1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/Metadata.h"
116 #include "llvm/IR/Module.h"
117 #include "llvm/IR/Operator.h"
118 #include "llvm/IR/PatternMatch.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <functional>
147 #include <iterator>
148 #include <limits>
149 #include <map>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 #ifndef NDEBUG
161 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
162 #endif
163 
164 /// @{
165 /// Metadata attribute names
166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
167 const char LLVMLoopVectorizeFollowupVectorized[] =
168     "llvm.loop.vectorize.followup_vectorized";
169 const char LLVMLoopVectorizeFollowupEpilogue[] =
170     "llvm.loop.vectorize.followup_epilogue";
171 /// @}
172 
173 STATISTIC(LoopsVectorized, "Number of loops vectorized");
174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
176 
177 static cl::opt<bool> EnableEpilogueVectorization(
178     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
179     cl::desc("Enable vectorization of epilogue loops."));
180 
181 static cl::opt<unsigned> EpilogueVectorizationForceVF(
182     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
183     cl::desc("When epilogue vectorization is enabled, and a value greater than "
184              "1 is specified, forces the given VF for all applicable epilogue "
185              "loops."));
186 
187 static cl::opt<unsigned> EpilogueVectorizationMinVF(
188     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
189     cl::desc("Only loops with vectorization factor equal to or larger than "
190              "the specified value are considered for epilogue vectorization."));
191 
192 /// Loops with a known constant trip count below this number are vectorized only
193 /// if no scalar iteration overheads are incurred.
194 static cl::opt<unsigned> TinyTripCountVectorThreshold(
195     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
196     cl::desc("Loops with a constant trip count that is smaller than this "
197              "value are vectorized only if no scalar iteration overheads "
198              "are incurred."));
199 
200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
201     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
202     cl::desc("The maximum allowed number of runtime memory checks with a "
203              "vectorize(enable) pragma."));
204 
205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
206 // that predication is preferred, and this lists all options. I.e., the
207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
208 // and predicate the instructions accordingly. If tail-folding fails, there are
209 // different fallback strategies depending on these values:
210 namespace PreferPredicateTy {
211   enum Option {
212     ScalarEpilogue = 0,
213     PredicateElseScalarEpilogue,
214     PredicateOrDontVectorize
215   };
216 } // namespace PreferPredicateTy
217 
218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
219     "prefer-predicate-over-epilogue",
220     cl::init(PreferPredicateTy::ScalarEpilogue),
221     cl::Hidden,
222     cl::desc("Tail-folding and predication preferences over creating a scalar "
223              "epilogue loop."),
224     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
225                          "scalar-epilogue",
226                          "Don't tail-predicate loops, create scalar epilogue"),
227               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
228                          "predicate-else-scalar-epilogue",
229                          "prefer tail-folding, create scalar epilogue if tail "
230                          "folding fails."),
231               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
232                          "predicate-dont-vectorize",
233                          "prefers tail-folding, don't attempt vectorization if "
234                          "tail-folding fails.")));
235 
236 static cl::opt<bool> MaximizeBandwidth(
237     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
238     cl::desc("Maximize bandwidth when selecting vectorization factor which "
239              "will be determined by the smallest type in loop."));
240 
241 static cl::opt<bool> EnableInterleavedMemAccesses(
242     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
243     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
244 
245 /// An interleave-group may need masking if it resides in a block that needs
246 /// predication, or in order to mask away gaps.
247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
248     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
249     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
250 
251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
252     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
253     cl::desc("We don't interleave loops with a estimated constant trip count "
254              "below this number"));
255 
256 static cl::opt<unsigned> ForceTargetNumScalarRegs(
257     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
258     cl::desc("A flag that overrides the target's number of scalar registers."));
259 
260 static cl::opt<unsigned> ForceTargetNumVectorRegs(
261     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
262     cl::desc("A flag that overrides the target's number of vector registers."));
263 
264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
265     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
266     cl::desc("A flag that overrides the target's max interleave factor for "
267              "scalar loops."));
268 
269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
270     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
271     cl::desc("A flag that overrides the target's max interleave factor for "
272              "vectorized loops."));
273 
274 static cl::opt<unsigned> ForceTargetInstructionCost(
275     "force-target-instruction-cost", cl::init(0), cl::Hidden,
276     cl::desc("A flag that overrides the target's expected cost for "
277              "an instruction to a single constant value. Mostly "
278              "useful for getting consistent testing."));
279 
280 static cl::opt<bool> ForceTargetSupportsScalableVectors(
281     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
282     cl::desc(
283         "Pretend that scalable vectors are supported, even if the target does "
284         "not support them. This flag should only be used for testing."));
285 
286 static cl::opt<unsigned> SmallLoopCost(
287     "small-loop-cost", cl::init(20), cl::Hidden,
288     cl::desc(
289         "The cost of a loop that is considered 'small' by the interleaver."));
290 
291 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
292     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
293     cl::desc("Enable the use of the block frequency analysis to access PGO "
294              "heuristics minimizing code growth in cold regions and being more "
295              "aggressive in hot regions."));
296 
297 // Runtime interleave loops for load/store throughput.
298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
299     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
300     cl::desc(
301         "Enable runtime interleaving until load/store ports are saturated"));
302 
303 /// Interleave small loops with scalar reductions.
304 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
305     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
306     cl::desc("Enable interleaving for loops with small iteration counts that "
307              "contain scalar reductions to expose ILP."));
308 
309 /// The number of stores in a loop that are allowed to need predication.
310 static cl::opt<unsigned> NumberOfStoresToPredicate(
311     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
312     cl::desc("Max number of stores to be predicated behind an if."));
313 
314 static cl::opt<bool> EnableIndVarRegisterHeur(
315     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
316     cl::desc("Count the induction variable only once when interleaving"));
317 
318 static cl::opt<bool> EnableCondStoresVectorization(
319     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
320     cl::desc("Enable if predication of stores during vectorization."));
321 
322 static cl::opt<unsigned> MaxNestedScalarReductionIC(
323     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
324     cl::desc("The maximum interleave count to use when interleaving a scalar "
325              "reduction in a nested loop."));
326 
327 static cl::opt<bool>
328     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
329                            cl::Hidden,
330                            cl::desc("Prefer in-loop vector reductions, "
331                                     "overriding the targets preference."));
332 
333 static cl::opt<bool> ForceOrderedReductions(
334     "force-ordered-reductions", cl::init(false), cl::Hidden,
335     cl::desc("Enable the vectorisation of loops with in-order (strict) "
336              "FP reductions"));
337 
338 static cl::opt<bool> PreferPredicatedReductionSelect(
339     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
340     cl::desc(
341         "Prefer predicating a reduction operation over an after loop select."));
342 
343 cl::opt<bool> EnableVPlanNativePath(
344     "enable-vplan-native-path", cl::init(false), cl::Hidden,
345     cl::desc("Enable VPlan-native vectorization path with "
346              "support for outer loop vectorization."));
347 
348 // FIXME: Remove this switch once we have divergence analysis. Currently we
349 // assume divergent non-backedge branches when this switch is true.
350 cl::opt<bool> EnableVPlanPredication(
351     "enable-vplan-predication", cl::init(false), cl::Hidden,
352     cl::desc("Enable VPlan-native vectorization path predicator with "
353              "support for outer loop vectorization."));
354 
355 // This flag enables the stress testing of the VPlan H-CFG construction in the
356 // VPlan-native vectorization path. It must be used in conjuction with
357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
358 // verification of the H-CFGs built.
359 static cl::opt<bool> VPlanBuildStressTest(
360     "vplan-build-stress-test", cl::init(false), cl::Hidden,
361     cl::desc(
362         "Build VPlan for every supported loop nest in the function and bail "
363         "out right after the build (stress test the VPlan H-CFG construction "
364         "in the VPlan-native vectorization path)."));
365 
366 cl::opt<bool> llvm::EnableLoopInterleaving(
367     "interleave-loops", cl::init(true), cl::Hidden,
368     cl::desc("Enable loop interleaving in Loop vectorization passes"));
369 cl::opt<bool> llvm::EnableLoopVectorization(
370     "vectorize-loops", cl::init(true), cl::Hidden,
371     cl::desc("Run the Loop vectorization passes"));
372 
373 cl::opt<bool> PrintVPlansInDotFormat(
374     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
375     cl::desc("Use dot format instead of plain text when dumping VPlans"));
376 
377 /// A helper function that returns true if the given type is irregular. The
378 /// type is irregular if its allocated size doesn't equal the store size of an
379 /// element of the corresponding vector type.
380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
381   // Determine if an array of N elements of type Ty is "bitcast compatible"
382   // with a <N x Ty> vector.
383   // This is only true if there is no padding between the array elements.
384   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
385 }
386 
387 /// A helper function that returns the reciprocal of the block probability of
388 /// predicated blocks. If we return X, we are assuming the predicated block
389 /// will execute once for every X iterations of the loop header.
390 ///
391 /// TODO: We should use actual block probability here, if available. Currently,
392 ///       we always assume predicated blocks have a 50% chance of executing.
393 static unsigned getReciprocalPredBlockProb() { return 2; }
394 
395 /// A helper function that returns an integer or floating-point constant with
396 /// value C.
397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
398   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
399                            : ConstantFP::get(Ty, C);
400 }
401 
402 /// Returns "best known" trip count for the specified loop \p L as defined by
403 /// the following procedure:
404 ///   1) Returns exact trip count if it is known.
405 ///   2) Returns expected trip count according to profile data if any.
406 ///   3) Returns upper bound estimate if it is known.
407 ///   4) Returns None if all of the above failed.
408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
409   // Check if exact trip count is known.
410   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
411     return ExpectedTC;
412 
413   // Check if there is an expected trip count available from profile data.
414   if (LoopVectorizeWithBlockFrequency)
415     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
416       return EstimatedTC;
417 
418   // Check if upper bound estimate is known.
419   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
420     return ExpectedTC;
421 
422   return None;
423 }
424 
425 // Forward declare GeneratedRTChecks.
426 class GeneratedRTChecks;
427 
428 namespace llvm {
429 
430 AnalysisKey ShouldRunExtraVectorPasses::Key;
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop and the start value for the canonical induction, if it is != 0. The
473   /// latter is the case when vectorizing the epilogue loop. In the case of
474   /// epilogue vectorization, this function is overriden to handle the more
475   /// complex control flow around the loops.
476   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
477 
478   /// Widen a single call instruction within the innermost loop.
479   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
480                             VPTransformState &State);
481 
482   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
483   void fixVectorizedLoop(VPTransformState &State);
484 
485   // Return true if any runtime check is added.
486   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
487 
488   /// A type for vectorized values in the new loop. Each value from the
489   /// original loop, when vectorized, is represented by UF vector values in the
490   /// new unrolled loop, where UF is the unroll factor.
491   using VectorParts = SmallVector<Value *, 2>;
492 
493   /// Vectorize a single vector PHINode in a block in the VPlan-native path
494   /// only.
495   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
496                            VPTransformState &State);
497 
498   /// A helper function to scalarize a single Instruction in the innermost loop.
499   /// Generates a sequence of scalar instances for each lane between \p MinLane
500   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
501   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
502   /// Instr's operands.
503   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
504                             const VPIteration &Instance, bool IfPredicateInstr,
505                             VPTransformState &State);
506 
507   /// Construct the vector value of a scalarized value \p V one lane at a time.
508   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
509                                  VPTransformState &State);
510 
511   /// Try to vectorize interleaved access group \p Group with the base address
512   /// given in \p Addr, optionally masking the vector operations if \p
513   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
514   /// values in the vectorized loop.
515   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
516                                 ArrayRef<VPValue *> VPDefs,
517                                 VPTransformState &State, VPValue *Addr,
518                                 ArrayRef<VPValue *> StoredValues,
519                                 VPValue *BlockInMask = nullptr);
520 
521   /// Set the debug location in the builder \p Ptr using the debug location in
522   /// \p V. If \p Ptr is None then it uses the class member's Builder.
523   void setDebugLocFromInst(const Value *V,
524                            Optional<IRBuilderBase *> CustomBuilder = None);
525 
526   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
527   void fixNonInductionPHIs(VPTransformState &State);
528 
529   /// Returns true if the reordering of FP operations is not allowed, but we are
530   /// able to vectorize with strict in-order reductions for the given RdxDesc.
531   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
532 
533   /// Create a broadcast instruction. This method generates a broadcast
534   /// instruction (shuffle) for loop invariant values and for the induction
535   /// value. If this is the induction variable then we extend it to N, N+1, ...
536   /// this is needed because each iteration in the loop corresponds to a SIMD
537   /// element.
538   virtual Value *getBroadcastInstrs(Value *V);
539 
540   /// Add metadata from one instruction to another.
541   ///
542   /// This includes both the original MDs from \p From and additional ones (\see
543   /// addNewMetadata).  Use this for *newly created* instructions in the vector
544   /// loop.
545   void addMetadata(Instruction *To, Instruction *From);
546 
547   /// Similar to the previous function but it adds the metadata to a
548   /// vector of instructions.
549   void addMetadata(ArrayRef<Value *> To, Instruction *From);
550 
551   // Returns the resume value (bc.merge.rdx) for a reduction as
552   // generated by fixReduction.
553   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
554 
555 protected:
556   friend class LoopVectorizationPlanner;
557 
558   /// A small list of PHINodes.
559   using PhiVector = SmallVector<PHINode *, 4>;
560 
561   /// A type for scalarized values in the new loop. Each value from the
562   /// original loop, when scalarized, is represented by UF x VF scalar values
563   /// in the new unrolled loop, where UF is the unroll factor and VF is the
564   /// vectorization factor.
565   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
566 
567   /// Set up the values of the IVs correctly when exiting the vector loop.
568   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
569                     Value *CountRoundDown, Value *EndValue,
570                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader);
571 
572   /// Introduce a conditional branch (on true, condition to be set later) at the
573   /// end of the header=latch connecting it to itself (across the backedge) and
574   /// to the exit block of \p L.
575   void createHeaderBranch(Loop *L);
576 
577   /// Handle all cross-iteration phis in the header.
578   void fixCrossIterationPHIs(VPTransformState &State);
579 
580   /// Create the exit value of first order recurrences in the middle block and
581   /// update their users.
582   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
583                                VPTransformState &State);
584 
585   /// Create code for the loop exit value of the reduction.
586   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
587 
588   /// Clear NSW/NUW flags from reduction instructions if necessary.
589   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
590                                VPTransformState &State);
591 
592   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
593   /// means we need to add the appropriate incoming value from the middle
594   /// block as exiting edges from the scalar epilogue loop (if present) are
595   /// already in place, and we exit the vector loop exclusively to the middle
596   /// block.
597   void fixLCSSAPHIs(VPTransformState &State);
598 
599   /// Iteratively sink the scalarized operands of a predicated instruction into
600   /// the block that was created for it.
601   void sinkScalarOperands(Instruction *PredInst);
602 
603   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
604   /// represented as.
605   void truncateToMinimalBitwidths(VPTransformState &State);
606 
607   /// Returns (and creates if needed) the original loop trip count.
608   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
609 
610   /// Returns (and creates if needed) the trip count of the widened loop.
611   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
612 
613   /// Returns a bitcasted value to the requested vector type.
614   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
615   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
616                                 const DataLayout &DL);
617 
618   /// Emit a bypass check to see if the vector trip count is zero, including if
619   /// it overflows.
620   void emitMinimumIterationCountCheck(BasicBlock *Bypass);
621 
622   /// Emit a bypass check to see if all of the SCEV assumptions we've
623   /// had to make are correct. Returns the block containing the checks or
624   /// nullptr if no checks have been added.
625   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
626 
627   /// Emit bypass checks to check any memory assumptions we may have made.
628   /// Returns the block containing the checks or nullptr if no checks have been
629   /// added.
630   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
631 
632   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
633   /// vector loop preheader, middle block and scalar preheader. Also
634   /// allocate a loop object for the new vector loop and return it.
635   Loop *createVectorLoopSkeleton(StringRef Prefix);
636 
637   /// Create new phi nodes for the induction variables to resume iteration count
638   /// in the scalar epilogue, from where the vectorized loop left off.
639   /// In cases where the loop skeleton is more complicated (eg. epilogue
640   /// vectorization) and the resume values can come from an additional bypass
641   /// block, the \p AdditionalBypass pair provides information about the bypass
642   /// block and the end value on the edge from bypass to this loop.
643   void createInductionResumeValues(
644       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
645 
646   /// Complete the loop skeleton by adding debug MDs, creating appropriate
647   /// conditional branches in the middle block, preparing the builder and
648   /// running the verifier. Return the preheader of the completed vector loop.
649   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
650 
651   /// Add additional metadata to \p To that was not present on \p Orig.
652   ///
653   /// Currently this is used to add the noalias annotations based on the
654   /// inserted memchecks.  Use this for instructions that are *cloned* into the
655   /// vector loop.
656   void addNewMetadata(Instruction *To, const Instruction *Orig);
657 
658   /// Collect poison-generating recipes that may generate a poison value that is
659   /// used after vectorization, even when their operands are not poison. Those
660   /// recipes meet the following conditions:
661   ///  * Contribute to the address computation of a recipe generating a widen
662   ///    memory load/store (VPWidenMemoryInstructionRecipe or
663   ///    VPInterleaveRecipe).
664   ///  * Such a widen memory load/store has at least one underlying Instruction
665   ///    that is in a basic block that needs predication and after vectorization
666   ///    the generated instruction won't be predicated.
667   void collectPoisonGeneratingRecipes(VPTransformState &State);
668 
669   /// Allow subclasses to override and print debug traces before/after vplan
670   /// execution, when trace information is requested.
671   virtual void printDebugTracesAtStart(){};
672   virtual void printDebugTracesAtEnd(){};
673 
674   /// The original loop.
675   Loop *OrigLoop;
676 
677   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
678   /// dynamic knowledge to simplify SCEV expressions and converts them to a
679   /// more usable form.
680   PredicatedScalarEvolution &PSE;
681 
682   /// Loop Info.
683   LoopInfo *LI;
684 
685   /// Dominator Tree.
686   DominatorTree *DT;
687 
688   /// Alias Analysis.
689   AAResults *AA;
690 
691   /// Target Library Info.
692   const TargetLibraryInfo *TLI;
693 
694   /// Target Transform Info.
695   const TargetTransformInfo *TTI;
696 
697   /// Assumption Cache.
698   AssumptionCache *AC;
699 
700   /// Interface to emit optimization remarks.
701   OptimizationRemarkEmitter *ORE;
702 
703   /// LoopVersioning.  It's only set up (non-null) if memchecks were
704   /// used.
705   ///
706   /// This is currently only used to add no-alias metadata based on the
707   /// memchecks.  The actually versioning is performed manually.
708   std::unique_ptr<LoopVersioning> LVer;
709 
710   /// The vectorization SIMD factor to use. Each vector will have this many
711   /// vector elements.
712   ElementCount VF;
713 
714   /// The vectorization unroll factor to use. Each scalar is vectorized to this
715   /// many different vector instructions.
716   unsigned UF;
717 
718   /// The builder that we use
719   IRBuilder<> Builder;
720 
721   // --- Vectorization state ---
722 
723   /// The vector-loop preheader.
724   BasicBlock *LoopVectorPreHeader;
725 
726   /// The scalar-loop preheader.
727   BasicBlock *LoopScalarPreHeader;
728 
729   /// Middle Block between the vector and the scalar.
730   BasicBlock *LoopMiddleBlock;
731 
732   /// The unique ExitBlock of the scalar loop if one exists.  Note that
733   /// there can be multiple exiting edges reaching this block.
734   BasicBlock *LoopExitBlock;
735 
736   /// The scalar loop body.
737   BasicBlock *LoopScalarBody;
738 
739   /// A list of all bypass blocks. The first block is the entry of the loop.
740   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
741 
742   /// Store instructions that were predicated.
743   SmallVector<Instruction *, 4> PredicatedInstructions;
744 
745   /// Trip count of the original loop.
746   Value *TripCount = nullptr;
747 
748   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
749   Value *VectorTripCount = nullptr;
750 
751   /// The legality analysis.
752   LoopVectorizationLegality *Legal;
753 
754   /// The profitablity analysis.
755   LoopVectorizationCostModel *Cost;
756 
757   // Record whether runtime checks are added.
758   bool AddedSafetyChecks = false;
759 
760   // Holds the end values for each induction variable. We save the end values
761   // so we can later fix-up the external users of the induction variables.
762   DenseMap<PHINode *, Value *> IVEndValues;
763 
764   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
765   // fixed up at the end of vector code generation.
766   SmallVector<PHINode *, 8> OrigPHIsToFix;
767 
768   /// BFI and PSI are used to check for profile guided size optimizations.
769   BlockFrequencyInfo *BFI;
770   ProfileSummaryInfo *PSI;
771 
772   // Whether this loop should be optimized for size based on profile guided size
773   // optimizatios.
774   bool OptForSizeBasedOnProfile;
775 
776   /// Structure to hold information about generated runtime checks, responsible
777   /// for cleaning the checks, if vectorization turns out unprofitable.
778   GeneratedRTChecks &RTChecks;
779 
780   // Holds the resume values for reductions in the loops, used to set the
781   // correct start value of reduction PHIs when vectorizing the epilogue.
782   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
783       ReductionResumeValues;
784 };
785 
786 class InnerLoopUnroller : public InnerLoopVectorizer {
787 public:
788   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
789                     LoopInfo *LI, DominatorTree *DT,
790                     const TargetLibraryInfo *TLI,
791                     const TargetTransformInfo *TTI, AssumptionCache *AC,
792                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
793                     LoopVectorizationLegality *LVL,
794                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
795                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
796       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
797                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
798                             BFI, PSI, Check) {}
799 
800 private:
801   Value *getBroadcastInstrs(Value *V) override;
802 };
803 
804 /// Encapsulate information regarding vectorization of a loop and its epilogue.
805 /// This information is meant to be updated and used across two stages of
806 /// epilogue vectorization.
807 struct EpilogueLoopVectorizationInfo {
808   ElementCount MainLoopVF = ElementCount::getFixed(0);
809   unsigned MainLoopUF = 0;
810   ElementCount EpilogueVF = ElementCount::getFixed(0);
811   unsigned EpilogueUF = 0;
812   BasicBlock *MainLoopIterationCountCheck = nullptr;
813   BasicBlock *EpilogueIterationCountCheck = nullptr;
814   BasicBlock *SCEVSafetyCheck = nullptr;
815   BasicBlock *MemSafetyCheck = nullptr;
816   Value *TripCount = nullptr;
817   Value *VectorTripCount = nullptr;
818 
819   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
820                                 ElementCount EVF, unsigned EUF)
821       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
822     assert(EUF == 1 &&
823            "A high UF for the epilogue loop is likely not beneficial.");
824   }
825 };
826 
827 /// An extension of the inner loop vectorizer that creates a skeleton for a
828 /// vectorized loop that has its epilogue (residual) also vectorized.
829 /// The idea is to run the vplan on a given loop twice, firstly to setup the
830 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
831 /// from the first step and vectorize the epilogue.  This is achieved by
832 /// deriving two concrete strategy classes from this base class and invoking
833 /// them in succession from the loop vectorizer planner.
834 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
835 public:
836   InnerLoopAndEpilogueVectorizer(
837       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
838       DominatorTree *DT, const TargetLibraryInfo *TLI,
839       const TargetTransformInfo *TTI, AssumptionCache *AC,
840       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
841       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
842       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
843       GeneratedRTChecks &Checks)
844       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
845                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
846                             Checks),
847         EPI(EPI) {}
848 
849   // Override this function to handle the more complex control flow around the
850   // three loops.
851   std::pair<BasicBlock *, Value *>
852   createVectorizedLoopSkeleton() final override {
853     return createEpilogueVectorizedLoopSkeleton();
854   }
855 
856   /// The interface for creating a vectorized skeleton using one of two
857   /// different strategies, each corresponding to one execution of the vplan
858   /// as described above.
