1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/Hashing.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/Analysis/AliasAnalysis.h" 59 #include "llvm/Analysis/AssumptionCache.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/BlockFrequencyInfo.h" 62 #include "llvm/Analysis/CodeMetrics.h" 63 #include "llvm/Analysis/DemandedBits.h" 64 #include "llvm/Analysis/GlobalsModRef.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Analysis/VectorUtils.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/DiagnosticInfo.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/IR/Verifier.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/BranchProbability.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/Scalar.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Transforms/Vectorize.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> TinyTripCountVectorThreshold( 123 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 124 cl::desc("Don't vectorize loops with a constant " 125 "trip count that is smaller than this " 126 "value.")); 127 128 static cl::opt<bool> MaximizeBandwidth( 129 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 130 cl::desc("Maximize bandwidth when selecting vectorization factor which " 131 "will be determined by the smallest type in loop.")); 132 133 /// This enables versioning on the strides of symbolically striding memory 134 /// accesses in code like the following. 135 /// for (i = 0; i < N; ++i) 136 /// A[i * Stride1] += B[i * Stride2] ... 137 /// 138 /// Will be roughly translated to 139 /// if (Stride1 == 1 && Stride2 == 1) { 140 /// for (i = 0; i < N; i+=4) 141 /// A[i:i+3] += ... 142 /// } else 143 /// ... 144 static cl::opt<bool> EnableMemAccessVersioning( 145 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 146 cl::desc("Enable symbolic stride memory access versioning")); 147 148 static cl::opt<bool> EnableInterleavedMemAccesses( 149 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 150 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 151 152 /// Maximum factor for an interleaved memory access. 153 static cl::opt<unsigned> MaxInterleaveGroupFactor( 154 "max-interleave-group-factor", cl::Hidden, 155 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 156 cl::init(8)); 157 158 /// We don't interleave loops with a known constant trip count below this 159 /// number. 160 static const unsigned TinyTripCountInterleaveThreshold = 128; 161 162 static cl::opt<unsigned> ForceTargetNumScalarRegs( 163 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's number of scalar registers.")); 165 166 static cl::opt<unsigned> ForceTargetNumVectorRegs( 167 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 168 cl::desc("A flag that overrides the target's number of vector registers.")); 169 170 /// Maximum vectorization interleave count. 171 static const unsigned MaxInterleaveFactor = 16; 172 173 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 174 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 175 cl::desc("A flag that overrides the target's max interleave factor for " 176 "scalar loops.")); 177 178 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 179 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's max interleave factor for " 181 "vectorized loops.")); 182 183 static cl::opt<unsigned> ForceTargetInstructionCost( 184 "force-target-instruction-cost", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's expected cost for " 186 "an instruction to a single constant value. Mostly " 187 "useful for getting consistent testing.")); 188 189 static cl::opt<unsigned> SmallLoopCost( 190 "small-loop-cost", cl::init(20), cl::Hidden, 191 cl::desc( 192 "The cost of a loop that is considered 'small' by the interleaver.")); 193 194 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 195 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 196 cl::desc("Enable the use of the block frequency analysis to access PGO " 197 "heuristics minimizing code growth in cold regions and being more " 198 "aggressive in hot regions.")); 199 200 // Runtime interleave loops for load/store throughput. 201 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 202 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 203 cl::desc( 204 "Enable runtime interleaving until load/store ports are saturated")); 205 206 /// The number of stores in a loop that are allowed to need predication. 207 static cl::opt<unsigned> NumberOfStoresToPredicate( 208 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 209 cl::desc("Max number of stores to be predicated behind an if.")); 210 211 static cl::opt<bool> EnableIndVarRegisterHeur( 212 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 213 cl::desc("Count the induction variable only once when interleaving")); 214 215 static cl::opt<bool> EnableCondStoresVectorization( 216 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 217 cl::desc("Enable if predication of stores during vectorization.")); 218 219 static cl::opt<unsigned> MaxNestedScalarReductionIC( 220 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 221 cl::desc("The maximum interleave count to use when interleaving a scalar " 222 "reduction in a nested loop.")); 223 224 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 225 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 226 cl::desc("The maximum allowed number of runtime memory checks with a " 227 "vectorize(enable) pragma.")); 228 229 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 230 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 231 cl::desc("The maximum number of SCEV checks allowed.")); 232 233 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 234 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 235 cl::desc("The maximum number of SCEV checks allowed with a " 236 "vectorize(enable) pragma")); 237 238 namespace { 239 240 // Forward declarations. 241 class LoopVectorizeHints; 242 class LoopVectorizationLegality; 243 class LoopVectorizationCostModel; 244 class LoopVectorizationRequirements; 245 246 /// \brief This modifies LoopAccessReport to initialize message with 247 /// loop-vectorizer-specific part. 248 class VectorizationReport : public LoopAccessReport { 249 public: 250 VectorizationReport(Instruction *I = nullptr) 251 : LoopAccessReport("loop not vectorized: ", I) {} 252 253 /// \brief This allows promotion of the loop-access analysis report into the 254 /// loop-vectorizer report. It modifies the message to add the 255 /// loop-vectorizer-specific part of the message. 256 explicit VectorizationReport(const LoopAccessReport &R) 257 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 258 R.getInstr()) {} 259 }; 260 261 /// A helper function for converting Scalar types to vector types. 262 /// If the incoming type is void, we return void. If the VF is 1, we return 263 /// the scalar type. 264 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 265 if (Scalar->isVoidTy() || VF == 1) 266 return Scalar; 267 return VectorType::get(Scalar, VF); 268 } 269 270 /// A helper function that returns GEP instruction and knows to skip a 271 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 272 /// pointee types of the 'bitcast' have the same size. 273 /// For example: 274 /// bitcast double** %var to i64* - can be skipped 275 /// bitcast double** %var to i8* - can not 276 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 277 278 if (isa<GetElementPtrInst>(Ptr)) 279 return cast<GetElementPtrInst>(Ptr); 280 281 if (isa<BitCastInst>(Ptr) && 282 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 283 Type *BitcastTy = Ptr->getType(); 284 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 285 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 286 return nullptr; 287 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 288 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 289 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 290 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 291 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 292 } 293 return nullptr; 294 } 295 296 /// InnerLoopVectorizer vectorizes loops which contain only one basic 297 /// block to a specified vectorization factor (VF). 298 /// This class performs the widening of scalars into vectors, or multiple 299 /// scalars. This class also implements the following features: 300 /// * It inserts an epilogue loop for handling loops that don't have iteration 301 /// counts that are known to be a multiple of the vectorization factor. 302 /// * It handles the code generation for reduction variables. 303 /// * Scalarization (implementation using scalars) of un-vectorizable 304 /// instructions. 305 /// InnerLoopVectorizer does not perform any vectorization-legality 306 /// checks, and relies on the caller to check for the different legality 307 /// aspects. The InnerLoopVectorizer relies on the 308 /// LoopVectorizationLegality class to provide information about the induction 309 /// and reduction variables that were found to a given vectorization factor. 310 class InnerLoopVectorizer { 311 public: 312 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 313 LoopInfo *LI, DominatorTree *DT, 314 const TargetLibraryInfo *TLI, 315 const TargetTransformInfo *TTI, AssumptionCache *AC, 316 unsigned VecWidth, unsigned UnrollFactor) 317 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 318 AC(AC), VF(VecWidth), UF(UnrollFactor), 319 Builder(PSE.getSE()->getContext()), Induction(nullptr), 320 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 321 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 322 323 // Perform the actual loop widening (vectorization). 324 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 325 // can be validly truncated to. The cost model has assumed this truncation 326 // will happen when vectorizing. 327 void vectorize(LoopVectorizationLegality *L, 328 MapVector<Instruction *, uint64_t> MinimumBitWidths) { 329 MinBWs = MinimumBitWidths; 330 Legal = L; 331 // Create a new empty loop. Unlink the old loop and connect the new one. 332 createEmptyLoop(); 333 // Widen each instruction in the old loop to a new one in the new loop. 334 // Use the Legality module to find the induction and reduction variables. 335 vectorizeLoop(); 336 } 337 338 // Return true if any runtime check is added. 339 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 340 341 virtual ~InnerLoopVectorizer() {} 342 343 protected: 344 /// A small list of PHINodes. 345 typedef SmallVector<PHINode *, 4> PhiVector; 346 /// When we unroll loops we have multiple vector values for each scalar. 347 /// This data structure holds the unrolled and vectorized values that 348 /// originated from one scalar instruction. 349 typedef SmallVector<Value *, 2> VectorParts; 350 351 // When we if-convert we need to create edge masks. We have to cache values 352 // so that we don't end up with exponential recursion/IR. 353 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 354 EdgeMaskCache; 355 356 /// Create an empty loop, based on the loop ranges of the old loop. 357 void createEmptyLoop(); 358 /// Create a new induction variable inside L. 359 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 360 Value *Step, Instruction *DL); 361 /// Copy and widen the instructions from the old loop. 362 virtual void vectorizeLoop(); 363 364 /// Fix a first-order recurrence. This is the second phase of vectorizing 365 /// this phi node. 366 void fixFirstOrderRecurrence(PHINode *Phi); 367 368 /// \brief The Loop exit block may have single value PHI nodes where the 369 /// incoming value is 'Undef'. While vectorizing we only handled real values 370 /// that were defined inside the loop. Here we fix the 'undef case'. 371 /// See PR14725. 372 void fixLCSSAPHIs(); 373 374 /// Shrinks vector element sizes based on information in "MinBWs". 375 void truncateToMinimalBitwidths(); 376 377 /// A helper function that computes the predicate of the block BB, assuming 378 /// that the header block of the loop is set to True. It returns the *entry* 379 /// mask for the block BB. 380 VectorParts createBlockInMask(BasicBlock *BB); 381 /// A helper function that computes the predicate of the edge between SRC 382 /// and DST. 383 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 384 385 /// A helper function to vectorize a single BB within the innermost loop. 386 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 387 388 /// Vectorize a single PHINode in a block. This method handles the induction 389 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 390 /// arbitrary length vectors. 391 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 392 unsigned VF, PhiVector *PV); 393 394 /// Insert the new loop to the loop hierarchy and pass manager 395 /// and update the analysis passes. 396 void updateAnalysis(); 397 398 /// This instruction is un-vectorizable. Implement it as a sequence 399 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 400 /// scalarized instruction behind an if block predicated on the control 401 /// dependence of the instruction. 402 virtual void scalarizeInstruction(Instruction *Instr, 403 bool IfPredicateStore = false); 404 405 /// Vectorize Load and Store instructions, 406 virtual void vectorizeMemoryInstruction(Instruction *Instr); 407 408 /// Create a broadcast instruction. This method generates a broadcast 409 /// instruction (shuffle) for loop invariant values and for the induction 410 /// value. If this is the induction variable then we extend it to N, N+1, ... 411 /// this is needed because each iteration in the loop corresponds to a SIMD 412 /// element. 413 virtual Value *getBroadcastInstrs(Value *V); 414 415 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 416 /// to each vector element of Val. The sequence starts at StartIndex. 417 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 418 419 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 420 /// to each vector element of Val. The sequence starts at StartIndex. 421 /// Step is a SCEV. In order to get StepValue it takes the existing value 422 /// from SCEV or creates a new using SCEVExpander. 423 virtual Value *getStepVector(Value *Val, int StartIdx, const SCEV *Step); 424 425 /// When we go over instructions in the basic block we rely on previous 426 /// values within the current basic block or on loop invariant values. 427 /// When we widen (vectorize) values we place them in the map. If the values 428 /// are not within the map, they have to be loop invariant, so we simply 429 /// broadcast them into a vector. 430 VectorParts &getVectorValue(Value *V); 431 432 /// Try to vectorize the interleaved access group that \p Instr belongs to. 433 void vectorizeInterleaveGroup(Instruction *Instr); 434 435 /// Generate a shuffle sequence that will reverse the vector Vec. 436 virtual Value *reverseVector(Value *Vec); 437 438 /// Returns (and creates if needed) the original loop trip count. 439 Value *getOrCreateTripCount(Loop *NewLoop); 440 441 /// Returns (and creates if needed) the trip count of the widened loop. 442 Value *getOrCreateVectorTripCount(Loop *NewLoop); 443 444 /// Emit a bypass check to see if the trip count would overflow, or we 445 /// wouldn't have enough iterations to execute one vector loop. 446 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 447 /// Emit a bypass check to see if the vector trip count is nonzero. 448 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 449 /// Emit a bypass check to see if all of the SCEV assumptions we've 450 /// had to make are correct. 451 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 452 /// Emit bypass checks to check any memory assumptions we may have made. 453 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 454 455 /// Add additional metadata to \p To that was not present on \p Orig. 456 /// 457 /// Currently this is used to add the noalias annotations based on the 458 /// inserted memchecks. Use this for instructions that are *cloned* into the 459 /// vector loop. 460 void addNewMetadata(Instruction *To, const Instruction *Orig); 461 462 /// Add metadata from one instruction to another. 463 /// 464 /// This includes both the original MDs from \p From and additional ones (\see 465 /// addNewMetadata). Use this for *newly created* instructions in the vector 466 /// loop. 467 void addMetadata(Instruction *To, const Instruction *From); 468 469 /// \brief Similar to the previous function but it adds the metadata to a 470 /// vector of instructions. 471 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 472 473 /// This is a helper class that holds the vectorizer state. It maps scalar 474 /// instructions to vector instructions. When the code is 'unrolled' then 475 /// then a single scalar value is mapped to multiple vector parts. The parts 476 /// are stored in the VectorPart type. 477 struct ValueMap { 478 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 479 /// are mapped. 480 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 481 482 /// \return True if 'Key' is saved in the Value Map. 483 bool has(Value *Key) const { return MapStorage.count(Key); } 484 485 /// Initializes a new entry in the map. Sets all of the vector parts to the 486 /// save value in 'Val'. 487 /// \return A reference to a vector with splat values. 488 VectorParts &splat(Value *Key, Value *Val) { 489 VectorParts &Entry = MapStorage[Key]; 490 Entry.assign(UF, Val); 491 return Entry; 492 } 493 494 ///\return A reference to the value that is stored at 'Key'. 495 VectorParts &get(Value *Key) { 496 VectorParts &Entry = MapStorage[Key]; 497 if (Entry.empty()) 498 Entry.resize(UF); 499 assert(Entry.size() == UF); 500 return Entry; 501 } 502 503 private: 504 /// The unroll factor. Each entry in the map stores this number of vector 505 /// elements. 506 unsigned UF; 507 508 /// Map storage. We use std::map and not DenseMap because insertions to a 509 /// dense map invalidates its iterators. 510 std::map<Value *, VectorParts> MapStorage; 511 }; 512 513 /// The original loop. 514 Loop *OrigLoop; 515 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 516 /// dynamic knowledge to simplify SCEV expressions and converts them to a 517 /// more usable form. 518 PredicatedScalarEvolution &PSE; 519 /// Loop Info. 520 LoopInfo *LI; 521 /// Dominator Tree. 522 DominatorTree *DT; 523 /// Alias Analysis. 524 AliasAnalysis *AA; 525 /// Target Library Info. 526 const TargetLibraryInfo *TLI; 527 /// Target Transform Info. 528 const TargetTransformInfo *TTI; 529 /// Assumption Cache. 530 AssumptionCache *AC; 531 532 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 533 /// used. 534 /// 535 /// This is currently only used to add no-alias metadata based on the 536 /// memchecks. The actually versioning is performed manually. 537 std::unique_ptr<LoopVersioning> LVer; 538 539 /// The vectorization SIMD factor to use. Each vector will have this many 540 /// vector elements. 541 unsigned VF; 542 543 protected: 544 /// The vectorization unroll factor to use. Each scalar is vectorized to this 545 /// many different vector instructions. 546 unsigned UF; 547 548 /// The builder that we use 549 IRBuilder<> Builder; 550 551 // --- Vectorization state --- 552 553 /// The vector-loop preheader. 554 BasicBlock *LoopVectorPreHeader; 555 /// The scalar-loop preheader. 556 BasicBlock *LoopScalarPreHeader; 557 /// Middle Block between the vector and the scalar. 558 BasicBlock *LoopMiddleBlock; 559 /// The ExitBlock of the scalar loop. 560 BasicBlock *LoopExitBlock; 561 /// The vector loop body. 562 BasicBlock *LoopVectorBody; 563 /// The scalar loop body. 564 BasicBlock *LoopScalarBody; 565 /// A list of all bypass blocks. The first block is the entry of the loop. 566 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 567 568 /// The new Induction variable which was added to the new block. 569 PHINode *Induction; 570 /// The induction variable of the old basic block. 571 PHINode *OldInduction; 572 /// Maps scalars to widened vectors. 573 ValueMap WidenMap; 574 /// Store instructions that should be predicated, as a pair 575 /// <StoreInst, Predicate> 576 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores; 577 EdgeMaskCache MaskCache; 578 /// Trip count of the original loop. 579 Value *TripCount; 580 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 581 Value *VectorTripCount; 582 583 /// Map of scalar integer values to the smallest bitwidth they can be legally 584 /// represented as. The vector equivalents of these values should be truncated 585 /// to this type. 586 MapVector<Instruction *, uint64_t> MinBWs; 587 LoopVectorizationLegality *Legal; 588 589 // Record whether runtime checks are added. 590 bool AddedSafetyChecks; 591 }; 592 593 class InnerLoopUnroller : public InnerLoopVectorizer { 594 public: 595 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 596 LoopInfo *LI, DominatorTree *DT, 597 const TargetLibraryInfo *TLI, 598 const TargetTransformInfo *TTI, AssumptionCache *AC, 599 unsigned UnrollFactor) 600 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 601 UnrollFactor) {} 602 603 private: 604 void scalarizeInstruction(Instruction *Instr, 605 bool IfPredicateStore = false) override; 606 void vectorizeMemoryInstruction(Instruction *Instr) override; 607 Value *getBroadcastInstrs(Value *V) override; 608 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 609 Value *getStepVector(Value *Val, int StartIdx, const SCEV *StepSCEV) override; 610 Value *reverseVector(Value *Vec) override; 611 }; 612 613 /// \brief Look for a meaningful debug location on the instruction or it's 614 /// operands. 615 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 616 if (!I) 617 return I; 618 619 DebugLoc Empty; 620 if (I->getDebugLoc() != Empty) 621 return I; 622 623 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 624 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 625 if (OpInst->getDebugLoc() != Empty) 626 return OpInst; 627 } 628 629 return I; 630 } 631 632 /// \brief Set the debug location in the builder using the debug location in the 633 /// instruction. 634 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 635 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 636 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 637 else 638 B.SetCurrentDebugLocation(DebugLoc()); 639 } 640 641 #ifndef NDEBUG 642 /// \return string containing a file name and a line # for the given loop. 643 static std::string getDebugLocString(const Loop *L) { 644 std::string Result; 645 if (L) { 646 raw_string_ostream OS(Result); 647 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 648 LoopDbgLoc.print(OS); 649 else 650 // Just print the module name. 651 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 652 OS.flush(); 653 } 654 return Result; 655 } 656 #endif 657 658 /// \brief Propagate known metadata from one instruction to another. 659 static void propagateMetadata(Instruction *To, const Instruction *From) { 660 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 661 From->getAllMetadataOtherThanDebugLoc(Metadata); 662 663 for (auto M : Metadata) { 664 unsigned Kind = M.first; 665 666 // These are safe to transfer (this is safe for TBAA, even when we 667 // if-convert, because should that metadata have had a control dependency 668 // on the condition, and thus actually aliased with some other 669 // non-speculated memory access when the condition was false, this would be 670 // caught by the runtime overlap checks). 671 if (Kind != LLVMContext::MD_tbaa && Kind != LLVMContext::MD_alias_scope && 672 Kind != LLVMContext::MD_noalias && Kind != LLVMContext::MD_fpmath && 673 Kind != LLVMContext::MD_nontemporal) 674 continue; 675 676 To->setMetadata(Kind, M.second); 677 } 678 } 679 680 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 681 const Instruction *Orig) { 682 // If the loop was versioned with memchecks, add the corresponding no-alias 683 // metadata. 684 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 685 LVer->annotateInstWithNoAlias(To, Orig); 686 } 687 688 void InnerLoopVectorizer::addMetadata(Instruction *To, 689 const Instruction *From) { 690 propagateMetadata(To, From); 691 addNewMetadata(To, From); 692 } 693 694 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 695 const Instruction *From) { 696 for (Value *V : To) 697 if (Instruction *I = dyn_cast<Instruction>(V)) 698 addMetadata(I, From); 699 } 700 701 /// \brief The group of interleaved loads/stores sharing the same stride and 702 /// close to each other. 703 /// 704 /// Each member in this group has an index starting from 0, and the largest 705 /// index should be less than interleaved factor, which is equal to the absolute 706 /// value of the access's stride. 707 /// 708 /// E.g. An interleaved load group of factor 4: 709 /// for (unsigned i = 0; i < 1024; i+=4) { 710 /// a = A[i]; // Member of index 0 711 /// b = A[i+1]; // Member of index 1 712 /// d = A[i+3]; // Member of index 3 713 /// ... 714 /// } 715 /// 716 /// An interleaved store group of factor 4: 717 /// for (unsigned i = 0; i < 1024; i+=4) { 718 /// ... 719 /// A[i] = a; // Member of index 0 720 /// A[i+1] = b; // Member of index 1 721 /// A[i+2] = c; // Member of index 2 722 /// A[i+3] = d; // Member of index 3 723 /// } 724 /// 725 /// Note: the interleaved load group could have gaps (missing members), but 726 /// the interleaved store group doesn't allow gaps. 727 class InterleaveGroup { 728 public: 729 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 730 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 731 assert(Align && "The alignment should be non-zero"); 732 733 Factor = std::abs(Stride); 734 assert(Factor > 1 && "Invalid interleave factor"); 735 736 Reverse = Stride < 0; 737 Members[0] = Instr; 738 } 739 740 bool isReverse() const { return Reverse; } 741 unsigned getFactor() const { return Factor; } 742 unsigned getAlignment() const { return Align; } 743 unsigned getNumMembers() const { return Members.size(); } 744 745 /// \brief Try to insert a new member \p Instr with index \p Index and 746 /// alignment \p NewAlign. The index is related to the leader and it could be 747 /// negative if it is the new leader. 748 /// 749 /// \returns false if the instruction doesn't belong to the group. 750 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 751 assert(NewAlign && "The new member's alignment should be non-zero"); 752 753 int Key = Index + SmallestKey; 754 755 // Skip if there is already a member with the same index. 756 if (Members.count(Key)) 757 return false; 758 759 if (Key > LargestKey) { 760 // The largest index is always less than the interleave factor. 761 if (Index >= static_cast<int>(Factor)) 762 return false; 763 764 LargestKey = Key; 765 } else if (Key < SmallestKey) { 766 // The largest index is always less than the interleave factor. 767 if (LargestKey - Key >= static_cast<int>(Factor)) 768 return false; 769 770 SmallestKey = Key; 771 } 772 773 // It's always safe to select the minimum alignment. 774 Align = std::min(Align, NewAlign); 775 Members[Key] = Instr; 776 return true; 777 } 778 779 /// \brief Get the member with the given index \p Index 780 /// 781 /// \returns nullptr if contains no such member. 782 Instruction *getMember(unsigned Index) const { 783 int Key = SmallestKey + Index; 784 if (!Members.count(Key)) 785 return nullptr; 786 787 return Members.find(Key)->second; 788 } 789 790 /// \brief Get the index for the given member. Unlike the key in the member 791 /// map, the index starts from 0. 792 unsigned getIndex(Instruction *Instr) const { 793 for (auto I : Members) 794 if (I.second == Instr) 795 return I.first - SmallestKey; 796 797 llvm_unreachable("InterleaveGroup contains no such member"); 798 } 799 800 Instruction *getInsertPos() const { return InsertPos; } 801 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 802 803 private: 804 unsigned Factor; // Interleave Factor. 805 bool Reverse; 806 unsigned Align; 807 DenseMap<int, Instruction *> Members; 808 int SmallestKey; 809 int LargestKey; 810 811 // To avoid breaking dependences, vectorized instructions of an interleave 812 // group should be inserted at either the first load or the last store in 813 // program order. 814 // 815 // E.g. %even = load i32 // Insert Position 816 // %add = add i32 %even // Use of %even 817 // %odd = load i32 818 // 819 // store i32 %even 820 // %odd = add i32 // Def of %odd 821 // store i32 %odd // Insert Position 822 Instruction *InsertPos; 823 }; 824 825 /// \brief Drive the analysis of interleaved memory accesses in the loop. 826 /// 827 /// Use this class to analyze interleaved accesses only when we can vectorize 828 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 829 /// on interleaved accesses is unsafe. 830 /// 831 /// The analysis collects interleave groups and records the relationships 832 /// between the member and the group in a map. 833 class InterleavedAccessInfo { 834 public: 835 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 836 DominatorTree *DT) 837 : PSE(PSE), TheLoop(L), DT(DT), RequiresScalarEpilogue(false) {} 838 839 ~InterleavedAccessInfo() { 840 SmallSet<InterleaveGroup *, 4> DelSet; 841 // Avoid releasing a pointer twice. 842 for (auto &I : InterleaveGroupMap) 843 DelSet.insert(I.second); 844 for (auto *Ptr : DelSet) 845 delete Ptr; 846 } 847 848 /// \brief Analyze the interleaved accesses and collect them in interleave 849 /// groups. Substitute symbolic strides using \p Strides. 850 void analyzeInterleaving(const ValueToValueMap &Strides); 851 852 /// \brief Check if \p Instr belongs to any interleave group. 853 bool isInterleaved(Instruction *Instr) const { 854 return InterleaveGroupMap.count(Instr); 855 } 856 857 /// \brief Return the maximum interleave factor of all interleaved groups. 