static unsigned getHashValue(const Instruction *I) { 3663 assert(canHandle(I) && "Unknown instruction!"); 3664 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3665 I->value_op_end())); 3666 } 3667 3668 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3669 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3670 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3671 return LHS == RHS; 3672 return LHS->isIdenticalTo(RHS); 3673 } 3674 }; 3675 3676 } // end anonymous namespace 3677 3678 ///Perform cse of induction variable instructions. 3679 static void cse(BasicBlock *BB) { 3680 // Perform simple cse. 3681 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3682 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3683 if (!CSEDenseMapInfo::canHandle(&In)) 3684 continue; 3685 3686 // Check if we can replace this instruction with any of the 3687 // visited instructions. 3688 if (Instruction *V = CSEMap.lookup(&In)) { 3689 In.replaceAllUsesWith(V); 3690 In.eraseFromParent(); 3691 continue; 3692 } 3693 3694 CSEMap[&In] = &In; 3695 } 3696 } 3697 3698 InstructionCost 3699 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3700 bool &NeedToScalarize) const { 3701 Function *F = CI->getCalledFunction(); 3702 Type *ScalarRetTy = CI->getType(); 3703 SmallVector<Type *, 4> Tys, ScalarTys; 3704 for (auto &ArgOp : CI->args()) 3705 ScalarTys.push_back(ArgOp->getType()); 3706 3707 // Estimate cost of scalarized vector call. The source operands are assumed 3708 // to be vectors, so we need to extract individual elements from there, 3709 // execute VF scalar calls, and then gather the result into the vector return 3710 // value. 3711 InstructionCost ScalarCallCost = 3712 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3713 if (VF.isScalar()) 3714 return ScalarCallCost; 3715 3716 // Compute corresponding vector type for return value and arguments. 3717 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3718 for (Type *ScalarTy : ScalarTys) 3719 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3720 3721 // Compute costs of unpacking argument values for the scalar calls and 3722 // packing the return values to a vector. 3723 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3724 3725 InstructionCost Cost = 3726 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3727 3728 // If we can't emit a vector call for this function, then the currently found 3729 // cost is the cost we need to return. 3730 NeedToScalarize = true; 3731 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3732 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3733 3734 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3735 return Cost; 3736 3737 // If the corresponding vector cost is cheaper, return its cost. 3738 InstructionCost VectorCallCost = 3739 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3740 if (VectorCallCost < Cost) { 3741 NeedToScalarize = false; 3742 Cost = VectorCallCost; 3743 } 3744 return Cost; 3745 } 3746 3747 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3748 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3749 return Elt; 3750 return VectorType::get(Elt, VF); 3751 } 3752 3753 InstructionCost 3754 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3755 ElementCount VF) const { 3756 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3757 assert(ID && "Expected intrinsic call!"); 3758 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3759 FastMathFlags FMF; 3760 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3761 FMF = FPMO->getFastMathFlags(); 3762 3763 SmallVector<const Value *> Arguments(CI->args()); 3764 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3765 SmallVector<Type *> ParamTys; 3766 std::transform(FTy->param_begin(), FTy->param_end(), 3767 std::back_inserter(ParamTys), 3768 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3769 3770 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3771 dyn_cast<IntrinsicInst>(CI)); 3772 return TTI.getIntrinsicInstrCost(CostAttrs, 3773 TargetTransformInfo::TCK_RecipThroughput); 3774 } 3775 3776 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3777 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3778 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3779 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3780 } 3781 3782 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3783 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3784 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3785 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3786 } 3787 3788 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3789 // For every instruction `I` in MinBWs, truncate the operands, create a 3790 // truncated version of `I` and reextend its result. InstCombine runs 3791 // later and will remove any ext/trunc pairs. 3792 SmallPtrSet<Value *, 4> Erased; 3793 for (const auto &KV : Cost->getMinimalBitwidths()) { 3794 // If the value wasn't vectorized, we must maintain the original scalar 3795 // type. The absence of the value from State indicates that it 3796 // wasn't vectorized. 3797 // FIXME: Should not rely on getVPValue at this point. 3798 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3799 if (!State.hasAnyVectorValue(Def)) 3800 continue; 3801 for (unsigned Part = 0; Part < UF; ++Part) { 3802 Value *I = State.get(Def, Part); 3803 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3804 continue; 3805 Type *OriginalTy = I->getType(); 3806 Type *ScalarTruncatedTy = 3807 IntegerType::get(OriginalTy->getContext(), KV.second); 3808 auto *TruncatedTy = VectorType::get( 3809 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3810 if (TruncatedTy == OriginalTy) 3811 continue; 3812 3813 IRBuilder<> B(cast<Instruction>(I)); 3814 auto ShrinkOperand = [&](Value *V) -> Value * { 3815 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3816 if (ZI->getSrcTy() == TruncatedTy) 3817 return ZI->getOperand(0); 3818 return B.CreateZExtOrTrunc(V, TruncatedTy); 3819 }; 3820 3821 // The actual instruction modification depends on the instruction type, 3822 // unfortunately. 3823 Value *NewI = nullptr; 3824 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3825 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3826 ShrinkOperand(BO->getOperand(1))); 3827 3828 // Any wrapping introduced by shrinking this operation shouldn't be 3829 // considered undefined behavior. So, we can't unconditionally copy 3830 // arithmetic wrapping flags to NewI. 3831 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3832 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3833 NewI = 3834 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3835 ShrinkOperand(CI->getOperand(1))); 3836 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3837 NewI = B.CreateSelect(SI->getCondition(), 3838 ShrinkOperand(SI->getTrueValue()), 3839 ShrinkOperand(SI->getFalseValue())); 3840 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3841 switch (CI->getOpcode()) { 3842 default: 3843 llvm_unreachable("Unhandled cast!"); 3844 case Instruction::Trunc: 3845 NewI = ShrinkOperand(CI->getOperand(0)); 3846 break; 3847 case Instruction::SExt: 3848 NewI = B.CreateSExtOrTrunc( 3849 CI->getOperand(0), 3850 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3851 break; 3852 case Instruction::ZExt: 3853 NewI = B.CreateZExtOrTrunc( 3854 CI->getOperand(0), 3855 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3856 break; 3857 } 3858 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3859 auto Elements0 = 3860 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3861 auto *O0 = B.CreateZExtOrTrunc( 3862 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3863 auto Elements1 = 3864 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3865 auto *O1 = B.CreateZExtOrTrunc( 3866 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3867 3868 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3869 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3870 // Don't do anything with the operands, just extend the result. 3871 continue; 3872 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3873 auto Elements = 3874 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3875 auto *O0 = B.CreateZExtOrTrunc( 3876 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3877 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3878 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3879 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3880 auto Elements = 3881 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3882 auto *O0 = B.CreateZExtOrTrunc( 3883 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3884 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3885 } else { 3886 // If we don't know what to do, be conservative and don't do anything. 3887 continue; 3888 } 3889 3890 // Lastly, extend the result. 3891 NewI->takeName(cast<Instruction>(I)); 3892 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3893 I->replaceAllUsesWith(Res); 3894 cast<Instruction>(I)->eraseFromParent(); 3895 Erased.insert(I); 3896 State.reset(Def, Res, Part); 3897 } 3898 } 3899 3900 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3901 for (const auto &KV : Cost->getMinimalBitwidths()) { 3902 // If the value wasn't vectorized, we must maintain the original scalar 3903 // type. The absence of the value from State indicates that it 3904 // wasn't vectorized. 3905 // FIXME: Should not rely on getVPValue at this point. 3906 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3907 if (!State.hasAnyVectorValue(Def)) 3908 continue; 3909 for (unsigned Part = 0; Part < UF; ++Part) { 3910 Value *I = State.get(Def, Part); 3911 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3912 if (Inst && Inst->use_empty()) { 3913 Value *NewI = Inst->getOperand(0); 3914 Inst->eraseFromParent(); 3915 State.reset(Def, NewI, Part); 3916 } 3917 } 3918 } 3919 } 3920 3921 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3922 // Insert truncates and extends for any truncated instructions as hints to 3923 // InstCombine. 3924 if (VF.isVector()) 3925 truncateToMinimalBitwidths(State); 3926 3927 // Fix widened non-induction PHIs by setting up the PHI operands. 3928 if (OrigPHIsToFix.size()) { 3929 assert(EnableVPlanNativePath && 3930 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3931 fixNonInductionPHIs(State); 3932 } 3933 3934 // At this point every instruction in the original loop is widened to a 3935 // vector form. Now we need to fix the recurrences in the loop. These PHI 3936 // nodes are currently empty because we did not want to introduce cycles. 3937 // This is the second stage of vectorizing recurrences. 3938 fixCrossIterationPHIs(State); 3939 3940 // Forget the original basic block. 3941 PSE.getSE()->forgetLoop(OrigLoop); 3942 3943 // If we inserted an edge from the middle block to the unique exit block, 3944 // update uses outside the loop (phis) to account for the newly inserted 3945 // edge. 3946 if (!Cost->requiresScalarEpilogue(VF)) { 3947 // Fix-up external users of the induction variables. 3948 for (auto &Entry : Legal->getInductionVars()) 3949 fixupIVUsers(Entry.first, Entry.second, 3950 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3951 IVEndValues[Entry.first], LoopMiddleBlock); 3952 3953 fixLCSSAPHIs(State); 3954 } 3955 3956 for (Instruction *PI : PredicatedInstructions) 3957 sinkScalarOperands(&*PI); 3958 3959 // Remove redundant induction instructions. 3960 cse(LoopVectorBody); 3961 3962 // Set/update profile weights for the vector and remainder loops as original 3963 // loop iterations are now distributed among them. Note that original loop 3964 // represented by LoopScalarBody becomes remainder loop after vectorization. 3965 // 3966 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3967 // end up getting slightly roughened result but that should be OK since 3968 // profile is not inherently precise anyway. Note also possible bypass of 3969 // vector code caused by legality checks is ignored, assigning all the weight 3970 // to the vector loop, optimistically. 3971 // 3972 // For scalable vectorization we can't know at compile time how many iterations 3973 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3974 // vscale of '1'. 3975 setProfileInfoAfterUnrolling( 3976 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3977 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3978 } 3979 3980 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3981 // In order to support recurrences we need to be able to vectorize Phi nodes. 3982 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3983 // stage #2: We now need to fix the recurrences by adding incoming edges to 3984 // the currently empty PHI nodes. At this point every instruction in the 3985 // original loop is widened to a vector form so we can use them to construct 3986 // the incoming edges. 3987 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3988 for (VPRecipeBase &R : Header->phis()) { 3989 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3990 fixReduction(ReductionPhi, State); 3991 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3992 fixFirstOrderRecurrence(FOR, State); 3993 } 3994 } 3995 3996 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3997 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3998 // This is the second phase of vectorizing first-order recurrences. An 3999 // overview of the transformation is described below. Suppose we have the 4000 // following loop. 4001 // 4002 // for (int i = 0; i < n; ++i) 4003 // b[i] = a[i] - a[i - 1]; 4004 // 4005 // There is a first-order recurrence on "a". For this loop, the shorthand 4006 // scalar IR looks like: 4007 // 4008 // scalar.ph: 4009 // s_init = a[-1] 4010 // br scalar.body 4011 // 4012 // scalar.body: 4013 // i = phi [0, scalar.ph], [i+1, scalar.body] 4014 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4015 // s2 = a[i] 4016 // b[i] = s2 - s1 4017 // br cond, scalar.body, ... 4018 // 4019 // In this example, s1 is a recurrence because it's value depends on the 4020 // previous iteration. In the first phase of vectorization, we created a 4021 // vector phi v1 for s1. We now complete the vectorization and produce the 4022 // shorthand vector IR shown below (for VF = 4, UF = 1). 4023 // 4024 // vector.ph: 4025 // v_init = vector(..., ..., ..., a[-1]) 4026 // br vector.body 4027 // 4028 // vector.body 4029 // i = phi [0, vector.ph], [i+4, vector.body] 4030 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4031 // v2 = a[i, i+1, i+2, i+3]; 4032 // v3 = vector(v1(3), v2(0, 1, 2)) 4033 // b[i, i+1, i+2, i+3] = v2 - v3 4034 // br cond, vector.body, middle.block 4035 // 4036 // middle.block: 4037 // x = v2(3) 4038 // br scalar.ph 4039 // 4040 // scalar.ph: 4041 // s_init = phi [x, middle.block], [a[-1], otherwise] 4042 // br scalar.body 4043 // 4044 // After execution completes the vector loop, we extract the next value of 4045 // the recurrence (x) to use as the initial value in the scalar loop. 4046 4047 // Extract the last vector element in the middle block. This will be the 4048 // initial value for the recurrence when jumping to the scalar loop. 4049 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4050 Value *Incoming = State.get(PreviousDef, UF - 1); 4051 auto *ExtractForScalar = Incoming; 4052 auto *IdxTy = Builder.getInt32Ty(); 4053 if (VF.isVector()) { 4054 auto *One = ConstantInt::get(IdxTy, 1); 4055 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4056 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4057 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4058 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4059 "vector.recur.extract"); 4060 } 4061 // Extract the second last element in the middle block if the 4062 // Phi is used outside the loop. We need to extract the phi itself 4063 // and not the last element (the phi update in the current iteration). This 4064 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4065 // when the scalar loop is not run at all. 4066 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4067 if (VF.isVector()) { 4068 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4069 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4070 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4071 Incoming, Idx, "vector.recur.extract.for.phi"); 4072 } else if (UF > 1) 4073 // When loop is unrolled without vectorizing, initialize 4074 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4075 // of `Incoming`. This is analogous to the vectorized case above: extracting 4076 // the second last element when VF > 1. 4077 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4078 4079 // Fix the initial value of the original recurrence in the scalar loop. 4080 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4081 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4082 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4083 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4084 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4085 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4086 Start->addIncoming(Incoming, BB); 4087 } 4088 4089 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4090 Phi->setName("scalar.recur"); 4091 4092 // Finally, fix users of the recurrence outside the loop. The users will need 4093 // either the last value of the scalar recurrence or the last value of the 4094 // vector recurrence we extracted in the middle block. Since the loop is in 4095 // LCSSA form, we just need to find all the phi nodes for the original scalar 4096 // recurrence in the exit block, and then add an edge for the middle block. 4097 // Note that LCSSA does not imply single entry when the original scalar loop 4098 // had multiple exiting edges (as we always run the last iteration in the 4099 // scalar epilogue); in that case, there is no edge from middle to exit and 4100 // and thus no phis which needed updated. 4101 if (!Cost->requiresScalarEpilogue(VF)) 4102 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4103 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4104 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4105 } 4106 4107 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4108 VPTransformState &State) { 4109 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4110 // Get it's reduction variable descriptor. 4111 assert(Legal->isReductionVariable(OrigPhi) && 4112 "Unable to find the reduction variable"); 4113 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4114 4115 RecurKind RK = RdxDesc.getRecurrenceKind(); 4116 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4117 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4118 setDebugLocFromInst(ReductionStartValue); 4119 4120 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4121 // This is the vector-clone of the value that leaves the loop. 4122 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4123 4124 // Wrap flags are in general invalid after vectorization, clear them. 4125 clearReductionWrapFlags(RdxDesc, State); 4126 4127 // Before each round, move the insertion point right between 4128 // the PHIs and the values we are going to write. 4129 // This allows us to write both PHINodes and the extractelement 4130 // instructions. 4131 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4132 4133 setDebugLocFromInst(LoopExitInst); 4134 4135 Type *PhiTy = OrigPhi->getType(); 4136 // If tail is folded by masking, the vector value to leave the loop should be 4137 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4138 // instead of the former. For an inloop reduction the reduction will already 4139 // be predicated, and does not need to be handled here. 4140 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4141 for (unsigned Part = 0; Part < UF; ++Part) { 4142 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4143 Value *Sel = nullptr; 4144 for (User *U : VecLoopExitInst->users()) { 4145 if (isa<SelectInst>(U)) { 4146 assert(!Sel && "Reduction exit feeding two selects"); 4147 Sel = U; 4148 } else 4149 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4150 } 4151 assert(Sel && "Reduction exit feeds no select"); 4152 State.reset(LoopExitInstDef, Sel, Part); 4153 4154 // If the target can create a predicated operator for the reduction at no 4155 // extra cost in the loop (for example a predicated vadd), it can be 4156 // cheaper for the select to remain in the loop than be sunk out of it, 4157 // and so use the select value for the phi instead of the old 4158 // LoopExitValue. 4159 if (PreferPredicatedReductionSelect || 4160 TTI->preferPredicatedReductionSelect( 4161 RdxDesc.getOpcode(), PhiTy, 4162 TargetTransformInfo::ReductionFlags())) { 4163 auto *VecRdxPhi = 4164 cast<PHINode>(State.get(PhiR, Part)); 4165 VecRdxPhi->setIncomingValueForBlock( 4166 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4167 } 4168 } 4169 } 4170 4171 // If the vector reduction can be performed in a smaller type, we truncate 4172 // then extend the loop exit value to enable InstCombine to evaluate the 4173 // entire expression in the smaller type. 4174 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4175 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4176 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4177 Builder.SetInsertPoint( 4178 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4179 VectorParts RdxParts(UF); 4180 for (unsigned Part = 0; Part < UF; ++Part) { 4181 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4182 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4183 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4184 : Builder.CreateZExt(Trunc, VecTy); 4185 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4186 if (U != Trunc) { 4187 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4188 RdxParts[Part] = Extnd; 4189 } 4190 } 4191 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4192 for (unsigned Part = 0; Part < UF; ++Part) { 4193 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4194 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4195 } 4196 } 4197 4198 // Reduce all of the unrolled parts into a single vector. 4199 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4200 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4201 4202 // The middle block terminator has already been assigned a DebugLoc here (the 4203 // OrigLoop's single latch terminator). We want the whole middle block to 4204 // appear to execute on this line because: (a) it is all compiler generated, 4205 // (b) these instructions are always executed after evaluating the latch 4206 // conditional branch, and (c) other passes may add new predecessors which 4207 // terminate on this line. This is the easiest way to ensure we don't 4208 // accidentally cause an extra step back into the loop while debugging. 4209 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4210 if (PhiR->isOrdered()) 4211 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4212 else { 4213 // Floating-point operations should have some FMF to enable the reduction. 4214 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4215 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4216 for (unsigned Part = 1; Part < UF; ++Part) { 4217 Value *RdxPart = State.get(LoopExitInstDef, Part); 4218 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4219 ReducedPartRdx = Builder.CreateBinOp( 4220 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4221 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4222 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4223 ReducedPartRdx, RdxPart); 4224 else 4225 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4226 } 4227 } 4228 4229 // Create the reduction after the loop. Note that inloop reductions create the 4230 // target reduction in the loop using a Reduction recipe. 4231 if (VF.isVector() && !PhiR->isInLoop()) { 4232 ReducedPartRdx = 4233 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4234 // If the reduction can be performed in a smaller type, we need to extend 4235 // the reduction to the wider type before we branch to the original loop. 4236 if (PhiTy != RdxDesc.getRecurrenceType()) 4237 ReducedPartRdx = RdxDesc.isSigned() 4238 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4239 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4240 } 4241 4242 PHINode *ResumePhi = 4243 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4244 4245 // Create a phi node that merges control-flow from the backedge-taken check 4246 // block and the middle block. 4247 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4248 LoopScalarPreHeader->getTerminator()); 4249 4250 // If we are fixing reductions in the epilogue loop then we should already 4251 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4252 // we carry over the incoming values correctly. 4253 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4254 if (Incoming == LoopMiddleBlock) 4255 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4256 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4257 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4258 Incoming); 4259 else 4260 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4261 } 4262 4263 // Set the resume value for this reduction 4264 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4265 4266 // Now, we need to fix the users of the reduction variable 4267 // inside and outside of the scalar remainder loop. 4268 4269 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4270 // in the exit blocks. See comment on analogous loop in 4271 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4272 if (!Cost->requiresScalarEpilogue(VF)) 4273 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4274 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4275 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4276 4277 // Fix the scalar loop reduction variable with the incoming reduction sum 4278 // from the vector body and from the backedge value. 4279 int IncomingEdgeBlockIdx = 4280 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4281 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4282 // Pick the other block. 4283 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4284 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4285 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4286 } 4287 4288 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4289 VPTransformState &State) { 4290 RecurKind RK = RdxDesc.getRecurrenceKind(); 4291 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4292 return; 4293 4294 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4295 assert(LoopExitInstr && "null loop exit instruction"); 4296 SmallVector<Instruction *, 8> Worklist; 4297 SmallPtrSet<Instruction *, 8> Visited; 4298 Worklist.push_back(LoopExitInstr); 4299 Visited.insert(LoopExitInstr); 4300 4301 while (!Worklist.empty()) { 4302 Instruction *Cur = Worklist.pop_back_val(); 4303 if (isa<OverflowingBinaryOperator>(Cur)) 4304 for (unsigned Part = 0; Part < UF; ++Part) { 4305 // FIXME: Should not rely on getVPValue at this point. 4306 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4307 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4308 } 4309 4310 for (User *U : Cur->users()) { 4311 Instruction *UI = cast<Instruction>(U); 4312 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4313 Visited.insert(UI).second) 4314 Worklist.push_back(UI); 4315 } 4316 } 4317 } 4318 4319 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4320 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4321 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4322 // Some phis were already hand updated by the reduction and recurrence 4323 // code above, leave them alone. 4324 continue; 4325 4326 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4327 // Non-instruction incoming values will have only one value. 4328 4329 VPLane Lane = VPLane::getFirstLane(); 4330 if (isa<Instruction>(IncomingValue) && 4331 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4332 VF)) 4333 Lane = VPLane::getLastLaneForVF(VF); 4334 4335 // Can be a loop invariant incoming value or the last scalar value to be 4336 // extracted from the vectorized loop. 4337 // FIXME: Should not rely on getVPValue at this point. 4338 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4339 Value *lastIncomingValue = 4340 OrigLoop->isLoopInvariant(IncomingValue) 4341 ? IncomingValue 4342 : State.get(State.Plan->getVPValue(IncomingValue, true), 4343 VPIteration(UF - 1, Lane)); 4344 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4345 } 4346 } 4347 4348 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4349 // The basic block and loop containing the predicated instruction. 4350 auto *PredBB = PredInst->getParent(); 4351 auto *VectorLoop = LI->getLoopFor(PredBB); 4352 4353 // Initialize a worklist with the operands of the predicated instruction. 4354 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4355 4356 // Holds instructions that we need to analyze again. An instruction may be 4357 // reanalyzed if we don't yet know if we can sink it or not. 4358 SmallVector<Instruction *, 8> InstsToReanalyze; 4359 4360 // Returns true if a given use occurs in the predicated block. Phi nodes use 4361 // their operands in their corresponding predecessor blocks. 4362 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4363 auto *I = cast<Instruction>(U.getUser()); 4364 BasicBlock *BB = I->getParent(); 4365 if (auto *Phi = dyn_cast<PHINode>(I)) 4366 BB = Phi->getIncomingBlock( 4367 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4368 return BB == PredBB; 4369 }; 4370 4371 // Iteratively sink the scalarized operands of the predicated instruction 4372 // into the block we created for it. When an instruction is sunk, it's 4373 // operands are then added to the worklist. The algorithm ends after one pass 4374 // through the worklist doesn't sink a single instruction. 4375 bool Changed; 4376 do { 4377 // Add the instructions that need to be reanalyzed to the worklist, and 4378 // reset the changed indicator. 4379 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4380 InstsToReanalyze.clear(); 4381 Changed = false; 4382 4383 while (!Worklist.empty()) { 4384 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4385 4386 // We can't sink an instruction if it is a phi node, is not in the loop, 4387 // or may have side effects. 4388 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4389 I->mayHaveSideEffects()) 4390 continue; 4391 4392 // If the instruction is already in PredBB, check if we can sink its 4393 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4394 // sinking the scalar instruction I, hence it appears in PredBB; but it 4395 // may have failed to sink I's operands (recursively), which we try 4396 // (again) here. 4397 if (I->getParent() == PredBB) { 4398 Worklist.insert(I->op_begin(), I->op_end()); 4399 continue; 4400 } 4401 4402 // It's legal to sink the instruction if all its uses occur in the 4403 // predicated block. Otherwise, there's nothing to do yet, and we may 4404 // need to reanalyze the instruction. 4405 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4406 InstsToReanalyze.push_back(I); 4407 continue; 4408 } 4409 4410 // Move the instruction to the beginning of the predicated block, and add 4411 // it's operands to the worklist. 4412 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4413 Worklist.insert(I->op_begin(), I->op_end()); 4414 4415 // The sinking may have enabled other instructions to be sunk, so we will 4416 // need to iterate. 4417 Changed = true; 4418 } 4419 } while (Changed); 4420 } 4421 4422 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4423 for (PHINode *OrigPhi : OrigPHIsToFix) { 4424 VPWidenPHIRecipe *VPPhi = 4425 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4426 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4427 // Make sure the builder has a valid insert point. 4428 Builder.SetInsertPoint(NewPhi); 4429 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4430 VPValue *Inc = VPPhi->getIncomingValue(i); 4431 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4432 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4433 } 4434 } 4435 } 4436 4437 bool InnerLoopVectorizer::useOrderedReductions( 4438 const RecurrenceDescriptor &RdxDesc) { 4439 return Cost->useOrderedReductions(RdxDesc); 4440 } 4441 4442 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4443 VPWidenPHIRecipe *PhiR, 4444 VPTransformState &State) { 4445 PHINode *P = cast<PHINode>(PN); 4446 if (EnableVPlanNativePath) { 4447 // Currently we enter here in the VPlan-native path for non-induction 4448 // PHIs where all control flow is uniform. We simply widen these PHIs. 4449 // Create a vector phi with no operands - the vector phi operands will be 4450 // set at the end of vector code generation. 4451 Type *VecTy = (State.VF.isScalar()) 4452 ? PN->getType() 4453 : VectorType::get(PN->getType(), State.VF); 4454 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4455 State.set(PhiR, VecPhi, 0); 4456 OrigPHIsToFix.push_back(P); 4457 4458 return; 4459 } 4460 4461 assert(PN->getParent() == OrigLoop->getHeader() && 4462 "Non-header phis should have been handled elsewhere"); 4463 4464 // In order to support recurrences we need to be able to vectorize Phi nodes. 4465 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4466 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4467 // this value when we vectorize all of the instructions that use the PHI. 4468 4469 assert(!Legal->isReductionVariable(P) && 4470 "reductions should be handled elsewhere"); 4471 4472 setDebugLocFromInst(P); 4473 4474 // This PHINode must be an induction variable. 4475 // Make sure that we know about it. 4476 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4477 4478 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4479 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4480 4481 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4482 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4483 4484 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4485 // which can be found from the original scalar operations. 4486 switch (II.getKind()) { 4487 case InductionDescriptor::IK_NoInduction: 4488 llvm_unreachable("Unknown induction"); 4489 case InductionDescriptor::IK_IntInduction: 4490 case InductionDescriptor::IK_FpInduction: 4491 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4492 case InductionDescriptor::IK_PtrInduction: { 4493 // Handle the pointer induction variable case. 4494 assert(P->getType()->isPointerTy() && "Unexpected type."); 4495 4496 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4497 // This is the normalized GEP that starts counting at zero. 4498 Value *PtrInd = 4499 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4500 // Determine the number of scalars we need to generate for each unroll 4501 // iteration. If the instruction is uniform, we only need to generate the 4502 // first lane. Otherwise, we generate all VF values. 