1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 // There is a development effort going on to migrate loop vectorizer to the 30 // VPlan infrastructure and to introduce outer loop vectorization support (see 31 // docs/Proposal/VectorizationPlan.rst and 32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 33 // purpose, we temporarily introduced the VPlan-native vectorization path: an 34 // alternative vectorization path that is natively implemented on top of the 35 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // The reduction-variable vectorization is based on the paper: 40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 41 // 42 // Variable uniformity checks are inspired by: 43 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 44 // 45 // The interleaved access vectorization is based on the paper: 46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 47 // Data for SIMD 48 // 49 // Other ideas/concepts are from: 50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 51 // 52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 53 // Vectorizing Compilers. 54 // 55 //===----------------------------------------------------------------------===// 56 57 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 58 #include "LoopVectorizationPlanner.h" 59 #include "VPlanHCFGBuilder.h" 60 #include "llvm/ADT/APInt.h" 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/DenseMap.h" 63 #include "llvm/ADT/DenseMapInfo.h" 64 #include "llvm/ADT/Hashing.h" 65 #include "llvm/ADT/MapVector.h" 66 #include "llvm/ADT/None.h" 67 #include "llvm/ADT/Optional.h" 68 #include "llvm/ADT/STLExtras.h" 69 #include "llvm/ADT/SetVector.h" 70 #include "llvm/ADT/SmallPtrSet.h" 71 #include "llvm/ADT/SmallSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/ADT/StringRef.h" 75 #include "llvm/ADT/Twine.h" 76 #include "llvm/ADT/iterator_range.h" 77 #include "llvm/Analysis/AssumptionCache.h" 78 #include "llvm/Analysis/BasicAliasAnalysis.h" 79 #include "llvm/Analysis/BlockFrequencyInfo.h" 80 #include "llvm/Analysis/CFG.h" 81 #include "llvm/Analysis/CodeMetrics.h" 82 #include "llvm/Analysis/DemandedBits.h" 83 #include "llvm/Analysis/GlobalsModRef.h" 84 #include "llvm/Analysis/LoopAccessAnalysis.h" 85 #include "llvm/Analysis/LoopAnalysisManager.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/LoopIterator.h" 88 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 89 #include "llvm/Analysis/ScalarEvolution.h" 90 #include "llvm/Analysis/ScalarEvolutionExpander.h" 91 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 92 #include "llvm/Analysis/TargetLibraryInfo.h" 93 #include "llvm/Analysis/TargetTransformInfo.h" 94 #include "llvm/Analysis/VectorUtils.h" 95 #include "llvm/IR/Attributes.h" 96 #include "llvm/IR/BasicBlock.h" 97 #include "llvm/IR/CFG.h" 98 #include "llvm/IR/Constant.h" 99 #include "llvm/IR/Constants.h" 100 #include "llvm/IR/DataLayout.h" 101 #include "llvm/IR/DebugInfoMetadata.h" 102 #include "llvm/IR/DebugLoc.h" 103 #include "llvm/IR/DerivedTypes.h" 104 #include "llvm/IR/DiagnosticInfo.h" 105 #include "llvm/IR/Dominators.h" 106 #include "llvm/IR/Function.h" 107 #include "llvm/IR/IRBuilder.h" 108 #include "llvm/IR/InstrTypes.h" 109 #include "llvm/IR/Instruction.h" 110 #include "llvm/IR/Instructions.h" 111 #include "llvm/IR/IntrinsicInst.h" 112 #include "llvm/IR/Intrinsics.h" 113 #include "llvm/IR/LLVMContext.h" 114 #include "llvm/IR/Metadata.h" 115 #include "llvm/IR/Module.h" 116 #include "llvm/IR/Operator.h" 117 #include "llvm/IR/Type.h" 118 #include "llvm/IR/Use.h" 119 #include "llvm/IR/User.h" 120 #include "llvm/IR/Value.h" 121 #include "llvm/IR/ValueHandle.h" 122 #include "llvm/IR/Verifier.h" 123 #include "llvm/Pass.h" 124 #include "llvm/Support/Casting.h" 125 #include "llvm/Support/CommandLine.h" 126 #include "llvm/Support/Compiler.h" 127 #include "llvm/Support/Debug.h" 128 #include "llvm/Support/ErrorHandling.h" 129 #include "llvm/Support/MathExtras.h" 130 #include "llvm/Support/raw_ostream.h" 131 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 132 #include "llvm/Transforms/Utils/LoopSimplify.h" 133 #include "llvm/Transforms/Utils/LoopUtils.h" 134 #include "llvm/Transforms/Utils/LoopVersioning.h" 135 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 136 #include <algorithm> 137 #include <cassert> 138 #include <cstdint> 139 #include <cstdlib> 140 #include <functional> 141 #include <iterator> 142 #include <limits> 143 #include <memory> 144 #include <string> 145 #include <tuple> 146 #include <utility> 147 #include <vector> 148 149 using namespace llvm; 150 151 #define LV_NAME "loop-vectorize" 152 #define DEBUG_TYPE LV_NAME 153 154 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 155 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 156 157 /// Loops with a known constant trip count below this number are vectorized only 158 /// if no scalar iteration overheads are incurred. 159 static cl::opt<unsigned> TinyTripCountVectorThreshold( 160 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 161 cl::desc("Loops with a constant trip count that is smaller than this " 162 "value are vectorized only if no scalar iteration overheads " 163 "are incurred.")); 164 165 static cl::opt<bool> MaximizeBandwidth( 166 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 167 cl::desc("Maximize bandwidth when selecting vectorization factor which " 168 "will be determined by the smallest type in loop.")); 169 170 static cl::opt<bool> EnableInterleavedMemAccesses( 171 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 172 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 173 174 /// Maximum factor for an interleaved memory access. 175 static cl::opt<unsigned> MaxInterleaveGroupFactor( 176 "max-interleave-group-factor", cl::Hidden, 177 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 178 cl::init(8)); 179 180 /// We don't interleave loops with a known constant trip count below this 181 /// number. 182 static const unsigned TinyTripCountInterleaveThreshold = 128; 183 184 static cl::opt<unsigned> ForceTargetNumScalarRegs( 185 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 186 cl::desc("A flag that overrides the target's number of scalar registers.")); 187 188 static cl::opt<unsigned> ForceTargetNumVectorRegs( 189 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 190 cl::desc("A flag that overrides the target's number of vector registers.")); 191 192 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 193 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 194 cl::desc("A flag that overrides the target's max interleave factor for " 195 "scalar loops.")); 196 197 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 198 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 199 cl::desc("A flag that overrides the target's max interleave factor for " 200 "vectorized loops.")); 201 202 static cl::opt<unsigned> ForceTargetInstructionCost( 203 "force-target-instruction-cost", cl::init(0), cl::Hidden, 204 cl::desc("A flag that overrides the target's expected cost for " 205 "an instruction to a single constant value. Mostly " 206 "useful for getting consistent testing.")); 207 208 static cl::opt<unsigned> SmallLoopCost( 209 "small-loop-cost", cl::init(20), cl::Hidden, 210 cl::desc( 211 "The cost of a loop that is considered 'small' by the interleaver.")); 212 213 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 214 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 215 cl::desc("Enable the use of the block frequency analysis to access PGO " 216 "heuristics minimizing code growth in cold regions and being more " 217 "aggressive in hot regions.")); 218 219 // Runtime interleave loops for load/store throughput. 220 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 221 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 222 cl::desc( 223 "Enable runtime interleaving until load/store ports are saturated")); 224 225 /// The number of stores in a loop that are allowed to need predication. 226 static cl::opt<unsigned> NumberOfStoresToPredicate( 227 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 228 cl::desc("Max number of stores to be predicated behind an if.")); 229 230 static cl::opt<bool> EnableIndVarRegisterHeur( 231 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 232 cl::desc("Count the induction variable only once when interleaving")); 233 234 static cl::opt<bool> EnableCondStoresVectorization( 235 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 236 cl::desc("Enable if predication of stores during vectorization.")); 237 238 static cl::opt<unsigned> MaxNestedScalarReductionIC( 239 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 240 cl::desc("The maximum interleave count to use when interleaving a scalar " 241 "reduction in a nested loop.")); 242 243 static cl::opt<bool> EnableVPlanNativePath( 244 "enable-vplan-native-path", cl::init(false), cl::Hidden, 245 cl::desc("Enable VPlan-native vectorization path with " 246 "support for outer loop vectorization.")); 247 248 // This flag enables the stress testing of the VPlan H-CFG construction in the 249 // VPlan-native vectorization path. It must be used in conjuction with 250 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 251 // verification of the H-CFGs built. 252 static cl::opt<bool> VPlanBuildStressTest( 253 "vplan-build-stress-test", cl::init(false), cl::Hidden, 254 cl::desc( 255 "Build VPlan for every supported loop nest in the function and bail " 256 "out right after the build (stress test the VPlan H-CFG construction " 257 "in the VPlan-native vectorization path).")); 258 259 /// A helper function for converting Scalar types to vector types. 260 /// If the incoming type is void, we return void. If the VF is 1, we return 261 /// the scalar type. 262 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 263 if (Scalar->isVoidTy() || VF == 1) 264 return Scalar; 265 return VectorType::get(Scalar, VF); 266 } 267 268 // FIXME: The following helper functions have multiple implementations 269 // in the project. They can be effectively organized in a common Load/Store 270 // utilities unit. 271 272 /// A helper function that returns the type of loaded or stored value. 273 static Type *getMemInstValueType(Value *I) { 274 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 275 "Expected Load or Store instruction"); 276 if (auto *LI = dyn_cast<LoadInst>(I)) 277 return LI->getType(); 278 return cast<StoreInst>(I)->getValueOperand()->getType(); 279 } 280 281 /// A helper function that returns the alignment of load or store instruction. 282 static unsigned getMemInstAlignment(Value *I) { 283 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 284 "Expected Load or Store instruction"); 285 if (auto *LI = dyn_cast<LoadInst>(I)) 286 return LI->getAlignment(); 287 return cast<StoreInst>(I)->getAlignment(); 288 } 289 290 /// A helper function that returns the address space of the pointer operand of 291 /// load or store instruction. 292 static unsigned getMemInstAddressSpace(Value *I) { 293 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 294 "Expected Load or Store instruction"); 295 if (auto *LI = dyn_cast<LoadInst>(I)) 296 return LI->getPointerAddressSpace(); 297 return cast<StoreInst>(I)->getPointerAddressSpace(); 298 } 299 300 /// A helper function that returns true if the given type is irregular. The 301 /// type is irregular if its allocated size doesn't equal the store size of an 302 /// element of the corresponding vector type at the given vectorization factor. 303 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 304 // Determine if an array of VF elements of type Ty is "bitcast compatible" 305 // with a <VF x Ty> vector. 306 if (VF > 1) { 307 auto *VectorTy = VectorType::get(Ty, VF); 308 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 309 } 310 311 // If the vectorization factor is one, we just check if an array of type Ty 312 // requires padding between elements. 313 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 314 } 315 316 /// A helper function that returns the reciprocal of the block probability of 317 /// predicated blocks. If we return X, we are assuming the predicated block 318 /// will execute once for every X iterations of the loop header. 319 /// 320 /// TODO: We should use actual block probability here, if available. Currently, 321 /// we always assume predicated blocks have a 50% chance of executing. 322 static unsigned getReciprocalPredBlockProb() { return 2; } 323 324 /// A helper function that adds a 'fast' flag to floating-point operations. 325 static Value *addFastMathFlag(Value *V) { 326 if (isa<FPMathOperator>(V)) { 327 FastMathFlags Flags; 328 Flags.setFast(); 329 cast<Instruction>(V)->setFastMathFlags(Flags); 330 } 331 return V; 332 } 333 334 /// A helper function that returns an integer or floating-point constant with 335 /// value C. 336 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 337 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 338 : ConstantFP::get(Ty, C); 339 } 340 341 namespace llvm { 342 343 /// InnerLoopVectorizer vectorizes loops which contain only one basic 344 /// block to a specified vectorization factor (VF). 345 /// This class performs the widening of scalars into vectors, or multiple 346 /// scalars. This class also implements the following features: 347 /// * It inserts an epilogue loop for handling loops that don't have iteration 348 /// counts that are known to be a multiple of the vectorization factor. 349 /// * It handles the code generation for reduction variables. 350 /// * Scalarization (implementation using scalars) of un-vectorizable 351 /// instructions. 352 /// InnerLoopVectorizer does not perform any vectorization-legality 353 /// checks, and relies on the caller to check for the different legality 354 /// aspects. The InnerLoopVectorizer relies on the 355 /// LoopVectorizationLegality class to provide information about the induction 356 /// and reduction variables that were found to a given vectorization factor. 357 class InnerLoopVectorizer { 358 public: 359 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 360 LoopInfo *LI, DominatorTree *DT, 361 const TargetLibraryInfo *TLI, 362 const TargetTransformInfo *TTI, AssumptionCache *AC, 363 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 364 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 365 LoopVectorizationCostModel *CM) 366 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 367 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 368 Builder(PSE.getSE()->getContext()), 369 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 370 virtual ~InnerLoopVectorizer() = default; 371 372 /// Create a new empty loop. Unlink the old loop and connect the new one. 373 /// Return the pre-header block of the new loop. 374 BasicBlock *createVectorizedLoopSkeleton(); 375 376 /// Widen a single instruction within the innermost loop. 377 void widenInstruction(Instruction &I); 378 379 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 380 void fixVectorizedLoop(); 381 382 // Return true if any runtime check is added. 383 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 384 385 /// A type for vectorized values in the new loop. Each value from the 386 /// original loop, when vectorized, is represented by UF vector values in the 387 /// new unrolled loop, where UF is the unroll factor. 388 using VectorParts = SmallVector<Value *, 2>; 389 390 /// Vectorize a single PHINode in a block. This method handles the induction 391 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 392 /// arbitrary length vectors. 393 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 394 395 /// A helper function to scalarize a single Instruction in the innermost loop. 396 /// Generates a sequence of scalar instances for each lane between \p MinLane 397 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 398 /// inclusive.. 399 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 400 bool IfPredicateInstr); 401 402 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 403 /// is provided, the integer induction variable will first be truncated to 404 /// the corresponding type. 405 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 406 407 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 408 /// vector or scalar value on-demand if one is not yet available. When 409 /// vectorizing a loop, we visit the definition of an instruction before its 410 /// uses. When visiting the definition, we either vectorize or scalarize the 411 /// instruction, creating an entry for it in the corresponding map. (In some 412 /// cases, such as induction variables, we will create both vector and scalar 413 /// entries.) Then, as we encounter uses of the definition, we derive values 414 /// for each scalar or vector use unless such a value is already available. 415 /// For example, if we scalarize a definition and one of its uses is vector, 416 /// we build the required vector on-demand with an insertelement sequence 417 /// when visiting the use. Otherwise, if the use is scalar, we can use the 418 /// existing scalar definition. 419 /// 420 /// Return a value in the new loop corresponding to \p V from the original 421 /// loop at unroll index \p Part. If the value has already been vectorized, 422 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 423 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 424 /// a new vector value on-demand by inserting the scalar values into a vector 425 /// with an insertelement sequence. If the value has been neither vectorized 426 /// nor scalarized, it must be loop invariant, so we simply broadcast the 427 /// value into a vector. 428 Value *getOrCreateVectorValue(Value *V, unsigned Part); 429 430 /// Return a value in the new loop corresponding to \p V from the original 431 /// loop at unroll and vector indices \p Instance. If the value has been 432 /// vectorized but not scalarized, the necessary extractelement instruction 433 /// will be generated. 434 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 435 436 /// Construct the vector value of a scalarized value \p V one lane at a time. 437 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 438 439 /// Try to vectorize the interleaved access group that \p Instr belongs to. 440 void vectorizeInterleaveGroup(Instruction *Instr); 441 442 /// Vectorize Load and Store instructions, optionally masking the vector 443 /// operations if \p BlockInMask is non-null. 444 void vectorizeMemoryInstruction(Instruction *Instr, 445 VectorParts *BlockInMask = nullptr); 446 447 /// Set the debug location in the builder using the debug location in 448 /// the instruction. 449 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 450 451 protected: 452 friend class LoopVectorizationPlanner; 453 454 /// A small list of PHINodes. 455 using PhiVector = SmallVector<PHINode *, 4>; 456 457 /// A type for scalarized values in the new loop. Each value from the 458 /// original loop, when scalarized, is represented by UF x VF scalar values 459 /// in the new unrolled loop, where UF is the unroll factor and VF is the 460 /// vectorization factor. 461 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 462 463 /// Set up the values of the IVs correctly when exiting the vector loop. 464 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 465 Value *CountRoundDown, Value *EndValue, 466 BasicBlock *MiddleBlock); 467 468 /// Create a new induction variable inside L. 469 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 470 Value *Step, Instruction *DL); 471 472 /// Handle all cross-iteration phis in the header. 473 void fixCrossIterationPHIs(); 474 475 /// Fix a first-order recurrence. This is the second phase of vectorizing 476 /// this phi node. 477 void fixFirstOrderRecurrence(PHINode *Phi); 478 479 /// Fix a reduction cross-iteration phi. This is the second phase of 480 /// vectorizing this phi node. 481 void fixReduction(PHINode *Phi); 482 483 /// The Loop exit block may have single value PHI nodes with some 484 /// incoming value. While vectorizing we only handled real values 485 /// that were defined inside the loop and we should have one value for 486 /// each predecessor of its parent basic block. See PR14725. 487 void fixLCSSAPHIs(); 488 489 /// Iteratively sink the scalarized operands of a predicated instruction into 490 /// the block that was created for it. 491 void sinkScalarOperands(Instruction *PredInst); 492 493 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 494 /// represented as. 495 void truncateToMinimalBitwidths(); 496 497 /// Insert the new loop to the loop hierarchy and pass manager 498 /// and update the analysis passes. 499 void updateAnalysis(); 500 501 /// Create a broadcast instruction. This method generates a broadcast 502 /// instruction (shuffle) for loop invariant values and for the induction 503 /// value. If this is the induction variable then we extend it to N, N+1, ... 504 /// this is needed because each iteration in the loop corresponds to a SIMD 505 /// element. 506 virtual Value *getBroadcastInstrs(Value *V); 507 508 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 509 /// to each vector element of Val. The sequence starts at StartIndex. 510 /// \p Opcode is relevant for FP induction variable. 511 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 512 Instruction::BinaryOps Opcode = 513 Instruction::BinaryOpsEnd); 514 515 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 516 /// variable on which to base the steps, \p Step is the size of the step, and 517 /// \p EntryVal is the value from the original loop that maps to the steps. 518 /// Note that \p EntryVal doesn't have to be an induction variable - it 519 /// can also be a truncate instruction. 520 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 521 const InductionDescriptor &ID); 522 523 /// Create a vector induction phi node based on an existing scalar one. \p 524 /// EntryVal is the value from the original loop that maps to the vector phi 525 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 526 /// truncate instruction, instead of widening the original IV, we widen a 527 /// version of the IV truncated to \p EntryVal's type. 528 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 529 Value *Step, Instruction *EntryVal); 530 531 /// Returns true if an instruction \p I should be scalarized instead of 532 /// vectorized for the chosen vectorization factor. 533 bool shouldScalarizeInstruction(Instruction *I) const; 534 535 /// Returns true if we should generate a scalar version of \p IV. 536 bool needsScalarInduction(Instruction *IV) const; 537 538 /// If there is a cast involved in the induction variable \p ID, which should 539 /// be ignored in the vectorized loop body, this function records the 540 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 541 /// cast. We had already proved that the casted Phi is equal to the uncasted 542 /// Phi in the vectorized loop (under a runtime guard), and therefore 543 /// there is no need to vectorize the cast - the same value can be used in the 544 /// vector loop for both the Phi and the cast. 545 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 546 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 547 /// 548 /// \p EntryVal is the value from the original loop that maps to the vector 549 /// phi node and is used to distinguish what is the IV currently being 550 /// processed - original one (if \p EntryVal is a phi corresponding to the 551 /// original IV) or the "newly-created" one based on the proof mentioned above 552 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 553 /// latter case \p EntryVal is a TruncInst and we must not record anything for 554 /// that IV, but it's error-prone to expect callers of this routine to care 555 /// about that, hence this explicit parameter. 556 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 557 const Instruction *EntryVal, 558 Value *VectorLoopValue, 559 unsigned Part, 560 unsigned Lane = UINT_MAX); 561 562 /// Generate a shuffle sequence that will reverse the vector Vec. 563 virtual Value *reverseVector(Value *Vec); 564 565 /// Returns (and creates if needed) the original loop trip count. 566 Value *getOrCreateTripCount(Loop *NewLoop); 567 568 /// Returns (and creates if needed) the trip count of the widened loop. 569 Value *getOrCreateVectorTripCount(Loop *NewLoop); 570 571 /// Returns a bitcasted value to the requested vector type. 572 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 573 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 574 const DataLayout &DL); 575 576 /// Emit a bypass check to see if the vector trip count is zero, including if 577 /// it overflows. 578 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 579 580 /// Emit a bypass check to see if all of the SCEV assumptions we've 581 /// had to make are correct. 582 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 583 584 /// Emit bypass checks to check any memory assumptions we may have made. 585 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 586 587 /// Add additional metadata to \p To that was not present on \p Orig. 588 /// 589 /// Currently this is used to add the noalias annotations based on the 590 /// inserted memchecks. Use this for instructions that are *cloned* into the 591 /// vector loop. 592 void addNewMetadata(Instruction *To, const Instruction *Orig); 593 594 /// Add metadata from one instruction to another. 595 /// 596 /// This includes both the original MDs from \p From and additional ones (\see 597 /// addNewMetadata). Use this for *newly created* instructions in the vector 598 /// loop. 599 void addMetadata(Instruction *To, Instruction *From); 600 601 /// Similar to the previous function but it adds the metadata to a 602 /// vector of instructions. 603 void addMetadata(ArrayRef<Value *> To, Instruction *From); 604 605 /// The original loop. 606 Loop *OrigLoop; 607 608 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 609 /// dynamic knowledge to simplify SCEV expressions and converts them to a 610 /// more usable form. 611 PredicatedScalarEvolution &PSE; 612 613 /// Loop Info. 614 LoopInfo *LI; 615 616 /// Dominator Tree. 617 DominatorTree *DT; 618 619 /// Alias Analysis. 620 AliasAnalysis *AA; 621 622 /// Target Library Info. 623 const TargetLibraryInfo *TLI; 624 625 /// Target Transform Info. 626 const TargetTransformInfo *TTI; 627 628 /// Assumption Cache. 629 AssumptionCache *AC; 630 631 /// Interface to emit optimization remarks. 632 OptimizationRemarkEmitter *ORE; 633 634 /// LoopVersioning. It's only set up (non-null) if memchecks were 635 /// used. 636 /// 637 /// This is currently only used to add no-alias metadata based on the 638 /// memchecks. The actually versioning is performed manually. 639 std::unique_ptr<LoopVersioning> LVer; 640 641 /// The vectorization SIMD factor to use. Each vector will have this many 642 /// vector elements. 643 unsigned VF; 644 645 /// The vectorization unroll factor to use. Each scalar is vectorized to this 646 /// many different vector instructions. 647 unsigned UF; 648 649 /// The builder that we use 650 IRBuilder<> Builder; 651 652 // --- Vectorization state --- 653 654 /// The vector-loop preheader. 655 BasicBlock *LoopVectorPreHeader; 656 657 /// The scalar-loop preheader. 658 BasicBlock *LoopScalarPreHeader; 659 660 /// Middle Block between the vector and the scalar. 661 BasicBlock *LoopMiddleBlock; 662 663 /// The ExitBlock of the scalar loop. 664 BasicBlock *LoopExitBlock; 665 666 /// The vector loop body. 667 BasicBlock *LoopVectorBody; 668 669 /// The scalar loop body. 670 BasicBlock *LoopScalarBody; 671 672 /// A list of all bypass blocks. The first block is the entry of the loop. 673 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 674 675 /// The new Induction variable which was added to the new block. 676 PHINode *Induction = nullptr; 677 678 /// The induction variable of the old basic block. 679 PHINode *OldInduction = nullptr; 680 681 /// Maps values from the original loop to their corresponding values in the 682 /// vectorized loop. A key value can map to either vector values, scalar 683 /// values or both kinds of values, depending on whether the key was 684 /// vectorized and scalarized. 685 VectorizerValueMap VectorLoopValueMap; 686 687 /// Store instructions that were predicated. 688 SmallVector<Instruction *, 4> PredicatedInstructions; 689 690 /// Trip count of the original loop. 691 Value *TripCount = nullptr; 692 693 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 694 Value *VectorTripCount = nullptr; 695 696 /// The legality analysis. 697 LoopVectorizationLegality *Legal; 698 699 /// The profitablity analysis. 700 LoopVectorizationCostModel *Cost; 701 702 // Record whether runtime checks are added. 703 bool AddedSafetyChecks = false; 704 705 // Holds the end values for each induction variable. We save the end values 706 // so we can later fix-up the external users of the induction variables. 707 DenseMap<PHINode *, Value *> IVEndValues; 708 }; 709 710 class InnerLoopUnroller : public InnerLoopVectorizer { 711 public: 712 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 713 LoopInfo *LI, DominatorTree *DT, 714 const TargetLibraryInfo *TLI, 715 const TargetTransformInfo *TTI, AssumptionCache *AC, 716 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 717 LoopVectorizationLegality *LVL, 718 LoopVectorizationCostModel *CM) 719 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 720 UnrollFactor, LVL, CM) {} 721 722 private: 723 Value *getBroadcastInstrs(Value *V) override; 724 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 725 Instruction::BinaryOps Opcode = 726 Instruction::BinaryOpsEnd) override; 727 Value *reverseVector(Value *Vec) override; 728 }; 729 730 } // end namespace llvm 731 732 /// Look for a meaningful debug location on the instruction or it's 733 /// operands. 734 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 735 if (!I) 736 return I; 737 738 DebugLoc Empty; 739 if (I->getDebugLoc() != Empty) 740 return I; 741 742 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 743 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 744 if (OpInst->getDebugLoc() != Empty) 745 return OpInst; 746 } 747 748 return I; 749 } 750 751 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 752 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 753 const DILocation *DIL = Inst->getDebugLoc(); 754 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 755 !isa<DbgInfoIntrinsic>(Inst)) 756 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 757 else 758 B.SetCurrentDebugLocation(DIL); 759 } else 760 B.SetCurrentDebugLocation(DebugLoc()); 761 } 762 763 #ifndef NDEBUG 764 /// \return string containing a file name and a line # for the given loop. 765 static std::string getDebugLocString(const Loop *L) { 766 std::string Result; 767 if (L) { 768 raw_string_ostream OS(Result); 769 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 770 LoopDbgLoc.print(OS); 771 else 772 // Just print the module name. 773 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 774 OS.flush(); 775 } 776 return Result; 777 } 778 #endif 779 780 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 781 const Instruction *Orig) { 782 // If the loop was versioned with memchecks, add the corresponding no-alias 783 // metadata. 784 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 785 LVer->annotateInstWithNoAlias(To, Orig); 786 } 787 788 void InnerLoopVectorizer::addMetadata(Instruction *To, 789 Instruction *From) { 790 propagateMetadata(To, From); 791 addNewMetadata(To, From); 792 } 793 794 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 795 Instruction *From) { 796 for (Value *V : To) { 797 if (Instruction *I = dyn_cast<Instruction>(V)) 798 addMetadata(I, From); 799 } 800 } 801 802 namespace llvm { 803 804 /// The group of interleaved loads/stores sharing the same stride and 805 /// close to each other. 806 /// 807 /// Each member in this group has an index starting from 0, and the largest 808 /// index should be less than interleaved factor, which is equal to the absolute 809 /// value of the access's stride. 810 /// 811 /// E.g. An interleaved load group of factor 4: 812 /// for (unsigned i = 0; i < 1024; i+=4) { 813 /// a = A[i]; // Member of index 0 814 /// b = A[i+1]; // Member of index 1 815 /// d = A[i+3]; // Member of index 3 816 /// ... 817 /// } 818 /// 819 /// An interleaved store group of factor 4: 820 /// for (unsigned i = 0; i < 1024; i+=4) { 821 /// ... 822 /// A[i] = a; // Member of index 0 823 /// A[i+1] = b; // Member of index 1 824 /// A[i+2] = c; // Member of index 2 825 /// A[i+3] = d; // Member of index 3 826 /// } 827 /// 828 /// Note: the interleaved load group could have gaps (missing members), but 829 /// the interleaved store group doesn't allow gaps. 830 class InterleaveGroup { 831 public: 832 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 833 : Align(Align), InsertPos(Instr) { 834 assert(Align && "The alignment should be non-zero"); 835 836 Factor = std::abs(Stride); 837 assert(Factor > 1 && "Invalid interleave factor"); 838 839 Reverse = Stride < 0; 840 Members[0] = Instr; 841 } 842 843 bool isReverse() const { return Reverse; } 844 unsigned getFactor() const { return Factor; } 845 unsigned getAlignment() const { return Align; } 846 unsigned getNumMembers() const { return Members.size(); } 847 848 /// Try to insert a new member \p Instr with index \p Index and 849 /// alignment \p NewAlign. The index is related to the leader and it could be 850 /// negative if it is the new leader. 851 /// 852 /// \returns false if the instruction doesn't belong to the group. 853 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 854 assert(NewAlign && "The new member's alignment should be non-zero"); 855 856 int Key = Index + SmallestKey; 857 858 // Skip if there is already a member with the same index. 859 if (Members.count(Key)) 860 return false; 861 862 if (Key > LargestKey) { 863 // The largest index is always less than the interleave factor. 864 if (Index >= static_cast<int>(Factor)) 865 return false; 866 867 LargestKey = Key; 868 } else if (Key < SmallestKey) { 869 // The largest index is always less than the interleave factor. 870 if (LargestKey - Key >= static_cast<int>(Factor)) 871 return false; 872 873 SmallestKey = Key; 874 } 875 876 // It's always safe to select the minimum alignment. 877 Align = std::min(Align, NewAlign); 878 Members[Key] = Instr; 879 return true; 880 } 881 882 /// Get the member with the given index \p Index 883 /// 884 /// \returns nullptr if contains no such member. 885 Instruction *getMember(unsigned Index) const { 886 int Key = SmallestKey + Index; 887 if (!Members.count(Key)) 888 return nullptr; 889 890 return Members.find(Key)->second; 891 } 892 893 /// Get the index for the given member. Unlike the key in the member 894 /// map, the index starts from 0. 895 unsigned getIndex(Instruction *Instr) const { 896 for (auto I : Members) 897 if (I.second == Instr) 898 return I.first - SmallestKey; 899 900 llvm_unreachable("InterleaveGroup contains no such member"); 901 } 902 903 Instruction *getInsertPos() const { return InsertPos; } 904 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 905 906 /// Add metadata (e.g. alias info) from the instructions in this group to \p 907 /// NewInst. 908 /// 909 /// FIXME: this function currently does not add noalias metadata a'la 910 /// addNewMedata. To do that we need to compute the intersection of the 911 /// noalias info from all members. 912 void addMetadata(Instruction *NewInst) const { 913 SmallVector<Value *, 4> VL; 914 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 915 [](std::pair<int, Instruction *> p) { return p.second; }); 916 propagateMetadata(NewInst, VL); 917 } 918 919 private: 920 unsigned Factor; // Interleave Factor. 921 bool Reverse; 922 unsigned Align; 923 DenseMap<int, Instruction *> Members; 924 int SmallestKey = 0; 925 int LargestKey = 0; 926 927 // To avoid breaking dependences, vectorized instructions of an interleave 928 // group should be inserted at either the first load or the last store in 929 // program order. 930 // 931 // E.g. %even = load i32 // Insert Position 932 // %add = add i32 %even // Use of %even 933 // %odd = load i32 934 // 935 // store i32 %even 936 // %odd = add i32 // Def of %odd 937 // store i32 %odd // Insert Position 938 Instruction *InsertPos; 939 }; 940 } // end namespace llvm 941 942 namespace { 943 944 /// Drive the analysis of interleaved memory accesses in the loop. 945 /// 946 /// Use this class to analyze interleaved accesses only when we can vectorize 947 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 948 /// on interleaved accesses is unsafe. 949 /// 950 /// The analysis collects interleave groups and records the relationships 951 /// between the member and the group in a map. 952 class InterleavedAccessInfo { 953 public: 954 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 955 DominatorTree *DT, LoopInfo *LI, 956 const LoopAccessInfo *LAI) 957 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {} 958 959 ~InterleavedAccessInfo() { 960 SmallSet<InterleaveGroup *, 4> DelSet; 961 // Avoid releasing a pointer twice. 962 for (auto &I : InterleaveGroupMap) 963 DelSet.insert(I.second); 964 for (auto *Ptr : DelSet) 965 delete Ptr; 966 } 967 968 /// Analyze the interleaved accesses and collect them in interleave 969 /// groups. Substitute symbolic strides using \p Strides. 970 void analyzeInterleaving(); 971 972 /// Check if \p Instr belongs to any interleave group. 973 bool isInterleaved(Instruction *Instr) const { 974 return InterleaveGroupMap.count(Instr); 975 } 976 977 /// Get the interleave group that \p Instr belongs to. 978 /// 979 /// \returns nullptr if doesn't have such group. 980 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 981 if (InterleaveGroupMap.count(Instr)) 982 return InterleaveGroupMap.find(Instr)->second; 983 return nullptr; 984 } 985 986 /// Returns true if an interleaved group that may access memory 987 /// out-of-bounds requires a scalar epilogue iteration for correctness. 