859   virtual std::pair<BasicBlock *, Value *>
860   createEpilogueVectorizedLoopSkeleton() = 0;
861 
862   /// Holds and updates state information required to vectorize the main loop
863   /// and its epilogue in two separate passes. This setup helps us avoid
864   /// regenerating and recomputing runtime safety checks. It also helps us to
865   /// shorten the iteration-count-check path length for the cases where the
866   /// iteration count of the loop is so small that the main vector loop is
867   /// completely skipped.
868   EpilogueLoopVectorizationInfo &EPI;
869 };
870 
871 /// A specialized derived class of inner loop vectorizer that performs
872 /// vectorization of *main* loops in the process of vectorizing loops and their
873 /// epilogues.
874 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
875 public:
876   EpilogueVectorizerMainLoop(
877       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
878       DominatorTree *DT, const TargetLibraryInfo *TLI,
879       const TargetTransformInfo *TTI, AssumptionCache *AC,
880       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
881       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
882       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
883       GeneratedRTChecks &Check)
884       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
885                                        EPI, LVL, CM, BFI, PSI, Check) {}
886   /// Implements the interface for creating a vectorized skeleton using the
887   /// *main loop* strategy (ie the first pass of vplan execution).
888   std::pair<BasicBlock *, Value *>
889   createEpilogueVectorizedLoopSkeleton() final override;
890 
891 protected:
892   /// Emits an iteration count bypass check once for the main loop (when \p
893   /// ForEpilogue is false) and once for the epilogue loop (when \p
894   /// ForEpilogue is true).
895   BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass,
896                                              bool ForEpilogue);
897   void printDebugTracesAtStart() override;
898   void printDebugTracesAtEnd() override;
899 };
900 
901 // A specialized derived class of inner loop vectorizer that performs
902 // vectorization of *epilogue* loops in the process of vectorizing loops and
903 // their epilogues.
904 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
905 public:
906   EpilogueVectorizerEpilogueLoop(
907       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
908       DominatorTree *DT, const TargetLibraryInfo *TLI,
909       const TargetTransformInfo *TTI, AssumptionCache *AC,
910       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
911       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
912       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
913       GeneratedRTChecks &Checks)
914       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
915                                        EPI, LVL, CM, BFI, PSI, Checks) {}
916   /// Implements the interface for creating a vectorized skeleton using the
917   /// *epilogue loop* strategy (ie the second pass of vplan execution).
918   std::pair<BasicBlock *, Value *>
919   createEpilogueVectorizedLoopSkeleton() final override;
920 
921 protected:
922   /// Emits an iteration count bypass check after the main vector loop has
923   /// finished to see if there are any iterations left to execute by either
924   /// the vector epilogue or the scalar epilogue.
925   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
926                                                       BasicBlock *Bypass,
927                                                       BasicBlock *Insert);
928   void printDebugTracesAtStart() override;
929   void printDebugTracesAtEnd() override;
930 };
931 } // end namespace llvm
932 
933 /// Look for a meaningful debug location on the instruction or it's
934 /// operands.
935 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
936   if (!I)
937     return I;
938 
939   DebugLoc Empty;
940   if (I->getDebugLoc() != Empty)
941     return I;
942 
943   for (Use &Op : I->operands()) {
944     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
945       if (OpInst->getDebugLoc() != Empty)
946         return OpInst;
947   }
948 
949   return I;
950 }
951 
952 void InnerLoopVectorizer::setDebugLocFromInst(
953     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
954   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
955   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
956     const DILocation *DIL = Inst->getDebugLoc();
957 
958     // When a FSDiscriminator is enabled, we don't need to add the multiply
959     // factors to the discriminators.
960     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
961         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
962       // FIXME: For scalable vectors, assume vscale=1.
963       auto NewDIL =
964           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
965       if (NewDIL)
966         B->SetCurrentDebugLocation(NewDIL.getValue());
967       else
968         LLVM_DEBUG(dbgs()
969                    << "Failed to create new discriminator: "
970                    << DIL->getFilename() << " Line: " << DIL->getLine());
971     } else
972       B->SetCurrentDebugLocation(DIL);
973   } else
974     B->SetCurrentDebugLocation(DebugLoc());
975 }
976 
977 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
978 /// is passed, the message relates to that particular instruction.
979 #ifndef NDEBUG
980 static void debugVectorizationMessage(const StringRef Prefix,
981                                       const StringRef DebugMsg,
982                                       Instruction *I) {
983   dbgs() << "LV: " << Prefix << DebugMsg;
984   if (I != nullptr)
985     dbgs() << " " << *I;
986   else
987     dbgs() << '.';
988   dbgs() << '\n';
989 }
990 #endif
991 
992 /// Create an analysis remark that explains why vectorization failed
993 ///
994 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
995 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
996 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
997 /// the location of the remark.  \return the remark object that can be
998 /// streamed to.
999 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1000     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1001   Value *CodeRegion = TheLoop->getHeader();
1002   DebugLoc DL = TheLoop->getStartLoc();
1003 
1004   if (I) {
1005     CodeRegion = I->getParent();
1006     // If there is no debug location attached to the instruction, revert back to
1007     // using the loop's.
1008     if (I->getDebugLoc())
1009       DL = I->getDebugLoc();
1010   }
1011 
1012   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1013 }
1014 
1015 namespace llvm {
1016 
1017 /// Return a value for Step multiplied by VF.
1018 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1019                        int64_t Step) {
1020   assert(Ty->isIntegerTy() && "Expected an integer step");
1021   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1022   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1023 }
1024 
1025 /// Return the runtime value for VF.
1026 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1027   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1028   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1029 }
1030 
1031 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1032                                   ElementCount VF) {
1033   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1034   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1035   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1036   return B.CreateUIToFP(RuntimeVF, FTy);
1037 }
1038 
1039 void reportVectorizationFailure(const StringRef DebugMsg,
1040                                 const StringRef OREMsg, const StringRef ORETag,
1041                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1042                                 Instruction *I) {
1043   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1044   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1045   ORE->emit(
1046       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1047       << "loop not vectorized: " << OREMsg);
1048 }
1049 
1050 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1051                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1052                              Instruction *I) {
1053   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1054   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1055   ORE->emit(
1056       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1057       << Msg);
1058 }
1059 
1060 } // end namespace llvm
1061 
1062 #ifndef NDEBUG
1063 /// \return string containing a file name and a line # for the given loop.
1064 static std::string getDebugLocString(const Loop *L) {
1065   std::string Result;
1066   if (L) {
1067     raw_string_ostream OS(Result);
1068     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1069       LoopDbgLoc.print(OS);
1070     else
1071       // Just print the module name.
1072       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1073     OS.flush();
1074   }
1075   return Result;
1076 }
1077 #endif
1078 
1079 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1080                                          const Instruction *Orig) {
1081   // If the loop was versioned with memchecks, add the corresponding no-alias
1082   // metadata.
1083   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1084     LVer->annotateInstWithNoAlias(To, Orig);
1085 }
1086 
1087 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1088     VPTransformState &State) {
1089 
1090   // Collect recipes in the backward slice of `Root` that may generate a poison
1091   // value that is used after vectorization.
1092   SmallPtrSet<VPRecipeBase *, 16> Visited;
1093   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1094     SmallVector<VPRecipeBase *, 16> Worklist;
1095     Worklist.push_back(Root);
1096 
1097     // Traverse the backward slice of Root through its use-def chain.
1098     while (!Worklist.empty()) {
1099       VPRecipeBase *CurRec = Worklist.back();
1100       Worklist.pop_back();
1101 
1102       if (!Visited.insert(CurRec).second)
1103         continue;
1104 
1105       // Prune search if we find another recipe generating a widen memory
1106       // instruction. Widen memory instructions involved in address computation
1107       // will lead to gather/scatter instructions, which don't need to be
1108       // handled.
1109       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1110           isa<VPInterleaveRecipe>(CurRec) ||
1111           isa<VPScalarIVStepsRecipe>(CurRec) ||
1112           isa<VPCanonicalIVPHIRecipe>(CurRec))
1113         continue;
1114 
1115       // This recipe contributes to the address computation of a widen
1116       // load/store. Collect recipe if its underlying instruction has
1117       // poison-generating flags.
1118       Instruction *Instr = CurRec->getUnderlyingInstr();
1119       if (Instr && Instr->hasPoisonGeneratingFlags())
1120         State.MayGeneratePoisonRecipes.insert(CurRec);
1121 
1122       // Add new definitions to the worklist.
1123       for (VPValue *operand : CurRec->operands())
1124         if (VPDef *OpDef = operand->getDef())
1125           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1126     }
1127   });
1128 
1129   // Traverse all the recipes in the VPlan and collect the poison-generating
1130   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1131   // VPInterleaveRecipe.
1132   auto Iter = depth_first(
1133       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1134   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1135     for (VPRecipeBase &Recipe : *VPBB) {
1136       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1137         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1138         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1139         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1140             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1141           collectPoisonGeneratingInstrsInBackwardSlice(
1142               cast<VPRecipeBase>(AddrDef));
1143       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1144         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1145         if (AddrDef) {
1146           // Check if any member of the interleave group needs predication.
1147           const InterleaveGroup<Instruction> *InterGroup =
1148               InterleaveRec->getInterleaveGroup();
1149           bool NeedPredication = false;
1150           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1151                I < NumMembers; ++I) {
1152             Instruction *Member = InterGroup->getMember(I);
1153             if (Member)
1154               NeedPredication |=
1155                   Legal->blockNeedsPredication(Member->getParent());
1156           }
1157 
1158           if (NeedPredication)
1159             collectPoisonGeneratingInstrsInBackwardSlice(
1160                 cast<VPRecipeBase>(AddrDef));
1161         }
1162       }
1163     }
1164   }
1165 }
1166 
1167 void InnerLoopVectorizer::addMetadata(Instruction *To,
1168                                       Instruction *From) {
1169   propagateMetadata(To, From);
1170   addNewMetadata(To, From);
1171 }
1172 
1173 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1174                                       Instruction *From) {
1175   for (Value *V : To) {
1176     if (Instruction *I = dyn_cast<Instruction>(V))
1177       addMetadata(I, From);
1178   }
1179 }
1180 
1181 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1182     const RecurrenceDescriptor &RdxDesc) {
1183   auto It = ReductionResumeValues.find(&RdxDesc);
1184   assert(It != ReductionResumeValues.end() &&
1185          "Expected to find a resume value for the reduction.");
1186   return It->second;
1187 }
1188 
1189 namespace llvm {
1190 
1191 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1192 // lowered.
1193 enum ScalarEpilogueLowering {
1194 
1195   // The default: allowing scalar epilogues.
1196   CM_ScalarEpilogueAllowed,
1197 
1198   // Vectorization with OptForSize: don't allow epilogues.
1199   CM_ScalarEpilogueNotAllowedOptSize,
1200 
1201   // A special case of vectorisation with OptForSize: loops with a very small
1202   // trip count are considered for vectorization under OptForSize, thereby
1203   // making sure the cost of their loop body is dominant, free of runtime
1204   // guards and scalar iteration overheads.
1205   CM_ScalarEpilogueNotAllowedLowTripLoop,
1206 
1207   // Loop hint predicate indicating an epilogue is undesired.
1208   CM_ScalarEpilogueNotNeededUsePredicate,
1209 
1210   // Directive indicating we must either tail fold or not vectorize
1211   CM_ScalarEpilogueNotAllowedUsePredicate
1212 };
1213 
1214 /// ElementCountComparator creates a total ordering for ElementCount
1215 /// for the purposes of using it in a set structure.
1216 struct ElementCountComparator {
1217   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1218     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1219            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1220   }
1221 };
1222 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1223 
1224 /// LoopVectorizationCostModel - estimates the expected speedups due to
1225 /// vectorization.
1226 /// In many cases vectorization is not profitable. This can happen because of
1227 /// a number of reasons. In this class we mainly attempt to predict the
1228 /// expected speedup/slowdowns due to the supported instruction set. We use the
1229 /// TargetTransformInfo to query the different backends for the cost of
1230 /// different operations.
1231 class LoopVectorizationCostModel {
1232 public:
1233   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1234                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1235                              LoopVectorizationLegality *Legal,
1236                              const TargetTransformInfo &TTI,
1237                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1238                              AssumptionCache *AC,
1239                              OptimizationRemarkEmitter *ORE, const Function *F,
1240                              const LoopVectorizeHints *Hints,
1241                              InterleavedAccessInfo &IAI)
1242       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1243         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1244         Hints(Hints), InterleaveInfo(IAI) {}
1245 
1246   /// \return An upper bound for the vectorization factors (both fixed and
1247   /// scalable). If the factors are 0, vectorization and interleaving should be
1248   /// avoided up front.
1249   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1250 
1251   /// \return True if runtime checks are required for vectorization, and false
1252   /// otherwise.
1253   bool runtimeChecksRequired();
1254 
1255   /// \return The most profitable vectorization factor and the cost of that VF.
1256   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1257   /// then this vectorization factor will be selected if vectorization is
1258   /// possible.
1259   VectorizationFactor
1260   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1261 
1262   VectorizationFactor
1263   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1264                                     const LoopVectorizationPlanner &LVP);
1265 
1266   /// Setup cost-based decisions for user vectorization factor.
1267   /// \return true if the UserVF is a feasible VF to be chosen.
1268   bool selectUserVectorizationFactor(ElementCount UserVF) {
1269     collectUniformsAndScalars(UserVF);
1270     collectInstsToScalarize(UserVF);
1271     return expectedCost(UserVF).first.isValid();
1272   }
1273 
1274   /// \return The size (in bits) of the smallest and widest types in the code
1275   /// that needs to be vectorized. We ignore values that remain scalar such as
1276   /// 64 bit loop indices.
1277   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1278 
1279   /// \return The desired interleave count.
1280   /// If interleave count has been specified by metadata it will be returned.
1281   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1282   /// are the selected vectorization factor and the cost of the selected VF.
1283   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1284 
1285   /// Memory access instruction may be vectorized in more than one way.
1286   /// Form of instruction after vectorization depends on cost.
1287   /// This function takes cost-based decisions for Load/Store instructions
1288   /// and collects them in a map. This decisions map is used for building
1289   /// the lists of loop-uniform and loop-scalar instructions.
1290   /// The calculated cost is saved with widening decision in order to
1291   /// avoid redundant calculations.
1292   void setCostBasedWideningDecision(ElementCount VF);
1293 
1294   /// A struct that represents some properties of the register usage
1295   /// of a loop.
1296   struct RegisterUsage {
1297     /// Holds the number of loop invariant values that are used in the loop.
1298     /// The key is ClassID of target-provided register class.
1299     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1300     /// Holds the maximum number of concurrent live intervals in the loop.
1301     /// The key is ClassID of target-provided register class.
1302     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1303   };
1304 
1305   /// \return Returns information about the register usages of the loop for the
1306   /// given vectorization factors.
1307   SmallVector<RegisterUsage, 8>
1308   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1309 
1310   /// Collect values we want to ignore in the cost model.
1311   void collectValuesToIgnore();
1312 
1313   /// Collect all element types in the loop for which widening is needed.
1314   void collectElementTypesForWidening();
1315 
1316   /// Split reductions into those that happen in the loop, and those that happen
1317   /// outside. In loop reductions are collected into InLoopReductionChains.
1318   void collectInLoopReductions();
1319 
1320   /// Returns true if we should use strict in-order reductions for the given
1321   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1322   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1323   /// of FP operations.
1324   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1325     return !Hints->allowReordering() && RdxDesc.isOrdered();
1326   }
1327 
1328   /// \returns The smallest bitwidth each instruction can be represented with.
1329   /// The vector equivalents of these instructions should be truncated to this
1330   /// type.
1331   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1332     return MinBWs;
1333   }
1334 
1335   /// \returns True if it is more profitable to scalarize instruction \p I for
1336   /// vectorization factor \p VF.
1337   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1338     assert(VF.isVector() &&
1339            "Profitable to scalarize relevant only for VF > 1.");
1340 
1341     // Cost model is not run in the VPlan-native path - return conservative
1342     // result until this changes.
1343     if (EnableVPlanNativePath)
1344       return false;
1345 
1346     auto Scalars = InstsToScalarize.find(VF);
1347     assert(Scalars != InstsToScalarize.end() &&
1348            "VF not yet analyzed for scalarization profitability");
1349     return Scalars->second.find(I) != Scalars->second.end();
1350   }
1351 
1352   /// Returns true if \p I is known to be uniform after vectorization.
1353   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1354     if (VF.isScalar())
1355       return true;
1356 
1357     // Cost model is not run in the VPlan-native path - return conservative
1358     // result until this changes.
1359     if (EnableVPlanNativePath)
1360       return false;
1361 
1362     auto UniformsPerVF = Uniforms.find(VF);
1363     assert(UniformsPerVF != Uniforms.end() &&
1364            "VF not yet analyzed for uniformity");
1365     return UniformsPerVF->second.count(I);
1366   }
1367 
1368   /// Returns true if \p I is known to be scalar after vectorization.
1369   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1370     if (VF.isScalar())
1371       return true;
1372 
1373     // Cost model is not run in the VPlan-native path - return conservative
1374     // result until this changes.
1375     if (EnableVPlanNativePath)
1376       return false;
1377 
1378     auto ScalarsPerVF = Scalars.find(VF);
1379     assert(ScalarsPerVF != Scalars.end() &&
1380            "Scalar values are not calculated for VF");
1381     return ScalarsPerVF->second.count(I);
1382   }
1383 
1384   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1385   /// for vectorization factor \p VF.
1386   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1387     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1388            !isProfitableToScalarize(I, VF) &&
1389            !isScalarAfterVectorization(I, VF);
1390   }
1391 
1392   /// Decision that was taken during cost calculation for memory instruction.
1393   enum InstWidening {
1394     CM_Unknown,
1395     CM_Widen,         // For consecutive accesses with stride +1.
1396     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1397     CM_Interleave,
1398     CM_GatherScatter,
1399     CM_Scalarize
1400   };
1401 
1402   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1403   /// instruction \p I and vector width \p VF.
1404   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1405                            InstructionCost Cost) {
1406     assert(VF.isVector() && "Expected VF >=2");
1407     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1408   }
1409 
1410   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1411   /// interleaving group \p Grp and vector width \p VF.
1412   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1413                            ElementCount VF, InstWidening W,
1414                            InstructionCost Cost) {
1415     assert(VF.isVector() && "Expected VF >=2");
1416     /// Broadcast this decicion to all instructions inside the group.
1417     /// But the cost will be assigned to one instruction only.
1418     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1419       if (auto *I = Grp->getMember(i)) {
1420         if (Grp->getInsertPos() == I)
1421           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1422         else
1423           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1424       }
1425     }
1426   }
1427 
1428   /// Return the cost model decision for the given instruction \p I and vector
1429   /// width \p VF. Return CM_Unknown if this instruction did not pass
1430   /// through the cost modeling.
1431   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1432     assert(VF.isVector() && "Expected VF to be a vector VF");
1433     // Cost model is not run in the VPlan-native path - return conservative
1434     // result until this changes.
1435     if (EnableVPlanNativePath)
1436       return CM_GatherScatter;
1437 
1438     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1439     auto Itr = WideningDecisions.find(InstOnVF);
1440     if (Itr == WideningDecisions.end())
1441       return CM_Unknown;
1442     return Itr->second.first;
1443   }
1444 
1445   /// Return the vectorization cost for the given instruction \p I and vector
1446   /// width \p VF.
1447   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1448     assert(VF.isVector() && "Expected VF >=2");
1449     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1450     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1451            "The cost is not calculated");
1452     return WideningDecisions[InstOnVF].second;
1453   }
1454 
1455   /// Return True if instruction \p I is an optimizable truncate whose operand
1456   /// is an induction variable. Such a truncate will be removed by adding a new
1457   /// induction variable with the destination type.
1458   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1459     // If the instruction is not a truncate, return false.
1460     auto *Trunc = dyn_cast<TruncInst>(I);
1461     if (!Trunc)
1462       return false;
1463 
1464     // Get the source and destination types of the truncate.
1465     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1466     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1467 
1468     // If the truncate is free for the given types, return false. Replacing a
1469     // free truncate with an induction variable would add an induction variable
1470     // update instruction to each iteration of the loop. We exclude from this
1471     // check the primary induction variable since it will need an update
1472     // instruction regardless.
1473     Value *Op = Trunc->getOperand(0);
1474     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1475       return false;
1476 
1477     // If the truncated value is not an induction variable, return false.
1478     return Legal->isInductionPhi(Op);
1479   }
1480 
1481   /// Collects the instructions to scalarize for each predicated instruction in
1482   /// the loop.
1483   void collectInstsToScalarize(ElementCount VF);
1484 
1485   /// Collect Uniform and Scalar values for the given \p VF.
1486   /// The sets depend on CM decision for Load/Store instructions
1487   /// that may be vectorized as interleave, gather-scatter or scalarized.
1488   void collectUniformsAndScalars(ElementCount VF) {
1489     // Do the analysis once.
1490     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1491       return;
1492     setCostBasedWideningDecision(VF);
1493     collectLoopUniforms(VF);
1494     collectLoopScalars(VF);
1495   }
1496 
1497   /// Returns true if the target machine supports masked store operation
1498   /// for the given \p DataType and kind of access to \p Ptr.
1499   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1500     return Legal->isConsecutivePtr(DataType, Ptr) &&
1501            TTI.isLegalMaskedStore(DataType, Alignment);
1502   }
1503 
1504   /// Returns true if the target machine supports masked load operation
1505   /// for the given \p DataType and kind of access to \p Ptr.
1506   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1507     return Legal->isConsecutivePtr(DataType, Ptr) &&
1508            TTI.isLegalMaskedLoad(DataType, Alignment);
1509   }
1510 
1511   /// Returns true if the target machine can represent \p V as a masked gather
1512   /// or scatter operation.
1513   bool isLegalGatherOrScatter(Value *V,
1514                               ElementCount VF = ElementCount::getFixed(1)) {
1515     bool LI = isa<LoadInst>(V);
1516     bool SI = isa<StoreInst>(V);
1517     if (!LI && !SI)
1518       return false;
1519     auto *Ty = getLoadStoreType(V);
1520     Align Align = getLoadStoreAlignment(V);
1521     if (VF.isVector())
1522       Ty = VectorType::get(Ty, VF);
1523     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1524            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1525   }
1526 
1527   /// Returns true if the target machine supports all of the reduction
1528   /// variables found for the given VF.
1529   bool canVectorizeReductions(ElementCount VF) const {
1530     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1531       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1532       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1533     }));
1534   }
1535 
1536   /// Returns true if \p I is an instruction that will be scalarized with
1537   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1538   /// instructions include conditional stores and instructions that may divide
1539   /// by zero.
1540   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1541 
1542   // Returns true if \p I is an instruction that will be predicated either
1543   // through scalar predication or masked load/store or masked gather/scatter.
1544   // \p VF is the vectorization factor that will be used to vectorize \p I.
1545   // Superset of instructions that return true for isScalarWithPredication.
1546   bool isPredicatedInst(Instruction *I, ElementCount VF,
1547                         bool IsKnownUniform = false) {
1548     // When we know the load is uniform and the original scalar loop was not
1549     // predicated we don't need to mark it as a predicated instruction. Any
1550     // vectorised blocks created when tail-folding are something artificial we
1551     // have introduced and we know there is always at least one active lane.
1552     // That's why we call Legal->blockNeedsPredication here because it doesn't
1553     // query tail-folding.
1554     if (IsKnownUniform && isa<LoadInst>(I) &&
1555         !Legal->blockNeedsPredication(I->getParent()))
1556       return false;
1557     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1558       return false;
1559     // Loads and stores that need some form of masked operation are predicated
1560     // instructions.
1561     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1562       return Legal->isMaskRequired(I);
1563     return isScalarWithPredication(I, VF);
1564   }
1565 
1566   /// Returns true if \p I is a memory instruction with consecutive memory
1567   /// access that can be widened.