4503 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4504 assert((IsUniform || !State.VF.isScalable()) && 4505 "Cannot scalarize a scalable VF"); 4506 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4507 4508 for (unsigned Part = 0; Part < UF; ++Part) { 4509 Value *PartStart = 4510 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4511 4512 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4513 Value *Idx = Builder.CreateAdd( 4514 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4515 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4516 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4517 DL, II, State.CFG.PrevBB); 4518 SclrGep->setName("next.gep"); 4519 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4520 } 4521 } 4522 return; 4523 } 4524 assert(isa<SCEVConstant>(II.getStep()) && 4525 "Induction step not a SCEV constant!"); 4526 Type *PhiType = II.getStep()->getType(); 4527 4528 // Build a pointer phi 4529 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4530 Type *ScStValueType = ScalarStartValue->getType(); 4531 PHINode *NewPointerPhi = 4532 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4533 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4534 4535 // A pointer induction, performed by using a gep 4536 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4537 Instruction *InductionLoc = LoopLatch->getTerminator(); 4538 const SCEV *ScalarStep = II.getStep(); 4539 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4540 Value *ScalarStepValue = 4541 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4542 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4543 Value *NumUnrolledElems = 4544 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4545 Value *InductionGEP = GetElementPtrInst::Create( 4546 II.getElementType(), NewPointerPhi, 4547 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4548 InductionLoc); 4549 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4550 4551 // Create UF many actual address geps that use the pointer 4552 // phi as base and a vectorized version of the step value 4553 // (<step*0, ..., step*N>) as offset. 4554 for (unsigned Part = 0; Part < State.UF; ++Part) { 4555 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4556 Value *StartOffsetScalar = 4557 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4558 Value *StartOffset = 4559 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4560 // Create a vector of consecutive numbers from zero to VF. 4561 StartOffset = 4562 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4563 4564 Value *GEP = Builder.CreateGEP( 4565 II.getElementType(), NewPointerPhi, 4566 Builder.CreateMul( 4567 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4568 "vector.gep")); 4569 State.set(PhiR, GEP, Part); 4570 } 4571 } 4572 } 4573 } 4574 4575 /// A helper function for checking whether an integer division-related 4576 /// instruction may divide by zero (in which case it must be predicated if 4577 /// executed conditionally in the scalar code). 4578 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4579 /// Non-zero divisors that are non compile-time constants will not be 4580 /// converted into multiplication, so we will still end up scalarizing 4581 /// the division, but can do so w/o predication. 4582 static bool mayDivideByZero(Instruction &I) { 4583 assert((I.getOpcode() == Instruction::UDiv || 4584 I.getOpcode() == Instruction::SDiv || 4585 I.getOpcode() == Instruction::URem || 4586 I.getOpcode() == Instruction::SRem) && 4587 "Unexpected instruction"); 4588 Value *Divisor = I.getOperand(1); 4589 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4590 return !CInt || CInt->isZero(); 4591 } 4592 4593 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4594 VPUser &ArgOperands, 4595 VPTransformState &State) { 4596 assert(!isa<DbgInfoIntrinsic>(I) && 4597 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4598 setDebugLocFromInst(&I); 4599 4600 Module *M = I.getParent()->getParent()->getParent(); 4601 auto *CI = cast<CallInst>(&I); 4602 4603 SmallVector<Type *, 4> Tys; 4604 for (Value *ArgOperand : CI->args()) 4605 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4606 4607 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4608 4609 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4610 // version of the instruction. 4611 // Is it beneficial to perform intrinsic call compared to lib call? 4612 bool NeedToScalarize = false; 4613 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4614 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4615 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4616 assert((UseVectorIntrinsic || !NeedToScalarize) && 4617 "Instruction should be scalarized elsewhere."); 4618 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4619 "Either the intrinsic cost or vector call cost must be valid"); 4620 4621 for (unsigned Part = 0; Part < UF; ++Part) { 4622 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4623 SmallVector<Value *, 4> Args; 4624 for (auto &I : enumerate(ArgOperands.operands())) { 4625 // Some intrinsics have a scalar argument - don't replace it with a 4626 // vector. 4627 Value *Arg; 4628 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4629 Arg = State.get(I.value(), Part); 4630 else { 4631 Arg = State.get(I.value(), VPIteration(0, 0)); 4632 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4633 TysForDecl.push_back(Arg->getType()); 4634 } 4635 Args.push_back(Arg); 4636 } 4637 4638 Function *VectorF; 4639 if (UseVectorIntrinsic) { 4640 // Use vector version of the intrinsic. 4641 if (VF.isVector()) 4642 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4643 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4644 assert(VectorF && "Can't retrieve vector intrinsic."); 4645 } else { 4646 // Use vector version of the function call. 4647 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4648 #ifndef NDEBUG 4649 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4650 "Can't create vector function."); 4651 #endif 4652 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4653 } 4654 SmallVector<OperandBundleDef, 1> OpBundles; 4655 CI->getOperandBundlesAsDefs(OpBundles); 4656 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4657 4658 if (isa<FPMathOperator>(V)) 4659 V->copyFastMathFlags(CI); 4660 4661 State.set(Def, V, Part); 4662 addMetadata(V, &I); 4663 } 4664 } 4665 4666 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4667 // We should not collect Scalars more than once per VF. Right now, this 4668 // function is called from collectUniformsAndScalars(), which already does 4669 // this check. Collecting Scalars for VF=1 does not make any sense. 4670 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4671 "This function should not be visited twice for the same VF"); 4672 4673 SmallSetVector<Instruction *, 8> Worklist; 4674 4675 // These sets are used to seed the analysis with pointers used by memory 4676 // accesses that will remain scalar. 4677 SmallSetVector<Instruction *, 8> ScalarPtrs; 4678 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4679 auto *Latch = TheLoop->getLoopLatch(); 4680 4681 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4682 // The pointer operands of loads and stores will be scalar as long as the 4683 // memory access is not a gather or scatter operation. The value operand of a 4684 // store will remain scalar if the store is scalarized. 4685 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4686 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4687 assert(WideningDecision != CM_Unknown && 4688 "Widening decision should be ready at this moment"); 4689 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4690 if (Ptr == Store->getValueOperand()) 4691 return WideningDecision == CM_Scalarize; 4692 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4693 "Ptr is neither a value or pointer operand"); 4694 return WideningDecision != CM_GatherScatter; 4695 }; 4696 4697 // A helper that returns true if the given value is a bitcast or 4698 // getelementptr instruction contained in the loop. 4699 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4700 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4701 isa<GetElementPtrInst>(V)) && 4702 !TheLoop->isLoopInvariant(V); 4703 }; 4704 4705 // A helper that evaluates a memory access's use of a pointer. If the use will 4706 // be a scalar use and the pointer is only used by memory accesses, we place 4707 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4708 // PossibleNonScalarPtrs. 4709 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4710 // We only care about bitcast and getelementptr instructions contained in 4711 // the loop. 4712 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4713 return; 4714 4715 // If the pointer has already been identified as scalar (e.g., if it was 4716 // also identified as uniform), there's nothing to do. 4717 auto *I = cast<Instruction>(Ptr); 4718 if (Worklist.count(I)) 4719 return; 4720 4721 // If the use of the pointer will be a scalar use, and all users of the 4722 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4723 // place the pointer in PossibleNonScalarPtrs. 4724 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4725 return isa<LoadInst>(U) || isa<StoreInst>(U); 4726 })) 4727 ScalarPtrs.insert(I); 4728 else 4729 PossibleNonScalarPtrs.insert(I); 4730 }; 4731 4732 // We seed the scalars analysis with three classes of instructions: (1) 4733 // instructions marked uniform-after-vectorization and (2) bitcast, 4734 // getelementptr and (pointer) phi instructions used by memory accesses 4735 // requiring a scalar use. 4736 // 4737 // (1) Add to the worklist all instructions that have been identified as 4738 // uniform-after-vectorization. 4739 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4740 4741 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4742 // memory accesses requiring a scalar use. The pointer operands of loads and 4743 // stores will be scalar as long as the memory accesses is not a gather or 4744 // scatter operation. The value operand of a store will remain scalar if the 4745 // store is scalarized. 4746 for (auto *BB : TheLoop->blocks()) 4747 for (auto &I : *BB) { 4748 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4749 evaluatePtrUse(Load, Load->getPointerOperand()); 4750 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4751 evaluatePtrUse(Store, Store->getPointerOperand()); 4752 evaluatePtrUse(Store, Store->getValueOperand()); 4753 } 4754 } 4755 for (auto *I : ScalarPtrs) 4756 if (!PossibleNonScalarPtrs.count(I)) { 4757 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4758 Worklist.insert(I); 4759 } 4760 4761 // Insert the forced scalars. 4762 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4763 // induction variable when the PHI user is scalarized. 4764 auto ForcedScalar = ForcedScalars.find(VF); 4765 if (ForcedScalar != ForcedScalars.end()) 4766 for (auto *I : ForcedScalar->second) 4767 Worklist.insert(I); 4768 4769 // Expand the worklist by looking through any bitcasts and getelementptr 4770 // instructions we've already identified as scalar. This is similar to the 4771 // expansion step in collectLoopUniforms(); however, here we're only 4772 // expanding to include additional bitcasts and getelementptr instructions. 4773 unsigned Idx = 0; 4774 while (Idx != Worklist.size()) { 4775 Instruction *Dst = Worklist[Idx++]; 4776 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4777 continue; 4778 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4779 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4780 auto *J = cast<Instruction>(U); 4781 return !TheLoop->contains(J) || Worklist.count(J) || 4782 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4783 isScalarUse(J, Src)); 4784 })) { 4785 Worklist.insert(Src); 4786 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4787 } 4788 } 4789 4790 // An induction variable will remain scalar if all users of the induction 4791 // variable and induction variable update remain scalar. 4792 for (auto &Induction : Legal->getInductionVars()) { 4793 auto *Ind = Induction.first; 4794 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4795 4796 // If tail-folding is applied, the primary induction variable will be used 4797 // to feed a vector compare. 4798 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4799 continue; 4800 4801 // Returns true if \p Indvar is a pointer induction that is used directly by 4802 // load/store instruction \p I. 4803 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4804 Instruction *I) { 4805 return Induction.second.getKind() == 4806 InductionDescriptor::IK_PtrInduction && 4807 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4808 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4809 }; 4810 4811 // Determine if all users of the induction variable are scalar after 4812 // vectorization. 4813 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4814 auto *I = cast<Instruction>(U); 4815 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4816 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4817 }); 4818 if (!ScalarInd) 4819 continue; 4820 4821 // Determine if all users of the induction variable update instruction are 4822 // scalar after vectorization. 4823 auto ScalarIndUpdate = 4824 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4825 auto *I = cast<Instruction>(U); 4826 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4827 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4828 }); 4829 if (!ScalarIndUpdate) 4830 continue; 4831 4832 // The induction variable and its update instruction will remain scalar. 4833 Worklist.insert(Ind); 4834 Worklist.insert(IndUpdate); 4835 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4836 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4837 << "\n"); 4838 } 4839 4840 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4841 } 4842 4843 bool LoopVectorizationCostModel::isScalarWithPredication( 4844 Instruction *I, ElementCount VF) const { 4845 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4846 return false; 4847 switch(I->getOpcode()) { 4848 default: 4849 break; 4850 case Instruction::Load: 4851 case Instruction::Store: { 4852 if (!Legal->isMaskRequired(I)) 4853 return false; 4854 auto *Ptr = getLoadStorePointerOperand(I); 4855 auto *Ty = getLoadStoreType(I); 4856 Type *VTy = Ty; 4857 if (VF.isVector()) 4858 VTy = VectorType::get(Ty, VF); 4859 const Align Alignment = getLoadStoreAlignment(I); 4860 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4861 TTI.isLegalMaskedGather(VTy, Alignment)) 4862 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4863 TTI.isLegalMaskedScatter(VTy, Alignment)); 4864 } 4865 case Instruction::UDiv: 4866 case Instruction::SDiv: 4867 case Instruction::SRem: 4868 case Instruction::URem: 4869 return mayDivideByZero(*I); 4870 } 4871 return false; 4872 } 4873 4874 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4875 Instruction *I, ElementCount VF) { 4876 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4877 assert(getWideningDecision(I, VF) == CM_Unknown && 4878 "Decision should not be set yet."); 4879 auto *Group = getInterleavedAccessGroup(I); 4880 assert(Group && "Must have a group."); 4881 4882 // If the instruction's allocated size doesn't equal it's type size, it 4883 // requires padding and will be scalarized. 4884 auto &DL = I->getModule()->getDataLayout(); 4885 auto *ScalarTy = getLoadStoreType(I); 4886 if (hasIrregularType(ScalarTy, DL)) 4887 return false; 4888 4889 // Check if masking is required. 4890 // A Group may need masking for one of two reasons: it resides in a block that 4891 // needs predication, or it was decided to use masking to deal with gaps 4892 // (either a gap at the end of a load-access that may result in a speculative 4893 // load, or any gaps in a store-access). 4894 bool PredicatedAccessRequiresMasking = 4895 blockNeedsPredicationForAnyReason(I->getParent()) && 4896 Legal->isMaskRequired(I); 4897 bool LoadAccessWithGapsRequiresEpilogMasking = 4898 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4899 !isScalarEpilogueAllowed(); 4900 bool StoreAccessWithGapsRequiresMasking = 4901 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4902 if (!PredicatedAccessRequiresMasking && 4903 !LoadAccessWithGapsRequiresEpilogMasking && 4904 !StoreAccessWithGapsRequiresMasking) 4905 return true; 4906 4907 // If masked interleaving is required, we expect that the user/target had 4908 // enabled it, because otherwise it either wouldn't have been created or 4909 // it should have been invalidated by the CostModel. 4910 assert(useMaskedInterleavedAccesses(TTI) && 4911 "Masked interleave-groups for predicated accesses are not enabled."); 4912 4913 if (Group->isReverse()) 4914 return false; 4915 4916 auto *Ty = getLoadStoreType(I); 4917 const Align Alignment = getLoadStoreAlignment(I); 4918 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4919 : TTI.isLegalMaskedStore(Ty, Alignment); 4920 } 4921 4922 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4923 Instruction *I, ElementCount VF) { 4924 // Get and ensure we have a valid memory instruction. 4925 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4926 4927 auto *Ptr = getLoadStorePointerOperand(I); 4928 auto *ScalarTy = getLoadStoreType(I); 4929 4930 // In order to be widened, the pointer should be consecutive, first of all. 4931 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4932 return false; 4933 4934 // If the instruction is a store located in a predicated block, it will be 4935 // scalarized. 4936 if (isScalarWithPredication(I, VF)) 4937 return false; 4938 4939 // If the instruction's allocated size doesn't equal it's type size, it 4940 // requires padding and will be scalarized. 4941 auto &DL = I->getModule()->getDataLayout(); 4942 if (hasIrregularType(ScalarTy, DL)) 4943 return false; 4944 4945 return true; 4946 } 4947 4948 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4949 // We should not collect Uniforms more than once per VF. Right now, 4950 // this function is called from collectUniformsAndScalars(), which 4951 // already does this check. Collecting Uniforms for VF=1 does not make any 4952 // sense. 4953 4954 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4955 "This function should not be visited twice for the same VF"); 4956 4957 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4958 // not analyze again. Uniforms.count(VF) will return 1. 4959 Uniforms[VF].clear(); 4960 4961 // We now know that the loop is vectorizable! 4962 // Collect instructions inside the loop that will remain uniform after 4963 // vectorization. 4964 4965 // Global values, params and instructions outside of current loop are out of 4966 // scope. 4967 auto isOutOfScope = [&](Value *V) -> bool { 4968 Instruction *I = dyn_cast<Instruction>(V); 4969 return (!I || !TheLoop->contains(I)); 4970 }; 4971 4972 // Worklist containing uniform instructions demanding lane 0. 4973 SetVector<Instruction *> Worklist; 4974 BasicBlock *Latch = TheLoop->getLoopLatch(); 4975 4976 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4977 // that are scalar with predication must not be considered uniform after 4978 // vectorization, because that would create an erroneous replicating region 4979 // where only a single instance out of VF should be formed. 4980 // TODO: optimize such seldom cases if found important, see PR40816. 4981 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4982 if (isOutOfScope(I)) { 4983 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4984 << *I << "\n"); 4985 return; 4986 } 4987 if (isScalarWithPredication(I, VF)) { 4988 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4989 << *I << "\n"); 4990 return; 4991 } 4992 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4993 Worklist.insert(I); 4994 }; 4995 4996 // Start with the conditional branch. If the branch condition is an 4997 // instruction contained in the loop that is only used by the branch, it is 4998 // uniform. 4999 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5000 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5001 addToWorklistIfAllowed(Cmp); 5002 5003 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5004 InstWidening WideningDecision = getWideningDecision(I, VF); 5005 assert(WideningDecision != CM_Unknown && 5006 "Widening decision should be ready at this moment"); 5007 5008 // A uniform memory op is itself uniform. We exclude uniform stores 5009 // here as they demand the last lane, not the first one. 5010 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5011 assert(WideningDecision == CM_Scalarize); 5012 return true; 5013 } 5014 5015 return (WideningDecision == CM_Widen || 5016 WideningDecision == CM_Widen_Reverse || 5017 WideningDecision == CM_Interleave); 5018 }; 5019 5020 5021 // Returns true if Ptr is the pointer operand of a memory access instruction 5022 // I, and I is known to not require scalarization. 5023 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5024 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5025 }; 5026 5027 // Holds a list of values which are known to have at least one uniform use. 5028 // Note that there may be other uses which aren't uniform. A "uniform use" 5029 // here is something which only demands lane 0 of the unrolled iterations; 5030 // it does not imply that all lanes produce the same value (e.g. this is not 5031 // the usual meaning of uniform) 5032 SetVector<Value *> HasUniformUse; 5033 5034 // Scan the loop for instructions which are either a) known to have only 5035 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5036 for (auto *BB : TheLoop->blocks()) 5037 for (auto &I : *BB) { 5038 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5039 switch (II->getIntrinsicID()) { 5040 case Intrinsic::sideeffect: 5041 case Intrinsic::experimental_noalias_scope_decl: 5042 case Intrinsic::assume: 5043 case Intrinsic::lifetime_start: 5044 case Intrinsic::lifetime_end: 5045 if (TheLoop->hasLoopInvariantOperands(&I)) 5046 addToWorklistIfAllowed(&I); 5047 break; 5048 default: 5049 break; 5050 } 5051 } 5052 5053 // ExtractValue instructions must be uniform, because the operands are 5054 // known to be loop-invariant. 5055 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5056 assert(isOutOfScope(EVI->getAggregateOperand()) && 5057 "Expected aggregate value to be loop invariant"); 5058 addToWorklistIfAllowed(EVI); 5059 continue; 5060 } 5061 5062 // If there's no pointer operand, there's nothing to do. 5063 auto *Ptr = getLoadStorePointerOperand(&I); 5064 if (!Ptr) 5065 continue; 5066 5067 // A uniform memory op is itself uniform. We exclude uniform stores 5068 // here as they demand the last lane, not the first one. 5069 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5070 addToWorklistIfAllowed(&I); 5071 5072 if (isUniformDecision(&I, VF)) { 5073 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5074 HasUniformUse.insert(Ptr); 5075 } 5076 } 5077 5078 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5079 // demanding) users. Since loops are assumed to be in LCSSA form, this 5080 // disallows uses outside the loop as well. 5081 for (auto *V : HasUniformUse) { 5082 if (isOutOfScope(V)) 5083 continue; 5084 auto *I = cast<Instruction>(V); 5085 auto UsersAreMemAccesses = 5086 llvm::all_of(I->users(), [&](User *U) -> bool { 5087 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5088 }); 5089 if (UsersAreMemAccesses) 5090 addToWorklistIfAllowed(I); 5091 } 5092 5093 // Expand Worklist in topological order: whenever a new instruction 5094 // is added , its users should be already inside Worklist. It ensures 5095 // a uniform instruction will only be used by uniform instructions. 5096 unsigned idx = 0; 5097 while (idx != Worklist.size()) { 5098 Instruction *I = Worklist[idx++]; 5099 5100 for (auto OV : I->operand_values()) { 5101 // isOutOfScope operands cannot be uniform instructions. 5102 if (isOutOfScope(OV)) 5103 continue; 5104 // First order recurrence Phi's should typically be considered 5105 // non-uniform. 5106 auto *OP = dyn_cast<PHINode>(OV); 5107 if (OP && Legal->isFirstOrderRecurrence(OP)) 5108 continue; 5109 // If all the users of the operand are uniform, then add the 5110 // operand into the uniform worklist. 5111 auto *OI = cast<Instruction>(OV); 5112 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5113 auto *J = cast<Instruction>(U); 5114 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5115 })) 5116 addToWorklistIfAllowed(OI); 5117 } 5118 } 5119 5120 // For an instruction to be added into Worklist above, all its users inside 5121 // the loop should also be in Worklist. However, this condition cannot be 5122 // true for phi nodes that form a cyclic dependence. We must process phi 5123 // nodes separately. An induction variable will remain uniform if all users 5124 // of the induction variable and induction variable update remain uniform. 5125 // The code below handles both pointer and non-pointer induction variables. 5126 for (auto &Induction : Legal->getInductionVars()) { 5127 auto *Ind = Induction.first; 5128 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5129 5130 // Determine if all users of the induction variable are uniform after 5131 // vectorization. 5132 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5133 auto *I = cast<Instruction>(U); 5134 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5135 isVectorizedMemAccessUse(I, Ind); 5136 }); 5137 if (!UniformInd) 5138 continue; 5139 5140 // Determine if all users of the induction variable update instruction are 5141 // uniform after vectorization. 5142 auto UniformIndUpdate = 5143 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5144 auto *I = cast<Instruction>(U); 5145 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5146 isVectorizedMemAccessUse(I, IndUpdate); 5147 }); 5148 if (!UniformIndUpdate) 5149 continue; 5150 5151 // The induction variable and its update instruction will remain uniform. 5152 addToWorklistIfAllowed(Ind); 5153 addToWorklistIfAllowed(IndUpdate); 5154 } 5155 5156 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5157 } 5158 5159 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5160 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5161 5162 if (Legal->getRuntimePointerChecking()->Need) { 5163 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5164 "runtime pointer checks needed. Enable vectorization of this " 5165 "loop with '#pragma clang loop vectorize(enable)' when " 5166 "compiling with -Os/-Oz", 5167 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5168 return true; 5169 } 5170 5171 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5172 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5173 "runtime SCEV checks needed. Enable vectorization of this " 5174 "loop with '#pragma clang loop vectorize(enable)' when " 5175 "compiling with -Os/-Oz", 5176 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5177 return true; 5178 } 5179 5180 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5181 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5182 reportVectorizationFailure("Runtime stride check for small trip count", 5183 "runtime stride == 1 checks needed. Enable vectorization of " 5184 "this loop without such check by compiling with -Os/-Oz", 5185 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5186 return true; 5187 } 5188 5189 return false; 5190 } 5191 5192 ElementCount 5193 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5194 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5195 return ElementCount::getScalable(0); 5196 5197 if (Hints->isScalableVectorizationDisabled()) { 5198 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5199 "ScalableVectorizationDisabled", ORE, TheLoop); 5200 return ElementCount::getScalable(0); 5201 } 5202 5203 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5204 5205 auto MaxScalableVF = ElementCount::getScalable( 5206 std::numeric_limits<ElementCount::ScalarTy>::max()); 5207 5208 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5209 // FIXME: While for scalable vectors this is currently sufficient, this should 5210 // be replaced by a more detailed mechanism that filters out specific VFs, 5211 // instead of invalidating vectorization for a whole set of VFs based on the 5212 // MaxVF. 5213 5214 // Disable scalable vectorization if the loop contains unsupported reductions. 5215 if (!canVectorizeReductions(MaxScalableVF)) { 5216 reportVectorizationInfo( 5217 "Scalable vectorization not supported for the reduction " 5218 "operations found in this loop.", 5219 "ScalableVFUnfeasible", ORE, TheLoop); 5220 return ElementCount::getScalable(0); 5221 } 5222 5223 // Disable scalable vectorization if the loop contains any instructions 5224 // with element types not supported for scalable vectors. 5225 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5226 return !Ty->isVoidTy() && 5227 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5228 })) { 5229 reportVectorizationInfo("Scalable vectorization is not supported " 5230 "for all element types found in this loop.", 5231 "ScalableVFUnfeasible", ORE, TheLoop); 5232 return ElementCount::getScalable(0); 5233 } 5234 5235 if (Legal->isSafeForAnyVectorWidth()) 5236 return MaxScalableVF; 5237 5238 // Limit MaxScalableVF by the maximum safe dependence distance. 5239 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5240 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5241 MaxVScale = 5242 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5243 MaxScalableVF = ElementCount::getScalable( 5244 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5245 if (!MaxScalableVF) 5246 reportVectorizationInfo( 5247 "Max legal vector width too small, scalable vectorization " 5248 "unfeasible.", 5249 "ScalableVFUnfeasible", ORE, TheLoop); 5250 5251 return MaxScalableVF; 5252 } 5253 5254 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5255 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5256 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5257 unsigned SmallestType, WidestType; 5258 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5259 5260 // Get the maximum safe dependence distance in bits computed by LAA. 5261 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5262 // the memory accesses that is most restrictive (involved in the smallest 5263 // dependence distance). 5264 unsigned MaxSafeElements = 5265 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5266 5267 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5268 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5269 5270 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5271 << ".\n"); 5272 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5273 << ".\n"); 5274 5275 // First analyze the UserVF, fall back if the UserVF should be ignored. 5276 if (UserVF) { 5277 auto MaxSafeUserVF = 5278 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5279 5280 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5281 // If `VF=vscale x N` is safe, then so is `VF=N` 5282 if (UserVF.isScalable()) 5283 return FixedScalableVFPair( 5284 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5285 else 5286 return UserVF; 5287 } 5288 5289 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5290 5291 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5292 // is better to ignore the hint and let the compiler choose a suitable VF. 5293 if (!UserVF.isScalable()) { 5294 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5295 << " is unsafe, clamping to max safe VF=" 5296 << MaxSafeFixedVF << ".\n"); 5297 ORE->emit([&]() { 5298 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5299 TheLoop->getStartLoc(), 5300 TheLoop->getHeader()) 5301 << "User-specified vectorization factor " 5302 << ore::NV("UserVectorizationFactor", UserVF) 5303 << " is unsafe, clamping to maximum safe vectorization factor " 5304 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5305 }); 5306 return MaxSafeFixedVF; 5307 } 5308 5309 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5310 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5311 << " is ignored because scalable vectors are not " 5312 "available.\n"); 5313 ORE->emit([&]() { 5314 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5315 TheLoop->getStartLoc(), 5316 TheLoop->getHeader()) 5317 << "User-specified vectorization factor " 5318 << ore::NV("UserVectorizationFactor", UserVF) 5319 << " is ignored because the target does not support scalable " 5320 "vectors. The compiler will pick a more suitable value."; 5321 }); 5322 } else { 5323 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5324 << " is unsafe. Ignoring scalable UserVF.\n"); 5325 ORE->emit([&]() { 5326 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5327 TheLoop->getStartLoc(), 5328 TheLoop->getHeader()) 5329 << "User-specified vectorization factor " 5330 << ore::NV("UserVectorizationFactor", UserVF) 5331 << " is unsafe. Ignoring the hint to let the compiler pick a " 5332 "more suitable value."; 5333 }); 5334 } 5335 } 5336 5337 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5338 << " / " << WidestType << " bits.\n"); 5339 5340 FixedScalableVFPair Result(ElementCount::getFixed(1), 5341 ElementCount::getScalable(0)); 5342 if (auto MaxVF = 5343 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5344 MaxSafeFixedVF, FoldTailByMasking)) 5345 Result.FixedVF = MaxVF; 5346 5347 if (auto MaxVF = 5348 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5349 MaxSafeScalableVF, FoldTailByMasking)) 5350 if (MaxVF.isScalable()) { 5351 Result.ScalableVF = MaxVF; 5352 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5353 << "\n"); 5354 } 5355 5356 return Result; 5357 } 5358 5359 FixedScalableVFPair 5360 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5361 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5362 // TODO: It may by useful to do since it's still likely to be dynamically 5363 // uniform if the target can skip. 5364 reportVectorizationFailure( 5365 "Not inserting runtime ptr check for divergent target", 5366 "runtime pointer checks needed. Not enabled for divergent target", 5367 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5368 return FixedScalableVFPair::getNone(); 5369 } 5370 5371 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5372 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5373 if (TC == 1) { 5374 reportVectorizationFailure("Single iteration (non) loop", 5375 "loop trip count is one, irrelevant for vectorization", 5376 "SingleIterationLoop", ORE, TheLoop); 5377 return FixedScalableVFPair::getNone(); 5378 } 5379 5380 switch (ScalarEpilogueStatus) { 5381 case CM_ScalarEpilogueAllowed: 5382 return computeFeasibleMaxVF(TC, UserVF, false); 5383 case CM_ScalarEpilogueNotAllowedUsePredicate: 5384 LLVM_FALLTHROUGH; 5385 case CM_ScalarEpilogueNotNeededUsePredicate: 5386 LLVM_DEBUG( 5387 dbgs() << "LV: vector predicate hint/switch found.\n" 5388 << "LV: Not allowing scalar epilogue, creating predicated " 5389 << "vector loop.\n"); 5390 break; 5391 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5392 // fallthrough as a special case of OptForSize 5393 case CM_ScalarEpilogueNotAllowedOptSize: 5394 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5395 LLVM_DEBUG( 5396 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5397 else 5398 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5399 << "count.\n"); 5400 5401 // Bail if runtime checks are required, which are not good when optimising 5402 // for size. 5403 if (runtimeChecksRequired()) 5404 return FixedScalableVFPair::getNone(); 5405 5406 break; 5407 } 5408 5409 // The only loops we can vectorize without a scalar epilogue, are loops with 5410 // a bottom-test and a single exiting block. We'd have to handle the fact 5411 // that not every instruction executes on the last iteration. This will 5412 // require a lane mask which varies through the vector loop body. (TODO) 5413 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5414 // If there was a tail-folding hint/switch, but we can't fold the tail by 5415 // masking, fallback to a vectorization with a scalar epilogue. 5416 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5417 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5418 "scalar epilogue instead.