988 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 989 990 private: 991 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 992 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 993 /// The interleaved access analysis can also add new predicates (for example 994 /// by versioning strides of pointers). 995 PredicatedScalarEvolution &PSE; 996 997 Loop *TheLoop; 998 DominatorTree *DT; 999 LoopInfo *LI; 1000 const LoopAccessInfo *LAI; 1001 1002 /// True if the loop may contain non-reversed interleaved groups with 1003 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1004 /// out-of-bounds by executing at least one scalar epilogue iteration. 1005 bool RequiresScalarEpilogue = false; 1006 1007 /// Holds the relationships between the members and the interleave group. 1008 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1009 1010 /// Holds dependences among the memory accesses in the loop. It maps a source 1011 /// access to a set of dependent sink accesses. 1012 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1013 1014 /// The descriptor for a strided memory access. 1015 struct StrideDescriptor { 1016 StrideDescriptor() = default; 1017 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1018 unsigned Align) 1019 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1020 1021 // The access's stride. It is negative for a reverse access. 1022 int64_t Stride = 0; 1023 1024 // The scalar expression of this access. 1025 const SCEV *Scev = nullptr; 1026 1027 // The size of the memory object. 1028 uint64_t Size = 0; 1029 1030 // The alignment of this access. 1031 unsigned Align = 0; 1032 }; 1033 1034 /// A type for holding instructions and their stride descriptors. 1035 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1036 1037 /// Create a new interleave group with the given instruction \p Instr, 1038 /// stride \p Stride and alignment \p Align. 1039 /// 1040 /// \returns the newly created interleave group. 1041 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1042 unsigned Align) { 1043 assert(!InterleaveGroupMap.count(Instr) && 1044 "Already in an interleaved access group"); 1045 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1046 return InterleaveGroupMap[Instr]; 1047 } 1048 1049 /// Release the group and remove all the relationships. 1050 void releaseGroup(InterleaveGroup *Group) { 1051 for (unsigned i = 0; i < Group->getFactor(); i++) 1052 if (Instruction *Member = Group->getMember(i)) 1053 InterleaveGroupMap.erase(Member); 1054 1055 delete Group; 1056 } 1057 1058 /// Collect all the accesses with a constant stride in program order. 1059 void collectConstStrideAccesses( 1060 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1061 const ValueToValueMap &Strides); 1062 1063 /// Returns true if \p Stride is allowed in an interleaved group. 1064 static bool isStrided(int Stride) { 1065 unsigned Factor = std::abs(Stride); 1066 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1067 } 1068 1069 /// Returns true if \p BB is a predicated block. 1070 bool isPredicated(BasicBlock *BB) const { 1071 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1072 } 1073 1074 /// Returns true if LoopAccessInfo can be used for dependence queries. 1075 bool areDependencesValid() const { 1076 return LAI && LAI->getDepChecker().getDependences(); 1077 } 1078 1079 /// Returns true if memory accesses \p A and \p B can be reordered, if 1080 /// necessary, when constructing interleaved groups. 1081 /// 1082 /// \p A must precede \p B in program order. We return false if reordering is 1083 /// not necessary or is prevented because \p A and \p B may be dependent. 1084 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1085 StrideEntry *B) const { 1086 // Code motion for interleaved accesses can potentially hoist strided loads 1087 // and sink strided stores. The code below checks the legality of the 1088 // following two conditions: 1089 // 1090 // 1. Potentially moving a strided load (B) before any store (A) that 1091 // precedes B, or 1092 // 1093 // 2. Potentially moving a strided store (A) after any load or store (B) 1094 // that A precedes. 1095 // 1096 // It's legal to reorder A and B if we know there isn't a dependence from A 1097 // to B. Note that this determination is conservative since some 1098 // dependences could potentially be reordered safely. 1099 1100 // A is potentially the source of a dependence. 1101 auto *Src = A->first; 1102 auto SrcDes = A->second; 1103 1104 // B is potentially the sink of a dependence. 1105 auto *Sink = B->first; 1106 auto SinkDes = B->second; 1107 1108 // Code motion for interleaved accesses can't violate WAR dependences. 1109 // Thus, reordering is legal if the source isn't a write. 1110 if (!Src->mayWriteToMemory()) 1111 return true; 1112 1113 // At least one of the accesses must be strided. 1114 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1115 return true; 1116 1117 // If dependence information is not available from LoopAccessInfo, 1118 // conservatively assume the instructions can't be reordered. 1119 if (!areDependencesValid()) 1120 return false; 1121 1122 // If we know there is a dependence from source to sink, assume the 1123 // instructions can't be reordered. Otherwise, reordering is legal. 1124 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1125 } 1126 1127 /// Collect the dependences from LoopAccessInfo. 1128 /// 1129 /// We process the dependences once during the interleaved access analysis to 1130 /// enable constant-time dependence queries. 1131 void collectDependences() { 1132 if (!areDependencesValid()) 1133 return; 1134 auto *Deps = LAI->getDepChecker().getDependences(); 1135 for (auto Dep : *Deps) 1136 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1137 } 1138 }; 1139 1140 } // end anonymous namespace 1141 1142 static void emitMissedWarning(Function *F, Loop *L, 1143 const LoopVectorizeHints &LH, 1144 OptimizationRemarkEmitter *ORE) { 1145 LH.emitRemarkWithHints(); 1146 1147 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1148 if (LH.getWidth() != 1) 1149 ORE->emit(DiagnosticInfoOptimizationFailure( 1150 DEBUG_TYPE, "FailedRequestedVectorization", 1151 L->getStartLoc(), L->getHeader()) 1152 << "loop not vectorized: " 1153 << "failed explicitly specified loop vectorization"); 1154 else if (LH.getInterleave() != 1) 1155 ORE->emit(DiagnosticInfoOptimizationFailure( 1156 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1157 L->getHeader()) 1158 << "loop not interleaved: " 1159 << "failed explicitly specified loop interleaving"); 1160 } 1161 } 1162 1163 namespace llvm { 1164 1165 /// LoopVectorizationCostModel - estimates the expected speedups due to 1166 /// vectorization. 1167 /// In many cases vectorization is not profitable. This can happen because of 1168 /// a number of reasons. In this class we mainly attempt to predict the 1169 /// expected speedup/slowdowns due to the supported instruction set. We use the 1170 /// TargetTransformInfo to query the different backends for the cost of 1171 /// different operations. 1172 class LoopVectorizationCostModel { 1173 public: 1174 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1175 LoopInfo *LI, LoopVectorizationLegality *Legal, 1176 const TargetTransformInfo &TTI, 1177 const TargetLibraryInfo *TLI, DemandedBits *DB, 1178 AssumptionCache *AC, 1179 OptimizationRemarkEmitter *ORE, const Function *F, 1180 const LoopVectorizeHints *Hints, 1181 InterleavedAccessInfo &IAI) 1182 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1183 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 1184 1185 /// \return An upper bound for the vectorization factor, or None if 1186 /// vectorization should be avoided up front. 1187 Optional<unsigned> computeMaxVF(bool OptForSize); 1188 1189 /// \return The most profitable vectorization factor and the cost of that VF. 1190 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1191 /// then this vectorization factor will be selected if vectorization is 1192 /// possible. 1193 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1194 1195 /// Setup cost-based decisions for user vectorization factor. 1196 void selectUserVectorizationFactor(unsigned UserVF) { 1197 collectUniformsAndScalars(UserVF); 1198 collectInstsToScalarize(UserVF); 1199 } 1200 1201 /// \return The size (in bits) of the smallest and widest types in the code 1202 /// that needs to be vectorized. We ignore values that remain scalar such as 1203 /// 64 bit loop indices. 1204 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1205 1206 /// \return The desired interleave count. 1207 /// If interleave count has been specified by metadata it will be returned. 1208 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1209 /// are the selected vectorization factor and the cost of the selected VF. 1210 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1211 unsigned LoopCost); 1212 1213 /// Memory access instruction may be vectorized in more than one way. 1214 /// Form of instruction after vectorization depends on cost. 1215 /// This function takes cost-based decisions for Load/Store instructions 1216 /// and collects them in a map. This decisions map is used for building 1217 /// the lists of loop-uniform and loop-scalar instructions. 1218 /// The calculated cost is saved with widening decision in order to 1219 /// avoid redundant calculations. 1220 void setCostBasedWideningDecision(unsigned VF); 1221 1222 /// A struct that represents some properties of the register usage 1223 /// of a loop. 1224 struct RegisterUsage { 1225 /// Holds the number of loop invariant values that are used in the loop. 1226 unsigned LoopInvariantRegs; 1227 1228 /// Holds the maximum number of concurrent live intervals in the loop. 1229 unsigned MaxLocalUsers; 1230 }; 1231 1232 /// \return Returns information about the register usages of the loop for the 1233 /// given vectorization factors. 1234 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1235 1236 /// Collect values we want to ignore in the cost model. 1237 void collectValuesToIgnore(); 1238 1239 /// \returns The smallest bitwidth each instruction can be represented with. 1240 /// The vector equivalents of these instructions should be truncated to this 1241 /// type. 1242 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1243 return MinBWs; 1244 } 1245 1246 /// \returns True if it is more profitable to scalarize instruction \p I for 1247 /// vectorization factor \p VF. 1248 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1249 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1250 auto Scalars = InstsToScalarize.find(VF); 1251 assert(Scalars != InstsToScalarize.end() && 1252 "VF not yet analyzed for scalarization profitability"); 1253 return Scalars->second.count(I); 1254 } 1255 1256 /// Returns true if \p I is known to be uniform after vectorization. 1257 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1258 if (VF == 1) 1259 return true; 1260 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1261 auto UniformsPerVF = Uniforms.find(VF); 1262 return UniformsPerVF->second.count(I); 1263 } 1264 1265 /// Returns true if \p I is known to be scalar after vectorization. 1266 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1267 if (VF == 1) 1268 return true; 1269 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1270 auto ScalarsPerVF = Scalars.find(VF); 1271 return ScalarsPerVF->second.count(I); 1272 } 1273 1274 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1275 /// for vectorization factor \p VF. 1276 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1277 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1278 !isScalarAfterVectorization(I, VF); 1279 } 1280 1281 /// Decision that was taken during cost calculation for memory instruction. 1282 enum InstWidening { 1283 CM_Unknown, 1284 CM_Widen, // For consecutive accesses with stride +1. 1285 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1286 CM_Interleave, 1287 CM_GatherScatter, 1288 CM_Scalarize 1289 }; 1290 1291 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1292 /// instruction \p I and vector width \p VF. 1293 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1294 unsigned Cost) { 1295 assert(VF >= 2 && "Expected VF >=2"); 1296 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1297 } 1298 1299 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1300 /// interleaving group \p Grp and vector width \p VF. 1301 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1302 InstWidening W, unsigned Cost) { 1303 assert(VF >= 2 && "Expected VF >=2"); 1304 /// Broadcast this decicion to all instructions inside the group. 1305 /// But the cost will be assigned to one instruction only. 1306 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1307 if (auto *I = Grp->getMember(i)) { 1308 if (Grp->getInsertPos() == I) 1309 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1310 else 1311 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1312 } 1313 } 1314 } 1315 1316 /// Return the cost model decision for the given instruction \p I and vector 1317 /// width \p VF. Return CM_Unknown if this instruction did not pass 1318 /// through the cost modeling. 1319 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1320 assert(VF >= 2 && "Expected VF >=2"); 1321 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1322 auto Itr = WideningDecisions.find(InstOnVF); 1323 if (Itr == WideningDecisions.end()) 1324 return CM_Unknown; 1325 return Itr->second.first; 1326 } 1327 1328 /// Return the vectorization cost for the given instruction \p I and vector 1329 /// width \p VF. 1330 unsigned getWideningCost(Instruction *I, unsigned VF) { 1331 assert(VF >= 2 && "Expected VF >=2"); 1332 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1333 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1334 return WideningDecisions[InstOnVF].second; 1335 } 1336 1337 /// Return True if instruction \p I is an optimizable truncate whose operand 1338 /// is an induction variable. Such a truncate will be removed by adding a new 1339 /// induction variable with the destination type. 1340 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1341 // If the instruction is not a truncate, return false. 1342 auto *Trunc = dyn_cast<TruncInst>(I); 1343 if (!Trunc) 1344 return false; 1345 1346 // Get the source and destination types of the truncate. 1347 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1348 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1349 1350 // If the truncate is free for the given types, return false. Replacing a 1351 // free truncate with an induction variable would add an induction variable 1352 // update instruction to each iteration of the loop. We exclude from this 1353 // check the primary induction variable since it will need an update 1354 // instruction regardless. 1355 Value *Op = Trunc->getOperand(0); 1356 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1357 return false; 1358 1359 // If the truncated value is not an induction variable, return false. 1360 return Legal->isInductionPhi(Op); 1361 } 1362 1363 /// Collects the instructions to scalarize for each predicated instruction in 1364 /// the loop. 1365 void collectInstsToScalarize(unsigned VF); 1366 1367 /// Collect Uniform and Scalar values for the given \p VF. 1368 /// The sets depend on CM decision for Load/Store instructions 1369 /// that may be vectorized as interleave, gather-scatter or scalarized. 1370 void collectUniformsAndScalars(unsigned VF) { 1371 // Do the analysis once. 1372 if (VF == 1 || Uniforms.count(VF)) 1373 return; 1374 setCostBasedWideningDecision(VF); 1375 collectLoopUniforms(VF); 1376 collectLoopScalars(VF); 1377 } 1378 1379 /// Returns true if the target machine supports masked store operation 1380 /// for the given \p DataType and kind of access to \p Ptr. 1381 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1382 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1383 } 1384 1385 /// Returns true if the target machine supports masked load operation 1386 /// for the given \p DataType and kind of access to \p Ptr. 1387 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1388 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1389 } 1390 1391 /// Returns true if the target machine supports masked scatter operation 1392 /// for the given \p DataType. 1393 bool isLegalMaskedScatter(Type *DataType) { 1394 return TTI.isLegalMaskedScatter(DataType); 1395 } 1396 1397 /// Returns true if the target machine supports masked gather operation 1398 /// for the given \p DataType. 1399 bool isLegalMaskedGather(Type *DataType) { 1400 return TTI.isLegalMaskedGather(DataType); 1401 } 1402 1403 /// Returns true if the target machine can represent \p V as a masked gather 1404 /// or scatter operation. 1405 bool isLegalGatherOrScatter(Value *V) { 1406 bool LI = isa<LoadInst>(V); 1407 bool SI = isa<StoreInst>(V); 1408 if (!LI && !SI) 1409 return false; 1410 auto *Ty = getMemInstValueType(V); 1411 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1412 } 1413 1414 /// Returns true if \p I is an instruction that will be scalarized with 1415 /// predication. Such instructions include conditional stores and 1416 /// instructions that may divide by zero. 1417 bool isScalarWithPredication(Instruction *I); 1418 1419 /// Returns true if \p I is a memory instruction with consecutive memory 1420 /// access that can be widened. 1421 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1422 1423 /// Check if \p Instr belongs to any interleaved access group. 1424 bool isAccessInterleaved(Instruction *Instr) { 1425 return InterleaveInfo.isInterleaved(Instr); 1426 } 1427 1428 /// Get the interleaved access group that \p Instr belongs to. 1429 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1430 return InterleaveInfo.getInterleaveGroup(Instr); 1431 } 1432 1433 /// Returns true if an interleaved group requires a scalar iteration 1434 /// to handle accesses with gaps. 1435 bool requiresScalarEpilogue() const { 1436 return InterleaveInfo.requiresScalarEpilogue(); 1437 } 1438 1439 private: 1440 unsigned NumPredStores = 0; 1441 1442 /// \return An upper bound for the vectorization factor, larger than zero. 1443 /// One is returned if vectorization should best be avoided due to cost. 1444 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1445 1446 /// The vectorization cost is a combination of the cost itself and a boolean 1447 /// indicating whether any of the contributing operations will actually 1448 /// operate on 1449 /// vector values after type legalization in the backend. If this latter value 1450 /// is 1451 /// false, then all operations will be scalarized (i.e. no vectorization has 1452 /// actually taken place). 1453 using VectorizationCostTy = std::pair<unsigned, bool>; 1454 1455 /// Returns the expected execution cost. The unit of the cost does 1456 /// not matter because we use the 'cost' units to compare different 1457 /// vector widths. The cost that is returned is *not* normalized by 1458 /// the factor width. 1459 VectorizationCostTy expectedCost(unsigned VF); 1460 1461 /// Returns the execution time cost of an instruction for a given vector 1462 /// width. Vector width of one means scalar. 1463 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1464 1465 /// The cost-computation logic from getInstructionCost which provides 1466 /// the vector type as an output parameter. 1467 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1468 1469 /// Calculate vectorization cost of memory instruction \p I. 1470 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1471 1472 /// The cost computation for scalarized memory instruction. 1473 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1474 1475 /// The cost computation for interleaving group of memory instructions. 1476 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1477 1478 /// The cost computation for Gather/Scatter instruction. 1479 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1480 1481 /// The cost computation for widening instruction \p I with consecutive 1482 /// memory access. 1483 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1484 1485 /// The cost calculation for Load instruction \p I with uniform pointer - 1486 /// scalar load + broadcast. 1487 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1488 1489 /// Returns whether the instruction is a load or store and will be a emitted 1490 /// as a vector operation. 1491 bool isConsecutiveLoadOrStore(Instruction *I); 1492 1493 /// Returns true if an artificially high cost for emulated masked memrefs 1494 /// should be used. 1495 bool useEmulatedMaskMemRefHack(Instruction *I); 1496 1497 /// Create an analysis remark that explains why vectorization failed 1498 /// 1499 /// \p RemarkName is the identifier for the remark. \return the remark object 1500 /// that can be streamed to. 1501 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1502 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1503 RemarkName, TheLoop); 1504 } 1505 1506 /// Map of scalar integer values to the smallest bitwidth they can be legally 1507 /// represented as. The vector equivalents of these values should be truncated 1508 /// to this type. 1509 MapVector<Instruction *, uint64_t> MinBWs; 1510 1511 /// A type representing the costs for instructions if they were to be 1512 /// scalarized rather than vectorized. The entries are Instruction-Cost 1513 /// pairs. 1514 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1515 1516 /// A set containing all BasicBlocks that are known to present after 1517 /// vectorization as a predicated block. 1518 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1519 1520 /// A map holding scalar costs for different vectorization factors. The 1521 /// presence of a cost for an instruction in the mapping indicates that the 1522 /// instruction will be scalarized when vectorizing with the associated 1523 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1524 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1525 1526 /// Holds the instructions known to be uniform after vectorization. 1527 /// The data is collected per VF. 1528 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1529 1530 /// Holds the instructions known to be scalar after vectorization. 1531 /// The data is collected per VF. 1532 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1533 1534 /// Holds the instructions (address computations) that are forced to be 1535 /// scalarized. 1536 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1537 1538 /// Returns the expected difference in cost from scalarizing the expression 1539 /// feeding a predicated instruction \p PredInst. The instructions to 1540 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1541 /// non-negative return value implies the expression will be scalarized. 1542 /// Currently, only single-use chains are considered for scalarization. 1543 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1544 unsigned VF); 1545 1546 /// Collect the instructions that are uniform after vectorization. An 1547 /// instruction is uniform if we represent it with a single scalar value in 1548 /// the vectorized loop corresponding to each vector iteration. Examples of 1549 /// uniform instructions include pointer operands of consecutive or 1550 /// interleaved memory accesses. Note that although uniformity implies an 1551 /// instruction will be scalar, the reverse is not true. In general, a 1552 /// scalarized instruction will be represented by VF scalar values in the 1553 /// vectorized loop, each corresponding to an iteration of the original 1554 /// scalar loop. 1555 void collectLoopUniforms(unsigned VF); 1556 1557 /// Collect the instructions that are scalar after vectorization. An 1558 /// instruction is scalar if it is known to be uniform or will be scalarized 1559 /// during vectorization. Non-uniform scalarized instructions will be 1560 /// represented by VF values in the vectorized loop, each corresponding to an 1561 /// iteration of the original scalar loop. 1562 void collectLoopScalars(unsigned VF); 1563 1564 /// Keeps cost model vectorization decision and cost for instructions. 1565 /// Right now it is used for memory instructions only. 1566 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1567 std::pair<InstWidening, unsigned>>; 1568 1569 DecisionList WideningDecisions; 1570 1571 public: 1572 /// The loop that we evaluate. 1573 Loop *TheLoop; 1574 1575 /// Predicated scalar evolution analysis. 1576 PredicatedScalarEvolution &PSE; 1577 1578 /// Loop Info analysis. 1579 LoopInfo *LI; 1580 1581 /// Vectorization legality. 1582 LoopVectorizationLegality *Legal; 1583 1584 /// Vector target information. 1585 const TargetTransformInfo &TTI; 1586 1587 /// Target Library Info. 1588 const TargetLibraryInfo *TLI; 1589 1590 /// Demanded bits analysis. 1591 DemandedBits *DB; 1592 1593 /// Assumption cache. 1594 AssumptionCache *AC; 1595 1596 /// Interface to emit optimization remarks. 1597 OptimizationRemarkEmitter *ORE; 1598 1599 const Function *TheFunction; 1600 1601 /// Loop Vectorize Hint. 1602 const LoopVectorizeHints *Hints; 1603 1604 /// The interleave access information contains groups of interleaved accesses 1605 /// with the same stride and close to each other. 1606 InterleavedAccessInfo &InterleaveInfo; 1607 1608 /// Values to ignore in the cost model. 1609 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1610 1611 /// Values to ignore in the cost model when VF > 1. 1612 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1613 }; 1614 1615 } // end namespace llvm 1616 1617 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1618 // vectorization. The loop needs to be annotated with #pragma omp simd 1619 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1620 // vector length information is not provided, vectorization is not considered 1621 // explicit. Interleave hints are not allowed either. These limitations will be 1622 // relaxed in the future. 1623 // Please, note that we are currently forced to abuse the pragma 'clang 1624 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1625 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1626 // provides *explicit vectorization hints* (LV can bypass legal checks and 1627 // assume that vectorization is legal). However, both hints are implemented 1628 // using the same metadata (llvm.loop.vectorize, processed by 1629 // LoopVectorizeHints). This will be fixed in the future when the native IR 1630 // representation for pragma 'omp simd' is introduced. 1631 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1632 OptimizationRemarkEmitter *ORE) { 1633 assert(!OuterLp->empty() && "This is not an outer loop"); 1634 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1635 1636 // Only outer loops with an explicit vectorization hint are supported. 1637 // Unannotated outer loops are ignored. 1638 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1639 return false; 1640 1641 Function *Fn = OuterLp->getHeader()->getParent(); 1642 if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) { 1643 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1644 return false; 1645 } 1646 1647 if (!Hints.getWidth()) { 1648 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1649 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1650 return false; 1651 } 1652 1653 if (Hints.getInterleave() > 1) { 1654 // TODO: Interleave support is future work. 1655 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1656 "outer loops.\n"); 1657 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1658 return false; 1659 } 1660 1661 return true; 1662 } 1663 1664 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1665 OptimizationRemarkEmitter *ORE, 1666 SmallVectorImpl<Loop *> &V) { 1667 // Collect inner loops and outer loops without irreducible control flow. For 1668 // now, only collect outer loops that have explicit vectorization hints. If we 1669 // are stress testing the VPlan H-CFG construction, we collect the outermost 1670 // loop of every loop nest. 1671 if (L.empty() || VPlanBuildStressTest || 1672 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1673 LoopBlocksRPO RPOT(&L); 1674 RPOT.perform(LI); 1675 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1676 V.push_back(&L); 1677 // TODO: Collect inner loops inside marked outer loops in case 1678 // vectorization fails for the outer loop. Do not invoke 1679 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1680 // already known to be reducible. We can use an inherited attribute for 1681 // that. 1682 return; 1683 } 1684 } 1685 for (Loop *InnerL : L) 1686 collectSupportedLoops(*InnerL, LI, ORE, V); 1687 } 1688 1689 namespace { 1690 1691 /// The LoopVectorize Pass. 1692 struct LoopVectorize : public FunctionPass { 1693 /// Pass identification, replacement for typeid 1694 static char ID; 1695 1696 LoopVectorizePass Impl; 1697 1698 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1699 : FunctionPass(ID) { 1700 Impl.DisableUnrolling = NoUnrolling; 1701 Impl.AlwaysVectorize = AlwaysVectorize; 1702 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1703 } 1704 1705 bool runOnFunction(Function &F) override { 1706 if (skipFunction(F)) 1707 return false; 1708 1709 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1710 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1711 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1712 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1713 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1714 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1715 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1716 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1717 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1718 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1719 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1720 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1721 1722 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1723 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1724 1725 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1726 GetLAA, *ORE); 1727 } 1728 1729 void getAnalysisUsage(AnalysisUsage &AU) const override { 1730 AU.addRequired<AssumptionCacheTracker>(); 1731 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1732 AU.addRequired<DominatorTreeWrapperPass>(); 1733 AU.addRequired<LoopInfoWrapperPass>(); 1734 AU.addRequired<ScalarEvolutionWrapperPass>(); 1735 AU.addRequired<TargetTransformInfoWrapperPass>(); 1736 AU.addRequired<AAResultsWrapperPass>(); 1737 AU.addRequired<LoopAccessLegacyAnalysis>(); 1738 AU.addRequired<DemandedBitsWrapperPass>(); 1739 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1740 AU.addPreserved<LoopInfoWrapperPass>(); 1741 AU.addPreserved<DominatorTreeWrapperPass>(); 1742 AU.addPreserved<BasicAAWrapperPass>(); 1743 AU.addPreserved<GlobalsAAWrapperPass>(); 1744 } 1745 }; 1746 1747 } // end anonymous namespace 1748 1749 //===----------------------------------------------------------------------===// 1750 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1751 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1752 //===----------------------------------------------------------------------===// 1753 1754 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1755 // We need to place the broadcast of invariant variables outside the loop, 1756 // but only if it's proven safe to do so. Else, broadcast will be inside 1757 // vector loop body. 1758 Instruction *Instr = dyn_cast<Instruction>(V); 1759 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1760 (!Instr || 1761 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1762 // Place the code for broadcasting invariant variables in the new preheader. 1763 IRBuilder<>::InsertPointGuard Guard(Builder); 1764 if (SafeToHoist) 1765 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1766 1767 // Broadcast the scalar into all locations in the vector. 1768 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1769 1770 return Shuf; 1771 } 1772 1773 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1774 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1775 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1776 "Expected either an induction phi-node or a truncate of it!"); 1777 Value *Start = II.getStartValue(); 1778 1779 // Construct the initial value of the vector IV in the vector loop preheader 1780 auto CurrIP = Builder.saveIP(); 1781 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1782 if (isa<TruncInst>(EntryVal)) { 1783 assert(Start->getType()->isIntegerTy() && 1784 "Truncation requires an integer type"); 1785 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1786 Step = Builder.CreateTrunc(Step, TruncType); 1787 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1788 } 1789 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1790 Value *SteppedStart = 1791 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1792 1793 // We create vector phi nodes for both integer and floating-point induction 1794 // variables. Here, we determine the kind of arithmetic we will perform. 1795 Instruction::BinaryOps AddOp; 1796 Instruction::BinaryOps MulOp; 1797 if (Step->getType()->isIntegerTy()) { 1798 AddOp = Instruction::Add; 1799 MulOp = Instruction::Mul; 1800 } else { 1801 AddOp = II.getInductionOpcode(); 1802 MulOp = Instruction::FMul; 1803 } 1804 1805 // Multiply the vectorization factor by the step using integer or 1806 // floating-point arithmetic as appropriate. 1807 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1808 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1809 1810 // Create a vector splat to use in the induction update. 1811 // 1812 // FIXME: If the step is non-constant, we create the vector splat with 1813 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1814 // handle a constant vector splat. 1815 Value *SplatVF = isa<Constant>(Mul) 1816 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1817 : Builder.CreateVectorSplat(VF, Mul); 1818 Builder.restoreIP(CurrIP); 1819 1820 // We may need to add the step a number of times, depending on the unroll 1821 // factor. The last of those goes into the PHI. 1822 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1823 &*LoopVectorBody->getFirstInsertionPt()); 1824 Instruction *LastInduction = VecInd; 1825 for (unsigned Part = 0; Part < UF; ++Part) { 1826 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1827 1828 if (isa<TruncInst>(EntryVal)) 1829 addMetadata(LastInduction, EntryVal); 1830 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1831 1832 LastInduction = cast<Instruction>(addFastMathFlag( 1833 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1834 } 1835 1836 // Move the last step to the end of the latch block. This ensures consistent 1837 // placement of all induction updates. 1838 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1839 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1840 auto *ICmp = cast<Instruction>(Br->getCondition()); 1841 LastInduction->moveBefore(ICmp); 1842 LastInduction->setName("vec.ind.next"); 1843 1844 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1845 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1846 } 1847 1848 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1849 return Cost->isScalarAfterVectorization(I, VF) || 1850 Cost->isProfitableToScalarize(I, VF); 1851 } 1852 1853 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1854 if (shouldScalarizeInstruction(IV)) 1855 return true; 1856 auto isScalarInst = [&](User *U) -> bool { 1857 auto *I = cast<Instruction>(U); 1858 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1859 }; 1860 return llvm::any_of(IV->users(), isScalarInst); 1861 } 1862 1863 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1864 const InductionDescriptor &ID, const Instruction *EntryVal, 1865 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1866 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1867 "Expected either an induction phi-node or a truncate of it!"); 1868 1869 // This induction variable is not the phi from the original loop but the 1870 // newly-created IV based on the proof that casted Phi is equal to the 1871 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1872 // re-uses the same InductionDescriptor that original IV uses but we don't 1873 // have to do any recording in this case - that is done when original IV is 1874 // processed. 1875 if (isa<TruncInst>(EntryVal)) 1876 return; 1877 1878 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1879 if (Casts.empty()) 1880 return; 1881 // Only the first Cast instruction in the Casts vector is of interest. 1882 // The rest of the Casts (if exist) have no uses outside the 1883 // induction update chain itself. 1884 Instruction *CastInst = *Casts.begin(); 1885 if (Lane < UINT_MAX) 1886 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1887 else 1888 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1889 } 1890 1891 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1892 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1893 "Primary induction variable must have an integer type"); 1894 1895 auto II = Legal->getInductionVars()->find(IV); 1896 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1897 1898 auto ID = II->second; 1899 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1900 1901 // The scalar value to broadcast. This will be derived from the canonical 1902 // induction variable. 1903 Value *ScalarIV = nullptr; 1904 1905 // The value from the original loop to which we are mapping the new induction 1906 // variable. 1907 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1908 1909 // True if we have vectorized the induction variable. 1910 auto VectorizedIV = false; 1911 1912 // Determine if we want a scalar version of the induction variable. This is 1913 // true if the induction variable itself is not widened, or if it has at 1914 // least one user in the loop that is not widened. 