858 unsigned getMaxInterleaveFactor() const { 859 unsigned MaxFactor = 1; 860 for (auto &Entry : InterleaveGroupMap) 861 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 862 return MaxFactor; 863 } 864 865 /// \brief Get the interleave group that \p Instr belongs to. 866 /// 867 /// \returns nullptr if doesn't have such group. 868 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 869 if (InterleaveGroupMap.count(Instr)) 870 return InterleaveGroupMap.find(Instr)->second; 871 return nullptr; 872 } 873 874 /// \brief Returns true if an interleaved group that may access memory 875 /// out-of-bounds requires a scalar epilogue iteration for correctness. 876 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 877 878 private: 879 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 880 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 881 /// The interleaved access analysis can also add new predicates (for example 882 /// by versioning strides of pointers). 883 PredicatedScalarEvolution &PSE; 884 Loop *TheLoop; 885 DominatorTree *DT; 886 887 /// True if the loop may contain non-reversed interleaved groups with 888 /// out-of-bounds accesses. We ensure we don't speculatively access memory 889 /// out-of-bounds by executing at least one scalar epilogue iteration. 890 bool RequiresScalarEpilogue; 891 892 /// Holds the relationships between the members and the interleave group. 893 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 894 895 /// \brief The descriptor for a strided memory access. 896 struct StrideDescriptor { 897 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 898 unsigned Align) 899 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 900 901 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 902 903 int Stride; // The access's stride. It is negative for a reverse access. 904 const SCEV *Scev; // The scalar expression of this access 905 unsigned Size; // The size of the memory object. 906 unsigned Align; // The alignment of this access. 907 }; 908 909 /// \brief Create a new interleave group with the given instruction \p Instr, 910 /// stride \p Stride and alignment \p Align. 911 /// 912 /// \returns the newly created interleave group. 913 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 914 unsigned Align) { 915 assert(!InterleaveGroupMap.count(Instr) && 916 "Already in an interleaved access group"); 917 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 918 return InterleaveGroupMap[Instr]; 919 } 920 921 /// \brief Release the group and remove all the relationships. 922 void releaseGroup(InterleaveGroup *Group) { 923 for (unsigned i = 0; i < Group->getFactor(); i++) 924 if (Instruction *Member = Group->getMember(i)) 925 InterleaveGroupMap.erase(Member); 926 927 delete Group; 928 } 929 930 /// \brief Collect all the accesses with a constant stride in program order. 931 void collectConstStridedAccesses( 932 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 933 const ValueToValueMap &Strides); 934 }; 935 936 /// Utility class for getting and setting loop vectorizer hints in the form 937 /// of loop metadata. 938 /// This class keeps a number of loop annotations locally (as member variables) 939 /// and can, upon request, write them back as metadata on the loop. It will 940 /// initially scan the loop for existing metadata, and will update the local 941 /// values based on information in the loop. 942 /// We cannot write all values to metadata, as the mere presence of some info, 943 /// for example 'force', means a decision has been made. So, we need to be 944 /// careful NOT to add them if the user hasn't specifically asked so. 945 class LoopVectorizeHints { 946 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 947 948 /// Hint - associates name and validation with the hint value. 949 struct Hint { 950 const char *Name; 951 unsigned Value; // This may have to change for non-numeric values. 952 HintKind Kind; 953 954 Hint(const char *Name, unsigned Value, HintKind Kind) 955 : Name(Name), Value(Value), Kind(Kind) {} 956 957 bool validate(unsigned Val) { 958 switch (Kind) { 959 case HK_WIDTH: 960 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 961 case HK_UNROLL: 962 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 963 case HK_FORCE: 964 return (Val <= 1); 965 } 966 return false; 967 } 968 }; 969 970 /// Vectorization width. 971 Hint Width; 972 /// Vectorization interleave factor. 973 Hint Interleave; 974 /// Vectorization forced 975 Hint Force; 976 977 /// Return the loop metadata prefix. 978 static StringRef Prefix() { return "llvm.loop."; } 979 980 /// True if there is any unsafe math in the loop. 981 bool PotentiallyUnsafe; 982 983 public: 984 enum ForceKind { 985 FK_Undefined = -1, ///< Not selected. 986 FK_Disabled = 0, ///< Forcing disabled. 987 FK_Enabled = 1, ///< Forcing enabled. 988 }; 989 990 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 991 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 992 HK_WIDTH), 993 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 994 Force("vectorize.enable", FK_Undefined, HK_FORCE), 995 PotentiallyUnsafe(false), TheLoop(L) { 996 // Populate values with existing loop metadata. 997 getHintsFromMetadata(); 998 999 // force-vector-interleave overrides DisableInterleaving. 1000 if (VectorizerParams::isInterleaveForced()) 1001 Interleave.Value = VectorizerParams::VectorizationInterleave; 1002 1003 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1004 << "LV: Interleaving disabled by the pass manager\n"); 1005 } 1006 1007 /// Mark the loop L as already vectorized by setting the width to 1. 1008 void setAlreadyVectorized() { 1009 Width.Value = Interleave.Value = 1; 1010 Hint Hints[] = {Width, Interleave}; 1011 writeHintsToMetadata(Hints); 1012 } 1013 1014 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1015 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1016 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1017 emitOptimizationRemarkAnalysis(F->getContext(), 1018 vectorizeAnalysisPassName(), *F, 1019 L->getStartLoc(), emitRemark()); 1020 return false; 1021 } 1022 1023 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1024 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1025 emitOptimizationRemarkAnalysis(F->getContext(), 1026 vectorizeAnalysisPassName(), *F, 1027 L->getStartLoc(), emitRemark()); 1028 return false; 1029 } 1030 1031 if (getWidth() == 1 && getInterleave() == 1) { 1032 // FIXME: Add a separate metadata to indicate when the loop has already 1033 // been vectorized instead of setting width and count to 1. 1034 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1035 // FIXME: Add interleave.disable metadata. This will allow 1036 // vectorize.disable to be used without disabling the pass and errors 1037 // to differentiate between disabled vectorization and a width of 1. 1038 emitOptimizationRemarkAnalysis( 1039 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1040 "loop not vectorized: vectorization and interleaving are explicitly " 1041 "disabled, or vectorize width and interleave count are both set to " 1042 "1"); 1043 return false; 1044 } 1045 1046 return true; 1047 } 1048 1049 /// Dumps all the hint information. 1050 std::string emitRemark() const { 1051 VectorizationReport R; 1052 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1053 R << "vectorization is explicitly disabled"; 1054 else { 1055 R << "use -Rpass-analysis=loop-vectorize for more info"; 1056 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1057 R << " (Force=true"; 1058 if (Width.Value != 0) 1059 R << ", Vector Width=" << Width.Value; 1060 if (Interleave.Value != 0) 1061 R << ", Interleave Count=" << Interleave.Value; 1062 R << ")"; 1063 } 1064 } 1065 1066 return R.str(); 1067 } 1068 1069 unsigned getWidth() const { return Width.Value; } 1070 unsigned getInterleave() const { return Interleave.Value; } 1071 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1072 const char *vectorizeAnalysisPassName() const { 1073 // If hints are provided that don't disable vectorization use the 1074 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1075 if (getWidth() == 1) 1076 return LV_NAME; 1077 if (getForce() == LoopVectorizeHints::FK_Disabled) 1078 return LV_NAME; 1079 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1080 return LV_NAME; 1081 return DiagnosticInfo::AlwaysPrint; 1082 } 1083 1084 bool allowReordering() const { 1085 // When enabling loop hints are provided we allow the vectorizer to change 1086 // the order of operations that is given by the scalar loop. This is not 1087 // enabled by default because can be unsafe or inefficient. For example, 1088 // reordering floating-point operations will change the way round-off 1089 // error accumulates in the loop. 1090 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1091 } 1092 1093 bool isPotentiallyUnsafe() const { 1094 // Avoid FP vectorization if the target is unsure about proper support. 1095 // This may be related to the SIMD unit in the target not handling 1096 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1097 // Otherwise, a sequence of vectorized loops, even without reduction, 1098 // could lead to different end results on the destination vectors. 1099 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1100 } 1101 1102 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1103 1104 private: 1105 /// Find hints specified in the loop metadata and update local values. 1106 void getHintsFromMetadata() { 1107 MDNode *LoopID = TheLoop->getLoopID(); 1108 if (!LoopID) 1109 return; 1110 1111 // First operand should refer to the loop id itself. 1112 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1113 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1114 1115 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1116 const MDString *S = nullptr; 1117 SmallVector<Metadata *, 4> Args; 1118 1119 // The expected hint is either a MDString or a MDNode with the first 1120 // operand a MDString. 1121 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1122 if (!MD || MD->getNumOperands() == 0) 1123 continue; 1124 S = dyn_cast<MDString>(MD->getOperand(0)); 1125 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1126 Args.push_back(MD->getOperand(i)); 1127 } else { 1128 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1129 assert(Args.size() == 0 && "too many arguments for MDString"); 1130 } 1131 1132 if (!S) 1133 continue; 1134 1135 // Check if the hint starts with the loop metadata prefix. 1136 StringRef Name = S->getString(); 1137 if (Args.size() == 1) 1138 setHint(Name, Args[0]); 1139 } 1140 } 1141 1142 /// Checks string hint with one operand and set value if valid. 1143 void setHint(StringRef Name, Metadata *Arg) { 1144 if (!Name.startswith(Prefix())) 1145 return; 1146 Name = Name.substr(Prefix().size(), StringRef::npos); 1147 1148 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1149 if (!C) 1150 return; 1151 unsigned Val = C->getZExtValue(); 1152 1153 Hint *Hints[] = {&Width, &Interleave, &Force}; 1154 for (auto H : Hints) { 1155 if (Name == H->Name) { 1156 if (H->validate(Val)) 1157 H->Value = Val; 1158 else 1159 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1160 break; 1161 } 1162 } 1163 } 1164 1165 /// Create a new hint from name / value pair. 1166 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1167 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1168 Metadata *MDs[] = {MDString::get(Context, Name), 1169 ConstantAsMetadata::get( 1170 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1171 return MDNode::get(Context, MDs); 1172 } 1173 1174 /// Matches metadata with hint name. 1175 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1176 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1177 if (!Name) 1178 return false; 1179 1180 for (auto H : HintTypes) 1181 if (Name->getString().endswith(H.Name)) 1182 return true; 1183 return false; 1184 } 1185 1186 /// Sets current hints into loop metadata, keeping other values intact. 1187 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1188 if (HintTypes.size() == 0) 1189 return; 1190 1191 // Reserve the first element to LoopID (see below). 1192 SmallVector<Metadata *, 4> MDs(1); 1193 // If the loop already has metadata, then ignore the existing operands. 1194 MDNode *LoopID = TheLoop->getLoopID(); 1195 if (LoopID) { 1196 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1197 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1198 // If node in update list, ignore old value. 1199 if (!matchesHintMetadataName(Node, HintTypes)) 1200 MDs.push_back(Node); 1201 } 1202 } 1203 1204 // Now, add the missing hints. 1205 for (auto H : HintTypes) 1206 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1207 1208 // Replace current metadata node with new one. 1209 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1210 MDNode *NewLoopID = MDNode::get(Context, MDs); 1211 // Set operand 0 to refer to the loop id itself. 1212 NewLoopID->replaceOperandWith(0, NewLoopID); 1213 1214 TheLoop->setLoopID(NewLoopID); 1215 } 1216 1217 /// The loop these hints belong to. 1218 const Loop *TheLoop; 1219 }; 1220 1221 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1222 const LoopVectorizeHints &Hints, 1223 const LoopAccessReport &Message) { 1224 const char *Name = Hints.vectorizeAnalysisPassName(); 1225 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1226 } 1227 1228 static void emitMissedWarning(Function *F, Loop *L, 1229 const LoopVectorizeHints &LH) { 1230 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1231 LH.emitRemark()); 1232 1233 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1234 if (LH.getWidth() != 1) 1235 emitLoopVectorizeWarning( 1236 F->getContext(), *F, L->getStartLoc(), 1237 "failed explicitly specified loop vectorization"); 1238 else if (LH.getInterleave() != 1) 1239 emitLoopInterleaveWarning( 1240 F->getContext(), *F, L->getStartLoc(), 1241 "failed explicitly specified loop interleaving"); 1242 } 1243 } 1244 1245 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1246 /// to what vectorization factor. 1247 /// This class does not look at the profitability of vectorization, only the 1248 /// legality. This class has two main kinds of checks: 1249 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1250 /// will change the order of memory accesses in a way that will change the 1251 /// correctness of the program. 1252 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1253 /// checks for a number of different conditions, such as the availability of a 1254 /// single induction variable, that all types are supported and vectorize-able, 1255 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1256 /// This class is also used by InnerLoopVectorizer for identifying 1257 /// induction variable and the different reduction variables. 1258 class LoopVectorizationLegality { 1259 public: 1260 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1261 DominatorTree *DT, TargetLibraryInfo *TLI, 1262 AliasAnalysis *AA, Function *F, 1263 const TargetTransformInfo *TTI, 1264 LoopAccessAnalysis *LAA, 1265 LoopVectorizationRequirements *R, 1266 LoopVectorizeHints *H) 1267 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1268 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1269 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1270 Requirements(R), Hints(H) {} 1271 1272 /// ReductionList contains the reduction descriptors for all 1273 /// of the reductions that were found in the loop. 1274 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1275 1276 /// InductionList saves induction variables and maps them to the 1277 /// induction descriptor. 1278 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1279 1280 /// RecurrenceSet contains the phi nodes that are recurrences other than 1281 /// inductions and reductions. 1282 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1283 1284 /// Returns true if it is legal to vectorize this loop. 1285 /// This does not mean that it is profitable to vectorize this 1286 /// loop, only that it is legal to do so. 1287 bool canVectorize(); 1288 1289 /// Returns the Induction variable. 1290 PHINode *getInduction() { return Induction; } 1291 1292 /// Returns the reduction variables found in the loop. 1293 ReductionList *getReductionVars() { return &Reductions; } 1294 1295 /// Returns the induction variables found in the loop. 1296 InductionList *getInductionVars() { return &Inductions; } 1297 1298 /// Return the first-order recurrences found in the loop. 1299 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1300 1301 /// Returns the widest induction type. 1302 Type *getWidestInductionType() { return WidestIndTy; } 1303 1304 /// Returns True if V is an induction variable in this loop. 1305 bool isInductionVariable(const Value *V); 1306 1307 /// Returns True if PN is a reduction variable in this loop. 1308 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1309 1310 /// Returns True if Phi is a first-order recurrence in this loop. 1311 bool isFirstOrderRecurrence(const PHINode *Phi); 1312 1313 /// Return true if the block BB needs to be predicated in order for the loop 1314 /// to be vectorized. 1315 bool blockNeedsPredication(BasicBlock *BB); 1316 1317 /// Check if this pointer is consecutive when vectorizing. This happens 1318 /// when the last index of the GEP is the induction variable, or that the 1319 /// pointer itself is an induction variable. 1320 /// This check allows us to vectorize A[idx] into a wide load/store. 1321 /// Returns: 1322 /// 0 - Stride is unknown or non-consecutive. 1323 /// 1 - Address is consecutive. 1324 /// -1 - Address is consecutive, and decreasing. 1325 int isConsecutivePtr(Value *Ptr); 1326 1327 /// Returns true if the value V is uniform within the loop. 1328 bool isUniform(Value *V); 1329 1330 /// Returns true if this instruction will remain scalar after vectorization. 1331 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1332 1333 /// Returns the information that we collected about runtime memory check. 1334 const RuntimePointerChecking *getRuntimePointerChecking() const { 1335 return LAI->getRuntimePointerChecking(); 1336 } 1337 1338 const LoopAccessInfo *getLAI() const { return LAI; } 1339 1340 /// \brief Check if \p Instr belongs to any interleaved access group. 1341 bool isAccessInterleaved(Instruction *Instr) { 1342 return InterleaveInfo.isInterleaved(Instr); 1343 } 1344 1345 /// \brief Return the maximum interleave factor of all interleaved groups. 1346 unsigned getMaxInterleaveFactor() const { 1347 return InterleaveInfo.getMaxInterleaveFactor(); 1348 } 1349 1350 /// \brief Get the interleaved access group that \p Instr belongs to. 1351 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1352 return InterleaveInfo.getInterleaveGroup(Instr); 1353 } 1354 1355 /// \brief Returns true if an interleaved group requires a scalar iteration 1356 /// to handle accesses with gaps. 1357 bool requiresScalarEpilogue() const { 1358 return InterleaveInfo.requiresScalarEpilogue(); 1359 } 1360 1361 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1362 1363 bool hasStride(Value *V) { return StrideSet.count(V); } 1364 bool mustCheckStrides() { return !StrideSet.empty(); } 1365 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1366 return StrideSet.begin(); 1367 } 1368 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1369 1370 /// Returns true if the target machine supports masked store operation 1371 /// for the given \p DataType and kind of access to \p Ptr. 1372 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1373 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1374 } 1375 /// Returns true if the target machine supports masked load operation 1376 /// for the given \p DataType and kind of access to \p Ptr. 1377 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1378 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1379 } 1380 /// Returns true if the target machine supports masked scatter operation 1381 /// for the given \p DataType. 1382 bool isLegalMaskedScatter(Type *DataType) { 1383 return TTI->isLegalMaskedScatter(DataType); 1384 } 1385 /// Returns true if the target machine supports masked gather operation 1386 /// for the given \p DataType. 1387 bool isLegalMaskedGather(Type *DataType) { 1388 return TTI->isLegalMaskedGather(DataType); 1389 } 1390 1391 /// Returns true if vector representation of the instruction \p I 1392 /// requires mask. 1393 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1394 unsigned getNumStores() const { return LAI->getNumStores(); } 1395 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1396 unsigned getNumPredStores() const { return NumPredStores; } 1397 1398 private: 1399 /// Check if a single basic block loop is vectorizable. 1400 /// At this point we know that this is a loop with a constant trip count 1401 /// and we only need to check individual instructions. 1402 bool canVectorizeInstrs(); 1403 1404 /// When we vectorize loops we may change the order in which 1405 /// we read and write from memory. This method checks if it is 1406 /// legal to vectorize the code, considering only memory constrains. 1407 /// Returns true if the loop is vectorizable 1408 bool canVectorizeMemory(); 1409 1410 /// Return true if we can vectorize this loop using the IF-conversion 1411 /// transformation. 1412 bool canVectorizeWithIfConvert(); 1413 1414 /// Collect the variables that need to stay uniform after vectorization. 1415 void collectLoopUniforms(); 1416 1417 /// Return true if all of the instructions in the block can be speculatively 1418 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1419 /// and we know that we can read from them without segfault. 1420 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1421 1422 /// \brief Collect memory access with loop invariant strides. 1423 /// 1424 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1425 /// invariant. 1426 void collectStridedAccess(Value *LoadOrStoreInst); 1427 1428 /// \brief Returns true if we can vectorize using this PHI node as an 1429 /// induction. 1430 /// 1431 /// Updates the vectorization state by adding \p Phi to the inductions list. 1432 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1433 /// better choice for the main induction than the existing one. 1434 bool addInductionPhi(PHINode *Phi, InductionDescriptor ID); 1435 1436 /// Report an analysis message to assist the user in diagnosing loops that are 1437 /// not vectorized. These are handled as LoopAccessReport rather than 1438 /// VectorizationReport because the << operator of VectorizationReport returns 1439 /// LoopAccessReport. 1440 void emitAnalysis(const LoopAccessReport &Message) const { 1441 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1442 } 1443 1444 unsigned NumPredStores; 1445 1446 /// The loop that we evaluate. 1447 Loop *TheLoop; 1448 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1449 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1450 /// of existing SCEV assumptions. The analysis will also add a minimal set 1451 /// of new predicates if this is required to enable vectorization and 1452 /// unrolling. 1453 PredicatedScalarEvolution &PSE; 1454 /// Target Library Info. 1455 TargetLibraryInfo *TLI; 1456 /// Parent function 1457 Function *TheFunction; 1458 /// Target Transform Info 1459 const TargetTransformInfo *TTI; 1460 /// Dominator Tree. 1461 DominatorTree *DT; 1462 // LoopAccess analysis. 1463 LoopAccessAnalysis *LAA; 1464 // And the loop-accesses info corresponding to this loop. This pointer is 1465 // null until canVectorizeMemory sets it up. 1466 const LoopAccessInfo *LAI; 1467 1468 /// The interleave access information contains groups of interleaved accesses 1469 /// with the same stride and close to each other. 1470 InterleavedAccessInfo InterleaveInfo; 1471 1472 // --- vectorization state --- // 1473 1474 /// Holds the integer induction variable. This is the counter of the 1475 /// loop. 1476 PHINode *Induction; 1477 /// Holds the reduction variables. 1478 ReductionList Reductions; 1479 /// Holds all of the induction variables that we found in the loop. 1480 /// Notice that inductions don't need to start at zero and that induction 1481 /// variables can be pointers. 1482 InductionList Inductions; 1483 /// Holds the phi nodes that are first-order recurrences. 1484 RecurrenceSet FirstOrderRecurrences; 1485 /// Holds the widest induction type encountered. 1486 Type *WidestIndTy; 1487 1488 /// Allowed outside users. This holds the reduction 1489 /// vars which can be accessed from outside the loop. 1490 SmallPtrSet<Value *, 4> AllowedExit; 1491 /// This set holds the variables which are known to be uniform after 1492 /// vectorization. 1493 SmallPtrSet<Instruction *, 4> Uniforms; 1494 1495 /// Can we assume the absence of NaNs. 1496 bool HasFunNoNaNAttr; 1497 1498 /// Vectorization requirements that will go through late-evaluation. 1499 LoopVectorizationRequirements *Requirements; 1500 1501 /// Used to emit an analysis of any legality issues. 1502 LoopVectorizeHints *Hints; 1503 1504 ValueToValueMap Strides; 1505 SmallPtrSet<Value *, 8> StrideSet; 1506 1507 /// While vectorizing these instructions we have to generate a 1508 /// call to the appropriate masked intrinsic 1509 SmallPtrSet<const Instruction *, 8> MaskedOp; 1510 }; 1511 1512 /// LoopVectorizationCostModel - estimates the expected speedups due to 1513 /// vectorization. 1514 /// In many cases vectorization is not profitable. This can happen because of 1515 /// a number of reasons. In this class we mainly attempt to predict the 1516 /// expected speedup/slowdowns due to the supported instruction set. We use the 1517 /// TargetTransformInfo to query the different backends for the cost of 1518 /// different operations. 1519 class LoopVectorizationCostModel { 1520 public: 1521 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1522 LoopInfo *LI, LoopVectorizationLegality *Legal, 1523 const TargetTransformInfo &TTI, 1524 const TargetLibraryInfo *TLI, DemandedBits *DB, 1525 AssumptionCache *AC, const Function *F, 1526 const LoopVectorizeHints *Hints) 1527 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1528 AC(AC), TheFunction(F), Hints(Hints) {} 1529 1530 /// Information about vectorization costs 1531 struct VectorizationFactor { 1532 unsigned Width; // Vector width with best cost 1533 unsigned Cost; // Cost of the loop with that width 1534 }; 1535 /// \return The most profitable vectorization factor and the cost of that VF. 1536 /// This method checks every power of two up to VF. If UserVF is not ZERO 1537 /// then this vectorization factor will be selected if vectorization is 1538 /// possible. 1539 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1540 1541 /// \return The size (in bits) of the smallest and widest types in the code 1542 /// that needs to be vectorized. We ignore values that remain scalar such as 1543 /// 64 bit loop indices. 1544 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1545 1546 /// \return The desired interleave count. 1547 /// If interleave count has been specified by metadata it will be returned. 1548 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1549 /// are the selected vectorization factor and the cost of the selected VF. 1550 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1551 unsigned LoopCost); 1552 1553 /// \return The most profitable unroll factor. 1554 /// This method finds the best unroll-factor based on register pressure and 1555 /// other parameters. VF and LoopCost are the selected vectorization factor 1556 /// and the cost of the selected VF. 1557 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1558 unsigned LoopCost); 1559 1560 /// \brief A struct that represents some properties of the register usage 1561 /// of a loop. 1562 struct RegisterUsage { 1563 /// Holds the number of loop invariant values that are used in the loop. 1564 unsigned LoopInvariantRegs; 1565 /// Holds the maximum number of concurrent live intervals in the loop. 1566 unsigned MaxLocalUsers; 1567 /// Holds the number of instructions in the loop. 1568 unsigned NumInstructions; 1569 }; 1570 1571 /// \return Returns information about the register usages of the loop for the 1572 /// given vectorization factors. 1573 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1574 1575 /// Collect values we want to ignore in the cost model. 1576 void collectValuesToIgnore(); 1577 1578 private: 1579 /// The vectorization cost is a combination of the cost itself and a boolean 1580 /// indicating whether any of the contributing operations will actually 1581 /// operate on 1582 /// vector values after type legalization in the backend. If this latter value 1583 /// is 1584 /// false, then all operations will be scalarized (i.e. no vectorization has 1585 /// actually taken place). 1586 typedef std::pair<unsigned, bool> VectorizationCostTy; 1587 1588 /// Returns the expected execution cost. The unit of the cost does 1589 /// not matter because we use the 'cost' units to compare different 1590 /// vector widths. The cost that is returned is *not* normalized by 1591 /// the factor width. 1592 VectorizationCostTy expectedCost(unsigned VF); 1593 1594 /// Returns the execution time cost of an instruction for a given vector 1595 /// width. Vector width of one means scalar. 1596 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1597 1598 /// The cost-computation logic from getInstructionCost which provides 1599 /// the vector type as an output parameter. 1600 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1601 1602 /// Returns whether the instruction is a load or store and will be a emitted 1603 /// as a vector operation. 