1568   bool
1569   memoryInstructionCanBeWidened(Instruction *I,
1570                                 ElementCount VF = ElementCount::getFixed(1));
1571 
1572   /// Returns true if \p I is a memory instruction in an interleaved-group
1573   /// of memory accesses that can be vectorized with wide vector loads/stores
1574   /// and shuffles.
1575   bool
1576   interleavedAccessCanBeWidened(Instruction *I,
1577                                 ElementCount VF = ElementCount::getFixed(1));
1578 
1579   /// Check if \p Instr belongs to any interleaved access group.
1580   bool isAccessInterleaved(Instruction *Instr) {
1581     return InterleaveInfo.isInterleaved(Instr);
1582   }
1583 
1584   /// Get the interleaved access group that \p Instr belongs to.
1585   const InterleaveGroup<Instruction> *
1586   getInterleavedAccessGroup(Instruction *Instr) {
1587     return InterleaveInfo.getInterleaveGroup(Instr);
1588   }
1589 
1590   /// Returns true if we're required to use a scalar epilogue for at least
1591   /// the final iteration of the original loop.
1592   bool requiresScalarEpilogue(ElementCount VF) const {
1593     if (!isScalarEpilogueAllowed())
1594       return false;
1595     // If we might exit from anywhere but the latch, must run the exiting
1596     // iteration in scalar form.
1597     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1598       return true;
1599     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1600   }
1601 
1602   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1603   /// loop hint annotation.
1604   bool isScalarEpilogueAllowed() const {
1605     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1606   }
1607 
1608   /// Returns true if all loop blocks should be masked to fold tail loop.
1609   bool foldTailByMasking() const { return FoldTailByMasking; }
1610 
1611   /// Returns true if the instructions in this block requires predication
1612   /// for any reason, e.g. because tail folding now requires a predicate
1613   /// or because the block in the original loop was predicated.
1614   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1615     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1616   }
1617 
1618   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1619   /// nodes to the chain of instructions representing the reductions. Uses a
1620   /// MapVector to ensure deterministic iteration order.
1621   using ReductionChainMap =
1622       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1623 
1624   /// Return the chain of instructions representing an inloop reduction.
1625   const ReductionChainMap &getInLoopReductionChains() const {
1626     return InLoopReductionChains;
1627   }
1628 
1629   /// Returns true if the Phi is part of an inloop reduction.
1630   bool isInLoopReduction(PHINode *Phi) const {
1631     return InLoopReductionChains.count(Phi);
1632   }
1633 
1634   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1635   /// with factor VF.  Return the cost of the instruction, including
1636   /// scalarization overhead if it's needed.
1637   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1638 
1639   /// Estimate cost of a call instruction CI if it were vectorized with factor
1640   /// VF. Return the cost of the instruction, including scalarization overhead
1641   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1642   /// scalarized -
1643   /// i.e. either vector version isn't available, or is too expensive.
1644   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1645                                     bool &NeedToScalarize) const;
1646 
1647   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1648   /// that of B.
1649   bool isMoreProfitable(const VectorizationFactor &A,
1650                         const VectorizationFactor &B) const;
1651 
1652   /// Invalidates decisions already taken by the cost model.
1653   void invalidateCostModelingDecisions() {
1654     WideningDecisions.clear();
1655     Uniforms.clear();
1656     Scalars.clear();
1657   }
1658 
1659 private:
1660   unsigned NumPredStores = 0;
1661 
1662   /// Convenience function that returns the value of vscale_range iff
1663   /// vscale_range.min == vscale_range.max or otherwise returns the value
1664   /// returned by the corresponding TLI method.
1665   Optional<unsigned> getVScaleForTuning() const;
1666 
1667   /// \return An upper bound for the vectorization factors for both
1668   /// fixed and scalable vectorization, where the minimum-known number of
1669   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1670   /// disabled or unsupported, then the scalable part will be equal to
1671   /// ElementCount::getScalable(0).
1672   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1673                                            ElementCount UserVF,
1674                                            bool FoldTailByMasking);
1675 
1676   /// \return the maximized element count based on the targets vector
1677   /// registers and the loop trip-count, but limited to a maximum safe VF.
1678   /// This is a helper function of computeFeasibleMaxVF.
1679   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1680   /// issue that occurred on one of the buildbots which cannot be reproduced
1681   /// without having access to the properietary compiler (see comments on
1682   /// D98509). The issue is currently under investigation and this workaround
1683   /// will be removed as soon as possible.
1684   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1685                                        unsigned SmallestType,
1686                                        unsigned WidestType,
1687                                        const ElementCount &MaxSafeVF,
1688                                        bool FoldTailByMasking);
1689 
1690   /// \return the maximum legal scalable VF, based on the safe max number
1691   /// of elements.
1692   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1693 
1694   /// The vectorization cost is a combination of the cost itself and a boolean
1695   /// indicating whether any of the contributing operations will actually
1696   /// operate on vector values after type legalization in the backend. If this
1697   /// latter value is false, then all operations will be scalarized (i.e. no
1698   /// vectorization has actually taken place).
1699   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1700 
1701   /// Returns the expected execution cost. The unit of the cost does
1702   /// not matter because we use the 'cost' units to compare different
1703   /// vector widths. The cost that is returned is *not* normalized by
1704   /// the factor width. If \p Invalid is not nullptr, this function
1705   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1706   /// each instruction that has an Invalid cost for the given VF.
1707   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1708   VectorizationCostTy
1709   expectedCost(ElementCount VF,
1710                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1711 
1712   /// Returns the execution time cost of an instruction for a given vector
1713   /// width. Vector width of one means scalar.
1714   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1715 
1716   /// The cost-computation logic from getInstructionCost which provides
1717   /// the vector type as an output parameter.
1718   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1719                                      Type *&VectorTy);
1720 
1721   /// Return the cost of instructions in an inloop reduction pattern, if I is
1722   /// part of that pattern.
1723   Optional<InstructionCost>
1724   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1725                           TTI::TargetCostKind CostKind);
1726 
1727   /// Calculate vectorization cost of memory instruction \p I.
1728   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1729 
1730   /// The cost computation for scalarized memory instruction.
1731   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1732 
1733   /// The cost computation for interleaving group of memory instructions.
1734   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1735 
1736   /// The cost computation for Gather/Scatter instruction.
1737   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1738 
1739   /// The cost computation for widening instruction \p I with consecutive
1740   /// memory access.
1741   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1742 
1743   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1744   /// Load: scalar load + broadcast.
1745   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1746   /// element)
1747   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1748 
1749   /// Estimate the overhead of scalarizing an instruction. This is a
1750   /// convenience wrapper for the type-based getScalarizationOverhead API.
1751   InstructionCost getScalarizationOverhead(Instruction *I,
1752                                            ElementCount VF) const;
1753 
1754   /// Returns whether the instruction is a load or store and will be a emitted
1755   /// as a vector operation.
1756   bool isConsecutiveLoadOrStore(Instruction *I);
1757 
1758   /// Returns true if an artificially high cost for emulated masked memrefs
1759   /// should be used.
1760   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1761 
1762   /// Map of scalar integer values to the smallest bitwidth they can be legally
1763   /// represented as. The vector equivalents of these values should be truncated
1764   /// to this type.
1765   MapVector<Instruction *, uint64_t> MinBWs;
1766 
1767   /// A type representing the costs for instructions if they were to be
1768   /// scalarized rather than vectorized. The entries are Instruction-Cost
1769   /// pairs.
1770   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1771 
1772   /// A set containing all BasicBlocks that are known to present after
1773   /// vectorization as a predicated block.
1774   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1775 
1776   /// Records whether it is allowed to have the original scalar loop execute at
1777   /// least once. This may be needed as a fallback loop in case runtime
1778   /// aliasing/dependence checks fail, or to handle the tail/remainder
1779   /// iterations when the trip count is unknown or doesn't divide by the VF,
1780   /// or as a peel-loop to handle gaps in interleave-groups.
1781   /// Under optsize and when the trip count is very small we don't allow any
1782   /// iterations to execute in the scalar loop.
1783   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1784 
1785   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1786   bool FoldTailByMasking = false;
1787 
1788   /// A map holding scalar costs for different vectorization factors. The
1789   /// presence of a cost for an instruction in the mapping indicates that the
1790   /// instruction will be scalarized when vectorizing with the associated
1791   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1792   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1793 
1794   /// Holds the instructions known to be uniform after vectorization.
1795   /// The data is collected per VF.
1796   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1797 
1798   /// Holds the instructions known to be scalar after vectorization.
1799   /// The data is collected per VF.
1800   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1801 
1802   /// Holds the instructions (address computations) that are forced to be
1803   /// scalarized.
1804   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1805 
1806   /// PHINodes of the reductions that should be expanded in-loop along with
1807   /// their associated chains of reduction operations, in program order from top
1808   /// (PHI) to bottom
1809   ReductionChainMap InLoopReductionChains;
1810 
1811   /// A Map of inloop reduction operations and their immediate chain operand.
1812   /// FIXME: This can be removed once reductions can be costed correctly in
1813   /// vplan. This was added to allow quick lookup to the inloop operations,
1814   /// without having to loop through InLoopReductionChains.
1815   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1816 
1817   /// Returns the expected difference in cost from scalarizing the expression
1818   /// feeding a predicated instruction \p PredInst. The instructions to
1819   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1820   /// non-negative return value implies the expression will be scalarized.
1821   /// Currently, only single-use chains are considered for scalarization.
1822   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1823                               ElementCount VF);
1824 
1825   /// Collect the instructions that are uniform after vectorization. An
1826   /// instruction is uniform if we represent it with a single scalar value in
1827   /// the vectorized loop corresponding to each vector iteration. Examples of
1828   /// uniform instructions include pointer operands of consecutive or
1829   /// interleaved memory accesses. Note that although uniformity implies an
1830   /// instruction will be scalar, the reverse is not true. In general, a
1831   /// scalarized instruction will be represented by VF scalar values in the
1832   /// vectorized loop, each corresponding to an iteration of the original
1833   /// scalar loop.
1834   void collectLoopUniforms(ElementCount VF);
1835 
1836   /// Collect the instructions that are scalar after vectorization. An
1837   /// instruction is scalar if it is known to be uniform or will be scalarized
1838   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1839   /// to the list if they are used by a load/store instruction that is marked as
1840   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1841   /// VF values in the vectorized loop, each corresponding to an iteration of
1842   /// the original scalar loop.
1843   void collectLoopScalars(ElementCount VF);
1844 
1845   /// Keeps cost model vectorization decision and cost for instructions.
1846   /// Right now it is used for memory instructions only.
1847   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1848                                 std::pair<InstWidening, InstructionCost>>;
1849 
1850   DecisionList WideningDecisions;
1851 
1852   /// Returns true if \p V is expected to be vectorized and it needs to be
1853   /// extracted.
1854   bool needsExtract(Value *V, ElementCount VF) const {
1855     Instruction *I = dyn_cast<Instruction>(V);
1856     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1857         TheLoop->isLoopInvariant(I))
1858       return false;
1859 
1860     // Assume we can vectorize V (and hence we need extraction) if the
1861     // scalars are not computed yet. This can happen, because it is called
1862     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1863     // the scalars are collected. That should be a safe assumption in most
1864     // cases, because we check if the operands have vectorizable types
1865     // beforehand in LoopVectorizationLegality.
1866     return Scalars.find(VF) == Scalars.end() ||
1867            !isScalarAfterVectorization(I, VF);
1868   };
1869 
1870   /// Returns a range containing only operands needing to be extracted.
1871   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1872                                                    ElementCount VF) const {
1873     return SmallVector<Value *, 4>(make_filter_range(
1874         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1875   }
1876 
1877   /// Determines if we have the infrastructure to vectorize loop \p L and its
1878   /// epilogue, assuming the main loop is vectorized by \p VF.
1879   bool isCandidateForEpilogueVectorization(const Loop &L,
1880                                            const ElementCount VF) const;
1881 
1882   /// Returns true if epilogue vectorization is considered profitable, and
1883   /// false otherwise.
1884   /// \p VF is the vectorization factor chosen for the original loop.
1885   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1886 
1887 public:
1888   /// The loop that we evaluate.
1889   Loop *TheLoop;
1890 
1891   /// Predicated scalar evolution analysis.
1892   PredicatedScalarEvolution &PSE;
1893 
1894   /// Loop Info analysis.
1895   LoopInfo *LI;
1896 
1897   /// Vectorization legality.
1898   LoopVectorizationLegality *Legal;
1899 
1900   /// Vector target information.
1901   const TargetTransformInfo &TTI;
1902 
1903   /// Target Library Info.
1904   const TargetLibraryInfo *TLI;
1905 
1906   /// Demanded bits analysis.
1907   DemandedBits *DB;
1908 
1909   /// Assumption cache.
1910   AssumptionCache *AC;
1911 
1912   /// Interface to emit optimization remarks.
1913   OptimizationRemarkEmitter *ORE;
1914 
1915   const Function *TheFunction;
1916 
1917   /// Loop Vectorize Hint.
1918   const LoopVectorizeHints *Hints;
1919 
1920   /// The interleave access information contains groups of interleaved accesses
1921   /// with the same stride and close to each other.
1922   InterleavedAccessInfo &InterleaveInfo;
1923 
1924   /// Values to ignore in the cost model.
1925   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1926 
1927   /// Values to ignore in the cost model when VF > 1.
1928   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1929 
1930   /// All element types found in the loop.
1931   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1932 
1933   /// Profitable vector factors.
1934   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1935 };
1936 } // end namespace llvm
1937 
1938 /// Helper struct to manage generating runtime checks for vectorization.
1939 ///
1940 /// The runtime checks are created up-front in temporary blocks to allow better
1941 /// estimating the cost and un-linked from the existing IR. After deciding to
1942 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1943 /// temporary blocks are completely removed.
1944 class GeneratedRTChecks {
1945   /// Basic block which contains the generated SCEV checks, if any.
1946   BasicBlock *SCEVCheckBlock = nullptr;
1947 
1948   /// The value representing the result of the generated SCEV checks. If it is
1949   /// nullptr, either no SCEV checks have been generated or they have been used.
1950   Value *SCEVCheckCond = nullptr;
1951 
1952   /// Basic block which contains the generated memory runtime checks, if any.
1953   BasicBlock *MemCheckBlock = nullptr;
1954 
1955   /// The value representing the result of the generated memory runtime checks.
1956   /// If it is nullptr, either no memory runtime checks have been generated or
1957   /// they have been used.
1958   Value *MemRuntimeCheckCond = nullptr;
1959 
1960   DominatorTree *DT;
1961   LoopInfo *LI;
1962 
1963   SCEVExpander SCEVExp;
1964   SCEVExpander MemCheckExp;
1965 
1966 public:
1967   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1968                     const DataLayout &DL)
1969       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1970         MemCheckExp(SE, DL, "scev.check") {}
1971 
1972   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1973   /// accurately estimate the cost of the runtime checks. The blocks are
1974   /// un-linked from the IR and is added back during vector code generation. If
1975   /// there is no vector code generation, the check blocks are removed
1976   /// completely.
1977   void Create(Loop *L, const LoopAccessInfo &LAI,
1978               const SCEVPredicate &Pred) {
1979 
1980     BasicBlock *LoopHeader = L->getHeader();
1981     BasicBlock *Preheader = L->getLoopPreheader();
1982 
1983     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1984     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1985     // may be used by SCEVExpander. The blocks will be un-linked from their
1986     // predecessors and removed from LI & DT at the end of the function.
1987     if (!Pred.isAlwaysTrue()) {
1988       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1989                                   nullptr, "vector.scevcheck");
1990 
1991       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1992           &Pred, SCEVCheckBlock->getTerminator());
1993     }
1994 
1995     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1996     if (RtPtrChecking.Need) {
1997       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1998       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1999                                  "vector.memcheck");
2000 
2001       MemRuntimeCheckCond =
2002           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2003                            RtPtrChecking.getChecks(), MemCheckExp);
2004       assert(MemRuntimeCheckCond &&
2005              "no RT checks generated although RtPtrChecking "
2006              "claimed checks are required");
2007     }
2008 
2009     if (!MemCheckBlock && !SCEVCheckBlock)
2010       return;
2011 
2012     // Unhook the temporary block with the checks, update various places
2013     // accordingly.
2014     if (SCEVCheckBlock)
2015       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2016     if (MemCheckBlock)
2017       MemCheckBlock->replaceAllUsesWith(Preheader);
2018 
2019     if (SCEVCheckBlock) {
2020       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2021       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2022       Preheader->getTerminator()->eraseFromParent();
2023     }
2024     if (MemCheckBlock) {
2025       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2026       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2027       Preheader->getTerminator()->eraseFromParent();
2028     }
2029 
2030     DT->changeImmediateDominator(LoopHeader, Preheader);
2031     if (MemCheckBlock) {
2032       DT->eraseNode(MemCheckBlock);
2033       LI->removeBlock(MemCheckBlock);
2034     }
2035     if (SCEVCheckBlock) {
2036       DT->eraseNode(SCEVCheckBlock);
2037       LI->removeBlock(SCEVCheckBlock);
2038     }
2039   }
2040 
2041   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2042   /// unused.
2043   ~GeneratedRTChecks() {
2044     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2045     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2046     if (!SCEVCheckCond)
2047       SCEVCleaner.markResultUsed();
2048 
2049     if (!MemRuntimeCheckCond)
2050       MemCheckCleaner.markResultUsed();
2051 
2052     if (MemRuntimeCheckCond) {
2053       auto &SE = *MemCheckExp.getSE();
2054       // Memory runtime check generation creates compares that use expanded
2055       // values. Remove them before running the SCEVExpanderCleaners.
2056       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2057         if (MemCheckExp.isInsertedInstruction(&I))
2058           continue;
2059         SE.forgetValue(&I);
2060         I.eraseFromParent();
2061       }
2062     }
2063     MemCheckCleaner.cleanup();
2064     SCEVCleaner.cleanup();
2065 
2066     if (SCEVCheckCond)
2067       SCEVCheckBlock->eraseFromParent();
2068     if (MemRuntimeCheckCond)
2069       MemCheckBlock->eraseFromParent();
2070   }
2071 
2072   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2073   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2074   /// depending on the generated condition.
2075   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2076                              BasicBlock *LoopVectorPreHeader,
2077                              BasicBlock *LoopExitBlock) {
2078     if (!SCEVCheckCond)
2079       return nullptr;
2080     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2081       if (C->isZero())
2082         return nullptr;
2083 
2084     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2085 
2086     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2087     // Create new preheader for vector loop.
2088     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2089       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2090 
2091     SCEVCheckBlock->getTerminator()->eraseFromParent();
2092     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2093     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2094                                                 SCEVCheckBlock);
2095 
2096     DT->addNewBlock(SCEVCheckBlock, Pred);
2097     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2098 
2099     ReplaceInstWithInst(
2100         SCEVCheckBlock->getTerminator(),
2101         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2102     // Mark the check as used, to prevent it from being removed during cleanup.
2103     SCEVCheckCond = nullptr;
2104     return SCEVCheckBlock;
2105   }
2106 
2107   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2108   /// the branches to branch to the vector preheader or \p Bypass, depending on
2109   /// the generated condition.
2110   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2111                                    BasicBlock *LoopVectorPreHeader) {
2112     // Check if we generated code that checks in runtime if arrays overlap.
2113     if (!MemRuntimeCheckCond)
2114       return nullptr;
2115 
2116     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2117     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2118                                                 MemCheckBlock);
2119 
2120     DT->addNewBlock(MemCheckBlock, Pred);
2121     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2122     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2123 
2124     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2125       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2126 
2127     ReplaceInstWithInst(
2128         MemCheckBlock->getTerminator(),
2129         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2130     MemCheckBlock->getTerminator()->setDebugLoc(
2131         Pred->getTerminator()->getDebugLoc());
2132 
2133     // Mark the check as used, to prevent it from being removed during cleanup.
2134     MemRuntimeCheckCond = nullptr;
2135     return MemCheckBlock;
2136   }
2137 };
2138 
2139 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2140 // vectorization. The loop needs to be annotated with #pragma omp simd
2141 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2142 // vector length information is not provided, vectorization is not considered
2143 // explicit. Interleave hints are not allowed either. These limitations will be
2144 // relaxed in the future.
2145 // Please, note that we are currently forced to abuse the pragma 'clang
2146 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2147 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2148 // provides *explicit vectorization hints* (LV can bypass legal checks and
2149 // assume that vectorization is legal). However, both hints are implemented
2150 // using the same metadata (llvm.loop.vectorize, processed by
2151 // LoopVectorizeHints). This will be fixed in the future when the native IR
2152 // representation for pragma 'omp simd' is introduced.
2153 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2154                                    OptimizationRemarkEmitter *ORE) {
2155   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2156   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2157 
2158   // Only outer loops with an explicit vectorization hint are supported.
2159   // Unannotated outer loops are ignored.
2160   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2161     return false;
2162 
2163   Function *Fn = OuterLp->getHeader()->getParent();
2164   if (!Hints.allowVectorization(Fn, OuterLp,
2165                                 true /*VectorizeOnlyWhenForced*/)) {
2166     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2167     return false;
2168   }
2169 
2170   if (Hints.getInterleave() > 1) {
2171     // TODO: Interleave support is future work.
2172     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2173                          "outer loops.\n");
2174     Hints.emitRemarkWithHints();
2175     return false;
2176   }
2177 
2178   return true;
2179 }
2180 
2181 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2182                                   OptimizationRemarkEmitter *ORE,
2183                                   SmallVectorImpl<Loop *> &V) {
2184   // Collect inner loops and outer loops without irreducible control flow. For
2185   // now, only collect outer loops that have explicit vectorization hints. If we
2186   // are stress testing the VPlan H-CFG construction, we collect the outermost
2187   // loop of every loop nest.
2188   if (L.isInnermost() || VPlanBuildStressTest ||
2189       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2190     LoopBlocksRPO RPOT(&L);
2191     RPOT.perform(LI);
2192     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2193       V.push_back(&L);
2194       // TODO: Collect inner loops inside marked outer loops in case
2195       // vectorization fails for the outer loop. Do not invoke
2196       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2197       // already known to be reducible. We can use an inherited attribute for
2198       // that.
2199       return;
2200     }
2201   }
2202   for (Loop *InnerL : L)
2203     collectSupportedLoops(*InnerL, LI, ORE, V);
2204 }
2205 
2206 namespace {
2207 
2208 /// The LoopVectorize Pass.
2209 struct LoopVectorize : public FunctionPass {
2210   /// Pass identification, replacement for typeid
2211   static char ID;
2212 
2213   LoopVectorizePass Impl;
2214 
2215   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2216                          bool VectorizeOnlyWhenForced = false)
2217       : FunctionPass(ID),
2218         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2219     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2220   }
2221 
2222   bool runOnFunction(Function &F) override {
2223     if (skipFunction(F))
2224       return false;
2225 
2226     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2227     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2228     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2229     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2230     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2231     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2232     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2233     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2234     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2235     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2236     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2237     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2238     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2239 
2240     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2241         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2242 
2243     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2244                         GetLAA, *ORE, PSI).MadeAnyChange;
2245   }
2246 
2247   void getAnalysisUsage(AnalysisUsage &AU) const override {
2248     AU.addRequired<AssumptionCacheTracker>();
2249     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2250     AU.addRequired<DominatorTreeWrapperPass>();
2251     AU.addRequired<LoopInfoWrapperPass>();
2252     AU.addRequired<ScalarEvolutionWrapperPass>();
2253     AU.addRequired<TargetTransformInfoWrapperPass>();
2254     AU.addRequired<AAResultsWrapperPass>();
2255     AU.addRequired<LoopAccessLegacyAnalysis>();
2256     AU.addRequired<DemandedBitsWrapperPass>();
2257     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2258     AU.addRequired<InjectTLIMappingsLegacy>();
2259 
2260     // We currently do not preserve loopinfo/dominator analyses with outer loop
2261     // vectorization. Until this is addressed, mark these analyses as preserved
2262     // only for non-VPlan-native path.