\n"); 5419 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5420 return computeFeasibleMaxVF(TC, UserVF, false); 5421 } 5422 return FixedScalableVFPair::getNone(); 5423 } 5424 5425 // Now try the tail folding 5426 5427 // Invalidate interleave groups that require an epilogue if we can't mask 5428 // the interleave-group. 5429 if (!useMaskedInterleavedAccesses(TTI)) { 5430 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5431 "No decisions should have been taken at this point"); 5432 // Note: There is no need to invalidate any cost modeling decisions here, as 5433 // non where taken so far. 5434 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5435 } 5436 5437 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5438 // Avoid tail folding if the trip count is known to be a multiple of any VF 5439 // we chose. 5440 // FIXME: The condition below pessimises the case for fixed-width vectors, 5441 // when scalable VFs are also candidates for vectorization. 5442 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5443 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5444 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5445 "MaxFixedVF must be a power of 2"); 5446 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5447 : MaxFixedVF.getFixedValue(); 5448 ScalarEvolution *SE = PSE.getSE(); 5449 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5450 const SCEV *ExitCount = SE->getAddExpr( 5451 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5452 const SCEV *Rem = SE->getURemExpr( 5453 SE->applyLoopGuards(ExitCount, TheLoop), 5454 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5455 if (Rem->isZero()) { 5456 // Accept MaxFixedVF if we do not have a tail. 5457 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5458 return MaxFactors; 5459 } 5460 } 5461 5462 // For scalable vectors don't use tail folding for low trip counts or 5463 // optimizing for code size. We only permit this if the user has explicitly 5464 // requested it. 5465 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5466 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5467 MaxFactors.ScalableVF.isVector()) 5468 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5469 5470 // If we don't know the precise trip count, or if the trip count that we 5471 // found modulo the vectorization factor is not zero, try to fold the tail 5472 // by masking. 5473 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5474 if (Legal->prepareToFoldTailByMasking()) { 5475 FoldTailByMasking = true; 5476 return MaxFactors; 5477 } 5478 5479 // If there was a tail-folding hint/switch, but we can't fold the tail by 5480 // masking, fallback to a vectorization with a scalar epilogue. 5481 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5482 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5483 "scalar epilogue instead.\n"); 5484 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5485 return MaxFactors; 5486 } 5487 5488 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5489 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5490 return FixedScalableVFPair::getNone(); 5491 } 5492 5493 if (TC == 0) { 5494 reportVectorizationFailure( 5495 "Unable to calculate the loop count due to complex control flow", 5496 "unable to calculate the loop count due to complex control flow", 5497 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5498 return FixedScalableVFPair::getNone(); 5499 } 5500 5501 reportVectorizationFailure( 5502 "Cannot optimize for size and vectorize at the same time.", 5503 "cannot optimize for size and vectorize at the same time. " 5504 "Enable vectorization of this loop with '#pragma clang loop " 5505 "vectorize(enable)' when compiling with -Os/-Oz", 5506 "NoTailLoopWithOptForSize", ORE, TheLoop); 5507 return FixedScalableVFPair::getNone(); 5508 } 5509 5510 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5511 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5512 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5513 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5514 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5515 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5516 : TargetTransformInfo::RGK_FixedWidthVector); 5517 5518 // Convenience function to return the minimum of two ElementCounts. 5519 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5520 assert((LHS.isScalable() == RHS.isScalable()) && 5521 "Scalable flags must match"); 5522 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5523 }; 5524 5525 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5526 // Note that both WidestRegister and WidestType may not be a powers of 2. 5527 auto MaxVectorElementCount = ElementCount::get( 5528 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5529 ComputeScalableMaxVF); 5530 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5531 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5532 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5533 5534 if (!MaxVectorElementCount) { 5535 LLVM_DEBUG(dbgs() << "LV: The target has no " 5536 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5537 << " vector registers.\n"); 5538 return ElementCount::getFixed(1); 5539 } 5540 5541 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5542 if (ConstTripCount && 5543 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5544 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5545 // If loop trip count (TC) is known at compile time there is no point in 5546 // choosing VF greater than TC (as done in the loop below). Select maximum 5547 // power of two which doesn't exceed TC. 5548 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5549 // when the TC is less than or equal to the known number of lanes. 5550 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5551 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5552 "exceeding the constant trip count: " 5553 << ClampedConstTripCount << "\n"); 5554 return ElementCount::getFixed(ClampedConstTripCount); 5555 } 5556 5557 ElementCount MaxVF = MaxVectorElementCount; 5558 if (TTI.shouldMaximizeVectorBandwidth() || 5559 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5560 auto MaxVectorElementCountMaxBW = ElementCount::get( 5561 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5562 ComputeScalableMaxVF); 5563 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5564 5565 // Collect all viable vectorization factors larger than the default MaxVF 5566 // (i.e. MaxVectorElementCount). 5567 SmallVector<ElementCount, 8> VFs; 5568 for (ElementCount VS = MaxVectorElementCount * 2; 5569 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5570 VFs.push_back(VS); 5571 5572 // For each VF calculate its register usage. 5573 auto RUs = calculateRegisterUsage(VFs); 5574 5575 // Select the largest VF which doesn't require more registers than existing 5576 // ones. 5577 for (int i = RUs.size() - 1; i >= 0; --i) { 5578 bool Selected = true; 5579 for (auto &pair : RUs[i].MaxLocalUsers) { 5580 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5581 if (pair.second > TargetNumRegisters) 5582 Selected = false; 5583 } 5584 if (Selected) { 5585 MaxVF = VFs[i]; 5586 break; 5587 } 5588 } 5589 if (ElementCount MinVF = 5590 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5591 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5592 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5593 << ") with target's minimum: " << MinVF << '\n'); 5594 MaxVF = MinVF; 5595 } 5596 } 5597 } 5598 return MaxVF; 5599 } 5600 5601 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5602 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5603 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5604 auto Min = Attr.getVScaleRangeMin(); 5605 auto Max = Attr.getVScaleRangeMax(); 5606 if (Max && Min == Max) 5607 return Max; 5608 } 5609 5610 return TTI.getVScaleForTuning(); 5611 } 5612 5613 bool LoopVectorizationCostModel::isMoreProfitable( 5614 const VectorizationFactor &A, const VectorizationFactor &B) const { 5615 InstructionCost CostA = A.Cost; 5616 InstructionCost CostB = B.Cost; 5617 5618 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5619 5620 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5621 MaxTripCount) { 5622 // If we are folding the tail and the trip count is a known (possibly small) 5623 // constant, the trip count will be rounded up to an integer number of 5624 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5625 // which we compare directly. When not folding the tail, the total cost will 5626 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5627 // approximated with the per-lane cost below instead of using the tripcount 5628 // as here. 5629 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5630 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5631 return RTCostA < RTCostB; 5632 } 5633 5634 // Improve estimate for the vector width if it is scalable. 5635 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5636 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5637 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5638 if (A.Width.isScalable()) 5639 EstimatedWidthA *= VScale.getValue(); 5640 if (B.Width.isScalable()) 5641 EstimatedWidthB *= VScale.getValue(); 5642 } 5643 5644 // Assume vscale may be larger than 1 (or the value being tuned for), 5645 // so that scalable vectorization is slightly favorable over fixed-width 5646 // vectorization. 5647 if (A.Width.isScalable() && !B.Width.isScalable()) 5648 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5649 5650 // To avoid the need for FP division: 5651 // (CostA / A.Width) < (CostB / B.Width) 5652 // <=> (CostA * B.Width) < (CostB * A.Width) 5653 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5654 } 5655 5656 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5657 const ElementCountSet &VFCandidates) { 5658 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5659 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5660 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5661 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5662 "Expected Scalar VF to be a candidate"); 5663 5664 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5665 VectorizationFactor ChosenFactor = ScalarCost; 5666 5667 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5668 if (ForceVectorization && VFCandidates.size() > 1) { 5669 // Ignore scalar width, because the user explicitly wants vectorization. 5670 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5671 // evaluation. 5672 ChosenFactor.Cost = InstructionCost::getMax(); 5673 } 5674 5675 SmallVector<InstructionVFPair> InvalidCosts; 5676 for (const auto &i : VFCandidates) { 5677 // The cost for scalar VF=1 is already calculated, so ignore it. 5678 if (i.isScalar()) 5679 continue; 5680 5681 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5682 VectorizationFactor Candidate(i, C.first); 5683 5684 #ifndef NDEBUG 5685 unsigned AssumedMinimumVscale = 1; 5686 if (Optional<unsigned> VScale = getVScaleForTuning()) 5687 AssumedMinimumVscale = VScale.getValue(); 5688 unsigned Width = 5689 Candidate.Width.isScalable() 5690 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5691 : Candidate.Width.getFixedValue(); 5692 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5693 << " costs: " << (Candidate.Cost / Width)); 5694 if (i.isScalable()) 5695 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5696 << AssumedMinimumVscale << ")"); 5697 LLVM_DEBUG(dbgs() << ".\n"); 5698 #endif 5699 5700 if (!C.second && !ForceVectorization) { 5701 LLVM_DEBUG( 5702 dbgs() << "LV: Not considering vector loop of width " << i 5703 << " because it will not generate any vector instructions.\n"); 5704 continue; 5705 } 5706 5707 // If profitable add it to ProfitableVF list. 5708 if (isMoreProfitable(Candidate, ScalarCost)) 5709 ProfitableVFs.push_back(Candidate); 5710 5711 if (isMoreProfitable(Candidate, ChosenFactor)) 5712 ChosenFactor = Candidate; 5713 } 5714 5715 // Emit a report of VFs with invalid costs in the loop. 5716 if (!InvalidCosts.empty()) { 5717 // Group the remarks per instruction, keeping the instruction order from 5718 // InvalidCosts. 5719 std::map<Instruction *, unsigned> Numbering; 5720 unsigned I = 0; 5721 for (auto &Pair : InvalidCosts) 5722 if (!Numbering.count(Pair.first)) 5723 Numbering[Pair.first] = I++; 5724 5725 // Sort the list, first on instruction(number) then on VF. 5726 llvm::sort(InvalidCosts, 5727 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5728 if (Numbering[A.first] != Numbering[B.first]) 5729 return Numbering[A.first] < Numbering[B.first]; 5730 ElementCountComparator ECC; 5731 return ECC(A.second, B.second); 5732 }); 5733 5734 // For a list of ordered instruction-vf pairs: 5735 // [(load, vf1), (load, vf2), (store, vf1)] 5736 // Group the instructions together to emit separate remarks for: 5737 // load (vf1, vf2) 5738 // store (vf1) 5739 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5740 auto Subset = ArrayRef<InstructionVFPair>(); 5741 do { 5742 if (Subset.empty()) 5743 Subset = Tail.take_front(1); 5744 5745 Instruction *I = Subset.front().first; 5746 5747 // If the next instruction is different, or if there are no other pairs, 5748 // emit a remark for the collated subset. e.g. 5749 // [(load, vf1), (load, vf2))] 5750 // to emit: 5751 // remark: invalid costs for 'load' at VF=(vf, vf2) 5752 if (Subset == Tail || Tail[Subset.size()].first != I) { 5753 std::string OutString; 5754 raw_string_ostream OS(OutString); 5755 assert(!Subset.empty() && "Unexpected empty range"); 5756 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5757 for (auto &Pair : Subset) 5758 OS << (Pair.second == Subset.front().second ? "" : ", ") 5759 << Pair.second; 5760 OS << "):"; 5761 if (auto *CI = dyn_cast<CallInst>(I)) 5762 OS << " call to " << CI->getCalledFunction()->getName(); 5763 else 5764 OS << " " << I->getOpcodeName(); 5765 OS.flush(); 5766 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5767 Tail = Tail.drop_front(Subset.size()); 5768 Subset = {}; 5769 } else 5770 // Grow the subset by one element 5771 Subset = Tail.take_front(Subset.size() + 1); 5772 } while (!Tail.empty()); 5773 } 5774 5775 if (!EnableCondStoresVectorization && NumPredStores) { 5776 reportVectorizationFailure("There are conditional stores.", 5777 "store that is conditionally executed prevents vectorization", 5778 "ConditionalStore", ORE, TheLoop); 5779 ChosenFactor = ScalarCost; 5780 } 5781 5782 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5783 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5784 << "LV: Vectorization seems to be not beneficial, " 5785 << "but was forced by a user.\n"); 5786 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5787 return ChosenFactor; 5788 } 5789 5790 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5791 const Loop &L, ElementCount VF) const { 5792 // Cross iteration phis such as reductions need special handling and are 5793 // currently unsupported. 5794 if (any_of(L.getHeader()->phis(), 5795 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5796 return false; 5797 5798 // Phis with uses outside of the loop require special handling and are 5799 // currently unsupported. 5800 for (auto &Entry : Legal->getInductionVars()) { 5801 // Look for uses of the value of the induction at the last iteration. 5802 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5803 for (User *U : PostInc->users()) 5804 if (!L.contains(cast<Instruction>(U))) 5805 return false; 5806 // Look for uses of penultimate value of the induction. 5807 for (User *U : Entry.first->users()) 5808 if (!L.contains(cast<Instruction>(U))) 5809 return false; 5810 } 5811 5812 // Induction variables that are widened require special handling that is 5813 // currently not supported. 5814 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5815 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5816 this->isProfitableToScalarize(Entry.first, VF)); 5817 })) 5818 return false; 5819 5820 // Epilogue vectorization code has not been auditted to ensure it handles 5821 // non-latch exits properly. It may be fine, but it needs auditted and 5822 // tested. 5823 if (L.getExitingBlock() != L.getLoopLatch()) 5824 return false; 5825 5826 return true; 5827 } 5828 5829 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5830 const ElementCount VF) const { 5831 // FIXME: We need a much better cost-model to take different parameters such 5832 // as register pressure, code size increase and cost of extra branches into 5833 // account. For now we apply a very crude heuristic and only consider loops 5834 // with vectorization factors larger than a certain value. 5835 // We also consider epilogue vectorization unprofitable for targets that don't 5836 // consider interleaving beneficial (eg. MVE). 5837 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5838 return false; 5839 // FIXME: We should consider changing the threshold for scalable 5840 // vectors to take VScaleForTuning into account. 5841 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5842 return true; 5843 return false; 5844 } 5845 5846 VectorizationFactor 5847 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5848 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5849 VectorizationFactor Result = VectorizationFactor::Disabled(); 5850 if (!EnableEpilogueVectorization) { 5851 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5852 return Result; 5853 } 5854 5855 if (!isScalarEpilogueAllowed()) { 5856 LLVM_DEBUG( 5857 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5858 "allowed.\n";); 5859 return Result; 5860 } 5861 5862 // Not really a cost consideration, but check for unsupported cases here to 5863 // simplify the logic. 5864 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5865 LLVM_DEBUG( 5866 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5867 "not a supported candidate.\n";); 5868 return Result; 5869 } 5870 5871 if (EpilogueVectorizationForceVF > 1) { 5872 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5873 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5874 if (LVP.hasPlanWithVF(ForcedEC)) 5875 return {ForcedEC, 0}; 5876 else { 5877 LLVM_DEBUG( 5878 dbgs() 5879 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5880 return Result; 5881 } 5882 } 5883 5884 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5885 TheLoop->getHeader()->getParent()->hasMinSize()) { 5886 LLVM_DEBUG( 5887 dbgs() 5888 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5889 return Result; 5890 } 5891 5892 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5893 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5894 "this loop\n"); 5895 return Result; 5896 } 5897 5898 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5899 // the main loop handles 8 lanes per iteration. We could still benefit from 5900 // vectorizing the epilogue loop with VF=4. 5901 ElementCount EstimatedRuntimeVF = MainLoopVF; 5902 if (MainLoopVF.isScalable()) { 5903 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5904 if (Optional<unsigned> VScale = getVScaleForTuning()) 5905 EstimatedRuntimeVF *= VScale.getValue(); 5906 } 5907 5908 for (auto &NextVF : ProfitableVFs) 5909 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5910 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5911 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5912 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5913 LVP.hasPlanWithVF(NextVF.Width)) 5914 Result = NextVF; 5915 5916 if (Result != VectorizationFactor::Disabled()) 5917 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5918 << Result.Width << "\n";); 5919 return Result; 5920 } 5921 5922 std::pair<unsigned, unsigned> 5923 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5924 unsigned MinWidth = -1U; 5925 unsigned MaxWidth = 8; 5926 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5927 // For in-loop reductions, no element types are added to ElementTypesInLoop 5928 // if there are no loads/stores in the loop. In this case, check through the 5929 // reduction variables to determine the maximum width. 5930 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5931 // Reset MaxWidth so that we can find the smallest type used by recurrences 5932 // in the loop. 5933 MaxWidth = -1U; 5934 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5935 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5936 // When finding the min width used by the recurrence we need to account 5937 // for casts on the input operands of the recurrence. 5938 MaxWidth = std::min<unsigned>( 5939 MaxWidth, std::min<unsigned>( 5940 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5941 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5942 } 5943 } else { 5944 for (Type *T : ElementTypesInLoop) { 5945 MinWidth = std::min<unsigned>( 5946 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5947 MaxWidth = std::max<unsigned>( 5948 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5949 } 5950 } 5951 return {MinWidth, MaxWidth}; 5952 } 5953 5954 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5955 ElementTypesInLoop.clear(); 5956 // For each block. 5957 for (BasicBlock *BB : TheLoop->blocks()) { 5958 // For each instruction in the loop. 5959 for (Instruction &I : BB->instructionsWithoutDebug()) { 5960 Type *T = I.getType(); 5961 5962 // Skip ignored values. 5963 if (ValuesToIgnore.count(&I)) 5964 continue; 5965 5966 // Only examine Loads, Stores and PHINodes. 5967 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5968 continue; 5969 5970 // Examine PHI nodes that are reduction variables. Update the type to 5971 // account for the recurrence type. 5972 if (auto *PN = dyn_cast<PHINode>(&I)) { 5973 if (!Legal->isReductionVariable(PN)) 5974 continue; 5975 const RecurrenceDescriptor &RdxDesc = 5976 Legal->getReductionVars().find(PN)->second; 5977 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5978 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5979 RdxDesc.getRecurrenceType(), 5980 TargetTransformInfo::ReductionFlags())) 5981 continue; 5982 T = RdxDesc.getRecurrenceType(); 5983 } 5984 5985 // Examine the stored values. 5986 if (auto *ST = dyn_cast<StoreInst>(&I)) 5987 T = ST->getValueOperand()->getType(); 5988 5989 assert(T->isSized() && 5990 "Expected the load/store/recurrence type to be sized"); 5991 5992 ElementTypesInLoop.insert(T); 5993 } 5994 } 5995 } 5996 5997 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5998 unsigned LoopCost) { 5999 // -- The interleave heuristics -- 6000 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6001 // There are many micro-architectural considerations that we can't predict 6002 // at this level. For example, frontend pressure (on decode or fetch) due to 6003 // code size, or the number and capabilities of the execution ports. 6004 // 6005 // We use the following heuristics to select the interleave count: 6006 // 1. If the code has reductions, then we interleave to break the cross 6007 // iteration dependency. 6008 // 2. If the loop is really small, then we interleave to reduce the loop 6009 // overhead. 6010 // 3. We don't interleave if we think that we will spill registers to memory 6011 // due to the increased register pressure. 6012 6013 if (!isScalarEpilogueAllowed()) 6014 return 1; 6015 6016 // We used the distance for the interleave count. 6017 if (Legal->getMaxSafeDepDistBytes() != -1U) 6018 return 1; 6019 6020 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6021 const bool HasReductions = !Legal->getReductionVars().empty(); 6022 // Do not interleave loops with a relatively small known or estimated trip 6023 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6024 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6025 // because with the above conditions interleaving can expose ILP and break 6026 // cross iteration dependences for reductions. 6027 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6028 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6029 return 1; 6030 6031 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6032 // We divide by these constants so assume that we have at least one 6033 // instruction that uses at least one register. 6034 for (auto& pair : R.MaxLocalUsers) { 6035 pair.second = std::max(pair.second, 1U); 6036 } 6037 6038 // We calculate the interleave count using the following formula. 6039 // Subtract the number of loop invariants from the number of available 6040 // registers. These registers are used by all of the interleaved instances. 6041 // Next, divide the remaining registers by the number of registers that is 6042 // required by the loop, in order to estimate how many parallel instances 6043 // fit without causing spills. All of this is rounded down if necessary to be 6044 // a power of two. We want power of two interleave count to simplify any 6045 // addressing operations or alignment considerations. 6046 // We also want power of two interleave counts to ensure that the induction 6047 // variable of the vector loop wraps to zero, when tail is folded by masking; 6048 // this currently happens when OptForSize, in which case IC is set to 1 above. 6049 unsigned IC = UINT_MAX; 6050 6051 for (auto& pair : R.MaxLocalUsers) { 6052 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6053 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6054 << " registers of " 6055 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6056 if (VF.isScalar()) { 6057 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6058 TargetNumRegisters = ForceTargetNumScalarRegs; 6059 } else { 6060 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6061 TargetNumRegisters = ForceTargetNumVectorRegs; 6062 } 6063 unsigned MaxLocalUsers = pair.second; 6064 unsigned LoopInvariantRegs = 0; 6065 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6066 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6067 6068 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6069 // Don't count the induction variable as interleaved. 6070 if (EnableIndVarRegisterHeur) { 6071 TmpIC = 6072 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6073 std::max(1U, (MaxLocalUsers - 1))); 6074 } 6075 6076 IC = std::min(IC, TmpIC); 6077 } 6078 6079 // Clamp the interleave ranges to reasonable counts. 6080 unsigned MaxInterleaveCount = 6081 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6082 6083 // Check if the user has overridden the max. 6084 if (VF.isScalar()) { 6085 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6086 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6087 } else { 6088 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6089 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6090 } 6091 6092 // If trip count is known or estimated compile time constant, limit the 6093 // interleave count to be less than the trip count divided by VF, provided it 6094 // is at least 1. 6095 // 6096 // For scalable vectors we can't know if interleaving is beneficial. It may 6097 // not be beneficial for small loops if none of the lanes in the second vector 6098 // iterations is enabled. However, for larger loops, there is likely to be a 6099 // similar benefit as for fixed-width vectors. For now, we choose to leave 6100 // the InterleaveCount as if vscale is '1', although if some information about 6101 // the vector is known (e.g. min vector size), we can make a better decision. 6102 if (BestKnownTC) { 6103 MaxInterleaveCount = 6104 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6105 // Make sure MaxInterleaveCount is greater than 0. 6106 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6107 } 6108 6109 assert(MaxInterleaveCount > 0 && 6110 "Maximum interleave count must be greater than 0"); 6111 6112 // Clamp the calculated IC to be between the 1 and the max interleave count 6113 // that the target and trip count allows. 6114 if (IC > MaxInterleaveCount) 6115 IC = MaxInterleaveCount; 6116 else 6117 // Make sure IC is greater than 0. 6118 IC = std::max(1u, IC); 6119 6120 assert(IC > 0 && "Interleave count must be greater than 0."); 6121 6122 // If we did not calculate the cost for VF (because the user selected the VF) 6123 // then we calculate the cost of VF here. 6124 if (LoopCost == 0) { 6125 InstructionCost C = expectedCost(VF).first; 6126 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6127 LoopCost = *C.getValue(); 6128 } 6129 6130 assert(LoopCost && "Non-zero loop cost expected"); 6131 6132 // Interleave if we vectorized this loop and there is a reduction that could 6133 // benefit from interleaving. 6134 if (VF.isVector() && HasReductions) { 6135 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6136 return IC; 6137 } 6138 6139 // For any scalar loop that either requires runtime checks or predication we 6140 // are better off leaving this to the unroller. Note that if we've already 6141 // vectorized the loop we will have done the runtime check and so interleaving 6142 // won't require further checks. 6143 bool ScalarInterleavingRequiresPredication = 6144 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 6145 return Legal->blockNeedsPredication(BB); 6146 })); 6147 bool ScalarInterleavingRequiresRuntimePointerCheck = 6148 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6149 6150 // We want to interleave small loops in order to reduce the loop overhead and 6151 // potentially expose ILP opportunities. 6152 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6153 << "LV: IC is " << IC << '\n' 6154 << "LV: VF is " << VF << '\n'); 6155 const bool AggressivelyInterleaveReductions = 6156 TTI.enableAggressiveInterleaving(HasReductions); 6157 if (!ScalarInterleavingRequiresRuntimePointerCheck && 6158 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 6159 // We assume that the cost overhead is 1 and we use the cost model 6160 // to estimate the cost of the loop and interleave until the cost of the 6161 // loop overhead is about 5% of the cost of the loop. 6162 unsigned SmallIC = 6163 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6164 6165 // Interleave until store/load ports (estimated by max interleave count) are 6166 // saturated. 6167 unsigned NumStores = Legal->getNumStores(); 6168 unsigned NumLoads = Legal->getNumLoads(); 6169 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6170 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6171 6172 // There is little point in interleaving for reductions containing selects 6173 // and compares when VF=1 since it may just create more overhead than it's 6174 // worth for loops with small trip counts. This is because we still have to 6175 // do the final reduction after the loop. 6176 bool HasSelectCmpReductions = 6177 HasReductions && 6178 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6179 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6180 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6181 RdxDesc.getRecurrenceKind()); 6182 }); 6183 if (HasSelectCmpReductions) { 6184 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6185 return 1; 6186 } 6187 6188 // If we have a scalar reduction (vector reductions are already dealt with 6189 // by this point), we can increase the critical path length if the loop 6190 // we're interleaving is inside another loop. For tree-wise reductions 6191 // set the limit to 2, and for ordered reductions it's best to disable 6192 // interleaving entirely. 6193 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6194 bool HasOrderedReductions = 6195 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6196 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6197 return RdxDesc.isOrdered(); 6198 }); 6199 if (HasOrderedReductions) { 6200 LLVM_DEBUG( 6201 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6202 return 1; 6203 } 6204 6205 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6206 SmallIC = std::min(SmallIC, F); 6207 StoresIC = std::min(StoresIC, F); 6208 LoadsIC = std::min(LoadsIC, F); 6209 } 6210 6211 if (EnableLoadStoreRuntimeInterleave && 6212 std::max(StoresIC, LoadsIC) > SmallIC) { 6213 LLVM_DEBUG( 6214 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6215 return std::max(StoresIC, LoadsIC); 6216 } 6217 6218 // If there are scalar reductions and TTI has enabled aggressive 6219 // interleaving for reductions, we will interleave to expose ILP. 6220 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6221 AggressivelyInterleaveReductions) { 6222 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6223 // Interleave no less than SmallIC but not as aggressive as the normal IC 6224 // to satisfy the rare situation when resources are too limited. 6225 return std::max(IC / 2, SmallIC); 6226 } else { 6227 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6228 return SmallIC; 6229 } 6230 } 6231 6232 // Interleave if this is a large loop (small loops are already dealt with by 6233 // this point) that could benefit from interleaving. 6234 if (AggressivelyInterleaveReductions) { 6235 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6236 return IC; 6237 } 6238 6239 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6240 return 1; 6241 } 6242 6243 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6244 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6245 // This function calculates the register usage by measuring the highest number 6246 // of values that are alive at a single location. Obviously, this is a very 6247 // rough estimation. We scan the loop in a topological order in order and 6248 // assign a number to each instruction. We use RPO to ensure that defs are 6249 // met before their users. We assume that each instruction that has in-loop 6250 // users starts an interval. We record every time that an in-loop value is 6251 // used, so we have a list of the first and last occurrences of each 6252 // instruction. Next, we transpose this data structure into a multi map that 6253 // holds the list of intervals that *end* at a specific location. This multi 6254 // map allows us to perform a linear search. We scan the instructions linearly 6255 // and record each time that a new interval starts, by placing it in a set. 6256 // If we find this value in the multi-map then we remove it from the set. 6257 // The max register usage is the maximum size of the set. 6258 // We also search for instructions that are defined outside the loop, but are 6259 // used inside the loop. We need this number separately from the max-interval 6260 // usage number because when we unroll, loop-invariant values do not take 6261 // more register. 6262 LoopBlocksDFS DFS(TheLoop); 6263 DFS.perform(LI); 6264 6265 RegisterUsage RU; 6266 6267 // Each 'key' in the map opens a new interval. The values 6268 // of the map are the index of the 'last seen' usage of the 6269 // instruction that is the key. 6270 using IntervalMap = DenseMap<Instruction *, unsigned>; 6271 6272 // Maps instruction to its index. 6273 SmallVector<Instruction *, 64> IdxToInstr; 6274 // Marks the end of each interval. 6275 IntervalMap EndPoint; 6276 // Saves the list of instruction indices that are used in the loop. 6277 SmallPtrSet<Instruction *, 8> Ends; 6278 // Saves the list of values that are used in the loop but are 6279 // defined outside the loop, such as arguments and constants. 6280 SmallPtrSet<Value *, 8> LoopInvariants; 6281 6282 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6283 for (Instruction &I : BB->instructionsWithoutDebug()) { 6284 IdxToInstr.push_back(&I); 6285 6286 // Save the end location of each USE. 6287 for (Value *U : I.operands()) { 6288 auto *Instr = dyn_cast<Instruction>(U); 6289 6290 // Ignore non-instruction values such as arguments, constants, etc. 6291 if (!Instr) 6292 continue; 6293 6294 // If this instruction is outside the loop then record it and continue. 