1604 bool isConsecutiveLoadOrStore(Instruction *I); 1605 1606 /// Report an analysis message to assist the user in diagnosing loops that are 1607 /// not vectorized. These are handled as LoopAccessReport rather than 1608 /// VectorizationReport because the << operator of VectorizationReport returns 1609 /// LoopAccessReport. 1610 void emitAnalysis(const LoopAccessReport &Message) const { 1611 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1612 } 1613 1614 public: 1615 /// Map of scalar integer values to the smallest bitwidth they can be legally 1616 /// represented as. The vector equivalents of these values should be truncated 1617 /// to this type. 1618 MapVector<Instruction *, uint64_t> MinBWs; 1619 1620 /// The loop that we evaluate. 1621 Loop *TheLoop; 1622 /// Predicated scalar evolution analysis. 1623 PredicatedScalarEvolution &PSE; 1624 /// Loop Info analysis. 1625 LoopInfo *LI; 1626 /// Vectorization legality. 1627 LoopVectorizationLegality *Legal; 1628 /// Vector target information. 1629 const TargetTransformInfo &TTI; 1630 /// Target Library Info. 1631 const TargetLibraryInfo *TLI; 1632 /// Demanded bits analysis. 1633 DemandedBits *DB; 1634 /// Assumption cache. 1635 AssumptionCache *AC; 1636 const Function *TheFunction; 1637 /// Loop Vectorize Hint. 1638 const LoopVectorizeHints *Hints; 1639 /// Values to ignore in the cost model. 1640 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1641 /// Values to ignore in the cost model when VF > 1. 1642 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1643 }; 1644 1645 /// \brief This holds vectorization requirements that must be verified late in 1646 /// the process. The requirements are set by legalize and costmodel. Once 1647 /// vectorization has been determined to be possible and profitable the 1648 /// requirements can be verified by looking for metadata or compiler options. 1649 /// For example, some loops require FP commutativity which is only allowed if 1650 /// vectorization is explicitly specified or if the fast-math compiler option 1651 /// has been provided. 1652 /// Late evaluation of these requirements allows helpful diagnostics to be 1653 /// composed that tells the user what need to be done to vectorize the loop. For 1654 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1655 /// evaluation should be used only when diagnostics can generated that can be 1656 /// followed by a non-expert user. 1657 class LoopVectorizationRequirements { 1658 public: 1659 LoopVectorizationRequirements() 1660 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1661 1662 void addUnsafeAlgebraInst(Instruction *I) { 1663 // First unsafe algebra instruction. 1664 if (!UnsafeAlgebraInst) 1665 UnsafeAlgebraInst = I; 1666 } 1667 1668 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1669 1670 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1671 const char *Name = Hints.vectorizeAnalysisPassName(); 1672 bool Failed = false; 1673 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1674 emitOptimizationRemarkAnalysisFPCommute( 1675 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1676 VectorizationReport() << "cannot prove it is safe to reorder " 1677 "floating-point operations"); 1678 Failed = true; 1679 } 1680 1681 // Test if runtime memcheck thresholds are exceeded. 1682 bool PragmaThresholdReached = 1683 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1684 bool ThresholdReached = 1685 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1686 if ((ThresholdReached && !Hints.allowReordering()) || 1687 PragmaThresholdReached) { 1688 emitOptimizationRemarkAnalysisAliasing( 1689 F->getContext(), Name, *F, L->getStartLoc(), 1690 VectorizationReport() 1691 << "cannot prove it is safe to reorder memory operations"); 1692 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1693 Failed = true; 1694 } 1695 1696 return Failed; 1697 } 1698 1699 private: 1700 unsigned NumRuntimePointerChecks; 1701 Instruction *UnsafeAlgebraInst; 1702 }; 1703 1704 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1705 if (L.empty()) 1706 return V.push_back(&L); 1707 1708 for (Loop *InnerL : L) 1709 addInnerLoop(*InnerL, V); 1710 } 1711 1712 /// The LoopVectorize Pass. 1713 struct LoopVectorize : public FunctionPass { 1714 /// Pass identification, replacement for typeid 1715 static char ID; 1716 1717 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1718 : FunctionPass(ID), DisableUnrolling(NoUnrolling), 1719 AlwaysVectorize(AlwaysVectorize) { 1720 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1721 } 1722 1723 ScalarEvolution *SE; 1724 LoopInfo *LI; 1725 TargetTransformInfo *TTI; 1726 DominatorTree *DT; 1727 BlockFrequencyInfo *BFI; 1728 TargetLibraryInfo *TLI; 1729 DemandedBits *DB; 1730 AliasAnalysis *AA; 1731 AssumptionCache *AC; 1732 LoopAccessAnalysis *LAA; 1733 bool DisableUnrolling; 1734 bool AlwaysVectorize; 1735 1736 BlockFrequency ColdEntryFreq; 1737 1738 bool runOnFunction(Function &F) override { 1739 if (skipFunction(F)) 1740 return false; 1741 1742 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1743 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1744 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1745 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1746 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1747 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1748 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1749 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1750 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1751 LAA = &getAnalysis<LoopAccessAnalysis>(); 1752 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1753 1754 // Compute some weights outside of the loop over the loops. Compute this 1755 // using a BranchProbability to re-use its scaling math. 1756 const BranchProbability ColdProb(1, 5); // 20% 1757 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1758 1759 // Don't attempt if 1760 // 1. the target claims to have no vector registers, and 1761 // 2. interleaving won't help ILP. 1762 // 1763 // The second condition is necessary because, even if the target has no 1764 // vector registers, loop vectorization may still enable scalar 1765 // interleaving. 1766 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1767 return false; 1768 1769 // Build up a worklist of inner-loops to vectorize. This is necessary as 1770 // the act of vectorizing or partially unrolling a loop creates new loops 1771 // and can invalidate iterators across the loops. 1772 SmallVector<Loop *, 8> Worklist; 1773 1774 for (Loop *L : *LI) 1775 addInnerLoop(*L, Worklist); 1776 1777 LoopsAnalyzed += Worklist.size(); 1778 1779 // Now walk the identified inner loops. 1780 bool Changed = false; 1781 while (!Worklist.empty()) 1782 Changed |= processLoop(Worklist.pop_back_val()); 1783 1784 // Process each loop nest in the function. 1785 return Changed; 1786 } 1787 1788 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1789 SmallVector<Metadata *, 4> MDs; 1790 // Reserve first location for self reference to the LoopID metadata node. 1791 MDs.push_back(nullptr); 1792 bool IsUnrollMetadata = false; 1793 MDNode *LoopID = L->getLoopID(); 1794 if (LoopID) { 1795 // First find existing loop unrolling disable metadata. 1796 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1797 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1798 if (MD) { 1799 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1800 IsUnrollMetadata = 1801 S && S->getString().startswith("llvm.loop.unroll.disable"); 1802 } 1803 MDs.push_back(LoopID->getOperand(i)); 1804 } 1805 } 1806 1807 if (!IsUnrollMetadata) { 1808 // Add runtime unroll disable metadata. 1809 LLVMContext &Context = L->getHeader()->getContext(); 1810 SmallVector<Metadata *, 1> DisableOperands; 1811 DisableOperands.push_back( 1812 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1813 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1814 MDs.push_back(DisableNode); 1815 MDNode *NewLoopID = MDNode::get(Context, MDs); 1816 // Set operand 0 to refer to the loop id itself. 1817 NewLoopID->replaceOperandWith(0, NewLoopID); 1818 L->setLoopID(NewLoopID); 1819 } 1820 } 1821 1822 bool processLoop(Loop *L) { 1823 assert(L->empty() && "Only process inner loops."); 1824 1825 #ifndef NDEBUG 1826 const std::string DebugLocStr = getDebugLocString(L); 1827 #endif /* NDEBUG */ 1828 1829 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1830 << L->getHeader()->getParent()->getName() << "\" from " 1831 << DebugLocStr << "\n"); 1832 1833 LoopVectorizeHints Hints(L, DisableUnrolling); 1834 1835 DEBUG(dbgs() << "LV: Loop hints:" 1836 << " force=" 1837 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1838 ? "disabled" 1839 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1840 ? "enabled" 1841 : "?")) 1842 << " width=" << Hints.getWidth() 1843 << " unroll=" << Hints.getInterleave() << "\n"); 1844 1845 // Function containing loop 1846 Function *F = L->getHeader()->getParent(); 1847 1848 // Looking at the diagnostic output is the only way to determine if a loop 1849 // was vectorized (other than looking at the IR or machine code), so it 1850 // is important to generate an optimization remark for each loop. Most of 1851 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1852 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1853 // less verbose reporting vectorized loops and unvectorized loops that may 1854 // benefit from vectorization, respectively. 1855 1856 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1857 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1858 return false; 1859 } 1860 1861 // Check the loop for a trip count threshold: 1862 // do not vectorize loops with a tiny trip count. 1863 const unsigned TC = SE->getSmallConstantTripCount(L); 1864 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1865 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1866 << "This loop is not worth vectorizing."); 1867 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1868 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1869 else { 1870 DEBUG(dbgs() << "\n"); 1871 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1872 << "vectorization is not beneficial " 1873 "and is not explicitly forced"); 1874 return false; 1875 } 1876 } 1877 1878 PredicatedScalarEvolution PSE(*SE, *L); 1879 1880 // Check if it is legal to vectorize the loop. 1881 LoopVectorizationRequirements Requirements; 1882 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1883 &Requirements, &Hints); 1884 if (!LVL.canVectorize()) { 1885 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1886 emitMissedWarning(F, L, Hints); 1887 return false; 1888 } 1889 1890 // Use the cost model. 1891 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F, 1892 &Hints); 1893 CM.collectValuesToIgnore(); 1894 1895 // Check the function attributes to find out if this function should be 1896 // optimized for size. 1897 bool OptForSize = 1898 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 1899 1900 // Compute the weighted frequency of this loop being executed and see if it 1901 // is less than 20% of the function entry baseline frequency. Note that we 1902 // always have a canonical loop here because we think we *can* vectorize. 1903 // FIXME: This is hidden behind a flag due to pervasive problems with 1904 // exactly what block frequency models. 1905 if (LoopVectorizeWithBlockFrequency) { 1906 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1907 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1908 LoopEntryFreq < ColdEntryFreq) 1909 OptForSize = true; 1910 } 1911 1912 // Check the function attributes to see if implicit floats are allowed. 1913 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1914 // an integer loop and the vector instructions selected are purely integer 1915 // vector instructions? 1916 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1917 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1918 "attribute is used.\n"); 1919 emitAnalysisDiag( 1920 F, L, Hints, 1921 VectorizationReport() 1922 << "loop not vectorized due to NoImplicitFloat attribute"); 1923 emitMissedWarning(F, L, Hints); 1924 return false; 1925 } 1926 1927 // Check if the target supports potentially unsafe FP vectorization. 1928 // FIXME: Add a check for the type of safety issue (denormal, signaling) 1929 // for the target we're vectorizing for, to make sure none of the 1930 // additional fp-math flags can help. 1931 if (Hints.isPotentiallyUnsafe() && 1932 TTI->isFPVectorizationPotentiallyUnsafe()) { 1933 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 1934 emitAnalysisDiag(F, L, Hints, 1935 VectorizationReport() 1936 << "loop not vectorized due to unsafe FP support."); 1937 emitMissedWarning(F, L, Hints); 1938 return false; 1939 } 1940 1941 // Select the optimal vectorization factor. 1942 const LoopVectorizationCostModel::VectorizationFactor VF = 1943 CM.selectVectorizationFactor(OptForSize); 1944 1945 // Select the interleave count. 1946 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1947 1948 // Get user interleave count. 1949 unsigned UserIC = Hints.getInterleave(); 1950 1951 // Identify the diagnostic messages that should be produced. 1952 std::string VecDiagMsg, IntDiagMsg; 1953 bool VectorizeLoop = true, InterleaveLoop = true; 1954 1955 if (Requirements.doesNotMeet(F, L, Hints)) { 1956 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1957 "requirements.\n"); 1958 emitMissedWarning(F, L, Hints); 1959 return false; 1960 } 1961 1962 if (VF.Width == 1) { 1963 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1964 VecDiagMsg = 1965 "the cost-model indicates that vectorization is not beneficial"; 1966 VectorizeLoop = false; 1967 } 1968 1969 if (IC == 1 && UserIC <= 1) { 1970 // Tell the user interleaving is not beneficial. 1971 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1972 IntDiagMsg = 1973 "the cost-model indicates that interleaving is not beneficial"; 1974 InterleaveLoop = false; 1975 if (UserIC == 1) 1976 IntDiagMsg += 1977 " and is explicitly disabled or interleave count is set to 1"; 1978 } else if (IC > 1 && UserIC == 1) { 1979 // Tell the user interleaving is beneficial, but it explicitly disabled. 1980 DEBUG(dbgs() 1981 << "LV: Interleaving is beneficial but is explicitly disabled."); 1982 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1983 "but is explicitly disabled or interleave count is set to 1"; 1984 InterleaveLoop = false; 1985 } 1986 1987 // Override IC if user provided an interleave count. 1988 IC = UserIC > 0 ? UserIC : IC; 1989 1990 // Emit diagnostic messages, if any. 1991 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 1992 if (!VectorizeLoop && !InterleaveLoop) { 1993 // Do not vectorize or interleaving the loop. 1994 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1995 L->getStartLoc(), VecDiagMsg); 1996 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1997 L->getStartLoc(), IntDiagMsg); 1998 return false; 1999 } else if (!VectorizeLoop && InterleaveLoop) { 2000 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2001 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2002 L->getStartLoc(), VecDiagMsg); 2003 } else if (VectorizeLoop && !InterleaveLoop) { 2004 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2005 << DebugLocStr << '\n'); 2006 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2007 L->getStartLoc(), IntDiagMsg); 2008 } else if (VectorizeLoop && InterleaveLoop) { 2009 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2010 << DebugLocStr << '\n'); 2011 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2012 } 2013 2014 if (!VectorizeLoop) { 2015 assert(IC > 1 && "interleave count should not be 1 or 0"); 2016 // If we decided that it is not legal to vectorize the loop, then 2017 // interleave it. 2018 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 2019 Unroller.vectorize(&LVL, CM.MinBWs); 2020 2021 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2022 Twine("interleaved loop (interleaved count: ") + 2023 Twine(IC) + ")"); 2024 } else { 2025 // If we decided that it is *legal* to vectorize the loop, then do it. 2026 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2027 LB.vectorize(&LVL, CM.MinBWs); 2028 ++LoopsVectorized; 2029 2030 // Add metadata to disable runtime unrolling a scalar loop when there are 2031 // no runtime checks about strides and memory. A scalar loop that is 2032 // rarely used is not worth unrolling. 2033 if (!LB.areSafetyChecksAdded()) 2034 AddRuntimeUnrollDisableMetaData(L); 2035 2036 // Report the vectorization decision. 2037 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2038 Twine("vectorized loop (vectorization width: ") + 2039 Twine(VF.Width) + ", interleaved count: " + 2040 Twine(IC) + ")"); 2041 } 2042 2043 // Mark the loop as already vectorized to avoid vectorizing again. 2044 Hints.setAlreadyVectorized(); 2045 2046 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2047 return true; 2048 } 2049 2050 void getAnalysisUsage(AnalysisUsage &AU) const override { 2051 AU.addRequired<AssumptionCacheTracker>(); 2052 AU.addRequiredID(LoopSimplifyID); 2053 AU.addRequiredID(LCSSAID); 2054 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2055 AU.addRequired<DominatorTreeWrapperPass>(); 2056 AU.addRequired<LoopInfoWrapperPass>(); 2057 AU.addRequired<ScalarEvolutionWrapperPass>(); 2058 AU.addRequired<TargetTransformInfoWrapperPass>(); 2059 AU.addRequired<AAResultsWrapperPass>(); 2060 AU.addRequired<LoopAccessAnalysis>(); 2061 AU.addRequired<DemandedBitsWrapperPass>(); 2062 AU.addPreserved<LoopInfoWrapperPass>(); 2063 AU.addPreserved<DominatorTreeWrapperPass>(); 2064 AU.addPreserved<BasicAAWrapperPass>(); 2065 AU.addPreserved<GlobalsAAWrapperPass>(); 2066 } 2067 }; 2068 2069 } // end anonymous namespace 2070 2071 //===----------------------------------------------------------------------===// 2072 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2073 // LoopVectorizationCostModel. 2074 //===----------------------------------------------------------------------===// 2075 2076 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2077 // We need to place the broadcast of invariant variables outside the loop. 2078 Instruction *Instr = dyn_cast<Instruction>(V); 2079 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2080 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2081 2082 // Place the code for broadcasting invariant variables in the new preheader. 2083 IRBuilder<>::InsertPointGuard Guard(Builder); 2084 if (Invariant) 2085 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2086 2087 // Broadcast the scalar into all locations in the vector. 2088 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2089 2090 return Shuf; 2091 } 2092 2093 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2094 const SCEV *StepSCEV) { 2095 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2096 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2097 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 2098 &*Builder.GetInsertPoint()); 2099 return getStepVector(Val, StartIdx, StepValue); 2100 } 2101 2102 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2103 Value *Step) { 2104 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2105 assert(Val->getType()->getScalarType()->isIntegerTy() && 2106 "Elem must be an integer"); 2107 assert(Step->getType() == Val->getType()->getScalarType() && 2108 "Step has wrong type"); 2109 // Create the types. 2110 Type *ITy = Val->getType()->getScalarType(); 2111 VectorType *Ty = cast<VectorType>(Val->getType()); 2112 int VLen = Ty->getNumElements(); 2113 SmallVector<Constant *, 8> Indices; 2114 2115 // Create a vector of consecutive numbers from zero to VF. 2116 for (int i = 0; i < VLen; ++i) 2117 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2118 2119 // Add the consecutive indices to the vector value. 2120 Constant *Cv = ConstantVector::get(Indices); 2121 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2122 Step = Builder.CreateVectorSplat(VLen, Step); 2123 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2124 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2125 // which can be found from the original scalar operations. 2126 Step = Builder.CreateMul(Cv, Step); 2127 return Builder.CreateAdd(Val, Step, "induction"); 2128 } 2129 2130 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2131 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2132 auto *SE = PSE.getSE(); 2133 // Make sure that the pointer does not point to structs. 2134 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2135 return 0; 2136 2137 // If this value is a pointer induction variable, we know it is consecutive. 2138 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2139 if (Phi && Inductions.count(Phi)) { 2140 InductionDescriptor II = Inductions[Phi]; 2141 return II.getConsecutiveDirection(); 2142 } 2143 2144 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2145 if (!Gep) 2146 return 0; 2147 2148 unsigned NumOperands = Gep->getNumOperands(); 2149 Value *GpPtr = Gep->getPointerOperand(); 2150 // If this GEP value is a consecutive pointer induction variable and all of 2151 // the indices are constant, then we know it is consecutive. 2152 Phi = dyn_cast<PHINode>(GpPtr); 2153 if (Phi && Inductions.count(Phi)) { 2154 2155 // Make sure that the pointer does not point to structs. 2156 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2157 if (GepPtrType->getElementType()->isAggregateType()) 2158 return 0; 2159 2160 // Make sure that all of the index operands are loop invariant. 2161 for (unsigned i = 1; i < NumOperands; ++i) 2162 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2163 return 0; 2164 2165 InductionDescriptor II = Inductions[Phi]; 2166 return II.getConsecutiveDirection(); 2167 } 2168 2169 unsigned InductionOperand = getGEPInductionOperand(Gep); 2170 2171 // Check that all of the gep indices are uniform except for our induction 2172 // operand. 2173 for (unsigned i = 0; i != NumOperands; ++i) 2174 if (i != InductionOperand && 2175 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2176 return 0; 2177 2178 // We can emit wide load/stores only if the last non-zero index is the 2179 // induction variable. 2180 const SCEV *Last = nullptr; 2181 if (!Strides.count(Gep)) 2182 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2183 else { 2184 // Because of the multiplication by a stride we can have a s/zext cast. 2185 // We are going to replace this stride by 1 so the cast is safe to ignore. 2186 // 2187 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2188 // %0 = trunc i64 %indvars.iv to i32 2189 // %mul = mul i32 %0, %Stride1 2190 // %idxprom = zext i32 %mul to i64 << Safe cast. 2191 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2192 // 2193 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2194 Gep->getOperand(InductionOperand), Gep); 2195 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2196 Last = 2197 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2198 ? C->getOperand() 2199 : Last; 2200 } 2201 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2202 const SCEV *Step = AR->getStepRecurrence(*SE); 2203 2204 // The memory is consecutive because the last index is consecutive 2205 // and all other indices are loop invariant. 2206 if (Step->isOne()) 2207 return 1; 2208 if (Step->isAllOnesValue()) 2209 return -1; 2210 } 2211 2212 return 0; 2213 } 2214 2215 bool LoopVectorizationLegality::isUniform(Value *V) { 2216 return LAI->isUniform(V); 2217 } 2218 2219 InnerLoopVectorizer::VectorParts & 2220 InnerLoopVectorizer::getVectorValue(Value *V) { 2221 assert(V != Induction && "The new induction variable should not be used."); 2222 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2223 2224 // If we have a stride that is replaced by one, do it here. 2225 if (Legal->hasStride(V)) 2226 V = ConstantInt::get(V->getType(), 1); 2227 2228 // If we have this scalar in the map, return it. 2229 if (WidenMap.has(V)) 2230 return WidenMap.get(V); 2231 2232 // If this scalar is unknown, assume that it is a constant or that it is 2233 // loop invariant. Broadcast V and save the value for future uses. 2234 Value *B = getBroadcastInstrs(V); 2235 return WidenMap.splat(V, B); 2236 } 2237 2238 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2239 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2240 SmallVector<Constant *, 8> ShuffleMask; 2241 for (unsigned i = 0; i < VF; ++i) 2242 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2243 2244 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2245 ConstantVector::get(ShuffleMask), 2246 "reverse"); 2247 } 2248 2249 // Get a mask to interleave \p NumVec vectors into a wide vector. 2250 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2251 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2252 // <0, 4, 1, 5, 2, 6, 3, 7> 2253 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2254 unsigned NumVec) { 2255 SmallVector<Constant *, 16> Mask; 2256 for (unsigned i = 0; i < VF; i++) 2257 for (unsigned j = 0; j < NumVec; j++) 2258 Mask.push_back(Builder.getInt32(j * VF + i)); 2259 2260 return ConstantVector::get(Mask); 2261 } 2262 2263 // Get the strided mask starting from index \p Start. 2264 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2265 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2266 unsigned Stride, unsigned VF) { 2267 SmallVector<Constant *, 16> Mask; 2268 for (unsigned i = 0; i < VF; i++) 2269 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2270 2271 return ConstantVector::get(Mask); 2272 } 2273 2274 // Get a mask of two parts: The first part consists of sequential integers 2275 // starting from 0, The second part consists of UNDEFs. 2276 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2277 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2278 unsigned NumUndef) { 2279 SmallVector<Constant *, 16> Mask; 2280 for (unsigned i = 0; i < NumInt; i++) 2281 Mask.push_back(Builder.getInt32(i)); 2282 2283 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2284 for (unsigned i = 0; i < NumUndef; i++) 2285 Mask.push_back(Undef); 2286 2287 return ConstantVector::get(Mask); 2288 } 2289 2290 // Concatenate two vectors with the same element type. The 2nd vector should 2291 // not have more elements than the 1st vector. If the 2nd vector has less 2292 // elements, extend it with UNDEFs. 2293 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2294 Value *V2) { 2295 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2296 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2297 assert(VecTy1 && VecTy2 && 2298 VecTy1->getScalarType() == VecTy2->getScalarType() && 2299 "Expect two vectors with the same element type"); 2300 2301 unsigned NumElts1 = VecTy1->getNumElements(); 2302 unsigned NumElts2 = VecTy2->getNumElements(); 2303 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2304 2305 if (NumElts1 > NumElts2) { 2306 // Extend with UNDEFs. 2307 Constant *ExtMask = 2308 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2309 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2310 } 2311 2312 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2313 return Builder.CreateShuffleVector(V1, V2, Mask); 2314 } 2315 2316 // Concatenate vectors in the given list. All vectors have the same type. 2317 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2318 ArrayRef<Value *> InputList) { 2319 unsigned NumVec = InputList.size(); 2320 assert(NumVec > 1 && "Should be at least two vectors"); 2321 2322 SmallVector<Value *, 8> ResList; 2323 ResList.append(InputList.begin(), InputList.end()); 2324 do { 2325 SmallVector<Value *, 8> TmpList; 2326 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2327 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2328 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2329 "Only the last vector may have a different type"); 2330 2331 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2332 } 2333 2334 // Push the last vector if the total number of vectors is odd. 2335 if (NumVec % 2 != 0) 2336 TmpList.push_back(ResList[NumVec - 1]); 2337 2338 ResList = TmpList; 2339 NumVec = ResList.size(); 2340 } while (NumVec > 1); 2341 2342 return ResList[0]; 2343 } 2344 2345 // Try to vectorize the interleave group that \p Instr belongs to. 2346 // 2347 // E.g. Translate following interleaved load group (factor = 3): 2348 // for (i = 0; i < N; i+=3) { 2349 // R = Pic[i]; // Member of index 0 2350 // G = Pic[i+1]; // Member of index 1 2351 // B = Pic[i+2]; // Member of index 2 2352 // ... // do something to R, G, B 2353 // } 2354 // To: 2355 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2356 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2357 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2358 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2359 // 2360 // Or translate following interleaved store group (factor = 3): 2361 // for (i = 0; i < N; i+=3) { 2362 // ... do something to R, G, B 2363 // Pic[i] = R; // Member of index 0 2364 // Pic[i+1] = G; // Member of index 1 2365 // Pic[i+2] = B; // Member of index 2 2366 // } 2367 // To: 2368 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2369 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2370 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2371 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2372 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2373 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2374 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2375 assert(Group && "Fail to get an interleaved access group."); 2376 2377 // Skip if current instruction is not the insert position. 2378 if (Instr != Group->getInsertPos()) 2379 return; 2380 2381 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2382 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2383 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2384 2385 // Prepare for the vector type of the interleaved load/store. 