2263     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2264     if (!EnableVPlanNativePath) {
2265       AU.addPreserved<LoopInfoWrapperPass>();
2266       AU.addPreserved<DominatorTreeWrapperPass>();
2267     }
2268 
2269     AU.addPreserved<BasicAAWrapperPass>();
2270     AU.addPreserved<GlobalsAAWrapperPass>();
2271     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2272   }
2273 };
2274 
2275 } // end anonymous namespace
2276 
2277 //===----------------------------------------------------------------------===//
2278 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2279 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2280 //===----------------------------------------------------------------------===//
2281 
2282 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2283   // We need to place the broadcast of invariant variables outside the loop,
2284   // but only if it's proven safe to do so. Else, broadcast will be inside
2285   // vector loop body.
2286   Instruction *Instr = dyn_cast<Instruction>(V);
2287   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2288                      (!Instr ||
2289                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2290   // Place the code for broadcasting invariant variables in the new preheader.
2291   IRBuilder<>::InsertPointGuard Guard(Builder);
2292   if (SafeToHoist)
2293     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2294 
2295   // Broadcast the scalar into all locations in the vector.
2296   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2297 
2298   return Shuf;
2299 }
2300 
2301 /// This function adds
2302 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2303 /// to each vector element of Val. The sequence starts at StartIndex.
2304 /// \p Opcode is relevant for FP induction variable.
2305 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2306                             Instruction::BinaryOps BinOp, ElementCount VF,
2307                             IRBuilderBase &Builder) {
2308   assert(VF.isVector() && "only vector VFs are supported");
2309 
2310   // Create and check the types.
2311   auto *ValVTy = cast<VectorType>(Val->getType());
2312   ElementCount VLen = ValVTy->getElementCount();
2313 
2314   Type *STy = Val->getType()->getScalarType();
2315   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2316          "Induction Step must be an integer or FP");
2317   assert(Step->getType() == STy && "Step has wrong type");
2318 
2319   SmallVector<Constant *, 8> Indices;
2320 
2321   // Create a vector of consecutive numbers from zero to VF.
2322   VectorType *InitVecValVTy = ValVTy;
2323   if (STy->isFloatingPointTy()) {
2324     Type *InitVecValSTy =
2325         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2326     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2327   }
2328   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2329 
2330   // Splat the StartIdx
2331   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2332 
2333   if (STy->isIntegerTy()) {
2334     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2335     Step = Builder.CreateVectorSplat(VLen, Step);
2336     assert(Step->getType() == Val->getType() && "Invalid step vec");
2337     // FIXME: The newly created binary instructions should contain nsw/nuw
2338     // flags, which can be found from the original scalar operations.
2339     Step = Builder.CreateMul(InitVec, Step);
2340     return Builder.CreateAdd(Val, Step, "induction");
2341   }
2342 
2343   // Floating point induction.
2344   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2345          "Binary Opcode should be specified for FP induction");
2346   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2347   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2348 
2349   Step = Builder.CreateVectorSplat(VLen, Step);
2350   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2351   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2352 }
2353 
2354 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2355 /// variable on which to base the steps, \p Step is the size of the step.
2356 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2357                              const InductionDescriptor &ID, VPValue *Def,
2358                              VPTransformState &State) {
2359   IRBuilderBase &Builder = State.Builder;
2360   // We shouldn't have to build scalar steps if we aren't vectorizing.
2361   assert(State.VF.isVector() && "VF should be greater than one");
2362   // Get the value type and ensure it and the step have the same integer type.
2363   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2364   assert(ScalarIVTy == Step->getType() &&
2365          "Val and Step should have the same type");
2366 
2367   // We build scalar steps for both integer and floating-point induction
2368   // variables. Here, we determine the kind of arithmetic we will perform.
2369   Instruction::BinaryOps AddOp;
2370   Instruction::BinaryOps MulOp;
2371   if (ScalarIVTy->isIntegerTy()) {
2372     AddOp = Instruction::Add;
2373     MulOp = Instruction::Mul;
2374   } else {
2375     AddOp = ID.getInductionOpcode();
2376     MulOp = Instruction::FMul;
2377   }
2378 
2379   // Determine the number of scalars we need to generate for each unroll
2380   // iteration.
2381   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2382   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2383   // Compute the scalar steps and save the results in State.
2384   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2385                                      ScalarIVTy->getScalarSizeInBits());
2386   Type *VecIVTy = nullptr;
2387   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2388   if (!FirstLaneOnly && State.VF.isScalable()) {
2389     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2390     UnitStepVec =
2391         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2392     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2393     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2394   }
2395 
2396   for (unsigned Part = 0; Part < State.UF; ++Part) {
2397     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2398 
2399     if (!FirstLaneOnly && State.VF.isScalable()) {
2400       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2401       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2402       if (ScalarIVTy->isFloatingPointTy())
2403         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2404       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2405       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2406       State.set(Def, Add, Part);
2407       // It's useful to record the lane values too for the known minimum number
2408       // of elements so we do those below. This improves the code quality when
2409       // trying to extract the first element, for example.
2410     }
2411 
2412     if (ScalarIVTy->isFloatingPointTy())
2413       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2414 
2415     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2416       Value *StartIdx = Builder.CreateBinOp(
2417           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2418       // The step returned by `createStepForVF` is a runtime-evaluated value
2419       // when VF is scalable. Otherwise, it should be folded into a Constant.
2420       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2421              "Expected StartIdx to be folded to a constant when VF is not "
2422              "scalable");
2423       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2424       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2425       State.set(Def, Add, VPIteration(Part, Lane));
2426     }
2427   }
2428 }
2429 
2430 // Generate code for the induction step. Note that induction steps are
2431 // required to be loop-invariant
2432 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2433                               Instruction *InsertBefore,
2434                               Loop *OrigLoop = nullptr) {
2435   const DataLayout &DL = SE.getDataLayout();
2436   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2437          "Induction step should be loop invariant");
2438   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2439     return E->getValue();
2440 
2441   SCEVExpander Exp(SE, DL, "induction");
2442   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2443 }
2444 
2445 /// Compute the transformed value of Index at offset StartValue using step
2446 /// StepValue.
2447 /// For integer induction, returns StartValue + Index * StepValue.
2448 /// For pointer induction, returns StartValue[Index * StepValue].
2449 /// FIXME: The newly created binary instructions should contain nsw/nuw
2450 /// flags, which can be found from the original scalar operations.
2451 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2452                                    Value *StartValue, Value *Step,
2453                                    const InductionDescriptor &ID) {
2454   assert(Index->getType()->getScalarType() == Step->getType() &&
2455          "Index scalar type does not match StepValue type");
2456 
2457   // Note: the IR at this point is broken. We cannot use SE to create any new
2458   // SCEV and then expand it, hoping that SCEV's simplification will give us
2459   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2460   // lead to various SCEV crashes. So all we can do is to use builder and rely
2461   // on InstCombine for future simplifications. Here we handle some trivial
2462   // cases only.
2463   auto CreateAdd = [&B](Value *X, Value *Y) {
2464     assert(X->getType() == Y->getType() && "Types don't match!");
2465     if (auto *CX = dyn_cast<ConstantInt>(X))
2466       if (CX->isZero())
2467         return Y;
2468     if (auto *CY = dyn_cast<ConstantInt>(Y))
2469       if (CY->isZero())
2470         return X;
2471     return B.CreateAdd(X, Y);
2472   };
2473 
2474   // We allow X to be a vector type, in which case Y will potentially be
2475   // splatted into a vector with the same element count.
2476   auto CreateMul = [&B](Value *X, Value *Y) {
2477     assert(X->getType()->getScalarType() == Y->getType() &&
2478            "Types don't match!");
2479     if (auto *CX = dyn_cast<ConstantInt>(X))
2480       if (CX->isOne())
2481         return Y;
2482     if (auto *CY = dyn_cast<ConstantInt>(Y))
2483       if (CY->isOne())
2484         return X;
2485     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2486     if (XVTy && !isa<VectorType>(Y->getType()))
2487       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2488     return B.CreateMul(X, Y);
2489   };
2490 
2491   switch (ID.getKind()) {
2492   case InductionDescriptor::IK_IntInduction: {
2493     assert(!isa<VectorType>(Index->getType()) &&
2494            "Vector indices not supported for integer inductions yet");
2495     assert(Index->getType() == StartValue->getType() &&
2496            "Index type does not match StartValue type");
2497     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2498       return B.CreateSub(StartValue, Index);
2499     auto *Offset = CreateMul(Index, Step);
2500     return CreateAdd(StartValue, Offset);
2501   }
2502   case InductionDescriptor::IK_PtrInduction: {
2503     assert(isa<Constant>(Step) &&
2504            "Expected constant step for pointer induction");
2505     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2506   }
2507   case InductionDescriptor::IK_FpInduction: {
2508     assert(!isa<VectorType>(Index->getType()) &&
2509            "Vector indices not supported for FP inductions yet");
2510     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2511     auto InductionBinOp = ID.getInductionBinOp();
2512     assert(InductionBinOp &&
2513            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2514             InductionBinOp->getOpcode() == Instruction::FSub) &&
2515            "Original bin op should be defined for FP induction");
2516 
2517     Value *MulExp = B.CreateFMul(Step, Index);
2518     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2519                          "induction");
2520   }
2521   case InductionDescriptor::IK_NoInduction:
2522     return nullptr;
2523   }
2524   llvm_unreachable("invalid enum");
2525 }
2526 
2527 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2528                                                     const VPIteration &Instance,
2529                                                     VPTransformState &State) {
2530   Value *ScalarInst = State.get(Def, Instance);
2531   Value *VectorValue = State.get(Def, Instance.Part);
2532   VectorValue = Builder.CreateInsertElement(
2533       VectorValue, ScalarInst,
2534       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2535   State.set(Def, VectorValue, Instance.Part);
2536 }
2537 
2538 // Return whether we allow using masked interleave-groups (for dealing with
2539 // strided loads/stores that reside in predicated blocks, or for dealing
2540 // with gaps).
2541 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2542   // If an override option has been passed in for interleaved accesses, use it.
2543   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2544     return EnableMaskedInterleavedMemAccesses;
2545 
2546   return TTI.enableMaskedInterleavedAccessVectorization();
2547 }
2548 
2549 // Try to vectorize the interleave group that \p Instr belongs to.
2550 //
2551 // E.g. Translate following interleaved load group (factor = 3):
2552 //   for (i = 0; i < N; i+=3) {
2553 //     R = Pic[i];             // Member of index 0
2554 //     G = Pic[i+1];           // Member of index 1
2555 //     B = Pic[i+2];           // Member of index 2
2556 //     ... // do something to R, G, B
2557 //   }
2558 // To:
2559 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2560 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2561 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2562 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2563 //
2564 // Or translate following interleaved store group (factor = 3):
2565 //   for (i = 0; i < N; i+=3) {
2566 //     ... do something to R, G, B
2567 //     Pic[i]   = R;           // Member of index 0
2568 //     Pic[i+1] = G;           // Member of index 1
2569 //     Pic[i+2] = B;           // Member of index 2
2570 //   }
2571 // To:
2572 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2573 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2574 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2575 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2576 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2577 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2578     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2579     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2580     VPValue *BlockInMask) {
2581   Instruction *Instr = Group->getInsertPos();
2582   const DataLayout &DL = Instr->getModule()->getDataLayout();
2583 
2584   // Prepare for the vector type of the interleaved load/store.
2585   Type *ScalarTy = getLoadStoreType(Instr);
2586   unsigned InterleaveFactor = Group->getFactor();
2587   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2588   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2589 
2590   // Prepare for the new pointers.
2591   SmallVector<Value *, 2> AddrParts;
2592   unsigned Index = Group->getIndex(Instr);
2593 
2594   // TODO: extend the masked interleaved-group support to reversed access.
2595   assert((!BlockInMask || !Group->isReverse()) &&
2596          "Reversed masked interleave-group not supported.");
2597 
2598   // If the group is reverse, adjust the index to refer to the last vector lane
2599   // instead of the first. We adjust the index from the first vector lane,
2600   // rather than directly getting the pointer for lane VF - 1, because the
2601   // pointer operand of the interleaved access is supposed to be uniform. For
2602   // uniform instructions, we're only required to generate a value for the
2603   // first vector lane in each unroll iteration.
2604   if (Group->isReverse())
2605     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2606 
2607   for (unsigned Part = 0; Part < UF; Part++) {
2608     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2609     setDebugLocFromInst(AddrPart);
2610 
2611     // Notice current instruction could be any index. Need to adjust the address
2612     // to the member of index 0.
2613     //
2614     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2615     //       b = A[i];       // Member of index 0
2616     // Current pointer is pointed to A[i+1], adjust it to A[i].
2617     //
2618     // E.g.  A[i+1] = a;     // Member of index 1
2619     //       A[i]   = b;     // Member of index 0
2620     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2621     // Current pointer is pointed to A[i+2], adjust it to A[i].
2622 
2623     bool InBounds = false;
2624     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2625       InBounds = gep->isInBounds();
2626     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2627     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2628 
2629     // Cast to the vector pointer type.
2630     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2631     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2632     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2633   }
2634 
2635   setDebugLocFromInst(Instr);
2636   Value *PoisonVec = PoisonValue::get(VecTy);
2637 
2638   Value *MaskForGaps = nullptr;
2639   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2640     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2641     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2642   }
2643 
2644   // Vectorize the interleaved load group.
2645   if (isa<LoadInst>(Instr)) {
2646     // For each unroll part, create a wide load for the group.
2647     SmallVector<Value *, 2> NewLoads;
2648     for (unsigned Part = 0; Part < UF; Part++) {
2649       Instruction *NewLoad;
2650       if (BlockInMask || MaskForGaps) {
2651         assert(useMaskedInterleavedAccesses(*TTI) &&
2652                "masked interleaved groups are not allowed.");
2653         Value *GroupMask = MaskForGaps;
2654         if (BlockInMask) {
2655           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2656           Value *ShuffledMask = Builder.CreateShuffleVector(
2657               BlockInMaskPart,
2658               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2659               "interleaved.mask");
2660           GroupMask = MaskForGaps
2661                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2662                                                 MaskForGaps)
2663                           : ShuffledMask;
2664         }
2665         NewLoad =
2666             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2667                                      GroupMask, PoisonVec, "wide.masked.vec");
2668       }
2669       else
2670         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2671                                             Group->getAlign(), "wide.vec");
2672       Group->addMetadata(NewLoad);
2673       NewLoads.push_back(NewLoad);
2674     }
2675 
2676     // For each member in the group, shuffle out the appropriate data from the
2677     // wide loads.
2678     unsigned J = 0;
2679     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2680       Instruction *Member = Group->getMember(I);
2681 
2682       // Skip the gaps in the group.
2683       if (!Member)
2684         continue;
2685 
2686       auto StrideMask =
2687           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2688       for (unsigned Part = 0; Part < UF; Part++) {
2689         Value *StridedVec = Builder.CreateShuffleVector(
2690             NewLoads[Part], StrideMask, "strided.vec");
2691 
2692         // If this member has different type, cast the result type.
2693         if (Member->getType() != ScalarTy) {
2694           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2695           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2696           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2697         }
2698 
2699         if (Group->isReverse())
2700           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2701 
2702         State.set(VPDefs[J], StridedVec, Part);
2703       }
2704       ++J;
2705     }
2706     return;
2707   }
2708 
2709   // The sub vector type for current instruction.
2710   auto *SubVT = VectorType::get(ScalarTy, VF);
2711 
2712   // Vectorize the interleaved store group.
2713   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2714   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2715          "masked interleaved groups are not allowed.");
2716   assert((!MaskForGaps || !VF.isScalable()) &&
2717          "masking gaps for scalable vectors is not yet supported.");
2718   for (unsigned Part = 0; Part < UF; Part++) {
2719     // Collect the stored vector from each member.
2720     SmallVector<Value *, 4> StoredVecs;
2721     for (unsigned i = 0; i < InterleaveFactor; i++) {
2722       assert((Group->getMember(i) || MaskForGaps) &&
2723              "Fail to get a member from an interleaved store group");
2724       Instruction *Member = Group->getMember(i);
2725 
2726       // Skip the gaps in the group.
2727       if (!Member) {
2728         Value *Undef = PoisonValue::get(SubVT);
2729         StoredVecs.push_back(Undef);
2730         continue;
2731       }
2732 
2733       Value *StoredVec = State.get(StoredValues[i], Part);
2734 
2735       if (Group->isReverse())
2736         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2737 
2738       // If this member has different type, cast it to a unified type.
2739 
2740       if (StoredVec->getType() != SubVT)
2741         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2742 
2743       StoredVecs.push_back(StoredVec);
2744     }
2745 
2746     // Concatenate all vectors into a wide vector.
2747     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2748 
2749     // Interleave the elements in the wide vector.
2750     Value *IVec = Builder.CreateShuffleVector(
2751         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2752         "interleaved.vec");
2753 
2754     Instruction *NewStoreInstr;
2755     if (BlockInMask || MaskForGaps) {
2756       Value *GroupMask = MaskForGaps;
2757       if (BlockInMask) {
2758         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2759         Value *ShuffledMask = Builder.CreateShuffleVector(
2760             BlockInMaskPart,
2761             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2762             "interleaved.mask");
2763         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2764                                                       ShuffledMask, MaskForGaps)
2765                                 : ShuffledMask;
2766       }
2767       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2768                                                 Group->getAlign(), GroupMask);
2769     } else
2770       NewStoreInstr =
2771           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2772 
2773     Group->addMetadata(NewStoreInstr);
2774   }
2775 }
2776 
2777 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2778                                                VPReplicateRecipe *RepRecipe,
2779                                                const VPIteration &Instance,
2780                                                bool IfPredicateInstr,
2781                                                VPTransformState &State) {
2782   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2783 
2784   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2785   // the first lane and part.
2786   if (isa<NoAliasScopeDeclInst>(Instr))
2787     if (!Instance.isFirstIteration())
2788       return;
2789 
2790   setDebugLocFromInst(Instr);
2791 
2792   // Does this instruction return a value ?
2793   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2794 
2795   Instruction *Cloned = Instr->clone();
2796   if (!IsVoidRetTy)
2797     Cloned->setName(Instr->getName() + ".cloned");
2798 
2799   // If the scalarized instruction contributes to the address computation of a
2800   // widen masked load/store which was in a basic block that needed predication
2801   // and is not predicated after vectorization, we can't propagate
2802   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2803   // instruction could feed a poison value to the base address of the widen
2804   // load/store.
2805   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2806     Cloned->dropPoisonGeneratingFlags();
2807 
2808   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2809                                Builder.GetInsertPoint());
2810   // Replace the operands of the cloned instructions with their scalar
2811   // equivalents in the new loop.
2812   for (auto &I : enumerate(RepRecipe->operands())) {
2813     auto InputInstance = Instance;
2814     VPValue *Operand = I.value();
2815     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2816     if (OperandR && OperandR->isUniform())
2817       InputInstance.Lane = VPLane::getFirstLane();
2818     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2819   }
2820   addNewMetadata(Cloned, Instr);
2821 
2822   // Place the cloned scalar in the new loop.
2823   Builder.Insert(Cloned);
2824 
2825   State.set(RepRecipe, Cloned, Instance);
2826 
2827   // If we just cloned a new assumption, add it the assumption cache.
2828   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2829     AC->registerAssumption(II);
2830 
2831   // End if-block.
2832   if (IfPredicateInstr)
2833     PredicatedInstructions.push_back(Cloned);
2834 }
2835 
2836 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
2837   BasicBlock *Header = L->getHeader();
2838   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
2839 
2840   IRBuilder<> B(Header->getTerminator());
2841   Instruction *OldInst =
2842       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
2843   setDebugLocFromInst(OldInst, &B);
2844 
2845   // Connect the header to the exit and header blocks and replace the old
2846   // terminator.
2847   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
2848 
2849   // Now we have two terminators. Remove the old one from the block.
2850   Header->getTerminator()->eraseFromParent();
2851 }
2852 
2853 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2854   if (TripCount)
2855     return TripCount;
2856 
2857   assert(InsertBlock);
2858   IRBuilder<> Builder(InsertBlock->getTerminator());
2859   // Find the loop boundaries.
2860   ScalarEvolution *SE = PSE.getSE();
2861   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2862   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2863          "Invalid loop count");
2864 
2865   Type *IdxTy = Legal->getWidestInductionType();
2866   assert(IdxTy && "No type for induction");
2867 
2868   // The exit count might have the type of i64 while the phi is i32. This can
2869   // happen if we have an induction variable that is sign extended before the
2870   // compare. The only way that we get a backedge taken count is that the
2871   // induction variable was signed and as such will not overflow. In such a case
2872   // truncation is legal.
2873   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2874       IdxTy->getPrimitiveSizeInBits())
2875     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2876   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2877 
2878   // Get the total trip count from the count by adding 1.
2879   const SCEV *ExitCount = SE->getAddExpr(
2880       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2881 
2882   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2883 
2884   // Expand the trip count and place the new instructions in the preheader.
2885   // Notice that the pre-header does not change, only the loop body.
2886   SCEVExpander Exp(*SE, DL, "induction");
2887 
2888   // Count holds the overall loop count (N).
2889   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2890                                 InsertBlock->getTerminator());
2891 
2892   if (TripCount->getType()->isPointerTy())
2893     TripCount =
2894         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2895                                     InsertBlock->getTerminator());
2896 
2897   return TripCount;
2898 }
2899 
2900 Value *
2901 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2902   if (VectorTripCount)
2903     return VectorTripCount;
2904 
2905   Value *TC = getOrCreateTripCount(InsertBlock);
2906   IRBuilder<> Builder(InsertBlock->getTerminator());
2907 
2908   Type *Ty = TC->getType();
2909   // This is where we can make the step a runtime constant.
2910   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2911 
2912   // If the tail is to be folded by masking, round the number of iterations N
2913   // up to a multiple of Step instead of rounding down. This is done by first
2914   // adding Step-1 and then rounding down. Note that it's ok if this addition
2915   // overflows: the vector induction variable will eventually wrap to zero given
2916   // that it starts at zero and its Step is a power of two; the loop will then
2917   // exit, with the last early-exit vector comparison also producing all-true.
2918   if (Cost->foldTailByMasking()) {
2919     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2920            "VF*UF must be a power of 2 when folding tail by masking");
2921     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2922     TC = Builder.CreateAdd(
2923         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2924   }
2925 
2926   // Now we need to generate the expression for the part of the loop that the
2927   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2928   // iterations are not required for correctness, or N - Step, otherwise. Step
2929   // is equal to the vectorization factor (number of SIMD elements) times the
2930   // unroll factor (number of SIMD instructions).
2931   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2932 
2933   // There are cases where we *must* run at least one iteration in the remainder
2934   // loop.  See the cost model for when this can happen.  If the step evenly
2935   // divides the trip count, we set the remainder to be equal to the step. If
2936   // the step does not evenly divide the trip count, no adjustment is necessary
2937   // since there will already be scalar iterations. Note that the minimum
2938   // iterations check ensures that N >= Step.
2939   if (Cost->requiresScalarEpilogue(VF)) {
2940     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2941     R = Builder.CreateSelect(IsZero, Step, R);
2942   }
2943 
2944   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2945 
2946   return VectorTripCount;
2947 }
2948 
2949 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2950                                                    const DataLayout &DL) {
2951   // Verify that V is a vector type with same number of elements as DstVTy.
2952   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2953   unsigned VF = DstFVTy->getNumElements();
2954   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2955   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2956   Type *SrcElemTy = SrcVecTy->getElementType();
2957   Type *DstElemTy = DstFVTy->getElementType();
2958   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2959          "Vector elements must have same size");
2960 
2961   // Do a direct cast if element types are castable.