6295 if (!TheLoop->contains(Instr)) { 6296 LoopInvariants.insert(Instr); 6297 continue; 6298 } 6299 6300 // Overwrite previous end points. 6301 EndPoint[Instr] = IdxToInstr.size(); 6302 Ends.insert(Instr); 6303 } 6304 } 6305 } 6306 6307 // Saves the list of intervals that end with the index in 'key'. 6308 using InstrList = SmallVector<Instruction *, 2>; 6309 DenseMap<unsigned, InstrList> TransposeEnds; 6310 6311 // Transpose the EndPoints to a list of values that end at each index. 6312 for (auto &Interval : EndPoint) 6313 TransposeEnds[Interval.second].push_back(Interval.first); 6314 6315 SmallPtrSet<Instruction *, 8> OpenIntervals; 6316 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6317 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6318 6319 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6320 6321 // A lambda that gets the register usage for the given type and VF. 6322 const auto &TTICapture = TTI; 6323 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6324 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6325 return 0; 6326 InstructionCost::CostType RegUsage = 6327 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6328 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6329 "Nonsensical values for register usage."); 6330 return RegUsage; 6331 }; 6332 6333 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6334 Instruction *I = IdxToInstr[i]; 6335 6336 // Remove all of the instructions that end at this location. 6337 InstrList &List = TransposeEnds[i]; 6338 for (Instruction *ToRemove : List) 6339 OpenIntervals.erase(ToRemove); 6340 6341 // Ignore instructions that are never used within the loop. 6342 if (!Ends.count(I)) 6343 continue; 6344 6345 // Skip ignored values. 6346 if (ValuesToIgnore.count(I)) 6347 continue; 6348 6349 // For each VF find the maximum usage of registers. 6350 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6351 // Count the number of live intervals. 6352 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6353 6354 if (VFs[j].isScalar()) { 6355 for (auto Inst : OpenIntervals) { 6356 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6357 if (RegUsage.find(ClassID) == RegUsage.end()) 6358 RegUsage[ClassID] = 1; 6359 else 6360 RegUsage[ClassID] += 1; 6361 } 6362 } else { 6363 collectUniformsAndScalars(VFs[j]); 6364 for (auto Inst : OpenIntervals) { 6365 // Skip ignored values for VF > 1. 6366 if (VecValuesToIgnore.count(Inst)) 6367 continue; 6368 if (isScalarAfterVectorization(Inst, VFs[j])) { 6369 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6370 if (RegUsage.find(ClassID) == RegUsage.end()) 6371 RegUsage[ClassID] = 1; 6372 else 6373 RegUsage[ClassID] += 1; 6374 } else { 6375 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6376 if (RegUsage.find(ClassID) == RegUsage.end()) 6377 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6378 else 6379 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6380 } 6381 } 6382 } 6383 6384 for (auto& pair : RegUsage) { 6385 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6386 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6387 else 6388 MaxUsages[j][pair.first] = pair.second; 6389 } 6390 } 6391 6392 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6393 << OpenIntervals.size() << '\n'); 6394 6395 // Add the current instruction to the list of open intervals. 6396 OpenIntervals.insert(I); 6397 } 6398 6399 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6400 SmallMapVector<unsigned, unsigned, 4> Invariant; 6401 6402 for (auto Inst : LoopInvariants) { 6403 unsigned Usage = 6404 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6405 unsigned ClassID = 6406 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6407 if (Invariant.find(ClassID) == Invariant.end()) 6408 Invariant[ClassID] = Usage; 6409 else 6410 Invariant[ClassID] += Usage; 6411 } 6412 6413 LLVM_DEBUG({ 6414 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6415 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6416 << " item\n"; 6417 for (const auto &pair : MaxUsages[i]) { 6418 dbgs() << "LV(REG): RegisterClass: " 6419 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6420 << " registers\n"; 6421 } 6422 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6423 << " item\n"; 6424 for (const auto &pair : Invariant) { 6425 dbgs() << "LV(REG): RegisterClass: " 6426 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6427 << " registers\n"; 6428 } 6429 }); 6430 6431 RU.LoopInvariantRegs = Invariant; 6432 RU.MaxLocalUsers = MaxUsages[i]; 6433 RUs[i] = RU; 6434 } 6435 6436 return RUs; 6437 } 6438 6439 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6440 // If we aren't vectorizing the loop, or if we've already collected the 6441 // instructions to scalarize, there's nothing to do. Collection may already 6442 // have occurred if we have a user-selected VF and are now computing the 6443 // expected cost for interleaving. 6444 if (VF.isScalar() || VF.isZero() || 6445 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6446 return; 6447 6448 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6449 // not profitable to scalarize any instructions, the presence of VF in the 6450 // map will indicate that we've analyzed it already. 6451 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6452 6453 // Find all the instructions that are scalar with predication in the loop and 6454 // determine if it would be better to not if-convert the blocks they are in. 6455 // If so, we also record the instructions to scalarize. 6456 for (BasicBlock *BB : TheLoop->blocks()) { 6457 if (!blockNeedsPredicationForAnyReason(BB)) 6458 continue; 6459 for (Instruction &I : *BB) 6460 if (isScalarWithPredication(&I, VF)) { 6461 ScalarCostsTy ScalarCosts; 6462 // Do not apply discount if scalable, because that would lead to 6463 // invalid scalarization costs. 6464 if (!VF.isScalable() && 6465 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6466 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6467 // Remember that BB will remain after vectorization. 6468 PredicatedBBsAfterVectorization.insert(BB); 6469 } 6470 } 6471 } 6472 6473 int LoopVectorizationCostModel::computePredInstDiscount( 6474 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6475 assert(!isUniformAfterVectorization(PredInst, VF) && 6476 "Instruction marked uniform-after-vectorization will be predicated"); 6477 6478 // Initialize the discount to zero, meaning that the scalar version and the 6479 // vector version cost the same. 6480 InstructionCost Discount = 0; 6481 6482 // Holds instructions to analyze. The instructions we visit are mapped in 6483 // ScalarCosts. Those instructions are the ones that would be scalarized if 6484 // we find that the scalar version costs less. 6485 SmallVector<Instruction *, 8> Worklist; 6486 6487 // Returns true if the given instruction can be scalarized. 6488 auto canBeScalarized = [&](Instruction *I) -> bool { 6489 // We only attempt to scalarize instructions forming a single-use chain 6490 // from the original predicated block that would otherwise be vectorized. 6491 // Although not strictly necessary, we give up on instructions we know will 6492 // already be scalar to avoid traversing chains that are unlikely to be 6493 // beneficial. 6494 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6495 isScalarAfterVectorization(I, VF)) 6496 return false; 6497 6498 // If the instruction is scalar with predication, it will be analyzed 6499 // separately. We ignore it within the context of PredInst. 6500 if (isScalarWithPredication(I, VF)) 6501 return false; 6502 6503 // If any of the instruction's operands are uniform after vectorization, 6504 // the instruction cannot be scalarized. This prevents, for example, a 6505 // masked load from being scalarized. 6506 // 6507 // We assume we will only emit a value for lane zero of an instruction 6508 // marked uniform after vectorization, rather than VF identical values. 6509 // Thus, if we scalarize an instruction that uses a uniform, we would 6510 // create uses of values corresponding to the lanes we aren't emitting code 6511 // for. This behavior can be changed by allowing getScalarValue to clone 6512 // the lane zero values for uniforms rather than asserting. 6513 for (Use &U : I->operands()) 6514 if (auto *J = dyn_cast<Instruction>(U.get())) 6515 if (isUniformAfterVectorization(J, VF)) 6516 return false; 6517 6518 // Otherwise, we can scalarize the instruction. 6519 return true; 6520 }; 6521 6522 // Compute the expected cost discount from scalarizing the entire expression 6523 // feeding the predicated instruction. We currently only consider expressions 6524 // that are single-use instruction chains. 6525 Worklist.push_back(PredInst); 6526 while (!Worklist.empty()) { 6527 Instruction *I = Worklist.pop_back_val(); 6528 6529 // If we've already analyzed the instruction, there's nothing to do. 6530 if (ScalarCosts.find(I) != ScalarCosts.end()) 6531 continue; 6532 6533 // Compute the cost of the vector instruction. Note that this cost already 6534 // includes the scalarization overhead of the predicated instruction. 6535 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6536 6537 // Compute the cost of the scalarized instruction. This cost is the cost of 6538 // the instruction as if it wasn't if-converted and instead remained in the 6539 // predicated block. We will scale this cost by block probability after 6540 // computing the scalarization overhead. 6541 InstructionCost ScalarCost = 6542 VF.getFixedValue() * 6543 getInstructionCost(I, ElementCount::getFixed(1)).first; 6544 6545 // Compute the scalarization overhead of needed insertelement instructions 6546 // and phi nodes. 6547 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6548 ScalarCost += TTI.getScalarizationOverhead( 6549 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6550 APInt::getAllOnes(VF.getFixedValue()), true, false); 6551 ScalarCost += 6552 VF.getFixedValue() * 6553 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6554 } 6555 6556 // Compute the scalarization overhead of needed extractelement 6557 // instructions. For each of the instruction's operands, if the operand can 6558 // be scalarized, add it to the worklist; otherwise, account for the 6559 // overhead. 6560 for (Use &U : I->operands()) 6561 if (auto *J = dyn_cast<Instruction>(U.get())) { 6562 assert(VectorType::isValidElementType(J->getType()) && 6563 "Instruction has non-scalar type"); 6564 if (canBeScalarized(J)) 6565 Worklist.push_back(J); 6566 else if (needsExtract(J, VF)) { 6567 ScalarCost += TTI.getScalarizationOverhead( 6568 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6569 APInt::getAllOnes(VF.getFixedValue()), false, true); 6570 } 6571 } 6572 6573 // Scale the total scalar cost by block probability. 6574 ScalarCost /= getReciprocalPredBlockProb(); 6575 6576 // Compute the discount. A non-negative discount means the vector version 6577 // of the instruction costs more, and scalarizing would be beneficial. 6578 Discount += VectorCost - ScalarCost; 6579 ScalarCosts[I] = ScalarCost; 6580 } 6581 6582 return *Discount.getValue(); 6583 } 6584 6585 LoopVectorizationCostModel::VectorizationCostTy 6586 LoopVectorizationCostModel::expectedCost( 6587 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6588 VectorizationCostTy Cost; 6589 6590 // For each block. 6591 for (BasicBlock *BB : TheLoop->blocks()) { 6592 VectorizationCostTy BlockCost; 6593 6594 // For each instruction in the old loop. 6595 for (Instruction &I : BB->instructionsWithoutDebug()) { 6596 // Skip ignored values. 6597 if (ValuesToIgnore.count(&I) || 6598 (VF.isVector() && VecValuesToIgnore.count(&I))) 6599 continue; 6600 6601 VectorizationCostTy C = getInstructionCost(&I, VF); 6602 6603 // Check if we should override the cost. 6604 if (C.first.isValid() && 6605 ForceTargetInstructionCost.getNumOccurrences() > 0) 6606 C.first = InstructionCost(ForceTargetInstructionCost); 6607 6608 // Keep a list of instructions with invalid costs. 6609 if (Invalid && !C.first.isValid()) 6610 Invalid->emplace_back(&I, VF); 6611 6612 BlockCost.first += C.first; 6613 BlockCost.second |= C.second; 6614 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6615 << " for VF " << VF << " For instruction: " << I 6616 << '\n'); 6617 } 6618 6619 // If we are vectorizing a predicated block, it will have been 6620 // if-converted. This means that the block's instructions (aside from 6621 // stores and instructions that may divide by zero) will now be 6622 // unconditionally executed. For the scalar case, we may not always execute 6623 // the predicated block, if it is an if-else block. Thus, scale the block's 6624 // cost by the probability of executing it. blockNeedsPredication from 6625 // Legal is used so as to not include all blocks in tail folded loops. 6626 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6627 BlockCost.first /= getReciprocalPredBlockProb(); 6628 6629 Cost.first += BlockCost.first; 6630 Cost.second |= BlockCost.second; 6631 } 6632 6633 return Cost; 6634 } 6635 6636 /// Gets Address Access SCEV after verifying that the access pattern 6637 /// is loop invariant except the induction variable dependence. 6638 /// 6639 /// This SCEV can be sent to the Target in order to estimate the address 6640 /// calculation cost. 6641 static const SCEV *getAddressAccessSCEV( 6642 Value *Ptr, 6643 LoopVectorizationLegality *Legal, 6644 PredicatedScalarEvolution &PSE, 6645 const Loop *TheLoop) { 6646 6647 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6648 if (!Gep) 6649 return nullptr; 6650 6651 // We are looking for a gep with all loop invariant indices except for one 6652 // which should be an induction variable. 6653 auto SE = PSE.getSE(); 6654 unsigned NumOperands = Gep->getNumOperands(); 6655 for (unsigned i = 1; i < NumOperands; ++i) { 6656 Value *Opd = Gep->getOperand(i); 6657 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6658 !Legal->isInductionVariable(Opd)) 6659 return nullptr; 6660 } 6661 6662 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6663 return PSE.getSCEV(Ptr); 6664 } 6665 6666 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6667 return Legal->hasStride(I->getOperand(0)) || 6668 Legal->hasStride(I->getOperand(1)); 6669 } 6670 6671 InstructionCost 6672 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6673 ElementCount VF) { 6674 assert(VF.isVector() && 6675 "Scalarization cost of instruction implies vectorization."); 6676 if (VF.isScalable()) 6677 return InstructionCost::getInvalid(); 6678 6679 Type *ValTy = getLoadStoreType(I); 6680 auto SE = PSE.getSE(); 6681 6682 unsigned AS = getLoadStoreAddressSpace(I); 6683 Value *Ptr = getLoadStorePointerOperand(I); 6684 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6685 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6686 // that it is being called from this specific place. 6687 6688 // Figure out whether the access is strided and get the stride value 6689 // if it's known in compile time 6690 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6691 6692 // Get the cost of the scalar memory instruction and address computation. 6693 InstructionCost Cost = 6694 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6695 6696 // Don't pass *I here, since it is scalar but will actually be part of a 6697 // vectorized loop where the user of it is a vectorized instruction. 6698 const Align Alignment = getLoadStoreAlignment(I); 6699 Cost += VF.getKnownMinValue() * 6700 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6701 AS, TTI::TCK_RecipThroughput); 6702 6703 // Get the overhead of the extractelement and insertelement instructions 6704 // we might create due to scalarization. 6705 Cost += getScalarizationOverhead(I, VF); 6706 6707 // If we have a predicated load/store, it will need extra i1 extracts and 6708 // conditional branches, but may not be executed for each vector lane. Scale 6709 // the cost by the probability of executing the predicated block. 6710 if (isPredicatedInst(I, VF)) { 6711 Cost /= getReciprocalPredBlockProb(); 6712 6713 // Add the cost of an i1 extract and a branch 6714 auto *Vec_i1Ty = 6715 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6716 Cost += TTI.getScalarizationOverhead( 6717 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6718 /*Insert=*/false, /*Extract=*/true); 6719 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6720 } 6721 6722 return Cost; 6723 } 6724 6725 InstructionCost 6726 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6727 ElementCount VF) { 6728 Type *ValTy = getLoadStoreType(I); 6729 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6730 Value *Ptr = getLoadStorePointerOperand(I); 6731 unsigned AS = getLoadStoreAddressSpace(I); 6732 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6733 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6734 6735 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6736 "Stride should be 1 or -1 for consecutive memory access"); 6737 const Align Alignment = getLoadStoreAlignment(I); 6738 InstructionCost Cost = 0; 6739 if (Legal->isMaskRequired(I)) 6740 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6741 CostKind); 6742 else 6743 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6744 CostKind, I); 6745 6746 bool Reverse = ConsecutiveStride < 0; 6747 if (Reverse) 6748 Cost += 6749 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6750 return Cost; 6751 } 6752 6753 InstructionCost 6754 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6755 ElementCount VF) { 6756 assert(Legal->isUniformMemOp(*I)); 6757 6758 Type *ValTy = getLoadStoreType(I); 6759 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6760 const Align Alignment = getLoadStoreAlignment(I); 6761 unsigned AS = getLoadStoreAddressSpace(I); 6762 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6763 if (isa<LoadInst>(I)) { 6764 return TTI.getAddressComputationCost(ValTy) + 6765 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6766 CostKind) + 6767 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6768 } 6769 StoreInst *SI = cast<StoreInst>(I); 6770 6771 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6772 return TTI.getAddressComputationCost(ValTy) + 6773 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6774 CostKind) + 6775 (isLoopInvariantStoreValue 6776 ? 0 6777 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6778 VF.getKnownMinValue() - 1)); 6779 } 6780 6781 InstructionCost 6782 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6783 ElementCount VF) { 6784 Type *ValTy = getLoadStoreType(I); 6785 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6786 const Align Alignment = getLoadStoreAlignment(I); 6787 const Value *Ptr = getLoadStorePointerOperand(I); 6788 6789 return TTI.getAddressComputationCost(VectorTy) + 6790 TTI.getGatherScatterOpCost( 6791 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6792 TargetTransformInfo::TCK_RecipThroughput, I); 6793 } 6794 6795 InstructionCost 6796 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6797 ElementCount VF) { 6798 // TODO: Once we have support for interleaving with scalable vectors 6799 // we can calculate the cost properly here. 6800 if (VF.isScalable()) 6801 return InstructionCost::getInvalid(); 6802 6803 Type *ValTy = getLoadStoreType(I); 6804 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6805 unsigned AS = getLoadStoreAddressSpace(I); 6806 6807 auto Group = getInterleavedAccessGroup(I); 6808 assert(Group && "Fail to get an interleaved access group."); 6809 6810 unsigned InterleaveFactor = Group->getFactor(); 6811 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6812 6813 // Holds the indices of existing members in the interleaved group. 6814 SmallVector<unsigned, 4> Indices; 6815 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6816 if (Group->getMember(IF)) 6817 Indices.push_back(IF); 6818 6819 // Calculate the cost of the whole interleaved group. 6820 bool UseMaskForGaps = 6821 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6822 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6823 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6824 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6825 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6826 6827 if (Group->isReverse()) { 6828 // TODO: Add support for reversed masked interleaved access. 6829 assert(!Legal->isMaskRequired(I) && 6830 "Reverse masked interleaved access not supported."); 6831 Cost += 6832 Group->getNumMembers() * 6833 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6834 } 6835 return Cost; 6836 } 6837 6838 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6839 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6840 using namespace llvm::PatternMatch; 6841 // Early exit for no inloop reductions 6842 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6843 return None; 6844 auto *VectorTy = cast<VectorType>(Ty); 6845 6846 // We are looking for a pattern of, and finding the minimal acceptable cost: 6847 // reduce(mul(ext(A), ext(B))) or 6848 // reduce(mul(A, B)) or 6849 // reduce(ext(A)) or 6850 // reduce(A). 6851 // The basic idea is that we walk down the tree to do that, finding the root 6852 // reduction instruction in InLoopReductionImmediateChains. From there we find 6853 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6854 // of the components. If the reduction cost is lower then we return it for the 6855 // reduction instruction and 0 for the other instructions in the pattern. If 6856 // it is not we return an invalid cost specifying the orignal cost method 6857 // should be used. 6858 Instruction *RetI = I; 6859 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6860 if (!RetI->hasOneUser()) 6861 return None; 6862 RetI = RetI->user_back(); 6863 } 6864 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6865 RetI->user_back()->getOpcode() == Instruction::Add) { 6866 if (!RetI->hasOneUser()) 6867 return None; 6868 RetI = RetI->user_back(); 6869 } 6870 6871 // Test if the found instruction is a reduction, and if not return an invalid 6872 // cost specifying the parent to use the original cost modelling. 6873 if (!InLoopReductionImmediateChains.count(RetI)) 6874 return None; 6875 6876 // Find the reduction this chain is a part of and calculate the basic cost of 6877 // the reduction on its own. 6878 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6879 Instruction *ReductionPhi = LastChain; 6880 while (!isa<PHINode>(ReductionPhi)) 6881 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6882 6883 const RecurrenceDescriptor &RdxDesc = 6884 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6885 6886 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6887 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6888 6889 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6890 // normal fmul instruction to the cost of the fadd reduction. 6891 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6892 BaseCost += 6893 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6894 6895 // If we're using ordered reductions then we can just return the base cost 6896 // here, since getArithmeticReductionCost calculates the full ordered 6897 // reduction cost when FP reassociation is not allowed. 6898 if (useOrderedReductions(RdxDesc)) 6899 return BaseCost; 6900 6901 // Get the operand that was not the reduction chain and match it to one of the 6902 // patterns, returning the better cost if it is found. 6903 Instruction *RedOp = RetI->getOperand(1) == LastChain 6904 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6905 : dyn_cast<Instruction>(RetI->getOperand(1)); 6906 6907 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6908 6909 Instruction *Op0, *Op1; 6910 if (RedOp && 6911 match(RedOp, 6912 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6913 match(Op0, m_ZExtOrSExt(m_Value())) && 6914 Op0->getOpcode() == Op1->getOpcode() && 6915 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6916 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6917 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6918 6919 // Matched reduce(ext(mul(ext(A), ext(B))) 6920 // Note that the extend opcodes need to all match, or if A==B they will have 6921 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6922 // which is equally fine. 6923 bool IsUnsigned = isa<ZExtInst>(Op0); 6924 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6925 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6926 6927 InstructionCost ExtCost = 6928 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6929 TTI::CastContextHint::None, CostKind, Op0); 6930 InstructionCost MulCost = 6931 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6932 InstructionCost Ext2Cost = 6933 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6934 TTI::CastContextHint::None, CostKind, RedOp); 6935 6936 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6937 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6938 CostKind); 6939 6940 if (RedCost.isValid() && 6941 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6942 return I == RetI ? RedCost : 0; 6943 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6944 !TheLoop->isLoopInvariant(RedOp)) { 6945 // Matched reduce(ext(A)) 6946 bool IsUnsigned = isa<ZExtInst>(RedOp); 6947 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6948 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6949 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6950 CostKind); 6951 6952 InstructionCost ExtCost = 6953 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6954 TTI::CastContextHint::None, CostKind, RedOp); 6955 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6956 return I == RetI ? RedCost : 0; 6957 } else if (RedOp && 6958 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6959 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6960 Op0->getOpcode() == Op1->getOpcode() && 6961 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6962 bool IsUnsigned = isa<ZExtInst>(Op0); 6963 Type *Op0Ty = Op0->getOperand(0)->getType(); 6964 Type *Op1Ty = Op1->getOperand(0)->getType(); 6965 Type *LargestOpTy = 6966 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6967 : Op0Ty; 6968 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6969 6970 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6971 // different sizes. We take the largest type as the ext to reduce, and add 6972 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6973 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6974 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6975 TTI::CastContextHint::None, CostKind, Op0); 6976 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6977 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6978 TTI::CastContextHint::None, CostKind, Op1); 6979 InstructionCost MulCost = 6980 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6981 6982 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6983 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6984 CostKind); 6985 InstructionCost ExtraExtCost = 0; 6986 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6987 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6988 ExtraExtCost = TTI.getCastInstrCost( 6989 ExtraExtOp->getOpcode(), ExtType, 6990 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6991 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6992 } 6993 6994 if (RedCost.isValid() && 6995 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6996 return I == RetI ? RedCost : 0; 6997 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6998 // Matched reduce(mul()) 6999 InstructionCost MulCost = 7000 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7001 7002 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7003 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7004 CostKind); 7005 7006 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7007 return I == RetI ? RedCost : 0; 7008 } 7009 } 7010 7011 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7012 } 7013 7014 InstructionCost 7015 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7016 ElementCount VF) { 7017 // Calculate scalar cost only. Vectorization cost should be ready at this 7018 // moment. 7019 if (VF.isScalar()) { 7020 Type *ValTy = getLoadStoreType(I); 7021 const Align Alignment = getLoadStoreAlignment(I); 7022 unsigned AS = getLoadStoreAddressSpace(I); 7023 7024 return TTI.getAddressComputationCost(ValTy) + 7025 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7026 TTI::TCK_RecipThroughput, I); 7027 } 7028 return getWideningCost(I, VF); 7029 } 7030 7031 LoopVectorizationCostModel::VectorizationCostTy 7032 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7033 ElementCount VF) { 7034 // If we know that this instruction will remain uniform, check the cost of 7035 // the scalar version. 7036 if (isUniformAfterVectorization(I, VF)) 7037 VF = ElementCount::getFixed(1); 7038 7039 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7040 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7041 7042 // Forced scalars do not have any scalarization overhead. 7043 auto ForcedScalar = ForcedScalars.find(VF); 7044 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7045 auto InstSet = ForcedScalar->second; 7046 if (InstSet.count(I)) 7047 return VectorizationCostTy( 7048 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7049 VF.getKnownMinValue()), 7050 false); 7051 } 7052 7053 Type *VectorTy; 7054 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7055 7056 bool TypeNotScalarized = false; 7057 if (VF.isVector() && VectorTy->isVectorTy()) { 7058 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7059 if (NumParts) 7060 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7061 else 7062 C = InstructionCost::getInvalid(); 7063 } 7064 return VectorizationCostTy(C, TypeNotScalarized); 7065 } 7066 7067 InstructionCost 7068 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7069 ElementCount VF) const { 7070 7071 // There is no mechanism yet to create a scalable scalarization loop, 7072 // so this is currently Invalid. 7073 if (VF.isScalable()) 7074 return InstructionCost::getInvalid(); 7075 7076 if (VF.isScalar()) 7077 return 0; 7078 7079 InstructionCost Cost = 0; 7080 Type *RetTy = ToVectorTy(I->getType(), VF); 7081 if (!RetTy->isVoidTy() && 7082 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7083 Cost += TTI.getScalarizationOverhead( 7084 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7085 false); 7086 7087 // Some targets keep addresses scalar. 7088 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7089 return Cost; 7090 7091 // Some targets support efficient element stores. 7092 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7093 return Cost; 7094 7095 // Collect operands to consider. 7096 CallInst *CI = dyn_cast<CallInst>(I); 7097 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7098 7099 // Skip operands that do not require extraction/scalarization and do not incur 7100 // any overhead. 7101 SmallVector<Type *> Tys; 7102 for (auto *V : filterExtractingOperands(Ops, VF)) 7103 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7104 return Cost + TTI.getOperandsScalarizationOverhead( 7105 filterExtractingOperands(Ops, VF), Tys); 7106 } 7107 7108 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7109 if (VF.isScalar()) 7110 return; 7111 NumPredStores = 0; 7112 for (BasicBlock *BB : TheLoop->blocks()) { 7113 // For each instruction in the old loop. 7114 for (Instruction &I : *BB) { 7115 Value *Ptr = getLoadStorePointerOperand(&I); 7116 if (!Ptr) 7117 continue; 7118 7119 // TODO: We should generate better code and update the cost model for 7120 // predicated uniform stores. Today they are treated as any other 7121 // predicated store (see added test cases in 7122 // invariant-store-vectorization.ll). 7123 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7124 NumPredStores++; 7125 7126 if (Legal->isUniformMemOp(I)) { 7127 // TODO: Avoid replicating loads and stores instead of 7128 // relying on instcombine to remove them. 7129 // Load: Scalar load + broadcast 7130 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7131 InstructionCost Cost; 7132 if (isa<StoreInst>(&I) && VF.isScalable() && 7133 isLegalGatherOrScatter(&I, VF)) { 7134 Cost = getGatherScatterCost(&I, VF); 7135 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7136 } else { 7137 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7138 "Cannot yet scalarize uniform stores"); 7139 Cost = getUniformMemOpCost(&I, VF); 7140 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7141 } 7142 continue; 7143 } 7144 7145 // We assume that widening is the best solution when possible. 7146 if (memoryInstructionCanBeWidened(&I, VF)) { 7147 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7148 int ConsecutiveStride = Legal->isConsecutivePtr( 7149 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7150 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7151 "Expected consecutive stride."); 7152 InstWidening Decision = 7153 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7154 setWideningDecision(&I, VF, Decision, Cost); 7155 continue; 7156 } 7157 7158 // Choose between Interleaving, Gather/Scatter or Scalarization. 7159 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7160 unsigned NumAccesses = 1; 7161 if (isAccessInterleaved(&I)) { 7162 auto Group = getInterleavedAccessGroup(&I); 7163 assert(Group && "Fail to get an interleaved access group."); 7164 7165 // Make one decision for the whole group. 7166 if (getWideningDecision(&I, VF) != CM_Unknown) 7167 continue; 7168 7169 NumAccesses = Group->getNumMembers(); 7170 if (interleavedAccessCanBeWidened(&I, VF)) 7171 InterleaveCost = getInterleaveGroupCost(&I, VF); 7172 } 7173 7174 InstructionCost GatherScatterCost = 7175 isLegalGatherOrScatter(&I, VF) 7176 ? getGatherScatterCost(&I, VF) * NumAccesses 7177 : InstructionCost::getInvalid(); 7178 7179 InstructionCost ScalarizationCost = 7180 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7181 7182 // Choose better solution for the current VF, 7183 // write down this decision and use it during vectorization. 7184 InstructionCost Cost; 7185 InstWidening Decision; 7186 if (InterleaveCost <= GatherScatterCost && 7187 InterleaveCost < ScalarizationCost) { 7188 Decision = CM_Interleave; 7189 Cost = InterleaveCost; 7190 } else if (GatherScatterCost < ScalarizationCost) { 7191 Decision = CM_GatherScatter; 7192 Cost = GatherScatterCost; 7193 } else { 7194 Decision = CM_Scalarize; 7195 Cost = ScalarizationCost; 7196 } 7197 // If the instructions belongs to an interleave group, the whole group 7198 // receives the same decision. The whole group receives the cost, but 7199 // the cost will actually be assigned to one instruction. 7200 if (auto Group = getInterleavedAccessGroup(&I)) 7201 setWideningDecision(Group, VF, Decision, Cost); 7202 else 7203 setWideningDecision(&I, VF, Decision, Cost); 7204 } 7205 } 7206 7207 // Make sure that any load of address and any other address computation 7208 // remains scalar unless there is gather/scatter support. This avoids 7209 // inevitable extracts into address registers, and also has the benefit of 7210 // activating LSR more, since that pass can't optimize vectorized 7211 // addresses. 7212 if (TTI.prefersVectorizedAddressing()) 7213 return; 7214 7215 // Start with all scalar pointer uses. 7216 SmallPtrSet<Instruction *, 8> AddrDefs; 7217 for (BasicBlock *BB : TheLoop->blocks()) 7218 for (Instruction &I : *BB) { 7219 Instruction *PtrDef = 7220 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7221 if (PtrDef && TheLoop->contains(PtrDef) && 7222 getWideningDecision(&I, VF) != CM_GatherScatter) 7223 AddrDefs.insert(PtrDef); 7224 } 7225 7226 // Add all instructions used to generate the addresses. 