1915 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1916 1917 // Generate code for the induction step. Note that induction steps are 1918 // required to be loop-invariant 1919 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1920 "Induction step should be loop invariant"); 1921 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1922 Value *Step = nullptr; 1923 if (PSE.getSE()->isSCEVable(IV->getType())) { 1924 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1925 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1926 LoopVectorPreHeader->getTerminator()); 1927 } else { 1928 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1929 } 1930 1931 // Try to create a new independent vector induction variable. If we can't 1932 // create the phi node, we will splat the scalar induction variable in each 1933 // loop iteration. 1934 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1935 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1936 VectorizedIV = true; 1937 } 1938 1939 // If we haven't yet vectorized the induction variable, or if we will create 1940 // a scalar one, we need to define the scalar induction variable and step 1941 // values. If we were given a truncation type, truncate the canonical 1942 // induction variable and step. Otherwise, derive these values from the 1943 // induction descriptor. 1944 if (!VectorizedIV || NeedsScalarIV) { 1945 ScalarIV = Induction; 1946 if (IV != OldInduction) { 1947 ScalarIV = IV->getType()->isIntegerTy() 1948 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1949 : Builder.CreateCast(Instruction::SIToFP, Induction, 1950 IV->getType()); 1951 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 1952 ScalarIV->setName("offset.idx"); 1953 } 1954 if (Trunc) { 1955 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1956 assert(Step->getType()->isIntegerTy() && 1957 "Truncation requires an integer step"); 1958 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1959 Step = Builder.CreateTrunc(Step, TruncType); 1960 } 1961 } 1962 1963 // If we haven't yet vectorized the induction variable, splat the scalar 1964 // induction variable, and build the necessary step vectors. 1965 // TODO: Don't do it unless the vectorized IV is really required. 1966 if (!VectorizedIV) { 1967 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1968 for (unsigned Part = 0; Part < UF; ++Part) { 1969 Value *EntryPart = 1970 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1971 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1972 if (Trunc) 1973 addMetadata(EntryPart, Trunc); 1974 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1975 } 1976 } 1977 1978 // If an induction variable is only used for counting loop iterations or 1979 // calculating addresses, it doesn't need to be widened. Create scalar steps 1980 // that can be used by instructions we will later scalarize. Note that the 1981 // addition of the scalar steps will not increase the number of instructions 1982 // in the loop in the common case prior to InstCombine. We will be trading 1983 // one vector extract for each scalar step. 1984 if (NeedsScalarIV) 1985 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1986 } 1987 1988 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1989 Instruction::BinaryOps BinOp) { 1990 // Create and check the types. 1991 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1992 int VLen = Val->getType()->getVectorNumElements(); 1993 1994 Type *STy = Val->getType()->getScalarType(); 1995 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1996 "Induction Step must be an integer or FP"); 1997 assert(Step->getType() == STy && "Step has wrong type"); 1998 1999 SmallVector<Constant *, 8> Indices; 2000 2001 if (STy->isIntegerTy()) { 2002 // Create a vector of consecutive numbers from zero to VF. 2003 for (int i = 0; i < VLen; ++i) 2004 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2005 2006 // Add the consecutive indices to the vector value. 2007 Constant *Cv = ConstantVector::get(Indices); 2008 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2009 Step = Builder.CreateVectorSplat(VLen, Step); 2010 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2011 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2012 // which can be found from the original scalar operations. 2013 Step = Builder.CreateMul(Cv, Step); 2014 return Builder.CreateAdd(Val, Step, "induction"); 2015 } 2016 2017 // Floating point induction. 2018 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2019 "Binary Opcode should be specified for FP induction"); 2020 // Create a vector of consecutive numbers from zero to VF. 2021 for (int i = 0; i < VLen; ++i) 2022 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2023 2024 // Add the consecutive indices to the vector value. 2025 Constant *Cv = ConstantVector::get(Indices); 2026 2027 Step = Builder.CreateVectorSplat(VLen, Step); 2028 2029 // Floating point operations had to be 'fast' to enable the induction. 2030 FastMathFlags Flags; 2031 Flags.setFast(); 2032 2033 Value *MulOp = Builder.CreateFMul(Cv, Step); 2034 if (isa<Instruction>(MulOp)) 2035 // Have to check, MulOp may be a constant 2036 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2037 2038 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2039 if (isa<Instruction>(BOp)) 2040 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2041 return BOp; 2042 } 2043 2044 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2045 Instruction *EntryVal, 2046 const InductionDescriptor &ID) { 2047 // We shouldn't have to build scalar steps if we aren't vectorizing. 2048 assert(VF > 1 && "VF should be greater than one"); 2049 2050 // Get the value type and ensure it and the step have the same integer type. 2051 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2052 assert(ScalarIVTy == Step->getType() && 2053 "Val and Step should have the same type"); 2054 2055 // We build scalar steps for both integer and floating-point induction 2056 // variables. Here, we determine the kind of arithmetic we will perform. 2057 Instruction::BinaryOps AddOp; 2058 Instruction::BinaryOps MulOp; 2059 if (ScalarIVTy->isIntegerTy()) { 2060 AddOp = Instruction::Add; 2061 MulOp = Instruction::Mul; 2062 } else { 2063 AddOp = ID.getInductionOpcode(); 2064 MulOp = Instruction::FMul; 2065 } 2066 2067 // Determine the number of scalars we need to generate for each unroll 2068 // iteration. If EntryVal is uniform, we only need to generate the first 2069 // lane. Otherwise, we generate all VF values. 2070 unsigned Lanes = 2071 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2072 : VF; 2073 // Compute the scalar steps and save the results in VectorLoopValueMap. 2074 for (unsigned Part = 0; Part < UF; ++Part) { 2075 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2076 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2077 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2078 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2079 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2080 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2081 } 2082 } 2083 } 2084 2085 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2086 assert(V != Induction && "The new induction variable should not be used."); 2087 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2088 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2089 2090 // If we have a stride that is replaced by one, do it here. 2091 if (Legal->hasStride(V)) 2092 V = ConstantInt::get(V->getType(), 1); 2093 2094 // If we have a vector mapped to this value, return it. 2095 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2096 return VectorLoopValueMap.getVectorValue(V, Part); 2097 2098 // If the value has not been vectorized, check if it has been scalarized 2099 // instead. If it has been scalarized, and we actually need the value in 2100 // vector form, we will construct the vector values on demand. 2101 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2102 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2103 2104 // If we've scalarized a value, that value should be an instruction. 2105 auto *I = cast<Instruction>(V); 2106 2107 // If we aren't vectorizing, we can just copy the scalar map values over to 2108 // the vector map. 2109 if (VF == 1) { 2110 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2111 return ScalarValue; 2112 } 2113 2114 // Get the last scalar instruction we generated for V and Part. If the value 2115 // is known to be uniform after vectorization, this corresponds to lane zero 2116 // of the Part unroll iteration. Otherwise, the last instruction is the one 2117 // we created for the last vector lane of the Part unroll iteration. 2118 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2119 auto *LastInst = cast<Instruction>( 2120 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2121 2122 // Set the insert point after the last scalarized instruction. This ensures 2123 // the insertelement sequence will directly follow the scalar definitions. 2124 auto OldIP = Builder.saveIP(); 2125 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2126 Builder.SetInsertPoint(&*NewIP); 2127 2128 // However, if we are vectorizing, we need to construct the vector values. 2129 // If the value is known to be uniform after vectorization, we can just 2130 // broadcast the scalar value corresponding to lane zero for each unroll 2131 // iteration. Otherwise, we construct the vector values using insertelement 2132 // instructions. Since the resulting vectors are stored in 2133 // VectorLoopValueMap, we will only generate the insertelements once. 2134 Value *VectorValue = nullptr; 2135 if (Cost->isUniformAfterVectorization(I, VF)) { 2136 VectorValue = getBroadcastInstrs(ScalarValue); 2137 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2138 } else { 2139 // Initialize packing with insertelements to start from undef. 2140 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2141 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2142 for (unsigned Lane = 0; Lane < VF; ++Lane) 2143 packScalarIntoVectorValue(V, {Part, Lane}); 2144 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2145 } 2146 Builder.restoreIP(OldIP); 2147 return VectorValue; 2148 } 2149 2150 // If this scalar is unknown, assume that it is a constant or that it is 2151 // loop invariant. Broadcast V and save the value for future uses. 2152 Value *B = getBroadcastInstrs(V); 2153 VectorLoopValueMap.setVectorValue(V, Part, B); 2154 return B; 2155 } 2156 2157 Value * 2158 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2159 const VPIteration &Instance) { 2160 // If the value is not an instruction contained in the loop, it should 2161 // already be scalar. 2162 if (OrigLoop->isLoopInvariant(V)) 2163 return V; 2164 2165 assert(Instance.Lane > 0 2166 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2167 : true && "Uniform values only have lane zero"); 2168 2169 // If the value from the original loop has not been vectorized, it is 2170 // represented by UF x VF scalar values in the new loop. Return the requested 2171 // scalar value. 2172 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2173 return VectorLoopValueMap.getScalarValue(V, Instance); 2174 2175 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2176 // for the given unroll part. If this entry is not a vector type (i.e., the 2177 // vectorization factor is one), there is no need to generate an 2178 // extractelement instruction. 2179 auto *U = getOrCreateVectorValue(V, Instance.Part); 2180 if (!U->getType()->isVectorTy()) { 2181 assert(VF == 1 && "Value not scalarized has non-vector type"); 2182 return U; 2183 } 2184 2185 // Otherwise, the value from the original loop has been vectorized and is 2186 // represented by UF vector values. Extract and return the requested scalar 2187 // value from the appropriate vector lane. 2188 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2189 } 2190 2191 void InnerLoopVectorizer::packScalarIntoVectorValue( 2192 Value *V, const VPIteration &Instance) { 2193 assert(V != Induction && "The new induction variable should not be used."); 2194 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2195 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2196 2197 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2198 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2199 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2200 Builder.getInt32(Instance.Lane)); 2201 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2202 } 2203 2204 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2205 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2206 SmallVector<Constant *, 8> ShuffleMask; 2207 for (unsigned i = 0; i < VF; ++i) 2208 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2209 2210 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2211 ConstantVector::get(ShuffleMask), 2212 "reverse"); 2213 } 2214 2215 // Try to vectorize the interleave group that \p Instr belongs to. 2216 // 2217 // E.g. Translate following interleaved load group (factor = 3): 2218 // for (i = 0; i < N; i+=3) { 2219 // R = Pic[i]; // Member of index 0 2220 // G = Pic[i+1]; // Member of index 1 2221 // B = Pic[i+2]; // Member of index 2 2222 // ... // do something to R, G, B 2223 // } 2224 // To: 2225 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2226 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2227 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2228 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2229 // 2230 // Or translate following interleaved store group (factor = 3): 2231 // for (i = 0; i < N; i+=3) { 2232 // ... do something to R, G, B 2233 // Pic[i] = R; // Member of index 0 2234 // Pic[i+1] = G; // Member of index 1 2235 // Pic[i+2] = B; // Member of index 2 2236 // } 2237 // To: 2238 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2239 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2240 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2241 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2242 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2243 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2244 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr); 2245 assert(Group && "Fail to get an interleaved access group."); 2246 2247 // Skip if current instruction is not the insert position. 2248 if (Instr != Group->getInsertPos()) 2249 return; 2250 2251 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2252 Value *Ptr = getLoadStorePointerOperand(Instr); 2253 2254 // Prepare for the vector type of the interleaved load/store. 2255 Type *ScalarTy = getMemInstValueType(Instr); 2256 unsigned InterleaveFactor = Group->getFactor(); 2257 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2258 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2259 2260 // Prepare for the new pointers. 2261 setDebugLocFromInst(Builder, Ptr); 2262 SmallVector<Value *, 2> NewPtrs; 2263 unsigned Index = Group->getIndex(Instr); 2264 2265 // If the group is reverse, adjust the index to refer to the last vector lane 2266 // instead of the first. We adjust the index from the first vector lane, 2267 // rather than directly getting the pointer for lane VF - 1, because the 2268 // pointer operand of the interleaved access is supposed to be uniform. For 2269 // uniform instructions, we're only required to generate a value for the 2270 // first vector lane in each unroll iteration. 2271 if (Group->isReverse()) 2272 Index += (VF - 1) * Group->getFactor(); 2273 2274 bool InBounds = false; 2275 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2276 InBounds = gep->isInBounds(); 2277 2278 for (unsigned Part = 0; Part < UF; Part++) { 2279 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2280 2281 // Notice current instruction could be any index. Need to adjust the address 2282 // to the member of index 0. 2283 // 2284 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2285 // b = A[i]; // Member of index 0 2286 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2287 // 2288 // E.g. A[i+1] = a; // Member of index 1 2289 // A[i] = b; // Member of index 0 2290 // A[i+2] = c; // Member of index 2 (Current instruction) 2291 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2292 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2293 if (InBounds) 2294 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2295 2296 // Cast to the vector pointer type. 2297 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2298 } 2299 2300 setDebugLocFromInst(Builder, Instr); 2301 Value *UndefVec = UndefValue::get(VecTy); 2302 2303 // Vectorize the interleaved load group. 2304 if (isa<LoadInst>(Instr)) { 2305 // For each unroll part, create a wide load for the group. 2306 SmallVector<Value *, 2> NewLoads; 2307 for (unsigned Part = 0; Part < UF; Part++) { 2308 auto *NewLoad = Builder.CreateAlignedLoad( 2309 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2310 Group->addMetadata(NewLoad); 2311 NewLoads.push_back(NewLoad); 2312 } 2313 2314 // For each member in the group, shuffle out the appropriate data from the 2315 // wide loads. 2316 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2317 Instruction *Member = Group->getMember(I); 2318 2319 // Skip the gaps in the group. 2320 if (!Member) 2321 continue; 2322 2323 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2324 for (unsigned Part = 0; Part < UF; Part++) { 2325 Value *StridedVec = Builder.CreateShuffleVector( 2326 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2327 2328 // If this member has different type, cast the result type. 2329 if (Member->getType() != ScalarTy) { 2330 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2331 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2332 } 2333 2334 if (Group->isReverse()) 2335 StridedVec = reverseVector(StridedVec); 2336 2337 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2338 } 2339 } 2340 return; 2341 } 2342 2343 // The sub vector type for current instruction. 2344 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2345 2346 // Vectorize the interleaved store group. 2347 for (unsigned Part = 0; Part < UF; Part++) { 2348 // Collect the stored vector from each member. 2349 SmallVector<Value *, 4> StoredVecs; 2350 for (unsigned i = 0; i < InterleaveFactor; i++) { 2351 // Interleaved store group doesn't allow a gap, so each index has a member 2352 Instruction *Member = Group->getMember(i); 2353 assert(Member && "Fail to get a member from an interleaved store group"); 2354 2355 Value *StoredVec = getOrCreateVectorValue( 2356 cast<StoreInst>(Member)->getValueOperand(), Part); 2357 if (Group->isReverse()) 2358 StoredVec = reverseVector(StoredVec); 2359 2360 // If this member has different type, cast it to a unified type. 2361 2362 if (StoredVec->getType() != SubVT) 2363 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2364 2365 StoredVecs.push_back(StoredVec); 2366 } 2367 2368 // Concatenate all vectors into a wide vector. 2369 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2370 2371 // Interleave the elements in the wide vector. 2372 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2373 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2374 "interleaved.vec"); 2375 2376 Instruction *NewStoreInstr = 2377 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2378 2379 Group->addMetadata(NewStoreInstr); 2380 } 2381 } 2382 2383 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2384 VectorParts *BlockInMask) { 2385 // Attempt to issue a wide load. 2386 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2387 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2388 2389 assert((LI || SI) && "Invalid Load/Store instruction"); 2390 2391 LoopVectorizationCostModel::InstWidening Decision = 2392 Cost->getWideningDecision(Instr, VF); 2393 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2394 "CM decision should be taken at this point"); 2395 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2396 return vectorizeInterleaveGroup(Instr); 2397 2398 Type *ScalarDataTy = getMemInstValueType(Instr); 2399 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2400 Value *Ptr = getLoadStorePointerOperand(Instr); 2401 unsigned Alignment = getMemInstAlignment(Instr); 2402 // An alignment of 0 means target abi alignment. We need to use the scalar's 2403 // target abi alignment in such a case. 2404 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2405 if (!Alignment) 2406 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2407 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2408 2409 // Determine if the pointer operand of the access is either consecutive or 2410 // reverse consecutive. 2411 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2412 bool ConsecutiveStride = 2413 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2414 bool CreateGatherScatter = 2415 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2416 2417 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2418 // gather/scatter. Otherwise Decision should have been to Scalarize. 2419 assert((ConsecutiveStride || CreateGatherScatter) && 2420 "The instruction should be scalarized"); 2421 2422 // Handle consecutive loads/stores. 2423 if (ConsecutiveStride) 2424 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2425 2426 VectorParts Mask; 2427 bool isMaskRequired = BlockInMask; 2428 if (isMaskRequired) 2429 Mask = *BlockInMask; 2430 2431 bool InBounds = false; 2432 if (auto *gep = dyn_cast<GetElementPtrInst>( 2433 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2434 InBounds = gep->isInBounds(); 2435 2436 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2437 // Calculate the pointer for the specific unroll-part. 2438 GetElementPtrInst *PartPtr = nullptr; 2439 2440 if (Reverse) { 2441 // If the address is consecutive but reversed, then the 2442 // wide store needs to start at the last vector element. 2443 PartPtr = cast<GetElementPtrInst>( 2444 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2445 PartPtr->setIsInBounds(InBounds); 2446 PartPtr = cast<GetElementPtrInst>( 2447 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2448 PartPtr->setIsInBounds(InBounds); 2449 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2450 Mask[Part] = reverseVector(Mask[Part]); 2451 } else { 2452 PartPtr = cast<GetElementPtrInst>( 2453 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2454 PartPtr->setIsInBounds(InBounds); 2455 } 2456 2457 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2458 }; 2459 2460 // Handle Stores: 2461 if (SI) { 2462 setDebugLocFromInst(Builder, SI); 2463 2464 for (unsigned Part = 0; Part < UF; ++Part) { 2465 Instruction *NewSI = nullptr; 2466 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2467 if (CreateGatherScatter) { 2468 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2469 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2470 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2471 MaskPart); 2472 } else { 2473 if (Reverse) { 2474 // If we store to reverse consecutive memory locations, then we need 2475 // to reverse the order of elements in the stored value. 2476 StoredVal = reverseVector(StoredVal); 2477 // We don't want to update the value in the map as it might be used in 2478 // another expression. So don't call resetVectorValue(StoredVal). 2479 } 2480 auto *VecPtr = CreateVecPtr(Part, Ptr); 2481 if (isMaskRequired) 2482 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2483 Mask[Part]); 2484 else 2485 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2486 } 2487 addMetadata(NewSI, SI); 2488 } 2489 return; 2490 } 2491 2492 // Handle loads. 2493 assert(LI && "Must have a load instruction"); 2494 setDebugLocFromInst(Builder, LI); 2495 for (unsigned Part = 0; Part < UF; ++Part) { 2496 Value *NewLI; 2497 if (CreateGatherScatter) { 2498 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2499 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2500 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2501 nullptr, "wide.masked.gather"); 2502 addMetadata(NewLI, LI); 2503 } else { 2504 auto *VecPtr = CreateVecPtr(Part, Ptr); 2505 if (isMaskRequired) 2506 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2507 UndefValue::get(DataTy), 2508 "wide.masked.load"); 2509 else 2510 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2511 2512 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2513 addMetadata(NewLI, LI); 2514 if (Reverse) 2515 NewLI = reverseVector(NewLI); 2516 } 2517 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2518 } 2519 } 2520 2521 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2522 const VPIteration &Instance, 2523 bool IfPredicateInstr) { 2524 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2525 2526 setDebugLocFromInst(Builder, Instr); 2527 2528 // Does this instruction return a value ? 2529 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2530 2531 Instruction *Cloned = Instr->clone(); 2532 if (!IsVoidRetTy) 2533 Cloned->setName(Instr->getName() + ".cloned"); 2534 2535 // Replace the operands of the cloned instructions with their scalar 2536 // equivalents in the new loop. 2537 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2538 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2539 Cloned->setOperand(op, NewOp); 2540 } 2541 addNewMetadata(Cloned, Instr); 2542 2543 // Place the cloned scalar in the new loop. 2544 Builder.Insert(Cloned); 2545 2546 // Add the cloned scalar to the scalar map entry. 2547 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2548 2549 // If we just cloned a new assumption, add it the assumption cache. 2550 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2551 if (II->getIntrinsicID() == Intrinsic::assume) 2552 AC->registerAssumption(II); 2553 2554 // End if-block. 2555 if (IfPredicateInstr) 2556 PredicatedInstructions.push_back(Cloned); 2557 } 2558 2559 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2560 Value *End, Value *Step, 2561 Instruction *DL) { 2562 BasicBlock *Header = L->getHeader(); 2563 BasicBlock *Latch = L->getLoopLatch(); 2564 // As we're just creating this loop, it's possible no latch exists 2565 // yet. If so, use the header as this will be a single block loop. 2566 if (!Latch) 2567 Latch = Header; 2568 2569 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2570 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2571 setDebugLocFromInst(Builder, OldInst); 2572 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2573 2574 Builder.SetInsertPoint(Latch->getTerminator()); 2575 setDebugLocFromInst(Builder, OldInst); 2576 2577 // Create i+1 and fill the PHINode. 2578 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2579 Induction->addIncoming(Start, L->getLoopPreheader()); 2580 Induction->addIncoming(Next, Latch); 2581 // Create the compare. 2582 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2583 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2584 2585 // Now we have two terminators. Remove the old one from the block. 2586 Latch->getTerminator()->eraseFromParent(); 2587 2588 return Induction; 2589 } 2590 2591 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2592 if (TripCount) 2593 return TripCount; 2594 2595 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2596 // Find the loop boundaries. 2597 ScalarEvolution *SE = PSE.getSE(); 2598 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2599 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2600 "Invalid loop count"); 2601 2602 Type *IdxTy = Legal->getWidestInductionType(); 2603 2604 // The exit count might have the type of i64 while the phi is i32. This can 2605 // happen if we have an induction variable that is sign extended before the 2606 // compare. The only way that we get a backedge taken count is that the 2607 // induction variable was signed and as such will not overflow. In such a case 2608 // truncation is legal. 2609 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2610 IdxTy->getPrimitiveSizeInBits()) 2611 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2612 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2613 2614 // Get the total trip count from the count by adding 1. 2615 const SCEV *ExitCount = SE->getAddExpr( 2616 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2617 2618 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2619 2620 // Expand the trip count and place the new instructions in the preheader. 2621 // Notice that the pre-header does not change, only the loop body. 2622 SCEVExpander Exp(*SE, DL, "induction"); 2623 2624 // Count holds the overall loop count (N). 2625 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2626 L->getLoopPreheader()->getTerminator()); 2627 2628 if (TripCount->getType()->isPointerTy()) 2629 TripCount = 2630 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2631 L->getLoopPreheader()->getTerminator()); 2632 2633 return TripCount; 2634 } 2635 2636 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2637 if (VectorTripCount) 2638 return VectorTripCount; 2639 2640 Value *TC = getOrCreateTripCount(L); 2641 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2642 2643 // Now we need to generate the expression for the part of the loop that the 2644 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2645 // iterations are not required for correctness, or N - Step, otherwise. Step 2646 // is equal to the vectorization factor (number of SIMD elements) times the 2647 // unroll factor (number of SIMD instructions). 2648 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2649 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2650 2651 // If there is a non-reversed interleaved group that may speculatively access 2652 // memory out-of-bounds, we need to ensure that there will be at least one 2653 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2654 // the trip count, we set the remainder to be equal to the step. If the step 2655 // does not evenly divide the trip count, no adjustment is necessary since 2656 // there will already be scalar iterations. Note that the minimum iterations 2657 // check ensures that N >= Step. 2658 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2659 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2660 R = Builder.CreateSelect(IsZero, Step, R); 2661 } 2662 2663 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2664 2665 return VectorTripCount; 2666 } 2667 2668 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2669 const DataLayout &DL) { 2670 // Verify that V is a vector type with same number of elements as DstVTy. 2671 unsigned VF = DstVTy->getNumElements(); 2672 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2673 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2674 Type *SrcElemTy = SrcVecTy->getElementType(); 2675 Type *DstElemTy = DstVTy->getElementType(); 2676 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2677 "Vector elements must have same size"); 2678 2679 // Do a direct cast if element types are castable. 2680 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2681 return Builder.CreateBitOrPointerCast(V, DstVTy); 2682 } 2683 // V cannot be directly casted to desired vector type. 2684 // May happen when V is a floating point vector but DstVTy is a vector of 2685 // pointers or vice-versa. Handle this using a two-step bitcast using an 2686 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2687 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2688 "Only one type should be a pointer type"); 2689 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2690 "Only one type should be a floating point type"); 2691 Type *IntTy = 2692 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2693 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2694 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2695 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2696 } 2697 2698 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2699 BasicBlock *Bypass) { 2700 Value *Count = getOrCreateTripCount(L); 2701 BasicBlock *BB = L->getLoopPreheader(); 2702 IRBuilder<> Builder(BB->getTerminator()); 2703 2704 // Generate code to check if the loop's trip count is less than VF * UF, or 2705 // equal to it in case a scalar epilogue is required; this implies that the 2706 // vector trip count is zero. This check also covers the case where adding one 2707 // to the backedge-taken count overflowed leading to an incorrect trip count 2708 // of zero. In this case we will also jump to the scalar loop. 2709 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2710 : ICmpInst::ICMP_ULT; 2711 Value *CheckMinIters = Builder.CreateICmp( 2712 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2713 2714 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2715 // Update dominator tree immediately if the generated block is a 2716 // LoopBypassBlock because SCEV expansions to generate loop bypass 2717 // checks may query it before the current function is finished. 2718 DT->addNewBlock(NewBB, BB); 2719 if (L->getParentLoop()) 2720 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2721 ReplaceInstWithInst(BB->getTerminator(), 2722 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2723 LoopBypassBlocks.push_back(BB); 2724 } 2725 2726 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2727 BasicBlock *BB = L->getLoopPreheader(); 2728 2729 // Generate the code to check that the SCEV assumptions that we made. 2730 // We want the new basic block to start at the first instruction in a 2731 // sequence of instructions that form a check. 2732 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2733 "scev.check"); 2734 Value *SCEVCheck = 2735 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2736 2737 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2738 if (C->isZero()) 2739 return; 2740 2741 // Create a new block containing the stride check. 2742 BB->setName("vector.scevcheck"); 2743 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2744 // Update dominator tree immediately if the generated block is a 2745 // LoopBypassBlock because SCEV expansions to generate loop bypass 2746 // checks may query it before the current function is finished. 2747 DT->addNewBlock(NewBB, BB); 2748 if (L->getParentLoop()) 2749 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2750 ReplaceInstWithInst(BB->getTerminator(), 2751 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2752 LoopBypassBlocks.push_back(BB); 2753 AddedSafetyChecks = true; 2754 } 2755 2756 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2757 BasicBlock *BB = L->getLoopPreheader(); 2758 2759 // Generate the code that checks in runtime if arrays overlap. We put the 2760 // checks into a separate block to make the more common case of few elements 2761 // faster. 2762 Instruction *FirstCheckInst; 2763 Instruction *MemRuntimeCheck; 2764 std::tie(FirstCheckInst, MemRuntimeCheck) = 2765 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2766 if (!MemRuntimeCheck) 2767 return; 2768 2769 // Create a new block containing the memory check. 2770 BB->setName("vector.memcheck"); 2771 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2772 // Update dominator tree immediately if the generated block is a 2773 // LoopBypassBlock because SCEV expansions to generate loop bypass 2774 // checks may query it before the current function is finished. 2775 DT->addNewBlock(NewBB, BB); 2776 if (L->getParentLoop()) 2777 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2778 ReplaceInstWithInst(BB->getTerminator(), 2779 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2780 LoopBypassBlocks.push_back(BB); 2781 AddedSafetyChecks = true; 2782 2783 // We currently don't use LoopVersioning for the actual loop cloning but we 2784 // still use it to add the noalias metadata. 2785 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2786 PSE.getSE()); 2787 LVer->prepareNoAliasMetadata(); 2788 } 2789 2790 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2791 /* 2792 In this function we generate a new loop. The new loop will contain 2793 the vectorized instructions while the old loop will continue to run the 2794 scalar remainder. 2795 2796 [ ] <-- loop iteration number check. 2797 / | 2798 / v 2799 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2800 | / | 2801 | / v 2802 || [ ] <-- vector pre header. 2803 |/ | 2804 | v 2805 | [ ] \ 2806 | [ ]_| <-- vector loop. 2807 | | 2808 | v 2809 | -[ ] <--- middle-block. 2810 | / | 2811 | / v 2812 -|- >[ ] <--- new preheader. 2813 | | 2814 | v 2815 | [ ] \ 2816 | [ ]_| <-- old scalar loop to handle remainder. 2817 \ | 2818 \ v 2819 >[ ] <-- exit block. 2820 ... 2821 */ 2822 2823 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2824 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2825 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2826 assert(VectorPH && "Invalid loop structure"); 2827 assert(ExitBlock && "Must have an exit block"); 2828 2829 // Some loops have a single integer induction variable, while other loops 2830 // don't. One example is c++ iterators that often have multiple pointer 2831 // induction variables. In the code below we also support a case where we 2832 // don't have a single induction variable. 2833 // 2834 // We try to obtain an induction variable from the original loop as hard 2835 // as possible. However if we don't find one that: 2836 // - is an integer 2837 // - counts from zero, stepping by one 2838 // - is the size of the widest induction variable type 2839 // then we create a new one. 2840 OldInduction = Legal->getPrimaryInduction(); 2841 Type *IdxTy = Legal->getWidestInductionType(); 2842 2843 // Split the single block loop into the two loop structure described above. 2844 BasicBlock *VecBody = 2845 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2846 BasicBlock *MiddleBlock = 2847 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2848 BasicBlock *ScalarPH = 2849 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2850 2851 // Create and register the new vector loop. 2852 Loop *Lp = LI->AllocateLoop(); 2853 Loop *ParentLoop = OrigLoop->getParentLoop(); 2854 2855 // Insert the new loop into the loop nest and register the new basic blocks 2856 // before calling any utilities such as SCEV that require valid LoopInfo. 