2962   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2963     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2964   }
2965   // V cannot be directly casted to desired vector type.
2966   // May happen when V is a floating point vector but DstVTy is a vector of
2967   // pointers or vice-versa. Handle this using a two-step bitcast using an
2968   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2969   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2970          "Only one type should be a pointer type");
2971   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2972          "Only one type should be a floating point type");
2973   Type *IntTy =
2974       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2975   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2976   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2977   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2978 }
2979 
2980 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) {
2981   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2982   // Reuse existing vector loop preheader for TC checks.
2983   // Note that new preheader block is generated for vector loop.
2984   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2985   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2986 
2987   // Generate code to check if the loop's trip count is less than VF * UF, or
2988   // equal to it in case a scalar epilogue is required; this implies that the
2989   // vector trip count is zero. This check also covers the case where adding one
2990   // to the backedge-taken count overflowed leading to an incorrect trip count
2991   // of zero. In this case we will also jump to the scalar loop.
2992   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2993                                             : ICmpInst::ICMP_ULT;
2994 
2995   // If tail is to be folded, vector loop takes care of all iterations.
2996   Value *CheckMinIters = Builder.getFalse();
2997   if (!Cost->foldTailByMasking()) {
2998     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
2999     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3000   }
3001   // Create new preheader for vector loop.
3002   LoopVectorPreHeader =
3003       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3004                  "vector.ph");
3005 
3006   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3007                                DT->getNode(Bypass)->getIDom()) &&
3008          "TC check is expected to dominate Bypass");
3009 
3010   // Update dominator for Bypass & LoopExit (if needed).
3011   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3012   if (!Cost->requiresScalarEpilogue(VF))
3013     // If there is an epilogue which must run, there's no edge from the
3014     // middle block to exit blocks  and thus no need to update the immediate
3015     // dominator of the exit blocks.
3016     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3017 
3018   ReplaceInstWithInst(
3019       TCCheckBlock->getTerminator(),
3020       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3021   LoopBypassBlocks.push_back(TCCheckBlock);
3022 }
3023 
3024 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
3025 
3026   BasicBlock *const SCEVCheckBlock =
3027       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3028   if (!SCEVCheckBlock)
3029     return nullptr;
3030 
3031   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3032            (OptForSizeBasedOnProfile &&
3033             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3034          "Cannot SCEV check stride or overflow when optimizing for size");
3035 
3036 
3037   // Update dominator only if this is first RT check.
3038   if (LoopBypassBlocks.empty()) {
3039     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3040     if (!Cost->requiresScalarEpilogue(VF))
3041       // If there is an epilogue which must run, there's no edge from the
3042       // middle block to exit blocks  and thus no need to update the immediate
3043       // dominator of the exit blocks.
3044       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3045   }
3046 
3047   LoopBypassBlocks.push_back(SCEVCheckBlock);
3048   AddedSafetyChecks = true;
3049   return SCEVCheckBlock;
3050 }
3051 
3052 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3053   // VPlan-native path does not do any analysis for runtime checks currently.
3054   if (EnableVPlanNativePath)
3055     return nullptr;
3056 
3057   BasicBlock *const MemCheckBlock =
3058       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3059 
3060   // Check if we generated code that checks in runtime if arrays overlap. We put
3061   // the checks into a separate block to make the more common case of few
3062   // elements faster.
3063   if (!MemCheckBlock)
3064     return nullptr;
3065 
3066   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3067     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3068            "Cannot emit memory checks when optimizing for size, unless forced "
3069            "to vectorize.");
3070     ORE->emit([&]() {
3071       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3072                                         OrigLoop->getStartLoc(),
3073                                         OrigLoop->getHeader())
3074              << "Code-size may be reduced by not forcing "
3075                 "vectorization, or by source-code modifications "
3076                 "eliminating the need for runtime checks "
3077                 "(e.g., adding 'restrict').";
3078     });
3079   }
3080 
3081   LoopBypassBlocks.push_back(MemCheckBlock);
3082 
3083   AddedSafetyChecks = true;
3084 
3085   // We currently don't use LoopVersioning for the actual loop cloning but we
3086   // still use it to add the noalias metadata.
3087   LVer = std::make_unique<LoopVersioning>(
3088       *Legal->getLAI(),
3089       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3090       DT, PSE.getSE());
3091   LVer->prepareNoAliasMetadata();
3092   return MemCheckBlock;
3093 }
3094 
3095 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3096   LoopScalarBody = OrigLoop->getHeader();
3097   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3098   assert(LoopVectorPreHeader && "Invalid loop structure");
3099   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3100   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3101          "multiple exit loop without required epilogue?");
3102 
3103   LoopMiddleBlock =
3104       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3105                  LI, nullptr, Twine(Prefix) + "middle.block");
3106   LoopScalarPreHeader =
3107       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3108                  nullptr, Twine(Prefix) + "scalar.ph");
3109 
3110   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3111 
3112   // Set up the middle block terminator.  Two cases:
3113   // 1) If we know that we must execute the scalar epilogue, emit an
3114   //    unconditional branch.
3115   // 2) Otherwise, we must have a single unique exit block (due to how we
3116   //    implement the multiple exit case).  In this case, set up a conditonal
3117   //    branch from the middle block to the loop scalar preheader, and the
3118   //    exit block.  completeLoopSkeleton will update the condition to use an
3119   //    iteration check, if required to decide whether to execute the remainder.
3120   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3121     BranchInst::Create(LoopScalarPreHeader) :
3122     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3123                        Builder.getTrue());
3124   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3125   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3126 
3127   // We intentionally don't let SplitBlock to update LoopInfo since
3128   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3129   // LoopVectorBody is explicitly added to the correct place few lines later.
3130   BasicBlock *LoopVectorBody =
3131       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3132                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3133 
3134   // Update dominator for loop exit.
3135   if (!Cost->requiresScalarEpilogue(VF))
3136     // If there is an epilogue which must run, there's no edge from the
3137     // middle block to exit blocks  and thus no need to update the immediate
3138     // dominator of the exit blocks.
3139     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3140 
3141   // Create and register the new vector loop.
3142   Loop *Lp = LI->AllocateLoop();
3143   Loop *ParentLoop = OrigLoop->getParentLoop();
3144 
3145   // Insert the new loop into the loop nest and register the new basic blocks
3146   // before calling any utilities such as SCEV that require valid LoopInfo.
3147   if (ParentLoop) {
3148     ParentLoop->addChildLoop(Lp);
3149   } else {
3150     LI->addTopLevelLoop(Lp);
3151   }
3152   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3153   return Lp;
3154 }
3155 
3156 void InnerLoopVectorizer::createInductionResumeValues(
3157     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3158   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3159           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3160          "Inconsistent information about additional bypass.");
3161 
3162   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3163   assert(VectorTripCount && "Expected valid arguments");
3164   // We are going to resume the execution of the scalar loop.
3165   // Go over all of the induction variables that we found and fix the
3166   // PHIs that are left in the scalar version of the loop.
3167   // The starting values of PHI nodes depend on the counter of the last
3168   // iteration in the vectorized loop.
3169   // If we come from a bypass edge then we need to start from the original
3170   // start value.
3171   Instruction *OldInduction = Legal->getPrimaryInduction();
3172   for (auto &InductionEntry : Legal->getInductionVars()) {
3173     PHINode *OrigPhi = InductionEntry.first;
3174     InductionDescriptor II = InductionEntry.second;
3175 
3176     // Create phi nodes to merge from the  backedge-taken check block.
3177     PHINode *BCResumeVal =
3178         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3179                         LoopScalarPreHeader->getTerminator());
3180     // Copy original phi DL over to the new one.
3181     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3182     Value *&EndValue = IVEndValues[OrigPhi];
3183     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3184     if (OrigPhi == OldInduction) {
3185       // We know what the end value is.
3186       EndValue = VectorTripCount;
3187     } else {
3188       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3189 
3190       // Fast-math-flags propagate from the original induction instruction.
3191       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3192         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3193 
3194       Type *StepType = II.getStep()->getType();
3195       Instruction::CastOps CastOp =
3196           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3197       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3198       Value *Step =
3199           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3200       EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3201       EndValue->setName("ind.end");
3202 
3203       // Compute the end value for the additional bypass (if applicable).
3204       if (AdditionalBypass.first) {
3205         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3206         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3207                                          StepType, true);
3208         Value *Step =
3209             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3210         CRD =
3211             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3212         EndValueFromAdditionalBypass =
3213             emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3214         EndValueFromAdditionalBypass->setName("ind.end");
3215       }
3216     }
3217     // The new PHI merges the original incoming value, in case of a bypass,
3218     // or the value at the end of the vectorized loop.
3219     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3220 
3221     // Fix the scalar body counter (PHI node).
3222     // The old induction's phi node in the scalar body needs the truncated
3223     // value.
3224     for (BasicBlock *BB : LoopBypassBlocks)
3225       BCResumeVal->addIncoming(II.getStartValue(), BB);
3226 
3227     if (AdditionalBypass.first)
3228       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3229                                             EndValueFromAdditionalBypass);
3230 
3231     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3232   }
3233 }
3234 
3235 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3236   // The trip counts should be cached by now.
3237   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3238   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3239 
3240   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3241 
3242   // Add a check in the middle block to see if we have completed
3243   // all of the iterations in the first vector loop.  Three cases:
3244   // 1) If we require a scalar epilogue, there is no conditional branch as
3245   //    we unconditionally branch to the scalar preheader.  Do nothing.
3246   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3247   //    Thus if tail is to be folded, we know we don't need to run the
3248   //    remainder and we can use the previous value for the condition (true).
3249   // 3) Otherwise, construct a runtime check.
3250   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3251     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3252                                         Count, VectorTripCount, "cmp.n",
3253                                         LoopMiddleBlock->getTerminator());
3254 
3255     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3256     // of the corresponding compare because they may have ended up with
3257     // different line numbers and we want to avoid awkward line stepping while
3258     // debugging. Eg. if the compare has got a line number inside the loop.
3259     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3260     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3261   }
3262 
3263 #ifdef EXPENSIVE_CHECKS
3264   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3265   LI->verify(*DT);
3266 #endif
3267 
3268   return LoopVectorPreHeader;
3269 }
3270 
3271 std::pair<BasicBlock *, Value *>
3272 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3273   /*
3274    In this function we generate a new loop. The new loop will contain
3275    the vectorized instructions while the old loop will continue to run the
3276    scalar remainder.
3277 
3278        [ ] <-- loop iteration number check.
3279     /   |
3280    /    v
3281   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3282   |  /  |
3283   | /   v
3284   ||   [ ]     <-- vector pre header.
3285   |/    |
3286   |     v
3287   |    [  ] \
3288   |    [  ]_|   <-- vector loop.
3289   |     |
3290   |     v
3291   \   -[ ]   <--- middle-block.
3292    \/   |
3293    /\   v
3294    | ->[ ]     <--- new preheader.
3295    |    |
3296  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3297    |   [ ] \
3298    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3299     \   |
3300      \  v
3301       >[ ]     <-- exit block(s).
3302    ...
3303    */
3304 
3305   // Get the metadata of the original loop before it gets modified.
3306   MDNode *OrigLoopID = OrigLoop->getLoopID();
3307 
3308   // Workaround!  Compute the trip count of the original loop and cache it
3309   // before we start modifying the CFG.  This code has a systemic problem
3310   // wherein it tries to run analysis over partially constructed IR; this is
3311   // wrong, and not simply for SCEV.  The trip count of the original loop
3312   // simply happens to be prone to hitting this in practice.  In theory, we
3313   // can hit the same issue for any SCEV, or ValueTracking query done during
3314   // mutation.  See PR49900.
3315   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3316 
3317   // Create an empty vector loop, and prepare basic blocks for the runtime
3318   // checks.
3319   Loop *Lp = createVectorLoopSkeleton("");
3320 
3321   // Now, compare the new count to zero. If it is zero skip the vector loop and
3322   // jump to the scalar loop. This check also covers the case where the
3323   // backedge-taken count is uint##_max: adding one to it will overflow leading
3324   // to an incorrect trip count of zero. In this (rare) case we will also jump
3325   // to the scalar loop.
3326   emitMinimumIterationCountCheck(LoopScalarPreHeader);
3327 
3328   // Generate the code to check any assumptions that we've made for SCEV
3329   // expressions.
3330   emitSCEVChecks(LoopScalarPreHeader);
3331 
3332   // Generate the code that checks in runtime if arrays overlap. We put the
3333   // checks into a separate block to make the more common case of few elements
3334   // faster.
3335   emitMemRuntimeChecks(LoopScalarPreHeader);
3336 
3337   createHeaderBranch(Lp);
3338 
3339   // Emit phis for the new starting index of the scalar loop.
3340   createInductionResumeValues();
3341 
3342   return {completeLoopSkeleton(OrigLoopID), nullptr};
3343 }
3344 
3345 // Fix up external users of the induction variable. At this point, we are
3346 // in LCSSA form, with all external PHIs that use the IV having one input value,
3347 // coming from the remainder loop. We need those PHIs to also have a correct
3348 // value for the IV when arriving directly from the middle block.
3349 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3350                                        const InductionDescriptor &II,
3351                                        Value *CountRoundDown, Value *EndValue,
3352                                        BasicBlock *MiddleBlock,
3353                                        BasicBlock *VectorHeader) {
3354   // There are two kinds of external IV usages - those that use the value
3355   // computed in the last iteration (the PHI) and those that use the penultimate
3356   // value (the value that feeds into the phi from the loop latch).
3357   // We allow both, but they, obviously, have different values.
3358 
3359   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3360 
3361   DenseMap<Value *, Value *> MissingVals;
3362 
3363   // An external user of the last iteration's value should see the value that
3364   // the remainder loop uses to initialize its own IV.
3365   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3366   for (User *U : PostInc->users()) {
3367     Instruction *UI = cast<Instruction>(U);
3368     if (!OrigLoop->contains(UI)) {
3369       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3370       MissingVals[UI] = EndValue;
3371     }
3372   }
3373 
3374   // An external user of the penultimate value need to see EndValue - Step.
3375   // The simplest way to get this is to recompute it from the constituent SCEVs,
3376   // that is Start + (Step * (CRD - 1)).
3377   for (User *U : OrigPhi->users()) {
3378     auto *UI = cast<Instruction>(U);
3379     if (!OrigLoop->contains(UI)) {
3380       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3381 
3382       IRBuilder<> B(MiddleBlock->getTerminator());
3383 
3384       // Fast-math-flags propagate from the original induction instruction.
3385       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3386         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3387 
3388       Value *CountMinusOne = B.CreateSub(
3389           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3390       Value *CMO =
3391           !II.getStep()->getType()->isIntegerTy()
3392               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3393                              II.getStep()->getType())
3394               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3395       CMO->setName("cast.cmo");
3396 
3397       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3398                                     VectorHeader->getTerminator());
3399       Value *Escape =
3400           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3401       Escape->setName("ind.escape");
3402       MissingVals[UI] = Escape;
3403     }
3404   }
3405 
3406   for (auto &I : MissingVals) {
3407     PHINode *PHI = cast<PHINode>(I.first);
3408     // One corner case we have to handle is two IVs "chasing" each-other,
3409     // that is %IV2 = phi [...], [ %IV1, %latch ]
3410     // In this case, if IV1 has an external use, we need to avoid adding both
3411     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3412     // don't already have an incoming value for the middle block.
3413     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3414       PHI->addIncoming(I.second, MiddleBlock);
3415   }
3416 }
3417 
3418 namespace {
3419 
3420 struct CSEDenseMapInfo {
3421   static bool canHandle(const Instruction *I) {
3422     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3423            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3424   }
3425 
3426   static inline Instruction *getEmptyKey() {
3427     return DenseMapInfo<Instruction *>::getEmptyKey();
3428   }
3429 
3430   static inline Instruction *getTombstoneKey() {
3431     return DenseMapInfo<Instruction *>::getTombstoneKey();
3432   }
3433 
3434   static unsigned getHashValue(const Instruction *I) {
3435     assert(canHandle(I) && "Unknown instruction!");
3436     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3437                                                            I->value_op_end()));
3438   }
3439 
3440   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3441     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3442         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3443       return LHS == RHS;
3444     return LHS->isIdenticalTo(RHS);
3445   }
3446 };
3447 
3448 } // end anonymous namespace
3449 
3450 ///Perform cse of induction variable instructions.
3451 static void cse(BasicBlock *BB) {
3452   // Perform simple cse.
3453   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3454   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3455     if (!CSEDenseMapInfo::canHandle(&In))
3456       continue;
3457 
3458     // Check if we can replace this instruction with any of the
3459     // visited instructions.
3460     if (Instruction *V = CSEMap.lookup(&In)) {
3461       In.replaceAllUsesWith(V);
3462       In.eraseFromParent();
3463       continue;
3464     }
3465 
3466     CSEMap[&In] = &In;
3467   }
3468 }
3469 
3470 InstructionCost
3471 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3472                                               bool &NeedToScalarize) const {
3473   Function *F = CI->getCalledFunction();
3474   Type *ScalarRetTy = CI->getType();
3475   SmallVector<Type *, 4> Tys, ScalarTys;
3476   for (auto &ArgOp : CI->args())
3477     ScalarTys.push_back(ArgOp->getType());
3478 
3479   // Estimate cost of scalarized vector call. The source operands are assumed
3480   // to be vectors, so we need to extract individual elements from there,
3481   // execute VF scalar calls, and then gather the result into the vector return
3482   // value.
3483   InstructionCost ScalarCallCost =
3484       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3485   if (VF.isScalar())
3486     return ScalarCallCost;
3487 
3488   // Compute corresponding vector type for return value and arguments.
3489   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3490   for (Type *ScalarTy : ScalarTys)
3491     Tys.push_back(ToVectorTy(ScalarTy, VF));
3492 
3493   // Compute costs of unpacking argument values for the scalar calls and
3494   // packing the return values to a vector.
3495   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3496 
3497   InstructionCost Cost =
3498       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3499 
3500   // If we can't emit a vector call for this function, then the currently found
3501   // cost is the cost we need to return.
3502   NeedToScalarize = true;
3503   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3504   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3505 
3506   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3507     return Cost;
3508 
3509   // If the corresponding vector cost is cheaper, return its cost.
3510   InstructionCost VectorCallCost =
3511       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3512   if (VectorCallCost < Cost) {
3513     NeedToScalarize = false;
3514     Cost = VectorCallCost;
3515   }
3516   return Cost;
3517 }
3518 
3519 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3520   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3521     return Elt;
3522   return VectorType::get(Elt, VF);
3523 }
3524 
3525 InstructionCost
3526 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3527                                                    ElementCount VF) const {
3528   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3529   assert(ID && "Expected intrinsic call!");
3530   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3531   FastMathFlags FMF;
3532   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3533     FMF = FPMO->getFastMathFlags();
3534 
3535   SmallVector<const Value *> Arguments(CI->args());
3536   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3537   SmallVector<Type *> ParamTys;
3538   std::transform(FTy->param_begin(), FTy->param_end(),
3539                  std::back_inserter(ParamTys),
3540                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3541 
3542   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3543                                     dyn_cast<IntrinsicInst>(CI));
3544   return TTI.getIntrinsicInstrCost(CostAttrs,
3545                                    TargetTransformInfo::TCK_RecipThroughput);
3546 }
3547 
3548 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3549   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3550   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3551   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3552 }
3553 
3554 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3555   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3556   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3557   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3558 }
3559 
3560 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3561   // For every instruction `I` in MinBWs, truncate the operands, create a
3562   // truncated version of `I` and reextend its result. InstCombine runs
3563   // later and will remove any ext/trunc pairs.
3564   SmallPtrSet<Value *, 4> Erased;
3565   for (const auto &KV : Cost->getMinimalBitwidths()) {
3566     // If the value wasn't vectorized, we must maintain the original scalar
3567     // type. The absence of the value from State indicates that it
3568     // wasn't vectorized.
3569     // FIXME: Should not rely on getVPValue at this point.
3570     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3571     if (!State.hasAnyVectorValue(Def))
3572       continue;
3573     for (unsigned Part = 0; Part < UF; ++Part) {
3574       Value *I = State.get(Def, Part);
3575       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3576         continue;
3577       Type *OriginalTy = I->getType();
3578       Type *ScalarTruncatedTy =
3579           IntegerType::get(OriginalTy->getContext(), KV.second);
3580       auto *TruncatedTy = VectorType::get(
3581           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3582       if (TruncatedTy == OriginalTy)
3583         continue;
3584 
3585       IRBuilder<> B(cast<Instruction>(I));
3586       auto ShrinkOperand = [&](Value *V) -> Value * {
3587         if (auto *ZI = dyn_cast<ZExtInst>(V))
3588           if (ZI->getSrcTy() == TruncatedTy)
3589             return ZI->getOperand(0);
3590         return B.CreateZExtOrTrunc(V, TruncatedTy);
3591       };
3592 
3593       // The actual instruction modification depends on the instruction type,
3594       // unfortunately.
3595       Value *NewI = nullptr;
3596       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3597         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3598                              ShrinkOperand(BO->getOperand(1)));
3599 
3600         // Any wrapping introduced by shrinking this operation shouldn't be
3601         // considered undefined behavior. So, we can't unconditionally copy
3602         // arithmetic wrapping flags to NewI.
3603         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3604       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3605         NewI =
3606             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3607                          ShrinkOperand(CI->getOperand(1)));
3608       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3609         NewI = B.CreateSelect(SI->getCondition(),
3610                               ShrinkOperand(SI->getTrueValue()),
3611                               ShrinkOperand(SI->getFalseValue()));
3612       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3613         switch (CI->getOpcode()) {
3614         default:
3615           llvm_unreachable("Unhandled cast!");
3616         case Instruction::Trunc:
3617           NewI = ShrinkOperand(CI->getOperand(0));
3618           break;
3619         case Instruction::SExt:
3620           NewI = B.CreateSExtOrTrunc(
3621               CI->getOperand(0),
3622               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3623           break;
3624         case Instruction::ZExt:
3625           NewI = B.CreateZExtOrTrunc(
3626               CI->getOperand(0),
3627               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3628           break;
3629         }
3630       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3631         auto Elements0 =
3632             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3633         auto *O0 = B.CreateZExtOrTrunc(
3634             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3635         auto Elements1 =
3636             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3637         auto *O1 = B.CreateZExtOrTrunc(
3638             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3639 
3640         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3641       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3642         // Don't do anything with the operands, just extend the result.
3643         continue;
3644       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3645         auto Elements =
3646             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3647         auto *O0 = B.CreateZExtOrTrunc(
3648             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3649         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3650         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3651       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3652         auto Elements =
3653             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3654         auto *O0 = B.CreateZExtOrTrunc(
3655             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3656         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3657       } else {
3658         // If we don't know what to do, be conservative and don't do anything.
3659         continue;
3660       }
3661 
3662       // Lastly, extend the result.
3663       NewI->takeName(cast<Instruction>(I));
3664       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3665       I->replaceAllUsesWith(Res);
3666       cast<Instruction>(I)->eraseFromParent();
3667       Erased.insert(I);
3668       State.reset(Def, Res, Part);
3669     }
3670   }
3671 
3672   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3673   for (const auto &KV : Cost->getMinimalBitwidths()) {
3674     // If the value wasn't vectorized, we must maintain the original scalar
3675     // type. The absence of the value from State indicates that it
3676     // wasn't vectorized.
3677     // FIXME: Should not rely on getVPValue at this point.
3678     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3679     if (!State.hasAnyVectorValue(Def))
3680       continue;
3681     for (unsigned Part = 0; Part < UF; ++Part) {
3682       Value *I = State.get(Def, Part);
3683       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3684       if (Inst && Inst->use_empty()) {
3685         Value *NewI = Inst->getOperand(0);
3686         Inst->eraseFromParent();
3687         State.reset(Def, NewI, Part);
3688       }
3689     }
3690   }
3691 }
3692 
3693 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3694   // Insert truncates and extends for any truncated instructions as hints to
3695   // InstCombine.