7227 SmallVector<Instruction *, 4> Worklist; 7228 append_range(Worklist, AddrDefs); 7229 while (!Worklist.empty()) { 7230 Instruction *I = Worklist.pop_back_val(); 7231 for (auto &Op : I->operands()) 7232 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7233 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7234 AddrDefs.insert(InstOp).second) 7235 Worklist.push_back(InstOp); 7236 } 7237 7238 for (auto *I : AddrDefs) { 7239 if (isa<LoadInst>(I)) { 7240 // Setting the desired widening decision should ideally be handled in 7241 // by cost functions, but since this involves the task of finding out 7242 // if the loaded register is involved in an address computation, it is 7243 // instead changed here when we know this is the case. 7244 InstWidening Decision = getWideningDecision(I, VF); 7245 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7246 // Scalarize a widened load of address. 7247 setWideningDecision( 7248 I, VF, CM_Scalarize, 7249 (VF.getKnownMinValue() * 7250 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7251 else if (auto Group = getInterleavedAccessGroup(I)) { 7252 // Scalarize an interleave group of address loads. 7253 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7254 if (Instruction *Member = Group->getMember(I)) 7255 setWideningDecision( 7256 Member, VF, CM_Scalarize, 7257 (VF.getKnownMinValue() * 7258 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7259 } 7260 } 7261 } else 7262 // Make sure I gets scalarized and a cost estimate without 7263 // scalarization overhead. 7264 ForcedScalars[VF].insert(I); 7265 } 7266 } 7267 7268 InstructionCost 7269 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7270 Type *&VectorTy) { 7271 Type *RetTy = I->getType(); 7272 if (canTruncateToMinimalBitwidth(I, VF)) 7273 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7274 auto SE = PSE.getSE(); 7275 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7276 7277 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7278 ElementCount VF) -> bool { 7279 if (VF.isScalar()) 7280 return true; 7281 7282 auto Scalarized = InstsToScalarize.find(VF); 7283 assert(Scalarized != InstsToScalarize.end() && 7284 "VF not yet analyzed for scalarization profitability"); 7285 return !Scalarized->second.count(I) && 7286 llvm::all_of(I->users(), [&](User *U) { 7287 auto *UI = cast<Instruction>(U); 7288 return !Scalarized->second.count(UI); 7289 }); 7290 }; 7291 (void) hasSingleCopyAfterVectorization; 7292 7293 if (isScalarAfterVectorization(I, VF)) { 7294 // With the exception of GEPs and PHIs, after scalarization there should 7295 // only be one copy of the instruction generated in the loop. This is 7296 // because the VF is either 1, or any instructions that need scalarizing 7297 // have already been dealt with by the the time we get here. As a result, 7298 // it means we don't have to multiply the instruction cost by VF. 7299 assert(I->getOpcode() == Instruction::GetElementPtr || 7300 I->getOpcode() == Instruction::PHI || 7301 (I->getOpcode() == Instruction::BitCast && 7302 I->getType()->isPointerTy()) || 7303 hasSingleCopyAfterVectorization(I, VF)); 7304 VectorTy = RetTy; 7305 } else 7306 VectorTy = ToVectorTy(RetTy, VF); 7307 7308 // TODO: We need to estimate the cost of intrinsic calls. 7309 switch (I->getOpcode()) { 7310 case Instruction::GetElementPtr: 7311 // We mark this instruction as zero-cost because the cost of GEPs in 7312 // vectorized code depends on whether the corresponding memory instruction 7313 // is scalarized or not. Therefore, we handle GEPs with the memory 7314 // instruction cost. 7315 return 0; 7316 case Instruction::Br: { 7317 // In cases of scalarized and predicated instructions, there will be VF 7318 // predicated blocks in the vectorized loop. Each branch around these 7319 // blocks requires also an extract of its vector compare i1 element. 7320 bool ScalarPredicatedBB = false; 7321 BranchInst *BI = cast<BranchInst>(I); 7322 if (VF.isVector() && BI->isConditional() && 7323 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7324 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7325 ScalarPredicatedBB = true; 7326 7327 if (ScalarPredicatedBB) { 7328 // Not possible to scalarize scalable vector with predicated instructions. 7329 if (VF.isScalable()) 7330 return InstructionCost::getInvalid(); 7331 // Return cost for branches around scalarized and predicated blocks. 7332 auto *Vec_i1Ty = 7333 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7334 return ( 7335 TTI.getScalarizationOverhead( 7336 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7337 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7338 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7339 // The back-edge branch will remain, as will all scalar branches. 7340 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7341 else 7342 // This branch will be eliminated by if-conversion. 7343 return 0; 7344 // Note: We currently assume zero cost for an unconditional branch inside 7345 // a predicated block since it will become a fall-through, although we 7346 // may decide in the future to call TTI for all branches. 7347 } 7348 case Instruction::PHI: { 7349 auto *Phi = cast<PHINode>(I); 7350 7351 // First-order recurrences are replaced by vector shuffles inside the loop. 7352 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7353 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7354 return TTI.getShuffleCost( 7355 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7356 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7357 7358 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7359 // converted into select instructions. We require N - 1 selects per phi 7360 // node, where N is the number of incoming values. 7361 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7362 return (Phi->getNumIncomingValues() - 1) * 7363 TTI.getCmpSelInstrCost( 7364 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7365 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7366 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7367 7368 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7369 } 7370 case Instruction::UDiv: 7371 case Instruction::SDiv: 7372 case Instruction::URem: 7373 case Instruction::SRem: 7374 // If we have a predicated instruction, it may not be executed for each 7375 // vector lane. Get the scalarization cost and scale this amount by the 7376 // probability of executing the predicated block. If the instruction is not 7377 // predicated, we fall through to the next case. 7378 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7379 InstructionCost Cost = 0; 7380 7381 // These instructions have a non-void type, so account for the phi nodes 7382 // that we will create. This cost is likely to be zero. The phi node 7383 // cost, if any, should be scaled by the block probability because it 7384 // models a copy at the end of each predicated block. 7385 Cost += VF.getKnownMinValue() * 7386 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7387 7388 // The cost of the non-predicated instruction. 7389 Cost += VF.getKnownMinValue() * 7390 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7391 7392 // The cost of insertelement and extractelement instructions needed for 7393 // scalarization. 7394 Cost += getScalarizationOverhead(I, VF); 7395 7396 // Scale the cost by the probability of executing the predicated blocks. 7397 // This assumes the predicated block for each vector lane is equally 7398 // likely. 7399 return Cost / getReciprocalPredBlockProb(); 7400 } 7401 LLVM_FALLTHROUGH; 7402 case Instruction::Add: 7403 case Instruction::FAdd: 7404 case Instruction::Sub: 7405 case Instruction::FSub: 7406 case Instruction::Mul: 7407 case Instruction::FMul: 7408 case Instruction::FDiv: 7409 case Instruction::FRem: 7410 case Instruction::Shl: 7411 case Instruction::LShr: 7412 case Instruction::AShr: 7413 case Instruction::And: 7414 case Instruction::Or: 7415 case Instruction::Xor: { 7416 // Since we will replace the stride by 1 the multiplication should go away. 7417 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7418 return 0; 7419 7420 // Detect reduction patterns 7421 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7422 return *RedCost; 7423 7424 // Certain instructions can be cheaper to vectorize if they have a constant 7425 // second vector operand. One example of this are shifts on x86. 7426 Value *Op2 = I->getOperand(1); 7427 TargetTransformInfo::OperandValueProperties Op2VP; 7428 TargetTransformInfo::OperandValueKind Op2VK = 7429 TTI.getOperandInfo(Op2, Op2VP); 7430 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7431 Op2VK = TargetTransformInfo::OK_UniformValue; 7432 7433 SmallVector<const Value *, 4> Operands(I->operand_values()); 7434 return TTI.getArithmeticInstrCost( 7435 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7436 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7437 } 7438 case Instruction::FNeg: { 7439 return TTI.getArithmeticInstrCost( 7440 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7441 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7442 TargetTransformInfo::OP_None, I->getOperand(0), I); 7443 } 7444 case Instruction::Select: { 7445 SelectInst *SI = cast<SelectInst>(I); 7446 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7447 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7448 7449 const Value *Op0, *Op1; 7450 using namespace llvm::PatternMatch; 7451 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7452 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7453 // select x, y, false --> x & y 7454 // select x, true, y --> x | y 7455 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7456 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7457 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7458 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7459 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7460 Op1->getType()->getScalarSizeInBits() == 1); 7461 7462 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7463 return TTI.getArithmeticInstrCost( 7464 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7465 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7466 } 7467 7468 Type *CondTy = SI->getCondition()->getType(); 7469 if (!ScalarCond) 7470 CondTy = VectorType::get(CondTy, VF); 7471 7472 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7473 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7474 Pred = Cmp->getPredicate(); 7475 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7476 CostKind, I); 7477 } 7478 case Instruction::ICmp: 7479 case Instruction::FCmp: { 7480 Type *ValTy = I->getOperand(0)->getType(); 7481 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7482 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7483 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7484 VectorTy = ToVectorTy(ValTy, VF); 7485 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7486 cast<CmpInst>(I)->getPredicate(), CostKind, 7487 I); 7488 } 7489 case Instruction::Store: 7490 case Instruction::Load: { 7491 ElementCount Width = VF; 7492 if (Width.isVector()) { 7493 InstWidening Decision = getWideningDecision(I, Width); 7494 assert(Decision != CM_Unknown && 7495 "CM decision should be taken at this point"); 7496 if (Decision == CM_Scalarize) 7497 Width = ElementCount::getFixed(1); 7498 } 7499 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7500 return getMemoryInstructionCost(I, VF); 7501 } 7502 case Instruction::BitCast: 7503 if (I->getType()->isPointerTy()) 7504 return 0; 7505 LLVM_FALLTHROUGH; 7506 case Instruction::ZExt: 7507 case Instruction::SExt: 7508 case Instruction::FPToUI: 7509 case Instruction::FPToSI: 7510 case Instruction::FPExt: 7511 case Instruction::PtrToInt: 7512 case Instruction::IntToPtr: 7513 case Instruction::SIToFP: 7514 case Instruction::UIToFP: 7515 case Instruction::Trunc: 7516 case Instruction::FPTrunc: { 7517 // Computes the CastContextHint from a Load/Store instruction. 7518 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7519 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7520 "Expected a load or a store!"); 7521 7522 if (VF.isScalar() || !TheLoop->contains(I)) 7523 return TTI::CastContextHint::Normal; 7524 7525 switch (getWideningDecision(I, VF)) { 7526 case LoopVectorizationCostModel::CM_GatherScatter: 7527 return TTI::CastContextHint::GatherScatter; 7528 case LoopVectorizationCostModel::CM_Interleave: 7529 return TTI::CastContextHint::Interleave; 7530 case LoopVectorizationCostModel::CM_Scalarize: 7531 case LoopVectorizationCostModel::CM_Widen: 7532 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7533 : TTI::CastContextHint::Normal; 7534 case LoopVectorizationCostModel::CM_Widen_Reverse: 7535 return TTI::CastContextHint::Reversed; 7536 case LoopVectorizationCostModel::CM_Unknown: 7537 llvm_unreachable("Instr did not go through cost modelling?"); 7538 } 7539 7540 llvm_unreachable("Unhandled case!"); 7541 }; 7542 7543 unsigned Opcode = I->getOpcode(); 7544 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7545 // For Trunc, the context is the only user, which must be a StoreInst. 7546 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7547 if (I->hasOneUse()) 7548 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7549 CCH = ComputeCCH(Store); 7550 } 7551 // For Z/Sext, the context is the operand, which must be a LoadInst. 7552 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7553 Opcode == Instruction::FPExt) { 7554 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7555 CCH = ComputeCCH(Load); 7556 } 7557 7558 // We optimize the truncation of induction variables having constant 7559 // integer steps. The cost of these truncations is the same as the scalar 7560 // operation. 7561 if (isOptimizableIVTruncate(I, VF)) { 7562 auto *Trunc = cast<TruncInst>(I); 7563 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7564 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7565 } 7566 7567 // Detect reduction patterns 7568 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7569 return *RedCost; 7570 7571 Type *SrcScalarTy = I->getOperand(0)->getType(); 7572 Type *SrcVecTy = 7573 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7574 if (canTruncateToMinimalBitwidth(I, VF)) { 7575 // This cast is going to be shrunk. This may remove the cast or it might 7576 // turn it into slightly different cast. For example, if MinBW == 16, 7577 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7578 // 7579 // Calculate the modified src and dest types. 7580 Type *MinVecTy = VectorTy; 7581 if (Opcode == Instruction::Trunc) { 7582 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7583 VectorTy = 7584 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7585 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7586 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7587 VectorTy = 7588 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7589 } 7590 } 7591 7592 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7593 } 7594 case Instruction::Call: { 7595 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7596 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7597 return *RedCost; 7598 bool NeedToScalarize; 7599 CallInst *CI = cast<CallInst>(I); 7600 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7601 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7602 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7603 return std::min(CallCost, IntrinsicCost); 7604 } 7605 return CallCost; 7606 } 7607 case Instruction::ExtractValue: 7608 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7609 case Instruction::Alloca: 7610 // We cannot easily widen alloca to a scalable alloca, as 7611 // the result would need to be a vector of pointers. 7612 if (VF.isScalable()) 7613 return InstructionCost::getInvalid(); 7614 LLVM_FALLTHROUGH; 7615 default: 7616 // This opcode is unknown. Assume that it is the same as 'mul'. 7617 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7618 } // end of switch. 7619 } 7620 7621 char LoopVectorize::ID = 0; 7622 7623 static const char lv_name[] = "Loop Vectorization"; 7624 7625 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7626 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7627 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7628 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7629 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7630 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7631 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7632 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7633 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7634 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7635 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7636 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7637 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7638 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7639 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7640 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7641 7642 namespace llvm { 7643 7644 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7645 7646 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7647 bool VectorizeOnlyWhenForced) { 7648 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7649 } 7650 7651 } // end namespace llvm 7652 7653 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7654 // Check if the pointer operand of a load or store instruction is 7655 // consecutive. 7656 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7657 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7658 return false; 7659 } 7660 7661 void LoopVectorizationCostModel::collectValuesToIgnore() { 7662 // Ignore ephemeral values. 7663 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7664 7665 // Ignore type-promoting instructions we identified during reduction 7666 // detection. 7667 for (auto &Reduction : Legal->getReductionVars()) { 7668 const RecurrenceDescriptor &RedDes = Reduction.second; 7669 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7670 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7671 } 7672 // Ignore type-casting instructions we identified during induction 7673 // detection. 7674 for (auto &Induction : Legal->getInductionVars()) { 7675 const InductionDescriptor &IndDes = Induction.second; 7676 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7677 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7678 } 7679 } 7680 7681 void LoopVectorizationCostModel::collectInLoopReductions() { 7682 for (auto &Reduction : Legal->getReductionVars()) { 7683 PHINode *Phi = Reduction.first; 7684 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7685 7686 // We don't collect reductions that are type promoted (yet). 7687 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7688 continue; 7689 7690 // If the target would prefer this reduction to happen "in-loop", then we 7691 // want to record it as such. 7692 unsigned Opcode = RdxDesc.getOpcode(); 7693 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7694 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7695 TargetTransformInfo::ReductionFlags())) 7696 continue; 7697 7698 // Check that we can correctly put the reductions into the loop, by 7699 // finding the chain of operations that leads from the phi to the loop 7700 // exit value. 7701 SmallVector<Instruction *, 4> ReductionOperations = 7702 RdxDesc.getReductionOpChain(Phi, TheLoop); 7703 bool InLoop = !ReductionOperations.empty(); 7704 if (InLoop) { 7705 InLoopReductionChains[Phi] = ReductionOperations; 7706 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7707 Instruction *LastChain = Phi; 7708 for (auto *I : ReductionOperations) { 7709 InLoopReductionImmediateChains[I] = LastChain; 7710 LastChain = I; 7711 } 7712 } 7713 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7714 << " reduction for phi: " << *Phi << "\n"); 7715 } 7716 } 7717 7718 // TODO: we could return a pair of values that specify the max VF and 7719 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7720 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7721 // doesn't have a cost model that can choose which plan to execute if 7722 // more than one is generated. 7723 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7724 LoopVectorizationCostModel &CM) { 7725 unsigned WidestType; 7726 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7727 return WidestVectorRegBits / WidestType; 7728 } 7729 7730 VectorizationFactor 7731 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7732 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7733 ElementCount VF = UserVF; 7734 // Outer loop handling: They may require CFG and instruction level 7735 // transformations before even evaluating whether vectorization is profitable. 7736 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7737 // the vectorization pipeline. 7738 if (!OrigLoop->isInnermost()) { 7739 // If the user doesn't provide a vectorization factor, determine a 7740 // reasonable one. 7741 if (UserVF.isZero()) { 7742 VF = ElementCount::getFixed(determineVPlanVF( 7743 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7744 .getFixedSize(), 7745 CM)); 7746 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7747 7748 // Make sure we have a VF > 1 for stress testing. 7749 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7750 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7751 << "overriding computed VF.\n"); 7752 VF = ElementCount::getFixed(4); 7753 } 7754 } 7755 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7756 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7757 "VF needs to be a power of two"); 7758 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7759 << "VF " << VF << " to build VPlans.\n"); 7760 buildVPlans(VF, VF); 7761 7762 // For VPlan build stress testing, we bail out after VPlan construction. 7763 if (VPlanBuildStressTest) 7764 return VectorizationFactor::Disabled(); 7765 7766 return {VF, 0 /*Cost*/}; 7767 } 7768 7769 LLVM_DEBUG( 7770 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7771 "VPlan-native path.\n"); 7772 return VectorizationFactor::Disabled(); 7773 } 7774 7775 Optional<VectorizationFactor> 7776 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7777 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7778 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7779 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7780 return None; 7781 7782 // Invalidate interleave groups if all blocks of loop will be predicated. 7783 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7784 !useMaskedInterleavedAccesses(*TTI)) { 7785 LLVM_DEBUG( 7786 dbgs() 7787 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7788 "which requires masked-interleaved support.\n"); 7789 if (CM.InterleaveInfo.invalidateGroups()) 7790 // Invalidating interleave groups also requires invalidating all decisions 7791 // based on them, which includes widening decisions and uniform and scalar 7792 // values. 7793 CM.invalidateCostModelingDecisions(); 7794 } 7795 7796 ElementCount MaxUserVF = 7797 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7798 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7799 if (!UserVF.isZero() && UserVFIsLegal) { 7800 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7801 "VF needs to be a power of two"); 7802 // Collect the instructions (and their associated costs) that will be more 7803 // profitable to scalarize. 7804 if (CM.selectUserVectorizationFactor(UserVF)) { 7805 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7806 CM.collectInLoopReductions(); 7807 buildVPlansWithVPRecipes(UserVF, UserVF); 7808 LLVM_DEBUG(printPlans(dbgs())); 7809 return {{UserVF, 0}}; 7810 } else 7811 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7812 "InvalidCost", ORE, OrigLoop); 7813 } 7814 7815 // Populate the set of Vectorization Factor Candidates. 7816 ElementCountSet VFCandidates; 7817 for (auto VF = ElementCount::getFixed(1); 7818 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7819 VFCandidates.insert(VF); 7820 for (auto VF = ElementCount::getScalable(1); 7821 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7822 VFCandidates.insert(VF); 7823 7824 for (const auto &VF : VFCandidates) { 7825 // Collect Uniform and Scalar instructions after vectorization with VF. 7826 CM.collectUniformsAndScalars(VF); 7827 7828 // Collect the instructions (and their associated costs) that will be more 7829 // profitable to scalarize. 7830 if (VF.isVector()) 7831 CM.collectInstsToScalarize(VF); 7832 } 7833 7834 CM.collectInLoopReductions(); 7835 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7836 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7837 7838 LLVM_DEBUG(printPlans(dbgs())); 7839 if (!MaxFactors.hasVector()) 7840 return VectorizationFactor::Disabled(); 7841 7842 // Select the optimal vectorization factor. 7843 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7844 7845 // Check if it is profitable to vectorize with runtime checks. 7846 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7847 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7848 bool PragmaThresholdReached = 7849 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7850 bool ThresholdReached = 7851 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7852 if ((ThresholdReached && !Hints.allowReordering()) || 7853 PragmaThresholdReached) { 7854 ORE->emit([&]() { 7855 return OptimizationRemarkAnalysisAliasing( 7856 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7857 OrigLoop->getHeader()) 7858 << "loop not vectorized: cannot prove it is safe to reorder " 7859 "memory operations"; 7860 }); 7861 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7862 Hints.emitRemarkWithHints(); 7863 return VectorizationFactor::Disabled(); 7864 } 7865 } 7866 return SelectedVF; 7867 } 7868 7869 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7870 assert(count_if(VPlans, 7871 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7872 1 && 7873 "Best VF has not a single VPlan."); 7874 7875 for (const VPlanPtr &Plan : VPlans) { 7876 if (Plan->hasVF(VF)) 7877 return *Plan.get(); 7878 } 7879 llvm_unreachable("No plan found!"); 7880 } 7881 7882 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7883 SmallVector<Metadata *, 4> MDs; 7884 // Reserve first location for self reference to the LoopID metadata node. 7885 MDs.push_back(nullptr); 7886 bool IsUnrollMetadata = false; 7887 MDNode *LoopID = L->getLoopID(); 7888 if (LoopID) { 7889 // First find existing loop unrolling disable metadata. 7890 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7891 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7892 if (MD) { 7893 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7894 IsUnrollMetadata = 7895 S && S->getString().startswith("llvm.loop.unroll.disable"); 7896 } 7897 MDs.push_back(LoopID->getOperand(i)); 7898 } 7899 } 7900 7901 if (!IsUnrollMetadata) { 7902 // Add runtime unroll disable metadata. 7903 LLVMContext &Context = L->getHeader()->getContext(); 7904 SmallVector<Metadata *, 1> DisableOperands; 7905 DisableOperands.push_back( 7906 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7907 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7908 MDs.push_back(DisableNode); 7909 MDNode *NewLoopID = MDNode::get(Context, MDs); 7910 // Set operand 0 to refer to the loop id itself. 7911 NewLoopID->replaceOperandWith(0, NewLoopID); 7912 L->setLoopID(NewLoopID); 7913 } 7914 } 7915 7916 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7917 VPlan &BestVPlan, 7918 InnerLoopVectorizer &ILV, 7919 DominatorTree *DT) { 7920 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7921 << '\n'); 7922 7923 // Perform the actual loop transformation. 7924 7925 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7926 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7927 Value *CanonicalIVStartValue; 7928 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7929 ILV.createVectorizedLoopSkeleton(); 7930 ILV.collectPoisonGeneratingRecipes(State); 7931 7932 ILV.printDebugTracesAtStart(); 7933 7934 //===------------------------------------------------===// 7935 // 7936 // Notice: any optimization or new instruction that go 7937 // into the code below should also be implemented in 7938 // the cost-model. 7939 // 7940 //===------------------------------------------------===// 7941 7942 // 2. Copy and widen instructions from the old loop into the new loop. 7943 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7944 ILV.getOrCreateVectorTripCount(nullptr), 7945 CanonicalIVStartValue, State); 7946 BestVPlan.execute(&State); 7947 7948 // Keep all loop hints from the original loop on the vector loop (we'll 7949 // replace the vectorizer-specific hints below). 7950 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7951 7952 Optional<MDNode *> VectorizedLoopID = 7953 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7954 LLVMLoopVectorizeFollowupVectorized}); 7955 7956 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7957 if (VectorizedLoopID.hasValue()) 7958 L->setLoopID(VectorizedLoopID.getValue()); 7959 else { 7960 // Keep all loop hints from the original loop on the vector loop (we'll 7961 // replace the vectorizer-specific hints below). 7962 if (MDNode *LID = OrigLoop->getLoopID()) 7963 L->setLoopID(LID); 7964 7965 LoopVectorizeHints Hints(L, true, *ORE); 7966 Hints.setAlreadyVectorized(); 7967 } 7968 // Disable runtime unrolling when vectorizing the epilogue loop. 7969 if (CanonicalIVStartValue) 7970 AddRuntimeUnrollDisableMetaData(L); 7971 7972 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7973 // predication, updating analyses. 7974 ILV.fixVectorizedLoop(State); 7975 7976 ILV.printDebugTracesAtEnd(); 7977 } 7978 7979 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7980 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7981 for (const auto &Plan : VPlans) 7982 if (PrintVPlansInDotFormat) 7983 Plan->printDOT(O); 7984 else 7985 Plan->print(O); 7986 } 7987 #endif 7988 7989 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7990 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7991 7992 // We create new control-flow for the vectorized loop, so the original exit 7993 // conditions will be dead after vectorization if it's only used by the 7994 // terminator 7995 SmallVector<BasicBlock*> ExitingBlocks; 7996 OrigLoop->getExitingBlocks(ExitingBlocks); 7997 for (auto *BB : ExitingBlocks) { 7998 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7999 if (!Cmp || !Cmp->hasOneUse()) 8000 continue; 8001 8002 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8003 if (!DeadInstructions.insert(Cmp).second) 8004 continue; 8005 8006 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8007 // TODO: can recurse through operands in general 8008 for (Value *Op : Cmp->operands()) { 8009 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8010 DeadInstructions.insert(cast<Instruction>(Op)); 8011 } 8012 } 8013 8014 // We create new "steps" for induction variable updates to which the original 8015 // induction variables map. An original update instruction will be dead if 8016 // all its users except the induction variable are dead. 8017 auto *Latch = OrigLoop->getLoopLatch(); 8018 for (auto &Induction : Legal->getInductionVars()) { 8019 PHINode *Ind = Induction.first; 8020 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8021 8022 // If the tail is to be folded by masking, the primary induction variable, 8023 // if exists, isn't dead: it will be used for masking. Don't kill it. 8024 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8025 continue; 8026 8027 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8028 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8029 })) 8030 DeadInstructions.insert(IndUpdate); 8031 } 8032 } 8033 8034 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8035 8036 //===--------------------------------------------------------------------===// 8037 // EpilogueVectorizerMainLoop 8038 //===--------------------------------------------------------------------===// 8039 8040 /// This function is partially responsible for generating the control flow 8041 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8042 std::pair<BasicBlock *, Value *> 8043 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8044 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8045 Loop *Lp = createVectorLoopSkeleton(""); 8046 8047 // Generate the code to check the minimum iteration count of the vector 8048 // epilogue (see below). 8049 EPI.EpilogueIterationCountCheck = 8050 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8051 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8052 8053 // Generate the code to check any assumptions that we've made for SCEV 8054 // expressions. 8055 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8056 8057 // Generate the code that checks at runtime if arrays overlap. We put the 8058 // checks into a separate block to make the more common case of few elements 8059 // faster. 8060 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8061 8062 // Generate the iteration count check for the main loop, *after* the check 8063 // for the epilogue loop, so that the path-length is shorter for the case 8064 // that goes directly through the vector epilogue. The longer-path length for 8065 // the main loop is compensated for, by the gain from vectorizing the larger 8066 // trip count. Note: the branch will get updated later on when we vectorize 8067 // the epilogue. 8068 EPI.MainLoopIterationCountCheck = 8069 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8070 8071 // Generate the induction variable. 8072 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8073 EPI.VectorTripCount = CountRoundDown; 8074 createHeaderBranch(Lp); 8075 8076 // Skip induction resume value creation here because they will be created in 8077 // the second pass. If we created them here, they wouldn't be used anyway, 8078 // because the vplan in the second pass still contains the inductions from the 8079 // original loop. 8080 8081 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8082 } 8083 8084 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8085 LLVM_DEBUG({ 8086 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8087 << "Main Loop VF:" << EPI.MainLoopVF 8088 << ", Main Loop UF:" << EPI.MainLoopUF 8089 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8090 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8091 }); 8092 } 8093 8094 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8095 DEBUG_WITH_TYPE(VerboseDebug, { 8096 dbgs() << "intermediate fn:\n" 8097 << *OrigLoop->getHeader()->getParent() << "\n"; 8098 }); 8099 } 8100 8101 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8102 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8103 assert(L && "Expected valid Loop."); 8104 assert(Bypass && "Expected valid bypass basic block."); 8105 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8106 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8107 Value *Count = getOrCreateTripCount(L); 8108 // Reuse existing vector loop preheader for TC checks. 