2857 if (ParentLoop) { 2858 ParentLoop->addChildLoop(Lp); 2859 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2860 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2861 } else { 2862 LI->addTopLevelLoop(Lp); 2863 } 2864 Lp->addBasicBlockToLoop(VecBody, *LI); 2865 2866 // Find the loop boundaries. 2867 Value *Count = getOrCreateTripCount(Lp); 2868 2869 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2870 2871 // Now, compare the new count to zero. If it is zero skip the vector loop and 2872 // jump to the scalar loop. This check also covers the case where the 2873 // backedge-taken count is uint##_max: adding one to it will overflow leading 2874 // to an incorrect trip count of zero. In this (rare) case we will also jump 2875 // to the scalar loop. 2876 emitMinimumIterationCountCheck(Lp, ScalarPH); 2877 2878 // Generate the code to check any assumptions that we've made for SCEV 2879 // expressions. 2880 emitSCEVChecks(Lp, ScalarPH); 2881 2882 // Generate the code that checks in runtime if arrays overlap. We put the 2883 // checks into a separate block to make the more common case of few elements 2884 // faster. 2885 emitMemRuntimeChecks(Lp, ScalarPH); 2886 2887 // Generate the induction variable. 2888 // The loop step is equal to the vectorization factor (num of SIMD elements) 2889 // times the unroll factor (num of SIMD instructions). 2890 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2891 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2892 Induction = 2893 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2894 getDebugLocFromInstOrOperands(OldInduction)); 2895 2896 // We are going to resume the execution of the scalar loop. 2897 // Go over all of the induction variables that we found and fix the 2898 // PHIs that are left in the scalar version of the loop. 2899 // The starting values of PHI nodes depend on the counter of the last 2900 // iteration in the vectorized loop. 2901 // If we come from a bypass edge then we need to start from the original 2902 // start value. 2903 2904 // This variable saves the new starting index for the scalar loop. It is used 2905 // to test if there are any tail iterations left once the vector loop has 2906 // completed. 2907 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2908 for (auto &InductionEntry : *List) { 2909 PHINode *OrigPhi = InductionEntry.first; 2910 InductionDescriptor II = InductionEntry.second; 2911 2912 // Create phi nodes to merge from the backedge-taken check block. 2913 PHINode *BCResumeVal = PHINode::Create( 2914 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2915 Value *&EndValue = IVEndValues[OrigPhi]; 2916 if (OrigPhi == OldInduction) { 2917 // We know what the end value is. 2918 EndValue = CountRoundDown; 2919 } else { 2920 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2921 Type *StepType = II.getStep()->getType(); 2922 Instruction::CastOps CastOp = 2923 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2924 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2925 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2926 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 2927 EndValue->setName("ind.end"); 2928 } 2929 2930 // The new PHI merges the original incoming value, in case of a bypass, 2931 // or the value at the end of the vectorized loop. 2932 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2933 2934 // Fix the scalar body counter (PHI node). 2935 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2936 2937 // The old induction's phi node in the scalar body needs the truncated 2938 // value. 2939 for (BasicBlock *BB : LoopBypassBlocks) 2940 BCResumeVal->addIncoming(II.getStartValue(), BB); 2941 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2942 } 2943 2944 // Add a check in the middle block to see if we have completed 2945 // all of the iterations in the first vector loop. 2946 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2947 Value *CmpN = 2948 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2949 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2950 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2951 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2952 2953 // Get ready to start creating new instructions into the vectorized body. 2954 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2955 2956 // Save the state. 2957 LoopVectorPreHeader = Lp->getLoopPreheader(); 2958 LoopScalarPreHeader = ScalarPH; 2959 LoopMiddleBlock = MiddleBlock; 2960 LoopExitBlock = ExitBlock; 2961 LoopVectorBody = VecBody; 2962 LoopScalarBody = OldBasicBlock; 2963 2964 // Keep all loop hints from the original loop on the vector loop (we'll 2965 // replace the vectorizer-specific hints below). 2966 if (MDNode *LID = OrigLoop->getLoopID()) 2967 Lp->setLoopID(LID); 2968 2969 LoopVectorizeHints Hints(Lp, true, *ORE); 2970 Hints.setAlreadyVectorized(); 2971 2972 return LoopVectorPreHeader; 2973 } 2974 2975 // Fix up external users of the induction variable. At this point, we are 2976 // in LCSSA form, with all external PHIs that use the IV having one input value, 2977 // coming from the remainder loop. We need those PHIs to also have a correct 2978 // value for the IV when arriving directly from the middle block. 2979 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2980 const InductionDescriptor &II, 2981 Value *CountRoundDown, Value *EndValue, 2982 BasicBlock *MiddleBlock) { 2983 // There are two kinds of external IV usages - those that use the value 2984 // computed in the last iteration (the PHI) and those that use the penultimate 2985 // value (the value that feeds into the phi from the loop latch). 2986 // We allow both, but they, obviously, have different values. 2987 2988 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2989 2990 DenseMap<Value *, Value *> MissingVals; 2991 2992 // An external user of the last iteration's value should see the value that 2993 // the remainder loop uses to initialize its own IV. 2994 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2995 for (User *U : PostInc->users()) { 2996 Instruction *UI = cast<Instruction>(U); 2997 if (!OrigLoop->contains(UI)) { 2998 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2999 MissingVals[UI] = EndValue; 3000 } 3001 } 3002 3003 // An external user of the penultimate value need to see EndValue - Step. 3004 // The simplest way to get this is to recompute it from the constituent SCEVs, 3005 // that is Start + (Step * (CRD - 1)). 3006 for (User *U : OrigPhi->users()) { 3007 auto *UI = cast<Instruction>(U); 3008 if (!OrigLoop->contains(UI)) { 3009 const DataLayout &DL = 3010 OrigLoop->getHeader()->getModule()->getDataLayout(); 3011 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3012 3013 IRBuilder<> B(MiddleBlock->getTerminator()); 3014 Value *CountMinusOne = B.CreateSub( 3015 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3016 Value *CMO = 3017 !II.getStep()->getType()->isIntegerTy() 3018 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3019 II.getStep()->getType()) 3020 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3021 CMO->setName("cast.cmo"); 3022 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3023 Escape->setName("ind.escape"); 3024 MissingVals[UI] = Escape; 3025 } 3026 } 3027 3028 for (auto &I : MissingVals) { 3029 PHINode *PHI = cast<PHINode>(I.first); 3030 // One corner case we have to handle is two IVs "chasing" each-other, 3031 // that is %IV2 = phi [...], [ %IV1, %latch ] 3032 // In this case, if IV1 has an external use, we need to avoid adding both 3033 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3034 // don't already have an incoming value for the middle block. 3035 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3036 PHI->addIncoming(I.second, MiddleBlock); 3037 } 3038 } 3039 3040 namespace { 3041 3042 struct CSEDenseMapInfo { 3043 static bool canHandle(const Instruction *I) { 3044 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3045 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3046 } 3047 3048 static inline Instruction *getEmptyKey() { 3049 return DenseMapInfo<Instruction *>::getEmptyKey(); 3050 } 3051 3052 static inline Instruction *getTombstoneKey() { 3053 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3054 } 3055 3056 static unsigned getHashValue(const Instruction *I) { 3057 assert(canHandle(I) && "Unknown instruction!"); 3058 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3059 I->value_op_end())); 3060 } 3061 3062 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3063 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3064 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3065 return LHS == RHS; 3066 return LHS->isIdenticalTo(RHS); 3067 } 3068 }; 3069 3070 } // end anonymous namespace 3071 3072 ///Perform cse of induction variable instructions. 3073 static void cse(BasicBlock *BB) { 3074 // Perform simple cse. 3075 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3076 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3077 Instruction *In = &*I++; 3078 3079 if (!CSEDenseMapInfo::canHandle(In)) 3080 continue; 3081 3082 // Check if we can replace this instruction with any of the 3083 // visited instructions. 3084 if (Instruction *V = CSEMap.lookup(In)) { 3085 In->replaceAllUsesWith(V); 3086 In->eraseFromParent(); 3087 continue; 3088 } 3089 3090 CSEMap[In] = In; 3091 } 3092 } 3093 3094 /// Estimate the overhead of scalarizing an instruction. This is a 3095 /// convenience wrapper for the type-based getScalarizationOverhead API. 3096 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3097 const TargetTransformInfo &TTI) { 3098 if (VF == 1) 3099 return 0; 3100 3101 unsigned Cost = 0; 3102 Type *RetTy = ToVectorTy(I->getType(), VF); 3103 if (!RetTy->isVoidTy() && 3104 (!isa<LoadInst>(I) || 3105 !TTI.supportsEfficientVectorElementLoadStore())) 3106 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3107 3108 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3109 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3110 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3111 } 3112 else if (!isa<StoreInst>(I) || 3113 !TTI.supportsEfficientVectorElementLoadStore()) { 3114 SmallVector<const Value *, 4> Operands(I->operand_values()); 3115 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3116 } 3117 3118 return Cost; 3119 } 3120 3121 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3122 // Return the cost of the instruction, including scalarization overhead if it's 3123 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3124 // i.e. either vector version isn't available, or is too expensive. 3125 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3126 const TargetTransformInfo &TTI, 3127 const TargetLibraryInfo *TLI, 3128 bool &NeedToScalarize) { 3129 Function *F = CI->getCalledFunction(); 3130 StringRef FnName = CI->getCalledFunction()->getName(); 3131 Type *ScalarRetTy = CI->getType(); 3132 SmallVector<Type *, 4> Tys, ScalarTys; 3133 for (auto &ArgOp : CI->arg_operands()) 3134 ScalarTys.push_back(ArgOp->getType()); 3135 3136 // Estimate cost of scalarized vector call. The source operands are assumed 3137 // to be vectors, so we need to extract individual elements from there, 3138 // execute VF scalar calls, and then gather the result into the vector return 3139 // value. 3140 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3141 if (VF == 1) 3142 return ScalarCallCost; 3143 3144 // Compute corresponding vector type for return value and arguments. 3145 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3146 for (Type *ScalarTy : ScalarTys) 3147 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3148 3149 // Compute costs of unpacking argument values for the scalar calls and 3150 // packing the return values to a vector. 3151 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3152 3153 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3154 3155 // If we can't emit a vector call for this function, then the currently found 3156 // cost is the cost we need to return. 3157 NeedToScalarize = true; 3158 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3159 return Cost; 3160 3161 // If the corresponding vector cost is cheaper, return its cost. 3162 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3163 if (VectorCallCost < Cost) { 3164 NeedToScalarize = false; 3165 return VectorCallCost; 3166 } 3167 return Cost; 3168 } 3169 3170 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3171 // factor VF. Return the cost of the instruction, including scalarization 3172 // overhead if it's needed. 3173 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3174 const TargetTransformInfo &TTI, 3175 const TargetLibraryInfo *TLI) { 3176 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3177 assert(ID && "Expected intrinsic call!"); 3178 3179 FastMathFlags FMF; 3180 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3181 FMF = FPMO->getFastMathFlags(); 3182 3183 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3184 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3185 } 3186 3187 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3188 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3189 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3190 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3191 } 3192 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3193 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3194 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3195 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3196 } 3197 3198 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3199 // For every instruction `I` in MinBWs, truncate the operands, create a 3200 // truncated version of `I` and reextend its result. InstCombine runs 3201 // later and will remove any ext/trunc pairs. 3202 SmallPtrSet<Value *, 4> Erased; 3203 for (const auto &KV : Cost->getMinimalBitwidths()) { 3204 // If the value wasn't vectorized, we must maintain the original scalar 3205 // type. The absence of the value from VectorLoopValueMap indicates that it 3206 // wasn't vectorized. 3207 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3208 continue; 3209 for (unsigned Part = 0; Part < UF; ++Part) { 3210 Value *I = getOrCreateVectorValue(KV.first, Part); 3211 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3212 continue; 3213 Type *OriginalTy = I->getType(); 3214 Type *ScalarTruncatedTy = 3215 IntegerType::get(OriginalTy->getContext(), KV.second); 3216 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3217 OriginalTy->getVectorNumElements()); 3218 if (TruncatedTy == OriginalTy) 3219 continue; 3220 3221 IRBuilder<> B(cast<Instruction>(I)); 3222 auto ShrinkOperand = [&](Value *V) -> Value * { 3223 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3224 if (ZI->getSrcTy() == TruncatedTy) 3225 return ZI->getOperand(0); 3226 return B.CreateZExtOrTrunc(V, TruncatedTy); 3227 }; 3228 3229 // The actual instruction modification depends on the instruction type, 3230 // unfortunately. 3231 Value *NewI = nullptr; 3232 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3233 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3234 ShrinkOperand(BO->getOperand(1))); 3235 3236 // Any wrapping introduced by shrinking this operation shouldn't be 3237 // considered undefined behavior. So, we can't unconditionally copy 3238 // arithmetic wrapping flags to NewI. 3239 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3240 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3241 NewI = 3242 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3243 ShrinkOperand(CI->getOperand(1))); 3244 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3245 NewI = B.CreateSelect(SI->getCondition(), 3246 ShrinkOperand(SI->getTrueValue()), 3247 ShrinkOperand(SI->getFalseValue())); 3248 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3249 switch (CI->getOpcode()) { 3250 default: 3251 llvm_unreachable("Unhandled cast!"); 3252 case Instruction::Trunc: 3253 NewI = ShrinkOperand(CI->getOperand(0)); 3254 break; 3255 case Instruction::SExt: 3256 NewI = B.CreateSExtOrTrunc( 3257 CI->getOperand(0), 3258 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3259 break; 3260 case Instruction::ZExt: 3261 NewI = B.CreateZExtOrTrunc( 3262 CI->getOperand(0), 3263 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3264 break; 3265 } 3266 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3267 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3268 auto *O0 = B.CreateZExtOrTrunc( 3269 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3270 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3271 auto *O1 = B.CreateZExtOrTrunc( 3272 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3273 3274 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3275 } else if (isa<LoadInst>(I)) { 3276 // Don't do anything with the operands, just extend the result. 3277 continue; 3278 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3279 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3280 auto *O0 = B.CreateZExtOrTrunc( 3281 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3282 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3283 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3284 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3285 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3286 auto *O0 = B.CreateZExtOrTrunc( 3287 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3288 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3289 } else { 3290 llvm_unreachable("Unhandled instruction type!"); 3291 } 3292 3293 // Lastly, extend the result. 3294 NewI->takeName(cast<Instruction>(I)); 3295 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3296 I->replaceAllUsesWith(Res); 3297 cast<Instruction>(I)->eraseFromParent(); 3298 Erased.insert(I); 3299 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3300 } 3301 } 3302 3303 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3304 for (const auto &KV : Cost->getMinimalBitwidths()) { 3305 // If the value wasn't vectorized, we must maintain the original scalar 3306 // type. The absence of the value from VectorLoopValueMap indicates that it 3307 // wasn't vectorized. 3308 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3309 continue; 3310 for (unsigned Part = 0; Part < UF; ++Part) { 3311 Value *I = getOrCreateVectorValue(KV.first, Part); 3312 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3313 if (Inst && Inst->use_empty()) { 3314 Value *NewI = Inst->getOperand(0); 3315 Inst->eraseFromParent(); 3316 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3317 } 3318 } 3319 } 3320 } 3321 3322 void InnerLoopVectorizer::fixVectorizedLoop() { 3323 // Insert truncates and extends for any truncated instructions as hints to 3324 // InstCombine. 3325 if (VF > 1) 3326 truncateToMinimalBitwidths(); 3327 3328 // At this point every instruction in the original loop is widened to a 3329 // vector form. Now we need to fix the recurrences in the loop. These PHI 3330 // nodes are currently empty because we did not want to introduce cycles. 3331 // This is the second stage of vectorizing recurrences. 3332 fixCrossIterationPHIs(); 3333 3334 // Update the dominator tree. 3335 // 3336 // FIXME: After creating the structure of the new loop, the dominator tree is 3337 // no longer up-to-date, and it remains that way until we update it 3338 // here. An out-of-date dominator tree is problematic for SCEV, 3339 // because SCEVExpander uses it to guide code generation. The 3340 // vectorizer use SCEVExpanders in several places. Instead, we should 3341 // keep the dominator tree up-to-date as we go. 3342 updateAnalysis(); 3343 3344 // Fix-up external users of the induction variables. 3345 for (auto &Entry : *Legal->getInductionVars()) 3346 fixupIVUsers(Entry.first, Entry.second, 3347 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3348 IVEndValues[Entry.first], LoopMiddleBlock); 3349 3350 fixLCSSAPHIs(); 3351 for (Instruction *PI : PredicatedInstructions) 3352 sinkScalarOperands(&*PI); 3353 3354 // Remove redundant induction instructions. 3355 cse(LoopVectorBody); 3356 } 3357 3358 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3359 // In order to support recurrences we need to be able to vectorize Phi nodes. 3360 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3361 // stage #2: We now need to fix the recurrences by adding incoming edges to 3362 // the currently empty PHI nodes. At this point every instruction in the 3363 // original loop is widened to a vector form so we can use them to construct 3364 // the incoming edges. 3365 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3366 // Handle first-order recurrences and reductions that need to be fixed. 3367 if (Legal->isFirstOrderRecurrence(&Phi)) 3368 fixFirstOrderRecurrence(&Phi); 3369 else if (Legal->isReductionVariable(&Phi)) 3370 fixReduction(&Phi); 3371 } 3372 } 3373 3374 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3375 // This is the second phase of vectorizing first-order recurrences. An 3376 // overview of the transformation is described below. Suppose we have the 3377 // following loop. 3378 // 3379 // for (int i = 0; i < n; ++i) 3380 // b[i] = a[i] - a[i - 1]; 3381 // 3382 // There is a first-order recurrence on "a". For this loop, the shorthand 3383 // scalar IR looks like: 3384 // 3385 // scalar.ph: 3386 // s_init = a[-1] 3387 // br scalar.body 3388 // 3389 // scalar.body: 3390 // i = phi [0, scalar.ph], [i+1, scalar.body] 3391 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3392 // s2 = a[i] 3393 // b[i] = s2 - s1 3394 // br cond, scalar.body, ... 3395 // 3396 // In this example, s1 is a recurrence because it's value depends on the 3397 // previous iteration. In the first phase of vectorization, we created a 3398 // temporary value for s1. We now complete the vectorization and produce the 3399 // shorthand vector IR shown below (for VF = 4, UF = 1). 3400 // 3401 // vector.ph: 3402 // v_init = vector(..., ..., ..., a[-1]) 3403 // br vector.body 3404 // 3405 // vector.body 3406 // i = phi [0, vector.ph], [i+4, vector.body] 3407 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3408 // v2 = a[i, i+1, i+2, i+3]; 3409 // v3 = vector(v1(3), v2(0, 1, 2)) 3410 // b[i, i+1, i+2, i+3] = v2 - v3 3411 // br cond, vector.body, middle.block 3412 // 3413 // middle.block: 3414 // x = v2(3) 3415 // br scalar.ph 3416 // 3417 // scalar.ph: 3418 // s_init = phi [x, middle.block], [a[-1], otherwise] 3419 // br scalar.body 3420 // 3421 // After execution completes the vector loop, we extract the next value of 3422 // the recurrence (x) to use as the initial value in the scalar loop. 3423 3424 // Get the original loop preheader and single loop latch. 3425 auto *Preheader = OrigLoop->getLoopPreheader(); 3426 auto *Latch = OrigLoop->getLoopLatch(); 3427 3428 // Get the initial and previous values of the scalar recurrence. 3429 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3430 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3431 3432 // Create a vector from the initial value. 3433 auto *VectorInit = ScalarInit; 3434 if (VF > 1) { 3435 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3436 VectorInit = Builder.CreateInsertElement( 3437 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3438 Builder.getInt32(VF - 1), "vector.recur.init"); 3439 } 3440 3441 // We constructed a temporary phi node in the first phase of vectorization. 3442 // This phi node will eventually be deleted. 3443 Builder.SetInsertPoint( 3444 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3445 3446 // Create a phi node for the new recurrence. The current value will either be 3447 // the initial value inserted into a vector or loop-varying vector value. 3448 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3449 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3450 3451 // Get the vectorized previous value of the last part UF - 1. It appears last 3452 // among all unrolled iterations, due to the order of their construction. 3453 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3454 3455 // Set the insertion point after the previous value if it is an instruction. 3456 // Note that the previous value may have been constant-folded so it is not 3457 // guaranteed to be an instruction in the vector loop. Also, if the previous 3458 // value is a phi node, we should insert after all the phi nodes to avoid 3459 // breaking basic block verification. 3460 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3461 isa<PHINode>(PreviousLastPart)) 3462 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3463 else 3464 Builder.SetInsertPoint( 3465 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3466 3467 // We will construct a vector for the recurrence by combining the values for 3468 // the current and previous iterations. This is the required shuffle mask. 3469 SmallVector<Constant *, 8> ShuffleMask(VF); 3470 ShuffleMask[0] = Builder.getInt32(VF - 1); 3471 for (unsigned I = 1; I < VF; ++I) 3472 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3473 3474 // The vector from which to take the initial value for the current iteration 3475 // (actual or unrolled). Initially, this is the vector phi node. 3476 Value *Incoming = VecPhi; 3477 3478 // Shuffle the current and previous vector and update the vector parts. 3479 for (unsigned Part = 0; Part < UF; ++Part) { 3480 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3481 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3482 auto *Shuffle = 3483 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3484 ConstantVector::get(ShuffleMask)) 3485 : Incoming; 3486 PhiPart->replaceAllUsesWith(Shuffle); 3487 cast<Instruction>(PhiPart)->eraseFromParent(); 3488 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3489 Incoming = PreviousPart; 3490 } 3491 3492 // Fix the latch value of the new recurrence in the vector loop. 3493 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3494 3495 // Extract the last vector element in the middle block. This will be the 3496 // initial value for the recurrence when jumping to the scalar loop. 3497 auto *ExtractForScalar = Incoming; 3498 if (VF > 1) { 3499 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3500 ExtractForScalar = Builder.CreateExtractElement( 3501 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3502 } 3503 // Extract the second last element in the middle block if the 3504 // Phi is used outside the loop. We need to extract the phi itself 3505 // and not the last element (the phi update in the current iteration). This 3506 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3507 // when the scalar loop is not run at all. 3508 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3509 if (VF > 1) 3510 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3511 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3512 // When loop is unrolled without vectorizing, initialize 3513 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3514 // `Incoming`. This is analogous to the vectorized case above: extracting the 3515 // second last element when VF > 1. 3516 else if (UF > 1) 3517 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3518 3519 // Fix the initial value of the original recurrence in the scalar loop. 3520 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3521 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3522 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3523 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3524 Start->addIncoming(Incoming, BB); 3525 } 3526 3527 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3528 Phi->setName("scalar.recur"); 3529 3530 // Finally, fix users of the recurrence outside the loop. The users will need 3531 // either the last value of the scalar recurrence or the last value of the 3532 // vector recurrence we extracted in the middle block. Since the loop is in 3533 // LCSSA form, we just need to find the phi node for the original scalar 3534 // recurrence in the exit block, and then add an edge for the middle block. 3535 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3536 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3537 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3538 break; 3539 } 3540 } 3541 } 3542 3543 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3544 Constant *Zero = Builder.getInt32(0); 3545 3546 // Get it's reduction variable descriptor. 3547 assert(Legal->isReductionVariable(Phi) && 3548 "Unable to find the reduction variable"); 3549 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3550 3551 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3552 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3553 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3554 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3555 RdxDesc.getMinMaxRecurrenceKind(); 3556 setDebugLocFromInst(Builder, ReductionStartValue); 3557 3558 // We need to generate a reduction vector from the incoming scalar. 3559 // To do so, we need to generate the 'identity' vector and override 3560 // one of the elements with the incoming scalar reduction. We need 3561 // to do it in the vector-loop preheader. 3562 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3563 3564 // This is the vector-clone of the value that leaves the loop. 3565 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3566 3567 // Find the reduction identity variable. Zero for addition, or, xor, 3568 // one for multiplication, -1 for And. 3569 Value *Identity; 3570 Value *VectorStart; 3571 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3572 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3573 // MinMax reduction have the start value as their identify. 3574 if (VF == 1) { 3575 VectorStart = Identity = ReductionStartValue; 3576 } else { 3577 VectorStart = Identity = 3578 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3579 } 3580 } else { 3581 // Handle other reduction kinds: 3582 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3583 RK, VecTy->getScalarType()); 3584 if (VF == 1) { 3585 Identity = Iden; 3586 // This vector is the Identity vector where the first element is the 3587 // incoming scalar reduction. 3588 VectorStart = ReductionStartValue; 3589 } else { 3590 Identity = ConstantVector::getSplat(VF, Iden); 3591 3592 // This vector is the Identity vector where the first element is the 3593 // incoming scalar reduction. 3594 VectorStart = 3595 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3596 } 3597 } 3598 3599 // Fix the vector-loop phi. 3600 3601 // Reductions do not have to start at zero. They can start with 3602 // any loop invariant values. 3603 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3604 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3605 for (unsigned Part = 0; Part < UF; ++Part) { 3606 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3607 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3608 // Make sure to add the reduction stat value only to the 3609 // first unroll part. 3610 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3611 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3612 cast<PHINode>(VecRdxPhi) 3613 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3614 } 3615 3616 // Before each round, move the insertion point right between 3617 // the PHIs and the values we are going to write. 3618 // This allows us to write both PHINodes and the extractelement 3619 // instructions. 3620 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3621 3622 setDebugLocFromInst(Builder, LoopExitInst); 3623 3624 // If the vector reduction can be performed in a smaller type, we truncate 3625 // then extend the loop exit value to enable InstCombine to evaluate the 3626 // entire expression in the smaller type. 3627 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3628 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3629 Builder.SetInsertPoint( 3630 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3631 VectorParts RdxParts(UF); 3632 for (unsigned Part = 0; Part < UF; ++Part) { 3633 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3634 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3635 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3636 : Builder.CreateZExt(Trunc, VecTy); 3637 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3638 UI != RdxParts[Part]->user_end();) 3639 if (*UI != Trunc) { 3640 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3641 RdxParts[Part] = Extnd; 3642 } else { 3643 ++UI; 3644 } 3645 } 3646 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3647 for (unsigned Part = 0; Part < UF; ++Part) { 3648 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3649 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3650 } 3651 } 3652 3653 // Reduce all of the unrolled parts into a single vector. 3654 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3655 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3656 setDebugLocFromInst(Builder, ReducedPartRdx); 3657 for (unsigned Part = 1; Part < UF; ++Part) { 3658 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3659 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3660 // Floating point operations had to be 'fast' to enable the reduction. 3661 ReducedPartRdx = addFastMathFlag( 3662 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3663 ReducedPartRdx, "bin.rdx")); 3664 else 3665 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3666 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 3667 } 3668 3669 if (VF > 1) { 3670 bool NoNaN = Legal->hasFunNoNaNAttr(); 3671 ReducedPartRdx = 3672 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3673 // If the reduction can be performed in a smaller type, we need to extend 3674 // the reduction to the wider type before we branch to the original loop. 3675 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3676 ReducedPartRdx = 3677 RdxDesc.isSigned() 3678 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3679 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3680 } 3681 3682 // Create a phi node that merges control-flow from the backedge-taken check 3683 // block and the middle block. 3684 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3685 LoopScalarPreHeader->getTerminator()); 3686 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3687 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3688 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3689 3690 // Now, we need to fix the users of the reduction variable 3691 // inside and outside of the scalar remainder loop. 3692 // We know that the loop is in LCSSA form. We need to update the 3693 // PHI nodes in the exit blocks. 3694 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3695 // All PHINodes need to have a single entry edge, or two if 3696 // we already fixed them. 3697 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3698 3699 // We found a reduction value exit-PHI. Update it with the 3700 // incoming bypass edge. 3701 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3702 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3703 } // end of the LCSSA phi scan. 3704 3705 // Fix the scalar loop reduction variable with the incoming reduction sum 3706 // from the vector body and from the backedge value. 3707 int IncomingEdgeBlockIdx = 3708 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3709 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3710 // Pick the other block. 3711 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3712 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3713 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3714 } 3715 3716 void InnerLoopVectorizer::fixLCSSAPHIs() { 3717 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3718 if (LCSSAPhi.getNumIncomingValues() == 1) { 3719 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 3720 "Incoming value isn't loop invariant"); 3721 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 3722 } 3723 } 3724 } 3725 3726 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3727 // The basic block and loop containing the predicated instruction. 3728 auto *PredBB = PredInst->getParent(); 3729 auto *VectorLoop = LI->getLoopFor(PredBB); 3730 3731 // Initialize a worklist with the operands of the predicated instruction. 3732 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3733 3734 // Holds instructions that we need to analyze again. An instruction may be 3735 // reanalyzed if we don't yet know if we can sink it or not. 3736 SmallVector<Instruction *, 8> InstsToReanalyze; 3737 3738 // Returns true if a given use occurs in the predicated block. Phi nodes use 3739 // their operands in their corresponding predecessor blocks. 3740 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3741 auto *I = cast<Instruction>(U.getUser()); 3742 BasicBlock *BB = I->getParent(); 3743 if (auto *Phi = dyn_cast<PHINode>(I)) 3744 BB = Phi->getIncomingBlock( 3745 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3746 return BB == PredBB; 3747 }; 3748 3749 // Iteratively sink the scalarized operands of the predicated instruction 3750 // into the block we created for it. When an instruction is sunk, it's 3751 // operands are then added to the worklist. The algorithm ends after one pass 3752 // through the worklist doesn't sink a single instruction. 3753 bool Changed; 3754 do { 3755 // Add the instructions that need to be reanalyzed to the worklist, and 3756 // reset the changed indicator. 3757 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3758 InstsToReanalyze.clear(); 3759 Changed = false; 3760 3761 while (!Worklist.empty()) { 3762 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3763 3764 // We can't sink an instruction if it is a phi node, is already in the 3765 // predicated block, is not in the loop, or may have side effects. 3766 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3767 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3768 continue; 3769 3770 // It's legal to sink the instruction if all its uses occur in the 3771 // predicated block. Otherwise, there's nothing to do yet, and we may 3772 // need to reanalyze the instruction. 