2386 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2387 unsigned InterleaveFactor = Group->getFactor(); 2388 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2389 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2390 2391 // Prepare for the new pointers. 2392 setDebugLocFromInst(Builder, Ptr); 2393 VectorParts &PtrParts = getVectorValue(Ptr); 2394 SmallVector<Value *, 2> NewPtrs; 2395 unsigned Index = Group->getIndex(Instr); 2396 for (unsigned Part = 0; Part < UF; Part++) { 2397 // Extract the pointer for current instruction from the pointer vector. A 2398 // reverse access uses the pointer in the last lane. 2399 Value *NewPtr = Builder.CreateExtractElement( 2400 PtrParts[Part], 2401 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2402 2403 // Notice current instruction could be any index. Need to adjust the address 2404 // to the member of index 0. 2405 // 2406 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2407 // b = A[i]; // Member of index 0 2408 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2409 // 2410 // E.g. A[i+1] = a; // Member of index 1 2411 // A[i] = b; // Member of index 0 2412 // A[i+2] = c; // Member of index 2 (Current instruction) 2413 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2414 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2415 2416 // Cast to the vector pointer type. 2417 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2418 } 2419 2420 setDebugLocFromInst(Builder, Instr); 2421 Value *UndefVec = UndefValue::get(VecTy); 2422 2423 // Vectorize the interleaved load group. 2424 if (LI) { 2425 for (unsigned Part = 0; Part < UF; Part++) { 2426 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2427 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2428 2429 for (unsigned i = 0; i < InterleaveFactor; i++) { 2430 Instruction *Member = Group->getMember(i); 2431 2432 // Skip the gaps in the group. 2433 if (!Member) 2434 continue; 2435 2436 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2437 Value *StridedVec = Builder.CreateShuffleVector( 2438 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2439 2440 // If this member has different type, cast the result type. 2441 if (Member->getType() != ScalarTy) { 2442 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2443 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2444 } 2445 2446 VectorParts &Entry = WidenMap.get(Member); 2447 Entry[Part] = 2448 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2449 } 2450 2451 addMetadata(NewLoadInstr, Instr); 2452 } 2453 return; 2454 } 2455 2456 // The sub vector type for current instruction. 2457 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2458 2459 // Vectorize the interleaved store group. 2460 for (unsigned Part = 0; Part < UF; Part++) { 2461 // Collect the stored vector from each member. 2462 SmallVector<Value *, 4> StoredVecs; 2463 for (unsigned i = 0; i < InterleaveFactor; i++) { 2464 // Interleaved store group doesn't allow a gap, so each index has a member 2465 Instruction *Member = Group->getMember(i); 2466 assert(Member && "Fail to get a member from an interleaved store group"); 2467 2468 Value *StoredVec = 2469 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2470 if (Group->isReverse()) 2471 StoredVec = reverseVector(StoredVec); 2472 2473 // If this member has different type, cast it to an unified type. 2474 if (StoredVec->getType() != SubVT) 2475 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2476 2477 StoredVecs.push_back(StoredVec); 2478 } 2479 2480 // Concatenate all vectors into a wide vector. 2481 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2482 2483 // Interleave the elements in the wide vector. 2484 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2485 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2486 "interleaved.vec"); 2487 2488 Instruction *NewStoreInstr = 2489 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2490 addMetadata(NewStoreInstr, Instr); 2491 } 2492 } 2493 2494 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2495 // Attempt to issue a wide load. 2496 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2497 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2498 2499 assert((LI || SI) && "Invalid Load/Store instruction"); 2500 2501 // Try to vectorize the interleave group if this access is interleaved. 2502 if (Legal->isAccessInterleaved(Instr)) 2503 return vectorizeInterleaveGroup(Instr); 2504 2505 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2506 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2507 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2508 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2509 // An alignment of 0 means target abi alignment. We need to use the scalar's 2510 // target abi alignment in such a case. 2511 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2512 if (!Alignment) 2513 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2514 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2515 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2516 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2517 2518 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2519 !Legal->isMaskRequired(SI)) 2520 return scalarizeInstruction(Instr, true); 2521 2522 if (ScalarAllocatedSize != VectorElementSize) 2523 return scalarizeInstruction(Instr); 2524 2525 // If the pointer is loop invariant scalarize the load. 2526 if (LI && Legal->isUniform(Ptr)) 2527 return scalarizeInstruction(Instr); 2528 2529 // If the pointer is non-consecutive and gather/scatter is not supported 2530 // scalarize the instruction. 2531 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2532 bool Reverse = ConsecutiveStride < 0; 2533 bool CreateGatherScatter = 2534 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2535 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2536 2537 if (!ConsecutiveStride && !CreateGatherScatter) 2538 return scalarizeInstruction(Instr); 2539 2540 Constant *Zero = Builder.getInt32(0); 2541 VectorParts &Entry = WidenMap.get(Instr); 2542 VectorParts VectorGep; 2543 2544 // Handle consecutive loads/stores. 2545 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2546 if (ConsecutiveStride) { 2547 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2548 setDebugLocFromInst(Builder, Gep); 2549 Value *PtrOperand = Gep->getPointerOperand(); 2550 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2551 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2552 2553 // Create the new GEP with the new induction variable. 2554 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2555 Gep2->setOperand(0, FirstBasePtr); 2556 Gep2->setName("gep.indvar.base"); 2557 Ptr = Builder.Insert(Gep2); 2558 } else if (Gep) { 2559 setDebugLocFromInst(Builder, Gep); 2560 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2561 OrigLoop) && 2562 "Base ptr must be invariant"); 2563 // The last index does not have to be the induction. It can be 2564 // consecutive and be a function of the index. For example A[I+1]; 2565 unsigned NumOperands = Gep->getNumOperands(); 2566 unsigned InductionOperand = getGEPInductionOperand(Gep); 2567 // Create the new GEP with the new induction variable. 2568 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2569 2570 for (unsigned i = 0; i < NumOperands; ++i) { 2571 Value *GepOperand = Gep->getOperand(i); 2572 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2573 2574 // Update last index or loop invariant instruction anchored in loop. 2575 if (i == InductionOperand || 2576 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2577 assert((i == InductionOperand || 2578 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2579 OrigLoop)) && 2580 "Must be last index or loop invariant"); 2581 2582 VectorParts &GEPParts = getVectorValue(GepOperand); 2583 Value *Index = GEPParts[0]; 2584 Index = Builder.CreateExtractElement(Index, Zero); 2585 Gep2->setOperand(i, Index); 2586 Gep2->setName("gep.indvar.idx"); 2587 } 2588 } 2589 Ptr = Builder.Insert(Gep2); 2590 } else { // No GEP 2591 // Use the induction element ptr. 2592 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2593 setDebugLocFromInst(Builder, Ptr); 2594 VectorParts &PtrVal = getVectorValue(Ptr); 2595 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2596 } 2597 } else { 2598 // At this point we should vector version of GEP for Gather or Scatter 2599 assert(CreateGatherScatter && "The instruction should be scalarized"); 2600 if (Gep) { 2601 SmallVector<VectorParts, 4> OpsV; 2602 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2603 // base or index of GEP scalar 2604 for (Value *Op : Gep->operands()) { 2605 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2606 OpsV.push_back(VectorParts(UF, Op)); 2607 else 2608 OpsV.push_back(getVectorValue(Op)); 2609 } 2610 2611 for (unsigned Part = 0; Part < UF; ++Part) { 2612 SmallVector<Value *, 4> Ops; 2613 Value *GEPBasePtr = OpsV[0][Part]; 2614 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2615 Ops.push_back(OpsV[i][Part]); 2616 Value *NewGep = 2617 Builder.CreateGEP(nullptr, GEPBasePtr, Ops, "VectorGep"); 2618 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2619 NewGep = 2620 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2621 VectorGep.push_back(NewGep); 2622 } 2623 } else 2624 VectorGep = getVectorValue(Ptr); 2625 } 2626 2627 VectorParts Mask = createBlockInMask(Instr->getParent()); 2628 // Handle Stores: 2629 if (SI) { 2630 assert(!Legal->isUniform(SI->getPointerOperand()) && 2631 "We do not allow storing to uniform addresses"); 2632 setDebugLocFromInst(Builder, SI); 2633 // We don't want to update the value in the map as it might be used in 2634 // another expression. So don't use a reference type for "StoredVal". 2635 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2636 2637 for (unsigned Part = 0; Part < UF; ++Part) { 2638 Instruction *NewSI = nullptr; 2639 if (CreateGatherScatter) { 2640 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2641 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2642 Alignment, MaskPart); 2643 } else { 2644 // Calculate the pointer for the specific unroll-part. 2645 Value *PartPtr = 2646 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2647 2648 if (Reverse) { 2649 // If we store to reverse consecutive memory locations, then we need 2650 // to reverse the order of elements in the stored value. 2651 StoredVal[Part] = reverseVector(StoredVal[Part]); 2652 // If the address is consecutive but reversed, then the 2653 // wide store needs to start at the last vector element. 2654 PartPtr = 2655 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2656 PartPtr = 2657 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2658 Mask[Part] = reverseVector(Mask[Part]); 2659 } 2660 2661 Value *VecPtr = 2662 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2663 2664 if (Legal->isMaskRequired(SI)) 2665 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2666 Mask[Part]); 2667 else 2668 NewSI = 2669 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2670 } 2671 addMetadata(NewSI, SI); 2672 } 2673 return; 2674 } 2675 2676 // Handle loads. 2677 assert(LI && "Must have a load instruction"); 2678 setDebugLocFromInst(Builder, LI); 2679 for (unsigned Part = 0; Part < UF; ++Part) { 2680 Instruction *NewLI; 2681 if (CreateGatherScatter) { 2682 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2683 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2684 0, "wide.masked.gather"); 2685 Entry[Part] = NewLI; 2686 } else { 2687 // Calculate the pointer for the specific unroll-part. 2688 Value *PartPtr = 2689 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2690 2691 if (Reverse) { 2692 // If the address is consecutive but reversed, then the 2693 // wide load needs to start at the last vector element. 2694 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2695 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2696 Mask[Part] = reverseVector(Mask[Part]); 2697 } 2698 2699 Value *VecPtr = 2700 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2701 if (Legal->isMaskRequired(LI)) 2702 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2703 UndefValue::get(DataTy), 2704 "wide.masked.load"); 2705 else 2706 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2707 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2708 } 2709 addMetadata(NewLI, LI); 2710 } 2711 } 2712 2713 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2714 bool IfPredicateStore) { 2715 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2716 // Holds vector parameters or scalars, in case of uniform vals. 2717 SmallVector<VectorParts, 4> Params; 2718 2719 setDebugLocFromInst(Builder, Instr); 2720 2721 // Find all of the vectorized parameters. 2722 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2723 Value *SrcOp = Instr->getOperand(op); 2724 2725 // If we are accessing the old induction variable, use the new one. 2726 if (SrcOp == OldInduction) { 2727 Params.push_back(getVectorValue(SrcOp)); 2728 continue; 2729 } 2730 2731 // Try using previously calculated values. 2732 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2733 2734 // If the src is an instruction that appeared earlier in the basic block, 2735 // then it should already be vectorized. 2736 if (SrcInst && OrigLoop->contains(SrcInst)) { 2737 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2738 // The parameter is a vector value from earlier. 2739 Params.push_back(WidenMap.get(SrcInst)); 2740 } else { 2741 // The parameter is a scalar from outside the loop. Maybe even a constant. 2742 VectorParts Scalars; 2743 Scalars.append(UF, SrcOp); 2744 Params.push_back(Scalars); 2745 } 2746 } 2747 2748 assert(Params.size() == Instr->getNumOperands() && 2749 "Invalid number of operands"); 2750 2751 // Does this instruction return a value ? 2752 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2753 2754 Value *UndefVec = 2755 IsVoidRetTy ? nullptr 2756 : UndefValue::get(VectorType::get(Instr->getType(), VF)); 2757 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2758 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2759 2760 VectorParts Cond; 2761 if (IfPredicateStore) { 2762 assert(Instr->getParent()->getSinglePredecessor() && 2763 "Only support single predecessor blocks"); 2764 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2765 Instr->getParent()); 2766 } 2767 2768 // For each vector unroll 'part': 2769 for (unsigned Part = 0; Part < UF; ++Part) { 2770 // For each scalar that we create: 2771 for (unsigned Width = 0; Width < VF; ++Width) { 2772 2773 // Start if-block. 2774 Value *Cmp = nullptr; 2775 if (IfPredicateStore) { 2776 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2777 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2778 ConstantInt::get(Cmp->getType(), 1)); 2779 } 2780 2781 Instruction *Cloned = Instr->clone(); 2782 if (!IsVoidRetTy) 2783 Cloned->setName(Instr->getName() + ".cloned"); 2784 // Replace the operands of the cloned instructions with extracted scalars. 2785 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2786 Value *Op = Params[op][Part]; 2787 // Param is a vector. Need to extract the right lane. 2788 if (Op->getType()->isVectorTy()) 2789 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2790 Cloned->setOperand(op, Op); 2791 } 2792 addNewMetadata(Cloned, Instr); 2793 2794 // Place the cloned scalar in the new loop. 2795 Builder.Insert(Cloned); 2796 2797 // If we just cloned a new assumption, add it the assumption cache. 2798 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2799 if (II->getIntrinsicID() == Intrinsic::assume) 2800 AC->registerAssumption(II); 2801 2802 // If the original scalar returns a value we need to place it in a vector 2803 // so that future users will be able to use it. 2804 if (!IsVoidRetTy) 2805 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2806 Builder.getInt32(Width)); 2807 // End if-block. 2808 if (IfPredicateStore) 2809 PredicatedStores.push_back( 2810 std::make_pair(cast<StoreInst>(Cloned), Cmp)); 2811 } 2812 } 2813 } 2814 2815 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2816 Value *End, Value *Step, 2817 Instruction *DL) { 2818 BasicBlock *Header = L->getHeader(); 2819 BasicBlock *Latch = L->getLoopLatch(); 2820 // As we're just creating this loop, it's possible no latch exists 2821 // yet. If so, use the header as this will be a single block loop. 2822 if (!Latch) 2823 Latch = Header; 2824 2825 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2826 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2827 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2828 2829 Builder.SetInsertPoint(Latch->getTerminator()); 2830 2831 // Create i+1 and fill the PHINode. 2832 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2833 Induction->addIncoming(Start, L->getLoopPreheader()); 2834 Induction->addIncoming(Next, Latch); 2835 // Create the compare. 2836 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2837 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2838 2839 // Now we have two terminators. Remove the old one from the block. 2840 Latch->getTerminator()->eraseFromParent(); 2841 2842 return Induction; 2843 } 2844 2845 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2846 if (TripCount) 2847 return TripCount; 2848 2849 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2850 // Find the loop boundaries. 2851 ScalarEvolution *SE = PSE.getSE(); 2852 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2853 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2854 "Invalid loop count"); 2855 2856 Type *IdxTy = Legal->getWidestInductionType(); 2857 2858 // The exit count might have the type of i64 while the phi is i32. This can 2859 // happen if we have an induction variable that is sign extended before the 2860 // compare. The only way that we get a backedge taken count is that the 2861 // induction variable was signed and as such will not overflow. In such a case 2862 // truncation is legal. 2863 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2864 IdxTy->getPrimitiveSizeInBits()) 2865 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2866 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2867 2868 // Get the total trip count from the count by adding 1. 2869 const SCEV *ExitCount = SE->getAddExpr( 2870 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2871 2872 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2873 2874 // Expand the trip count and place the new instructions in the preheader. 2875 // Notice that the pre-header does not change, only the loop body. 2876 SCEVExpander Exp(*SE, DL, "induction"); 2877 2878 // Count holds the overall loop count (N). 2879 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2880 L->getLoopPreheader()->getTerminator()); 2881 2882 if (TripCount->getType()->isPointerTy()) 2883 TripCount = 2884 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2885 L->getLoopPreheader()->getTerminator()); 2886 2887 return TripCount; 2888 } 2889 2890 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2891 if (VectorTripCount) 2892 return VectorTripCount; 2893 2894 Value *TC = getOrCreateTripCount(L); 2895 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2896 2897 // Now we need to generate the expression for the part of the loop that the 2898 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2899 // iterations are not required for correctness, or N - Step, otherwise. Step 2900 // is equal to the vectorization factor (number of SIMD elements) times the 2901 // unroll factor (number of SIMD instructions). 2902 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2903 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2904 2905 // If there is a non-reversed interleaved group that may speculatively access 2906 // memory out-of-bounds, we need to ensure that there will be at least one 2907 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2908 // the trip count, we set the remainder to be equal to the step. If the step 2909 // does not evenly divide the trip count, no adjustment is necessary since 2910 // there will already be scalar iterations. Note that the minimum iterations 2911 // check ensures that N >= Step. 2912 if (VF > 1 && Legal->requiresScalarEpilogue()) { 2913 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2914 R = Builder.CreateSelect(IsZero, Step, R); 2915 } 2916 2917 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2918 2919 return VectorTripCount; 2920 } 2921 2922 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2923 BasicBlock *Bypass) { 2924 Value *Count = getOrCreateTripCount(L); 2925 BasicBlock *BB = L->getLoopPreheader(); 2926 IRBuilder<> Builder(BB->getTerminator()); 2927 2928 // Generate code to check that the loop's trip count that we computed by 2929 // adding one to the backedge-taken count will not overflow. 2930 Value *CheckMinIters = Builder.CreateICmpULT( 2931 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2932 2933 BasicBlock *NewBB = 2934 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 2935 // Update dominator tree immediately if the generated block is a 2936 // LoopBypassBlock because SCEV expansions to generate loop bypass 2937 // checks may query it before the current function is finished. 2938 DT->addNewBlock(NewBB, BB); 2939 if (L->getParentLoop()) 2940 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2941 ReplaceInstWithInst(BB->getTerminator(), 2942 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2943 LoopBypassBlocks.push_back(BB); 2944 } 2945 2946 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2947 BasicBlock *Bypass) { 2948 Value *TC = getOrCreateVectorTripCount(L); 2949 BasicBlock *BB = L->getLoopPreheader(); 2950 IRBuilder<> Builder(BB->getTerminator()); 2951 2952 // Now, compare the new count to zero. If it is zero skip the vector loop and 2953 // jump to the scalar loop. 2954 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2955 "cmp.zero"); 2956 2957 // Generate code to check that the loop's trip count that we computed by 2958 // adding one to the backedge-taken count will not overflow. 2959 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2960 // Update dominator tree immediately if the generated block is a 2961 // LoopBypassBlock because SCEV expansions to generate loop bypass 2962 // checks may query it before the current function is finished. 2963 DT->addNewBlock(NewBB, BB); 2964 if (L->getParentLoop()) 2965 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2966 ReplaceInstWithInst(BB->getTerminator(), 2967 BranchInst::Create(Bypass, NewBB, Cmp)); 2968 LoopBypassBlocks.push_back(BB); 2969 } 2970 2971 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2972 BasicBlock *BB = L->getLoopPreheader(); 2973 2974 // Generate the code to check that the SCEV assumptions that we made. 2975 // We want the new basic block to start at the first instruction in a 2976 // sequence of instructions that form a check. 2977 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2978 "scev.check"); 2979 Value *SCEVCheck = 2980 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2981 2982 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2983 if (C->isZero()) 2984 return; 2985 2986 // Create a new block containing the stride check. 2987 BB->setName("vector.scevcheck"); 2988 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2989 // Update dominator tree immediately if the generated block is a 2990 // LoopBypassBlock because SCEV expansions to generate loop bypass 2991 // checks may query it before the current function is finished. 2992 DT->addNewBlock(NewBB, BB); 2993 if (L->getParentLoop()) 2994 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2995 ReplaceInstWithInst(BB->getTerminator(), 2996 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2997 LoopBypassBlocks.push_back(BB); 2998 AddedSafetyChecks = true; 2999 } 3000 3001 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3002 BasicBlock *BB = L->getLoopPreheader(); 3003 3004 // Generate the code that checks in runtime if arrays overlap. We put the 3005 // checks into a separate block to make the more common case of few elements 3006 // faster. 3007 Instruction *FirstCheckInst; 3008 Instruction *MemRuntimeCheck; 3009 std::tie(FirstCheckInst, MemRuntimeCheck) = 3010 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3011 if (!MemRuntimeCheck) 3012 return; 3013 3014 // Create a new block containing the memory check. 3015 BB->setName("vector.memcheck"); 3016 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3017 // Update dominator tree immediately if the generated block is a 3018 // LoopBypassBlock because SCEV expansions to generate loop bypass 3019 // checks may query it before the current function is finished. 3020 DT->addNewBlock(NewBB, BB); 3021 if (L->getParentLoop()) 3022 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3023 ReplaceInstWithInst(BB->getTerminator(), 3024 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3025 LoopBypassBlocks.push_back(BB); 3026 AddedSafetyChecks = true; 3027 3028 // We currently don't use LoopVersioning for the actual loop cloning but we 3029 // still use it to add the noalias metadata. 3030 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3031 PSE.getSE()); 3032 LVer->prepareNoAliasMetadata(); 3033 } 3034 3035 void InnerLoopVectorizer::createEmptyLoop() { 3036 /* 3037 In this function we generate a new loop. The new loop will contain 3038 the vectorized instructions while the old loop will continue to run the 3039 scalar remainder. 3040 3041 [ ] <-- loop iteration number check. 3042 / | 3043 / v 3044 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3045 | / | 3046 | / v 3047 || [ ] <-- vector pre header. 3048 |/ | 3049 | v 3050 | [ ] \ 3051 | [ ]_| <-- vector loop. 3052 | | 3053 | v 3054 | -[ ] <--- middle-block. 3055 | / | 3056 | / v 3057 -|- >[ ] <--- new preheader. 3058 | | 3059 | v 3060 | [ ] \ 3061 | [ ]_| <-- old scalar loop to handle remainder. 3062 \ | 3063 \ v 3064 >[ ] <-- exit block. 3065 ... 3066 */ 3067 3068 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3069 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3070 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3071 assert(VectorPH && "Invalid loop structure"); 3072 assert(ExitBlock && "Must have an exit block"); 3073 3074 // Some loops have a single integer induction variable, while other loops 3075 // don't. One example is c++ iterators that often have multiple pointer 3076 // induction variables. In the code below we also support a case where we 3077 // don't have a single induction variable. 3078 // 3079 // We try to obtain an induction variable from the original loop as hard 3080 // as possible. However if we don't find one that: 3081 // - is an integer 3082 // - counts from zero, stepping by one 3083 // - is the size of the widest induction variable type 3084 // then we create a new one. 3085 OldInduction = Legal->getInduction(); 3086 Type *IdxTy = Legal->getWidestInductionType(); 3087 3088 // Split the single block loop into the two loop structure described above. 3089 BasicBlock *VecBody = 3090 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3091 BasicBlock *MiddleBlock = 3092 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3093 BasicBlock *ScalarPH = 3094 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3095 3096 // Create and register the new vector loop. 3097 Loop *Lp = new Loop(); 3098 Loop *ParentLoop = OrigLoop->getParentLoop(); 3099 3100 // Insert the new loop into the loop nest and register the new basic blocks 3101 // before calling any utilities such as SCEV that require valid LoopInfo. 3102 if (ParentLoop) { 3103 ParentLoop->addChildLoop(Lp); 3104 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3105 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3106 } else { 3107 LI->addTopLevelLoop(Lp); 3108 } 3109 Lp->addBasicBlockToLoop(VecBody, *LI); 3110 3111 // Find the loop boundaries. 3112 Value *Count = getOrCreateTripCount(Lp); 3113 3114 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3115 3116 // We need to test whether the backedge-taken count is uint##_max. Adding one 3117 // to it will cause overflow and an incorrect loop trip count in the vector 3118 // body. In case of overflow we want to directly jump to the scalar remainder 3119 // loop. 3120 emitMinimumIterationCountCheck(Lp, ScalarPH); 3121 // Now, compare the new count to zero. If it is zero skip the vector loop and 3122 // jump to the scalar loop. 3123 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3124 // Generate the code to check any assumptions that we've made for SCEV 3125 // expressions. 3126 emitSCEVChecks(Lp, ScalarPH); 3127 3128 // Generate the code that checks in runtime if arrays overlap. We put the 3129 // checks into a separate block to make the more common case of few elements 3130 // faster. 3131 emitMemRuntimeChecks(Lp, ScalarPH); 3132 3133 // Generate the induction variable. 3134 // The loop step is equal to the vectorization factor (num of SIMD elements) 3135 // times the unroll factor (num of SIMD instructions). 3136 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3137 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3138 Induction = 3139 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3140 getDebugLocFromInstOrOperands(OldInduction)); 3141 3142 // We are going to resume the execution of the scalar loop. 3143 // Go over all of the induction variables that we found and fix the 3144 // PHIs that are left in the scalar version of the loop. 3145 // The starting values of PHI nodes depend on the counter of the last 3146 // iteration in the vectorized loop. 3147 // If we come from a bypass edge then we need to start from the original 3148 // start value. 