8109 // Note that new preheader block is generated for vector loop. 8110 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8111 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8112 8113 // Generate code to check if the loop's trip count is less than VF * UF of the 8114 // main vector loop. 8115 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8116 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8117 8118 Value *CheckMinIters = Builder.CreateICmp( 8119 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8120 "min.iters.check"); 8121 8122 if (!ForEpilogue) 8123 TCCheckBlock->setName("vector.main.loop.iter.check"); 8124 8125 // Create new preheader for vector loop. 8126 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8127 DT, LI, nullptr, "vector.ph"); 8128 8129 if (ForEpilogue) { 8130 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8131 DT->getNode(Bypass)->getIDom()) && 8132 "TC check is expected to dominate Bypass"); 8133 8134 // Update dominator for Bypass & LoopExit. 8135 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8136 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8137 // For loops with multiple exits, there's no edge from the middle block 8138 // to exit blocks (as the epilogue must run) and thus no need to update 8139 // the immediate dominator of the exit blocks. 8140 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8141 8142 LoopBypassBlocks.push_back(TCCheckBlock); 8143 8144 // Save the trip count so we don't have to regenerate it in the 8145 // vec.epilog.iter.check. This is safe to do because the trip count 8146 // generated here dominates the vector epilog iter check. 8147 EPI.TripCount = Count; 8148 } 8149 8150 ReplaceInstWithInst( 8151 TCCheckBlock->getTerminator(), 8152 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8153 8154 return TCCheckBlock; 8155 } 8156 8157 //===--------------------------------------------------------------------===// 8158 // EpilogueVectorizerEpilogueLoop 8159 //===--------------------------------------------------------------------===// 8160 8161 /// This function is partially responsible for generating the control flow 8162 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8163 std::pair<BasicBlock *, Value *> 8164 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8165 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8166 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8167 8168 // Now, compare the remaining count and if there aren't enough iterations to 8169 // execute the vectorized epilogue skip to the scalar part. 8170 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8171 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8172 LoopVectorPreHeader = 8173 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8174 LI, nullptr, "vec.epilog.ph"); 8175 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8176 VecEpilogueIterationCountCheck); 8177 8178 // Adjust the control flow taking the state info from the main loop 8179 // vectorization into account. 8180 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8181 "expected this to be saved from the previous pass."); 8182 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8183 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8184 8185 DT->changeImmediateDominator(LoopVectorPreHeader, 8186 EPI.MainLoopIterationCountCheck); 8187 8188 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8189 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8190 8191 if (EPI.SCEVSafetyCheck) 8192 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8193 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8194 if (EPI.MemSafetyCheck) 8195 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8196 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8197 8198 DT->changeImmediateDominator( 8199 VecEpilogueIterationCountCheck, 8200 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8201 8202 DT->changeImmediateDominator(LoopScalarPreHeader, 8203 EPI.EpilogueIterationCountCheck); 8204 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8205 // If there is an epilogue which must run, there's no edge from the 8206 // middle block to exit blocks and thus no need to update the immediate 8207 // dominator of the exit blocks. 8208 DT->changeImmediateDominator(LoopExitBlock, 8209 EPI.EpilogueIterationCountCheck); 8210 8211 // Keep track of bypass blocks, as they feed start values to the induction 8212 // phis in the scalar loop preheader. 8213 if (EPI.SCEVSafetyCheck) 8214 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8215 if (EPI.MemSafetyCheck) 8216 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8217 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8218 8219 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8220 // merge control-flow from the latch block and the middle block. Update the 8221 // incoming values here and move the Phi into the preheader. 8222 SmallVector<PHINode *, 4> PhisInBlock; 8223 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8224 PhisInBlock.push_back(&Phi); 8225 8226 for (PHINode *Phi : PhisInBlock) { 8227 Phi->replaceIncomingBlockWith( 8228 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8229 VecEpilogueIterationCountCheck); 8230 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8231 if (EPI.SCEVSafetyCheck) 8232 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8233 if (EPI.MemSafetyCheck) 8234 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8235 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8236 } 8237 8238 // Generate a resume induction for the vector epilogue and put it in the 8239 // vector epilogue preheader 8240 Type *IdxTy = Legal->getWidestInductionType(); 8241 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8242 LoopVectorPreHeader->getFirstNonPHI()); 8243 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8244 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8245 EPI.MainLoopIterationCountCheck); 8246 8247 // Generate the induction variable. 8248 createHeaderBranch(Lp); 8249 8250 // Generate induction resume values. These variables save the new starting 8251 // indexes for the scalar loop. They are used to test if there are any tail 8252 // iterations left once the vector loop has completed. 8253 // Note that when the vectorized epilogue is skipped due to iteration count 8254 // check, then the resume value for the induction variable comes from 8255 // the trip count of the main vector loop, hence passing the AdditionalBypass 8256 // argument. 8257 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8258 EPI.VectorTripCount} /* AdditionalBypass */); 8259 8260 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8261 } 8262 8263 BasicBlock * 8264 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8265 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8266 8267 assert(EPI.TripCount && 8268 "Expected trip count to have been safed in the first pass."); 8269 assert( 8270 (!isa<Instruction>(EPI.TripCount) || 8271 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8272 "saved trip count does not dominate insertion point."); 8273 Value *TC = EPI.TripCount; 8274 IRBuilder<> Builder(Insert->getTerminator()); 8275 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8276 8277 // Generate code to check if the loop's trip count is less than VF * UF of the 8278 // vector epilogue loop. 8279 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8280 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8281 8282 Value *CheckMinIters = 8283 Builder.CreateICmp(P, Count, 8284 createStepForVF(Builder, Count->getType(), 8285 EPI.EpilogueVF, EPI.EpilogueUF), 8286 "min.epilog.iters.check"); 8287 8288 ReplaceInstWithInst( 8289 Insert->getTerminator(), 8290 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8291 8292 LoopBypassBlocks.push_back(Insert); 8293 return Insert; 8294 } 8295 8296 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8297 LLVM_DEBUG({ 8298 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8299 << "Epilogue Loop VF:" << EPI.EpilogueVF 8300 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8301 }); 8302 } 8303 8304 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8305 DEBUG_WITH_TYPE(VerboseDebug, { 8306 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8307 }); 8308 } 8309 8310 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8311 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8312 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8313 bool PredicateAtRangeStart = Predicate(Range.Start); 8314 8315 for (ElementCount TmpVF = Range.Start * 2; 8316 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8317 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8318 Range.End = TmpVF; 8319 break; 8320 } 8321 8322 return PredicateAtRangeStart; 8323 } 8324 8325 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8326 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8327 /// of VF's starting at a given VF and extending it as much as possible. Each 8328 /// vectorization decision can potentially shorten this sub-range during 8329 /// buildVPlan(). 8330 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8331 ElementCount MaxVF) { 8332 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8333 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8334 VFRange SubRange = {VF, MaxVFPlusOne}; 8335 VPlans.push_back(buildVPlan(SubRange)); 8336 VF = SubRange.End; 8337 } 8338 } 8339 8340 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8341 VPlanPtr &Plan) { 8342 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8343 8344 // Look for cached value. 8345 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8346 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8347 if (ECEntryIt != EdgeMaskCache.end()) 8348 return ECEntryIt->second; 8349 8350 VPValue *SrcMask = createBlockInMask(Src, Plan); 8351 8352 // The terminator has to be a branch inst! 8353 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8354 assert(BI && "Unexpected terminator found"); 8355 8356 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8357 return EdgeMaskCache[Edge] = SrcMask; 8358 8359 // If source is an exiting block, we know the exit edge is dynamically dead 8360 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8361 // adding uses of an otherwise potentially dead instruction. 8362 if (OrigLoop->isLoopExiting(Src)) 8363 return EdgeMaskCache[Edge] = SrcMask; 8364 8365 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8366 assert(EdgeMask && "No Edge Mask found for condition"); 8367 8368 if (BI->getSuccessor(0) != Dst) 8369 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8370 8371 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8372 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8373 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8374 // The select version does not introduce new UB if SrcMask is false and 8375 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8376 VPValue *False = Plan->getOrAddVPValue( 8377 ConstantInt::getFalse(BI->getCondition()->getType())); 8378 EdgeMask = 8379 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8380 } 8381 8382 return EdgeMaskCache[Edge] = EdgeMask; 8383 } 8384 8385 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8386 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8387 8388 // Look for cached value. 8389 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8390 if (BCEntryIt != BlockMaskCache.end()) 8391 return BCEntryIt->second; 8392 8393 // All-one mask is modelled as no-mask following the convention for masked 8394 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8395 VPValue *BlockMask = nullptr; 8396 8397 if (OrigLoop->getHeader() == BB) { 8398 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8399 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8400 8401 // Introduce the early-exit compare IV <= BTC to form header block mask. 8402 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8403 // constructing the desired canonical IV in the header block as its first 8404 // non-phi instructions. 8405 assert(CM.foldTailByMasking() && "must fold the tail"); 8406 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8407 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8408 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8409 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8410 8411 VPBuilder::InsertPointGuard Guard(Builder); 8412 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8413 if (CM.TTI.emitGetActiveLaneMask()) { 8414 VPValue *TC = Plan->getOrCreateTripCount(); 8415 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8416 } else { 8417 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8418 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8419 } 8420 return BlockMaskCache[BB] = BlockMask; 8421 } 8422 8423 // This is the block mask. We OR all incoming edges. 8424 for (auto *Predecessor : predecessors(BB)) { 8425 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8426 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8427 return BlockMaskCache[BB] = EdgeMask; 8428 8429 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8430 BlockMask = EdgeMask; 8431 continue; 8432 } 8433 8434 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8435 } 8436 8437 return BlockMaskCache[BB] = BlockMask; 8438 } 8439 8440 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8441 ArrayRef<VPValue *> Operands, 8442 VFRange &Range, 8443 VPlanPtr &Plan) { 8444 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8445 "Must be called with either a load or store"); 8446 8447 auto willWiden = [&](ElementCount VF) -> bool { 8448 if (VF.isScalar()) 8449 return false; 8450 LoopVectorizationCostModel::InstWidening Decision = 8451 CM.getWideningDecision(I, VF); 8452 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8453 "CM decision should be taken at this point."); 8454 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8455 return true; 8456 if (CM.isScalarAfterVectorization(I, VF) || 8457 CM.isProfitableToScalarize(I, VF)) 8458 return false; 8459 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8460 }; 8461 8462 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8463 return nullptr; 8464 8465 VPValue *Mask = nullptr; 8466 if (Legal->isMaskRequired(I)) 8467 Mask = createBlockInMask(I->getParent(), Plan); 8468 8469 // Determine if the pointer operand of the access is either consecutive or 8470 // reverse consecutive. 8471 LoopVectorizationCostModel::InstWidening Decision = 8472 CM.getWideningDecision(I, Range.Start); 8473 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8474 bool Consecutive = 8475 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8476 8477 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8478 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8479 Consecutive, Reverse); 8480 8481 StoreInst *Store = cast<StoreInst>(I); 8482 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8483 Mask, Consecutive, Reverse); 8484 } 8485 8486 static VPWidenIntOrFpInductionRecipe * 8487 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8488 VPValue *Start, const InductionDescriptor &IndDesc, 8489 LoopVectorizationCostModel &CM, Loop &OrigLoop, 8490 VFRange &Range) { 8491 // Returns true if an instruction \p I should be scalarized instead of 8492 // vectorized for the chosen vectorization factor. 8493 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8494 return CM.isScalarAfterVectorization(I, VF) || 8495 CM.isProfitableToScalarize(I, VF); 8496 }; 8497 8498 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8499 [&](ElementCount VF) { 8500 // Returns true if we should generate a scalar version of \p IV. 8501 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8502 return true; 8503 auto isScalarInst = [&](User *U) -> bool { 8504 auto *I = cast<Instruction>(U); 8505 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8506 }; 8507 return any_of(PhiOrTrunc->users(), isScalarInst); 8508 }, 8509 Range); 8510 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8511 [&](ElementCount VF) { 8512 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8513 }, 8514 Range); 8515 assert(IndDesc.getStartValue() == 8516 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8517 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8518 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI, 8519 NeedsScalarIV, !NeedsScalarIVOnly); 8520 } 8521 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8522 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8523 !NeedsScalarIVOnly); 8524 } 8525 8526 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8527 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8528 8529 // Check if this is an integer or fp induction. If so, build the recipe that 8530 // produces its scalar and vector values. 8531 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8532 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop, 8533 Range); 8534 8535 return nullptr; 8536 } 8537 8538 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8539 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8540 VPlan &Plan) const { 8541 // Optimize the special case where the source is a constant integer 8542 // induction variable. Notice that we can only optimize the 'trunc' case 8543 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8544 // (c) other casts depend on pointer size. 8545 8546 // Determine whether \p K is a truncation based on an induction variable that 8547 // can be optimized. 8548 auto isOptimizableIVTruncate = 8549 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8550 return [=](ElementCount VF) -> bool { 8551 return CM.isOptimizableIVTruncate(K, VF); 8552 }; 8553 }; 8554 8555 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8556 isOptimizableIVTruncate(I), Range)) { 8557 8558 auto *Phi = cast<PHINode>(I->getOperand(0)); 8559 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8560 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8561 return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range); 8562 } 8563 return nullptr; 8564 } 8565 8566 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8567 ArrayRef<VPValue *> Operands, 8568 VPlanPtr &Plan) { 8569 // If all incoming values are equal, the incoming VPValue can be used directly 8570 // instead of creating a new VPBlendRecipe. 8571 VPValue *FirstIncoming = Operands[0]; 8572 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8573 return FirstIncoming == Inc; 8574 })) { 8575 return Operands[0]; 8576 } 8577 8578 // We know that all PHIs in non-header blocks are converted into selects, so 8579 // we don't have to worry about the insertion order and we can just use the 8580 // builder. At this point we generate the predication tree. There may be 8581 // duplications since this is a simple recursive scan, but future 8582 // optimizations will clean it up. 8583 SmallVector<VPValue *, 2> OperandsWithMask; 8584 unsigned NumIncoming = Phi->getNumIncomingValues(); 8585 8586 for (unsigned In = 0; In < NumIncoming; In++) { 8587 VPValue *EdgeMask = 8588 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8589 assert((EdgeMask || NumIncoming == 1) && 8590 "Multiple predecessors with one having a full mask"); 8591 OperandsWithMask.push_back(Operands[In]); 8592 if (EdgeMask) 8593 OperandsWithMask.push_back(EdgeMask); 8594 } 8595 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8596 } 8597 8598 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8599 ArrayRef<VPValue *> Operands, 8600 VFRange &Range) const { 8601 8602 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8603 [this, CI](ElementCount VF) { 8604 return CM.isScalarWithPredication(CI, VF); 8605 }, 8606 Range); 8607 8608 if (IsPredicated) 8609 return nullptr; 8610 8611 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8612 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8613 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8614 ID == Intrinsic::pseudoprobe || 8615 ID == Intrinsic::experimental_noalias_scope_decl)) 8616 return nullptr; 8617 8618 auto willWiden = [&](ElementCount VF) -> bool { 8619 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8620 // The following case may be scalarized depending on the VF. 8621 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8622 // version of the instruction. 8623 // Is it beneficial to perform intrinsic call compared to lib call? 8624 bool NeedToScalarize = false; 8625 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8626 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8627 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8628 return UseVectorIntrinsic || !NeedToScalarize; 8629 }; 8630 8631 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8632 return nullptr; 8633 8634 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8635 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8636 } 8637 8638 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8639 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8640 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8641 // Instruction should be widened, unless it is scalar after vectorization, 8642 // scalarization is profitable or it is predicated. 8643 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8644 return CM.isScalarAfterVectorization(I, VF) || 8645 CM.isProfitableToScalarize(I, VF) || 8646 CM.isScalarWithPredication(I, VF); 8647 }; 8648 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8649 Range); 8650 } 8651 8652 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8653 ArrayRef<VPValue *> Operands) const { 8654 auto IsVectorizableOpcode = [](unsigned Opcode) { 8655 switch (Opcode) { 8656 case Instruction::Add: 8657 case Instruction::And: 8658 case Instruction::AShr: 8659 case Instruction::BitCast: 8660 case Instruction::FAdd: 8661 case Instruction::FCmp: 8662 case Instruction::FDiv: 8663 case Instruction::FMul: 8664 case Instruction::FNeg: 8665 case Instruction::FPExt: 8666 case Instruction::FPToSI: 8667 case Instruction::FPToUI: 8668 case Instruction::FPTrunc: 8669 case Instruction::FRem: 8670 case Instruction::FSub: 8671 case Instruction::ICmp: 8672 case Instruction::IntToPtr: 8673 case Instruction::LShr: 8674 case Instruction::Mul: 8675 case Instruction::Or: 8676 case Instruction::PtrToInt: 8677 case Instruction::SDiv: 8678 case Instruction::Select: 8679 case Instruction::SExt: 8680 case Instruction::Shl: 8681 case Instruction::SIToFP: 8682 case Instruction::SRem: 8683 case Instruction::Sub: 8684 case Instruction::Trunc: 8685 case Instruction::UDiv: 8686 case Instruction::UIToFP: 8687 case Instruction::URem: 8688 case Instruction::Xor: 8689 case Instruction::ZExt: 8690 return true; 8691 } 8692 return false; 8693 }; 8694 8695 if (!IsVectorizableOpcode(I->getOpcode())) 8696 return nullptr; 8697 8698 // Success: widen this instruction. 8699 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8700 } 8701 8702 void VPRecipeBuilder::fixHeaderPhis() { 8703 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8704 for (VPHeaderPHIRecipe *R : PhisToFix) { 8705 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8706 VPRecipeBase *IncR = 8707 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8708 R->addOperand(IncR->getVPSingleValue()); 8709 } 8710 } 8711 8712 VPBasicBlock *VPRecipeBuilder::handleReplication( 8713 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8714 VPlanPtr &Plan) { 8715 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8716 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8717 Range); 8718 8719 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8720 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8721 Range); 8722 8723 // Even if the instruction is not marked as uniform, there are certain 8724 // intrinsic calls that can be effectively treated as such, so we check for 8725 // them here. Conservatively, we only do this for scalable vectors, since 8726 // for fixed-width VFs we can always fall back on full scalarization. 8727 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8728 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8729 case Intrinsic::assume: 8730 case Intrinsic::lifetime_start: 8731 case Intrinsic::lifetime_end: 8732 // For scalable vectors if one of the operands is variant then we still 8733 // want to mark as uniform, which will generate one instruction for just 8734 // the first lane of the vector. We can't scalarize the call in the same 8735 // way as for fixed-width vectors because we don't know how many lanes 8736 // there are. 8737 // 8738 // The reasons for doing it this way for scalable vectors are: 8739 // 1. For the assume intrinsic generating the instruction for the first 8740 // lane is still be better than not generating any at all. For 8741 // example, the input may be a splat across all lanes. 8742 // 2. For the lifetime start/end intrinsics the pointer operand only 8743 // does anything useful when the input comes from a stack object, 8744 // which suggests it should always be uniform. For non-stack objects 8745 // the effect is to poison the object, which still allows us to 8746 // remove the call. 8747 IsUniform = true; 8748 break; 8749 default: 8750 break; 8751 } 8752 } 8753 8754 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8755 IsUniform, IsPredicated); 8756 setRecipe(I, Recipe); 8757 Plan->addVPValue(I, Recipe); 8758 8759 // Find if I uses a predicated instruction. If so, it will use its scalar 8760 // value. Avoid hoisting the insert-element which packs the scalar value into 8761 // a vector value, as that happens iff all users use the vector value. 8762 for (VPValue *Op : Recipe->operands()) { 8763 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8764 if (!PredR) 8765 continue; 8766 auto *RepR = 8767 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8768 assert(RepR->isPredicated() && 8769 "expected Replicate recipe to be predicated"); 8770 RepR->setAlsoPack(false); 8771 } 8772 8773 // Finalize the recipe for Instr, first if it is not predicated. 8774 if (!IsPredicated) { 8775 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8776 VPBB->appendRecipe(Recipe); 8777 return VPBB; 8778 } 8779 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8780 8781 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8782 assert(SingleSucc && "VPBB must have a single successor when handling " 8783 "predicated replication."); 8784 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8785 // Record predicated instructions for above packing optimizations. 8786 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8787 VPBlockUtils::insertBlockAfter(Region, VPBB); 8788 auto *RegSucc = new VPBasicBlock(); 8789 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8790 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8791 return RegSucc; 8792 } 8793 8794 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8795 VPRecipeBase *PredRecipe, 8796 VPlanPtr &Plan) { 8797 // Instructions marked for predication are replicated and placed under an 8798 // if-then construct to prevent side-effects. 8799 8800 // Generate recipes to compute the block mask for this region. 8801 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8802 8803 // Build the triangular if-then region. 8804 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8805 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8806 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8807 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8808 auto *PHIRecipe = Instr->getType()->isVoidTy() 8809 ? nullptr 8810 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8811 if (PHIRecipe) { 8812 Plan->removeVPValueFor(Instr); 8813 Plan->addVPValue(Instr, PHIRecipe); 8814 } 8815 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8816 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8817 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8818 8819 // Note: first set Entry as region entry and then connect successors starting 8820 // from it in order, to propagate the "parent" of each VPBasicBlock. 8821 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8822 VPBlockUtils::connectBlocks(Pred, Exit); 8823 8824 return Region; 8825 } 8826 8827 VPRecipeOrVPValueTy 8828 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8829 ArrayRef<VPValue *> Operands, 8830 VFRange &Range, VPlanPtr &Plan) { 8831 // First, check for specific widening recipes that deal with calls, memory 8832 // operations, inductions and Phi nodes. 8833 if (auto *CI = dyn_cast<CallInst>(Instr)) 8834 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8835 8836 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8837 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8838 8839 VPRecipeBase *Recipe; 8840 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8841 if (Phi->getParent() != OrigLoop->getHeader()) 8842 return tryToBlend(Phi, Operands, Plan); 8843 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8844 return toVPRecipeResult(Recipe); 8845 8846 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8847 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8848 VPValue *StartV = Operands[0]; 8849 if (Legal->isReductionVariable(Phi)) { 8850 const RecurrenceDescriptor &RdxDesc = 8851 Legal->getReductionVars().find(Phi)->second; 8852 assert(RdxDesc.getRecurrenceStartValue() == 8853 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8854 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8855 CM.isInLoopReduction(Phi), 8856 CM.useOrderedReductions(RdxDesc)); 8857 } else { 8858 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8859 } 8860 8861 // Record the incoming value from the backedge, so we can add the incoming 8862 // value from the backedge after all recipes have been created. 8863 recordRecipeOf(cast<Instruction>( 8864 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8865 PhisToFix.push_back(PhiRecipe); 8866 } else { 8867 // TODO: record backedge value for remaining pointer induction phis. 8868 assert(Phi->getType()->isPointerTy() && 8869 "only pointer phis should be handled here"); 8870 assert(Legal->getInductionVars().count(Phi) && 8871 "Not an induction variable"); 8872 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8873 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8874 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8875 } 8876 8877 return toVPRecipeResult(PhiRecipe); 8878 } 8879 8880 if (isa<TruncInst>(Instr) && 8881 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8882 Range, *Plan))) 8883 return toVPRecipeResult(Recipe); 8884 8885 if (!shouldWiden(Instr, Range)) 8886 return nullptr; 8887 8888 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8889 return toVPRecipeResult(new VPWidenGEPRecipe( 8890 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8891 8892 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8893 bool InvariantCond = 8894 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8895 return toVPRecipeResult(new VPWidenSelectRecipe( 8896 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8897 } 8898 8899 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8900 } 8901 8902 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8903 ElementCount MaxVF) { 8904 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8905 8906 // Collect instructions from the original loop that will become trivially dead 8907 // in the vectorized loop. We don't need to vectorize these instructions. For 8908 // example, original induction update instructions can become dead because we 8909 // separately emit induction "steps" when generating code for the new loop. 8910 // Similarly, we create a new latch condition when setting up the structure 8911 // of the new loop, so the old one can become dead. 8912 SmallPtrSet<Instruction *, 4> DeadInstructions; 8913 collectTriviallyDeadInstructions(DeadInstructions); 8914 8915 // Add assume instructions we need to drop to DeadInstructions, to prevent 8916 // them from being added to the VPlan. 8917 // TODO: We only need to drop assumes in blocks that get flattend. If the 8918 // control flow is preserved, we should keep them. 8919 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8920 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8921 8922 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8923 // Dead instructions do not need sinking. Remove them from SinkAfter. 8924 for (Instruction *I : DeadInstructions) 8925 SinkAfter.erase(I); 8926 8927 // Cannot sink instructions after dead instructions (there won't be any 8928 // recipes for them). Instead, find the first non-dead previous instruction. 8929 for (auto &P : Legal->getSinkAfter()) { 8930 Instruction *SinkTarget = P.second; 8931 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8932 (void)FirstInst; 8933 while (DeadInstructions.contains(SinkTarget)) { 8934 assert( 8935 SinkTarget != FirstInst && 8936 "Must find a live instruction (at least the one feeding the " 8937 "first-order recurrence PHI) before reaching beginning of the block"); 8938 SinkTarget = SinkTarget->getPrevNode(); 8939 assert(SinkTarget != P.first && 8940 "sink source equals target, no sinking required"); 8941 } 8942 P.second = SinkTarget; 8943 } 8944 8945 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8946 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8947 VFRange SubRange = {VF, MaxVFPlusOne}; 8948 VPlans.push_back( 8949 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8950 VF = SubRange.End; 8951 } 8952 } 8953 8954 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8955 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8956 // BranchOnCount VPInstruction to the latch. 8957 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8958 bool HasNUW, bool IsVPlanNative) { 8959 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8960 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8961 8962 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8963 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8964 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8965 if (IsVPlanNative) 8966 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8967 Header->insert(CanonicalIVPHI, Header->begin()); 8968 8969 auto *CanonicalIVIncrement = 8970 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8971 : VPInstruction::CanonicalIVIncrement, 8972 {CanonicalIVPHI}, DL); 8973 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8974 8975 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8976 if (IsVPlanNative) { 8977 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8978 EB->setCondBit(nullptr); 8979 } 8980 EB->appendRecipe(CanonicalIVIncrement); 8981 8982 auto *BranchOnCount = 8983 new VPInstruction(VPInstruction::BranchOnCount, 8984 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8985 EB->appendRecipe(BranchOnCount); 8986 } 8987 8988 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8989 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8990 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8991 8992 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8993 8994 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8995 8996 // --------------------------------------------------------------------------- 8997 // Pre-construction: record ingredients whose recipes we'll need to further 8998 // process after constructing the initial VPlan. 8999 // --------------------------------------------------------------------------- 9000 9001 // Mark instructions we'll need to sink later and their targets as 9002 // ingredients whose recipe we'll need to record. 9003 for (auto &Entry : SinkAfter) { 9004 RecipeBuilder.recordRecipeOf(Entry.first); 9005 RecipeBuilder.recordRecipeOf(Entry.second); 9006 } 9007 for (auto &Reduction : CM.getInLoopReductionChains()) { 9008 PHINode *Phi = Reduction.first; 9009 RecurKind Kind = 9010 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 9011 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9012 9013 RecipeBuilder.recordRecipeOf(Phi); 9014 for (auto &R : ReductionOperations) { 9015 RecipeBuilder.recordRecipeOf(R); 9016 // For min/max reducitons, where we have a pair of icmp/select, we also 9017 // need to record the ICmp recipe, so it can be removed later. 