3773 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3774 InstsToReanalyze.push_back(I); 3775 continue; 3776 } 3777 3778 // Move the instruction to the beginning of the predicated block, and add 3779 // it's operands to the worklist. 3780 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3781 Worklist.insert(I->op_begin(), I->op_end()); 3782 3783 // The sinking may have enabled other instructions to be sunk, so we will 3784 // need to iterate. 3785 Changed = true; 3786 } 3787 } while (Changed); 3788 } 3789 3790 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3791 unsigned VF) { 3792 assert(PN->getParent() == OrigLoop->getHeader() && 3793 "Non-header phis should have been handled elsewhere"); 3794 3795 PHINode *P = cast<PHINode>(PN); 3796 // In order to support recurrences we need to be able to vectorize Phi nodes. 3797 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3798 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3799 // this value when we vectorize all of the instructions that use the PHI. 3800 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3801 for (unsigned Part = 0; Part < UF; ++Part) { 3802 // This is phase one of vectorizing PHIs. 3803 Type *VecTy = 3804 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3805 Value *EntryPart = PHINode::Create( 3806 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3807 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3808 } 3809 return; 3810 } 3811 3812 setDebugLocFromInst(Builder, P); 3813 3814 // This PHINode must be an induction variable. 3815 // Make sure that we know about it. 3816 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3817 3818 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3819 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3820 3821 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3822 // which can be found from the original scalar operations. 3823 switch (II.getKind()) { 3824 case InductionDescriptor::IK_NoInduction: 3825 llvm_unreachable("Unknown induction"); 3826 case InductionDescriptor::IK_IntInduction: 3827 case InductionDescriptor::IK_FpInduction: 3828 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3829 case InductionDescriptor::IK_PtrInduction: { 3830 // Handle the pointer induction variable case. 3831 assert(P->getType()->isPointerTy() && "Unexpected type."); 3832 // This is the normalized GEP that starts counting at zero. 3833 Value *PtrInd = Induction; 3834 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3835 // Determine the number of scalars we need to generate for each unroll 3836 // iteration. If the instruction is uniform, we only need to generate the 3837 // first lane. Otherwise, we generate all VF values. 3838 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3839 // These are the scalar results. Notice that we don't generate vector GEPs 3840 // because scalar GEPs result in better code. 3841 for (unsigned Part = 0; Part < UF; ++Part) { 3842 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3843 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3844 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3845 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 3846 SclrGep->setName("next.gep"); 3847 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3848 } 3849 } 3850 return; 3851 } 3852 } 3853 } 3854 3855 /// A helper function for checking whether an integer division-related 3856 /// instruction may divide by zero (in which case it must be predicated if 3857 /// executed conditionally in the scalar code). 3858 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3859 /// Non-zero divisors that are non compile-time constants will not be 3860 /// converted into multiplication, so we will still end up scalarizing 3861 /// the division, but can do so w/o predication. 3862 static bool mayDivideByZero(Instruction &I) { 3863 assert((I.getOpcode() == Instruction::UDiv || 3864 I.getOpcode() == Instruction::SDiv || 3865 I.getOpcode() == Instruction::URem || 3866 I.getOpcode() == Instruction::SRem) && 3867 "Unexpected instruction"); 3868 Value *Divisor = I.getOperand(1); 3869 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3870 return !CInt || CInt->isZero(); 3871 } 3872 3873 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3874 switch (I.getOpcode()) { 3875 case Instruction::Br: 3876 case Instruction::PHI: 3877 llvm_unreachable("This instruction is handled by a different recipe."); 3878 case Instruction::GetElementPtr: { 3879 // Construct a vector GEP by widening the operands of the scalar GEP as 3880 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3881 // results in a vector of pointers when at least one operand of the GEP 3882 // is vector-typed. Thus, to keep the representation compact, we only use 3883 // vector-typed operands for loop-varying values. 3884 auto *GEP = cast<GetElementPtrInst>(&I); 3885 3886 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3887 // If we are vectorizing, but the GEP has only loop-invariant operands, 3888 // the GEP we build (by only using vector-typed operands for 3889 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3890 // produce a vector of pointers, we need to either arbitrarily pick an 3891 // operand to broadcast, or broadcast a clone of the original GEP. 3892 // Here, we broadcast a clone of the original. 3893 // 3894 // TODO: If at some point we decide to scalarize instructions having 3895 // loop-invariant operands, this special case will no longer be 3896 // required. We would add the scalarization decision to 3897 // collectLoopScalars() and teach getVectorValue() to broadcast 3898 // the lane-zero scalar value. 3899 auto *Clone = Builder.Insert(GEP->clone()); 3900 for (unsigned Part = 0; Part < UF; ++Part) { 3901 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3902 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3903 addMetadata(EntryPart, GEP); 3904 } 3905 } else { 3906 // If the GEP has at least one loop-varying operand, we are sure to 3907 // produce a vector of pointers. But if we are only unrolling, we want 3908 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3909 // produce with the code below will be scalar (if VF == 1) or vector 3910 // (otherwise). Note that for the unroll-only case, we still maintain 3911 // values in the vector mapping with initVector, as we do for other 3912 // instructions. 3913 for (unsigned Part = 0; Part < UF; ++Part) { 3914 // The pointer operand of the new GEP. If it's loop-invariant, we 3915 // won't broadcast it. 3916 auto *Ptr = 3917 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3918 ? GEP->getPointerOperand() 3919 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3920 3921 // Collect all the indices for the new GEP. If any index is 3922 // loop-invariant, we won't broadcast it. 3923 SmallVector<Value *, 4> Indices; 3924 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3925 if (OrigLoop->isLoopInvariant(U.get())) 3926 Indices.push_back(U.get()); 3927 else 3928 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3929 } 3930 3931 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3932 // but it should be a vector, otherwise. 3933 auto *NewGEP = GEP->isInBounds() 3934 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3935 : Builder.CreateGEP(Ptr, Indices); 3936 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3937 "NewGEP is not a pointer vector"); 3938 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3939 addMetadata(NewGEP, GEP); 3940 } 3941 } 3942 3943 break; 3944 } 3945 case Instruction::UDiv: 3946 case Instruction::SDiv: 3947 case Instruction::SRem: 3948 case Instruction::URem: 3949 case Instruction::Add: 3950 case Instruction::FAdd: 3951 case Instruction::Sub: 3952 case Instruction::FSub: 3953 case Instruction::Mul: 3954 case Instruction::FMul: 3955 case Instruction::FDiv: 3956 case Instruction::FRem: 3957 case Instruction::Shl: 3958 case Instruction::LShr: 3959 case Instruction::AShr: 3960 case Instruction::And: 3961 case Instruction::Or: 3962 case Instruction::Xor: { 3963 // Just widen binops. 3964 auto *BinOp = cast<BinaryOperator>(&I); 3965 setDebugLocFromInst(Builder, BinOp); 3966 3967 for (unsigned Part = 0; Part < UF; ++Part) { 3968 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3969 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3970 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3971 3972 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3973 VecOp->copyIRFlags(BinOp); 3974 3975 // Use this vector value for all users of the original instruction. 3976 VectorLoopValueMap.setVectorValue(&I, Part, V); 3977 addMetadata(V, BinOp); 3978 } 3979 3980 break; 3981 } 3982 case Instruction::Select: { 3983 // Widen selects. 3984 // If the selector is loop invariant we can create a select 3985 // instruction with a scalar condition. Otherwise, use vector-select. 3986 auto *SE = PSE.getSE(); 3987 bool InvariantCond = 3988 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 3989 setDebugLocFromInst(Builder, &I); 3990 3991 // The condition can be loop invariant but still defined inside the 3992 // loop. This means that we can't just use the original 'cond' value. 3993 // We have to take the 'vectorized' value and pick the first lane. 3994 // Instcombine will make this a no-op. 3995 3996 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 3997 3998 for (unsigned Part = 0; Part < UF; ++Part) { 3999 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4000 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4001 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4002 Value *Sel = 4003 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4004 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4005 addMetadata(Sel, &I); 4006 } 4007 4008 break; 4009 } 4010 4011 case Instruction::ICmp: 4012 case Instruction::FCmp: { 4013 // Widen compares. Generate vector compares. 4014 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4015 auto *Cmp = dyn_cast<CmpInst>(&I); 4016 setDebugLocFromInst(Builder, Cmp); 4017 for (unsigned Part = 0; Part < UF; ++Part) { 4018 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4019 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4020 Value *C = nullptr; 4021 if (FCmp) { 4022 // Propagate fast math flags. 4023 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4024 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4025 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4026 } else { 4027 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4028 } 4029 VectorLoopValueMap.setVectorValue(&I, Part, C); 4030 addMetadata(C, &I); 4031 } 4032 4033 break; 4034 } 4035 4036 case Instruction::ZExt: 4037 case Instruction::SExt: 4038 case Instruction::FPToUI: 4039 case Instruction::FPToSI: 4040 case Instruction::FPExt: 4041 case Instruction::PtrToInt: 4042 case Instruction::IntToPtr: 4043 case Instruction::SIToFP: 4044 case Instruction::UIToFP: 4045 case Instruction::Trunc: 4046 case Instruction::FPTrunc: 4047 case Instruction::BitCast: { 4048 auto *CI = dyn_cast<CastInst>(&I); 4049 setDebugLocFromInst(Builder, CI); 4050 4051 /// Vectorize casts. 4052 Type *DestTy = 4053 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4054 4055 for (unsigned Part = 0; Part < UF; ++Part) { 4056 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4057 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4058 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4059 addMetadata(Cast, &I); 4060 } 4061 break; 4062 } 4063 4064 case Instruction::Call: { 4065 // Ignore dbg intrinsics. 4066 if (isa<DbgInfoIntrinsic>(I)) 4067 break; 4068 setDebugLocFromInst(Builder, &I); 4069 4070 Module *M = I.getParent()->getParent()->getParent(); 4071 auto *CI = cast<CallInst>(&I); 4072 4073 StringRef FnName = CI->getCalledFunction()->getName(); 4074 Function *F = CI->getCalledFunction(); 4075 Type *RetTy = ToVectorTy(CI->getType(), VF); 4076 SmallVector<Type *, 4> Tys; 4077 for (Value *ArgOperand : CI->arg_operands()) 4078 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4079 4080 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4081 4082 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4083 // version of the instruction. 4084 // Is it beneficial to perform intrinsic call compared to lib call? 4085 bool NeedToScalarize; 4086 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4087 bool UseVectorIntrinsic = 4088 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4089 assert((UseVectorIntrinsic || !NeedToScalarize) && 4090 "Instruction should be scalarized elsewhere."); 4091 4092 for (unsigned Part = 0; Part < UF; ++Part) { 4093 SmallVector<Value *, 4> Args; 4094 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4095 Value *Arg = CI->getArgOperand(i); 4096 // Some intrinsics have a scalar argument - don't replace it with a 4097 // vector. 4098 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4099 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4100 Args.push_back(Arg); 4101 } 4102 4103 Function *VectorF; 4104 if (UseVectorIntrinsic) { 4105 // Use vector version of the intrinsic. 4106 Type *TysForDecl[] = {CI->getType()}; 4107 if (VF > 1) 4108 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4109 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4110 } else { 4111 // Use vector version of the library call. 4112 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4113 assert(!VFnName.empty() && "Vector function name is empty."); 4114 VectorF = M->getFunction(VFnName); 4115 if (!VectorF) { 4116 // Generate a declaration 4117 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4118 VectorF = 4119 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4120 VectorF->copyAttributesFrom(F); 4121 } 4122 } 4123 assert(VectorF && "Can't create vector function."); 4124 4125 SmallVector<OperandBundleDef, 1> OpBundles; 4126 CI->getOperandBundlesAsDefs(OpBundles); 4127 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4128 4129 if (isa<FPMathOperator>(V)) 4130 V->copyFastMathFlags(CI); 4131 4132 VectorLoopValueMap.setVectorValue(&I, Part, V); 4133 addMetadata(V, &I); 4134 } 4135 4136 break; 4137 } 4138 4139 default: 4140 // This instruction is not vectorized by simple widening. 4141 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4142 llvm_unreachable("Unhandled instruction!"); 4143 } // end of switch. 4144 } 4145 4146 void InnerLoopVectorizer::updateAnalysis() { 4147 // Forget the original basic block. 4148 PSE.getSE()->forgetLoop(OrigLoop); 4149 4150 // Update the dominator tree information. 4151 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4152 "Entry does not dominate exit."); 4153 4154 DT->addNewBlock(LoopMiddleBlock, 4155 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4156 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4157 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4158 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4159 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4160 } 4161 4162 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4163 // We should not collect Scalars more than once per VF. Right now, this 4164 // function is called from collectUniformsAndScalars(), which already does 4165 // this check. Collecting Scalars for VF=1 does not make any sense. 4166 assert(VF >= 2 && !Scalars.count(VF) && 4167 "This function should not be visited twice for the same VF"); 4168 4169 SmallSetVector<Instruction *, 8> Worklist; 4170 4171 // These sets are used to seed the analysis with pointers used by memory 4172 // accesses that will remain scalar. 4173 SmallSetVector<Instruction *, 8> ScalarPtrs; 4174 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4175 4176 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4177 // The pointer operands of loads and stores will be scalar as long as the 4178 // memory access is not a gather or scatter operation. The value operand of a 4179 // store will remain scalar if the store is scalarized. 4180 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4181 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4182 assert(WideningDecision != CM_Unknown && 4183 "Widening decision should be ready at this moment"); 4184 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4185 if (Ptr == Store->getValueOperand()) 4186 return WideningDecision == CM_Scalarize; 4187 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4188 "Ptr is neither a value or pointer operand"); 4189 return WideningDecision != CM_GatherScatter; 4190 }; 4191 4192 // A helper that returns true if the given value is a bitcast or 4193 // getelementptr instruction contained in the loop. 4194 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4195 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4196 isa<GetElementPtrInst>(V)) && 4197 !TheLoop->isLoopInvariant(V); 4198 }; 4199 4200 // A helper that evaluates a memory access's use of a pointer. If the use 4201 // will be a scalar use, and the pointer is only used by memory accesses, we 4202 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4203 // PossibleNonScalarPtrs. 4204 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4205 // We only care about bitcast and getelementptr instructions contained in 4206 // the loop. 4207 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4208 return; 4209 4210 // If the pointer has already been identified as scalar (e.g., if it was 4211 // also identified as uniform), there's nothing to do. 4212 auto *I = cast<Instruction>(Ptr); 4213 if (Worklist.count(I)) 4214 return; 4215 4216 // If the use of the pointer will be a scalar use, and all users of the 4217 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4218 // place the pointer in PossibleNonScalarPtrs. 4219 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4220 return isa<LoadInst>(U) || isa<StoreInst>(U); 4221 })) 4222 ScalarPtrs.insert(I); 4223 else 4224 PossibleNonScalarPtrs.insert(I); 4225 }; 4226 4227 // We seed the scalars analysis with three classes of instructions: (1) 4228 // instructions marked uniform-after-vectorization, (2) bitcast and 4229 // getelementptr instructions used by memory accesses requiring a scalar use, 4230 // and (3) pointer induction variables and their update instructions (we 4231 // currently only scalarize these). 4232 // 4233 // (1) Add to the worklist all instructions that have been identified as 4234 // uniform-after-vectorization. 4235 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4236 4237 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4238 // memory accesses requiring a scalar use. The pointer operands of loads and 4239 // stores will be scalar as long as the memory accesses is not a gather or 4240 // scatter operation. The value operand of a store will remain scalar if the 4241 // store is scalarized. 4242 for (auto *BB : TheLoop->blocks()) 4243 for (auto &I : *BB) { 4244 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4245 evaluatePtrUse(Load, Load->getPointerOperand()); 4246 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4247 evaluatePtrUse(Store, Store->getPointerOperand()); 4248 evaluatePtrUse(Store, Store->getValueOperand()); 4249 } 4250 } 4251 for (auto *I : ScalarPtrs) 4252 if (!PossibleNonScalarPtrs.count(I)) { 4253 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4254 Worklist.insert(I); 4255 } 4256 4257 // (3) Add to the worklist all pointer induction variables and their update 4258 // instructions. 4259 // 4260 // TODO: Once we are able to vectorize pointer induction variables we should 4261 // no longer insert them into the worklist here. 4262 auto *Latch = TheLoop->getLoopLatch(); 4263 for (auto &Induction : *Legal->getInductionVars()) { 4264 auto *Ind = Induction.first; 4265 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4266 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4267 continue; 4268 Worklist.insert(Ind); 4269 Worklist.insert(IndUpdate); 4270 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4271 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4272 << "\n"); 4273 } 4274 4275 // Insert the forced scalars. 4276 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4277 // induction variable when the PHI user is scalarized. 4278 if (ForcedScalars.count(VF)) 4279 for (auto *I : ForcedScalars.find(VF)->second) 4280 Worklist.insert(I); 4281 4282 // Expand the worklist by looking through any bitcasts and getelementptr 4283 // instructions we've already identified as scalar. This is similar to the 4284 // expansion step in collectLoopUniforms(); however, here we're only 4285 // expanding to include additional bitcasts and getelementptr instructions. 4286 unsigned Idx = 0; 4287 while (Idx != Worklist.size()) { 4288 Instruction *Dst = Worklist[Idx++]; 4289 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4290 continue; 4291 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4292 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4293 auto *J = cast<Instruction>(U); 4294 return !TheLoop->contains(J) || Worklist.count(J) || 4295 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4296 isScalarUse(J, Src)); 4297 })) { 4298 Worklist.insert(Src); 4299 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4300 } 4301 } 4302 4303 // An induction variable will remain scalar if all users of the induction 4304 // variable and induction variable update remain scalar. 4305 for (auto &Induction : *Legal->getInductionVars()) { 4306 auto *Ind = Induction.first; 4307 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4308 4309 // We already considered pointer induction variables, so there's no reason 4310 // to look at their users again. 4311 // 4312 // TODO: Once we are able to vectorize pointer induction variables we 4313 // should no longer skip over them here. 4314 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4315 continue; 4316 4317 // Determine if all users of the induction variable are scalar after 4318 // vectorization. 4319 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4320 auto *I = cast<Instruction>(U); 4321 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4322 }); 4323 if (!ScalarInd) 4324 continue; 4325 4326 // Determine if all users of the induction variable update instruction are 4327 // scalar after vectorization. 4328 auto ScalarIndUpdate = 4329 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4330 auto *I = cast<Instruction>(U); 4331 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4332 }); 4333 if (!ScalarIndUpdate) 4334 continue; 4335 4336 // The induction variable and its update instruction will remain scalar. 4337 Worklist.insert(Ind); 4338 Worklist.insert(IndUpdate); 4339 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4340 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4341 << "\n"); 4342 } 4343 4344 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4345 } 4346 4347 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) { 4348 if (!Legal->blockNeedsPredication(I->getParent())) 4349 return false; 4350 switch(I->getOpcode()) { 4351 default: 4352 break; 4353 case Instruction::Load: 4354 case Instruction::Store: { 4355 if (!Legal->isMaskRequired(I)) 4356 return false; 4357 auto *Ptr = getLoadStorePointerOperand(I); 4358 auto *Ty = getMemInstValueType(I); 4359 return isa<LoadInst>(I) ? 4360 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4361 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4362 } 4363 case Instruction::UDiv: 4364 case Instruction::SDiv: 4365 case Instruction::SRem: 4366 case Instruction::URem: 4367 return mayDivideByZero(*I); 4368 } 4369 return false; 4370 } 4371 4372 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4373 unsigned VF) { 4374 // Get and ensure we have a valid memory instruction. 4375 LoadInst *LI = dyn_cast<LoadInst>(I); 4376 StoreInst *SI = dyn_cast<StoreInst>(I); 4377 assert((LI || SI) && "Invalid memory instruction"); 4378 4379 auto *Ptr = getLoadStorePointerOperand(I); 4380 4381 // In order to be widened, the pointer should be consecutive, first of all. 4382 if (!Legal->isConsecutivePtr(Ptr)) 4383 return false; 4384 4385 // If the instruction is a store located in a predicated block, it will be 4386 // scalarized. 4387 if (isScalarWithPredication(I)) 4388 return false; 4389 4390 // If the instruction's allocated size doesn't equal it's type size, it 4391 // requires padding and will be scalarized. 4392 auto &DL = I->getModule()->getDataLayout(); 4393 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4394 if (hasIrregularType(ScalarTy, DL, VF)) 4395 return false; 4396 4397 return true; 4398 } 4399 4400 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4401 // We should not collect Uniforms more than once per VF. Right now, 4402 // this function is called from collectUniformsAndScalars(), which 4403 // already does this check. Collecting Uniforms for VF=1 does not make any 4404 // sense. 4405 4406 assert(VF >= 2 && !Uniforms.count(VF) && 4407 "This function should not be visited twice for the same VF"); 4408 4409 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4410 // not analyze again. Uniforms.count(VF) will return 1. 4411 Uniforms[VF].clear(); 4412 4413 // We now know that the loop is vectorizable! 4414 // Collect instructions inside the loop that will remain uniform after 4415 // vectorization. 4416 4417 // Global values, params and instructions outside of current loop are out of 4418 // scope. 4419 auto isOutOfScope = [&](Value *V) -> bool { 4420 Instruction *I = dyn_cast<Instruction>(V); 4421 return (!I || !TheLoop->contains(I)); 4422 }; 4423 4424 SetVector<Instruction *> Worklist; 4425 BasicBlock *Latch = TheLoop->getLoopLatch(); 4426 4427 // Start with the conditional branch. If the branch condition is an 4428 // instruction contained in the loop that is only used by the branch, it is 4429 // uniform. 4430 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4431 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4432 Worklist.insert(Cmp); 4433 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4434 } 4435 4436 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4437 // are pointers that are treated like consecutive pointers during 4438 // vectorization. The pointer operands of interleaved accesses are an 4439 // example. 4440 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4441 4442 // Holds pointer operands of instructions that are possibly non-uniform. 4443 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4444 4445 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4446 InstWidening WideningDecision = getWideningDecision(I, VF); 4447 assert(WideningDecision != CM_Unknown && 4448 "Widening decision should be ready at this moment"); 4449 4450 return (WideningDecision == CM_Widen || 4451 WideningDecision == CM_Widen_Reverse || 4452 WideningDecision == CM_Interleave); 4453 }; 4454 // Iterate over the instructions in the loop, and collect all 4455 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4456 // that a consecutive-like pointer operand will be scalarized, we collect it 4457 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4458 // getelementptr instruction can be used by both vectorized and scalarized 4459 // memory instructions. For example, if a loop loads and stores from the same 4460 // location, but the store is conditional, the store will be scalarized, and 4461 // the getelementptr won't remain uniform. 4462 for (auto *BB : TheLoop->blocks()) 4463 for (auto &I : *BB) { 4464 // If there's no pointer operand, there's nothing to do. 4465 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4466 if (!Ptr) 4467 continue; 4468 4469 // True if all users of Ptr are memory accesses that have Ptr as their 4470 // pointer operand. 4471 auto UsersAreMemAccesses = 4472 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4473 return getLoadStorePointerOperand(U) == Ptr; 4474 }); 4475 4476 // Ensure the memory instruction will not be scalarized or used by 4477 // gather/scatter, making its pointer operand non-uniform. If the pointer 4478 // operand is used by any instruction other than a memory access, we 4479 // conservatively assume the pointer operand may be non-uniform. 4480 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4481 PossibleNonUniformPtrs.insert(Ptr); 4482 4483 // If the memory instruction will be vectorized and its pointer operand 4484 // is consecutive-like, or interleaving - the pointer operand should 4485 // remain uniform. 4486 else 4487 ConsecutiveLikePtrs.insert(Ptr); 4488 } 4489 4490 // Add to the Worklist all consecutive and consecutive-like pointers that 4491 // aren't also identified as possibly non-uniform. 4492 for (auto *V : ConsecutiveLikePtrs) 4493 if (!PossibleNonUniformPtrs.count(V)) { 4494 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4495 Worklist.insert(V); 4496 } 4497 4498 // Expand Worklist in topological order: whenever a new instruction 4499 // is added , its users should be either already inside Worklist, or 4500 // out of scope. It ensures a uniform instruction will only be used 4501 // by uniform instructions or out of scope instructions. 4502 unsigned idx = 0; 4503 while (idx != Worklist.size()) { 4504 Instruction *I = Worklist[idx++]; 4505 4506 for (auto OV : I->operand_values()) { 4507 if (isOutOfScope(OV)) 4508 continue; 4509 auto *OI = cast<Instruction>(OV); 4510 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4511 auto *J = cast<Instruction>(U); 4512 return !TheLoop->contains(J) || Worklist.count(J) || 4513 (OI == getLoadStorePointerOperand(J) && 4514 isUniformDecision(J, VF)); 4515 })) { 4516 Worklist.insert(OI); 4517 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4518 } 4519 } 4520 } 4521 4522 // Returns true if Ptr is the pointer operand of a memory access instruction 4523 // I, and I is known to not require scalarization. 4524 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4525 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4526 }; 4527 4528 // For an instruction to be added into Worklist above, all its users inside 4529 // the loop should also be in Worklist. However, this condition cannot be 4530 // true for phi nodes that form a cyclic dependence. We must process phi 4531 // nodes separately. An induction variable will remain uniform if all users 4532 // of the induction variable and induction variable update remain uniform. 4533 // The code below handles both pointer and non-pointer induction variables. 4534 for (auto &Induction : *Legal->getInductionVars()) { 4535 auto *Ind = Induction.first; 4536 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4537 4538 // Determine if all users of the induction variable are uniform after 4539 // vectorization. 4540 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4541 auto *I = cast<Instruction>(U); 4542 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4543 isVectorizedMemAccessUse(I, Ind); 4544 }); 4545 if (!UniformInd) 4546 continue; 4547 4548 // Determine if all users of the induction variable update instruction are 4549 // uniform after vectorization. 4550 auto UniformIndUpdate = 4551 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4552 auto *I = cast<Instruction>(U); 4553 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4554 isVectorizedMemAccessUse(I, IndUpdate); 4555 }); 4556 if (!UniformIndUpdate) 4557 continue; 4558 4559 // The induction variable and its update instruction will remain uniform. 4560 Worklist.insert(Ind); 4561 Worklist.insert(IndUpdate); 4562 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4563 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4564 << "\n"); 4565 } 4566 4567 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4568 } 4569 4570 void InterleavedAccessInfo::collectConstStrideAccesses( 4571 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 4572 const ValueToValueMap &Strides) { 4573 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4574 4575 // Since it's desired that the load/store instructions be maintained in 4576 // "program order" for the interleaved access analysis, we have to visit the 4577 // blocks in the loop in reverse postorder (i.e., in a topological order). 4578 // Such an ordering will ensure that any load/store that may be executed 4579 // before a second load/store will precede the second load/store in 4580 // AccessStrideInfo. 4581 LoopBlocksDFS DFS(TheLoop); 4582 DFS.perform(LI); 4583 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 4584 for (auto &I : *BB) { 4585 auto *LI = dyn_cast<LoadInst>(&I); 4586 auto *SI = dyn_cast<StoreInst>(&I); 4587 if (!LI && !SI) 4588 continue; 4589 4590 Value *Ptr = getLoadStorePointerOperand(&I); 4591 // We don't check wrapping here because we don't know yet if Ptr will be 4592 // part of a full group or a group with gaps. Checking wrapping for all 4593 // pointers (even those that end up in groups with no gaps) will be overly 4594 // conservative. For full groups, wrapping should be ok since if we would 4595 // wrap around the address space we would do a memory access at nullptr 4596 // even without the transformation. The wrapping checks are therefore 4597 // deferred until after we've formed the interleaved groups. 4598 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 4599 /*Assume=*/true, /*ShouldCheckWrap=*/false); 4600 4601 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4602 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4603 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4604 4605 // An alignment of 0 means target ABI alignment. 4606 unsigned Align = getMemInstAlignment(&I); 4607 if (!Align) 4608 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4609 4610 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 4611 } 4612 } 4613 4614 // Analyze interleaved accesses and collect them into interleaved load and 4615 // store groups. 4616 // 4617 // When generating code for an interleaved load group, we effectively hoist all 4618 // loads in the group to the location of the first load in program order. When 4619 // generating code for an interleaved store group, we sink all stores to the 4620 // location of the last store. This code motion can change the order of load 4621 // and store instructions and may break dependences. 4622 // 4623 // The code generation strategy mentioned above ensures that we won't violate 4624 // any write-after-read (WAR) dependences. 4625 // 4626 // E.g., for the WAR dependence: a = A[i]; // (1) 4627 // A[i] = b; // (2) 4628 // 4629 // The store group of (2) is always inserted at or below (2), and the load 4630 // group of (1) is always inserted at or above (1). Thus, the instructions will 4631 // never be reordered. All other dependences are checked to ensure the 4632 // correctness of the instruction reordering. 4633 // 4634 // The algorithm visits all memory accesses in the loop in bottom-up program 4635 // order. Program order is established by traversing the blocks in the loop in 4636 // reverse postorder when collecting the accesses. 4637 // 4638 // We visit the memory accesses in bottom-up order because it can simplify the 4639 // construction of store groups in the presence of write-after-write (WAW) 4640 // dependences. 4641 // 4642 // E.g., for the WAW dependence: A[i] = a; // (1) 4643 // A[i] = b; // (2) 4644 // A[i + 1] = c; // (3) 4645 // 4646 // We will first create a store group with (3) and (2). (1) can't be added to 4647 // this group because it and (2) are dependent. However, (1) can be grouped 4648 // with other accesses that may precede it in program order. Note that a 4649 // bottom-up order does not imply that WAW dependences should not be checked. 4650 void InterleavedAccessInfo::analyzeInterleaving() { 4651 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4652 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 4653 4654 // Holds all accesses with a constant stride. 4655 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 4656 collectConstStrideAccesses(AccessStrideInfo, Strides); 4657 4658 if (AccessStrideInfo.empty()) 4659 return; 4660 4661 // Collect the dependences in the loop. 4662 collectDependences(); 4663 4664 // Holds all interleaved store groups temporarily. 4665 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4666 // Holds all interleaved load groups temporarily. 4667 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 4668 4669 // Search in bottom-up program order for pairs of accesses (A and B) that can 4670 // form interleaved load or store groups. In the algorithm below, access A 4671 // precedes access B in program order. We initialize a group for B in the 4672 // outer loop of the algorithm, and then in the inner loop, we attempt to 4673 // insert each A into B's group if: 4674 // 4675 // 1. A and B have the same stride, 4676 // 2. A and B have the same memory object size, and 4677 // 3. A belongs in B's group according to its distance from B. 4678 // 4679 // Special care is taken to ensure group formation will not break any 4680 // dependences. 4681 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 4682 BI != E; ++BI) { 4683 Instruction *B = BI->first; 4684 StrideDescriptor DesB = BI->second; 4685 4686 // Initialize a group for B if it has an allowable stride. Even if we don't 4687 // create a group for B, we continue with the bottom-up algorithm to ensure 4688 // we don't break any of B's dependences. 4689 InterleaveGroup *Group = nullptr; 4690 if (isStrided(DesB.Stride)) { 4691 Group = getInterleaveGroup(B); 4692 if (!Group) { 4693 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 4694 << '\n'); 4695 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 4696 } 4697 if (B->mayWriteToMemory()) 4698 StoreGroups.insert(Group); 4699 else 4700 LoadGroups.insert(Group); 4701 } 4702 4703 for (auto AI = std::next(BI); AI != E; ++AI) { 4704 Instruction *A = AI->first; 4705 StrideDescriptor DesA = AI->second; 4706 4707 // Our code motion strategy implies that we can't have dependences 4708 // between accesses in an interleaved group and other accesses located 4709 // between the first and last member of the group. Note that this also 4710 // means that a group can't have more than one member at a given offset. 4711 // The accesses in a group can have dependences with other accesses, but 4712 // we must ensure we don't extend the boundaries of the group such that 4713 // we encompass those dependent accesses. 