3149 3150 // This variable saves the new starting index for the scalar loop. It is used 3151 // to test if there are any tail iterations left once the vector loop has 3152 // completed. 3153 LoopVectorizationLegality::InductionList::iterator I, E; 3154 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3155 for (I = List->begin(), E = List->end(); I != E; ++I) { 3156 PHINode *OrigPhi = I->first; 3157 InductionDescriptor II = I->second; 3158 3159 // Create phi nodes to merge from the backedge-taken check block. 3160 PHINode *BCResumeVal = PHINode::Create( 3161 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3162 Value *EndValue; 3163 if (OrigPhi == OldInduction) { 3164 // We know what the end value is. 3165 EndValue = CountRoundDown; 3166 } else { 3167 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3168 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3169 II.getStep()->getType(), "cast.crd"); 3170 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3171 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3172 EndValue->setName("ind.end"); 3173 } 3174 3175 // The new PHI merges the original incoming value, in case of a bypass, 3176 // or the value at the end of the vectorized loop. 3177 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3178 3179 // Fix the scalar body counter (PHI node). 3180 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3181 3182 // The old induction's phi node in the scalar body needs the truncated 3183 // value. 3184 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3185 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3186 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3187 } 3188 3189 // Add a check in the middle block to see if we have completed 3190 // all of the iterations in the first vector loop. 3191 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3192 Value *CmpN = 3193 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3194 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3195 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3196 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3197 3198 // Get ready to start creating new instructions into the vectorized body. 3199 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3200 3201 // Save the state. 3202 LoopVectorPreHeader = Lp->getLoopPreheader(); 3203 LoopScalarPreHeader = ScalarPH; 3204 LoopMiddleBlock = MiddleBlock; 3205 LoopExitBlock = ExitBlock; 3206 LoopVectorBody = VecBody; 3207 LoopScalarBody = OldBasicBlock; 3208 3209 // Keep all loop hints from the original loop on the vector loop (we'll 3210 // replace the vectorizer-specific hints below). 3211 if (MDNode *LID = OrigLoop->getLoopID()) 3212 Lp->setLoopID(LID); 3213 3214 LoopVectorizeHints Hints(Lp, true); 3215 Hints.setAlreadyVectorized(); 3216 } 3217 3218 namespace { 3219 struct CSEDenseMapInfo { 3220 static bool canHandle(Instruction *I) { 3221 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3222 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3223 } 3224 static inline Instruction *getEmptyKey() { 3225 return DenseMapInfo<Instruction *>::getEmptyKey(); 3226 } 3227 static inline Instruction *getTombstoneKey() { 3228 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3229 } 3230 static unsigned getHashValue(Instruction *I) { 3231 assert(canHandle(I) && "Unknown instruction!"); 3232 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3233 I->value_op_end())); 3234 } 3235 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3236 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3237 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3238 return LHS == RHS; 3239 return LHS->isIdenticalTo(RHS); 3240 } 3241 }; 3242 } 3243 3244 ///\brief Perform cse of induction variable instructions. 3245 static void cse(BasicBlock *BB) { 3246 // Perform simple cse. 3247 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3248 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3249 Instruction *In = &*I++; 3250 3251 if (!CSEDenseMapInfo::canHandle(In)) 3252 continue; 3253 3254 // Check if we can replace this instruction with any of the 3255 // visited instructions. 3256 if (Instruction *V = CSEMap.lookup(In)) { 3257 In->replaceAllUsesWith(V); 3258 In->eraseFromParent(); 3259 continue; 3260 } 3261 3262 CSEMap[In] = In; 3263 } 3264 } 3265 3266 /// \brief Adds a 'fast' flag to floating point operations. 3267 static Value *addFastMathFlag(Value *V) { 3268 if (isa<FPMathOperator>(V)) { 3269 FastMathFlags Flags; 3270 Flags.setUnsafeAlgebra(); 3271 cast<Instruction>(V)->setFastMathFlags(Flags); 3272 } 3273 return V; 3274 } 3275 3276 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3277 /// the result needs to be inserted and/or extracted from vectors. 3278 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3279 const TargetTransformInfo &TTI) { 3280 if (Ty->isVoidTy()) 3281 return 0; 3282 3283 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3284 unsigned Cost = 0; 3285 3286 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3287 if (Insert) 3288 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3289 if (Extract) 3290 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3291 } 3292 3293 return Cost; 3294 } 3295 3296 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3297 // Return the cost of the instruction, including scalarization overhead if it's 3298 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3299 // i.e. either vector version isn't available, or is too expensive. 3300 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3301 const TargetTransformInfo &TTI, 3302 const TargetLibraryInfo *TLI, 3303 bool &NeedToScalarize) { 3304 Function *F = CI->getCalledFunction(); 3305 StringRef FnName = CI->getCalledFunction()->getName(); 3306 Type *ScalarRetTy = CI->getType(); 3307 SmallVector<Type *, 4> Tys, ScalarTys; 3308 for (auto &ArgOp : CI->arg_operands()) 3309 ScalarTys.push_back(ArgOp->getType()); 3310 3311 // Estimate cost of scalarized vector call. The source operands are assumed 3312 // to be vectors, so we need to extract individual elements from there, 3313 // execute VF scalar calls, and then gather the result into the vector return 3314 // value. 3315 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3316 if (VF == 1) 3317 return ScalarCallCost; 3318 3319 // Compute corresponding vector type for return value and arguments. 3320 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3321 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3322 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3323 3324 // Compute costs of unpacking argument values for the scalar calls and 3325 // packing the return values to a vector. 3326 unsigned ScalarizationCost = 3327 getScalarizationOverhead(RetTy, true, false, TTI); 3328 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3329 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3330 3331 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3332 3333 // If we can't emit a vector call for this function, then the currently found 3334 // cost is the cost we need to return. 3335 NeedToScalarize = true; 3336 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3337 return Cost; 3338 3339 // If the corresponding vector cost is cheaper, return its cost. 3340 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3341 if (VectorCallCost < Cost) { 3342 NeedToScalarize = false; 3343 return VectorCallCost; 3344 } 3345 return Cost; 3346 } 3347 3348 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3349 // factor VF. Return the cost of the instruction, including scalarization 3350 // overhead if it's needed. 3351 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3352 const TargetTransformInfo &TTI, 3353 const TargetLibraryInfo *TLI) { 3354 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3355 assert(ID && "Expected intrinsic call!"); 3356 3357 Type *RetTy = ToVectorTy(CI->getType(), VF); 3358 SmallVector<Type *, 4> Tys; 3359 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3360 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3361 3362 FastMathFlags FMF; 3363 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3364 FMF = FPMO->getFastMathFlags(); 3365 3366 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3367 } 3368 3369 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3370 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3371 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3372 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3373 } 3374 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3375 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3376 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3377 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3378 } 3379 3380 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3381 // For every instruction `I` in MinBWs, truncate the operands, create a 3382 // truncated version of `I` and reextend its result. InstCombine runs 3383 // later and will remove any ext/trunc pairs. 3384 // 3385 SmallPtrSet<Value *, 4> Erased; 3386 for (auto &KV : MinBWs) { 3387 VectorParts &Parts = WidenMap.get(KV.first); 3388 for (Value *&I : Parts) { 3389 if (Erased.count(I) || I->use_empty()) 3390 continue; 3391 Type *OriginalTy = I->getType(); 3392 Type *ScalarTruncatedTy = 3393 IntegerType::get(OriginalTy->getContext(), KV.second); 3394 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3395 OriginalTy->getVectorNumElements()); 3396 if (TruncatedTy == OriginalTy) 3397 continue; 3398 3399 if (!isa<Instruction>(I)) 3400 continue; 3401 3402 IRBuilder<> B(cast<Instruction>(I)); 3403 auto ShrinkOperand = [&](Value *V) -> Value * { 3404 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3405 if (ZI->getSrcTy() == TruncatedTy) 3406 return ZI->getOperand(0); 3407 return B.CreateZExtOrTrunc(V, TruncatedTy); 3408 }; 3409 3410 // The actual instruction modification depends on the instruction type, 3411 // unfortunately. 3412 Value *NewI = nullptr; 3413 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3414 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3415 ShrinkOperand(BO->getOperand(1))); 3416 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3417 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3418 NewI = 3419 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3420 ShrinkOperand(CI->getOperand(1))); 3421 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3422 NewI = B.CreateSelect(SI->getCondition(), 3423 ShrinkOperand(SI->getTrueValue()), 3424 ShrinkOperand(SI->getFalseValue())); 3425 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3426 switch (CI->getOpcode()) { 3427 default: 3428 llvm_unreachable("Unhandled cast!"); 3429 case Instruction::Trunc: 3430 NewI = ShrinkOperand(CI->getOperand(0)); 3431 break; 3432 case Instruction::SExt: 3433 NewI = B.CreateSExtOrTrunc( 3434 CI->getOperand(0), 3435 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3436 break; 3437 case Instruction::ZExt: 3438 NewI = B.CreateZExtOrTrunc( 3439 CI->getOperand(0), 3440 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3441 break; 3442 } 3443 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3444 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3445 auto *O0 = B.CreateZExtOrTrunc( 3446 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3447 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3448 auto *O1 = B.CreateZExtOrTrunc( 3449 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3450 3451 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3452 } else if (isa<LoadInst>(I)) { 3453 // Don't do anything with the operands, just extend the result. 3454 continue; 3455 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3456 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3457 auto *O0 = B.CreateZExtOrTrunc( 3458 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3459 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3460 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3461 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3462 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3463 auto *O0 = B.CreateZExtOrTrunc( 3464 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3465 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3466 } else { 3467 llvm_unreachable("Unhandled instruction type!"); 3468 } 3469 3470 // Lastly, extend the result. 3471 NewI->takeName(cast<Instruction>(I)); 3472 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3473 I->replaceAllUsesWith(Res); 3474 cast<Instruction>(I)->eraseFromParent(); 3475 Erased.insert(I); 3476 I = Res; 3477 } 3478 } 3479 3480 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3481 for (auto &KV : MinBWs) { 3482 VectorParts &Parts = WidenMap.get(KV.first); 3483 for (Value *&I : Parts) { 3484 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3485 if (Inst && Inst->use_empty()) { 3486 Value *NewI = Inst->getOperand(0); 3487 Inst->eraseFromParent(); 3488 I = NewI; 3489 } 3490 } 3491 } 3492 } 3493 3494 void InnerLoopVectorizer::vectorizeLoop() { 3495 //===------------------------------------------------===// 3496 // 3497 // Notice: any optimization or new instruction that go 3498 // into the code below should be also be implemented in 3499 // the cost-model. 3500 // 3501 //===------------------------------------------------===// 3502 Constant *Zero = Builder.getInt32(0); 3503 3504 // In order to support recurrences we need to be able to vectorize Phi nodes. 3505 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3506 // we create a new vector PHI node with no incoming edges. We use this value 3507 // when we vectorize all of the instructions that use the PHI. Next, after 3508 // all of the instructions in the block are complete we add the new incoming 3509 // edges to the PHI. At this point all of the instructions in the basic block 3510 // are vectorized, so we can use them to construct the PHI. 3511 PhiVector PHIsToFix; 3512 3513 // Scan the loop in a topological order to ensure that defs are vectorized 3514 // before users. 3515 LoopBlocksDFS DFS(OrigLoop); 3516 DFS.perform(LI); 3517 3518 // Vectorize all of the blocks in the original loop. 3519 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 3520 bb != be; ++bb) 3521 vectorizeBlockInLoop(*bb, &PHIsToFix); 3522 3523 // Insert truncates and extends for any truncated instructions as hints to 3524 // InstCombine. 3525 if (VF > 1) 3526 truncateToMinimalBitwidths(); 3527 3528 // At this point every instruction in the original loop is widened to a 3529 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3530 // nodes are currently empty because we did not want to introduce cycles. 3531 // This is the second stage of vectorizing recurrences. 3532 for (PHINode *Phi : PHIsToFix) { 3533 assert(Phi && "Unable to recover vectorized PHI"); 3534 3535 // Handle first-order recurrences that need to be fixed. 3536 if (Legal->isFirstOrderRecurrence(Phi)) { 3537 fixFirstOrderRecurrence(Phi); 3538 continue; 3539 } 3540 3541 // If the phi node is not a first-order recurrence, it must be a reduction. 3542 // Get it's reduction variable descriptor. 3543 assert(Legal->isReductionVariable(Phi) && 3544 "Unable to find the reduction variable"); 3545 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3546 3547 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3548 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3549 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3550 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3551 RdxDesc.getMinMaxRecurrenceKind(); 3552 setDebugLocFromInst(Builder, ReductionStartValue); 3553 3554 // We need to generate a reduction vector from the incoming scalar. 3555 // To do so, we need to generate the 'identity' vector and override 3556 // one of the elements with the incoming scalar reduction. We need 3557 // to do it in the vector-loop preheader. 3558 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3559 3560 // This is the vector-clone of the value that leaves the loop. 3561 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3562 Type *VecTy = VectorExit[0]->getType(); 3563 3564 // Find the reduction identity variable. Zero for addition, or, xor, 3565 // one for multiplication, -1 for And. 3566 Value *Identity; 3567 Value *VectorStart; 3568 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3569 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3570 // MinMax reduction have the start value as their identify. 3571 if (VF == 1) { 3572 VectorStart = Identity = ReductionStartValue; 3573 } else { 3574 VectorStart = Identity = 3575 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3576 } 3577 } else { 3578 // Handle other reduction kinds: 3579 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3580 RK, VecTy->getScalarType()); 3581 if (VF == 1) { 3582 Identity = Iden; 3583 // This vector is the Identity vector where the first element is the 3584 // incoming scalar reduction. 3585 VectorStart = ReductionStartValue; 3586 } else { 3587 Identity = ConstantVector::getSplat(VF, Iden); 3588 3589 // This vector is the Identity vector where the first element is the 3590 // incoming scalar reduction. 3591 VectorStart = 3592 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3593 } 3594 } 3595 3596 // Fix the vector-loop phi. 3597 3598 // Reductions do not have to start at zero. They can start with 3599 // any loop invariant values. 3600 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3601 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3602 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3603 VectorParts &Val = getVectorValue(LoopVal); 3604 for (unsigned part = 0; part < UF; ++part) { 3605 // Make sure to add the reduction stat value only to the 3606 // first unroll part. 3607 Value *StartVal = (part == 0) ? VectorStart : Identity; 3608 cast<PHINode>(VecRdxPhi[part]) 3609 ->addIncoming(StartVal, LoopVectorPreHeader); 3610 cast<PHINode>(VecRdxPhi[part]) 3611 ->addIncoming(Val[part], LoopVectorBody); 3612 } 3613 3614 // Before each round, move the insertion point right between 3615 // the PHIs and the values we are going to write. 3616 // This allows us to write both PHINodes and the extractelement 3617 // instructions. 3618 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3619 3620 VectorParts RdxParts = getVectorValue(LoopExitInst); 3621 setDebugLocFromInst(Builder, LoopExitInst); 3622 3623 // If the vector reduction can be performed in a smaller type, we truncate 3624 // then extend the loop exit value to enable InstCombine to evaluate the 3625 // entire expression in the smaller type. 3626 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3627 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3628 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3629 for (unsigned part = 0; part < UF; ++part) { 3630 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3631 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3632 : Builder.CreateZExt(Trunc, VecTy); 3633 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3634 UI != RdxParts[part]->user_end();) 3635 if (*UI != Trunc) { 3636 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3637 RdxParts[part] = Extnd; 3638 } else { 3639 ++UI; 3640 } 3641 } 3642 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3643 for (unsigned part = 0; part < UF; ++part) 3644 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3645 } 3646 3647 // Reduce all of the unrolled parts into a single vector. 3648 Value *ReducedPartRdx = RdxParts[0]; 3649 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3650 setDebugLocFromInst(Builder, ReducedPartRdx); 3651 for (unsigned part = 1; part < UF; ++part) { 3652 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3653 // Floating point operations had to be 'fast' to enable the reduction. 3654 ReducedPartRdx = addFastMathFlag( 3655 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3656 ReducedPartRdx, "bin.rdx")); 3657 else 3658 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3659 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3660 } 3661 3662 if (VF > 1) { 3663 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3664 // and vector ops, reducing the set of values being computed by half each 3665 // round. 3666 assert(isPowerOf2_32(VF) && 3667 "Reduction emission only supported for pow2 vectors!"); 3668 Value *TmpVec = ReducedPartRdx; 3669 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3670 for (unsigned i = VF; i != 1; i >>= 1) { 3671 // Move the upper half of the vector to the lower half. 3672 for (unsigned j = 0; j != i / 2; ++j) 3673 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3674 3675 // Fill the rest of the mask with undef. 3676 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3677 UndefValue::get(Builder.getInt32Ty())); 3678 3679 Value *Shuf = Builder.CreateShuffleVector( 3680 TmpVec, UndefValue::get(TmpVec->getType()), 3681 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3682 3683 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3684 // Floating point operations had to be 'fast' to enable the reduction. 3685 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3686 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3687 else 3688 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3689 TmpVec, Shuf); 3690 } 3691 3692 // The result is in the first element of the vector. 3693 ReducedPartRdx = 3694 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3695 3696 // If the reduction can be performed in a smaller type, we need to extend 3697 // the reduction to the wider type before we branch to the original loop. 3698 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3699 ReducedPartRdx = 3700 RdxDesc.isSigned() 3701 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3702 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3703 } 3704 3705 // Create a phi node that merges control-flow from the backedge-taken check 3706 // block and the middle block. 3707 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3708 LoopScalarPreHeader->getTerminator()); 3709 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3710 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3711 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3712 3713 // Now, we need to fix the users of the reduction variable 3714 // inside and outside of the scalar remainder loop. 3715 // We know that the loop is in LCSSA form. We need to update the 3716 // PHI nodes in the exit blocks. 3717 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3718 LEE = LoopExitBlock->end(); 3719 LEI != LEE; ++LEI) { 3720 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3721 if (!LCSSAPhi) 3722 break; 3723 3724 // All PHINodes need to have a single entry edge, or two if 3725 // we already fixed them. 3726 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3727 3728 // We found our reduction value exit-PHI. Update it with the 3729 // incoming bypass edge. 3730 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3731 // Add an edge coming from the bypass. 3732 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3733 break; 3734 } 3735 } // end of the LCSSA phi scan. 3736 3737 // Fix the scalar loop reduction variable with the incoming reduction sum 3738 // from the vector body and from the backedge value. 3739 int IncomingEdgeBlockIdx = 3740 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3741 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3742 // Pick the other block. 3743 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3744 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3745 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3746 } // end of for each Phi in PHIsToFix. 3747 3748 fixLCSSAPHIs(); 3749 3750 // Make sure DomTree is updated. 3751 updateAnalysis(); 3752 3753 // Predicate any stores. 3754 for (auto KV : PredicatedStores) { 3755 BasicBlock::iterator I(KV.first); 3756 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3757 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3758 /*BranchWeights=*/nullptr, DT, LI); 3759 I->moveBefore(T); 3760 I->getParent()->setName("pred.store.if"); 3761 BB->setName("pred.store.continue"); 3762 } 3763 DEBUG(DT->verifyDomTree()); 3764 // Remove redundant induction instructions. 3765 cse(LoopVectorBody); 3766 } 3767 3768 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3769 3770 // This is the second phase of vectorizing first-order recurrences. An 3771 // overview of the transformation is described below. Suppose we have the 3772 // following loop. 3773 // 3774 // for (int i = 0; i < n; ++i) 3775 // b[i] = a[i] - a[i - 1]; 3776 // 3777 // There is a first-order recurrence on "a". For this loop, the shorthand 3778 // scalar IR looks like: 3779 // 3780 // scalar.ph: 3781 // s_init = a[-1] 3782 // br scalar.body 3783 // 3784 // scalar.body: 3785 // i = phi [0, scalar.ph], [i+1, scalar.body] 3786 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3787 // s2 = a[i] 3788 // b[i] = s2 - s1 3789 // br cond, scalar.body, ... 3790 // 3791 // In this example, s1 is a recurrence because it's value depends on the 3792 // previous iteration. In the first phase of vectorization, we created a 3793 // temporary value for s1. We now complete the vectorization and produce the 3794 // shorthand vector IR shown below (for VF = 4, UF = 1). 3795 // 3796 // vector.ph: 3797 // v_init = vector(..., ..., ..., a[-1]) 3798 // br vector.body 3799 // 3800 // vector.body 3801 // i = phi [0, vector.ph], [i+4, vector.body] 3802 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3803 // v2 = a[i, i+1, i+2, i+3]; 3804 // v3 = vector(v1(3), v2(0, 1, 2)) 3805 // b[i, i+1, i+2, i+3] = v2 - v3 3806 // br cond, vector.body, middle.block 3807 // 3808 // middle.block: 3809 // x = v2(3) 3810 // br scalar.ph 3811 // 3812 // scalar.ph: 3813 // s_init = phi [x, middle.block], [a[-1], otherwise] 3814 // br scalar.body 3815 // 3816 // After execution completes the vector loop, we extract the next value of 3817 // the recurrence (x) to use as the initial value in the scalar loop. 3818 3819 // Get the original loop preheader and single loop latch. 3820 auto *Preheader = OrigLoop->getLoopPreheader(); 3821 auto *Latch = OrigLoop->getLoopLatch(); 3822 3823 // Get the initial and previous values of the scalar recurrence. 3824 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3825 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3826 3827 // Create a vector from the initial value. 3828 auto *VectorInit = ScalarInit; 3829 if (VF > 1) { 3830 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3831 VectorInit = Builder.CreateInsertElement( 3832 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3833 Builder.getInt32(VF - 1), "vector.recur.init"); 3834 } 3835 3836 // We constructed a temporary phi node in the first phase of vectorization. 3837 // This phi node will eventually be deleted. 3838 auto &PhiParts = getVectorValue(Phi); 3839 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3840 3841 // Create a phi node for the new recurrence. The current value will either be 3842 // the initial value inserted into a vector or loop-varying vector value. 3843 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3844 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3845 3846 // Get the vectorized previous value. We ensured the previous values was an 3847 // instruction when detecting the recurrence. 3848 auto &PreviousParts = getVectorValue(Previous); 3849 3850 // Set the insertion point to be after this instruction. We ensured the 3851 // previous value dominated all uses of the phi when detecting the 3852 // recurrence. 3853 Builder.SetInsertPoint( 3854 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3855 3856 // We will construct a vector for the recurrence by combining the values for 3857 // the current and previous iterations. This is the required shuffle mask. 3858 SmallVector<Constant *, 8> ShuffleMask(VF); 3859 ShuffleMask[0] = Builder.getInt32(VF - 1); 3860 for (unsigned I = 1; I < VF; ++I) 3861 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3862 3863 // The vector from which to take the initial value for the current iteration 3864 // (actual or unrolled). Initially, this is the vector phi node. 3865 Value *Incoming = VecPhi; 3866 3867 // Shuffle the current and previous vector and update the vector parts. 3868 for (unsigned Part = 0; Part < UF; ++Part) { 3869 auto *Shuffle = 3870 VF > 1 3871 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3872 ConstantVector::get(ShuffleMask)) 3873 : Incoming; 3874 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3875 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3876 PhiParts[Part] = Shuffle; 3877 Incoming = PreviousParts[Part]; 3878 } 3879 3880 // Fix the latch value of the new recurrence in the vector loop. 3881 VecPhi->addIncoming(Incoming, 3882 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3883 3884 // Extract the last vector element in the middle block. This will be the 3885 // initial value for the recurrence when jumping to the scalar loop. 3886 auto *Extract = Incoming; 3887 if (VF > 1) { 3888 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3889 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3890 "vector.recur.extract"); 3891 } 3892 3893 // Fix the initial value of the original recurrence in the scalar loop. 3894 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3895 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3896 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3897 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 3898 Start->addIncoming(Incoming, BB); 3899 } 3900 3901 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3902 Phi->setName("scalar.recur"); 3903 3904 // Finally, fix users of the recurrence outside the loop. The users will need 3905 // either the last value of the scalar recurrence or the last value of the 3906 // vector recurrence we extracted in the middle block. Since the loop is in 3907 // LCSSA form, we just need to find the phi node for the original scalar 3908 // recurrence in the exit block, and then add an edge for the middle block. 