3696   if (VF.isVector())
3697     truncateToMinimalBitwidths(State);
3698 
3699   // Fix widened non-induction PHIs by setting up the PHI operands.
3700   if (OrigPHIsToFix.size()) {
3701     assert(EnableVPlanNativePath &&
3702            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3703     fixNonInductionPHIs(State);
3704   }
3705 
3706   // At this point every instruction in the original loop is widened to a
3707   // vector form. Now we need to fix the recurrences in the loop. These PHI
3708   // nodes are currently empty because we did not want to introduce cycles.
3709   // This is the second stage of vectorizing recurrences.
3710   fixCrossIterationPHIs(State);
3711 
3712   // Forget the original basic block.
3713   PSE.getSE()->forgetLoop(OrigLoop);
3714 
3715   Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB);
3716   // If we inserted an edge from the middle block to the unique exit block,
3717   // update uses outside the loop (phis) to account for the newly inserted
3718   // edge.
3719   if (!Cost->requiresScalarEpilogue(VF)) {
3720     // Fix-up external users of the induction variables.
3721     for (auto &Entry : Legal->getInductionVars())
3722       fixupIVUsers(Entry.first, Entry.second,
3723                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3724                    IVEndValues[Entry.first], LoopMiddleBlock,
3725                    VectorLoop->getHeader());
3726 
3727     fixLCSSAPHIs(State);
3728   }
3729 
3730   for (Instruction *PI : PredicatedInstructions)
3731     sinkScalarOperands(&*PI);
3732 
3733   // Remove redundant induction instructions.
3734   cse(VectorLoop->getHeader());
3735 
3736   // Set/update profile weights for the vector and remainder loops as original
3737   // loop iterations are now distributed among them. Note that original loop
3738   // represented by LoopScalarBody becomes remainder loop after vectorization.
3739   //
3740   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3741   // end up getting slightly roughened result but that should be OK since
3742   // profile is not inherently precise anyway. Note also possible bypass of
3743   // vector code caused by legality checks is ignored, assigning all the weight
3744   // to the vector loop, optimistically.
3745   //
3746   // For scalable vectorization we can't know at compile time how many iterations
3747   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3748   // vscale of '1'.
3749   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3750                                LI->getLoopFor(LoopScalarBody),
3751                                VF.getKnownMinValue() * UF);
3752 }
3753 
3754 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3755   // In order to support recurrences we need to be able to vectorize Phi nodes.
3756   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3757   // stage #2: We now need to fix the recurrences by adding incoming edges to
3758   // the currently empty PHI nodes. At this point every instruction in the
3759   // original loop is widened to a vector form so we can use them to construct
3760   // the incoming edges.
3761   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
3762   for (VPRecipeBase &R : Header->phis()) {
3763     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3764       fixReduction(ReductionPhi, State);
3765     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3766       fixFirstOrderRecurrence(FOR, State);
3767   }
3768 }
3769 
3770 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3771     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3772   // This is the second phase of vectorizing first-order recurrences. An
3773   // overview of the transformation is described below. Suppose we have the
3774   // following loop.
3775   //
3776   //   for (int i = 0; i < n; ++i)
3777   //     b[i] = a[i] - a[i - 1];
3778   //
3779   // There is a first-order recurrence on "a". For this loop, the shorthand
3780   // scalar IR looks like:
3781   //
3782   //   scalar.ph:
3783   //     s_init = a[-1]
3784   //     br scalar.body
3785   //
3786   //   scalar.body:
3787   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3788   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3789   //     s2 = a[i]
3790   //     b[i] = s2 - s1
3791   //     br cond, scalar.body, ...
3792   //
3793   // In this example, s1 is a recurrence because it's value depends on the
3794   // previous iteration. In the first phase of vectorization, we created a
3795   // vector phi v1 for s1. We now complete the vectorization and produce the
3796   // shorthand vector IR shown below (for VF = 4, UF = 1).
3797   //
3798   //   vector.ph:
3799   //     v_init = vector(..., ..., ..., a[-1])
3800   //     br vector.body
3801   //
3802   //   vector.body
3803   //     i = phi [0, vector.ph], [i+4, vector.body]
3804   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3805   //     v2 = a[i, i+1, i+2, i+3];
3806   //     v3 = vector(v1(3), v2(0, 1, 2))
3807   //     b[i, i+1, i+2, i+3] = v2 - v3
3808   //     br cond, vector.body, middle.block
3809   //
3810   //   middle.block:
3811   //     x = v2(3)
3812   //     br scalar.ph
3813   //
3814   //   scalar.ph:
3815   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3816   //     br scalar.body
3817   //
3818   // After execution completes the vector loop, we extract the next value of
3819   // the recurrence (x) to use as the initial value in the scalar loop.
3820 
3821   // Extract the last vector element in the middle block. This will be the
3822   // initial value for the recurrence when jumping to the scalar loop.
3823   VPValue *PreviousDef = PhiR->getBackedgeValue();
3824   Value *Incoming = State.get(PreviousDef, UF - 1);
3825   auto *ExtractForScalar = Incoming;
3826   auto *IdxTy = Builder.getInt32Ty();
3827   if (VF.isVector()) {
3828     auto *One = ConstantInt::get(IdxTy, 1);
3829     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3830     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3831     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3832     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3833                                                     "vector.recur.extract");
3834   }
3835   // Extract the second last element in the middle block if the
3836   // Phi is used outside the loop. We need to extract the phi itself
3837   // and not the last element (the phi update in the current iteration). This
3838   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3839   // when the scalar loop is not run at all.
3840   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3841   if (VF.isVector()) {
3842     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3843     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3844     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3845         Incoming, Idx, "vector.recur.extract.for.phi");
3846   } else if (UF > 1)
3847     // When loop is unrolled without vectorizing, initialize
3848     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3849     // of `Incoming`. This is analogous to the vectorized case above: extracting
3850     // the second last element when VF > 1.
3851     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3852 
3853   // Fix the initial value of the original recurrence in the scalar loop.
3854   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3855   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3856   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3857   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3858   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3859     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3860     Start->addIncoming(Incoming, BB);
3861   }
3862 
3863   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3864   Phi->setName("scalar.recur");
3865 
3866   // Finally, fix users of the recurrence outside the loop. The users will need
3867   // either the last value of the scalar recurrence or the last value of the
3868   // vector recurrence we extracted in the middle block. Since the loop is in
3869   // LCSSA form, we just need to find all the phi nodes for the original scalar
3870   // recurrence in the exit block, and then add an edge for the middle block.
3871   // Note that LCSSA does not imply single entry when the original scalar loop
3872   // had multiple exiting edges (as we always run the last iteration in the
3873   // scalar epilogue); in that case, there is no edge from middle to exit and
3874   // and thus no phis which needed updated.
3875   if (!Cost->requiresScalarEpilogue(VF))
3876     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3877       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
3878         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3879 }
3880 
3881 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3882                                        VPTransformState &State) {
3883   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3884   // Get it's reduction variable descriptor.
3885   assert(Legal->isReductionVariable(OrigPhi) &&
3886          "Unable to find the reduction variable");
3887   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3888 
3889   RecurKind RK = RdxDesc.getRecurrenceKind();
3890   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3891   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3892   setDebugLocFromInst(ReductionStartValue);
3893 
3894   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3895   // This is the vector-clone of the value that leaves the loop.
3896   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3897 
3898   // Wrap flags are in general invalid after vectorization, clear them.
3899   clearReductionWrapFlags(RdxDesc, State);
3900 
3901   // Before each round, move the insertion point right between
3902   // the PHIs and the values we are going to write.
3903   // This allows us to write both PHINodes and the extractelement
3904   // instructions.
3905   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3906 
3907   setDebugLocFromInst(LoopExitInst);
3908 
3909   Type *PhiTy = OrigPhi->getType();
3910   BasicBlock *VectorLoopLatch =
3911       LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
3912   // If tail is folded by masking, the vector value to leave the loop should be
3913   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3914   // instead of the former. For an inloop reduction the reduction will already
3915   // be predicated, and does not need to be handled here.
3916   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3917     for (unsigned Part = 0; Part < UF; ++Part) {
3918       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3919       Value *Sel = nullptr;
3920       for (User *U : VecLoopExitInst->users()) {
3921         if (isa<SelectInst>(U)) {
3922           assert(!Sel && "Reduction exit feeding two selects");
3923           Sel = U;
3924         } else
3925           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3926       }
3927       assert(Sel && "Reduction exit feeds no select");
3928       State.reset(LoopExitInstDef, Sel, Part);
3929 
3930       // If the target can create a predicated operator for the reduction at no
3931       // extra cost in the loop (for example a predicated vadd), it can be
3932       // cheaper for the select to remain in the loop than be sunk out of it,
3933       // and so use the select value for the phi instead of the old
3934       // LoopExitValue.
3935       if (PreferPredicatedReductionSelect ||
3936           TTI->preferPredicatedReductionSelect(
3937               RdxDesc.getOpcode(), PhiTy,
3938               TargetTransformInfo::ReductionFlags())) {
3939         auto *VecRdxPhi =
3940             cast<PHINode>(State.get(PhiR, Part));
3941         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3942       }
3943     }
3944   }
3945 
3946   // If the vector reduction can be performed in a smaller type, we truncate
3947   // then extend the loop exit value to enable InstCombine to evaluate the
3948   // entire expression in the smaller type.
3949   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3950     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3951     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3952     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3953     VectorParts RdxParts(UF);
3954     for (unsigned Part = 0; Part < UF; ++Part) {
3955       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3956       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3957       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3958                                         : Builder.CreateZExt(Trunc, VecTy);
3959       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3960         if (U != Trunc) {
3961           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3962           RdxParts[Part] = Extnd;
3963         }
3964     }
3965     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3966     for (unsigned Part = 0; Part < UF; ++Part) {
3967       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3968       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3969     }
3970   }
3971 
3972   // Reduce all of the unrolled parts into a single vector.
3973   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3974   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3975 
3976   // The middle block terminator has already been assigned a DebugLoc here (the
3977   // OrigLoop's single latch terminator). We want the whole middle block to
3978   // appear to execute on this line because: (a) it is all compiler generated,
3979   // (b) these instructions are always executed after evaluating the latch
3980   // conditional branch, and (c) other passes may add new predecessors which
3981   // terminate on this line. This is the easiest way to ensure we don't
3982   // accidentally cause an extra step back into the loop while debugging.
3983   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3984   if (PhiR->isOrdered())
3985     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3986   else {
3987     // Floating-point operations should have some FMF to enable the reduction.
3988     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3989     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3990     for (unsigned Part = 1; Part < UF; ++Part) {
3991       Value *RdxPart = State.get(LoopExitInstDef, Part);
3992       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3993         ReducedPartRdx = Builder.CreateBinOp(
3994             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3995       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3996         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3997                                            ReducedPartRdx, RdxPart);
3998       else
3999         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4000     }
4001   }
4002 
4003   // Create the reduction after the loop. Note that inloop reductions create the
4004   // target reduction in the loop using a Reduction recipe.
4005   if (VF.isVector() && !PhiR->isInLoop()) {
4006     ReducedPartRdx =
4007         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4008     // If the reduction can be performed in a smaller type, we need to extend
4009     // the reduction to the wider type before we branch to the original loop.
4010     if (PhiTy != RdxDesc.getRecurrenceType())
4011       ReducedPartRdx = RdxDesc.isSigned()
4012                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4013                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4014   }
4015 
4016   PHINode *ResumePhi =
4017       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4018 
4019   // Create a phi node that merges control-flow from the backedge-taken check
4020   // block and the middle block.
4021   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4022                                         LoopScalarPreHeader->getTerminator());
4023 
4024   // If we are fixing reductions in the epilogue loop then we should already
4025   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4026   // we carry over the incoming values correctly.
4027   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4028     if (Incoming == LoopMiddleBlock)
4029       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4030     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4031       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4032                               Incoming);
4033     else
4034       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4035   }
4036 
4037   // Set the resume value for this reduction
4038   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4039 
4040   // Now, we need to fix the users of the reduction variable
4041   // inside and outside of the scalar remainder loop.
4042 
4043   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4044   // in the exit blocks.  See comment on analogous loop in
4045   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4046   if (!Cost->requiresScalarEpilogue(VF))
4047     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4048       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4049         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4050 
4051   // Fix the scalar loop reduction variable with the incoming reduction sum
4052   // from the vector body and from the backedge value.
4053   int IncomingEdgeBlockIdx =
4054       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4055   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4056   // Pick the other block.
4057   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4058   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4059   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4060 }
4061 
4062 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4063                                                   VPTransformState &State) {
4064   RecurKind RK = RdxDesc.getRecurrenceKind();
4065   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4066     return;
4067 
4068   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4069   assert(LoopExitInstr && "null loop exit instruction");
4070   SmallVector<Instruction *, 8> Worklist;
4071   SmallPtrSet<Instruction *, 8> Visited;
4072   Worklist.push_back(LoopExitInstr);
4073   Visited.insert(LoopExitInstr);
4074 
4075   while (!Worklist.empty()) {
4076     Instruction *Cur = Worklist.pop_back_val();
4077     if (isa<OverflowingBinaryOperator>(Cur))
4078       for (unsigned Part = 0; Part < UF; ++Part) {
4079         // FIXME: Should not rely on getVPValue at this point.
4080         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4081         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4082       }
4083 
4084     for (User *U : Cur->users()) {
4085       Instruction *UI = cast<Instruction>(U);
4086       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4087           Visited.insert(UI).second)
4088         Worklist.push_back(UI);
4089     }
4090   }
4091 }
4092 
4093 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4094   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4095     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4096       // Some phis were already hand updated by the reduction and recurrence
4097       // code above, leave them alone.
4098       continue;
4099 
4100     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4101     // Non-instruction incoming values will have only one value.
4102 
4103     VPLane Lane = VPLane::getFirstLane();
4104     if (isa<Instruction>(IncomingValue) &&
4105         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4106                                            VF))
4107       Lane = VPLane::getLastLaneForVF(VF);
4108 
4109     // Can be a loop invariant incoming value or the last scalar value to be
4110     // extracted from the vectorized loop.
4111     // FIXME: Should not rely on getVPValue at this point.
4112     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4113     Value *lastIncomingValue =
4114         OrigLoop->isLoopInvariant(IncomingValue)
4115             ? IncomingValue
4116             : State.get(State.Plan->getVPValue(IncomingValue, true),
4117                         VPIteration(UF - 1, Lane));
4118     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4119   }
4120 }
4121 
4122 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4123   // The basic block and loop containing the predicated instruction.
4124   auto *PredBB = PredInst->getParent();
4125   auto *VectorLoop = LI->getLoopFor(PredBB);
4126 
4127   // Initialize a worklist with the operands of the predicated instruction.
4128   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4129 
4130   // Holds instructions that we need to analyze again. An instruction may be
4131   // reanalyzed if we don't yet know if we can sink it or not.
4132   SmallVector<Instruction *, 8> InstsToReanalyze;
4133 
4134   // Returns true if a given use occurs in the predicated block. Phi nodes use
4135   // their operands in their corresponding predecessor blocks.
4136   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4137     auto *I = cast<Instruction>(U.getUser());
4138     BasicBlock *BB = I->getParent();
4139     if (auto *Phi = dyn_cast<PHINode>(I))
4140       BB = Phi->getIncomingBlock(
4141           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4142     return BB == PredBB;
4143   };
4144 
4145   // Iteratively sink the scalarized operands of the predicated instruction
4146   // into the block we created for it. When an instruction is sunk, it's
4147   // operands are then added to the worklist. The algorithm ends after one pass
4148   // through the worklist doesn't sink a single instruction.
4149   bool Changed;
4150   do {
4151     // Add the instructions that need to be reanalyzed to the worklist, and
4152     // reset the changed indicator.
4153     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4154     InstsToReanalyze.clear();
4155     Changed = false;
4156 
4157     while (!Worklist.empty()) {
4158       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4159 
4160       // We can't sink an instruction if it is a phi node, is not in the loop,
4161       // or may have side effects.
4162       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4163           I->mayHaveSideEffects())
4164         continue;
4165 
4166       // If the instruction is already in PredBB, check if we can sink its
4167       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4168       // sinking the scalar instruction I, hence it appears in PredBB; but it
4169       // may have failed to sink I's operands (recursively), which we try
4170       // (again) here.
4171       if (I->getParent() == PredBB) {
4172         Worklist.insert(I->op_begin(), I->op_end());
4173         continue;
4174       }
4175 
4176       // It's legal to sink the instruction if all its uses occur in the
4177       // predicated block. Otherwise, there's nothing to do yet, and we may
4178       // need to reanalyze the instruction.
4179       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4180         InstsToReanalyze.push_back(I);
4181         continue;
4182       }
4183 
4184       // Move the instruction to the beginning of the predicated block, and add
4185       // it's operands to the worklist.
4186       I->moveBefore(&*PredBB->getFirstInsertionPt());
4187       Worklist.insert(I->op_begin(), I->op_end());
4188 
4189       // The sinking may have enabled other instructions to be sunk, so we will
4190       // need to iterate.
4191       Changed = true;
4192     }
4193   } while (Changed);
4194 }
4195 
4196 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4197   for (PHINode *OrigPhi : OrigPHIsToFix) {
4198     VPWidenPHIRecipe *VPPhi =
4199         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4200     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4201     // Make sure the builder has a valid insert point.
4202     Builder.SetInsertPoint(NewPhi);
4203     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4204       VPValue *Inc = VPPhi->getIncomingValue(i);
4205       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4206       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4207     }
4208   }
4209 }
4210 
4211 bool InnerLoopVectorizer::useOrderedReductions(
4212     const RecurrenceDescriptor &RdxDesc) {
4213   return Cost->useOrderedReductions(RdxDesc);
4214 }
4215 
4216 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4217                                               VPWidenPHIRecipe *PhiR,
4218                                               VPTransformState &State) {
4219   assert(EnableVPlanNativePath &&
4220          "Non-native vplans are not expected to have VPWidenPHIRecipes.");
4221   // Currently we enter here in the VPlan-native path for non-induction
4222   // PHIs where all control flow is uniform. We simply widen these PHIs.
4223   // Create a vector phi with no operands - the vector phi operands will be
4224   // set at the end of vector code generation.
4225   Type *VecTy = (State.VF.isScalar())
4226                     ? PN->getType()
4227                     : VectorType::get(PN->getType(), State.VF);
4228   Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4229   State.set(PhiR, VecPhi, 0);
4230   OrigPHIsToFix.push_back(cast<PHINode>(PN));
4231 }
4232 
4233 /// A helper function for checking whether an integer division-related
4234 /// instruction may divide by zero (in which case it must be predicated if
4235 /// executed conditionally in the scalar code).
4236 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4237 /// Non-zero divisors that are non compile-time constants will not be
4238 /// converted into multiplication, so we will still end up scalarizing
4239 /// the division, but can do so w/o predication.
4240 static bool mayDivideByZero(Instruction &I) {
4241   assert((I.getOpcode() == Instruction::UDiv ||
4242           I.getOpcode() == Instruction::SDiv ||
4243           I.getOpcode() == Instruction::URem ||
4244           I.getOpcode() == Instruction::SRem) &&
4245          "Unexpected instruction");
4246   Value *Divisor = I.getOperand(1);
4247   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4248   return !CInt || CInt->isZero();
4249 }
4250 
4251 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4252                                                VPUser &ArgOperands,
4253                                                VPTransformState &State) {
4254   assert(!isa<DbgInfoIntrinsic>(I) &&
4255          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4256   setDebugLocFromInst(&I);
4257 
4258   Module *M = I.getParent()->getParent()->getParent();
4259   auto *CI = cast<CallInst>(&I);
4260 
4261   SmallVector<Type *, 4> Tys;
4262   for (Value *ArgOperand : CI->args())
4263     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4264 
4265   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4266 
4267   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4268   // version of the instruction.
4269   // Is it beneficial to perform intrinsic call compared to lib call?
4270   bool NeedToScalarize = false;
4271   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4272   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4273   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4274   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4275          "Instruction should be scalarized elsewhere.");
4276   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4277          "Either the intrinsic cost or vector call cost must be valid");
4278 
4279   for (unsigned Part = 0; Part < UF; ++Part) {
4280     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4281     SmallVector<Value *, 4> Args;
4282     for (auto &I : enumerate(ArgOperands.operands())) {
4283       // Some intrinsics have a scalar argument - don't replace it with a
4284       // vector.
4285       Value *Arg;
4286       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4287         Arg = State.get(I.value(), Part);
4288       else {
4289         Arg = State.get(I.value(), VPIteration(0, 0));
4290         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4291           TysForDecl.push_back(Arg->getType());
4292       }
4293       Args.push_back(Arg);
4294     }
4295 
4296     Function *VectorF;
4297     if (UseVectorIntrinsic) {
4298       // Use vector version of the intrinsic.
4299       if (VF.isVector())
4300         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4301       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4302       assert(VectorF && "Can't retrieve vector intrinsic.");
4303     } else {
4304       // Use vector version of the function call.
4305       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4306 #ifndef NDEBUG
4307       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4308              "Can't create vector function.");
4309 #endif
4310         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4311     }
4312       SmallVector<OperandBundleDef, 1> OpBundles;
4313       CI->getOperandBundlesAsDefs(OpBundles);
4314       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4315 
4316       if (isa<FPMathOperator>(V))
4317         V->copyFastMathFlags(CI);
4318 
4319       State.set(Def, V, Part);
4320       addMetadata(V, &I);
4321   }
4322 }
4323 
4324 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4325   // We should not collect Scalars more than once per VF. Right now, this
4326   // function is called from collectUniformsAndScalars(), which already does
4327   // this check. Collecting Scalars for VF=1 does not make any sense.
4328   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4329          "This function should not be visited twice for the same VF");
4330 
4331   // This avoids any chances of creating a REPLICATE recipe during planning
4332   // since that would result in generation of scalarized code during execution,
4333   // which is not supported for scalable vectors.
4334   if (VF.isScalable()) {
4335     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4336     return;
4337   }
4338 
4339   SmallSetVector<Instruction *, 8> Worklist;
4340 
4341   // These sets are used to seed the analysis with pointers used by memory
4342   // accesses that will remain scalar.
4343   SmallSetVector<Instruction *, 8> ScalarPtrs;
4344   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4345   auto *Latch = TheLoop->getLoopLatch();
4346 
4347   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4348   // The pointer operands of loads and stores will be scalar as long as the
4349   // memory access is not a gather or scatter operation. The value operand of a
4350   // store will remain scalar if the store is scalarized.
4351   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4352     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4353     assert(WideningDecision != CM_Unknown &&
4354            "Widening decision should be ready at this moment");
4355     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4356       if (Ptr == Store->getValueOperand())
4357         return WideningDecision == CM_Scalarize;
4358     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4359            "Ptr is neither a value or pointer operand");
4360     return WideningDecision != CM_GatherScatter;
4361   };
4362 
4363   // A helper that returns true if the given value is a bitcast or
4364   // getelementptr instruction contained in the loop.
4365   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4366     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4367             isa<GetElementPtrInst>(V)) &&
4368            !TheLoop->isLoopInvariant(V);
4369   };
4370 
4371   // A helper that evaluates a memory access's use of a pointer. If the use will
4372   // be a scalar use and the pointer is only used by memory accesses, we place
4373   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4374   // PossibleNonScalarPtrs.
4375   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4376     // We only care about bitcast and getelementptr instructions contained in
4377     // the loop.
4378     if (!isLoopVaryingBitCastOrGEP(Ptr))
4379       return;
4380 
4381     // If the pointer has already been identified as scalar (e.g., if it was
4382     // also identified as uniform), there's nothing to do.
4383     auto *I = cast<Instruction>(Ptr);
4384     if (Worklist.count(I))
4385       return;
4386 
4387     // If the use of the pointer will be a scalar use, and all users of the
4388     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4389     // place the pointer in PossibleNonScalarPtrs.