4714 // 4715 // For example, assume we have the sequence of accesses shown below in a 4716 // stride-2 loop: 4717 // 4718 // (1, 2) is a group | A[i] = a; // (1) 4719 // | A[i-1] = b; // (2) | 4720 // A[i-3] = c; // (3) 4721 // A[i] = d; // (4) | (2, 4) is not a group 4722 // 4723 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 4724 // but not with (4). If we did, the dependent access (3) would be within 4725 // the boundaries of the (2, 4) group. 4726 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 4727 // If a dependence exists and A is already in a group, we know that A 4728 // must be a store since A precedes B and WAR dependences are allowed. 4729 // Thus, A would be sunk below B. We release A's group to prevent this 4730 // illegal code motion. A will then be free to form another group with 4731 // instructions that precede it. 4732 if (isInterleaved(A)) { 4733 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 4734 StoreGroups.remove(StoreGroup); 4735 releaseGroup(StoreGroup); 4736 } 4737 4738 // If a dependence exists and A is not already in a group (or it was 4739 // and we just released it), B might be hoisted above A (if B is a 4740 // load) or another store might be sunk below A (if B is a store). In 4741 // either case, we can't add additional instructions to B's group. B 4742 // will only form a group with instructions that it precedes. 4743 break; 4744 } 4745 4746 // At this point, we've checked for illegal code motion. If either A or B 4747 // isn't strided, there's nothing left to do. 4748 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 4749 continue; 4750 4751 // Ignore A if it's already in a group or isn't the same kind of memory 4752 // operation as B. 4753 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory 4754 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() 4755 // should have returned false - except for the case we asked for optimization 4756 // remarks. 4757 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) 4758 || (A->mayWriteToMemory() != B->mayWriteToMemory())) 4759 continue; 4760 4761 // Check rules 1 and 2. Ignore A if its stride or size is different from 4762 // that of B. 4763 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 4764 continue; 4765 4766 // Ignore A if the memory object of A and B don't belong to the same 4767 // address space 4768 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 4769 continue; 4770 4771 // Calculate the distance from A to B. 4772 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 4773 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 4774 if (!DistToB) 4775 continue; 4776 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 4777 4778 // Check rule 3. Ignore A if its distance to B is not a multiple of the 4779 // size. 4780 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 4781 continue; 4782 4783 // Ignore A if either A or B is in a predicated block. Although we 4784 // currently prevent group formation for predicated accesses, we may be 4785 // able to relax this limitation in the future once we handle more 4786 // complicated blocks. 4787 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 4788 continue; 4789 4790 // The index of A is the index of B plus A's distance to B in multiples 4791 // of the size. 4792 int IndexA = 4793 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 4794 4795 // Try to insert A into B's group. 4796 if (Group->insertMember(A, IndexA, DesA.Align)) { 4797 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 4798 << " into the interleave group with" << *B 4799 << '\n'); 4800 InterleaveGroupMap[A] = Group; 4801 4802 // Set the first load in program order as the insert position. 4803 if (A->mayReadFromMemory()) 4804 Group->setInsertPos(A); 4805 } 4806 } // Iteration over A accesses. 4807 } // Iteration over B accesses. 4808 4809 // Remove interleaved store groups with gaps. 4810 for (InterleaveGroup *Group : StoreGroups) 4811 if (Group->getNumMembers() != Group->getFactor()) { 4812 LLVM_DEBUG( 4813 dbgs() << "LV: Invalidate candidate interleaved store group due " 4814 "to gaps.\n"); 4815 releaseGroup(Group); 4816 } 4817 // Remove interleaved groups with gaps (currently only loads) whose memory 4818 // accesses may wrap around. We have to revisit the getPtrStride analysis, 4819 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 4820 // not check wrapping (see documentation there). 4821 // FORNOW we use Assume=false; 4822 // TODO: Change to Assume=true but making sure we don't exceed the threshold 4823 // of runtime SCEV assumptions checks (thereby potentially failing to 4824 // vectorize altogether). 4825 // Additional optional optimizations: 4826 // TODO: If we are peeling the loop and we know that the first pointer doesn't 4827 // wrap then we can deduce that all pointers in the group don't wrap. 4828 // This means that we can forcefully peel the loop in order to only have to 4829 // check the first pointer for no-wrap. When we'll change to use Assume=true 4830 // we'll only need at most one runtime check per interleaved group. 4831 for (InterleaveGroup *Group : LoadGroups) { 4832 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 4833 // load would wrap around the address space we would do a memory access at 4834 // nullptr even without the transformation. 4835 if (Group->getNumMembers() == Group->getFactor()) 4836 continue; 4837 4838 // Case 2: If first and last members of the group don't wrap this implies 4839 // that all the pointers in the group don't wrap. 4840 // So we check only group member 0 (which is always guaranteed to exist), 4841 // and group member Factor - 1; If the latter doesn't exist we rely on 4842 // peeling (if it is a non-reveresed accsess -- see Case 3). 4843 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 4844 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 4845 /*ShouldCheckWrap=*/true)) { 4846 LLVM_DEBUG( 4847 dbgs() << "LV: Invalidate candidate interleaved group due to " 4848 "first group member potentially pointer-wrapping.\n"); 4849 releaseGroup(Group); 4850 continue; 4851 } 4852 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 4853 if (LastMember) { 4854 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 4855 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 4856 /*ShouldCheckWrap=*/true)) { 4857 LLVM_DEBUG( 4858 dbgs() << "LV: Invalidate candidate interleaved group due to " 4859 "last group member potentially pointer-wrapping.\n"); 4860 releaseGroup(Group); 4861 } 4862 } else { 4863 // Case 3: A non-reversed interleaved load group with gaps: We need 4864 // to execute at least one scalar epilogue iteration. This will ensure 4865 // we don't speculatively access memory out-of-bounds. We only need 4866 // to look for a member at index factor - 1, since every group must have 4867 // a member at index zero. 4868 if (Group->isReverse()) { 4869 LLVM_DEBUG( 4870 dbgs() << "LV: Invalidate candidate interleaved group due to " 4871 "a reverse access with gaps.\n"); 4872 releaseGroup(Group); 4873 continue; 4874 } 4875 LLVM_DEBUG( 4876 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 4877 RequiresScalarEpilogue = true; 4878 } 4879 } 4880 } 4881 4882 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4883 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4884 // TODO: It may by useful to do since it's still likely to be dynamically 4885 // uniform if the target can skip. 4886 LLVM_DEBUG( 4887 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4888 4889 ORE->emit( 4890 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4891 << "runtime pointer checks needed. Not enabled for divergent target"); 4892 4893 return None; 4894 } 4895 4896 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4897 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4898 return computeFeasibleMaxVF(OptForSize, TC); 4899 4900 if (Legal->getRuntimePointerChecking()->Need) { 4901 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4902 << "runtime pointer checks needed. Enable vectorization of this " 4903 "loop with '#pragma clang loop vectorize(enable)' when " 4904 "compiling with -Os/-Oz"); 4905 LLVM_DEBUG( 4906 dbgs() 4907 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4908 return None; 4909 } 4910 4911 // If we optimize the program for size, avoid creating the tail loop. 4912 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4913 4914 // If we don't know the precise trip count, don't try to vectorize. 4915 if (TC < 2) { 4916 ORE->emit( 4917 createMissedAnalysis("UnknownLoopCountComplexCFG") 4918 << "unable to calculate the loop count due to complex control flow"); 4919 LLVM_DEBUG( 4920 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4921 return None; 4922 } 4923 4924 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4925 4926 if (TC % MaxVF != 0) { 4927 // If the trip count that we found modulo the vectorization factor is not 4928 // zero then we require a tail. 4929 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 4930 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 4931 // smaller MaxVF that does not require a scalar epilog. 4932 4933 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4934 << "cannot optimize for size and vectorize at the " 4935 "same time. Enable vectorization of this loop " 4936 "with '#pragma clang loop vectorize(enable)' " 4937 "when compiling with -Os/-Oz"); 4938 LLVM_DEBUG( 4939 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4940 return None; 4941 } 4942 4943 return MaxVF; 4944 } 4945 4946 unsigned 4947 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4948 unsigned ConstTripCount) { 4949 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4950 unsigned SmallestType, WidestType; 4951 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4952 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4953 4954 // Get the maximum safe dependence distance in bits computed by LAA. 4955 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4956 // the memory accesses that is most restrictive (involved in the smallest 4957 // dependence distance). 4958 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4959 4960 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4961 4962 unsigned MaxVectorSize = WidestRegister / WidestType; 4963 4964 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4965 << " / " << WidestType << " bits.\n"); 4966 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4967 << WidestRegister << " bits.\n"); 4968 4969 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4970 " into one vector!"); 4971 if (MaxVectorSize == 0) { 4972 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4973 MaxVectorSize = 1; 4974 return MaxVectorSize; 4975 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4976 isPowerOf2_32(ConstTripCount)) { 4977 // We need to clamp the VF to be the ConstTripCount. There is no point in 4978 // choosing a higher viable VF as done in the loop below. 4979 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4980 << ConstTripCount << "\n"); 4981 MaxVectorSize = ConstTripCount; 4982 return MaxVectorSize; 4983 } 4984 4985 unsigned MaxVF = MaxVectorSize; 4986 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4987 (MaximizeBandwidth && !OptForSize)) { 4988 // Collect all viable vectorization factors larger than the default MaxVF 4989 // (i.e. MaxVectorSize). 4990 SmallVector<unsigned, 8> VFs; 4991 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4992 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4993 VFs.push_back(VS); 4994 4995 // For each VF calculate its register usage. 4996 auto RUs = calculateRegisterUsage(VFs); 4997 4998 // Select the largest VF which doesn't require more registers than existing 4999 // ones. 5000 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5001 for (int i = RUs.size() - 1; i >= 0; --i) { 5002 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5003 MaxVF = VFs[i]; 5004 break; 5005 } 5006 } 5007 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5008 if (MaxVF < MinVF) { 5009 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5010 << ") with target's minimum: " << MinVF << '\n'); 5011 MaxVF = MinVF; 5012 } 5013 } 5014 } 5015 return MaxVF; 5016 } 5017 5018 VectorizationFactor 5019 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5020 float Cost = expectedCost(1).first; 5021 const float ScalarCost = Cost; 5022 unsigned Width = 1; 5023 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5024 5025 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5026 // Ignore scalar width, because the user explicitly wants vectorization. 5027 if (ForceVectorization && MaxVF > 1) { 5028 Width = 2; 5029 Cost = expectedCost(Width).first / (float)Width; 5030 } 5031 5032 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5033 // Notice that the vector loop needs to be executed less times, so 5034 // we need to divide the cost of the vector loops by the width of 5035 // the vector elements. 5036 VectorizationCostTy C = expectedCost(i); 5037 float VectorCost = C.first / (float)i; 5038 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5039 << " costs: " << (int)VectorCost << ".\n"); 5040 if (!C.second && !ForceVectorization) { 5041 LLVM_DEBUG( 5042 dbgs() << "LV: Not considering vector loop of width " << i 5043 << " because it will not generate any vector instructions.\n"); 5044 continue; 5045 } 5046 if (VectorCost < Cost) { 5047 Cost = VectorCost; 5048 Width = i; 5049 } 5050 } 5051 5052 if (!EnableCondStoresVectorization && NumPredStores) { 5053 ORE->emit(createMissedAnalysis("ConditionalStore") 5054 << "store that is conditionally executed prevents vectorization"); 5055 LLVM_DEBUG( 5056 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5057 Width = 1; 5058 Cost = ScalarCost; 5059 } 5060 5061 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5062 << "LV: Vectorization seems to be not beneficial, " 5063 << "but was forced by a user.\n"); 5064 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5065 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5066 return Factor; 5067 } 5068 5069 std::pair<unsigned, unsigned> 5070 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5071 unsigned MinWidth = -1U; 5072 unsigned MaxWidth = 8; 5073 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5074 5075 // For each block. 5076 for (BasicBlock *BB : TheLoop->blocks()) { 5077 // For each instruction in the loop. 5078 for (Instruction &I : *BB) { 5079 Type *T = I.getType(); 5080 5081 // Skip ignored values. 5082 if (ValuesToIgnore.count(&I)) 5083 continue; 5084 5085 // Only examine Loads, Stores and PHINodes. 5086 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5087 continue; 5088 5089 // Examine PHI nodes that are reduction variables. Update the type to 5090 // account for the recurrence type. 5091 if (auto *PN = dyn_cast<PHINode>(&I)) { 5092 if (!Legal->isReductionVariable(PN)) 5093 continue; 5094 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5095 T = RdxDesc.getRecurrenceType(); 5096 } 5097 5098 // Examine the stored values. 5099 if (auto *ST = dyn_cast<StoreInst>(&I)) 5100 T = ST->getValueOperand()->getType(); 5101 5102 // Ignore loaded pointer types and stored pointer types that are not 5103 // vectorizable. 5104 // 5105 // FIXME: The check here attempts to predict whether a load or store will 5106 // be vectorized. We only know this for certain after a VF has 5107 // been selected. Here, we assume that if an access can be 5108 // vectorized, it will be. We should also look at extending this 5109 // optimization to non-pointer types. 5110 // 5111 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5112 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5113 continue; 5114 5115 MinWidth = std::min(MinWidth, 5116 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5117 MaxWidth = std::max(MaxWidth, 5118 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5119 } 5120 } 5121 5122 return {MinWidth, MaxWidth}; 5123 } 5124 5125 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5126 unsigned VF, 5127 unsigned LoopCost) { 5128 // -- The interleave heuristics -- 5129 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5130 // There are many micro-architectural considerations that we can't predict 5131 // at this level. For example, frontend pressure (on decode or fetch) due to 5132 // code size, or the number and capabilities of the execution ports. 5133 // 5134 // We use the following heuristics to select the interleave count: 5135 // 1. If the code has reductions, then we interleave to break the cross 5136 // iteration dependency. 5137 // 2. If the loop is really small, then we interleave to reduce the loop 5138 // overhead. 5139 // 3. We don't interleave if we think that we will spill registers to memory 5140 // due to the increased register pressure. 5141 5142 // When we optimize for size, we don't interleave. 5143 if (OptForSize) 5144 return 1; 5145 5146 // We used the distance for the interleave count. 5147 if (Legal->getMaxSafeDepDistBytes() != -1U) 5148 return 1; 5149 5150 // Do not interleave loops with a relatively small trip count. 5151 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5152 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5153 return 1; 5154 5155 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5156 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5157 << " registers\n"); 5158 5159 if (VF == 1) { 5160 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5161 TargetNumRegisters = ForceTargetNumScalarRegs; 5162 } else { 5163 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5164 TargetNumRegisters = ForceTargetNumVectorRegs; 5165 } 5166 5167 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5168 // We divide by these constants so assume that we have at least one 5169 // instruction that uses at least one register. 5170 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5171 5172 // We calculate the interleave count using the following formula. 5173 // Subtract the number of loop invariants from the number of available 5174 // registers. These registers are used by all of the interleaved instances. 5175 // Next, divide the remaining registers by the number of registers that is 5176 // required by the loop, in order to estimate how many parallel instances 5177 // fit without causing spills. All of this is rounded down if necessary to be 5178 // a power of two. We want power of two interleave count to simplify any 5179 // addressing operations or alignment considerations. 5180 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5181 R.MaxLocalUsers); 5182 5183 // Don't count the induction variable as interleaved. 5184 if (EnableIndVarRegisterHeur) 5185 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5186 std::max(1U, (R.MaxLocalUsers - 1))); 5187 5188 // Clamp the interleave ranges to reasonable counts. 5189 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5190 5191 // Check if the user has overridden the max. 5192 if (VF == 1) { 5193 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5194 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5195 } else { 5196 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5197 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5198 } 5199 5200 // If we did not calculate the cost for VF (because the user selected the VF) 5201 // then we calculate the cost of VF here. 5202 if (LoopCost == 0) 5203 LoopCost = expectedCost(VF).first; 5204 5205 // Clamp the calculated IC to be between the 1 and the max interleave count 5206 // that the target allows. 5207 if (IC > MaxInterleaveCount) 5208 IC = MaxInterleaveCount; 5209 else if (IC < 1) 5210 IC = 1; 5211 5212 // Interleave if we vectorized this loop and there is a reduction that could 5213 // benefit from interleaving. 5214 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5215 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5216 return IC; 5217 } 5218 5219 // Note that if we've already vectorized the loop we will have done the 5220 // runtime check and so interleaving won't require further checks. 5221 bool InterleavingRequiresRuntimePointerCheck = 5222 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5223 5224 // We want to interleave small loops in order to reduce the loop overhead and 5225 // potentially expose ILP opportunities. 5226 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5227 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5228 // We assume that the cost overhead is 1 and we use the cost model 5229 // to estimate the cost of the loop and interleave until the cost of the 5230 // loop overhead is about 5% of the cost of the loop. 5231 unsigned SmallIC = 5232 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5233 5234 // Interleave until store/load ports (estimated by max interleave count) are 5235 // saturated. 5236 unsigned NumStores = Legal->getNumStores(); 5237 unsigned NumLoads = Legal->getNumLoads(); 5238 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5239 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5240 5241 // If we have a scalar reduction (vector reductions are already dealt with 5242 // by this point), we can increase the critical path length if the loop 5243 // we're interleaving is inside another loop. Limit, by default to 2, so the 5244 // critical path only gets increased by one reduction operation. 5245 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5246 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5247 SmallIC = std::min(SmallIC, F); 5248 StoresIC = std::min(StoresIC, F); 5249 LoadsIC = std::min(LoadsIC, F); 5250 } 5251 5252 if (EnableLoadStoreRuntimeInterleave && 5253 std::max(StoresIC, LoadsIC) > SmallIC) { 5254 LLVM_DEBUG( 5255 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5256 return std::max(StoresIC, LoadsIC); 5257 } 5258 5259 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5260 return SmallIC; 5261 } 5262 5263 // Interleave if this is a large loop (small loops are already dealt with by 5264 // this point) that could benefit from interleaving. 5265 bool HasReductions = !Legal->getReductionVars()->empty(); 5266 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5267 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5268 return IC; 5269 } 5270 5271 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5272 return 1; 5273 } 5274 5275 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5276 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5277 // This function calculates the register usage by measuring the highest number 5278 // of values that are alive at a single location. Obviously, this is a very 5279 // rough estimation. We scan the loop in a topological order in order and 5280 // assign a number to each instruction. We use RPO to ensure that defs are 5281 // met before their users. We assume that each instruction that has in-loop 5282 // users starts an interval. We record every time that an in-loop value is 5283 // used, so we have a list of the first and last occurrences of each 5284 // instruction. Next, we transpose this data structure into a multi map that 5285 // holds the list of intervals that *end* at a specific location. This multi 5286 // map allows us to perform a linear search. We scan the instructions linearly 5287 // and record each time that a new interval starts, by placing it in a set. 5288 // If we find this value in the multi-map then we remove it from the set. 5289 // The max register usage is the maximum size of the set. 5290 // We also search for instructions that are defined outside the loop, but are 5291 // used inside the loop. We need this number separately from the max-interval 5292 // usage number because when we unroll, loop-invariant values do not take 5293 // more register. 5294 LoopBlocksDFS DFS(TheLoop); 5295 DFS.perform(LI); 5296 5297 RegisterUsage RU; 5298 5299 // Each 'key' in the map opens a new interval. The values 5300 // of the map are the index of the 'last seen' usage of the 5301 // instruction that is the key. 5302 using IntervalMap = DenseMap<Instruction *, unsigned>; 5303 5304 // Maps instruction to its index. 5305 DenseMap<unsigned, Instruction *> IdxToInstr; 5306 // Marks the end of each interval. 5307 IntervalMap EndPoint; 5308 // Saves the list of instruction indices that are used in the loop. 5309 SmallSet<Instruction *, 8> Ends; 5310 // Saves the list of values that are used in the loop but are 5311 // defined outside the loop, such as arguments and constants. 5312 SmallPtrSet<Value *, 8> LoopInvariants; 5313 5314 unsigned Index = 0; 5315 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5316 for (Instruction &I : *BB) { 5317 IdxToInstr[Index++] = &I; 5318 5319 // Save the end location of each USE. 5320 for (Value *U : I.operands()) { 5321 auto *Instr = dyn_cast<Instruction>(U); 5322 5323 // Ignore non-instruction values such as arguments, constants, etc. 5324 if (!Instr) 5325 continue; 5326 5327 // If this instruction is outside the loop then record it and continue. 5328 if (!TheLoop->contains(Instr)) { 5329 LoopInvariants.insert(Instr); 5330 continue; 5331 } 5332 5333 // Overwrite previous end points. 5334 EndPoint[Instr] = Index; 5335 Ends.insert(Instr); 5336 } 5337 } 5338 } 5339 5340 // Saves the list of intervals that end with the index in 'key'. 5341 using InstrList = SmallVector<Instruction *, 2>; 5342 DenseMap<unsigned, InstrList> TransposeEnds; 5343 5344 // Transpose the EndPoints to a list of values that end at each index. 5345 for (auto &Interval : EndPoint) 5346 TransposeEnds[Interval.second].push_back(Interval.first); 5347 5348 SmallSet<Instruction *, 8> OpenIntervals; 5349 5350 // Get the size of the widest register. 5351 unsigned MaxSafeDepDist = -1U; 5352 if (Legal->getMaxSafeDepDistBytes() != -1U) 5353 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5354 unsigned WidestRegister = 5355 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5356 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5357 5358 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5359 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5360 5361 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5362 5363 // A lambda that gets the register usage for the given type and VF. 5364 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5365 if (Ty->isTokenTy()) 5366 return 0U; 5367 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5368 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5369 }; 5370 5371 for (unsigned int i = 0; i < Index; ++i) { 5372 Instruction *I = IdxToInstr[i]; 5373 5374 // Remove all of the instructions that end at this location. 5375 InstrList &List = TransposeEnds[i]; 5376 for (Instruction *ToRemove : List) 5377 OpenIntervals.erase(ToRemove); 5378 5379 // Ignore instructions that are never used within the loop. 5380 if (!Ends.count(I)) 5381 continue; 5382 5383 // Skip ignored values. 5384 if (ValuesToIgnore.count(I)) 5385 continue; 5386 5387 // For each VF find the maximum usage of registers. 5388 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5389 if (VFs[j] == 1) { 5390 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5391 continue; 5392 } 5393 collectUniformsAndScalars(VFs[j]); 5394 // Count the number of live intervals. 5395 unsigned RegUsage = 0; 5396 for (auto Inst : OpenIntervals) { 5397 // Skip ignored values for VF > 1. 5398 if (VecValuesToIgnore.count(Inst) || 5399 isScalarAfterVectorization(Inst, VFs[j])) 5400 continue; 5401 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5402 } 5403 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5404 } 5405 5406 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5407 << OpenIntervals.size() << '\n'); 5408 5409 // Add the current instruction to the list of open intervals. 5410 OpenIntervals.insert(I); 5411 } 5412 5413 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5414 unsigned Invariant = 0; 5415 if (VFs[i] == 1) 5416 Invariant = LoopInvariants.size(); 5417 else { 5418 for (auto Inst : LoopInvariants) 5419 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5420 } 5421 5422 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5423 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5424 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5425 << '\n'); 5426 5427 RU.LoopInvariantRegs = Invariant; 5428 RU.MaxLocalUsers = MaxUsages[i]; 5429 RUs[i] = RU; 5430 } 5431 5432 return RUs; 5433 } 5434 5435 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5436 // TODO: Cost model for emulated masked load/store is completely 5437 // broken. This hack guides the cost model to use an artificially 5438 // high enough value to practically disable vectorization with such 5439 // operations, except where previously deployed legality hack allowed 5440 // using very low cost values. This is to avoid regressions coming simply 5441 // from moving "masked load/store" check from legality to cost model. 5442 // Masked Load/Gather emulation was previously never allowed. 5443 // Limited number of Masked Store/Scatter emulation was allowed. 5444 assert(isScalarWithPredication(I) && 5445 "Expecting a scalar emulated instruction"); 5446 return isa<LoadInst>(I) || 5447 (isa<StoreInst>(I) && 5448 NumPredStores > NumberOfStoresToPredicate); 5449 } 5450 5451 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5452 // If we aren't vectorizing the loop, or if we've already collected the 5453 // instructions to scalarize, there's nothing to do. Collection may already 5454 // have occurred if we have a user-selected VF and are now computing the 5455 // expected cost for interleaving. 5456 if (VF < 2 || InstsToScalarize.count(VF)) 5457 return; 5458 5459 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5460 // not profitable to scalarize any instructions, the presence of VF in the 5461 // map will indicate that we've analyzed it already. 5462 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5463 5464 // Find all the instructions that are scalar with predication in the loop and 5465 // determine if it would be better to not if-convert the blocks they are in. 5466 // If so, we also record the instructions to scalarize. 5467 for (BasicBlock *BB : TheLoop->blocks()) { 5468 if (!Legal->blockNeedsPredication(BB)) 5469 continue; 5470 for (Instruction &I : *BB) 5471 if (isScalarWithPredication(&I)) { 5472 ScalarCostsTy ScalarCosts; 5473 // Do not apply discount logic if hacked cost is needed 5474 // for emulated masked memrefs. 5475 if (!useEmulatedMaskMemRefHack(&I) && 5476 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5477 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5478 // Remember that BB will remain after vectorization. 5479 PredicatedBBsAfterVectorization.insert(BB); 5480 } 5481 } 5482 } 5483 5484 int LoopVectorizationCostModel::computePredInstDiscount( 5485 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5486 unsigned VF) { 5487 assert(!isUniformAfterVectorization(PredInst, VF) && 5488 "Instruction marked uniform-after-vectorization will be predicated"); 5489 5490 // Initialize the discount to zero, meaning that the scalar version and the 5491 // vector version cost the same. 5492 int Discount = 0; 5493 5494 // Holds instructions to analyze. The instructions we visit are mapped in 5495 // ScalarCosts. Those instructions are the ones that would be scalarized if 5496 // we find that the scalar version costs less. 5497 SmallVector<Instruction *, 8> Worklist; 5498 5499 // Returns true if the given instruction can be scalarized. 5500 auto canBeScalarized = [&](Instruction *I) -> bool { 5501 // We only attempt to scalarize instructions forming a single-use chain 5502 // from the original predicated block that would otherwise be vectorized. 5503 // Although not strictly necessary, we give up on instructions we know will 5504 // already be scalar to avoid traversing chains that are unlikely to be 5505 // beneficial. 5506 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5507 isScalarAfterVectorization(I, VF)) 5508 return false; 5509 5510 // If the instruction is scalar with predication, it will be analyzed 5511 // separately. We ignore it within the context of PredInst. 5512 if (isScalarWithPredication(I)) 5513 return false; 5514 5515 // If any of the instruction's operands are uniform after vectorization, 5516 // the instruction cannot be scalarized. This prevents, for example, a 5517 // masked load from being scalarized. 5518 // 5519 // We assume we will only emit a value for lane zero of an instruction 5520 // marked uniform after vectorization, rather than VF identical values. 5521 // Thus, if we scalarize an instruction that uses a uniform, we would 5522 // create uses of values corresponding to the lanes we aren't emitting code 5523 // for. This behavior can be changed by allowing getScalarValue to clone 5524 // the lane zero values for uniforms rather than asserting. 5525 for (Use &U : I->operands()) 5526 if (auto *J = dyn_cast<Instruction>(U.get())) 5527 if (isUniformAfterVectorization(J, VF)) 5528 return false; 5529 5530 // Otherwise, we can scalarize the instruction. 5531 return true; 5532 }; 5533 5534 // Returns true if an operand that cannot be scalarized must be extracted 5535 // from a vector. We will account for this scalarization overhead below. Note 5536 // that the non-void predicated instructions are placed in their own blocks, 5537 // and their return values are inserted into vectors. Thus, an extract would 5538 // still be required. 5539 auto needsExtract = [&](Instruction *I) -> bool { 5540 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5541 }; 5542 5543 // Compute the expected cost discount from scalarizing the entire expression 5544 // feeding the predicated instruction. We currently only consider expressions 5545 // that are single-use instruction chains. 5546 Worklist.push_back(PredInst); 5547 while (!Worklist.empty()) { 5548 Instruction *I = Worklist.pop_back_val(); 5549 5550 // If we've already analyzed the instruction, there's nothing to do. 5551 if (ScalarCosts.count(I)) 5552 continue; 5553 5554 // Compute the cost of the vector instruction. Note that this cost already 5555 // includes the scalarization overhead of the predicated instruction. 5556 unsigned VectorCost = getInstructionCost(I, VF).first; 5557 5558 // Compute the cost of the scalarized instruction. This cost is the cost of 5559 // the instruction as if it wasn't if-converted and instead remained in the 5560 // predicated block. We will scale this cost by block probability after 5561 // computing the scalarization overhead. 5562 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5563 5564 // Compute the scalarization overhead of needed insertelement instructions 5565 // and phi nodes. 5566 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5567 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5568 true, false); 5569 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5570 } 5571 5572 // Compute the scalarization overhead of needed extractelement 5573 // instructions. For each of the instruction's operands, if the operand can 5574 // be scalarized, add it to the worklist; otherwise, account for the 5575 // overhead. 5576 for (Use &U : I->operands()) 5577 if (auto *J = dyn_cast<Instruction>(U.get())) { 5578 assert(VectorType::isValidElementType(J->getType()) && 5579 "Instruction has non-scalar type"); 5580 if (canBeScalarized(J)) 5581 Worklist.push_back(J); 5582 else if (needsExtract(J)) 5583 ScalarCost += TTI.getScalarizationOverhead( 5584 ToVectorTy(J->getType(),VF), false, true); 5585 } 5586 5587 // Scale the total scalar cost by block probability. 5588 ScalarCost /= getReciprocalPredBlockProb(); 5589 5590 // Compute the discount. A non-negative discount means the vector version 5591 // of the instruction costs more, and scalarizing would be beneficial. 5592 Discount += VectorCost - ScalarCost; 5593 ScalarCosts[I] = ScalarCost; 5594 } 5595 5596 return Discount; 5597 } 5598 5599 LoopVectorizationCostModel::VectorizationCostTy 5600 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5601 VectorizationCostTy Cost; 5602 5603 // For each block. 5604 for (BasicBlock *BB : TheLoop->blocks()) { 5605 VectorizationCostTy BlockCost; 5606 5607 // For each instruction in the old loop. 5608 for (Instruction &I : BB->instructionsWithoutDebug()) { 5609 // Skip ignored values. 5610 if (ValuesToIgnore.count(&I) || 5611 (VF > 1 && VecValuesToIgnore.count(&I))) 5612 continue; 5613 5614 VectorizationCostTy C = getInstructionCost(&I, VF); 5615 5616 // Check if we should override the cost. 5617 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5618 C.first = ForceTargetInstructionCost; 5619 5620 BlockCost.first += C.first; 5621 BlockCost.second |= C.second; 5622 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5623 << " for VF " << VF << " For instruction: " << I 5624 << '\n'); 5625 } 5626 5627 // If we are vectorizing a predicated block, it will have been 5628 // if-converted. This means that the block's instructions (aside from 5629 // stores and instructions that may divide by zero) will now be 5630 // unconditionally executed. For the scalar case, we may not always execute 5631 // the predicated block. Thus, scale the block's cost by the probability of 5632 // executing it. 5633 if (VF == 1 && Legal->blockNeedsPredication(BB)) 5634 BlockCost.first /= getReciprocalPredBlockProb(); 5635 5636 Cost.first += BlockCost.first; 5637 Cost.second |= BlockCost.second; 5638 } 5639 5640 return Cost; 5641 } 5642 5643 /// Gets Address Access SCEV after verifying that the access pattern 5644 /// is loop invariant except the induction variable dependence. 5645 /// 5646 /// This SCEV can be sent to the Target in order to estimate the address 5647 /// calculation cost. 5648 static const SCEV *getAddressAccessSCEV( 5649 Value *Ptr, 5650 LoopVectorizationLegality *Legal, 5651 PredicatedScalarEvolution &PSE, 5652 const Loop *TheLoop) { 5653 5654 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5655 if (!Gep) 5656 return nullptr; 5657 5658 // We are looking for a gep with all loop invariant indices except for one 5659 // which should be an induction variable. 