3909 for (auto &I : *LoopExitBlock) { 3910 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 3911 if (!LCSSAPhi) 3912 break; 3913 if (LCSSAPhi->getIncomingValue(0) == Phi) { 3914 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 3915 break; 3916 } 3917 } 3918 } 3919 3920 void InnerLoopVectorizer::fixLCSSAPHIs() { 3921 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3922 LEE = LoopExitBlock->end(); 3923 LEI != LEE; ++LEI) { 3924 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3925 if (!LCSSAPhi) 3926 break; 3927 if (LCSSAPhi->getNumIncomingValues() == 1) 3928 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3929 LoopMiddleBlock); 3930 } 3931 } 3932 3933 InnerLoopVectorizer::VectorParts 3934 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3935 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3936 "Invalid edge"); 3937 3938 // Look for cached value. 3939 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 3940 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3941 if (ECEntryIt != MaskCache.end()) 3942 return ECEntryIt->second; 3943 3944 VectorParts SrcMask = createBlockInMask(Src); 3945 3946 // The terminator has to be a branch inst! 3947 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3948 assert(BI && "Unexpected terminator found"); 3949 3950 if (BI->isConditional()) { 3951 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3952 3953 if (BI->getSuccessor(0) != Dst) 3954 for (unsigned part = 0; part < UF; ++part) 3955 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3956 3957 for (unsigned part = 0; part < UF; ++part) 3958 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3959 3960 MaskCache[Edge] = EdgeMask; 3961 return EdgeMask; 3962 } 3963 3964 MaskCache[Edge] = SrcMask; 3965 return SrcMask; 3966 } 3967 3968 InnerLoopVectorizer::VectorParts 3969 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3970 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3971 3972 // Loop incoming mask is all-one. 3973 if (OrigLoop->getHeader() == BB) { 3974 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3975 return getVectorValue(C); 3976 } 3977 3978 // This is the block mask. We OR all incoming edges, and with zero. 3979 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3980 VectorParts BlockMask = getVectorValue(Zero); 3981 3982 // For each pred: 3983 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3984 VectorParts EM = createEdgeMask(*it, BB); 3985 for (unsigned part = 0; part < UF; ++part) 3986 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3987 } 3988 3989 return BlockMask; 3990 } 3991 3992 void InnerLoopVectorizer::widenPHIInstruction( 3993 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 3994 unsigned VF, PhiVector *PV) { 3995 PHINode *P = cast<PHINode>(PN); 3996 // Handle recurrences. 3997 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3998 for (unsigned part = 0; part < UF; ++part) { 3999 // This is phase one of vectorizing PHIs. 4000 Type *VecTy = 4001 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4002 Entry[part] = PHINode::Create( 4003 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4004 } 4005 PV->push_back(P); 4006 return; 4007 } 4008 4009 setDebugLocFromInst(Builder, P); 4010 // Check for PHI nodes that are lowered to vector selects. 4011 if (P->getParent() != OrigLoop->getHeader()) { 4012 // We know that all PHIs in non-header blocks are converted into 4013 // selects, so we don't have to worry about the insertion order and we 4014 // can just use the builder. 4015 // At this point we generate the predication tree. There may be 4016 // duplications since this is a simple recursive scan, but future 4017 // optimizations will clean it up. 4018 4019 unsigned NumIncoming = P->getNumIncomingValues(); 4020 4021 // Generate a sequence of selects of the form: 4022 // SELECT(Mask3, In3, 4023 // SELECT(Mask2, In2, 4024 // ( ...))) 4025 for (unsigned In = 0; In < NumIncoming; In++) { 4026 VectorParts Cond = 4027 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4028 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4029 4030 for (unsigned part = 0; part < UF; ++part) { 4031 // We might have single edge PHIs (blocks) - use an identity 4032 // 'select' for the first PHI operand. 4033 if (In == 0) 4034 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4035 else 4036 // Select between the current value and the previous incoming edge 4037 // based on the incoming mask. 4038 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4039 "predphi"); 4040 } 4041 } 4042 return; 4043 } 4044 4045 // This PHINode must be an induction variable. 4046 // Make sure that we know about it. 4047 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4048 4049 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4050 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4051 4052 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4053 // which can be found from the original scalar operations. 4054 switch (II.getKind()) { 4055 case InductionDescriptor::IK_NoInduction: 4056 llvm_unreachable("Unknown induction"); 4057 case InductionDescriptor::IK_IntInduction: { 4058 assert(P->getType() == II.getStartValue()->getType() && "Types must match"); 4059 // Handle other induction variables that are now based on the 4060 // canonical one. 4061 Value *V = Induction; 4062 if (P != OldInduction) { 4063 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4064 V = II.transform(Builder, V, PSE.getSE(), DL); 4065 V->setName("offset.idx"); 4066 } 4067 Value *Broadcasted = getBroadcastInstrs(V); 4068 // After broadcasting the induction variable we need to make the vector 4069 // consecutive by adding 0, 1, 2, etc. 4070 for (unsigned part = 0; part < UF; ++part) 4071 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStep()); 4072 return; 4073 } 4074 case InductionDescriptor::IK_PtrInduction: 4075 // Handle the pointer induction variable case. 4076 assert(P->getType()->isPointerTy() && "Unexpected type."); 4077 // This is the normalized GEP that starts counting at zero. 4078 Value *PtrInd = Induction; 4079 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4080 // This is the vector of results. Notice that we don't generate 4081 // vector geps because scalar geps result in better code. 4082 for (unsigned part = 0; part < UF; ++part) { 4083 if (VF == 1) { 4084 int EltIndex = part; 4085 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4086 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4087 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4088 SclrGep->setName("next.gep"); 4089 Entry[part] = SclrGep; 4090 continue; 4091 } 4092 4093 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4094 for (unsigned int i = 0; i < VF; ++i) { 4095 int EltIndex = i + part * VF; 4096 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4097 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4098 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4099 SclrGep->setName("next.gep"); 4100 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4101 Builder.getInt32(i), "insert.gep"); 4102 } 4103 Entry[part] = VecVal; 4104 } 4105 return; 4106 } 4107 } 4108 4109 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4110 // For each instruction in the old loop. 4111 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4112 VectorParts &Entry = WidenMap.get(&*it); 4113 4114 switch (it->getOpcode()) { 4115 case Instruction::Br: 4116 // Nothing to do for PHIs and BR, since we already took care of the 4117 // loop control flow instructions. 4118 continue; 4119 case Instruction::PHI: { 4120 // Vectorize PHINodes. 4121 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4122 continue; 4123 } // End of PHI. 4124 4125 case Instruction::Add: 4126 case Instruction::FAdd: 4127 case Instruction::Sub: 4128 case Instruction::FSub: 4129 case Instruction::Mul: 4130 case Instruction::FMul: 4131 case Instruction::UDiv: 4132 case Instruction::SDiv: 4133 case Instruction::FDiv: 4134 case Instruction::URem: 4135 case Instruction::SRem: 4136 case Instruction::FRem: 4137 case Instruction::Shl: 4138 case Instruction::LShr: 4139 case Instruction::AShr: 4140 case Instruction::And: 4141 case Instruction::Or: 4142 case Instruction::Xor: { 4143 // Just widen binops. 4144 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4145 setDebugLocFromInst(Builder, BinOp); 4146 VectorParts &A = getVectorValue(it->getOperand(0)); 4147 VectorParts &B = getVectorValue(it->getOperand(1)); 4148 4149 // Use this vector value for all users of the original instruction. 4150 for (unsigned Part = 0; Part < UF; ++Part) { 4151 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4152 4153 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4154 VecOp->copyIRFlags(BinOp); 4155 4156 Entry[Part] = V; 4157 } 4158 4159 addMetadata(Entry, &*it); 4160 break; 4161 } 4162 case Instruction::Select: { 4163 // Widen selects. 4164 // If the selector is loop invariant we can create a select 4165 // instruction with a scalar condition. Otherwise, use vector-select. 4166 auto *SE = PSE.getSE(); 4167 bool InvariantCond = 4168 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4169 setDebugLocFromInst(Builder, &*it); 4170 4171 // The condition can be loop invariant but still defined inside the 4172 // loop. This means that we can't just use the original 'cond' value. 4173 // We have to take the 'vectorized' value and pick the first lane. 4174 // Instcombine will make this a no-op. 4175 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4176 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4177 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4178 4179 Value *ScalarCond = 4180 (VF == 1) 4181 ? Cond[0] 4182 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4183 4184 for (unsigned Part = 0; Part < UF; ++Part) { 4185 Entry[Part] = Builder.CreateSelect( 4186 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4187 } 4188 4189 addMetadata(Entry, &*it); 4190 break; 4191 } 4192 4193 case Instruction::ICmp: 4194 case Instruction::FCmp: { 4195 // Widen compares. Generate vector compares. 4196 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4197 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4198 setDebugLocFromInst(Builder, &*it); 4199 VectorParts &A = getVectorValue(it->getOperand(0)); 4200 VectorParts &B = getVectorValue(it->getOperand(1)); 4201 for (unsigned Part = 0; Part < UF; ++Part) { 4202 Value *C = nullptr; 4203 if (FCmp) { 4204 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4205 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4206 } else { 4207 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4208 } 4209 Entry[Part] = C; 4210 } 4211 4212 addMetadata(Entry, &*it); 4213 break; 4214 } 4215 4216 case Instruction::Store: 4217 case Instruction::Load: 4218 vectorizeMemoryInstruction(&*it); 4219 break; 4220 case Instruction::ZExt: 4221 case Instruction::SExt: 4222 case Instruction::FPToUI: 4223 case Instruction::FPToSI: 4224 case Instruction::FPExt: 4225 case Instruction::PtrToInt: 4226 case Instruction::IntToPtr: 4227 case Instruction::SIToFP: 4228 case Instruction::UIToFP: 4229 case Instruction::Trunc: 4230 case Instruction::FPTrunc: 4231 case Instruction::BitCast: { 4232 CastInst *CI = dyn_cast<CastInst>(it); 4233 setDebugLocFromInst(Builder, &*it); 4234 /// Optimize the special case where the source is a constant integer 4235 /// induction variable. Notice that we can only optimize the 'trunc' case 4236 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4237 /// c. other casts depend on pointer size. 4238 4239 if (CI->getOperand(0) == OldInduction && 4240 it->getOpcode() == Instruction::Trunc) { 4241 InductionDescriptor II = 4242 Legal->getInductionVars()->lookup(OldInduction); 4243 if (auto StepValue = II.getConstIntStepValue()) { 4244 StepValue = ConstantInt::getSigned(cast<IntegerType>(CI->getType()), 4245 StepValue->getSExtValue()); 4246 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 4247 CI->getType()); 4248 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4249 for (unsigned Part = 0; Part < UF; ++Part) 4250 Entry[Part] = getStepVector(Broadcasted, VF * Part, StepValue); 4251 addMetadata(Entry, &*it); 4252 break; 4253 } 4254 } 4255 /// Vectorize casts. 4256 Type *DestTy = 4257 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4258 4259 VectorParts &A = getVectorValue(it->getOperand(0)); 4260 for (unsigned Part = 0; Part < UF; ++Part) 4261 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4262 addMetadata(Entry, &*it); 4263 break; 4264 } 4265 4266 case Instruction::Call: { 4267 // Ignore dbg intrinsics. 4268 if (isa<DbgInfoIntrinsic>(it)) 4269 break; 4270 setDebugLocFromInst(Builder, &*it); 4271 4272 Module *M = BB->getParent()->getParent(); 4273 CallInst *CI = cast<CallInst>(it); 4274 4275 StringRef FnName = CI->getCalledFunction()->getName(); 4276 Function *F = CI->getCalledFunction(); 4277 Type *RetTy = ToVectorTy(CI->getType(), VF); 4278 SmallVector<Type *, 4> Tys; 4279 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4280 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4281 4282 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4283 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4284 ID == Intrinsic::lifetime_start)) { 4285 scalarizeInstruction(&*it); 4286 break; 4287 } 4288 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4289 // version of the instruction. 4290 // Is it beneficial to perform intrinsic call compared to lib call? 4291 bool NeedToScalarize; 4292 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4293 bool UseVectorIntrinsic = 4294 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4295 if (!UseVectorIntrinsic && NeedToScalarize) { 4296 scalarizeInstruction(&*it); 4297 break; 4298 } 4299 4300 for (unsigned Part = 0; Part < UF; ++Part) { 4301 SmallVector<Value *, 4> Args; 4302 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4303 Value *Arg = CI->getArgOperand(i); 4304 // Some intrinsics have a scalar argument - don't replace it with a 4305 // vector. 4306 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4307 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4308 Arg = VectorArg[Part]; 4309 } 4310 Args.push_back(Arg); 4311 } 4312 4313 Function *VectorF; 4314 if (UseVectorIntrinsic) { 4315 // Use vector version of the intrinsic. 4316 Type *TysForDecl[] = {CI->getType()}; 4317 if (VF > 1) 4318 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4319 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4320 } else { 4321 // Use vector version of the library call. 4322 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4323 assert(!VFnName.empty() && "Vector function name is empty."); 4324 VectorF = M->getFunction(VFnName); 4325 if (!VectorF) { 4326 // Generate a declaration 4327 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4328 VectorF = 4329 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4330 VectorF->copyAttributesFrom(F); 4331 } 4332 } 4333 assert(VectorF && "Can't create vector function."); 4334 4335 SmallVector<OperandBundleDef, 1> OpBundles; 4336 CI->getOperandBundlesAsDefs(OpBundles); 4337 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4338 4339 if (isa<FPMathOperator>(V)) 4340 V->copyFastMathFlags(CI); 4341 4342 Entry[Part] = V; 4343 } 4344 4345 addMetadata(Entry, &*it); 4346 break; 4347 } 4348 4349 default: 4350 // All other instructions are unsupported. Scalarize them. 4351 scalarizeInstruction(&*it); 4352 break; 4353 } // end of switch. 4354 } // end of for_each instr. 4355 } 4356 4357 void InnerLoopVectorizer::updateAnalysis() { 4358 // Forget the original basic block. 4359 PSE.getSE()->forgetLoop(OrigLoop); 4360 4361 // Update the dominator tree information. 4362 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4363 "Entry does not dominate exit."); 4364 4365 // We don't predicate stores by this point, so the vector body should be a 4366 // single loop. 4367 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4368 4369 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4370 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4371 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4372 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4373 4374 DEBUG(DT->verifyDomTree()); 4375 } 4376 4377 /// \brief Check whether it is safe to if-convert this phi node. 4378 /// 4379 /// Phi nodes with constant expressions that can trap are not safe to if 4380 /// convert. 4381 static bool canIfConvertPHINodes(BasicBlock *BB) { 4382 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4383 PHINode *Phi = dyn_cast<PHINode>(I); 4384 if (!Phi) 4385 return true; 4386 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4387 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4388 if (C->canTrap()) 4389 return false; 4390 } 4391 return true; 4392 } 4393 4394 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4395 if (!EnableIfConversion) { 4396 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4397 return false; 4398 } 4399 4400 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4401 4402 // A list of pointers that we can safely read and write to. 4403 SmallPtrSet<Value *, 8> SafePointes; 4404 4405 // Collect safe addresses. 4406 for (Loop::block_iterator BI = TheLoop->block_begin(), 4407 BE = TheLoop->block_end(); 4408 BI != BE; ++BI) { 4409 BasicBlock *BB = *BI; 4410 4411 if (blockNeedsPredication(BB)) 4412 continue; 4413 4414 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4415 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4416 SafePointes.insert(LI->getPointerOperand()); 4417 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4418 SafePointes.insert(SI->getPointerOperand()); 4419 } 4420 } 4421 4422 // Collect the blocks that need predication. 4423 BasicBlock *Header = TheLoop->getHeader(); 4424 for (Loop::block_iterator BI = TheLoop->block_begin(), 4425 BE = TheLoop->block_end(); 4426 BI != BE; ++BI) { 4427 BasicBlock *BB = *BI; 4428 4429 // We don't support switch statements inside loops. 4430 if (!isa<BranchInst>(BB->getTerminator())) { 4431 emitAnalysis(VectorizationReport(BB->getTerminator()) 4432 << "loop contains a switch statement"); 4433 return false; 4434 } 4435 4436 // We must be able to predicate all blocks that need to be predicated. 4437 if (blockNeedsPredication(BB)) { 4438 if (!blockCanBePredicated(BB, SafePointes)) { 4439 emitAnalysis(VectorizationReport(BB->getTerminator()) 4440 << "control flow cannot be substituted for a select"); 4441 return false; 4442 } 4443 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4444 emitAnalysis(VectorizationReport(BB->getTerminator()) 4445 << "control flow cannot be substituted for a select"); 4446 return false; 4447 } 4448 } 4449 4450 // We can if-convert this loop. 4451 return true; 4452 } 4453 4454 bool LoopVectorizationLegality::canVectorize() { 4455 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4456 // be canonicalized. 4457 if (!TheLoop->getLoopPreheader()) { 4458 emitAnalysis(VectorizationReport() 4459 << "loop control flow is not understood by vectorizer"); 4460 return false; 4461 } 4462 4463 // We can only vectorize innermost loops. 4464 if (!TheLoop->empty()) { 4465 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4466 return false; 4467 } 4468 4469 // We must have a single backedge. 4470 if (TheLoop->getNumBackEdges() != 1) { 4471 emitAnalysis(VectorizationReport() 4472 << "loop control flow is not understood by vectorizer"); 4473 return false; 4474 } 4475 4476 // We must have a single exiting block. 4477 if (!TheLoop->getExitingBlock()) { 4478 emitAnalysis(VectorizationReport() 4479 << "loop control flow is not understood by vectorizer"); 4480 return false; 4481 } 4482 4483 // We only handle bottom-tested loops, i.e. loop in which the condition is 4484 // checked at the end of each iteration. With that we can assume that all 4485 // instructions in the loop are executed the same number of times. 4486 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4487 emitAnalysis(VectorizationReport() 4488 << "loop control flow is not understood by vectorizer"); 4489 return false; 4490 } 4491 4492 // We need to have a loop header. 4493 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4494 << '\n'); 4495 4496 // Check if we can if-convert non-single-bb loops. 4497 unsigned NumBlocks = TheLoop->getNumBlocks(); 4498 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4499 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4500 return false; 4501 } 4502 4503 // ScalarEvolution needs to be able to find the exit count. 4504 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4505 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4506 emitAnalysis(VectorizationReport() 4507 << "could not determine number of loop iterations"); 4508 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4509 return false; 4510 } 4511 4512 // Check if we can vectorize the instructions and CFG in this loop. 4513 if (!canVectorizeInstrs()) { 4514 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4515 return false; 4516 } 4517 4518 // Go over each instruction and look at memory deps. 4519 if (!canVectorizeMemory()) { 4520 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4521 return false; 4522 } 4523 4524 // Collect all of the variables that remain uniform after vectorization. 4525 collectLoopUniforms(); 4526 4527 DEBUG(dbgs() << "LV: We can vectorize this loop" 4528 << (LAI->getRuntimePointerChecking()->Need 4529 ? " (with a runtime bound check)" 4530 : "") 4531 << "!\n"); 4532 4533 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4534 4535 // If an override option has been passed in for interleaved accesses, use it. 4536 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4537 UseInterleaved = EnableInterleavedMemAccesses; 4538 4539 // Analyze interleaved memory accesses. 4540 if (UseInterleaved) 4541 InterleaveInfo.analyzeInterleaving(Strides); 4542 4543 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4544 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4545 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4546 4547 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4548 emitAnalysis(VectorizationReport() 4549 << "Too many SCEV assumptions need to be made and checked " 4550 << "at runtime"); 4551 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4552 return false; 4553 } 4554 4555 // Okay! We can vectorize. At this point we don't have any other mem analysis 4556 // which may limit our maximum vectorization factor, so just return true with 4557 // no restrictions. 4558 return true; 4559 } 4560 4561 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4562 if (Ty->isPointerTy()) 4563 return DL.getIntPtrType(Ty); 4564 4565 // It is possible that char's or short's overflow when we ask for the loop's 4566 // trip count, work around this by changing the type size. 4567 if (Ty->getScalarSizeInBits() < 32) 4568 return Type::getInt32Ty(Ty->getContext()); 4569 4570 return Ty; 4571 } 4572 4573 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4574 Ty0 = convertPointerToIntegerType(DL, Ty0); 4575 Ty1 = convertPointerToIntegerType(DL, Ty1); 4576 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4577 return Ty0; 4578 return Ty1; 4579 } 4580 4581 /// \brief Check that the instruction has outside loop users and is not an 4582 /// identified reduction variable. 4583 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4584 SmallPtrSetImpl<Value *> &Reductions) { 4585 // Reduction instructions are allowed to have exit users. All other 4586 // instructions must not have external users. 4587 if (!Reductions.count(Inst)) 4588 // Check that all of the users of the loop are inside the BB. 4589 for (User *U : Inst->users()) { 4590 Instruction *UI = cast<Instruction>(U); 4591 // This user may be a reduction exit value. 4592 if (!TheLoop->contains(UI)) { 4593 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4594 return true; 4595 } 4596 } 4597 return false; 4598 } 4599 4600 bool LoopVectorizationLegality::addInductionPhi(PHINode *Phi, 4601 InductionDescriptor ID) { 4602 Inductions[Phi] = ID; 4603 Type *PhiTy = Phi->getType(); 4604 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4605 4606 // Get the widest type. 4607 if (!WidestIndTy) 4608 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4609 else 4610 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4611 4612 // Int inductions are special because we only allow one IV. 4613 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4614 ID.getConstIntStepValue() && 4615 ID.getConstIntStepValue()->isOne() && 4616 isa<Constant>(ID.getStartValue()) && 4617 cast<Constant>(ID.getStartValue())->isNullValue()) { 4618 4619 // Use the phi node with the widest type as induction. Use the last 4620 // one if there are multiple (no good reason for doing this other 4621 // than it is expedient). We've checked that it begins at zero and 4622 // steps by one, so this is a canonical induction variable. 4623 if (!Induction || PhiTy == WidestIndTy) 4624 Induction = Phi; 4625 } 4626 4627 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4628 4629 // Until we explicitly handle the case of an induction variable with 4630 // an outside loop user we have to give up vectorizing this loop. 4631 if (hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) { 4632 emitAnalysis(VectorizationReport(Phi) << 4633 "use of induction value outside of the " 4634 "loop is not handled by vectorizer"); 4635 return false; 4636 } 4637 4638 return true; 4639 } 4640 4641 bool LoopVectorizationLegality::canVectorizeInstrs() { 4642 BasicBlock *Header = TheLoop->getHeader(); 4643 4644 // Look for the attribute signaling the absence of NaNs. 4645 Function &F = *Header->getParent(); 4646 HasFunNoNaNAttr = 4647 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4648 4649 // For each block in the loop. 4650 for (Loop::block_iterator bb = TheLoop->block_begin(), 4651 be = TheLoop->block_end(); 4652 bb != be; ++bb) { 4653 4654 // Scan the instructions in the block and look for hazards. 4655 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4656 ++it) { 4657 4658 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4659 Type *PhiTy = Phi->getType(); 4660 // Check that this PHI type is allowed. 4661 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 4662 !PhiTy->isPointerTy()) { 4663 emitAnalysis(VectorizationReport(&*it) 4664 << "loop control flow is not understood by vectorizer"); 4665 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4666 return false; 4667 } 4668 4669 // If this PHINode is not in the header block, then we know that we 4670 // can convert it to select during if-conversion. No need to check if 4671 // the PHIs in this block are induction or reduction variables. 4672 if (*bb != Header) { 4673 // Check that this instruction has no outside users or is an 4674 // identified reduction value with an outside user. 4675 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4676 continue; 4677 emitAnalysis(VectorizationReport(&*it) 4678 << "value could not be identified as " 4679 "an induction or reduction variable"); 4680 return false; 4681 } 4682 4683 // We only allow if-converted PHIs with exactly two incoming values. 4684 if (Phi->getNumIncomingValues() != 2) { 4685 emitAnalysis(VectorizationReport(&*it) 4686 << "control flow not understood by vectorizer"); 4687 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4688 return false; 4689 } 4690 4691 RecurrenceDescriptor RedDes; 4692 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4693 if (RedDes.hasUnsafeAlgebra()) 4694 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4695 AllowedExit.insert(RedDes.getLoopExitInstr()); 4696 Reductions[Phi] = RedDes; 4697 continue; 4698 } 4699 4700 InductionDescriptor ID; 4701 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { 4702 if (!addInductionPhi(Phi, ID)) 4703 return false; 4704 continue; 4705 } 4706 4707 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4708 FirstOrderRecurrences.insert(Phi); 4709 continue; 4710 } 4711 4712 // As a last resort, coerce the PHI to a AddRec expression 4713 // and re-try classifying it a an induction PHI. 4714 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { 4715 if (!addInductionPhi(Phi, ID)) 4716 return false; 4717 continue; 4718 } 4719 4720 emitAnalysis(VectorizationReport(&*it) 4721 << "value that could not be identified as " 4722 "reduction is used outside the loop"); 4723 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 4724 return false; 4725 } // end of PHI handling 4726 4727 // We handle calls that: 4728 // * Are debug info intrinsics. 4729 // * Have a mapping to an IR intrinsic. 4730 // * Have a vector version available. 4731 CallInst *CI = dyn_cast<CallInst>(it); 4732 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 4733 !isa<DbgInfoIntrinsic>(CI) && 4734 !(CI->getCalledFunction() && TLI && 4735 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4736 emitAnalysis(VectorizationReport(&*it) 4737 << "call instruction cannot be vectorized"); 4738 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4739 return false; 4740 } 4741 4742 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4743 // second argument is the same (i.e. loop invariant) 4744 if (CI && hasVectorInstrinsicScalarOpd( 4745 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4746 auto *SE = PSE.getSE(); 4747 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4748 emitAnalysis(VectorizationReport(&*it) 4749 << "intrinsic instruction cannot be vectorized"); 4750 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4751 return false; 4752 } 4753 } 4754 4755 // Check that the instruction return type is vectorizable. 