9018 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9019 "Only min/max recurrences allowed for inloop reductions"); 9020 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9021 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9022 } 9023 } 9024 9025 // For each interleave group which is relevant for this (possibly trimmed) 9026 // Range, add it to the set of groups to be later applied to the VPlan and add 9027 // placeholders for its members' Recipes which we'll be replacing with a 9028 // single VPInterleaveRecipe. 9029 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9030 auto applyIG = [IG, this](ElementCount VF) -> bool { 9031 return (VF.isVector() && // Query is illegal for VF == 1 9032 CM.getWideningDecision(IG->getInsertPos(), VF) == 9033 LoopVectorizationCostModel::CM_Interleave); 9034 }; 9035 if (!getDecisionAndClampRange(applyIG, Range)) 9036 continue; 9037 InterleaveGroups.insert(IG); 9038 for (unsigned i = 0; i < IG->getFactor(); i++) 9039 if (Instruction *Member = IG->getMember(i)) 9040 RecipeBuilder.recordRecipeOf(Member); 9041 }; 9042 9043 // --------------------------------------------------------------------------- 9044 // Build initial VPlan: Scan the body of the loop in a topological order to 9045 // visit each basic block after having visited its predecessor basic blocks. 9046 // --------------------------------------------------------------------------- 9047 9048 // Create initial VPlan skeleton, with separate header and latch blocks. 9049 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9050 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9051 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9052 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9053 auto Plan = std::make_unique<VPlan>(TopRegion); 9054 9055 Instruction *DLInst = 9056 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9057 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9058 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9059 !CM.foldTailByMasking(), false); 9060 9061 // Scan the body of the loop in a topological order to visit each basic block 9062 // after having visited its predecessor basic blocks. 9063 LoopBlocksDFS DFS(OrigLoop); 9064 DFS.perform(LI); 9065 9066 VPBasicBlock *VPBB = HeaderVPBB; 9067 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9068 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9069 // Relevant instructions from basic block BB will be grouped into VPRecipe 9070 // ingredients and fill a new VPBasicBlock. 9071 unsigned VPBBsForBB = 0; 9072 VPBB->setName(BB->getName()); 9073 Builder.setInsertPoint(VPBB); 9074 9075 // Introduce each ingredient into VPlan. 9076 // TODO: Model and preserve debug instrinsics in VPlan. 9077 for (Instruction &I : BB->instructionsWithoutDebug()) { 9078 Instruction *Instr = &I; 9079 9080 // First filter out irrelevant instructions, to ensure no recipes are 9081 // built for them. 9082 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9083 continue; 9084 9085 SmallVector<VPValue *, 4> Operands; 9086 auto *Phi = dyn_cast<PHINode>(Instr); 9087 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9088 Operands.push_back(Plan->getOrAddVPValue( 9089 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9090 } else { 9091 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9092 Operands = {OpRange.begin(), OpRange.end()}; 9093 } 9094 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9095 Instr, Operands, Range, Plan)) { 9096 // If Instr can be simplified to an existing VPValue, use it. 9097 if (RecipeOrValue.is<VPValue *>()) { 9098 auto *VPV = RecipeOrValue.get<VPValue *>(); 9099 Plan->addVPValue(Instr, VPV); 9100 // If the re-used value is a recipe, register the recipe for the 9101 // instruction, in case the recipe for Instr needs to be recorded. 9102 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9103 RecipeBuilder.setRecipe(Instr, R); 9104 continue; 9105 } 9106 // Otherwise, add the new recipe. 9107 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9108 for (auto *Def : Recipe->definedValues()) { 9109 auto *UV = Def->getUnderlyingValue(); 9110 Plan->addVPValue(UV, Def); 9111 } 9112 9113 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9114 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9115 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9116 // of the header block. That can happen for truncates of induction 9117 // variables. Those recipes are moved to the phi section of the header 9118 // block after applying SinkAfter, which relies on the original 9119 // position of the trunc. 9120 assert(isa<TruncInst>(Instr)); 9121 InductionsToMove.push_back( 9122 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9123 } 9124 RecipeBuilder.setRecipe(Instr, Recipe); 9125 VPBB->appendRecipe(Recipe); 9126 continue; 9127 } 9128 9129 // Otherwise, if all widening options failed, Instruction is to be 9130 // replicated. This may create a successor for VPBB. 9131 VPBasicBlock *NextVPBB = 9132 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9133 if (NextVPBB != VPBB) { 9134 VPBB = NextVPBB; 9135 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9136 : ""); 9137 } 9138 } 9139 9140 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9141 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9142 } 9143 9144 // Fold the last, empty block into its predecessor. 9145 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9146 assert(VPBB && "expected to fold last (empty) block"); 9147 // After here, VPBB should not be used. 9148 VPBB = nullptr; 9149 9150 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9151 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9152 "entry block must be set to a VPRegionBlock having a non-empty entry " 9153 "VPBasicBlock"); 9154 RecipeBuilder.fixHeaderPhis(); 9155 9156 // --------------------------------------------------------------------------- 9157 // Transform initial VPlan: Apply previously taken decisions, in order, to 9158 // bring the VPlan to its final state. 9159 // --------------------------------------------------------------------------- 9160 9161 // Apply Sink-After legal constraints. 9162 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9163 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9164 if (Region && Region->isReplicator()) { 9165 assert(Region->getNumSuccessors() == 1 && 9166 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9167 assert(R->getParent()->size() == 1 && 9168 "A recipe in an original replicator region must be the only " 9169 "recipe in its block"); 9170 return Region; 9171 } 9172 return nullptr; 9173 }; 9174 for (auto &Entry : SinkAfter) { 9175 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9176 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9177 9178 auto *TargetRegion = GetReplicateRegion(Target); 9179 auto *SinkRegion = GetReplicateRegion(Sink); 9180 if (!SinkRegion) { 9181 // If the sink source is not a replicate region, sink the recipe directly. 9182 if (TargetRegion) { 9183 // The target is in a replication region, make sure to move Sink to 9184 // the block after it, not into the replication region itself. 9185 VPBasicBlock *NextBlock = 9186 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9187 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9188 } else 9189 Sink->moveAfter(Target); 9190 continue; 9191 } 9192 9193 // The sink source is in a replicate region. Unhook the region from the CFG. 9194 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9195 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9196 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9197 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9198 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9199 9200 if (TargetRegion) { 9201 // The target recipe is also in a replicate region, move the sink region 9202 // after the target region. 9203 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9204 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9205 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9206 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9207 } else { 9208 // The sink source is in a replicate region, we need to move the whole 9209 // replicate region, which should only contain a single recipe in the 9210 // main block. 9211 auto *SplitBlock = 9212 Target->getParent()->splitAt(std::next(Target->getIterator())); 9213 9214 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9215 9216 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9217 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9218 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9219 } 9220 } 9221 9222 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9223 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9224 9225 // Now that sink-after is done, move induction recipes for optimized truncates 9226 // to the phi section of the header block. 9227 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9228 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9229 9230 // Adjust the recipes for any inloop reductions. 9231 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9232 RecipeBuilder, Range.Start); 9233 9234 // Introduce a recipe to combine the incoming and previous values of a 9235 // first-order recurrence. 9236 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9237 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9238 if (!RecurPhi) 9239 continue; 9240 9241 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9242 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9243 auto *Region = GetReplicateRegion(PrevRecipe); 9244 if (Region) 9245 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9246 if (Region || PrevRecipe->isPhi()) 9247 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9248 else 9249 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9250 9251 auto *RecurSplice = cast<VPInstruction>( 9252 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9253 {RecurPhi, RecurPhi->getBackedgeValue()})); 9254 9255 RecurPhi->replaceAllUsesWith(RecurSplice); 9256 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9257 // all users. 9258 RecurSplice->setOperand(0, RecurPhi); 9259 } 9260 9261 // Interleave memory: for each Interleave Group we marked earlier as relevant 9262 // for this VPlan, replace the Recipes widening its memory instructions with a 9263 // single VPInterleaveRecipe at its insertion point. 9264 for (auto IG : InterleaveGroups) { 9265 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9266 RecipeBuilder.getRecipe(IG->getInsertPos())); 9267 SmallVector<VPValue *, 4> StoredValues; 9268 for (unsigned i = 0; i < IG->getFactor(); ++i) 9269 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9270 auto *StoreR = 9271 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9272 StoredValues.push_back(StoreR->getStoredValue()); 9273 } 9274 9275 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9276 Recipe->getMask()); 9277 VPIG->insertBefore(Recipe); 9278 unsigned J = 0; 9279 for (unsigned i = 0; i < IG->getFactor(); ++i) 9280 if (Instruction *Member = IG->getMember(i)) { 9281 if (!Member->getType()->isVoidTy()) { 9282 VPValue *OriginalV = Plan->getVPValue(Member); 9283 Plan->removeVPValueFor(Member); 9284 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9285 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9286 J++; 9287 } 9288 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9289 } 9290 } 9291 9292 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9293 // in ways that accessing values using original IR values is incorrect. 9294 Plan->disableValue2VPValue(); 9295 9296 VPlanTransforms::sinkScalarOperands(*Plan); 9297 VPlanTransforms::mergeReplicateRegions(*Plan); 9298 9299 std::string PlanName; 9300 raw_string_ostream RSO(PlanName); 9301 ElementCount VF = Range.Start; 9302 Plan->addVF(VF); 9303 RSO << "Initial VPlan for VF={" << VF; 9304 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9305 Plan->addVF(VF); 9306 RSO << "," << VF; 9307 } 9308 RSO << "},UF>=1"; 9309 RSO.flush(); 9310 Plan->setName(PlanName); 9311 9312 // Fold Exit block into its predecessor if possible. 9313 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9314 // VPBasicBlock as exit. 9315 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9316 9317 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9318 return Plan; 9319 } 9320 9321 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9322 // Outer loop handling: They may require CFG and instruction level 9323 // transformations before even evaluating whether vectorization is profitable. 9324 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9325 // the vectorization pipeline. 9326 assert(!OrigLoop->isInnermost()); 9327 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9328 9329 // Create new empty VPlan 9330 auto Plan = std::make_unique<VPlan>(); 9331 9332 // Build hierarchical CFG 9333 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9334 HCFGBuilder.buildHierarchicalCFG(); 9335 9336 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9337 VF *= 2) 9338 Plan->addVF(VF); 9339 9340 if (EnableVPlanPredication) { 9341 VPlanPredicator VPP(*Plan); 9342 VPP.predicate(); 9343 9344 // Avoid running transformation to recipes until masked code generation in 9345 // VPlan-native path is in place. 9346 return Plan; 9347 } 9348 9349 SmallPtrSet<Instruction *, 1> DeadInstructions; 9350 VPlanTransforms::VPInstructionsToVPRecipes( 9351 OrigLoop, Plan, 9352 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9353 DeadInstructions, *PSE.getSE()); 9354 9355 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9356 true, true); 9357 return Plan; 9358 } 9359 9360 // Adjust the recipes for reductions. For in-loop reductions the chain of 9361 // instructions leading from the loop exit instr to the phi need to be converted 9362 // to reductions, with one operand being vector and the other being the scalar 9363 // reduction chain. For other reductions, a select is introduced between the phi 9364 // and live-out recipes when folding the tail. 9365 void LoopVectorizationPlanner::adjustRecipesForReductions( 9366 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9367 ElementCount MinVF) { 9368 for (auto &Reduction : CM.getInLoopReductionChains()) { 9369 PHINode *Phi = Reduction.first; 9370 const RecurrenceDescriptor &RdxDesc = 9371 Legal->getReductionVars().find(Phi)->second; 9372 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9373 9374 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9375 continue; 9376 9377 // ReductionOperations are orders top-down from the phi's use to the 9378 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9379 // which of the two operands will remain scalar and which will be reduced. 9380 // For minmax the chain will be the select instructions. 9381 Instruction *Chain = Phi; 9382 for (Instruction *R : ReductionOperations) { 9383 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9384 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9385 9386 VPValue *ChainOp = Plan->getVPValue(Chain); 9387 unsigned FirstOpId; 9388 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9389 "Only min/max recurrences allowed for inloop reductions"); 9390 // Recognize a call to the llvm.fmuladd intrinsic. 9391 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9392 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9393 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9394 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9395 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9396 "Expected to replace a VPWidenSelectSC"); 9397 FirstOpId = 1; 9398 } else { 9399 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9400 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9401 "Expected to replace a VPWidenSC"); 9402 FirstOpId = 0; 9403 } 9404 unsigned VecOpId = 9405 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9406 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9407 9408 auto *CondOp = CM.foldTailByMasking() 9409 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9410 : nullptr; 9411 9412 if (IsFMulAdd) { 9413 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9414 // need to create an fmul recipe to use as the vector operand for the 9415 // fadd reduction. 9416 VPInstruction *FMulRecipe = new VPInstruction( 9417 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9418 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9419 WidenRecipe->getParent()->insert(FMulRecipe, 9420 WidenRecipe->getIterator()); 9421 VecOp = FMulRecipe; 9422 } 9423 VPReductionRecipe *RedRecipe = 9424 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9425 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9426 Plan->removeVPValueFor(R); 9427 Plan->addVPValue(R, RedRecipe); 9428 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9429 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9430 WidenRecipe->eraseFromParent(); 9431 9432 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9433 VPRecipeBase *CompareRecipe = 9434 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9435 assert(isa<VPWidenRecipe>(CompareRecipe) && 9436 "Expected to replace a VPWidenSC"); 9437 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9438 "Expected no remaining users"); 9439 CompareRecipe->eraseFromParent(); 9440 } 9441 Chain = R; 9442 } 9443 } 9444 9445 // If tail is folded by masking, introduce selects between the phi 9446 // and the live-out instruction of each reduction, at the beginning of the 9447 // dedicated latch block. 9448 if (CM.foldTailByMasking()) { 9449 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9450 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9451 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9452 if (!PhiR || PhiR->isInLoop()) 9453 continue; 9454 VPValue *Cond = 9455 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9456 VPValue *Red = PhiR->getBackedgeValue(); 9457 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9458 "reduction recipe must be defined before latch"); 9459 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9460 } 9461 } 9462 } 9463 9464 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9465 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9466 VPSlotTracker &SlotTracker) const { 9467 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9468 IG->getInsertPos()->printAsOperand(O, false); 9469 O << ", "; 9470 getAddr()->printAsOperand(O, SlotTracker); 9471 VPValue *Mask = getMask(); 9472 if (Mask) { 9473 O << ", "; 9474 Mask->printAsOperand(O, SlotTracker); 9475 } 9476 9477 unsigned OpIdx = 0; 9478 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9479 if (!IG->getMember(i)) 9480 continue; 9481 if (getNumStoreOperands() > 0) { 9482 O << "\n" << Indent << " store "; 9483 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9484 O << " to index " << i; 9485 } else { 9486 O << "\n" << Indent << " "; 9487 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9488 O << " = load from index " << i; 9489 } 9490 ++OpIdx; 9491 } 9492 } 9493 #endif 9494 9495 void VPWidenCallRecipe::execute(VPTransformState &State) { 9496 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9497 *this, State); 9498 } 9499 9500 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9501 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9502 State.ILV->setDebugLocFromInst(&I); 9503 9504 // The condition can be loop invariant but still defined inside the 9505 // loop. This means that we can't just use the original 'cond' value. 9506 // We have to take the 'vectorized' value and pick the first lane. 9507 // Instcombine will make this a no-op. 9508 auto *InvarCond = 9509 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9510 9511 for (unsigned Part = 0; Part < State.UF; ++Part) { 9512 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9513 Value *Op0 = State.get(getOperand(1), Part); 9514 Value *Op1 = State.get(getOperand(2), Part); 9515 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9516 State.set(this, Sel, Part); 9517 State.ILV->addMetadata(Sel, &I); 9518 } 9519 } 9520 9521 void VPWidenRecipe::execute(VPTransformState &State) { 9522 auto &I = *cast<Instruction>(getUnderlyingValue()); 9523 auto &Builder = State.Builder; 9524 switch (I.getOpcode()) { 9525 case Instruction::Call: 9526 case Instruction::Br: 9527 case Instruction::PHI: 9528 case Instruction::GetElementPtr: 9529 case Instruction::Select: 9530 llvm_unreachable("This instruction is handled by a different recipe."); 9531 case Instruction::UDiv: 9532 case Instruction::SDiv: 9533 case Instruction::SRem: 9534 case Instruction::URem: 9535 case Instruction::Add: 9536 case Instruction::FAdd: 9537 case Instruction::Sub: 9538 case Instruction::FSub: 9539 case Instruction::FNeg: 9540 case Instruction::Mul: 9541 case Instruction::FMul: 9542 case Instruction::FDiv: 9543 case Instruction::FRem: 9544 case Instruction::Shl: 9545 case Instruction::LShr: 9546 case Instruction::AShr: 9547 case Instruction::And: 9548 case Instruction::Or: 9549 case Instruction::Xor: { 9550 // Just widen unops and binops. 9551 State.ILV->setDebugLocFromInst(&I); 9552 9553 for (unsigned Part = 0; Part < State.UF; ++Part) { 9554 SmallVector<Value *, 2> Ops; 9555 for (VPValue *VPOp : operands()) 9556 Ops.push_back(State.get(VPOp, Part)); 9557 9558 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9559 9560 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9561 VecOp->copyIRFlags(&I); 9562 9563 // If the instruction is vectorized and was in a basic block that needed 9564 // predication, we can't propagate poison-generating flags (nuw/nsw, 9565 // exact, etc.). The control flow has been linearized and the 9566 // instruction is no longer guarded by the predicate, which could make 9567 // the flag properties to no longer hold. 9568 if (State.MayGeneratePoisonRecipes.contains(this)) 9569 VecOp->dropPoisonGeneratingFlags(); 9570 } 9571 9572 // Use this vector value for all users of the original instruction. 9573 State.set(this, V, Part); 9574 State.ILV->addMetadata(V, &I); 9575 } 9576 9577 break; 9578 } 9579 case Instruction::ICmp: 9580 case Instruction::FCmp: { 9581 // Widen compares. Generate vector compares. 9582 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9583 auto *Cmp = cast<CmpInst>(&I); 9584 State.ILV->setDebugLocFromInst(Cmp); 9585 for (unsigned Part = 0; Part < State.UF; ++Part) { 9586 Value *A = State.get(getOperand(0), Part); 9587 Value *B = State.get(getOperand(1), Part); 9588 Value *C = nullptr; 9589 if (FCmp) { 9590 // Propagate fast math flags. 9591 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9592 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9593 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9594 } else { 9595 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9596 } 9597 State.set(this, C, Part); 9598 State.ILV->addMetadata(C, &I); 9599 } 9600 9601 break; 9602 } 9603 9604 case Instruction::ZExt: 9605 case Instruction::SExt: 9606 case Instruction::FPToUI: 9607 case Instruction::FPToSI: 9608 case Instruction::FPExt: 9609 case Instruction::PtrToInt: 9610 case Instruction::IntToPtr: 9611 case Instruction::SIToFP: 9612 case Instruction::UIToFP: 9613 case Instruction::Trunc: 9614 case Instruction::FPTrunc: 9615 case Instruction::BitCast: { 9616 auto *CI = cast<CastInst>(&I); 9617 State.ILV->setDebugLocFromInst(CI); 9618 9619 /// Vectorize casts. 9620 Type *DestTy = (State.VF.isScalar()) 9621 ? CI->getType() 9622 : VectorType::get(CI->getType(), State.VF); 9623 9624 for (unsigned Part = 0; Part < State.UF; ++Part) { 9625 Value *A = State.get(getOperand(0), Part); 9626 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9627 State.set(this, Cast, Part); 9628 State.ILV->addMetadata(Cast, &I); 9629 } 9630 break; 9631 } 9632 default: 9633 // This instruction is not vectorized by simple widening. 9634 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9635 llvm_unreachable("Unhandled instruction!"); 9636 } // end of switch. 9637 } 9638 9639 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9640 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9641 // Construct a vector GEP by widening the operands of the scalar GEP as 9642 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9643 // results in a vector of pointers when at least one operand of the GEP 9644 // is vector-typed. Thus, to keep the representation compact, we only use 9645 // vector-typed operands for loop-varying values. 9646 9647 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9648 // If we are vectorizing, but the GEP has only loop-invariant operands, 9649 // the GEP we build (by only using vector-typed operands for 9650 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9651 // produce a vector of pointers, we need to either arbitrarily pick an 9652 // operand to broadcast, or broadcast a clone of the original GEP. 9653 // Here, we broadcast a clone of the original. 9654 // 9655 // TODO: If at some point we decide to scalarize instructions having 9656 // loop-invariant operands, this special case will no longer be 9657 // required. We would add the scalarization decision to 9658 // collectLoopScalars() and teach getVectorValue() to broadcast 9659 // the lane-zero scalar value. 9660 auto *Clone = State.Builder.Insert(GEP->clone()); 9661 for (unsigned Part = 0; Part < State.UF; ++Part) { 9662 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9663 State.set(this, EntryPart, Part); 9664 State.ILV->addMetadata(EntryPart, GEP); 9665 } 9666 } else { 9667 // If the GEP has at least one loop-varying operand, we are sure to 9668 // produce a vector of pointers. But if we are only unrolling, we want 9669 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9670 // produce with the code below will be scalar (if VF == 1) or vector 9671 // (otherwise). Note that for the unroll-only case, we still maintain 9672 // values in the vector mapping with initVector, as we do for other 9673 // instructions. 9674 for (unsigned Part = 0; Part < State.UF; ++Part) { 9675 // The pointer operand of the new GEP. If it's loop-invariant, we 9676 // won't broadcast it. 9677 auto *Ptr = IsPtrLoopInvariant 9678 ? State.get(getOperand(0), VPIteration(0, 0)) 9679 : State.get(getOperand(0), Part); 9680 9681 // Collect all the indices for the new GEP. If any index is 9682 // loop-invariant, we won't broadcast it. 9683 SmallVector<Value *, 4> Indices; 9684 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9685 VPValue *Operand = getOperand(I); 9686 if (IsIndexLoopInvariant[I - 1]) 9687 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9688 else 9689 Indices.push_back(State.get(Operand, Part)); 9690 } 9691 9692 // If the GEP instruction is vectorized and was in a basic block that 9693 // needed predication, we can't propagate the poison-generating 'inbounds' 9694 // flag. The control flow has been linearized and the GEP is no longer 9695 // guarded by the predicate, which could make the 'inbounds' properties to 9696 // no longer hold. 9697 bool IsInBounds = 9698 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9699 9700 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9701 // but it should be a vector, otherwise. 9702 auto *NewGEP = IsInBounds 9703 ? State.Builder.CreateInBoundsGEP( 9704 GEP->getSourceElementType(), Ptr, Indices) 9705 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9706 Ptr, Indices); 9707 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9708 "NewGEP is not a pointer vector"); 9709 State.set(this, NewGEP, Part); 9710 State.ILV->addMetadata(NewGEP, GEP); 9711 } 9712 } 9713 } 9714 9715 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9716 assert(!State.Instance && "Int or FP induction being replicated."); 9717 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9718 State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV); 9719 } 9720 9721 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9722 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9723 State); 9724 } 9725 9726 void VPBlendRecipe::execute(VPTransformState &State) { 9727 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9728 // We know that all PHIs in non-header blocks are converted into 9729 // selects, so we don't have to worry about the insertion order and we 9730 // can just use the builder. 9731 // At this point we generate the predication tree. There may be 9732 // duplications since this is a simple recursive scan, but future 9733 // optimizations will clean it up. 9734 9735 unsigned NumIncoming = getNumIncomingValues(); 9736 9737 // Generate a sequence of selects of the form: 9738 // SELECT(Mask3, In3, 9739 // SELECT(Mask2, In2, 9740 // SELECT(Mask1, In1, 9741 // In0))) 9742 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9743 // are essentially undef are taken from In0. 9744 InnerLoopVectorizer::VectorParts Entry(State.UF); 9745 for (unsigned In = 0; In < NumIncoming; ++In) { 9746 for (unsigned Part = 0; Part < State.UF; ++Part) { 9747 // We might have single edge PHIs (blocks) - use an identity 9748 // 'select' for the first PHI operand. 9749 Value *In0 = State.get(getIncomingValue(In), Part); 9750 if (In == 0) 9751 Entry[Part] = In0; // Initialize with the first incoming value. 9752 else { 9753 // Select between the current value and the previous incoming edge 9754 // based on the incoming mask. 9755 Value *Cond = State.get(getMask(In), Part); 9756 Entry[Part] = 9757 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9758 } 9759 } 9760 } 9761 for (unsigned Part = 0; Part < State.UF; ++Part) 9762 State.set(this, Entry[Part], Part); 9763 } 9764 9765 void VPInterleaveRecipe::execute(VPTransformState &State) { 9766 assert(!State.Instance && "Interleave group being replicated."); 9767 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9768 getStoredValues(), getMask()); 9769 } 9770 9771 void VPReductionRecipe::execute(VPTransformState &State) { 9772 assert(!State.Instance && "Reduction being replicated."); 9773 Value *PrevInChain = State.get(getChainOp(), 0); 9774 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9775 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9776 // Propagate the fast-math flags carried by the underlying instruction. 9777 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9778 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9779 for (unsigned Part = 0; Part < State.UF; ++Part) { 9780 Value *NewVecOp = State.get(getVecOp(), Part); 9781 if (VPValue *Cond = getCondOp()) { 9782 Value *NewCond = State.get(Cond, Part); 9783 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9784 Value *Iden = RdxDesc->getRecurrenceIdentity( 9785 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9786 Value *IdenVec = 9787 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9788 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9789 NewVecOp = Select; 9790 } 9791 Value *NewRed; 9792 Value *NextInChain; 9793 if (IsOrdered) { 9794 if (State.VF.isVector()) 9795 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9796 PrevInChain); 9797 else 9798 NewRed = State.Builder.CreateBinOp( 9799 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9800 NewVecOp); 9801 PrevInChain = NewRed; 9802 } else { 9803 PrevInChain = State.get(getChainOp(), Part); 9804 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9805 } 9806 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9807 NextInChain = 9808 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9809 NewRed, PrevInChain); 9810 } else if (IsOrdered) 9811 NextInChain = NewRed; 9812 else 9813 NextInChain = State.Builder.CreateBinOp( 9814 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9815 PrevInChain); 9816 State.set(this, NextInChain, Part); 9817 } 9818 } 9819 9820 void VPReplicateRecipe::execute(VPTransformState &State) { 9821 if (State.Instance) { // Generate a single instance. 9822 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9823 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9824 IsPredicated, State); 9825 // Insert scalar instance packing it into a vector. 9826 if (AlsoPack && State.VF.isVector()) { 9827 // If we're constructing lane 0, initialize to start from poison. 9828 if (State.Instance->Lane.isFirstLane()) { 9829 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9830 Value *Poison = PoisonValue::get( 9831 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9832 State.set(this, Poison, State.Instance->Part); 9833 } 9834 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9835 } 9836 return; 9837 } 9838 9839 // Generate scalar instances for all VF lanes of all UF parts, unless the 9840 // instruction is uniform inwhich case generate only the first lane for each 9841 // of the UF parts. 9842 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9843 assert((!State.VF.isScalable() || IsUniform) && 9844 "Can't scalarize a scalable vector"); 9845 for (unsigned Part = 0; Part < State.UF; ++Part) 9846 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9847 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9848 VPIteration(Part, Lane), IsPredicated, 9849 State); 9850 } 9851 9852 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9853 assert(State.Instance && "Branch on Mask works only on single instance."); 9854 9855 unsigned Part = State.Instance->Part; 9856 unsigned Lane = State.Instance->Lane.getKnownLane(); 9857 9858 Value *ConditionBit = nullptr; 9859 VPValue *BlockInMask = getMask(); 9860 if (BlockInMask) { 9861 ConditionBit = State.get(BlockInMask, Part); 9862 if (ConditionBit->getType()->isVectorTy()) 9863 ConditionBit = State.Builder.CreateExtractElement( 9864 ConditionBit, State.Builder.getInt32(Lane)); 9865 } else // Block in mask is all-one. 9866 ConditionBit = State.Builder.getTrue(); 9867 9868 // Replace the temporary unreachable terminator with a new conditional branch, 9869 // whose two destinations will be set later when they are created. 9870 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9871 assert(isa<UnreachableInst>(CurrentTerminator) && 9872 "Expected to replace unreachable terminator with conditional branch."); 9873 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9874 CondBr->setSuccessor(0, nullptr); 9875 ReplaceInstWithInst(CurrentTerminator, CondBr); 9876 } 9877 9878 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9879 assert(State.Instance && "Predicated instruction PHI works per instance."); 9880 Instruction *ScalarPredInst = 9881 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9882 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9883 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9884 assert(PredicatingBB && "Predicated block has no single predecessor."); 9885 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9886 "operand must be VPReplicateRecipe"); 9887 9888 // By current pack/unpack logic we need to generate only a single phi node: if 9889 // a vector value for the predicated instruction exists at this point it means 9890 // the instruction has vector users only, and a phi for the vector value is 9891 // needed. In this case the recipe of the predicated instruction is marked to 9892 // also do that packing, thereby "hoisting" the insert-element sequence. 9893 // Otherwise, a phi node for the scalar value is needed. 