5660 auto SE = PSE.getSE(); 5661 unsigned NumOperands = Gep->getNumOperands(); 5662 for (unsigned i = 1; i < NumOperands; ++i) { 5663 Value *Opd = Gep->getOperand(i); 5664 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5665 !Legal->isInductionVariable(Opd)) 5666 return nullptr; 5667 } 5668 5669 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5670 return PSE.getSCEV(Ptr); 5671 } 5672 5673 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5674 return Legal->hasStride(I->getOperand(0)) || 5675 Legal->hasStride(I->getOperand(1)); 5676 } 5677 5678 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5679 unsigned VF) { 5680 Type *ValTy = getMemInstValueType(I); 5681 auto SE = PSE.getSE(); 5682 5683 unsigned Alignment = getMemInstAlignment(I); 5684 unsigned AS = getMemInstAddressSpace(I); 5685 Value *Ptr = getLoadStorePointerOperand(I); 5686 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5687 5688 // Figure out whether the access is strided and get the stride value 5689 // if it's known in compile time 5690 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5691 5692 // Get the cost of the scalar memory instruction and address computation. 5693 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5694 5695 Cost += VF * 5696 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5697 AS, I); 5698 5699 // Get the overhead of the extractelement and insertelement instructions 5700 // we might create due to scalarization. 5701 Cost += getScalarizationOverhead(I, VF, TTI); 5702 5703 // If we have a predicated store, it may not be executed for each vector 5704 // lane. Scale the cost by the probability of executing the predicated 5705 // block. 5706 if (isScalarWithPredication(I)) { 5707 Cost /= getReciprocalPredBlockProb(); 5708 5709 if (useEmulatedMaskMemRefHack(I)) 5710 // Artificially setting to a high enough value to practically disable 5711 // vectorization with such operations. 5712 Cost = 3000000; 5713 } 5714 5715 return Cost; 5716 } 5717 5718 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5719 unsigned VF) { 5720 Type *ValTy = getMemInstValueType(I); 5721 Type *VectorTy = ToVectorTy(ValTy, VF); 5722 unsigned Alignment = getMemInstAlignment(I); 5723 Value *Ptr = getLoadStorePointerOperand(I); 5724 unsigned AS = getMemInstAddressSpace(I); 5725 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5726 5727 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5728 "Stride should be 1 or -1 for consecutive memory access"); 5729 unsigned Cost = 0; 5730 if (Legal->isMaskRequired(I)) 5731 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5732 else 5733 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5734 5735 bool Reverse = ConsecutiveStride < 0; 5736 if (Reverse) 5737 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5738 return Cost; 5739 } 5740 5741 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5742 unsigned VF) { 5743 LoadInst *LI = cast<LoadInst>(I); 5744 Type *ValTy = LI->getType(); 5745 Type *VectorTy = ToVectorTy(ValTy, VF); 5746 unsigned Alignment = LI->getAlignment(); 5747 unsigned AS = LI->getPointerAddressSpace(); 5748 5749 return TTI.getAddressComputationCost(ValTy) + 5750 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5751 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5752 } 5753 5754 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5755 unsigned VF) { 5756 Type *ValTy = getMemInstValueType(I); 5757 Type *VectorTy = ToVectorTy(ValTy, VF); 5758 unsigned Alignment = getMemInstAlignment(I); 5759 Value *Ptr = getLoadStorePointerOperand(I); 5760 5761 return TTI.getAddressComputationCost(VectorTy) + 5762 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5763 Legal->isMaskRequired(I), Alignment); 5764 } 5765 5766 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5767 unsigned VF) { 5768 Type *ValTy = getMemInstValueType(I); 5769 Type *VectorTy = ToVectorTy(ValTy, VF); 5770 unsigned AS = getMemInstAddressSpace(I); 5771 5772 auto Group = getInterleavedAccessGroup(I); 5773 assert(Group && "Fail to get an interleaved access group."); 5774 5775 unsigned InterleaveFactor = Group->getFactor(); 5776 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5777 5778 // Holds the indices of existing members in an interleaved load group. 5779 // An interleaved store group doesn't need this as it doesn't allow gaps. 5780 SmallVector<unsigned, 4> Indices; 5781 if (isa<LoadInst>(I)) { 5782 for (unsigned i = 0; i < InterleaveFactor; i++) 5783 if (Group->getMember(i)) 5784 Indices.push_back(i); 5785 } 5786 5787 // Calculate the cost of the whole interleaved group. 5788 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 5789 Group->getFactor(), Indices, 5790 Group->getAlignment(), AS); 5791 5792 if (Group->isReverse()) 5793 Cost += Group->getNumMembers() * 5794 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5795 return Cost; 5796 } 5797 5798 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5799 unsigned VF) { 5800 // Calculate scalar cost only. Vectorization cost should be ready at this 5801 // moment. 5802 if (VF == 1) { 5803 Type *ValTy = getMemInstValueType(I); 5804 unsigned Alignment = getMemInstAlignment(I); 5805 unsigned AS = getMemInstAddressSpace(I); 5806 5807 return TTI.getAddressComputationCost(ValTy) + 5808 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5809 } 5810 return getWideningCost(I, VF); 5811 } 5812 5813 LoopVectorizationCostModel::VectorizationCostTy 5814 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5815 // If we know that this instruction will remain uniform, check the cost of 5816 // the scalar version. 5817 if (isUniformAfterVectorization(I, VF)) 5818 VF = 1; 5819 5820 if (VF > 1 && isProfitableToScalarize(I, VF)) 5821 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5822 5823 // Forced scalars do not have any scalarization overhead. 5824 if (VF > 1 && ForcedScalars.count(VF) && 5825 ForcedScalars.find(VF)->second.count(I)) 5826 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5827 5828 Type *VectorTy; 5829 unsigned C = getInstructionCost(I, VF, VectorTy); 5830 5831 bool TypeNotScalarized = 5832 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5833 return VectorizationCostTy(C, TypeNotScalarized); 5834 } 5835 5836 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5837 if (VF == 1) 5838 return; 5839 NumPredStores = 0; 5840 for (BasicBlock *BB : TheLoop->blocks()) { 5841 // For each instruction in the old loop. 5842 for (Instruction &I : *BB) { 5843 Value *Ptr = getLoadStorePointerOperand(&I); 5844 if (!Ptr) 5845 continue; 5846 5847 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5848 NumPredStores++; 5849 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 5850 // Scalar load + broadcast 5851 unsigned Cost = getUniformMemOpCost(&I, VF); 5852 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5853 continue; 5854 } 5855 5856 // We assume that widening is the best solution when possible. 5857 if (memoryInstructionCanBeWidened(&I, VF)) { 5858 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5859 int ConsecutiveStride = 5860 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5861 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5862 "Expected consecutive stride."); 5863 InstWidening Decision = 5864 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5865 setWideningDecision(&I, VF, Decision, Cost); 5866 continue; 5867 } 5868 5869 // Choose between Interleaving, Gather/Scatter or Scalarization. 5870 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5871 unsigned NumAccesses = 1; 5872 if (isAccessInterleaved(&I)) { 5873 auto Group = getInterleavedAccessGroup(&I); 5874 assert(Group && "Fail to get an interleaved access group."); 5875 5876 // Make one decision for the whole group. 5877 if (getWideningDecision(&I, VF) != CM_Unknown) 5878 continue; 5879 5880 NumAccesses = Group->getNumMembers(); 5881 InterleaveCost = getInterleaveGroupCost(&I, VF); 5882 } 5883 5884 unsigned GatherScatterCost = 5885 isLegalGatherOrScatter(&I) 5886 ? getGatherScatterCost(&I, VF) * NumAccesses 5887 : std::numeric_limits<unsigned>::max(); 5888 5889 unsigned ScalarizationCost = 5890 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5891 5892 // Choose better solution for the current VF, 5893 // write down this decision and use it during vectorization. 5894 unsigned Cost; 5895 InstWidening Decision; 5896 if (InterleaveCost <= GatherScatterCost && 5897 InterleaveCost < ScalarizationCost) { 5898 Decision = CM_Interleave; 5899 Cost = InterleaveCost; 5900 } else if (GatherScatterCost < ScalarizationCost) { 5901 Decision = CM_GatherScatter; 5902 Cost = GatherScatterCost; 5903 } else { 5904 Decision = CM_Scalarize; 5905 Cost = ScalarizationCost; 5906 } 5907 // If the instructions belongs to an interleave group, the whole group 5908 // receives the same decision. The whole group receives the cost, but 5909 // the cost will actually be assigned to one instruction. 5910 if (auto Group = getInterleavedAccessGroup(&I)) 5911 setWideningDecision(Group, VF, Decision, Cost); 5912 else 5913 setWideningDecision(&I, VF, Decision, Cost); 5914 } 5915 } 5916 5917 // Make sure that any load of address and any other address computation 5918 // remains scalar unless there is gather/scatter support. This avoids 5919 // inevitable extracts into address registers, and also has the benefit of 5920 // activating LSR more, since that pass can't optimize vectorized 5921 // addresses. 5922 if (TTI.prefersVectorizedAddressing()) 5923 return; 5924 5925 // Start with all scalar pointer uses. 5926 SmallPtrSet<Instruction *, 8> AddrDefs; 5927 for (BasicBlock *BB : TheLoop->blocks()) 5928 for (Instruction &I : *BB) { 5929 Instruction *PtrDef = 5930 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5931 if (PtrDef && TheLoop->contains(PtrDef) && 5932 getWideningDecision(&I, VF) != CM_GatherScatter) 5933 AddrDefs.insert(PtrDef); 5934 } 5935 5936 // Add all instructions used to generate the addresses. 5937 SmallVector<Instruction *, 4> Worklist; 5938 for (auto *I : AddrDefs) 5939 Worklist.push_back(I); 5940 while (!Worklist.empty()) { 5941 Instruction *I = Worklist.pop_back_val(); 5942 for (auto &Op : I->operands()) 5943 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5944 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5945 AddrDefs.insert(InstOp).second) 5946 Worklist.push_back(InstOp); 5947 } 5948 5949 for (auto *I : AddrDefs) { 5950 if (isa<LoadInst>(I)) { 5951 // Setting the desired widening decision should ideally be handled in 5952 // by cost functions, but since this involves the task of finding out 5953 // if the loaded register is involved in an address computation, it is 5954 // instead changed here when we know this is the case. 5955 InstWidening Decision = getWideningDecision(I, VF); 5956 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5957 // Scalarize a widened load of address. 5958 setWideningDecision(I, VF, CM_Scalarize, 5959 (VF * getMemoryInstructionCost(I, 1))); 5960 else if (auto Group = getInterleavedAccessGroup(I)) { 5961 // Scalarize an interleave group of address loads. 5962 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5963 if (Instruction *Member = Group->getMember(I)) 5964 setWideningDecision(Member, VF, CM_Scalarize, 5965 (VF * getMemoryInstructionCost(Member, 1))); 5966 } 5967 } 5968 } else 5969 // Make sure I gets scalarized and a cost estimate without 5970 // scalarization overhead. 5971 ForcedScalars[VF].insert(I); 5972 } 5973 } 5974 5975 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5976 unsigned VF, 5977 Type *&VectorTy) { 5978 Type *RetTy = I->getType(); 5979 if (canTruncateToMinimalBitwidth(I, VF)) 5980 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5981 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5982 auto SE = PSE.getSE(); 5983 5984 // TODO: We need to estimate the cost of intrinsic calls. 5985 switch (I->getOpcode()) { 5986 case Instruction::GetElementPtr: 5987 // We mark this instruction as zero-cost because the cost of GEPs in 5988 // vectorized code depends on whether the corresponding memory instruction 5989 // is scalarized or not. Therefore, we handle GEPs with the memory 5990 // instruction cost. 5991 return 0; 5992 case Instruction::Br: { 5993 // In cases of scalarized and predicated instructions, there will be VF 5994 // predicated blocks in the vectorized loop. Each branch around these 5995 // blocks requires also an extract of its vector compare i1 element. 5996 bool ScalarPredicatedBB = false; 5997 BranchInst *BI = cast<BranchInst>(I); 5998 if (VF > 1 && BI->isConditional() && 5999 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6000 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6001 ScalarPredicatedBB = true; 6002 6003 if (ScalarPredicatedBB) { 6004 // Return cost for branches around scalarized and predicated blocks. 6005 Type *Vec_i1Ty = 6006 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6007 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6008 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6009 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6010 // The back-edge branch will remain, as will all scalar branches. 6011 return TTI.getCFInstrCost(Instruction::Br); 6012 else 6013 // This branch will be eliminated by if-conversion. 6014 return 0; 6015 // Note: We currently assume zero cost for an unconditional branch inside 6016 // a predicated block since it will become a fall-through, although we 6017 // may decide in the future to call TTI for all branches. 6018 } 6019 case Instruction::PHI: { 6020 auto *Phi = cast<PHINode>(I); 6021 6022 // First-order recurrences are replaced by vector shuffles inside the loop. 6023 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6024 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6025 VectorTy, VF - 1, VectorTy); 6026 6027 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6028 // converted into select instructions. We require N - 1 selects per phi 6029 // node, where N is the number of incoming values. 6030 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6031 return (Phi->getNumIncomingValues() - 1) * 6032 TTI.getCmpSelInstrCost( 6033 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6034 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6035 6036 return TTI.getCFInstrCost(Instruction::PHI); 6037 } 6038 case Instruction::UDiv: 6039 case Instruction::SDiv: 6040 case Instruction::URem: 6041 case Instruction::SRem: 6042 // If we have a predicated instruction, it may not be executed for each 6043 // vector lane. Get the scalarization cost and scale this amount by the 6044 // probability of executing the predicated block. If the instruction is not 6045 // predicated, we fall through to the next case. 6046 if (VF > 1 && isScalarWithPredication(I)) { 6047 unsigned Cost = 0; 6048 6049 // These instructions have a non-void type, so account for the phi nodes 6050 // that we will create. This cost is likely to be zero. The phi node 6051 // cost, if any, should be scaled by the block probability because it 6052 // models a copy at the end of each predicated block. 6053 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6054 6055 // The cost of the non-predicated instruction. 6056 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6057 6058 // The cost of insertelement and extractelement instructions needed for 6059 // scalarization. 6060 Cost += getScalarizationOverhead(I, VF, TTI); 6061 6062 // Scale the cost by the probability of executing the predicated blocks. 6063 // This assumes the predicated block for each vector lane is equally 6064 // likely. 6065 return Cost / getReciprocalPredBlockProb(); 6066 } 6067 LLVM_FALLTHROUGH; 6068 case Instruction::Add: 6069 case Instruction::FAdd: 6070 case Instruction::Sub: 6071 case Instruction::FSub: 6072 case Instruction::Mul: 6073 case Instruction::FMul: 6074 case Instruction::FDiv: 6075 case Instruction::FRem: 6076 case Instruction::Shl: 6077 case Instruction::LShr: 6078 case Instruction::AShr: 6079 case Instruction::And: 6080 case Instruction::Or: 6081 case Instruction::Xor: { 6082 // Since we will replace the stride by 1 the multiplication should go away. 6083 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6084 return 0; 6085 // Certain instructions can be cheaper to vectorize if they have a constant 6086 // second vector operand. One example of this are shifts on x86. 6087 TargetTransformInfo::OperandValueKind Op1VK = 6088 TargetTransformInfo::OK_AnyValue; 6089 TargetTransformInfo::OperandValueKind Op2VK = 6090 TargetTransformInfo::OK_AnyValue; 6091 TargetTransformInfo::OperandValueProperties Op1VP = 6092 TargetTransformInfo::OP_None; 6093 TargetTransformInfo::OperandValueProperties Op2VP = 6094 TargetTransformInfo::OP_None; 6095 Value *Op2 = I->getOperand(1); 6096 6097 // Check for a splat or for a non uniform vector of constants. 6098 if (isa<ConstantInt>(Op2)) { 6099 ConstantInt *CInt = cast<ConstantInt>(Op2); 6100 if (CInt && CInt->getValue().isPowerOf2()) 6101 Op2VP = TargetTransformInfo::OP_PowerOf2; 6102 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6103 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6104 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6105 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6106 if (SplatValue) { 6107 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6108 if (CInt && CInt->getValue().isPowerOf2()) 6109 Op2VP = TargetTransformInfo::OP_PowerOf2; 6110 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6111 } 6112 } else if (Legal->isUniform(Op2)) { 6113 Op2VK = TargetTransformInfo::OK_UniformValue; 6114 } 6115 SmallVector<const Value *, 4> Operands(I->operand_values()); 6116 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6117 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 6118 Op2VK, Op1VP, Op2VP, Operands); 6119 } 6120 case Instruction::Select: { 6121 SelectInst *SI = cast<SelectInst>(I); 6122 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6123 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6124 Type *CondTy = SI->getCondition()->getType(); 6125 if (!ScalarCond) 6126 CondTy = VectorType::get(CondTy, VF); 6127 6128 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6129 } 6130 case Instruction::ICmp: 6131 case Instruction::FCmp: { 6132 Type *ValTy = I->getOperand(0)->getType(); 6133 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6134 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6135 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6136 VectorTy = ToVectorTy(ValTy, VF); 6137 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6138 } 6139 case Instruction::Store: 6140 case Instruction::Load: { 6141 unsigned Width = VF; 6142 if (Width > 1) { 6143 InstWidening Decision = getWideningDecision(I, Width); 6144 assert(Decision != CM_Unknown && 6145 "CM decision should be taken at this point"); 6146 if (Decision == CM_Scalarize) 6147 Width = 1; 6148 } 6149 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6150 return getMemoryInstructionCost(I, VF); 6151 } 6152 case Instruction::ZExt: 6153 case Instruction::SExt: 6154 case Instruction::FPToUI: 6155 case Instruction::FPToSI: 6156 case Instruction::FPExt: 6157 case Instruction::PtrToInt: 6158 case Instruction::IntToPtr: 6159 case Instruction::SIToFP: 6160 case Instruction::UIToFP: 6161 case Instruction::Trunc: 6162 case Instruction::FPTrunc: 6163 case Instruction::BitCast: { 6164 // We optimize the truncation of induction variables having constant 6165 // integer steps. The cost of these truncations is the same as the scalar 6166 // operation. 6167 if (isOptimizableIVTruncate(I, VF)) { 6168 auto *Trunc = cast<TruncInst>(I); 6169 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6170 Trunc->getSrcTy(), Trunc); 6171 } 6172 6173 Type *SrcScalarTy = I->getOperand(0)->getType(); 6174 Type *SrcVecTy = 6175 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6176 if (canTruncateToMinimalBitwidth(I, VF)) { 6177 // This cast is going to be shrunk. This may remove the cast or it might 6178 // turn it into slightly different cast. For example, if MinBW == 16, 6179 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6180 // 6181 // Calculate the modified src and dest types. 6182 Type *MinVecTy = VectorTy; 6183 if (I->getOpcode() == Instruction::Trunc) { 6184 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6185 VectorTy = 6186 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6187 } else if (I->getOpcode() == Instruction::ZExt || 6188 I->getOpcode() == Instruction::SExt) { 6189 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6190 VectorTy = 6191 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6192 } 6193 } 6194 6195 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6196 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6197 } 6198 case Instruction::Call: { 6199 bool NeedToScalarize; 6200 CallInst *CI = cast<CallInst>(I); 6201 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6202 if (getVectorIntrinsicIDForCall(CI, TLI)) 6203 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6204 return CallCost; 6205 } 6206 default: 6207 // The cost of executing VF copies of the scalar instruction. This opcode 6208 // is unknown. Assume that it is the same as 'mul'. 6209 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6210 getScalarizationOverhead(I, VF, TTI); 6211 } // end of switch. 6212 } 6213 6214 char LoopVectorize::ID = 0; 6215 6216 static const char lv_name[] = "Loop Vectorization"; 6217 6218 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6219 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6220 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6221 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6222 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6223 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6224 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6226 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6227 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6228 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6229 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6230 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6231 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6232 6233 namespace llvm { 6234 6235 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6236 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6237 } 6238 6239 } // end namespace llvm 6240 6241 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6242 // Check if the pointer operand of a load or store instruction is 6243 // consecutive. 6244 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6245 return Legal->isConsecutivePtr(Ptr); 6246 return false; 6247 } 6248 6249 void LoopVectorizationCostModel::collectValuesToIgnore() { 6250 // Ignore ephemeral values. 6251 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6252 6253 // Ignore type-promoting instructions we identified during reduction 6254 // detection. 6255 for (auto &Reduction : *Legal->getReductionVars()) { 6256 RecurrenceDescriptor &RedDes = Reduction.second; 6257 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6258 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6259 } 6260 // Ignore type-casting instructions we identified during induction 6261 // detection. 6262 for (auto &Induction : *Legal->getInductionVars()) { 6263 InductionDescriptor &IndDes = Induction.second; 6264 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6265 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6266 } 6267 } 6268 6269 VectorizationFactor 6270 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6271 unsigned UserVF) { 6272 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6273 const VectorizationFactor NoVectorization = {1U, 0U}; 6274 6275 // Outer loop handling: They may require CFG and instruction level 6276 // transformations before even evaluating whether vectorization is profitable. 6277 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6278 // the vectorization pipeline. 6279 if (!OrigLoop->empty()) { 6280 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6281 // This won't be necessary when UserVF is not required in the VPlan-native 6282 // path. 6283 if (VPlanBuildStressTest && !UserVF) 6284 UserVF = 4; 6285 6286 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6287 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6288 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6289 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6290 buildVPlans(UserVF, UserVF); 6291 6292 // For VPlan build stress testing, we bail out after VPlan construction. 6293 if (VPlanBuildStressTest) 6294 return NoVectorization; 6295 6296 return {UserVF, 0}; 6297 } 6298 6299 LLVM_DEBUG( 6300 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6301 "VPlan-native path.\n"); 6302 return NoVectorization; 6303 } 6304 6305 VectorizationFactor 6306 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 6307 assert(OrigLoop->empty() && "Inner loop expected."); 6308 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6309 const VectorizationFactor NoVectorization = {1U, 0U}; 6310 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6311 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 6312 return NoVectorization; 6313 6314 if (UserVF) { 6315 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6316 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6317 // Collect the instructions (and their associated costs) that will be more 6318 // profitable to scalarize. 6319 CM.selectUserVectorizationFactor(UserVF); 6320 buildVPlans(UserVF, UserVF); 6321 LLVM_DEBUG(printPlans(dbgs())); 6322 return {UserVF, 0}; 6323 } 6324 6325 unsigned MaxVF = MaybeMaxVF.getValue(); 6326 assert(MaxVF != 0 && "MaxVF is zero."); 6327 6328 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6329 // Collect Uniform and Scalar instructions after vectorization with VF. 6330 CM.collectUniformsAndScalars(VF); 6331 6332 // Collect the instructions (and their associated costs) that will be more 6333 // profitable to scalarize. 6334 if (VF > 1) 6335 CM.collectInstsToScalarize(VF); 6336 } 6337 6338 buildVPlans(1, MaxVF); 6339 LLVM_DEBUG(printPlans(dbgs())); 6340 if (MaxVF == 1) 6341 return NoVectorization; 6342 6343 // Select the optimal vectorization factor. 6344 return CM.selectVectorizationFactor(MaxVF); 6345 } 6346 6347 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6348 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6349 << '\n'); 6350 BestVF = VF; 6351 BestUF = UF; 6352 6353 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6354 return !Plan->hasVF(VF); 6355 }); 6356 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6357 } 6358 6359 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6360 DominatorTree *DT) { 6361 // Perform the actual loop transformation. 6362 6363 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6364 VPCallbackILV CallbackILV(ILV); 6365 6366 VPTransformState State{BestVF, BestUF, LI, 6367 DT, ILV.Builder, ILV.VectorLoopValueMap, 6368 &ILV, CallbackILV}; 6369 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6370 6371 //===------------------------------------------------===// 6372 // 6373 // Notice: any optimization or new instruction that go 6374 // into the code below should also be implemented in 6375 // the cost-model. 6376 // 6377 //===------------------------------------------------===// 6378 6379 // 2. Copy and widen instructions from the old loop into the new loop. 6380 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6381 VPlans.front()->execute(&State); 6382 6383 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6384 // predication, updating analyses. 6385 ILV.fixVectorizedLoop(); 6386 } 6387 6388 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6389 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6390 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6391 6392 // We create new control-flow for the vectorized loop, so the original 6393 // condition will be dead after vectorization if it's only used by the 6394 // branch. 6395 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6396 if (Cmp && Cmp->hasOneUse()) 6397 DeadInstructions.insert(Cmp); 6398 6399 // We create new "steps" for induction variable updates to which the original 6400 // induction variables map. An original update instruction will be dead if 6401 // all its users except the induction variable are dead. 6402 for (auto &Induction : *Legal->getInductionVars()) { 6403 PHINode *Ind = Induction.first; 6404 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6405 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6406 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6407 })) 6408 DeadInstructions.insert(IndUpdate); 6409 6410 // We record as "Dead" also the type-casting instructions we had identified 6411 // during induction analysis. We don't need any handling for them in the 6412 // vectorized loop because we have proven that, under a proper runtime 6413 // test guarding the vectorized loop, the value of the phi, and the casted 6414 // value of the phi, are the same. The last instruction in this casting chain 6415 // will get its scalar/vector/widened def from the scalar/vector/widened def 6416 // of the respective phi node. Any other casts in the induction def-use chain 6417 // have no other uses outside the phi update chain, and will be ignored. 6418 InductionDescriptor &IndDes = Induction.second; 6419 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6420 DeadInstructions.insert(Casts.begin(), Casts.end()); 6421 } 6422 } 6423 6424 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6425 6426 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6427 6428 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6429 Instruction::BinaryOps BinOp) { 6430 // When unrolling and the VF is 1, we only need to add a simple scalar. 6431 Type *Ty = Val->getType(); 6432 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6433 6434 if (Ty->isFloatingPointTy()) { 6435 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6436 6437 // Floating point operations had to be 'fast' to enable the unrolling. 6438 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6439 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6440 } 6441 Constant *C = ConstantInt::get(Ty, StartIdx); 6442 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6443 } 6444 6445 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6446 SmallVector<Metadata *, 4> MDs; 6447 // Reserve first location for self reference to the LoopID metadata node. 6448 MDs.push_back(nullptr); 6449 bool IsUnrollMetadata = false; 6450 MDNode *LoopID = L->getLoopID(); 6451 if (LoopID) { 6452 // First find existing loop unrolling disable metadata. 6453 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6454 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6455 if (MD) { 6456 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6457 IsUnrollMetadata = 6458 S && S->getString().startswith("llvm.loop.unroll.disable"); 6459 } 6460 MDs.push_back(LoopID->getOperand(i)); 6461 } 6462 } 6463 6464 if (!IsUnrollMetadata) { 6465 // Add runtime unroll disable metadata. 6466 LLVMContext &Context = L->getHeader()->getContext(); 6467 SmallVector<Metadata *, 1> DisableOperands; 6468 DisableOperands.push_back( 6469 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6470 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6471 MDs.push_back(DisableNode); 6472 MDNode *NewLoopID = MDNode::get(Context, MDs); 6473 // Set operand 0 to refer to the loop id itself. 6474 NewLoopID->replaceOperandWith(0, NewLoopID); 6475 L->setLoopID(NewLoopID); 6476 } 6477 } 6478 6479 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6480 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6481 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6482 bool PredicateAtRangeStart = Predicate(Range.Start); 6483 6484 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6485 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6486 Range.End = TmpVF; 6487 break; 6488 } 6489 6490 return PredicateAtRangeStart; 6491 } 6492 6493 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6494 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6495 /// of VF's starting at a given VF and extending it as much as possible. Each 6496 /// vectorization decision can potentially shorten this sub-range during 6497 /// buildVPlan(). 6498 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6499 6500 // Collect conditions feeding internal conditional branches; they need to be 6501 // represented in VPlan for it to model masking. 6502 SmallPtrSet<Value *, 1> NeedDef; 6503 6504 auto *Latch = OrigLoop->getLoopLatch(); 6505 for (BasicBlock *BB : OrigLoop->blocks()) { 6506 if (BB == Latch) 6507 continue; 6508 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6509 if (Branch && Branch->isConditional()) 6510 NeedDef.insert(Branch->getCondition()); 6511 } 6512 6513 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6514 VFRange SubRange = {VF, MaxVF + 1}; 6515 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 6516 VF = SubRange.End; 6517 } 6518 } 6519 6520 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 6521 BasicBlock *Dst, 6522 VPlanPtr &Plan) { 6523 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6524 6525 // Look for cached value. 6526 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6527 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6528 if (ECEntryIt != EdgeMaskCache.end()) 6529 return ECEntryIt->second; 6530 6531 VPValue *SrcMask = createBlockInMask(Src, Plan); 6532 6533 // The terminator has to be a branch inst! 6534 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6535 assert(BI && "Unexpected terminator found"); 6536 6537 if (!BI->isConditional()) 6538 return EdgeMaskCache[Edge] = SrcMask; 6539 6540 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6541 assert(EdgeMask && "No Edge Mask found for condition"); 6542 6543 if (BI->getSuccessor(0) != Dst) 6544 EdgeMask = Builder.createNot(EdgeMask); 6545 6546 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6547 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6548 6549 return EdgeMaskCache[Edge] = EdgeMask; 6550 } 6551 6552 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 6553 VPlanPtr &Plan) { 6554 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6555 6556 // Look for cached value. 6557 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6558 if (BCEntryIt != BlockMaskCache.end()) 6559 return BCEntryIt->second; 6560 6561 // All-one mask is modelled as no-mask following the convention for masked 6562 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6563 VPValue *BlockMask = nullptr; 6564 6565 // Loop incoming mask is all-one. 6566 if (OrigLoop->getHeader() == BB) 6567 return BlockMaskCache[BB] = BlockMask; 6568 6569 // This is the block mask. We OR all incoming edges. 6570 for (auto *Predecessor : predecessors(BB)) { 6571 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6572 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6573 return BlockMaskCache[BB] = EdgeMask; 6574 6575 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6576 BlockMask = EdgeMask; 6577 continue; 6578 } 6579 6580 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6581 } 6582 6583 return BlockMaskCache[BB] = BlockMask; 6584 } 6585 6586 VPInterleaveRecipe * 6587 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 6588 VFRange &Range) { 6589 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I); 6590 if (!IG) 6591 return nullptr; 6592 6593 // Now check if IG is relevant for VF's in the given range. 6594 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6595 return [=](unsigned VF) -> bool { 6596 return (VF >= 2 && // Query is illegal for VF == 1 6597 CM.getWideningDecision(I, VF) == 6598 LoopVectorizationCostModel::CM_Interleave); 6599 }; 6600 }; 6601 if (!getDecisionAndClampRange(isIGMember(I), Range)) 6602 return nullptr; 6603 6604 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6605 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6606 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6607 assert(I == IG->getInsertPos() && 6608 "Generating a recipe for an adjunct member of an interleave group"); 6609 6610 return new VPInterleaveRecipe(IG); 6611 } 6612 6613 VPWidenMemoryInstructionRecipe * 6614 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 6615 VPlanPtr &Plan) { 6616 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6617 return nullptr; 6618 6619 auto willWiden = [&](unsigned VF) -> bool { 6620 if (VF == 1) 6621 return false; 6622 if (CM.isScalarAfterVectorization(I, VF) || 6623 CM.isProfitableToScalarize(I, VF)) 6624 return false; 6625 LoopVectorizationCostModel::InstWidening Decision = 6626 CM.getWideningDecision(I, VF); 6627 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6628 "CM decision should be taken at this point."); 6629 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6630 "Interleave memory opportunity should be caught earlier."); 6631 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6632 }; 6633 6634 if (!getDecisionAndClampRange(willWiden, Range)) 6635 return nullptr; 6636 6637 VPValue *Mask = nullptr; 6638 if (Legal->isMaskRequired(I)) 6639 Mask = createBlockInMask(I->getParent(), Plan); 6640 6641 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6642 } 6643 6644 VPWidenIntOrFpInductionRecipe * 6645 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 6646 VFRange &Range) { 6647 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6648 // Check if this is an integer or fp induction. If so, build the recipe that 6649 // produces its scalar and vector values. 6650 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6651 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6652 II.getKind() == InductionDescriptor::IK_FpInduction) 6653 return new VPWidenIntOrFpInductionRecipe(Phi); 6654 6655 return nullptr; 6656 } 6657 6658 // Optimize the special case where the source is a constant integer 6659 // induction variable. Notice that we can only optimize the 'trunc' case 6660 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6661 // (c) other casts depend on pointer size. 6662 6663 // Determine whether \p K is a truncation based on an induction variable that 6664 // can be optimized. 