4756 // Also, we can't vectorize extractelement instructions. 4757 if ((!VectorType::isValidElementType(it->getType()) && 4758 !it->getType()->isVoidTy()) || 4759 isa<ExtractElementInst>(it)) { 4760 emitAnalysis(VectorizationReport(&*it) 4761 << "instruction return type cannot be vectorized"); 4762 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4763 return false; 4764 } 4765 4766 // Check that the stored type is vectorizable. 4767 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4768 Type *T = ST->getValueOperand()->getType(); 4769 if (!VectorType::isValidElementType(T)) { 4770 emitAnalysis(VectorizationReport(ST) 4771 << "store instruction cannot be vectorized"); 4772 return false; 4773 } 4774 if (EnableMemAccessVersioning) 4775 collectStridedAccess(ST); 4776 4777 } else if (LoadInst *LI = dyn_cast<LoadInst>(it)) { 4778 if (EnableMemAccessVersioning) 4779 collectStridedAccess(LI); 4780 4781 // FP instructions can allow unsafe algebra, thus vectorizable by 4782 // non-IEEE-754 compliant SIMD units. 4783 // This applies to floating-point math operations and calls, not memory 4784 // operations, shuffles, or casts, as they don't change precision or 4785 // semantics. 4786 } else if (it->getType()->isFloatingPointTy() && 4787 (CI || it->isBinaryOp()) && !it->hasUnsafeAlgebra()) { 4788 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4789 Hints->setPotentiallyUnsafe(); 4790 } 4791 4792 // Reduction instructions are allowed to have exit users. 4793 // All other instructions must not have external users. 4794 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4795 emitAnalysis(VectorizationReport(&*it) 4796 << "value cannot be used outside the loop"); 4797 return false; 4798 } 4799 4800 } // next instr. 4801 } 4802 4803 if (!Induction) { 4804 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4805 if (Inductions.empty()) { 4806 emitAnalysis(VectorizationReport() 4807 << "loop induction variable could not be identified"); 4808 return false; 4809 } 4810 } 4811 4812 // Now we know the widest induction type, check if our found induction 4813 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4814 // will create another. 4815 if (Induction && WidestIndTy != Induction->getType()) 4816 Induction = nullptr; 4817 4818 return true; 4819 } 4820 4821 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4822 Value *Ptr = nullptr; 4823 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4824 Ptr = LI->getPointerOperand(); 4825 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4826 Ptr = SI->getPointerOperand(); 4827 else 4828 return; 4829 4830 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4831 if (!Stride) 4832 return; 4833 4834 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4835 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4836 Strides[Ptr] = Stride; 4837 StrideSet.insert(Stride); 4838 } 4839 4840 void LoopVectorizationLegality::collectLoopUniforms() { 4841 // We now know that the loop is vectorizable! 4842 // Collect variables that will remain uniform after vectorization. 4843 std::vector<Value *> Worklist; 4844 BasicBlock *Latch = TheLoop->getLoopLatch(); 4845 4846 // Start with the conditional branch and walk up the block. 4847 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4848 4849 // Also add all consecutive pointer values; these values will be uniform 4850 // after vectorization (and subsequent cleanup) and, until revectorization is 4851 // supported, all dependencies must also be uniform. 4852 for (Loop::block_iterator B = TheLoop->block_begin(), 4853 BE = TheLoop->block_end(); 4854 B != BE; ++B) 4855 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); I != IE; ++I) 4856 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4857 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4858 4859 while (!Worklist.empty()) { 4860 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4861 Worklist.pop_back(); 4862 4863 // Look at instructions inside this loop. 4864 // Stop when reaching PHI nodes. 4865 // TODO: we need to follow values all over the loop, not only in this block. 4866 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4867 continue; 4868 4869 // This is a known uniform. 4870 Uniforms.insert(I); 4871 4872 // Insert all operands. 4873 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4874 } 4875 } 4876 4877 bool LoopVectorizationLegality::canVectorizeMemory() { 4878 LAI = &LAA->getInfo(TheLoop, Strides); 4879 auto &OptionalReport = LAI->getReport(); 4880 if (OptionalReport) 4881 emitAnalysis(VectorizationReport(*OptionalReport)); 4882 if (!LAI->canVectorizeMemory()) 4883 return false; 4884 4885 if (LAI->hasStoreToLoopInvariantAddress()) { 4886 emitAnalysis( 4887 VectorizationReport() 4888 << "write to a loop invariant address could not be vectorized"); 4889 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4890 return false; 4891 } 4892 4893 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4894 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 4895 4896 return true; 4897 } 4898 4899 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4900 Value *In0 = const_cast<Value *>(V); 4901 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4902 if (!PN) 4903 return false; 4904 4905 return Inductions.count(PN); 4906 } 4907 4908 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 4909 return FirstOrderRecurrences.count(Phi); 4910 } 4911 4912 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4913 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4914 } 4915 4916 bool LoopVectorizationLegality::blockCanBePredicated( 4917 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 4918 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4919 4920 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4921 // Check that we don't have a constant expression that can trap as operand. 4922 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4923 OI != OE; ++OI) { 4924 if (Constant *C = dyn_cast<Constant>(*OI)) 4925 if (C->canTrap()) 4926 return false; 4927 } 4928 // We might be able to hoist the load. 4929 if (it->mayReadFromMemory()) { 4930 LoadInst *LI = dyn_cast<LoadInst>(it); 4931 if (!LI) 4932 return false; 4933 if (!SafePtrs.count(LI->getPointerOperand())) { 4934 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 4935 isLegalMaskedGather(LI->getType())) { 4936 MaskedOp.insert(LI); 4937 continue; 4938 } 4939 // !llvm.mem.parallel_loop_access implies if-conversion safety. 4940 if (IsAnnotatedParallel) 4941 continue; 4942 return false; 4943 } 4944 } 4945 4946 // We don't predicate stores at the moment. 4947 if (it->mayWriteToMemory()) { 4948 StoreInst *SI = dyn_cast<StoreInst>(it); 4949 // We only support predication of stores in basic blocks with one 4950 // predecessor. 4951 if (!SI) 4952 return false; 4953 4954 // Build a masked store if it is legal for the target. 4955 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 4956 SI->getPointerOperand()) || 4957 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 4958 MaskedOp.insert(SI); 4959 continue; 4960 } 4961 4962 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4963 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4964 4965 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4966 !isSinglePredecessor) 4967 return false; 4968 } 4969 if (it->mayThrow()) 4970 return false; 4971 4972 // The instructions below can trap. 4973 switch (it->getOpcode()) { 4974 default: 4975 continue; 4976 case Instruction::UDiv: 4977 case Instruction::SDiv: 4978 case Instruction::URem: 4979 case Instruction::SRem: 4980 return false; 4981 } 4982 } 4983 4984 return true; 4985 } 4986 4987 void InterleavedAccessInfo::collectConstStridedAccesses( 4988 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4989 const ValueToValueMap &Strides) { 4990 // Holds load/store instructions in program order. 4991 SmallVector<Instruction *, 16> AccessList; 4992 4993 for (auto *BB : TheLoop->getBlocks()) { 4994 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4995 4996 for (auto &I : *BB) { 4997 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4998 continue; 4999 // FIXME: Currently we can't handle mixed accesses and predicated accesses 5000 if (IsPred) 5001 return; 5002 5003 AccessList.push_back(&I); 5004 } 5005 } 5006 5007 if (AccessList.empty()) 5008 return; 5009 5010 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5011 for (auto I : AccessList) { 5012 LoadInst *LI = dyn_cast<LoadInst>(I); 5013 StoreInst *SI = dyn_cast<StoreInst>(I); 5014 5015 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 5016 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5017 5018 // The factor of the corresponding interleave group. 5019 unsigned Factor = std::abs(Stride); 5020 5021 // Ignore the access if the factor is too small or too large. 5022 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 5023 continue; 5024 5025 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5026 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5027 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5028 5029 // An alignment of 0 means target ABI alignment. 5030 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5031 if (!Align) 5032 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5033 5034 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 5035 } 5036 } 5037 5038 // Analyze interleaved accesses and collect them into interleave groups. 5039 // 5040 // Notice that the vectorization on interleaved groups will change instruction 5041 // orders and may break dependences. But the memory dependence check guarantees 5042 // that there is no overlap between two pointers of different strides, element 5043 // sizes or underlying bases. 5044 // 5045 // For pointers sharing the same stride, element size and underlying base, no 5046 // need to worry about Read-After-Write dependences and Write-After-Read 5047 // dependences. 5048 // 5049 // E.g. The RAW dependence: A[i] = a; 5050 // b = A[i]; 5051 // This won't exist as it is a store-load forwarding conflict, which has 5052 // already been checked and forbidden in the dependence check. 5053 // 5054 // E.g. The WAR dependence: a = A[i]; // (1) 5055 // A[i] = b; // (2) 5056 // The store group of (2) is always inserted at or below (2), and the load group 5057 // of (1) is always inserted at or above (1). The dependence is safe. 5058 void InterleavedAccessInfo::analyzeInterleaving( 5059 const ValueToValueMap &Strides) { 5060 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5061 5062 // Holds all the stride accesses. 5063 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5064 collectConstStridedAccesses(StrideAccesses, Strides); 5065 5066 if (StrideAccesses.empty()) 5067 return; 5068 5069 // Holds all interleaved store groups temporarily. 5070 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5071 // Holds all interleaved load groups temporarily. 5072 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5073 5074 // Search the load-load/write-write pair B-A in bottom-up order and try to 5075 // insert B into the interleave group of A according to 3 rules: 5076 // 1. A and B have the same stride. 5077 // 2. A and B have the same memory object size. 5078 // 3. B belongs to the group according to the distance. 5079 // 5080 // The bottom-up order can avoid breaking the Write-After-Write dependences 5081 // between two pointers of the same base. 5082 // E.g. A[i] = a; (1) 5083 // A[i] = b; (2) 5084 // A[i+1] = c (3) 5085 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 5086 // above (1), which guarantees that (1) is always above (2). 5087 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 5088 ++I) { 5089 Instruction *A = I->first; 5090 StrideDescriptor DesA = I->second; 5091 5092 InterleaveGroup *Group = getInterleaveGroup(A); 5093 if (!Group) { 5094 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5095 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5096 } 5097 5098 if (A->mayWriteToMemory()) 5099 StoreGroups.insert(Group); 5100 else 5101 LoadGroups.insert(Group); 5102 5103 for (auto II = std::next(I); II != E; ++II) { 5104 Instruction *B = II->first; 5105 StrideDescriptor DesB = II->second; 5106 5107 // Ignore if B is already in a group or B is a different memory operation. 5108 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5109 continue; 5110 5111 // Check the rule 1 and 2. 5112 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5113 continue; 5114 5115 // Calculate the distance and prepare for the rule 3. 5116 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5117 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5118 if (!DistToA) 5119 continue; 5120 5121 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5122 5123 // Skip if the distance is not multiple of size as they are not in the 5124 // same group. 5125 if (DistanceToA % static_cast<int>(DesA.Size)) 5126 continue; 5127 5128 // The index of B is the index of A plus the related index to A. 5129 int IndexB = 5130 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5131 5132 // Try to insert B into the group. 5133 if (Group->insertMember(B, IndexB, DesB.Align)) { 5134 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5135 << " into the interleave group with" << *A << '\n'); 5136 InterleaveGroupMap[B] = Group; 5137 5138 // Set the first load in program order as the insert position. 5139 if (B->mayReadFromMemory()) 5140 Group->setInsertPos(B); 5141 } 5142 } // Iteration on instruction B 5143 } // Iteration on instruction A 5144 5145 // Remove interleaved store groups with gaps. 5146 for (InterleaveGroup *Group : StoreGroups) 5147 if (Group->getNumMembers() != Group->getFactor()) 5148 releaseGroup(Group); 5149 5150 // If there is a non-reversed interleaved load group with gaps, we will need 5151 // to execute at least one scalar epilogue iteration. This will ensure that 5152 // we don't speculatively access memory out-of-bounds. Note that we only need 5153 // to look for a member at index factor - 1, since every group must have a 5154 // member at index zero. 5155 for (InterleaveGroup *Group : LoadGroups) 5156 if (!Group->getMember(Group->getFactor() - 1)) { 5157 if (Group->isReverse()) { 5158 releaseGroup(Group); 5159 } else { 5160 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5161 RequiresScalarEpilogue = true; 5162 } 5163 } 5164 } 5165 5166 LoopVectorizationCostModel::VectorizationFactor 5167 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5168 // Width 1 means no vectorize 5169 VectorizationFactor Factor = {1U, 0U}; 5170 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5171 emitAnalysis( 5172 VectorizationReport() 5173 << "runtime pointer checks needed. Enable vectorization of this " 5174 "loop with '#pragma clang loop vectorize(enable)' when " 5175 "compiling with -Os/-Oz"); 5176 DEBUG(dbgs() 5177 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5178 return Factor; 5179 } 5180 5181 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5182 emitAnalysis( 5183 VectorizationReport() 5184 << "store that is conditionally executed prevents vectorization"); 5185 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5186 return Factor; 5187 } 5188 5189 // Find the trip count. 5190 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5191 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5192 5193 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5194 unsigned SmallestType, WidestType; 5195 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5196 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5197 unsigned MaxSafeDepDist = -1U; 5198 5199 // Get the maximum safe dependence distance in bits computed by LAA. If the 5200 // loop contains any interleaved accesses, we divide the dependence distance 5201 // by the maximum interleave factor of all interleaved groups. Note that 5202 // although the division ensures correctness, this is a fairly conservative 5203 // computation because the maximum distance computed by LAA may not involve 5204 // any of the interleaved accesses. 5205 if (Legal->getMaxSafeDepDistBytes() != -1U) 5206 MaxSafeDepDist = 5207 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5208 5209 WidestRegister = 5210 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5211 unsigned MaxVectorSize = WidestRegister / WidestType; 5212 5213 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5214 << WidestType << " bits.\n"); 5215 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5216 << " bits.\n"); 5217 5218 if (MaxVectorSize == 0) { 5219 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5220 MaxVectorSize = 1; 5221 } 5222 5223 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5224 " into one vector!"); 5225 5226 unsigned VF = MaxVectorSize; 5227 if (MaximizeBandwidth && !OptForSize) { 5228 // Collect all viable vectorization factors. 5229 SmallVector<unsigned, 8> VFs; 5230 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5231 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5232 VFs.push_back(VS); 5233 5234 // For each VF calculate its register usage. 5235 auto RUs = calculateRegisterUsage(VFs); 5236 5237 // Select the largest VF which doesn't require more registers than existing 5238 // ones. 5239 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5240 for (int i = RUs.size() - 1; i >= 0; --i) { 5241 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5242 VF = VFs[i]; 5243 break; 5244 } 5245 } 5246 } 5247 5248 // If we optimize the program for size, avoid creating the tail loop. 5249 if (OptForSize) { 5250 // If we are unable to calculate the trip count then don't try to vectorize. 5251 if (TC < 2) { 5252 emitAnalysis( 5253 VectorizationReport() 5254 << "unable to calculate the loop count due to complex control flow"); 5255 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5256 return Factor; 5257 } 5258 5259 // Find the maximum SIMD width that can fit within the trip count. 5260 VF = TC % MaxVectorSize; 5261 5262 if (VF == 0) 5263 VF = MaxVectorSize; 5264 else { 5265 // If the trip count that we found modulo the vectorization factor is not 5266 // zero then we require a tail. 5267 emitAnalysis(VectorizationReport() 5268 << "cannot optimize for size and vectorize at the " 5269 "same time. Enable vectorization of this loop " 5270 "with '#pragma clang loop vectorize(enable)' " 5271 "when compiling with -Os/-Oz"); 5272 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5273 return Factor; 5274 } 5275 } 5276 5277 int UserVF = Hints->getWidth(); 5278 if (UserVF != 0) { 5279 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5280 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5281 5282 Factor.Width = UserVF; 5283 return Factor; 5284 } 5285 5286 float Cost = expectedCost(1).first; 5287 #ifndef NDEBUG 5288 const float ScalarCost = Cost; 5289 #endif /* NDEBUG */ 5290 unsigned Width = 1; 5291 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5292 5293 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5294 // Ignore scalar width, because the user explicitly wants vectorization. 5295 if (ForceVectorization && VF > 1) { 5296 Width = 2; 5297 Cost = expectedCost(Width).first / (float)Width; 5298 } 5299 5300 for (unsigned i = 2; i <= VF; i *= 2) { 5301 // Notice that the vector loop needs to be executed less times, so 5302 // we need to divide the cost of the vector loops by the width of 5303 // the vector elements. 5304 VectorizationCostTy C = expectedCost(i); 5305 float VectorCost = C.first / (float)i; 5306 DEBUG(dbgs() << "LV: Vector loop of width " << i 5307 << " costs: " << (int)VectorCost << ".\n"); 5308 if (!C.second && !ForceVectorization) { 5309 DEBUG( 5310 dbgs() << "LV: Not considering vector loop of width " << i 5311 << " because it will not generate any vector instructions.\n"); 5312 continue; 5313 } 5314 if (VectorCost < Cost) { 5315 Cost = VectorCost; 5316 Width = i; 5317 } 5318 } 5319 5320 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5321 << "LV: Vectorization seems to be not beneficial, " 5322 << "but was forced by a user.\n"); 5323 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5324 Factor.Width = Width; 5325 Factor.Cost = Width * Cost; 5326 return Factor; 5327 } 5328 5329 std::pair<unsigned, unsigned> 5330 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5331 unsigned MinWidth = -1U; 5332 unsigned MaxWidth = 8; 5333 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5334 5335 // For each block. 5336 for (Loop::block_iterator bb = TheLoop->block_begin(), 5337 be = TheLoop->block_end(); 5338 bb != be; ++bb) { 5339 BasicBlock *BB = *bb; 5340 5341 // For each instruction in the loop. 5342 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5343 Type *T = it->getType(); 5344 5345 // Skip ignored values. 5346 if (ValuesToIgnore.count(&*it)) 5347 continue; 5348 5349 // Only examine Loads, Stores and PHINodes. 5350 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5351 continue; 5352 5353 // Examine PHI nodes that are reduction variables. Update the type to 5354 // account for the recurrence type. 5355 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5356 if (!Legal->isReductionVariable(PN)) 5357 continue; 5358 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5359 T = RdxDesc.getRecurrenceType(); 5360 } 5361 5362 // Examine the stored values. 5363 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5364 T = ST->getValueOperand()->getType(); 5365 5366 // Ignore loaded pointer types and stored pointer types that are not 5367 // consecutive. However, we do want to take consecutive stores/loads of 5368 // pointer vectors into account. 5369 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5370 continue; 5371 5372 MinWidth = std::min(MinWidth, 5373 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5374 MaxWidth = std::max(MaxWidth, 5375 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5376 } 5377 } 5378 5379 return {MinWidth, MaxWidth}; 5380 } 5381 5382 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5383 unsigned VF, 5384 unsigned LoopCost) { 5385 5386 // -- The interleave heuristics -- 5387 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5388 // There are many micro-architectural considerations that we can't predict 5389 // at this level. For example, frontend pressure (on decode or fetch) due to 5390 // code size, or the number and capabilities of the execution ports. 5391 // 5392 // We use the following heuristics to select the interleave count: 5393 // 1. If the code has reductions, then we interleave to break the cross 5394 // iteration dependency. 5395 // 2. If the loop is really small, then we interleave to reduce the loop 5396 // overhead. 5397 // 3. We don't interleave if we think that we will spill registers to memory 5398 // due to the increased register pressure. 5399 5400 // When we optimize for size, we don't interleave. 5401 if (OptForSize) 5402 return 1; 5403 5404 // We used the distance for the interleave count. 5405 if (Legal->getMaxSafeDepDistBytes() != -1U) 5406 return 1; 5407 5408 // Do not interleave loops with a relatively small trip count. 5409 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5410 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5411 return 1; 5412 5413 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5414 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5415 << " registers\n"); 5416 5417 if (VF == 1) { 5418 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5419 TargetNumRegisters = ForceTargetNumScalarRegs; 5420 } else { 5421 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5422 TargetNumRegisters = ForceTargetNumVectorRegs; 5423 } 5424 5425 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5426 // We divide by these constants so assume that we have at least one 5427 // instruction that uses at least one register. 5428 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5429 R.NumInstructions = std::max(R.NumInstructions, 1U); 5430 5431 // We calculate the interleave count using the following formula. 5432 // Subtract the number of loop invariants from the number of available 5433 // registers. These registers are used by all of the interleaved instances. 5434 // Next, divide the remaining registers by the number of registers that is 5435 // required by the loop, in order to estimate how many parallel instances 5436 // fit without causing spills. All of this is rounded down if necessary to be 5437 // a power of two. We want power of two interleave count to simplify any 5438 // addressing operations or alignment considerations. 5439 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5440 R.MaxLocalUsers); 5441 5442 // Don't count the induction variable as interleaved. 5443 if (EnableIndVarRegisterHeur) 5444 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5445 std::max(1U, (R.MaxLocalUsers - 1))); 5446 5447 // Clamp the interleave ranges to reasonable counts. 5448 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5449 5450 // Check if the user has overridden the max. 5451 if (VF == 1) { 5452 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5453 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5454 } else { 5455 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5456 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5457 } 5458 5459 // If we did not calculate the cost for VF (because the user selected the VF) 5460 // then we calculate the cost of VF here. 5461 if (LoopCost == 0) 5462 LoopCost = expectedCost(VF).first; 5463 5464 // Clamp the calculated IC to be between the 1 and the max interleave count 5465 // that the target allows. 5466 if (IC > MaxInterleaveCount) 5467 IC = MaxInterleaveCount; 5468 else if (IC < 1) 5469 IC = 1; 5470 5471 // Interleave if we vectorized this loop and there is a reduction that could 5472 // benefit from interleaving. 5473 if (VF > 1 && Legal->getReductionVars()->size()) { 5474 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5475 return IC; 5476 } 5477 5478 // Note that if we've already vectorized the loop we will have done the 5479 // runtime check and so interleaving won't require further checks. 5480 bool InterleavingRequiresRuntimePointerCheck = 5481 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5482 5483 // We want to interleave small loops in order to reduce the loop overhead and 5484 // potentially expose ILP opportunities. 5485 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5486 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5487 // We assume that the cost overhead is 1 and we use the cost model 5488 // to estimate the cost of the loop and interleave until the cost of the 5489 // loop overhead is about 5% of the cost of the loop. 5490 unsigned SmallIC = 5491 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5492 5493 // Interleave until store/load ports (estimated by max interleave count) are 5494 // saturated. 5495 unsigned NumStores = Legal->getNumStores(); 5496 unsigned NumLoads = Legal->getNumLoads(); 5497 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5498 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5499 5500 // If we have a scalar reduction (vector reductions are already dealt with 5501 // by this point), we can increase the critical path length if the loop 5502 // we're interleaving is inside another loop. Limit, by default to 2, so the 5503 // critical path only gets increased by one reduction operation. 5504 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 5505 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5506 SmallIC = std::min(SmallIC, F); 5507 StoresIC = std::min(StoresIC, F); 5508 LoadsIC = std::min(LoadsIC, F); 5509 } 5510 5511 if (EnableLoadStoreRuntimeInterleave && 5512 std::max(StoresIC, LoadsIC) > SmallIC) { 5513 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5514 return std::max(StoresIC, LoadsIC); 5515 } 5516 5517 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5518 return SmallIC; 5519 } 5520 5521 // Interleave if this is a large loop (small loops are already dealt with by 5522 // this point) that could benefit from interleaving. 5523 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5524 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5525 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5526 return IC; 5527 } 5528 5529 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5530 return 1; 5531 } 5532 5533 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5534 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5535 // This function calculates the register usage by measuring the highest number 5536 // of values that are alive at a single location. Obviously, this is a very 5537 // rough estimation. We scan the loop in a topological order in order and 5538 // assign a number to each instruction. We use RPO to ensure that defs are 5539 // met before their users. We assume that each instruction that has in-loop 5540 // users starts an interval. We record every time that an in-loop value is 5541 // used, so we have a list of the first and last occurrences of each 5542 // instruction. Next, we transpose this data structure into a multi map that 5543 // holds the list of intervals that *end* at a specific location. This multi 5544 // map allows us to perform a linear search. We scan the instructions linearly 5545 // and record each time that a new interval starts, by placing it in a set. 5546 // If we find this value in the multi-map then we remove it from the set. 5547 // The max register usage is the maximum size of the set. 5548 // We also search for instructions that are defined outside the loop, but are 5549 // used inside the loop. We need this number separately from the max-interval 5550 // usage number because when we unroll, loop-invariant values do not take 5551 // more register. 