4390     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4391           return isa<LoadInst>(U) || isa<StoreInst>(U);
4392         }))
4393       ScalarPtrs.insert(I);
4394     else
4395       PossibleNonScalarPtrs.insert(I);
4396   };
4397 
4398   // We seed the scalars analysis with three classes of instructions: (1)
4399   // instructions marked uniform-after-vectorization and (2) bitcast,
4400   // getelementptr and (pointer) phi instructions used by memory accesses
4401   // requiring a scalar use.
4402   //
4403   // (1) Add to the worklist all instructions that have been identified as
4404   // uniform-after-vectorization.
4405   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4406 
4407   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4408   // memory accesses requiring a scalar use. The pointer operands of loads and
4409   // stores will be scalar as long as the memory accesses is not a gather or
4410   // scatter operation. The value operand of a store will remain scalar if the
4411   // store is scalarized.
4412   for (auto *BB : TheLoop->blocks())
4413     for (auto &I : *BB) {
4414       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4415         evaluatePtrUse(Load, Load->getPointerOperand());
4416       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4417         evaluatePtrUse(Store, Store->getPointerOperand());
4418         evaluatePtrUse(Store, Store->getValueOperand());
4419       }
4420     }
4421   for (auto *I : ScalarPtrs)
4422     if (!PossibleNonScalarPtrs.count(I)) {
4423       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4424       Worklist.insert(I);
4425     }
4426 
4427   // Insert the forced scalars.
4428   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4429   // induction variable when the PHI user is scalarized.
4430   auto ForcedScalar = ForcedScalars.find(VF);
4431   if (ForcedScalar != ForcedScalars.end())
4432     for (auto *I : ForcedScalar->second)
4433       Worklist.insert(I);
4434 
4435   // Expand the worklist by looking through any bitcasts and getelementptr
4436   // instructions we've already identified as scalar. This is similar to the
4437   // expansion step in collectLoopUniforms(); however, here we're only
4438   // expanding to include additional bitcasts and getelementptr instructions.
4439   unsigned Idx = 0;
4440   while (Idx != Worklist.size()) {
4441     Instruction *Dst = Worklist[Idx++];
4442     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4443       continue;
4444     auto *Src = cast<Instruction>(Dst->getOperand(0));
4445     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4446           auto *J = cast<Instruction>(U);
4447           return !TheLoop->contains(J) || Worklist.count(J) ||
4448                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4449                   isScalarUse(J, Src));
4450         })) {
4451       Worklist.insert(Src);
4452       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4453     }
4454   }
4455 
4456   // An induction variable will remain scalar if all users of the induction
4457   // variable and induction variable update remain scalar.
4458   for (auto &Induction : Legal->getInductionVars()) {
4459     auto *Ind = Induction.first;
4460     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4461 
4462     // If tail-folding is applied, the primary induction variable will be used
4463     // to feed a vector compare.
4464     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4465       continue;
4466 
4467     // Returns true if \p Indvar is a pointer induction that is used directly by
4468     // load/store instruction \p I.
4469     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4470                                               Instruction *I) {
4471       return Induction.second.getKind() ==
4472                  InductionDescriptor::IK_PtrInduction &&
4473              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4474              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4475     };
4476 
4477     // Determine if all users of the induction variable are scalar after
4478     // vectorization.
4479     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4480       auto *I = cast<Instruction>(U);
4481       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4482              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4483     });
4484     if (!ScalarInd)
4485       continue;
4486 
4487     // Determine if all users of the induction variable update instruction are
4488     // scalar after vectorization.
4489     auto ScalarIndUpdate =
4490         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4491           auto *I = cast<Instruction>(U);
4492           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4493                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4494         });
4495     if (!ScalarIndUpdate)
4496       continue;
4497 
4498     // The induction variable and its update instruction will remain scalar.
4499     Worklist.insert(Ind);
4500     Worklist.insert(IndUpdate);
4501     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4502     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4503                       << "\n");
4504   }
4505 
4506   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4507 }
4508 
4509 bool LoopVectorizationCostModel::isScalarWithPredication(
4510     Instruction *I, ElementCount VF) const {
4511   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4512     return false;
4513   switch(I->getOpcode()) {
4514   default:
4515     break;
4516   case Instruction::Load:
4517   case Instruction::Store: {
4518     if (!Legal->isMaskRequired(I))
4519       return false;
4520     auto *Ptr = getLoadStorePointerOperand(I);
4521     auto *Ty = getLoadStoreType(I);
4522     Type *VTy = Ty;
4523     if (VF.isVector())
4524       VTy = VectorType::get(Ty, VF);
4525     const Align Alignment = getLoadStoreAlignment(I);
4526     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4527                                 TTI.isLegalMaskedGather(VTy, Alignment))
4528                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4529                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4530   }
4531   case Instruction::UDiv:
4532   case Instruction::SDiv:
4533   case Instruction::SRem:
4534   case Instruction::URem:
4535     return mayDivideByZero(*I);
4536   }
4537   return false;
4538 }
4539 
4540 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4541     Instruction *I, ElementCount VF) {
4542   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4543   assert(getWideningDecision(I, VF) == CM_Unknown &&
4544          "Decision should not be set yet.");
4545   auto *Group = getInterleavedAccessGroup(I);
4546   assert(Group && "Must have a group.");
4547 
4548   // If the instruction's allocated size doesn't equal it's type size, it
4549   // requires padding and will be scalarized.
4550   auto &DL = I->getModule()->getDataLayout();
4551   auto *ScalarTy = getLoadStoreType(I);
4552   if (hasIrregularType(ScalarTy, DL))
4553     return false;
4554 
4555   // Check if masking is required.
4556   // A Group may need masking for one of two reasons: it resides in a block that
4557   // needs predication, or it was decided to use masking to deal with gaps
4558   // (either a gap at the end of a load-access that may result in a speculative
4559   // load, or any gaps in a store-access).
4560   bool PredicatedAccessRequiresMasking =
4561       blockNeedsPredicationForAnyReason(I->getParent()) &&
4562       Legal->isMaskRequired(I);
4563   bool LoadAccessWithGapsRequiresEpilogMasking =
4564       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4565       !isScalarEpilogueAllowed();
4566   bool StoreAccessWithGapsRequiresMasking =
4567       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4568   if (!PredicatedAccessRequiresMasking &&
4569       !LoadAccessWithGapsRequiresEpilogMasking &&
4570       !StoreAccessWithGapsRequiresMasking)
4571     return true;
4572 
4573   // If masked interleaving is required, we expect that the user/target had
4574   // enabled it, because otherwise it either wouldn't have been created or
4575   // it should have been invalidated by the CostModel.
4576   assert(useMaskedInterleavedAccesses(TTI) &&
4577          "Masked interleave-groups for predicated accesses are not enabled.");
4578 
4579   if (Group->isReverse())
4580     return false;
4581 
4582   auto *Ty = getLoadStoreType(I);
4583   const Align Alignment = getLoadStoreAlignment(I);
4584   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4585                           : TTI.isLegalMaskedStore(Ty, Alignment);
4586 }
4587 
4588 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4589     Instruction *I, ElementCount VF) {
4590   // Get and ensure we have a valid memory instruction.
4591   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4592 
4593   auto *Ptr = getLoadStorePointerOperand(I);
4594   auto *ScalarTy = getLoadStoreType(I);
4595 
4596   // In order to be widened, the pointer should be consecutive, first of all.
4597   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4598     return false;
4599 
4600   // If the instruction is a store located in a predicated block, it will be
4601   // scalarized.
4602   if (isScalarWithPredication(I, VF))
4603     return false;
4604 
4605   // If the instruction's allocated size doesn't equal it's type size, it
4606   // requires padding and will be scalarized.
4607   auto &DL = I->getModule()->getDataLayout();
4608   if (hasIrregularType(ScalarTy, DL))
4609     return false;
4610 
4611   return true;
4612 }
4613 
4614 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4615   // We should not collect Uniforms more than once per VF. Right now,
4616   // this function is called from collectUniformsAndScalars(), which
4617   // already does this check. Collecting Uniforms for VF=1 does not make any
4618   // sense.
4619 
4620   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4621          "This function should not be visited twice for the same VF");
4622 
4623   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4624   // not analyze again.  Uniforms.count(VF) will return 1.
4625   Uniforms[VF].clear();
4626 
4627   // We now know that the loop is vectorizable!
4628   // Collect instructions inside the loop that will remain uniform after
4629   // vectorization.
4630 
4631   // Global values, params and instructions outside of current loop are out of
4632   // scope.
4633   auto isOutOfScope = [&](Value *V) -> bool {
4634     Instruction *I = dyn_cast<Instruction>(V);
4635     return (!I || !TheLoop->contains(I));
4636   };
4637 
4638   // Worklist containing uniform instructions demanding lane 0.
4639   SetVector<Instruction *> Worklist;
4640   BasicBlock *Latch = TheLoop->getLoopLatch();
4641 
4642   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4643   // that are scalar with predication must not be considered uniform after
4644   // vectorization, because that would create an erroneous replicating region
4645   // where only a single instance out of VF should be formed.
4646   // TODO: optimize such seldom cases if found important, see PR40816.
4647   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4648     if (isOutOfScope(I)) {
4649       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4650                         << *I << "\n");
4651       return;
4652     }
4653     if (isScalarWithPredication(I, VF)) {
4654       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4655                         << *I << "\n");
4656       return;
4657     }
4658     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4659     Worklist.insert(I);
4660   };
4661 
4662   // Start with the conditional branch. If the branch condition is an
4663   // instruction contained in the loop that is only used by the branch, it is
4664   // uniform.
4665   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4666   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4667     addToWorklistIfAllowed(Cmp);
4668 
4669   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4670     InstWidening WideningDecision = getWideningDecision(I, VF);
4671     assert(WideningDecision != CM_Unknown &&
4672            "Widening decision should be ready at this moment");
4673 
4674     // A uniform memory op is itself uniform.  We exclude uniform stores
4675     // here as they demand the last lane, not the first one.
4676     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4677       assert(WideningDecision == CM_Scalarize);
4678       return true;
4679     }
4680 
4681     return (WideningDecision == CM_Widen ||
4682             WideningDecision == CM_Widen_Reverse ||
4683             WideningDecision == CM_Interleave);
4684   };
4685 
4686 
4687   // Returns true if Ptr is the pointer operand of a memory access instruction
4688   // I, and I is known to not require scalarization.
4689   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4690     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4691   };
4692 
4693   // Holds a list of values which are known to have at least one uniform use.
4694   // Note that there may be other uses which aren't uniform.  A "uniform use"
4695   // here is something which only demands lane 0 of the unrolled iterations;
4696   // it does not imply that all lanes produce the same value (e.g. this is not
4697   // the usual meaning of uniform)
4698   SetVector<Value *> HasUniformUse;
4699 
4700   // Scan the loop for instructions which are either a) known to have only
4701   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4702   for (auto *BB : TheLoop->blocks())
4703     for (auto &I : *BB) {
4704       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4705         switch (II->getIntrinsicID()) {
4706         case Intrinsic::sideeffect:
4707         case Intrinsic::experimental_noalias_scope_decl:
4708         case Intrinsic::assume:
4709         case Intrinsic::lifetime_start:
4710         case Intrinsic::lifetime_end:
4711           if (TheLoop->hasLoopInvariantOperands(&I))
4712             addToWorklistIfAllowed(&I);
4713           break;
4714         default:
4715           break;
4716         }
4717       }
4718 
4719       // ExtractValue instructions must be uniform, because the operands are
4720       // known to be loop-invariant.
4721       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4722         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4723                "Expected aggregate value to be loop invariant");
4724         addToWorklistIfAllowed(EVI);
4725         continue;
4726       }
4727 
4728       // If there's no pointer operand, there's nothing to do.
4729       auto *Ptr = getLoadStorePointerOperand(&I);
4730       if (!Ptr)
4731         continue;
4732 
4733       // A uniform memory op is itself uniform.  We exclude uniform stores
4734       // here as they demand the last lane, not the first one.
4735       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4736         addToWorklistIfAllowed(&I);
4737 
4738       if (isUniformDecision(&I, VF)) {
4739         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4740         HasUniformUse.insert(Ptr);
4741       }
4742     }
4743 
4744   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4745   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4746   // disallows uses outside the loop as well.
4747   for (auto *V : HasUniformUse) {
4748     if (isOutOfScope(V))
4749       continue;
4750     auto *I = cast<Instruction>(V);
4751     auto UsersAreMemAccesses =
4752       llvm::all_of(I->users(), [&](User *U) -> bool {
4753         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4754       });
4755     if (UsersAreMemAccesses)
4756       addToWorklistIfAllowed(I);
4757   }
4758 
4759   // Expand Worklist in topological order: whenever a new instruction
4760   // is added , its users should be already inside Worklist.  It ensures
4761   // a uniform instruction will only be used by uniform instructions.
4762   unsigned idx = 0;
4763   while (idx != Worklist.size()) {
4764     Instruction *I = Worklist[idx++];
4765 
4766     for (auto OV : I->operand_values()) {
4767       // isOutOfScope operands cannot be uniform instructions.
4768       if (isOutOfScope(OV))
4769         continue;
4770       // First order recurrence Phi's should typically be considered
4771       // non-uniform.
4772       auto *OP = dyn_cast<PHINode>(OV);
4773       if (OP && Legal->isFirstOrderRecurrence(OP))
4774         continue;
4775       // If all the users of the operand are uniform, then add the
4776       // operand into the uniform worklist.
4777       auto *OI = cast<Instruction>(OV);
4778       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4779             auto *J = cast<Instruction>(U);
4780             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4781           }))
4782         addToWorklistIfAllowed(OI);
4783     }
4784   }
4785 
4786   // For an instruction to be added into Worklist above, all its users inside
4787   // the loop should also be in Worklist. However, this condition cannot be
4788   // true for phi nodes that form a cyclic dependence. We must process phi
4789   // nodes separately. An induction variable will remain uniform if all users
4790   // of the induction variable and induction variable update remain uniform.
4791   // The code below handles both pointer and non-pointer induction variables.
4792   for (auto &Induction : Legal->getInductionVars()) {
4793     auto *Ind = Induction.first;
4794     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4795 
4796     // Determine if all users of the induction variable are uniform after
4797     // vectorization.
4798     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4799       auto *I = cast<Instruction>(U);
4800       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4801              isVectorizedMemAccessUse(I, Ind);
4802     });
4803     if (!UniformInd)
4804       continue;
4805 
4806     // Determine if all users of the induction variable update instruction are
4807     // uniform after vectorization.
4808     auto UniformIndUpdate =
4809         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4810           auto *I = cast<Instruction>(U);
4811           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4812                  isVectorizedMemAccessUse(I, IndUpdate);
4813         });
4814     if (!UniformIndUpdate)
4815       continue;
4816 
4817     // The induction variable and its update instruction will remain uniform.
4818     addToWorklistIfAllowed(Ind);
4819     addToWorklistIfAllowed(IndUpdate);
4820   }
4821 
4822   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4823 }
4824 
4825 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4826   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4827 
4828   if (Legal->getRuntimePointerChecking()->Need) {
4829     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4830         "runtime pointer checks needed. Enable vectorization of this "
4831         "loop with '#pragma clang loop vectorize(enable)' when "
4832         "compiling with -Os/-Oz",
4833         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4834     return true;
4835   }
4836 
4837   if (!PSE.getPredicate().isAlwaysTrue()) {
4838     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4839         "runtime SCEV checks needed. Enable vectorization of this "
4840         "loop with '#pragma clang loop vectorize(enable)' when "
4841         "compiling with -Os/-Oz",
4842         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4843     return true;
4844   }
4845 
4846   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4847   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4848     reportVectorizationFailure("Runtime stride check for small trip count",
4849         "runtime stride == 1 checks needed. Enable vectorization of "
4850         "this loop without such check by compiling with -Os/-Oz",
4851         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4852     return true;
4853   }
4854 
4855   return false;
4856 }
4857 
4858 ElementCount
4859 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4860   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4861     return ElementCount::getScalable(0);
4862 
4863   if (Hints->isScalableVectorizationDisabled()) {
4864     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4865                             "ScalableVectorizationDisabled", ORE, TheLoop);
4866     return ElementCount::getScalable(0);
4867   }
4868 
4869   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4870 
4871   auto MaxScalableVF = ElementCount::getScalable(
4872       std::numeric_limits<ElementCount::ScalarTy>::max());
4873 
4874   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4875   // FIXME: While for scalable vectors this is currently sufficient, this should
4876   // be replaced by a more detailed mechanism that filters out specific VFs,
4877   // instead of invalidating vectorization for a whole set of VFs based on the
4878   // MaxVF.
4879 
4880   // Disable scalable vectorization if the loop contains unsupported reductions.
4881   if (!canVectorizeReductions(MaxScalableVF)) {
4882     reportVectorizationInfo(
4883         "Scalable vectorization not supported for the reduction "
4884         "operations found in this loop.",
4885         "ScalableVFUnfeasible", ORE, TheLoop);
4886     return ElementCount::getScalable(0);
4887   }
4888 
4889   // Disable scalable vectorization if the loop contains any instructions
4890   // with element types not supported for scalable vectors.
4891   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4892         return !Ty->isVoidTy() &&
4893                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4894       })) {
4895     reportVectorizationInfo("Scalable vectorization is not supported "
4896                             "for all element types found in this loop.",
4897                             "ScalableVFUnfeasible", ORE, TheLoop);
4898     return ElementCount::getScalable(0);
4899   }
4900 
4901   if (Legal->isSafeForAnyVectorWidth())
4902     return MaxScalableVF;
4903 
4904   // Limit MaxScalableVF by the maximum safe dependence distance.
4905   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4906   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4907     MaxVScale =
4908         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4909   MaxScalableVF = ElementCount::getScalable(
4910       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4911   if (!MaxScalableVF)
4912     reportVectorizationInfo(
4913         "Max legal vector width too small, scalable vectorization "
4914         "unfeasible.",
4915         "ScalableVFUnfeasible", ORE, TheLoop);
4916 
4917   return MaxScalableVF;
4918 }
4919 
4920 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4921     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4922   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4923   unsigned SmallestType, WidestType;
4924   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4925 
4926   // Get the maximum safe dependence distance in bits computed by LAA.
4927   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4928   // the memory accesses that is most restrictive (involved in the smallest
4929   // dependence distance).
4930   unsigned MaxSafeElements =
4931       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4932 
4933   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4934   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4935 
4936   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4937                     << ".\n");
4938   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4939                     << ".\n");
4940 
4941   // First analyze the UserVF, fall back if the UserVF should be ignored.
4942   if (UserVF) {
4943     auto MaxSafeUserVF =
4944         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4945 
4946     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4947       // If `VF=vscale x N` is safe, then so is `VF=N`
4948       if (UserVF.isScalable())
4949         return FixedScalableVFPair(
4950             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4951       else
4952         return UserVF;
4953     }
4954 
4955     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4956 
4957     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4958     // is better to ignore the hint and let the compiler choose a suitable VF.
4959     if (!UserVF.isScalable()) {
4960       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4961                         << " is unsafe, clamping to max safe VF="
4962                         << MaxSafeFixedVF << ".\n");
4963       ORE->emit([&]() {
4964         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4965                                           TheLoop->getStartLoc(),
4966                                           TheLoop->getHeader())
4967                << "User-specified vectorization factor "
4968                << ore::NV("UserVectorizationFactor", UserVF)
4969                << " is unsafe, clamping to maximum safe vectorization factor "
4970                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4971       });
4972       return MaxSafeFixedVF;
4973     }
4974 
4975     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4976       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4977                         << " is ignored because scalable vectors are not "
4978                            "available.\n");
4979       ORE->emit([&]() {
4980         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4981                                           TheLoop->getStartLoc(),
4982                                           TheLoop->getHeader())
4983                << "User-specified vectorization factor "
4984                << ore::NV("UserVectorizationFactor", UserVF)
4985                << " is ignored because the target does not support scalable "
4986                   "vectors. The compiler will pick a more suitable value.";
4987       });
4988     } else {
4989       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4990                         << " is unsafe. Ignoring scalable UserVF.\n");
4991       ORE->emit([&]() {
4992         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4993                                           TheLoop->getStartLoc(),
4994                                           TheLoop->getHeader())
4995                << "User-specified vectorization factor "
4996                << ore::NV("UserVectorizationFactor", UserVF)
4997                << " is unsafe. Ignoring the hint to let the compiler pick a "
4998                   "more suitable value.";
4999       });
5000     }
5001   }
5002 
5003   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5004                     << " / " << WidestType << " bits.\n");
5005 
5006   FixedScalableVFPair Result(ElementCount::getFixed(1),
5007                              ElementCount::getScalable(0));
5008   if (auto MaxVF =
5009           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5010                                   MaxSafeFixedVF, FoldTailByMasking))
5011     Result.FixedVF = MaxVF;
5012 
5013   if (auto MaxVF =
5014           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5015                                   MaxSafeScalableVF, FoldTailByMasking))
5016     if (MaxVF.isScalable()) {
5017       Result.ScalableVF = MaxVF;
5018       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5019                         << "\n");
5020     }
5021 
5022   return Result;
5023 }
5024 
5025 FixedScalableVFPair
5026 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5027   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5028     // TODO: It may by useful to do since it's still likely to be dynamically
5029     // uniform if the target can skip.
5030     reportVectorizationFailure(
5031         "Not inserting runtime ptr check for divergent target",
5032         "runtime pointer checks needed. Not enabled for divergent target",
5033         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5034     return FixedScalableVFPair::getNone();
5035   }
5036 
5037   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5038   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5039   if (TC == 1) {
5040     reportVectorizationFailure("Single iteration (non) loop",
5041         "loop trip count is one, irrelevant for vectorization",
5042         "SingleIterationLoop", ORE, TheLoop);
5043     return FixedScalableVFPair::getNone();
5044   }
5045 
5046   switch (ScalarEpilogueStatus) {
5047   case CM_ScalarEpilogueAllowed:
5048     return computeFeasibleMaxVF(TC, UserVF, false);
5049   case CM_ScalarEpilogueNotAllowedUsePredicate:
5050     LLVM_FALLTHROUGH;
5051   case CM_ScalarEpilogueNotNeededUsePredicate:
5052     LLVM_DEBUG(
5053         dbgs() << "LV: vector predicate hint/switch found.\n"
5054                << "LV: Not allowing scalar epilogue, creating predicated "
5055                << "vector loop.\n");
5056     break;
5057   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5058     // fallthrough as a special case of OptForSize
5059   case CM_ScalarEpilogueNotAllowedOptSize:
5060     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5061       LLVM_DEBUG(
5062           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5063     else
5064       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5065                         << "count.\n");
5066 
5067     // Bail if runtime checks are required, which are not good when optimising
5068     // for size.
5069     if (runtimeChecksRequired())
5070       return FixedScalableVFPair::getNone();
5071 
5072     break;
5073   }
5074 
5075   // The only loops we can vectorize without a scalar epilogue, are loops with
5076   // a bottom-test and a single exiting block. We'd have to handle the fact
5077   // that not every instruction executes on the last iteration.  This will
5078   // require a lane mask which varies through the vector loop body.  (TODO)
5079   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5080     // If there was a tail-folding hint/switch, but we can't fold the tail by
5081     // masking, fallback to a vectorization with a scalar epilogue.
5082     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5083       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5084                            "scalar epilogue instead.\n");
5085       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5086       return computeFeasibleMaxVF(TC, UserVF, false);
5087     }
5088     return FixedScalableVFPair::getNone();
5089   }
5090 
5091   // Now try the tail folding
5092 
5093   // Invalidate interleave groups that require an epilogue if we can't mask
5094   // the interleave-group.
5095   if (!useMaskedInterleavedAccesses(TTI)) {
5096     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5097            "No decisions should have been taken at this point");
5098     // Note: There is no need to invalidate any cost modeling decisions here, as
5099     // non where taken so far.