6665 auto isOptimizableIVTruncate = 6666 [&](Instruction *K) -> std::function<bool(unsigned)> { 6667 return 6668 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6669 }; 6670 6671 if (isa<TruncInst>(I) && 6672 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 6673 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6674 cast<TruncInst>(I)); 6675 return nullptr; 6676 } 6677 6678 VPBlendRecipe * 6679 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6680 PHINode *Phi = dyn_cast<PHINode>(I); 6681 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6682 return nullptr; 6683 6684 // We know that all PHIs in non-header blocks are converted into selects, so 6685 // we don't have to worry about the insertion order and we can just use the 6686 // builder. At this point we generate the predication tree. There may be 6687 // duplications since this is a simple recursive scan, but future 6688 // optimizations will clean it up. 6689 6690 SmallVector<VPValue *, 2> Masks; 6691 unsigned NumIncoming = Phi->getNumIncomingValues(); 6692 for (unsigned In = 0; In < NumIncoming; In++) { 6693 VPValue *EdgeMask = 6694 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6695 assert((EdgeMask || NumIncoming == 1) && 6696 "Multiple predecessors with one having a full mask"); 6697 if (EdgeMask) 6698 Masks.push_back(EdgeMask); 6699 } 6700 return new VPBlendRecipe(Phi, Masks); 6701 } 6702 6703 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6704 VFRange &Range) { 6705 if (CM.isScalarWithPredication(I)) 6706 return false; 6707 6708 auto IsVectorizableOpcode = [](unsigned Opcode) { 6709 switch (Opcode) { 6710 case Instruction::Add: 6711 case Instruction::And: 6712 case Instruction::AShr: 6713 case Instruction::BitCast: 6714 case Instruction::Br: 6715 case Instruction::Call: 6716 case Instruction::FAdd: 6717 case Instruction::FCmp: 6718 case Instruction::FDiv: 6719 case Instruction::FMul: 6720 case Instruction::FPExt: 6721 case Instruction::FPToSI: 6722 case Instruction::FPToUI: 6723 case Instruction::FPTrunc: 6724 case Instruction::FRem: 6725 case Instruction::FSub: 6726 case Instruction::GetElementPtr: 6727 case Instruction::ICmp: 6728 case Instruction::IntToPtr: 6729 case Instruction::Load: 6730 case Instruction::LShr: 6731 case Instruction::Mul: 6732 case Instruction::Or: 6733 case Instruction::PHI: 6734 case Instruction::PtrToInt: 6735 case Instruction::SDiv: 6736 case Instruction::Select: 6737 case Instruction::SExt: 6738 case Instruction::Shl: 6739 case Instruction::SIToFP: 6740 case Instruction::SRem: 6741 case Instruction::Store: 6742 case Instruction::Sub: 6743 case Instruction::Trunc: 6744 case Instruction::UDiv: 6745 case Instruction::UIToFP: 6746 case Instruction::URem: 6747 case Instruction::Xor: 6748 case Instruction::ZExt: 6749 return true; 6750 } 6751 return false; 6752 }; 6753 6754 if (!IsVectorizableOpcode(I->getOpcode())) 6755 return false; 6756 6757 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6758 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6759 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6760 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6761 return false; 6762 } 6763 6764 auto willWiden = [&](unsigned VF) -> bool { 6765 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6766 CM.isProfitableToScalarize(I, VF))) 6767 return false; 6768 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6769 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6770 // The following case may be scalarized depending on the VF. 6771 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6772 // version of the instruction. 6773 // Is it beneficial to perform intrinsic call compared to lib call? 6774 bool NeedToScalarize; 6775 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6776 bool UseVectorIntrinsic = 6777 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6778 return UseVectorIntrinsic || !NeedToScalarize; 6779 } 6780 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6781 assert(CM.getWideningDecision(I, VF) == 6782 LoopVectorizationCostModel::CM_Scalarize && 6783 "Memory widening decisions should have been taken care by now"); 6784 return false; 6785 } 6786 return true; 6787 }; 6788 6789 if (!getDecisionAndClampRange(willWiden, Range)) 6790 return false; 6791 6792 // Success: widen this instruction. We optimize the common case where 6793 // consecutive instructions can be represented by a single recipe. 6794 if (!VPBB->empty()) { 6795 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6796 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6797 return true; 6798 } 6799 6800 VPBB->appendRecipe(new VPWidenRecipe(I)); 6801 return true; 6802 } 6803 6804 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 6805 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6806 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6807 VPlanPtr &Plan) { 6808 bool IsUniform = getDecisionAndClampRange( 6809 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6810 Range); 6811 6812 bool IsPredicated = CM.isScalarWithPredication(I); 6813 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6814 6815 // Find if I uses a predicated instruction. If so, it will use its scalar 6816 // value. Avoid hoisting the insert-element which packs the scalar value into 6817 // a vector value, as that happens iff all users use the vector value. 6818 for (auto &Op : I->operands()) 6819 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6820 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6821 PredInst2Recipe[PredInst]->setAlsoPack(false); 6822 6823 // Finalize the recipe for Instr, first if it is not predicated. 6824 if (!IsPredicated) { 6825 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6826 VPBB->appendRecipe(Recipe); 6827 return VPBB; 6828 } 6829 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6830 assert(VPBB->getSuccessors().empty() && 6831 "VPBB has successors when handling predicated replication."); 6832 // Record predicated instructions for above packing optimizations. 6833 PredInst2Recipe[I] = Recipe; 6834 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6835 VPBlockUtils::insertBlockAfter(Region, VPBB); 6836 auto *RegSucc = new VPBasicBlock(); 6837 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6838 return RegSucc; 6839 } 6840 6841 VPRegionBlock * 6842 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 6843 VPRecipeBase *PredRecipe, 6844 VPlanPtr &Plan) { 6845 // Instructions marked for predication are replicated and placed under an 6846 // if-then construct to prevent side-effects. 6847 6848 // Generate recipes to compute the block mask for this region. 6849 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6850 6851 // Build the triangular if-then region. 6852 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6853 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6854 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6855 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6856 auto *PHIRecipe = 6857 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6858 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6859 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6860 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6861 6862 // Note: first set Entry as region entry and then connect successors starting 6863 // from it in order, to propagate the "parent" of each VPBasicBlock. 6864 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, Entry); 6865 VPBlockUtils::connectBlocks(Pred, Exit); 6866 6867 return Region; 6868 } 6869 6870 LoopVectorizationPlanner::VPlanPtr 6871 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 6872 const SmallPtrSetImpl<Value *> &NeedDef) { 6873 // Outer loop handling: They may require CFG and instruction level 6874 // transformations before even evaluating whether vectorization is profitable. 6875 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6876 // the vectorization pipeline. 6877 if (!OrigLoop->empty()) { 6878 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6879 6880 // Create new empty VPlan 6881 auto Plan = llvm::make_unique<VPlan>(); 6882 6883 // Build hierarchical CFG 6884 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI); 6885 HCFGBuilder.buildHierarchicalCFG(*Plan.get()); 6886 6887 return Plan; 6888 } 6889 6890 assert(OrigLoop->empty() && "Inner loop expected."); 6891 EdgeMaskCache.clear(); 6892 BlockMaskCache.clear(); 6893 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6894 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6895 6896 // Collect instructions from the original loop that will become trivially dead 6897 // in the vectorized loop. We don't need to vectorize these instructions. For 6898 // example, original induction update instructions can become dead because we 6899 // separately emit induction "steps" when generating code for the new loop. 6900 // Similarly, we create a new latch condition when setting up the structure 6901 // of the new loop, so the old one can become dead. 6902 SmallPtrSet<Instruction *, 4> DeadInstructions; 6903 collectTriviallyDeadInstructions(DeadInstructions); 6904 6905 // Hold a mapping from predicated instructions to their recipes, in order to 6906 // fix their AlsoPack behavior if a user is determined to replicate and use a 6907 // scalar instead of vector value. 6908 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6909 6910 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6911 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6912 auto Plan = llvm::make_unique<VPlan>(VPBB); 6913 6914 // Represent values that will have defs inside VPlan. 6915 for (Value *V : NeedDef) 6916 Plan->addVPValue(V); 6917 6918 // Scan the body of the loop in a topological order to visit each basic block 6919 // after having visited its predecessor basic blocks. 6920 LoopBlocksDFS DFS(OrigLoop); 6921 DFS.perform(LI); 6922 6923 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6924 // Relevant instructions from basic block BB will be grouped into VPRecipe 6925 // ingredients and fill a new VPBasicBlock. 6926 unsigned VPBBsForBB = 0; 6927 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6928 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6929 VPBB = FirstVPBBForBB; 6930 Builder.setInsertPoint(VPBB); 6931 6932 std::vector<Instruction *> Ingredients; 6933 6934 // Organize the ingredients to vectorize from current basic block in the 6935 // right order. 6936 for (Instruction &I : BB->instructionsWithoutDebug()) { 6937 Instruction *Instr = &I; 6938 6939 // First filter out irrelevant instructions, to ensure no recipes are 6940 // built for them. 6941 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 6942 continue; 6943 6944 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6945 // member of the IG, do not construct any Recipe for it. 6946 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr); 6947 if (IG && Instr != IG->getInsertPos() && 6948 Range.Start >= 2 && // Query is illegal for VF == 1 6949 CM.getWideningDecision(Instr, Range.Start) == 6950 LoopVectorizationCostModel::CM_Interleave) { 6951 if (SinkAfterInverse.count(Instr)) 6952 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 6953 continue; 6954 } 6955 6956 // Move instructions to handle first-order recurrences, step 1: avoid 6957 // handling this instruction until after we've handled the instruction it 6958 // should follow. 6959 auto SAIt = SinkAfter.find(Instr); 6960 if (SAIt != SinkAfter.end()) { 6961 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6962 << *SAIt->second 6963 << " to vectorize a 1st order recurrence.\n"); 6964 SinkAfterInverse[SAIt->second] = Instr; 6965 continue; 6966 } 6967 6968 Ingredients.push_back(Instr); 6969 6970 // Move instructions to handle first-order recurrences, step 2: push the 6971 // instruction to be sunk at its insertion point. 6972 auto SAInvIt = SinkAfterInverse.find(Instr); 6973 if (SAInvIt != SinkAfterInverse.end()) 6974 Ingredients.push_back(SAInvIt->second); 6975 } 6976 6977 // Introduce each ingredient into VPlan. 6978 for (Instruction *Instr : Ingredients) { 6979 VPRecipeBase *Recipe = nullptr; 6980 6981 // Check if Instr should belong to an interleave memory recipe, or already 6982 // does. In the latter case Instr is irrelevant. 6983 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 6984 VPBB->appendRecipe(Recipe); 6985 continue; 6986 } 6987 6988 // Check if Instr is a memory operation that should be widened. 6989 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6990 VPBB->appendRecipe(Recipe); 6991 continue; 6992 } 6993 6994 // Check if Instr should form some PHI recipe. 6995 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6996 VPBB->appendRecipe(Recipe); 6997 continue; 6998 } 6999 if ((Recipe = tryToBlend(Instr, Plan))) { 7000 VPBB->appendRecipe(Recipe); 7001 continue; 7002 } 7003 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 7004 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 7005 continue; 7006 } 7007 7008 // Check if Instr is to be widened by a general VPWidenRecipe, after 7009 // having first checked for specific widening recipes that deal with 7010 // Interleave Groups, Inductions and Phi nodes. 7011 if (tryToWiden(Instr, VPBB, Range)) 7012 continue; 7013 7014 // Otherwise, if all widening options failed, Instruction is to be 7015 // replicated. This may create a successor for VPBB. 7016 VPBasicBlock *NextVPBB = 7017 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 7018 if (NextVPBB != VPBB) { 7019 VPBB = NextVPBB; 7020 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7021 : ""); 7022 } 7023 } 7024 } 7025 7026 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7027 // may also be empty, such as the last one VPBB, reflecting original 7028 // basic-blocks with no recipes. 7029 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7030 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7031 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7032 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7033 delete PreEntry; 7034 7035 std::string PlanName; 7036 raw_string_ostream RSO(PlanName); 7037 unsigned VF = Range.Start; 7038 Plan->addVF(VF); 7039 RSO << "Initial VPlan for VF={" << VF; 7040 for (VF *= 2; VF < Range.End; VF *= 2) { 7041 Plan->addVF(VF); 7042 RSO << "," << VF; 7043 } 7044 RSO << "},UF>=1"; 7045 RSO.flush(); 7046 Plan->setName(PlanName); 7047 7048 return Plan; 7049 } 7050 7051 Value* LoopVectorizationPlanner::VPCallbackILV:: 7052 getOrCreateVectorValues(Value *V, unsigned Part) { 7053 return ILV.getOrCreateVectorValue(V, Part); 7054 } 7055 7056 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7057 O << " +\n" 7058 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7059 IG->getInsertPos()->printAsOperand(O, false); 7060 O << "\\l\""; 7061 for (unsigned i = 0; i < IG->getFactor(); ++i) 7062 if (Instruction *I = IG->getMember(i)) 7063 O << " +\n" 7064 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7065 } 7066 7067 void VPWidenRecipe::execute(VPTransformState &State) { 7068 for (auto &Instr : make_range(Begin, End)) 7069 State.ILV->widenInstruction(Instr); 7070 } 7071 7072 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7073 assert(!State.Instance && "Int or FP induction being replicated."); 7074 State.ILV->widenIntOrFpInduction(IV, Trunc); 7075 } 7076 7077 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7078 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7079 } 7080 7081 void VPBlendRecipe::execute(VPTransformState &State) { 7082 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7083 // We know that all PHIs in non-header blocks are converted into 7084 // selects, so we don't have to worry about the insertion order and we 7085 // can just use the builder. 7086 // At this point we generate the predication tree. There may be 7087 // duplications since this is a simple recursive scan, but future 7088 // optimizations will clean it up. 7089 7090 unsigned NumIncoming = Phi->getNumIncomingValues(); 7091 7092 assert((User || NumIncoming == 1) && 7093 "Multiple predecessors with predecessors having a full mask"); 7094 // Generate a sequence of selects of the form: 7095 // SELECT(Mask3, In3, 7096 // SELECT(Mask2, In2, 7097 // ( ...))) 7098 InnerLoopVectorizer::VectorParts Entry(State.UF); 7099 for (unsigned In = 0; In < NumIncoming; ++In) { 7100 for (unsigned Part = 0; Part < State.UF; ++Part) { 7101 // We might have single edge PHIs (blocks) - use an identity 7102 // 'select' for the first PHI operand. 7103 Value *In0 = 7104 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7105 if (In == 0) 7106 Entry[Part] = In0; // Initialize with the first incoming value. 7107 else { 7108 // Select between the current value and the previous incoming edge 7109 // based on the incoming mask. 7110 Value *Cond = State.get(User->getOperand(In), Part); 7111 Entry[Part] = 7112 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7113 } 7114 } 7115 } 7116 for (unsigned Part = 0; Part < State.UF; ++Part) 7117 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7118 } 7119 7120 void VPInterleaveRecipe::execute(VPTransformState &State) { 7121 assert(!State.Instance && "Interleave group being replicated."); 7122 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7123 } 7124 7125 void VPReplicateRecipe::execute(VPTransformState &State) { 7126 if (State.Instance) { // Generate a single instance. 7127 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7128 // Insert scalar instance packing it into a vector. 7129 if (AlsoPack && State.VF > 1) { 7130 // If we're constructing lane 0, initialize to start from undef. 7131 if (State.Instance->Lane == 0) { 7132 Value *Undef = 7133 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7134 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7135 } 7136 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7137 } 7138 return; 7139 } 7140 7141 // Generate scalar instances for all VF lanes of all UF parts, unless the 7142 // instruction is uniform inwhich case generate only the first lane for each 7143 // of the UF parts. 7144 unsigned EndLane = IsUniform ? 1 : State.VF; 7145 for (unsigned Part = 0; Part < State.UF; ++Part) 7146 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7147 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7148 } 7149 7150 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7151 assert(State.Instance && "Branch on Mask works only on single instance."); 7152 7153 unsigned Part = State.Instance->Part; 7154 unsigned Lane = State.Instance->Lane; 7155 7156 Value *ConditionBit = nullptr; 7157 if (!User) // Block in mask is all-one. 7158 ConditionBit = State.Builder.getTrue(); 7159 else { 7160 VPValue *BlockInMask = User->getOperand(0); 7161 ConditionBit = State.get(BlockInMask, Part); 7162 if (ConditionBit->getType()->isVectorTy()) 7163 ConditionBit = State.Builder.CreateExtractElement( 7164 ConditionBit, State.Builder.getInt32(Lane)); 7165 } 7166 7167 // Replace the temporary unreachable terminator with a new conditional branch, 7168 // whose two destinations will be set later when they are created. 7169 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7170 assert(isa<UnreachableInst>(CurrentTerminator) && 7171 "Expected to replace unreachable terminator with conditional branch."); 7172 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7173 CondBr->setSuccessor(0, nullptr); 7174 ReplaceInstWithInst(CurrentTerminator, CondBr); 7175 } 7176 7177 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7178 assert(State.Instance && "Predicated instruction PHI works per instance."); 7179 Instruction *ScalarPredInst = cast<Instruction>( 7180 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7181 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7182 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7183 assert(PredicatingBB && "Predicated block has no single predecessor."); 7184 7185 // By current pack/unpack logic we need to generate only a single phi node: if 7186 // a vector value for the predicated instruction exists at this point it means 7187 // the instruction has vector users only, and a phi for the vector value is 7188 // needed. In this case the recipe of the predicated instruction is marked to 7189 // also do that packing, thereby "hoisting" the insert-element sequence. 7190 // Otherwise, a phi node for the scalar value is needed. 7191 unsigned Part = State.Instance->Part; 7192 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7193 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7194 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7195 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7196 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7197 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7198 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7199 } else { 7200 Type *PredInstType = PredInst->getType(); 7201 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7202 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7203 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7204 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7205 } 7206 } 7207 7208 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7209 if (!User) 7210 return State.ILV->vectorizeMemoryInstruction(&Instr); 7211 7212 // Last (and currently only) operand is a mask. 7213 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7214 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7215 for (unsigned Part = 0; Part < State.UF; ++Part) 7216 MaskValues[Part] = State.get(Mask, Part); 7217 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7218 } 7219 7220 // Process the loop in the VPlan-native vectorization path. This path builds 7221 // VPlan upfront in the vectorization pipeline, which allows to apply 7222 // VPlan-to-VPlan transformations from the very beginning without modifying the 7223 // input LLVM IR. 7224 static bool processLoopInVPlanNativePath( 7225 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7226 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7227 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7228 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7229 7230 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7231 Function *F = L->getHeader()->getParent(); 7232 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7233 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7234 &Hints, IAI); 7235 // Use the planner for outer loop vectorization. 7236 // TODO: CM is not used at this point inside the planner. Turn CM into an 7237 // optional argument if we don't need it in the future. 7238 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7239 7240 // Get user vectorization factor. 7241 unsigned UserVF = Hints.getWidth(); 7242 7243 // Check the function attributes to find out if this function should be 7244 // optimized for size. 7245 bool OptForSize = 7246 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7247 7248 // Plan how to best vectorize, return the best VF and its cost. 7249 LVP.planInVPlanNativePath(OptForSize, UserVF); 7250 7251 // Returning false. We are currently not generating vector code in the VPlan 7252 // native path. 7253 return false; 7254 } 7255 7256 bool LoopVectorizePass::processLoop(Loop *L) { 7257 assert((EnableVPlanNativePath || L->empty()) && 7258 "VPlan-native path is not enabled. Only process inner loops."); 7259 7260 #ifndef NDEBUG 7261 const std::string DebugLocStr = getDebugLocString(L); 7262 #endif /* NDEBUG */ 7263 7264 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7265 << L->getHeader()->getParent()->getName() << "\" from " 7266 << DebugLocStr << "\n"); 7267 7268 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7269 7270 LLVM_DEBUG( 7271 dbgs() << "LV: Loop hints:" 7272 << " force=" 7273 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7274 ? "disabled" 7275 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7276 ? "enabled" 7277 : "?")) 7278 << " width=" << Hints.getWidth() 7279 << " unroll=" << Hints.getInterleave() << "\n"); 7280 7281 // Function containing loop 7282 Function *F = L->getHeader()->getParent(); 7283 7284 // Looking at the diagnostic output is the only way to determine if a loop 7285 // was vectorized (other than looking at the IR or machine code), so it 7286 // is important to generate an optimization remark for each loop. Most of 7287 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7288 // generated as OptimizationRemark and OptimizationRemarkMissed are 7289 // less verbose reporting vectorized loops and unvectorized loops that may 7290 // benefit from vectorization, respectively. 7291 7292 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7293 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7294 return false; 7295 } 7296 7297 PredicatedScalarEvolution PSE(*SE, *L); 7298 7299 // Check if it is legal to vectorize the loop. 7300 LoopVectorizationRequirements Requirements(*ORE); 7301 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7302 &Requirements, &Hints, DB, AC); 7303 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7304 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7305 emitMissedWarning(F, L, Hints, ORE); 7306 return false; 7307 } 7308 7309 // Check the function attributes to find out if this function should be 7310 // optimized for size. 7311 bool OptForSize = 7312 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7313 7314 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7315 // here. They may require CFG and instruction level transformations before 7316 // even evaluating whether vectorization is profitable. Since we cannot modify 7317 // the incoming IR, we need to build VPlan upfront in the vectorization 7318 // pipeline. 7319 if (!L->empty()) 7320 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7321 ORE, Hints); 7322 7323 assert(L->empty() && "Inner loop expected."); 7324 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7325 // count by optimizing for size, to minimize overheads. 7326 // Prefer constant trip counts over profile data, over upper bound estimate. 7327 unsigned ExpectedTC = 0; 7328 bool HasExpectedTC = false; 7329 if (const SCEVConstant *ConstExits = 7330 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7331 const APInt &ExitsCount = ConstExits->getAPInt(); 7332 // We are interested in small values for ExpectedTC. Skip over those that 7333 // can't fit an unsigned. 7334 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7335 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7336 HasExpectedTC = true; 7337 } 7338 } 7339 // ExpectedTC may be large because it's bound by a variable. Check 7340 // profiling information to validate we should vectorize. 7341 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7342 auto EstimatedTC = getLoopEstimatedTripCount(L); 7343 if (EstimatedTC) { 7344 ExpectedTC = *EstimatedTC; 7345 HasExpectedTC = true; 7346 } 7347 } 7348 if (!HasExpectedTC) { 7349 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7350 HasExpectedTC = (ExpectedTC > 0); 7351 } 7352 7353 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7354 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7355 << "This loop is worth vectorizing only if no scalar " 7356 << "iteration overheads are incurred."); 7357 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7358 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7359 else { 7360 LLVM_DEBUG(dbgs() << "\n"); 7361 // Loops with a very small trip count are considered for vectorization 7362 // under OptForSize, thereby making sure the cost of their loop body is 7363 // dominant, free of runtime guards and scalar iteration overheads. 7364 OptForSize = true; 7365 } 7366 } 7367 7368 // Check the function attributes to see if implicit floats are allowed. 7369 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7370 // an integer loop and the vector instructions selected are purely integer 7371 // vector instructions? 7372 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7373 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7374 "attribute is used.\n"); 7375 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7376 "NoImplicitFloat", L) 7377 << "loop not vectorized due to NoImplicitFloat attribute"); 7378 emitMissedWarning(F, L, Hints, ORE); 7379 return false; 7380 } 7381 7382 // Check if the target supports potentially unsafe FP vectorization. 7383 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7384 // for the target we're vectorizing for, to make sure none of the 7385 // additional fp-math flags can help. 7386 if (Hints.isPotentiallyUnsafe() && 7387 TTI->isFPVectorizationPotentiallyUnsafe()) { 7388 LLVM_DEBUG( 7389 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7390 ORE->emit( 7391 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7392 << "loop not vectorized due to unsafe FP support."); 7393 emitMissedWarning(F, L, Hints, ORE); 7394 return false; 7395 } 7396 7397 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7398 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7399 7400 // If an override option has been passed in for interleaved accesses, use it. 7401 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7402 UseInterleaved = EnableInterleavedMemAccesses; 7403 7404 // Analyze interleaved memory accesses. 7405 if (UseInterleaved) { 7406 IAI.analyzeInterleaving(); 7407 } 7408 7409 // Use the cost model. 7410 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7411 &Hints, IAI); 7412 CM.collectValuesToIgnore(); 7413 7414 // Use the planner for vectorization. 7415 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7416 7417 // Get user vectorization factor. 7418 unsigned UserVF = Hints.getWidth(); 7419 7420 // Plan how to best vectorize, return the best VF and its cost. 7421 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7422 7423 // Select the interleave count. 7424 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7425 7426 // Get user interleave count. 7427 unsigned UserIC = Hints.getInterleave(); 7428 7429 // Identify the diagnostic messages that should be produced. 7430 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7431 bool VectorizeLoop = true, InterleaveLoop = true; 7432 if (Requirements.doesNotMeet(F, L, Hints)) { 7433 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7434 "requirements.\n"); 7435 emitMissedWarning(F, L, Hints, ORE); 7436 return false; 7437 } 7438 7439 if (VF.Width == 1) { 7440 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7441 VecDiagMsg = std::make_pair( 7442 "VectorizationNotBeneficial", 7443 "the cost-model indicates that vectorization is not beneficial"); 7444 VectorizeLoop = false; 7445 } 7446 7447 if (IC == 1 && UserIC <= 1) { 7448 // Tell the user interleaving is not beneficial. 7449 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7450 IntDiagMsg = std::make_pair( 7451 "InterleavingNotBeneficial", 7452 "the cost-model indicates that interleaving is not beneficial"); 7453 InterleaveLoop = false; 7454 if (UserIC == 1) { 7455 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7456 IntDiagMsg.second += 7457 " and is explicitly disabled or interleave count is set to 1"; 7458 } 7459 } else if (IC > 1 && UserIC == 1) { 7460 // Tell the user interleaving is beneficial, but it explicitly disabled. 7461 LLVM_DEBUG( 7462 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7463 IntDiagMsg = std::make_pair( 7464 "InterleavingBeneficialButDisabled", 7465 "the cost-model indicates that interleaving is beneficial " 7466 "but is explicitly disabled or interleave count is set to 1"); 7467 InterleaveLoop = false; 7468 } 7469 7470 // Override IC if user provided an interleave count. 7471 IC = UserIC > 0 ? UserIC : IC; 7472 7473 // Emit diagnostic messages, if any. 7474 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7475 if (!VectorizeLoop && !InterleaveLoop) { 7476 // Do not vectorize or interleaving the loop. 7477 ORE->emit([&]() { 7478 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7479 L->getStartLoc(), L->getHeader()) 7480 << VecDiagMsg.second; 7481 }); 7482 ORE->emit([&]() { 7483 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7484 L->getStartLoc(), L->getHeader()) 7485 << IntDiagMsg.second; 7486 }); 7487 return false; 7488 } else if (!VectorizeLoop && InterleaveLoop) { 7489 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7490 ORE->emit([&]() { 7491 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7492 L->getStartLoc(), L->getHeader()) 7493 << VecDiagMsg.second; 7494 }); 7495 } else if (VectorizeLoop && !InterleaveLoop) { 7496 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7497 << ") in " << DebugLocStr << '\n'); 7498 ORE->emit([&]() { 7499 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7500 L->getStartLoc(), L->getHeader()) 7501 << IntDiagMsg.second; 7502 }); 7503 } else if (VectorizeLoop && InterleaveLoop) { 7504 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7505 << ") in " << DebugLocStr << '\n'); 7506 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7507 } 7508 7509 LVP.setBestPlan(VF.Width, IC); 7510 7511 using namespace ore; 7512 7513 if (!VectorizeLoop) { 7514 assert(IC > 1 && "interleave count should not be 1 or 0"); 7515 // If we decided that it is not legal to vectorize the loop, then 7516 // interleave it. 7517 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7518 &CM); 7519 LVP.executePlan(Unroller, DT); 7520 7521 ORE->emit([&]() { 7522 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7523 L->getHeader()) 7524 << "interleaved loop (interleaved count: " 7525 << NV("InterleaveCount", IC) << ")"; 7526 }); 7527 } else { 7528 // If we decided that it is *legal* to vectorize the loop, then do it. 7529 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7530 &LVL, &CM); 7531 LVP.executePlan(LB, DT); 7532 ++LoopsVectorized; 7533 7534 // Add metadata to disable runtime unrolling a scalar loop when there are 7535 // no runtime checks about strides and memory. A scalar loop that is 7536 // rarely used is not worth unrolling. 7537 if (!LB.areSafetyChecksAdded()) 7538 AddRuntimeUnrollDisableMetaData(L); 7539 7540 // Report the vectorization decision. 7541 ORE->emit([&]() { 7542 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7543 L->getHeader()) 7544 << "vectorized loop (vectorization width: " 7545 << NV("VectorizationFactor", VF.Width) 7546 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7547 }); 7548 } 7549 7550 // Mark the loop as already vectorized to avoid vectorizing again. 7551 Hints.setAlreadyVectorized(); 7552 7553 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7554 return true; 7555 } 7556 7557 bool LoopVectorizePass::runImpl( 7558 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7559 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7560 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7561 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7562 OptimizationRemarkEmitter &ORE_) { 7563 SE = &SE_; 7564 LI = &LI_; 7565 TTI = &TTI_; 7566 DT = &DT_; 7567 BFI = &BFI_; 7568 TLI = TLI_; 7569 AA = &AA_; 7570 AC = &AC_; 7571 GetLAA = &GetLAA_; 7572 DB = &DB_; 7573 ORE = &ORE_; 7574 7575 // Don't attempt if 7576 // 1. the target claims to have no vector registers, and 7577 // 2. interleaving won't help ILP. 7578 // 7579 // The second condition is necessary because, even if the target has no 7580 // vector registers, loop vectorization may still enable scalar 7581 // interleaving. 7582 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7583 return false; 7584 7585 bool Changed = false; 7586 7587 // The vectorizer requires loops to be in simplified form. 7588 // Since simplification may add new inner loops, it has to run before the 7589 // legality and profitability checks. This means running the loop vectorizer 7590 // will simplify all loops, regardless of whether anything end up being 7591 // vectorized. 7592 for (auto &L : *LI) 7593 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7594 7595 // Build up a worklist of inner-loops to vectorize. This is necessary as 7596 // the act of vectorizing or partially unrolling a loop creates new loops 7597 // and can invalidate iterators across the loops. 7598 SmallVector<Loop *, 8> Worklist; 7599 7600 for (Loop *L : *LI) 7601 collectSupportedLoops(*L, LI, ORE, Worklist); 7602 7603 LoopsAnalyzed += Worklist.size(); 7604 7605 // Now walk the identified inner loops. 7606 while (!Worklist.empty()) { 7607 Loop *L = Worklist.pop_back_val(); 7608 7609 // For the inner loops we actually process, form LCSSA to simplify the 7610 // transform. 7611 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7612 7613 Changed |= processLoop(L); 7614 } 7615 7616 // Process each loop nest in the function. 7617 return Changed; 7618 } 7619 7620 PreservedAnalyses LoopVectorizePass::run(Function &F, 7621 FunctionAnalysisManager &AM) { 7622 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7623 auto &LI = AM.getResult<LoopAnalysis>(F); 7624 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7625 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7626 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7627 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7628 auto &AA = AM.getResult<AAManager>(F); 7629 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7630 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7631 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7632 7633 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7634 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7635 [&](Loop &L) -> const LoopAccessInfo & { 7636 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7637 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7638 }; 7639 bool Changed = 7640 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7641 if (!Changed) 7642 return PreservedAnalyses::all(); 7643 PreservedAnalyses PA; 7644 PA.preserve<LoopAnalysis>(); 7645 PA.preserve<DominatorTreeAnalysis>(); 7646 PA.preserve<BasicAA>(); 7647 PA.preserve<GlobalsAA>(); 7648 return PA; 7649 } 7650