5552 LoopBlocksDFS DFS(TheLoop); 5553 DFS.perform(LI); 5554 5555 RegisterUsage RU; 5556 RU.NumInstructions = 0; 5557 5558 // Each 'key' in the map opens a new interval. The values 5559 // of the map are the index of the 'last seen' usage of the 5560 // instruction that is the key. 5561 typedef DenseMap<Instruction *, unsigned> IntervalMap; 5562 // Maps instruction to its index. 5563 DenseMap<unsigned, Instruction *> IdxToInstr; 5564 // Marks the end of each interval. 5565 IntervalMap EndPoint; 5566 // Saves the list of instruction indices that are used in the loop. 5567 SmallSet<Instruction *, 8> Ends; 5568 // Saves the list of values that are used in the loop but are 5569 // defined outside the loop, such as arguments and constants. 5570 SmallPtrSet<Value *, 8> LoopInvariants; 5571 5572 unsigned Index = 0; 5573 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 5574 bb != be; ++bb) { 5575 RU.NumInstructions += (*bb)->size(); 5576 for (Instruction &I : **bb) { 5577 IdxToInstr[Index++] = &I; 5578 5579 // Save the end location of each USE. 5580 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5581 Value *U = I.getOperand(i); 5582 Instruction *Instr = dyn_cast<Instruction>(U); 5583 5584 // Ignore non-instruction values such as arguments, constants, etc. 5585 if (!Instr) 5586 continue; 5587 5588 // If this instruction is outside the loop then record it and continue. 5589 if (!TheLoop->contains(Instr)) { 5590 LoopInvariants.insert(Instr); 5591 continue; 5592 } 5593 5594 // Overwrite previous end points. 5595 EndPoint[Instr] = Index; 5596 Ends.insert(Instr); 5597 } 5598 } 5599 } 5600 5601 // Saves the list of intervals that end with the index in 'key'. 5602 typedef SmallVector<Instruction *, 2> InstrList; 5603 DenseMap<unsigned, InstrList> TransposeEnds; 5604 5605 // Transpose the EndPoints to a list of values that end at each index. 5606 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); it != e; 5607 ++it) 5608 TransposeEnds[it->second].push_back(it->first); 5609 5610 SmallSet<Instruction *, 8> OpenIntervals; 5611 5612 // Get the size of the widest register. 5613 unsigned MaxSafeDepDist = -1U; 5614 if (Legal->getMaxSafeDepDistBytes() != -1U) 5615 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5616 unsigned WidestRegister = 5617 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5618 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5619 5620 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5621 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5622 5623 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5624 5625 // A lambda that gets the register usage for the given type and VF. 5626 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5627 if (Ty->isTokenTy()) 5628 return 0U; 5629 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5630 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5631 }; 5632 5633 for (unsigned int i = 0; i < Index; ++i) { 5634 Instruction *I = IdxToInstr[i]; 5635 // Ignore instructions that are never used within the loop. 5636 if (!Ends.count(I)) 5637 continue; 5638 5639 // Remove all of the instructions that end at this location. 5640 InstrList &List = TransposeEnds[i]; 5641 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5642 OpenIntervals.erase(List[j]); 5643 5644 // Skip ignored values. 5645 if (ValuesToIgnore.count(I)) 5646 continue; 5647 5648 // For each VF find the maximum usage of registers. 5649 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5650 if (VFs[j] == 1) { 5651 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5652 continue; 5653 } 5654 5655 // Count the number of live intervals. 5656 unsigned RegUsage = 0; 5657 for (auto Inst : OpenIntervals) { 5658 // Skip ignored values for VF > 1. 5659 if (VecValuesToIgnore.count(Inst)) 5660 continue; 5661 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5662 } 5663 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5664 } 5665 5666 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5667 << OpenIntervals.size() << '\n'); 5668 5669 // Add the current instruction to the list of open intervals. 5670 OpenIntervals.insert(I); 5671 } 5672 5673 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5674 unsigned Invariant = 0; 5675 if (VFs[i] == 1) 5676 Invariant = LoopInvariants.size(); 5677 else { 5678 for (auto Inst : LoopInvariants) 5679 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5680 } 5681 5682 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5683 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5684 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5685 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5686 5687 RU.LoopInvariantRegs = Invariant; 5688 RU.MaxLocalUsers = MaxUsages[i]; 5689 RUs[i] = RU; 5690 } 5691 5692 return RUs; 5693 } 5694 5695 LoopVectorizationCostModel::VectorizationCostTy 5696 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5697 VectorizationCostTy Cost; 5698 5699 // For each block. 5700 for (Loop::block_iterator bb = TheLoop->block_begin(), 5701 be = TheLoop->block_end(); 5702 bb != be; ++bb) { 5703 VectorizationCostTy BlockCost; 5704 BasicBlock *BB = *bb; 5705 5706 // For each instruction in the old loop. 5707 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5708 // Skip dbg intrinsics. 5709 if (isa<DbgInfoIntrinsic>(it)) 5710 continue; 5711 5712 // Skip ignored values. 5713 if (ValuesToIgnore.count(&*it)) 5714 continue; 5715 5716 VectorizationCostTy C = getInstructionCost(&*it, VF); 5717 5718 // Check if we should override the cost. 5719 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5720 C.first = ForceTargetInstructionCost; 5721 5722 BlockCost.first += C.first; 5723 BlockCost.second |= C.second; 5724 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5725 << VF << " For instruction: " << *it << '\n'); 5726 } 5727 5728 // We assume that if-converted blocks have a 50% chance of being executed. 5729 // When the code is scalar then some of the blocks are avoided due to CF. 5730 // When the code is vectorized we execute all code paths. 5731 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5732 BlockCost.first /= 2; 5733 5734 Cost.first += BlockCost.first; 5735 Cost.second |= BlockCost.second; 5736 } 5737 5738 return Cost; 5739 } 5740 5741 /// \brief Check if the load/store instruction \p I may be translated into 5742 /// gather/scatter during vectorization. 5743 /// 5744 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5745 /// instruction. We need it to retrieve data type. 5746 /// Using gather/scatter is possible when it is supported by target. 5747 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5748 LoopVectorizationLegality *Legal) { 5749 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5750 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5751 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5752 } 5753 5754 /// \brief Check whether the address computation for a non-consecutive memory 5755 /// access looks like an unlikely candidate for being merged into the indexing 5756 /// mode. 5757 /// 5758 /// We look for a GEP which has one index that is an induction variable and all 5759 /// other indices are loop invariant. If the stride of this access is also 5760 /// within a small bound we decide that this address computation can likely be 5761 /// merged into the addressing mode. 5762 /// In all other cases, we identify the address computation as complex. 5763 static bool isLikelyComplexAddressComputation(Value *Ptr, 5764 LoopVectorizationLegality *Legal, 5765 ScalarEvolution *SE, 5766 const Loop *TheLoop) { 5767 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5768 if (!Gep) 5769 return true; 5770 5771 // We are looking for a gep with all loop invariant indices except for one 5772 // which should be an induction variable. 5773 unsigned NumOperands = Gep->getNumOperands(); 5774 for (unsigned i = 1; i < NumOperands; ++i) { 5775 Value *Opd = Gep->getOperand(i); 5776 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5777 !Legal->isInductionVariable(Opd)) 5778 return true; 5779 } 5780 5781 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5782 // can likely be merged into the address computation. 5783 unsigned MaxMergeDistance = 64; 5784 5785 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5786 if (!AddRec) 5787 return true; 5788 5789 // Check the step is constant. 5790 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5791 // Calculate the pointer stride and check if it is consecutive. 5792 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5793 if (!C) 5794 return true; 5795 5796 const APInt &APStepVal = C->getAPInt(); 5797 5798 // Huge step value - give up. 5799 if (APStepVal.getBitWidth() > 64) 5800 return true; 5801 5802 int64_t StepVal = APStepVal.getSExtValue(); 5803 5804 return StepVal > MaxMergeDistance; 5805 } 5806 5807 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5808 return Legal->hasStride(I->getOperand(0)) || 5809 Legal->hasStride(I->getOperand(1)); 5810 } 5811 5812 LoopVectorizationCostModel::VectorizationCostTy 5813 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5814 // If we know that this instruction will remain uniform, check the cost of 5815 // the scalar version. 5816 if (Legal->isUniformAfterVectorization(I)) 5817 VF = 1; 5818 5819 Type *VectorTy; 5820 unsigned C = getInstructionCost(I, VF, VectorTy); 5821 5822 bool TypeNotScalarized = 5823 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 5824 return VectorizationCostTy(C, TypeNotScalarized); 5825 } 5826 5827 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5828 unsigned VF, 5829 Type *&VectorTy) { 5830 Type *RetTy = I->getType(); 5831 if (VF > 1 && MinBWs.count(I)) 5832 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5833 VectorTy = ToVectorTy(RetTy, VF); 5834 auto SE = PSE.getSE(); 5835 5836 // TODO: We need to estimate the cost of intrinsic calls. 5837 switch (I->getOpcode()) { 5838 case Instruction::GetElementPtr: 5839 // We mark this instruction as zero-cost because the cost of GEPs in 5840 // vectorized code depends on whether the corresponding memory instruction 5841 // is scalarized or not. Therefore, we handle GEPs with the memory 5842 // instruction cost. 5843 return 0; 5844 case Instruction::Br: { 5845 return TTI.getCFInstrCost(I->getOpcode()); 5846 } 5847 case Instruction::PHI: { 5848 auto *Phi = cast<PHINode>(I); 5849 5850 // First-order recurrences are replaced by vector shuffles inside the loop. 5851 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5852 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5853 VectorTy, VF - 1, VectorTy); 5854 5855 // TODO: IF-converted IFs become selects. 5856 return 0; 5857 } 5858 case Instruction::Add: 5859 case Instruction::FAdd: 5860 case Instruction::Sub: 5861 case Instruction::FSub: 5862 case Instruction::Mul: 5863 case Instruction::FMul: 5864 case Instruction::UDiv: 5865 case Instruction::SDiv: 5866 case Instruction::FDiv: 5867 case Instruction::URem: 5868 case Instruction::SRem: 5869 case Instruction::FRem: 5870 case Instruction::Shl: 5871 case Instruction::LShr: 5872 case Instruction::AShr: 5873 case Instruction::And: 5874 case Instruction::Or: 5875 case Instruction::Xor: { 5876 // Since we will replace the stride by 1 the multiplication should go away. 5877 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5878 return 0; 5879 // Certain instructions can be cheaper to vectorize if they have a constant 5880 // second vector operand. One example of this are shifts on x86. 5881 TargetTransformInfo::OperandValueKind Op1VK = 5882 TargetTransformInfo::OK_AnyValue; 5883 TargetTransformInfo::OperandValueKind Op2VK = 5884 TargetTransformInfo::OK_AnyValue; 5885 TargetTransformInfo::OperandValueProperties Op1VP = 5886 TargetTransformInfo::OP_None; 5887 TargetTransformInfo::OperandValueProperties Op2VP = 5888 TargetTransformInfo::OP_None; 5889 Value *Op2 = I->getOperand(1); 5890 5891 // Check for a splat of a constant or for a non uniform vector of constants. 5892 if (isa<ConstantInt>(Op2)) { 5893 ConstantInt *CInt = cast<ConstantInt>(Op2); 5894 if (CInt && CInt->getValue().isPowerOf2()) 5895 Op2VP = TargetTransformInfo::OP_PowerOf2; 5896 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5897 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5898 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5899 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5900 if (SplatValue) { 5901 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5902 if (CInt && CInt->getValue().isPowerOf2()) 5903 Op2VP = TargetTransformInfo::OP_PowerOf2; 5904 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5905 } 5906 } 5907 5908 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5909 Op1VP, Op2VP); 5910 } 5911 case Instruction::Select: { 5912 SelectInst *SI = cast<SelectInst>(I); 5913 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5914 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5915 Type *CondTy = SI->getCondition()->getType(); 5916 if (!ScalarCond) 5917 CondTy = VectorType::get(CondTy, VF); 5918 5919 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5920 } 5921 case Instruction::ICmp: 5922 case Instruction::FCmp: { 5923 Type *ValTy = I->getOperand(0)->getType(); 5924 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5925 auto It = MinBWs.find(Op0AsInstruction); 5926 if (VF > 1 && It != MinBWs.end()) 5927 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5928 VectorTy = ToVectorTy(ValTy, VF); 5929 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5930 } 5931 case Instruction::Store: 5932 case Instruction::Load: { 5933 StoreInst *SI = dyn_cast<StoreInst>(I); 5934 LoadInst *LI = dyn_cast<LoadInst>(I); 5935 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 5936 VectorTy = ToVectorTy(ValTy, VF); 5937 5938 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5939 unsigned AS = 5940 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 5941 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5942 // We add the cost of address computation here instead of with the gep 5943 // instruction because only here we know whether the operation is 5944 // scalarized. 5945 if (VF == 1) 5946 return TTI.getAddressComputationCost(VectorTy) + 5947 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5948 5949 if (LI && Legal->isUniform(Ptr)) { 5950 // Scalar load + broadcast 5951 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 5952 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5953 Alignment, AS); 5954 return Cost + 5955 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 5956 } 5957 5958 // For an interleaved access, calculate the total cost of the whole 5959 // interleave group. 5960 if (Legal->isAccessInterleaved(I)) { 5961 auto Group = Legal->getInterleavedAccessGroup(I); 5962 assert(Group && "Fail to get an interleaved access group."); 5963 5964 // Only calculate the cost once at the insert position. 5965 if (Group->getInsertPos() != I) 5966 return 0; 5967 5968 unsigned InterleaveFactor = Group->getFactor(); 5969 Type *WideVecTy = 5970 VectorType::get(VectorTy->getVectorElementType(), 5971 VectorTy->getVectorNumElements() * InterleaveFactor); 5972 5973 // Holds the indices of existing members in an interleaved load group. 5974 // An interleaved store group doesn't need this as it doesn't allow gaps. 5975 SmallVector<unsigned, 4> Indices; 5976 if (LI) { 5977 for (unsigned i = 0; i < InterleaveFactor; i++) 5978 if (Group->getMember(i)) 5979 Indices.push_back(i); 5980 } 5981 5982 // Calculate the cost of the whole interleaved group. 5983 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5984 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5985 Group->getAlignment(), AS); 5986 5987 if (Group->isReverse()) 5988 Cost += 5989 Group->getNumMembers() * 5990 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5991 5992 // FIXME: The interleaved load group with a huge gap could be even more 5993 // expensive than scalar operations. Then we could ignore such group and 5994 // use scalar operations instead. 5995 return Cost; 5996 } 5997 5998 // Scalarized loads/stores. 5999 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6000 bool UseGatherOrScatter = 6001 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); 6002 6003 bool Reverse = ConsecutiveStride < 0; 6004 const DataLayout &DL = I->getModule()->getDataLayout(); 6005 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 6006 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 6007 if ((!ConsecutiveStride && !UseGatherOrScatter) || 6008 ScalarAllocatedSize != VectorElementSize) { 6009 bool IsComplexComputation = 6010 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6011 unsigned Cost = 0; 6012 // The cost of extracting from the value vector and pointer vector. 6013 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6014 for (unsigned i = 0; i < VF; ++i) { 6015 // The cost of extracting the pointer operand. 6016 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6017 // In case of STORE, the cost of ExtractElement from the vector. 6018 // In case of LOAD, the cost of InsertElement into the returned 6019 // vector. 6020 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6021 : Instruction::InsertElement, 6022 VectorTy, i); 6023 } 6024 6025 // The cost of the scalar loads/stores. 6026 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6027 Cost += VF * 6028 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6029 Alignment, AS); 6030 return Cost; 6031 } 6032 6033 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6034 if (UseGatherOrScatter) { 6035 assert(ConsecutiveStride == 0 && 6036 "Gather/Scatter are not used for consecutive stride"); 6037 return Cost + 6038 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6039 Legal->isMaskRequired(I), Alignment); 6040 } 6041 // Wide load/stores. 6042 if (Legal->isMaskRequired(I)) 6043 Cost += 6044 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6045 else 6046 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6047 6048 if (Reverse) 6049 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6050 return Cost; 6051 } 6052 case Instruction::ZExt: 6053 case Instruction::SExt: 6054 case Instruction::FPToUI: 6055 case Instruction::FPToSI: 6056 case Instruction::FPExt: 6057 case Instruction::PtrToInt: 6058 case Instruction::IntToPtr: 6059 case Instruction::SIToFP: 6060 case Instruction::UIToFP: 6061 case Instruction::Trunc: 6062 case Instruction::FPTrunc: 6063 case Instruction::BitCast: { 6064 // We optimize the truncation of induction variable. 6065 // The cost of these is the same as the scalar operation. 6066 if (I->getOpcode() == Instruction::Trunc && 6067 Legal->isInductionVariable(I->getOperand(0))) 6068 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6069 I->getOperand(0)->getType()); 6070 6071 Type *SrcScalarTy = I->getOperand(0)->getType(); 6072 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6073 if (VF > 1 && MinBWs.count(I)) { 6074 // This cast is going to be shrunk. This may remove the cast or it might 6075 // turn it into slightly different cast. For example, if MinBW == 16, 6076 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6077 // 6078 // Calculate the modified src and dest types. 6079 Type *MinVecTy = VectorTy; 6080 if (I->getOpcode() == Instruction::Trunc) { 6081 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6082 VectorTy = 6083 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6084 } else if (I->getOpcode() == Instruction::ZExt || 6085 I->getOpcode() == Instruction::SExt) { 6086 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6087 VectorTy = 6088 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6089 } 6090 } 6091 6092 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6093 } 6094 case Instruction::Call: { 6095 bool NeedToScalarize; 6096 CallInst *CI = cast<CallInst>(I); 6097 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6098 if (getVectorIntrinsicIDForCall(CI, TLI)) 6099 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6100 return CallCost; 6101 } 6102 default: { 6103 // We are scalarizing the instruction. Return the cost of the scalar 6104 // instruction, plus the cost of insert and extract into vector 6105 // elements, times the vector width. 6106 unsigned Cost = 0; 6107 6108 if (!RetTy->isVoidTy() && VF != 1) { 6109 unsigned InsCost = 6110 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); 6111 unsigned ExtCost = 6112 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); 6113 6114 // The cost of inserting the results plus extracting each one of the 6115 // operands. 6116 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6117 } 6118 6119 // The cost of executing VF copies of the scalar instruction. This opcode 6120 // is unknown. Assume that it is the same as 'mul'. 6121 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6122 return Cost; 6123 } 6124 } // end of switch. 6125 } 6126 6127 char LoopVectorize::ID = 0; 6128 static const char lv_name[] = "Loop Vectorization"; 6129 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6130 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6131 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6132 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6133 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6134 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6135 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6136 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6137 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6138 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6139 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6140 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6141 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6142 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6143 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6144 6145 namespace llvm { 6146 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6147 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6148 } 6149 } 6150 6151 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6152 // Check for a store. 6153 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6154 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6155 6156 // Check for a load. 6157 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6158 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6159 6160 return false; 6161 } 6162 6163 void LoopVectorizationCostModel::collectValuesToIgnore() { 6164 // Ignore ephemeral values. 6165 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6166 6167 // Ignore type-promoting instructions we identified during reduction 6168 // detection. 6169 for (auto &Reduction : *Legal->getReductionVars()) { 6170 RecurrenceDescriptor &RedDes = Reduction.second; 6171 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6172 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6173 } 6174 6175 // Ignore induction phis that are only used in either GetElementPtr or ICmp 6176 // instruction to exit loop. Induction variables usually have large types and 6177 // can have big impact when estimating register usage. 6178 // This is for when VF > 1. 6179 for (auto &Induction : *Legal->getInductionVars()) { 6180 auto *PN = Induction.first; 6181 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 6182 6183 // Check that the PHI is only used by the induction increment (UpdateV) or 6184 // by GEPs. Then check that UpdateV is only used by a compare instruction or 6185 // the loop header PHI. 6186 // FIXME: Need precise def-use analysis to determine if this instruction 6187 // variable will be vectorized. 6188 if (std::all_of(PN->user_begin(), PN->user_end(), 6189 [&](const User *U) -> bool { 6190 return U == UpdateV || isa<GetElementPtrInst>(U); 6191 }) && 6192 std::all_of(UpdateV->user_begin(), UpdateV->user_end(), 6193 [&](const User *U) -> bool { 6194 return U == PN || isa<ICmpInst>(U); 6195 })) { 6196 VecValuesToIgnore.insert(PN); 6197 VecValuesToIgnore.insert(UpdateV); 6198 } 6199 } 6200 6201 // Ignore instructions that will not be vectorized. 6202 // This is for when VF > 1. 6203 for (auto bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; 6204 ++bb) { 6205 for (auto &Inst : **bb) { 6206 switch (Inst.getOpcode()) 6207 case Instruction::GetElementPtr: { 6208 // Ignore GEP if its last operand is an induction variable so that it is 6209 // a consecutive load/store and won't be vectorized as scatter/gather 6210 // pattern. 6211 6212 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst); 6213 unsigned NumOperands = Gep->getNumOperands(); 6214 unsigned InductionOperand = getGEPInductionOperand(Gep); 6215 bool GepToIgnore = true; 6216 6217 // Check that all of the gep indices are uniform except for the 6218 // induction operand. 6219 for (unsigned i = 0; i != NumOperands; ++i) { 6220 if (i != InductionOperand && 6221 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 6222 TheLoop)) { 6223 GepToIgnore = false; 6224 break; 6225 } 6226 } 6227 6228 if (GepToIgnore) 6229 VecValuesToIgnore.insert(&Inst); 6230 break; 6231 } 6232 } 6233 } 6234 } 6235 6236 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6237 bool IfPredicateStore) { 6238 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6239 // Holds vector parameters or scalars, in case of uniform vals. 6240 SmallVector<VectorParts, 4> Params; 6241 6242 setDebugLocFromInst(Builder, Instr); 6243 6244 // Find all of the vectorized parameters. 6245 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6246 Value *SrcOp = Instr->getOperand(op); 6247 6248 // If we are accessing the old induction variable, use the new one. 6249 if (SrcOp == OldInduction) { 6250 Params.push_back(getVectorValue(SrcOp)); 6251 continue; 6252 } 6253 6254 // Try using previously calculated values. 6255 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6256 6257 // If the src is an instruction that appeared earlier in the basic block 6258 // then it should already be vectorized. 6259 if (SrcInst && OrigLoop->contains(SrcInst)) { 6260 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6261 // The parameter is a vector value from earlier. 6262 Params.push_back(WidenMap.get(SrcInst)); 6263 } else { 6264 // The parameter is a scalar from outside the loop. Maybe even a constant. 6265 VectorParts Scalars; 6266 Scalars.append(UF, SrcOp); 6267 Params.push_back(Scalars); 6268 } 6269 } 6270 6271 assert(Params.size() == Instr->getNumOperands() && 6272 "Invalid number of operands"); 6273 6274 // Does this instruction return a value ? 6275 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6276 6277 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); 6278 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6279 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6280 6281 VectorParts Cond; 6282 if (IfPredicateStore) { 6283 assert(Instr->getParent()->getSinglePredecessor() && 6284 "Only support single predecessor blocks"); 6285 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6286 Instr->getParent()); 6287 } 6288 6289 // For each vector unroll 'part': 6290 for (unsigned Part = 0; Part < UF; ++Part) { 6291 // For each scalar that we create: 6292 6293 // Start an "if (pred) a[i] = ..." block. 6294 Value *Cmp = nullptr; 6295 if (IfPredicateStore) { 6296 if (Cond[Part]->getType()->isVectorTy()) 6297 Cond[Part] = 6298 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6299 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6300 ConstantInt::get(Cond[Part]->getType(), 1)); 6301 } 6302 6303 Instruction *Cloned = Instr->clone(); 6304 if (!IsVoidRetTy) 6305 Cloned->setName(Instr->getName() + ".cloned"); 6306 // Replace the operands of the cloned instructions with extracted scalars. 6307 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6308 Value *Op = Params[op][Part]; 6309 Cloned->setOperand(op, Op); 6310 } 6311 6312 // Place the cloned scalar in the new loop. 6313 Builder.Insert(Cloned); 6314 6315 // If we just cloned a new assumption, add it the assumption cache. 6316 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6317 if (II->getIntrinsicID() == Intrinsic::assume) 6318 AC->registerAssumption(II); 6319 6320 // If the original scalar returns a value we need to place it in a vector 6321 // so that future users will be able to use it. 6322 if (!IsVoidRetTy) 6323 VecResults[Part] = Cloned; 6324 6325 // End if-block. 6326 if (IfPredicateStore) 6327 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp)); 6328 } 6329 } 6330 6331 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6332 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6333 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6334 6335 return scalarizeInstruction(Instr, IfPredicateStore); 6336 } 6337 6338 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6339 6340 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6341 6342 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, 6343 const SCEV *StepSCEV) { 6344 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 6345 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 6346 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 6347 &*Builder.GetInsertPoint()); 6348 return getStepVector(Val, StartIdx, StepValue); 6349 } 6350 6351 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6352 // When unrolling and the VF is 1, we only need to add a simple scalar. 6353 Type *ITy = Val->getType(); 6354 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6355 Constant *C = ConstantInt::get(ITy, StartIdx); 6356 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6357 } 6358