9894 unsigned Part = State.Instance->Part; 9895 if (State.hasVectorValue(getOperand(0), Part)) { 9896 Value *VectorValue = State.get(getOperand(0), Part); 9897 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9898 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9899 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9900 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9901 if (State.hasVectorValue(this, Part)) 9902 State.reset(this, VPhi, Part); 9903 else 9904 State.set(this, VPhi, Part); 9905 // NOTE: Currently we need to update the value of the operand, so the next 9906 // predicated iteration inserts its generated value in the correct vector. 9907 State.reset(getOperand(0), VPhi, Part); 9908 } else { 9909 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9910 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9911 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9912 PredicatingBB); 9913 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9914 if (State.hasScalarValue(this, *State.Instance)) 9915 State.reset(this, Phi, *State.Instance); 9916 else 9917 State.set(this, Phi, *State.Instance); 9918 // NOTE: Currently we need to update the value of the operand, so the next 9919 // predicated iteration inserts its generated value in the correct vector. 9920 State.reset(getOperand(0), Phi, *State.Instance); 9921 } 9922 } 9923 9924 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9925 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9926 9927 // Attempt to issue a wide load. 9928 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9929 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9930 9931 assert((LI || SI) && "Invalid Load/Store instruction"); 9932 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9933 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9934 9935 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9936 9937 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9938 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9939 bool CreateGatherScatter = !Consecutive; 9940 9941 auto &Builder = State.Builder; 9942 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9943 bool isMaskRequired = getMask(); 9944 if (isMaskRequired) 9945 for (unsigned Part = 0; Part < State.UF; ++Part) 9946 BlockInMaskParts[Part] = State.get(getMask(), Part); 9947 9948 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9949 // Calculate the pointer for the specific unroll-part. 9950 GetElementPtrInst *PartPtr = nullptr; 9951 9952 bool InBounds = false; 9953 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9954 InBounds = gep->isInBounds(); 9955 if (Reverse) { 9956 // If the address is consecutive but reversed, then the 9957 // wide store needs to start at the last vector element. 9958 // RunTimeVF = VScale * VF.getKnownMinValue() 9959 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9960 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9961 // NumElt = -Part * RunTimeVF 9962 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9963 // LastLane = 1 - RunTimeVF 9964 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9965 PartPtr = 9966 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9967 PartPtr->setIsInBounds(InBounds); 9968 PartPtr = cast<GetElementPtrInst>( 9969 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9970 PartPtr->setIsInBounds(InBounds); 9971 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9972 BlockInMaskParts[Part] = 9973 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9974 } else { 9975 Value *Increment = 9976 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9977 PartPtr = cast<GetElementPtrInst>( 9978 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9979 PartPtr->setIsInBounds(InBounds); 9980 } 9981 9982 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9983 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9984 }; 9985 9986 // Handle Stores: 9987 if (SI) { 9988 State.ILV->setDebugLocFromInst(SI); 9989 9990 for (unsigned Part = 0; Part < State.UF; ++Part) { 9991 Instruction *NewSI = nullptr; 9992 Value *StoredVal = State.get(StoredValue, Part); 9993 if (CreateGatherScatter) { 9994 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9995 Value *VectorGep = State.get(getAddr(), Part); 9996 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9997 MaskPart); 9998 } else { 9999 if (Reverse) { 10000 // If we store to reverse consecutive memory locations, then we need 10001 // to reverse the order of elements in the stored value. 10002 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10003 // We don't want to update the value in the map as it might be used in 10004 // another expression. So don't call resetVectorValue(StoredVal). 10005 } 10006 auto *VecPtr = 10007 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10008 if (isMaskRequired) 10009 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10010 BlockInMaskParts[Part]); 10011 else 10012 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10013 } 10014 State.ILV->addMetadata(NewSI, SI); 10015 } 10016 return; 10017 } 10018 10019 // Handle loads. 10020 assert(LI && "Must have a load instruction"); 10021 State.ILV->setDebugLocFromInst(LI); 10022 for (unsigned Part = 0; Part < State.UF; ++Part) { 10023 Value *NewLI; 10024 if (CreateGatherScatter) { 10025 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10026 Value *VectorGep = State.get(getAddr(), Part); 10027 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10028 nullptr, "wide.masked.gather"); 10029 State.ILV->addMetadata(NewLI, LI); 10030 } else { 10031 auto *VecPtr = 10032 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10033 if (isMaskRequired) 10034 NewLI = Builder.CreateMaskedLoad( 10035 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10036 PoisonValue::get(DataTy), "wide.masked.load"); 10037 else 10038 NewLI = 10039 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10040 10041 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10042 State.ILV->addMetadata(NewLI, LI); 10043 if (Reverse) 10044 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10045 } 10046 10047 State.set(this, NewLI, Part); 10048 } 10049 } 10050 10051 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10052 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10053 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10054 // for predication. 10055 static ScalarEpilogueLowering getScalarEpilogueLowering( 10056 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10057 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10058 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10059 LoopVectorizationLegality &LVL) { 10060 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10061 // don't look at hints or options, and don't request a scalar epilogue. 10062 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10063 // LoopAccessInfo (due to code dependency and not being able to reliably get 10064 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10065 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10066 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10067 // back to the old way and vectorize with versioning when forced. See D81345.) 10068 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10069 PGSOQueryType::IRPass) && 10070 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10071 return CM_ScalarEpilogueNotAllowedOptSize; 10072 10073 // 2) If set, obey the directives 10074 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10075 switch (PreferPredicateOverEpilogue) { 10076 case PreferPredicateTy::ScalarEpilogue: 10077 return CM_ScalarEpilogueAllowed; 10078 case PreferPredicateTy::PredicateElseScalarEpilogue: 10079 return CM_ScalarEpilogueNotNeededUsePredicate; 10080 case PreferPredicateTy::PredicateOrDontVectorize: 10081 return CM_ScalarEpilogueNotAllowedUsePredicate; 10082 }; 10083 } 10084 10085 // 3) If set, obey the hints 10086 switch (Hints.getPredicate()) { 10087 case LoopVectorizeHints::FK_Enabled: 10088 return CM_ScalarEpilogueNotNeededUsePredicate; 10089 case LoopVectorizeHints::FK_Disabled: 10090 return CM_ScalarEpilogueAllowed; 10091 }; 10092 10093 // 4) if the TTI hook indicates this is profitable, request predication. 10094 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10095 LVL.getLAI())) 10096 return CM_ScalarEpilogueNotNeededUsePredicate; 10097 10098 return CM_ScalarEpilogueAllowed; 10099 } 10100 10101 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10102 // If Values have been set for this Def return the one relevant for \p Part. 10103 if (hasVectorValue(Def, Part)) 10104 return Data.PerPartOutput[Def][Part]; 10105 10106 if (!hasScalarValue(Def, {Part, 0})) { 10107 Value *IRV = Def->getLiveInIRValue(); 10108 Value *B = ILV->getBroadcastInstrs(IRV); 10109 set(Def, B, Part); 10110 return B; 10111 } 10112 10113 Value *ScalarValue = get(Def, {Part, 0}); 10114 // If we aren't vectorizing, we can just copy the scalar map values over 10115 // to the vector map. 10116 if (VF.isScalar()) { 10117 set(Def, ScalarValue, Part); 10118 return ScalarValue; 10119 } 10120 10121 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10122 bool IsUniform = RepR && RepR->isUniform(); 10123 10124 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10125 // Check if there is a scalar value for the selected lane. 10126 if (!hasScalarValue(Def, {Part, LastLane})) { 10127 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10128 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10129 "unexpected recipe found to be invariant"); 10130 IsUniform = true; 10131 LastLane = 0; 10132 } 10133 10134 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10135 // Set the insert point after the last scalarized instruction or after the 10136 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10137 // will directly follow the scalar definitions. 10138 auto OldIP = Builder.saveIP(); 10139 auto NewIP = 10140 isa<PHINode>(LastInst) 10141 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10142 : std::next(BasicBlock::iterator(LastInst)); 10143 Builder.SetInsertPoint(&*NewIP); 10144 10145 // However, if we are vectorizing, we need to construct the vector values. 10146 // If the value is known to be uniform after vectorization, we can just 10147 // broadcast the scalar value corresponding to lane zero for each unroll 10148 // iteration. Otherwise, we construct the vector values using 10149 // insertelement instructions. Since the resulting vectors are stored in 10150 // State, we will only generate the insertelements once. 10151 Value *VectorValue = nullptr; 10152 if (IsUniform) { 10153 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10154 set(Def, VectorValue, Part); 10155 } else { 10156 // Initialize packing with insertelements to start from undef. 10157 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10158 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10159 set(Def, Undef, Part); 10160 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10161 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10162 VectorValue = get(Def, Part); 10163 } 10164 Builder.restoreIP(OldIP); 10165 return VectorValue; 10166 } 10167 10168 // Process the loop in the VPlan-native vectorization path. This path builds 10169 // VPlan upfront in the vectorization pipeline, which allows to apply 10170 // VPlan-to-VPlan transformations from the very beginning without modifying the 10171 // input LLVM IR. 10172 static bool processLoopInVPlanNativePath( 10173 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10174 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10175 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10176 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10177 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10178 LoopVectorizationRequirements &Requirements) { 10179 10180 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10181 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10182 return false; 10183 } 10184 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10185 Function *F = L->getHeader()->getParent(); 10186 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10187 10188 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10189 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10190 10191 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10192 &Hints, IAI); 10193 // Use the planner for outer loop vectorization. 10194 // TODO: CM is not used at this point inside the planner. Turn CM into an 10195 // optional argument if we don't need it in the future. 10196 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10197 Requirements, ORE); 10198 10199 // Get user vectorization factor. 10200 ElementCount UserVF = Hints.getWidth(); 10201 10202 CM.collectElementTypesForWidening(); 10203 10204 // Plan how to best vectorize, return the best VF and its cost. 10205 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10206 10207 // If we are stress testing VPlan builds, do not attempt to generate vector 10208 // code. Masked vector code generation support will follow soon. 10209 // Also, do not attempt to vectorize if no vector code will be produced. 10210 if (VPlanBuildStressTest || EnableVPlanPredication || 10211 VectorizationFactor::Disabled() == VF) 10212 return false; 10213 10214 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10215 10216 { 10217 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10218 F->getParent()->getDataLayout()); 10219 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10220 &CM, BFI, PSI, Checks); 10221 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10222 << L->getHeader()->getParent()->getName() << "\"\n"); 10223 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10224 } 10225 10226 // Mark the loop as already vectorized to avoid vectorizing again. 10227 Hints.setAlreadyVectorized(); 10228 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10229 return true; 10230 } 10231 10232 // Emit a remark if there are stores to floats that required a floating point 10233 // extension. If the vectorized loop was generated with floating point there 10234 // will be a performance penalty from the conversion overhead and the change in 10235 // the vector width. 10236 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10237 SmallVector<Instruction *, 4> Worklist; 10238 for (BasicBlock *BB : L->getBlocks()) { 10239 for (Instruction &Inst : *BB) { 10240 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10241 if (S->getValueOperand()->getType()->isFloatTy()) 10242 Worklist.push_back(S); 10243 } 10244 } 10245 } 10246 10247 // Traverse the floating point stores upwards searching, for floating point 10248 // conversions. 10249 SmallPtrSet<const Instruction *, 4> Visited; 10250 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10251 while (!Worklist.empty()) { 10252 auto *I = Worklist.pop_back_val(); 10253 if (!L->contains(I)) 10254 continue; 10255 if (!Visited.insert(I).second) 10256 continue; 10257 10258 // Emit a remark if the floating point store required a floating 10259 // point conversion. 10260 // TODO: More work could be done to identify the root cause such as a 10261 // constant or a function return type and point the user to it. 10262 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10263 ORE->emit([&]() { 10264 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10265 I->getDebugLoc(), L->getHeader()) 10266 << "floating point conversion changes vector width. " 10267 << "Mixed floating point precision requires an up/down " 10268 << "cast that will negatively impact performance."; 10269 }); 10270 10271 for (Use &Op : I->operands()) 10272 if (auto *OpI = dyn_cast<Instruction>(Op)) 10273 Worklist.push_back(OpI); 10274 } 10275 } 10276 10277 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10278 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10279 !EnableLoopInterleaving), 10280 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10281 !EnableLoopVectorization) {} 10282 10283 bool LoopVectorizePass::processLoop(Loop *L) { 10284 assert((EnableVPlanNativePath || L->isInnermost()) && 10285 "VPlan-native path is not enabled. Only process inner loops."); 10286 10287 #ifndef NDEBUG 10288 const std::string DebugLocStr = getDebugLocString(L); 10289 #endif /* NDEBUG */ 10290 10291 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10292 << L->getHeader()->getParent()->getName() << "\" from " 10293 << DebugLocStr << "\n"); 10294 10295 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10296 10297 LLVM_DEBUG( 10298 dbgs() << "LV: Loop hints:" 10299 << " force=" 10300 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10301 ? "disabled" 10302 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10303 ? "enabled" 10304 : "?")) 10305 << " width=" << Hints.getWidth() 10306 << " interleave=" << Hints.getInterleave() << "\n"); 10307 10308 // Function containing loop 10309 Function *F = L->getHeader()->getParent(); 10310 10311 // Looking at the diagnostic output is the only way to determine if a loop 10312 // was vectorized (other than looking at the IR or machine code), so it 10313 // is important to generate an optimization remark for each loop. Most of 10314 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10315 // generated as OptimizationRemark and OptimizationRemarkMissed are 10316 // less verbose reporting vectorized loops and unvectorized loops that may 10317 // benefit from vectorization, respectively. 10318 10319 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10320 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10321 return false; 10322 } 10323 10324 PredicatedScalarEvolution PSE(*SE, *L); 10325 10326 // Check if it is legal to vectorize the loop. 10327 LoopVectorizationRequirements Requirements; 10328 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10329 &Requirements, &Hints, DB, AC, BFI, PSI); 10330 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10331 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10332 Hints.emitRemarkWithHints(); 10333 return false; 10334 } 10335 10336 // Check the function attributes and profiles to find out if this function 10337 // should be optimized for size. 10338 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10339 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10340 10341 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10342 // here. They may require CFG and instruction level transformations before 10343 // even evaluating whether vectorization is profitable. Since we cannot modify 10344 // the incoming IR, we need to build VPlan upfront in the vectorization 10345 // pipeline. 10346 if (!L->isInnermost()) 10347 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10348 ORE, BFI, PSI, Hints, Requirements); 10349 10350 assert(L->isInnermost() && "Inner loop expected."); 10351 10352 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10353 // count by optimizing for size, to minimize overheads. 10354 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10355 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10356 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10357 << "This loop is worth vectorizing only if no scalar " 10358 << "iteration overheads are incurred."); 10359 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10360 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10361 else { 10362 LLVM_DEBUG(dbgs() << "\n"); 10363 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10364 } 10365 } 10366 10367 // Check the function attributes to see if implicit floats are allowed. 10368 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10369 // an integer loop and the vector instructions selected are purely integer 10370 // vector instructions? 10371 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10372 reportVectorizationFailure( 10373 "Can't vectorize when the NoImplicitFloat attribute is used", 10374 "loop not vectorized due to NoImplicitFloat attribute", 10375 "NoImplicitFloat", ORE, L); 10376 Hints.emitRemarkWithHints(); 10377 return false; 10378 } 10379 10380 // Check if the target supports potentially unsafe FP vectorization. 10381 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10382 // for the target we're vectorizing for, to make sure none of the 10383 // additional fp-math flags can help. 10384 if (Hints.isPotentiallyUnsafe() && 10385 TTI->isFPVectorizationPotentiallyUnsafe()) { 10386 reportVectorizationFailure( 10387 "Potentially unsafe FP op prevents vectorization", 10388 "loop not vectorized due to unsafe FP support.", 10389 "UnsafeFP", ORE, L); 10390 Hints.emitRemarkWithHints(); 10391 return false; 10392 } 10393 10394 bool AllowOrderedReductions; 10395 // If the flag is set, use that instead and override the TTI behaviour. 10396 if (ForceOrderedReductions.getNumOccurrences() > 0) 10397 AllowOrderedReductions = ForceOrderedReductions; 10398 else 10399 AllowOrderedReductions = TTI->enableOrderedReductions(); 10400 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10401 ORE->emit([&]() { 10402 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10403 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10404 ExactFPMathInst->getDebugLoc(), 10405 ExactFPMathInst->getParent()) 10406 << "loop not vectorized: cannot prove it is safe to reorder " 10407 "floating-point operations"; 10408 }); 10409 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10410 "reorder floating-point operations\n"); 10411 Hints.emitRemarkWithHints(); 10412 return false; 10413 } 10414 10415 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10416 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10417 10418 // If an override option has been passed in for interleaved accesses, use it. 10419 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10420 UseInterleaved = EnableInterleavedMemAccesses; 10421 10422 // Analyze interleaved memory accesses. 10423 if (UseInterleaved) { 10424 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10425 } 10426 10427 // Use the cost model. 10428 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10429 F, &Hints, IAI); 10430 CM.collectValuesToIgnore(); 10431 CM.collectElementTypesForWidening(); 10432 10433 // Use the planner for vectorization. 10434 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10435 Requirements, ORE); 10436 10437 // Get user vectorization factor and interleave count. 10438 ElementCount UserVF = Hints.getWidth(); 10439 unsigned UserIC = Hints.getInterleave(); 10440 10441 // Plan how to best vectorize, return the best VF and its cost. 10442 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10443 10444 VectorizationFactor VF = VectorizationFactor::Disabled(); 10445 unsigned IC = 1; 10446 10447 if (MaybeVF) { 10448 VF = *MaybeVF; 10449 // Select the interleave count. 10450 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10451 } 10452 10453 // Identify the diagnostic messages that should be produced. 10454 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10455 bool VectorizeLoop = true, InterleaveLoop = true; 10456 if (VF.Width.isScalar()) { 10457 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10458 VecDiagMsg = std::make_pair( 10459 "VectorizationNotBeneficial", 10460 "the cost-model indicates that vectorization is not beneficial"); 10461 VectorizeLoop = false; 10462 } 10463 10464 if (!MaybeVF && UserIC > 1) { 10465 // Tell the user interleaving was avoided up-front, despite being explicitly 10466 // requested. 10467 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10468 "interleaving should be avoided up front\n"); 10469 IntDiagMsg = std::make_pair( 10470 "InterleavingAvoided", 10471 "Ignoring UserIC, because interleaving was avoided up front"); 10472 InterleaveLoop = false; 10473 } else if (IC == 1 && UserIC <= 1) { 10474 // Tell the user interleaving is not beneficial. 10475 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10476 IntDiagMsg = std::make_pair( 10477 "InterleavingNotBeneficial", 10478 "the cost-model indicates that interleaving is not beneficial"); 10479 InterleaveLoop = false; 10480 if (UserIC == 1) { 10481 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10482 IntDiagMsg.second += 10483 " and is explicitly disabled or interleave count is set to 1"; 10484 } 10485 } else if (IC > 1 && UserIC == 1) { 10486 // Tell the user interleaving is beneficial, but it explicitly disabled. 10487 LLVM_DEBUG( 10488 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10489 IntDiagMsg = std::make_pair( 10490 "InterleavingBeneficialButDisabled", 10491 "the cost-model indicates that interleaving is beneficial " 10492 "but is explicitly disabled or interleave count is set to 1"); 10493 InterleaveLoop = false; 10494 } 10495 10496 // Override IC if user provided an interleave count. 10497 IC = UserIC > 0 ? UserIC : IC; 10498 10499 // Emit diagnostic messages, if any. 10500 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10501 if (!VectorizeLoop && !InterleaveLoop) { 10502 // Do not vectorize or interleaving the loop. 10503 ORE->emit([&]() { 10504 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10505 L->getStartLoc(), L->getHeader()) 10506 << VecDiagMsg.second; 10507 }); 10508 ORE->emit([&]() { 10509 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10510 L->getStartLoc(), L->getHeader()) 10511 << IntDiagMsg.second; 10512 }); 10513 return false; 10514 } else if (!VectorizeLoop && InterleaveLoop) { 10515 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10516 ORE->emit([&]() { 10517 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10518 L->getStartLoc(), L->getHeader()) 10519 << VecDiagMsg.second; 10520 }); 10521 } else if (VectorizeLoop && !InterleaveLoop) { 10522 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10523 << ") in " << DebugLocStr << '\n'); 10524 ORE->emit([&]() { 10525 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10526 L->getStartLoc(), L->getHeader()) 10527 << IntDiagMsg.second; 10528 }); 10529 } else if (VectorizeLoop && InterleaveLoop) { 10530 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10531 << ") in " << DebugLocStr << '\n'); 10532 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10533 } 10534 10535 bool DisableRuntimeUnroll = false; 10536 MDNode *OrigLoopID = L->getLoopID(); 10537 { 10538 // Optimistically generate runtime checks. Drop them if they turn out to not 10539 // be profitable. Limit the scope of Checks, so the cleanup happens 10540 // immediately after vector codegeneration is done. 10541 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10542 F->getParent()->getDataLayout()); 10543 if (!VF.Width.isScalar() || IC > 1) 10544 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10545 10546 using namespace ore; 10547 if (!VectorizeLoop) { 10548 assert(IC > 1 && "interleave count should not be 1 or 0"); 10549 // If we decided that it is not legal to vectorize the loop, then 10550 // interleave it. 10551 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10552 &CM, BFI, PSI, Checks); 10553 10554 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10555 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10556 10557 ORE->emit([&]() { 10558 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10559 L->getHeader()) 10560 << "interleaved loop (interleaved count: " 10561 << NV("InterleaveCount", IC) << ")"; 10562 }); 10563 } else { 10564 // If we decided that it is *legal* to vectorize the loop, then do it. 10565 10566 // Consider vectorizing the epilogue too if it's profitable. 10567 VectorizationFactor EpilogueVF = 10568 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10569 if (EpilogueVF.Width.isVector()) { 10570 10571 // The first pass vectorizes the main loop and creates a scalar epilogue 10572 // to be vectorized by executing the plan (potentially with a different 10573 // factor) again shortly afterwards. 10574 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10575 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10576 EPI, &LVL, &CM, BFI, PSI, Checks); 10577 10578 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10579 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10580 DT); 10581 ++LoopsVectorized; 10582 10583 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10584 formLCSSARecursively(*L, *DT, LI, SE); 10585 10586 // Second pass vectorizes the epilogue and adjusts the control flow 10587 // edges from the first pass. 10588 EPI.MainLoopVF = EPI.EpilogueVF; 10589 EPI.MainLoopUF = EPI.EpilogueUF; 10590 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10591 ORE, EPI, &LVL, &CM, BFI, PSI, 10592 Checks); 10593 10594 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10595 10596 // Ensure that the start values for any VPReductionPHIRecipes are 10597 // updated before vectorising the epilogue loop. 10598 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10599 for (VPRecipeBase &R : Header->phis()) { 10600 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10601 if (auto *Resume = MainILV.getReductionResumeValue( 10602 ReductionPhi->getRecurrenceDescriptor())) { 10603 VPValue *StartVal = new VPValue(Resume); 10604 BestEpiPlan.addExternalDef(StartVal); 10605 ReductionPhi->setOperand(0, StartVal); 10606 } 10607 } 10608 } 10609 10610 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10611 DT); 10612 ++LoopsEpilogueVectorized; 10613 10614 if (!MainILV.areSafetyChecksAdded()) 10615 DisableRuntimeUnroll = true; 10616 } else { 10617 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10618 &LVL, &CM, BFI, PSI, Checks); 10619 10620 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10621 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10622 ++LoopsVectorized; 10623 10624 // Add metadata to disable runtime unrolling a scalar loop when there 10625 // are no runtime checks about strides and memory. A scalar loop that is 10626 // rarely used is not worth unrolling. 10627 if (!LB.areSafetyChecksAdded()) 10628 DisableRuntimeUnroll = true; 10629 } 10630 // Report the vectorization decision. 10631 ORE->emit([&]() { 10632 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10633 L->getHeader()) 10634 << "vectorized loop (vectorization width: " 10635 << NV("VectorizationFactor", VF.Width) 10636 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10637 }); 10638 } 10639 10640 if (ORE->allowExtraAnalysis(LV_NAME)) 10641 checkMixedPrecision(L, ORE); 10642 } 10643 10644 Optional<MDNode *> RemainderLoopID = 10645 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10646 LLVMLoopVectorizeFollowupEpilogue}); 10647 if (RemainderLoopID.hasValue()) { 10648 L->setLoopID(RemainderLoopID.getValue()); 10649 } else { 10650 if (DisableRuntimeUnroll) 10651 AddRuntimeUnrollDisableMetaData(L); 10652 10653 // Mark the loop as already vectorized to avoid vectorizing again. 10654 Hints.setAlreadyVectorized(); 10655 } 10656 10657 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10658 return true; 10659 } 10660 10661 LoopVectorizeResult LoopVectorizePass::runImpl( 10662 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10663 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10664 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10665 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10666 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10667 SE = &SE_; 10668 LI = &LI_; 10669 TTI = &TTI_; 10670 DT = &DT_; 10671 BFI = &BFI_; 10672 TLI = TLI_; 10673 AA = &AA_; 10674 AC = &AC_; 10675 GetLAA = &GetLAA_; 10676 DB = &DB_; 10677 ORE = &ORE_; 10678 PSI = PSI_; 10679 10680 // Don't attempt if 10681 // 1. the target claims to have no vector registers, and 10682 // 2. interleaving won't help ILP. 10683 // 10684 // The second condition is necessary because, even if the target has no 10685 // vector registers, loop vectorization may still enable scalar 10686 // interleaving. 10687 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10688 TTI->getMaxInterleaveFactor(1) < 2) 10689 return LoopVectorizeResult(false, false); 10690 10691 bool Changed = false, CFGChanged = false; 10692 10693 // The vectorizer requires loops to be in simplified form. 10694 // Since simplification may add new inner loops, it has to run before the 10695 // legality and profitability checks. This means running the loop vectorizer 10696 // will simplify all loops, regardless of whether anything end up being 10697 // vectorized. 10698 for (auto &L : *LI) 10699 Changed |= CFGChanged |= 10700 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10701 10702 // Build up a worklist of inner-loops to vectorize. This is necessary as 10703 // the act of vectorizing or partially unrolling a loop creates new loops 10704 // and can invalidate iterators across the loops. 10705 SmallVector<Loop *, 8> Worklist; 10706 10707 for (Loop *L : *LI) 10708 collectSupportedLoops(*L, LI, ORE, Worklist); 10709 10710 LoopsAnalyzed += Worklist.size(); 10711 10712 // Now walk the identified inner loops. 10713 while (!Worklist.empty()) { 10714 Loop *L = Worklist.pop_back_val(); 10715 10716 // For the inner loops we actually process, form LCSSA to simplify the 10717 // transform. 10718 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10719 10720 Changed |= CFGChanged |= processLoop(L); 10721 } 10722 10723 // Process each loop nest in the function. 10724 return LoopVectorizeResult(Changed, CFGChanged); 10725 } 10726 10727 PreservedAnalyses LoopVectorizePass::run(Function &F, 10728 FunctionAnalysisManager &AM) { 10729 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10730 auto &LI = AM.getResult<LoopAnalysis>(F); 10731 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10732 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10733 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10734 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10735 auto &AA = AM.getResult<AAManager>(F); 10736 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10737 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10738 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10739 10740 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10741 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10742 [&](Loop &L) -> const LoopAccessInfo & { 10743 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10744 TLI, TTI, nullptr, nullptr, nullptr}; 10745 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10746 }; 10747 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10748 ProfileSummaryInfo *PSI = 10749 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10750 LoopVectorizeResult Result = 10751 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10752 if (!Result.MadeAnyChange) 10753 return PreservedAnalyses::all(); 10754 PreservedAnalyses PA; 10755 10756 // We currently do not preserve loopinfo/dominator analyses with outer loop 10757 // vectorization. Until this is addressed, mark these analyses as preserved 10758 // only for non-VPlan-native path. 10759 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10760 if (!EnableVPlanNativePath) { 10761 PA.preserve<LoopAnalysis>(); 10762 PA.preserve<DominatorTreeAnalysis>(); 10763 } 10764 10765 if (Result.MadeCFGChange) { 10766 // Making CFG changes likely means a loop got vectorized. Indicate that 10767 // extra simplification passes should be run. 10768 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10769 // be run if runtime checks have been added. 10770 AM.getResult<ShouldRunExtraVectorPasses>(F); 10771 PA.preserve<ShouldRunExtraVectorPasses>(); 10772 } else { 10773 PA.preserveSet<CFGAnalyses>(); 10774 } 10775 return PA; 10776 } 10777 10778 void LoopVectorizePass::printPipeline( 10779 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10780 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10781 OS, MapClassName2PassName); 10782 10783 OS << "<"; 10784 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10785 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10786 OS << ">"; 10787 } 10788