5100     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5101   }
5102 
5103   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5104   // Avoid tail folding if the trip count is known to be a multiple of any VF
5105   // we chose.
5106   // FIXME: The condition below pessimises the case for fixed-width vectors,
5107   // when scalable VFs are also candidates for vectorization.
5108   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5109     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5110     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5111            "MaxFixedVF must be a power of 2");
5112     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5113                                    : MaxFixedVF.getFixedValue();
5114     ScalarEvolution *SE = PSE.getSE();
5115     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5116     const SCEV *ExitCount = SE->getAddExpr(
5117         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5118     const SCEV *Rem = SE->getURemExpr(
5119         SE->applyLoopGuards(ExitCount, TheLoop),
5120         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5121     if (Rem->isZero()) {
5122       // Accept MaxFixedVF if we do not have a tail.
5123       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5124       return MaxFactors;
5125     }
5126   }
5127 
5128   // For scalable vectors don't use tail folding for low trip counts or
5129   // optimizing for code size. We only permit this if the user has explicitly
5130   // requested it.
5131   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5132       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5133       MaxFactors.ScalableVF.isVector())
5134     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5135 
5136   // If we don't know the precise trip count, or if the trip count that we
5137   // found modulo the vectorization factor is not zero, try to fold the tail
5138   // by masking.
5139   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5140   if (Legal->prepareToFoldTailByMasking()) {
5141     FoldTailByMasking = true;
5142     return MaxFactors;
5143   }
5144 
5145   // If there was a tail-folding hint/switch, but we can't fold the tail by
5146   // masking, fallback to a vectorization with a scalar epilogue.
5147   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5148     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5149                          "scalar epilogue instead.\n");
5150     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5151     return MaxFactors;
5152   }
5153 
5154   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5155     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5156     return FixedScalableVFPair::getNone();
5157   }
5158 
5159   if (TC == 0) {
5160     reportVectorizationFailure(
5161         "Unable to calculate the loop count due to complex control flow",
5162         "unable to calculate the loop count due to complex control flow",
5163         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5164     return FixedScalableVFPair::getNone();
5165   }
5166 
5167   reportVectorizationFailure(
5168       "Cannot optimize for size and vectorize at the same time.",
5169       "cannot optimize for size and vectorize at the same time. "
5170       "Enable vectorization of this loop with '#pragma clang loop "
5171       "vectorize(enable)' when compiling with -Os/-Oz",
5172       "NoTailLoopWithOptForSize", ORE, TheLoop);
5173   return FixedScalableVFPair::getNone();
5174 }
5175 
5176 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5177     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5178     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5179   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5180   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5181       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5182                            : TargetTransformInfo::RGK_FixedWidthVector);
5183 
5184   // Convenience function to return the minimum of two ElementCounts.
5185   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5186     assert((LHS.isScalable() == RHS.isScalable()) &&
5187            "Scalable flags must match");
5188     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5189   };
5190 
5191   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5192   // Note that both WidestRegister and WidestType may not be a powers of 2.
5193   auto MaxVectorElementCount = ElementCount::get(
5194       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5195       ComputeScalableMaxVF);
5196   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5197   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5198                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5199 
5200   if (!MaxVectorElementCount) {
5201     LLVM_DEBUG(dbgs() << "LV: The target has no "
5202                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5203                       << " vector registers.\n");
5204     return ElementCount::getFixed(1);
5205   }
5206 
5207   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5208   if (ConstTripCount &&
5209       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5210       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5211     // If loop trip count (TC) is known at compile time there is no point in
5212     // choosing VF greater than TC (as done in the loop below). Select maximum
5213     // power of two which doesn't exceed TC.
5214     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5215     // when the TC is less than or equal to the known number of lanes.
5216     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5217     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5218                          "exceeding the constant trip count: "
5219                       << ClampedConstTripCount << "\n");
5220     return ElementCount::getFixed(ClampedConstTripCount);
5221   }
5222 
5223   ElementCount MaxVF = MaxVectorElementCount;
5224   if (TTI.shouldMaximizeVectorBandwidth() ||
5225       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5226     auto MaxVectorElementCountMaxBW = ElementCount::get(
5227         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5228         ComputeScalableMaxVF);
5229     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5230 
5231     // Collect all viable vectorization factors larger than the default MaxVF
5232     // (i.e. MaxVectorElementCount).
5233     SmallVector<ElementCount, 8> VFs;
5234     for (ElementCount VS = MaxVectorElementCount * 2;
5235          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5236       VFs.push_back(VS);
5237 
5238     // For each VF calculate its register usage.
5239     auto RUs = calculateRegisterUsage(VFs);
5240 
5241     // Select the largest VF which doesn't require more registers than existing
5242     // ones.
5243     for (int i = RUs.size() - 1; i >= 0; --i) {
5244       bool Selected = true;
5245       for (auto &pair : RUs[i].MaxLocalUsers) {
5246         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5247         if (pair.second > TargetNumRegisters)
5248           Selected = false;
5249       }
5250       if (Selected) {
5251         MaxVF = VFs[i];
5252         break;
5253       }
5254     }
5255     if (ElementCount MinVF =
5256             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5257       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5258         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5259                           << ") with target's minimum: " << MinVF << '\n');
5260         MaxVF = MinVF;
5261       }
5262     }
5263   }
5264   return MaxVF;
5265 }
5266 
5267 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5268   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5269     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5270     auto Min = Attr.getVScaleRangeMin();
5271     auto Max = Attr.getVScaleRangeMax();
5272     if (Max && Min == Max)
5273       return Max;
5274   }
5275 
5276   return TTI.getVScaleForTuning();
5277 }
5278 
5279 bool LoopVectorizationCostModel::isMoreProfitable(
5280     const VectorizationFactor &A, const VectorizationFactor &B) const {
5281   InstructionCost CostA = A.Cost;
5282   InstructionCost CostB = B.Cost;
5283 
5284   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5285 
5286   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5287       MaxTripCount) {
5288     // If we are folding the tail and the trip count is a known (possibly small)
5289     // constant, the trip count will be rounded up to an integer number of
5290     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5291     // which we compare directly. When not folding the tail, the total cost will
5292     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5293     // approximated with the per-lane cost below instead of using the tripcount
5294     // as here.
5295     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5296     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5297     return RTCostA < RTCostB;
5298   }
5299 
5300   // Improve estimate for the vector width if it is scalable.
5301   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5302   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5303   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5304     if (A.Width.isScalable())
5305       EstimatedWidthA *= VScale.getValue();
5306     if (B.Width.isScalable())
5307       EstimatedWidthB *= VScale.getValue();
5308   }
5309 
5310   // Assume vscale may be larger than 1 (or the value being tuned for),
5311   // so that scalable vectorization is slightly favorable over fixed-width
5312   // vectorization.
5313   if (A.Width.isScalable() && !B.Width.isScalable())
5314     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5315 
5316   // To avoid the need for FP division:
5317   //      (CostA / A.Width) < (CostB / B.Width)
5318   // <=>  (CostA * B.Width) < (CostB * A.Width)
5319   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5320 }
5321 
5322 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5323     const ElementCountSet &VFCandidates) {
5324   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5325   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5326   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5327   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5328          "Expected Scalar VF to be a candidate");
5329 
5330   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5331   VectorizationFactor ChosenFactor = ScalarCost;
5332 
5333   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5334   if (ForceVectorization && VFCandidates.size() > 1) {
5335     // Ignore scalar width, because the user explicitly wants vectorization.
5336     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5337     // evaluation.
5338     ChosenFactor.Cost = InstructionCost::getMax();
5339   }
5340 
5341   SmallVector<InstructionVFPair> InvalidCosts;
5342   for (const auto &i : VFCandidates) {
5343     // The cost for scalar VF=1 is already calculated, so ignore it.
5344     if (i.isScalar())
5345       continue;
5346 
5347     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5348     VectorizationFactor Candidate(i, C.first);
5349 
5350 #ifndef NDEBUG
5351     unsigned AssumedMinimumVscale = 1;
5352     if (Optional<unsigned> VScale = getVScaleForTuning())
5353       AssumedMinimumVscale = VScale.getValue();
5354     unsigned Width =
5355         Candidate.Width.isScalable()
5356             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5357             : Candidate.Width.getFixedValue();
5358     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5359                       << " costs: " << (Candidate.Cost / Width));
5360     if (i.isScalable())
5361       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5362                         << AssumedMinimumVscale << ")");
5363     LLVM_DEBUG(dbgs() << ".\n");
5364 #endif
5365 
5366     if (!C.second && !ForceVectorization) {
5367       LLVM_DEBUG(
5368           dbgs() << "LV: Not considering vector loop of width " << i
5369                  << " because it will not generate any vector instructions.\n");
5370       continue;
5371     }
5372 
5373     // If profitable add it to ProfitableVF list.
5374     if (isMoreProfitable(Candidate, ScalarCost))
5375       ProfitableVFs.push_back(Candidate);
5376 
5377     if (isMoreProfitable(Candidate, ChosenFactor))
5378       ChosenFactor = Candidate;
5379   }
5380 
5381   // Emit a report of VFs with invalid costs in the loop.
5382   if (!InvalidCosts.empty()) {
5383     // Group the remarks per instruction, keeping the instruction order from
5384     // InvalidCosts.
5385     std::map<Instruction *, unsigned> Numbering;
5386     unsigned I = 0;
5387     for (auto &Pair : InvalidCosts)
5388       if (!Numbering.count(Pair.first))
5389         Numbering[Pair.first] = I++;
5390 
5391     // Sort the list, first on instruction(number) then on VF.
5392     llvm::sort(InvalidCosts,
5393                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5394                  if (Numbering[A.first] != Numbering[B.first])
5395                    return Numbering[A.first] < Numbering[B.first];
5396                  ElementCountComparator ECC;
5397                  return ECC(A.second, B.second);
5398                });
5399 
5400     // For a list of ordered instruction-vf pairs:
5401     //   [(load, vf1), (load, vf2), (store, vf1)]
5402     // Group the instructions together to emit separate remarks for:
5403     //   load  (vf1, vf2)
5404     //   store (vf1)
5405     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5406     auto Subset = ArrayRef<InstructionVFPair>();
5407     do {
5408       if (Subset.empty())
5409         Subset = Tail.take_front(1);
5410 
5411       Instruction *I = Subset.front().first;
5412 
5413       // If the next instruction is different, or if there are no other pairs,
5414       // emit a remark for the collated subset. e.g.
5415       //   [(load, vf1), (load, vf2))]
5416       // to emit:
5417       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5418       if (Subset == Tail || Tail[Subset.size()].first != I) {
5419         std::string OutString;
5420         raw_string_ostream OS(OutString);
5421         assert(!Subset.empty() && "Unexpected empty range");
5422         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5423         for (auto &Pair : Subset)
5424           OS << (Pair.second == Subset.front().second ? "" : ", ")
5425              << Pair.second;
5426         OS << "):";
5427         if (auto *CI = dyn_cast<CallInst>(I))
5428           OS << " call to " << CI->getCalledFunction()->getName();
5429         else
5430           OS << " " << I->getOpcodeName();
5431         OS.flush();
5432         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5433         Tail = Tail.drop_front(Subset.size());
5434         Subset = {};
5435       } else
5436         // Grow the subset by one element
5437         Subset = Tail.take_front(Subset.size() + 1);
5438     } while (!Tail.empty());
5439   }
5440 
5441   if (!EnableCondStoresVectorization && NumPredStores) {
5442     reportVectorizationFailure("There are conditional stores.",
5443         "store that is conditionally executed prevents vectorization",
5444         "ConditionalStore", ORE, TheLoop);
5445     ChosenFactor = ScalarCost;
5446   }
5447 
5448   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5449                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5450              << "LV: Vectorization seems to be not beneficial, "
5451              << "but was forced by a user.\n");
5452   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5453   return ChosenFactor;
5454 }
5455 
5456 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5457     const Loop &L, ElementCount VF) const {
5458   // Cross iteration phis such as reductions need special handling and are
5459   // currently unsupported.
5460   if (any_of(L.getHeader()->phis(),
5461              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5462     return false;
5463 
5464   // Phis with uses outside of the loop require special handling and are
5465   // currently unsupported.
5466   for (auto &Entry : Legal->getInductionVars()) {
5467     // Look for uses of the value of the induction at the last iteration.
5468     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5469     for (User *U : PostInc->users())
5470       if (!L.contains(cast<Instruction>(U)))
5471         return false;
5472     // Look for uses of penultimate value of the induction.
5473     for (User *U : Entry.first->users())
5474       if (!L.contains(cast<Instruction>(U)))
5475         return false;
5476   }
5477 
5478   // Induction variables that are widened require special handling that is
5479   // currently not supported.
5480   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5481         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5482                  this->isProfitableToScalarize(Entry.first, VF));
5483       }))
5484     return false;
5485 
5486   // Epilogue vectorization code has not been auditted to ensure it handles
5487   // non-latch exits properly.  It may be fine, but it needs auditted and
5488   // tested.
5489   if (L.getExitingBlock() != L.getLoopLatch())
5490     return false;
5491 
5492   return true;
5493 }
5494 
5495 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5496     const ElementCount VF) const {
5497   // FIXME: We need a much better cost-model to take different parameters such
5498   // as register pressure, code size increase and cost of extra branches into
5499   // account. For now we apply a very crude heuristic and only consider loops
5500   // with vectorization factors larger than a certain value.
5501   // We also consider epilogue vectorization unprofitable for targets that don't
5502   // consider interleaving beneficial (eg. MVE).
5503   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5504     return false;
5505   // FIXME: We should consider changing the threshold for scalable
5506   // vectors to take VScaleForTuning into account.
5507   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5508     return true;
5509   return false;
5510 }
5511 
5512 VectorizationFactor
5513 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5514     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5515   VectorizationFactor Result = VectorizationFactor::Disabled();
5516   if (!EnableEpilogueVectorization) {
5517     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5518     return Result;
5519   }
5520 
5521   if (!isScalarEpilogueAllowed()) {
5522     LLVM_DEBUG(
5523         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5524                   "allowed.\n";);
5525     return Result;
5526   }
5527 
5528   // Not really a cost consideration, but check for unsupported cases here to
5529   // simplify the logic.
5530   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5531     LLVM_DEBUG(
5532         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5533                   "not a supported candidate.\n";);
5534     return Result;
5535   }
5536 
5537   if (EpilogueVectorizationForceVF > 1) {
5538     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5539     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5540     if (LVP.hasPlanWithVF(ForcedEC))
5541       return {ForcedEC, 0};
5542     else {
5543       LLVM_DEBUG(
5544           dbgs()
5545               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5546       return Result;
5547     }
5548   }
5549 
5550   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5551       TheLoop->getHeader()->getParent()->hasMinSize()) {
5552     LLVM_DEBUG(
5553         dbgs()
5554             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5555     return Result;
5556   }
5557 
5558   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5559     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5560                          "this loop\n");
5561     return Result;
5562   }
5563 
5564   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5565   // the main loop handles 8 lanes per iteration. We could still benefit from
5566   // vectorizing the epilogue loop with VF=4.
5567   ElementCount EstimatedRuntimeVF = MainLoopVF;
5568   if (MainLoopVF.isScalable()) {
5569     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5570     if (Optional<unsigned> VScale = getVScaleForTuning())
5571       EstimatedRuntimeVF *= VScale.getValue();
5572   }
5573 
5574   for (auto &NextVF : ProfitableVFs)
5575     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5576           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5577          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5578         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5579         LVP.hasPlanWithVF(NextVF.Width))
5580       Result = NextVF;
5581 
5582   if (Result != VectorizationFactor::Disabled())
5583     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5584                       << Result.Width << "\n";);
5585   return Result;
5586 }
5587 
5588 std::pair<unsigned, unsigned>
5589 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5590   unsigned MinWidth = -1U;
5591   unsigned MaxWidth = 8;
5592   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5593   // For in-loop reductions, no element types are added to ElementTypesInLoop
5594   // if there are no loads/stores in the loop. In this case, check through the
5595   // reduction variables to determine the maximum width.
5596   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5597     // Reset MaxWidth so that we can find the smallest type used by recurrences
5598     // in the loop.
5599     MaxWidth = -1U;
5600     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5601       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5602       // When finding the min width used by the recurrence we need to account
5603       // for casts on the input operands of the recurrence.
5604       MaxWidth = std::min<unsigned>(
5605           MaxWidth, std::min<unsigned>(
5606                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5607                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5608     }
5609   } else {
5610     for (Type *T : ElementTypesInLoop) {
5611       MinWidth = std::min<unsigned>(
5612           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5613       MaxWidth = std::max<unsigned>(
5614           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5615     }
5616   }
5617   return {MinWidth, MaxWidth};
5618 }
5619 
5620 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5621   ElementTypesInLoop.clear();
5622   // For each block.
5623   for (BasicBlock *BB : TheLoop->blocks()) {
5624     // For each instruction in the loop.
5625     for (Instruction &I : BB->instructionsWithoutDebug()) {
5626       Type *T = I.getType();
5627 
5628       // Skip ignored values.
5629       if (ValuesToIgnore.count(&I))
5630         continue;
5631 
5632       // Only examine Loads, Stores and PHINodes.
5633       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5634         continue;
5635 
5636       // Examine PHI nodes that are reduction variables. Update the type to
5637       // account for the recurrence type.
5638       if (auto *PN = dyn_cast<PHINode>(&I)) {
5639         if (!Legal->isReductionVariable(PN))
5640           continue;
5641         const RecurrenceDescriptor &RdxDesc =
5642             Legal->getReductionVars().find(PN)->second;
5643         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5644             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5645                                       RdxDesc.getRecurrenceType(),
5646                                       TargetTransformInfo::ReductionFlags()))
5647           continue;
5648         T = RdxDesc.getRecurrenceType();
5649       }
5650 
5651       // Examine the stored values.
5652       if (auto *ST = dyn_cast<StoreInst>(&I))
5653         T = ST->getValueOperand()->getType();
5654 
5655       assert(T->isSized() &&
5656              "Expected the load/store/recurrence type to be sized");
5657 
5658       ElementTypesInLoop.insert(T);
5659     }
5660   }
5661 }
5662 
5663 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5664                                                            unsigned LoopCost) {
5665   // -- The interleave heuristics --
5666   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5667   // There are many micro-architectural considerations that we can't predict
5668   // at this level. For example, frontend pressure (on decode or fetch) due to
5669   // code size, or the number and capabilities of the execution ports.
5670   //
5671   // We use the following heuristics to select the interleave count:
5672   // 1. If the code has reductions, then we interleave to break the cross
5673   // iteration dependency.
5674   // 2. If the loop is really small, then we interleave to reduce the loop
5675   // overhead.
5676   // 3. We don't interleave if we think that we will spill registers to memory
5677   // due to the increased register pressure.
5678 
5679   if (!isScalarEpilogueAllowed())
5680     return 1;
5681 
5682   // We used the distance for the interleave count.
5683   if (Legal->getMaxSafeDepDistBytes() != -1U)
5684     return 1;
5685 
5686   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5687   const bool HasReductions = !Legal->getReductionVars().empty();
5688   // Do not interleave loops with a relatively small known or estimated trip
5689   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5690   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5691   // because with the above conditions interleaving can expose ILP and break
5692   // cross iteration dependences for reductions.
5693   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5694       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5695     return 1;
5696 
5697   RegisterUsage R = calculateRegisterUsage({VF})[0];
5698   // We divide by these constants so assume that we have at least one
5699   // instruction that uses at least one register.
5700   for (auto& pair : R.MaxLocalUsers) {
5701     pair.second = std::max(pair.second, 1U);
5702   }
5703 
5704   // We calculate the interleave count using the following formula.
5705   // Subtract the number of loop invariants from the number of available
5706   // registers. These registers are used by all of the interleaved instances.
5707   // Next, divide the remaining registers by the number of registers that is
5708   // required by the loop, in order to estimate how many parallel instances
5709   // fit without causing spills. All of this is rounded down if necessary to be
5710   // a power of two. We want power of two interleave count to simplify any
5711   // addressing operations or alignment considerations.
5712   // We also want power of two interleave counts to ensure that the induction
5713   // variable of the vector loop wraps to zero, when tail is folded by masking;
5714   // this currently happens when OptForSize, in which case IC is set to 1 above.
5715   unsigned IC = UINT_MAX;
5716 
5717   for (auto& pair : R.MaxLocalUsers) {
5718     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5719     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5720                       << " registers of "
5721                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5722     if (VF.isScalar()) {
5723       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5724         TargetNumRegisters = ForceTargetNumScalarRegs;
5725     } else {
5726       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5727         TargetNumRegisters = ForceTargetNumVectorRegs;
5728     }
5729     unsigned MaxLocalUsers = pair.second;
5730     unsigned LoopInvariantRegs = 0;
5731     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5732       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5733 
5734     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5735     // Don't count the induction variable as interleaved.
5736     if (EnableIndVarRegisterHeur) {
5737       TmpIC =
5738           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5739                         std::max(1U, (MaxLocalUsers - 1)));
5740     }
5741 
5742     IC = std::min(IC, TmpIC);
5743   }
5744 
5745   // Clamp the interleave ranges to reasonable counts.
5746   unsigned MaxInterleaveCount =
5747       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5748 
5749   // Check if the user has overridden the max.
5750   if (VF.isScalar()) {
5751     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5752       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5753   } else {
5754     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5755       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5756   }
5757 
5758   // If trip count is known or estimated compile time constant, limit the
5759   // interleave count to be less than the trip count divided by VF, provided it
5760   // is at least 1.
5761   //
5762   // For scalable vectors we can't know if interleaving is beneficial. It may
5763   // not be beneficial for small loops if none of the lanes in the second vector
5764   // iterations is enabled. However, for larger loops, there is likely to be a
5765   // similar benefit as for fixed-width vectors. For now, we choose to leave
5766   // the InterleaveCount as if vscale is '1', although if some information about
5767   // the vector is known (e.g. min vector size), we can make a better decision.
5768   if (BestKnownTC) {
5769     MaxInterleaveCount =
5770         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5771     // Make sure MaxInterleaveCount is greater than 0.
5772     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5773   }
5774 
5775   assert(MaxInterleaveCount > 0 &&
5776          "Maximum interleave count must be greater than 0");
5777 
5778   // Clamp the calculated IC to be between the 1 and the max interleave count
5779   // that the target and trip count allows.
5780   if (IC > MaxInterleaveCount)
5781     IC = MaxInterleaveCount;
5782   else
5783     // Make sure IC is greater than 0.
5784     IC = std::max(1u, IC);
5785 
5786   assert(IC > 0 && "Interleave count must be greater than 0.");
5787 
5788   // If we did not calculate the cost for VF (because the user selected the VF)
5789   // then we calculate the cost of VF here.
5790   if (LoopCost == 0) {
5791     InstructionCost C = expectedCost(VF).first;
5792     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5793     LoopCost = *C.getValue();
5794   }
5795 
5796   assert(LoopCost && "Non-zero loop cost expected");
5797 
5798   // Interleave if we vectorized this loop and there is a reduction that could
5799   // benefit from interleaving.
5800   if (VF.isVector() && HasReductions) {
5801     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5802     return IC;
5803   }
5804 
5805   // For any scalar loop that either requires runtime checks or predication we
5806   // are better off leaving this to the unroller. Note that if we've already
5807   // vectorized the loop we will have done the runtime check and so interleaving
5808   // won't require further checks.
5809   bool ScalarInterleavingRequiresPredication =
5810       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5811          return Legal->blockNeedsPredication(BB);
5812        }));
5813   bool ScalarInterleavingRequiresRuntimePointerCheck =
5814       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5815 
5816   // We want to interleave small loops in order to reduce the loop overhead and
5817   // potentially expose ILP opportunities.
5818   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5819                     << "LV: IC is " << IC << '\n'
5820                     << "LV: VF is " << VF << '\n');
5821   const bool AggressivelyInterleaveReductions =
5822       TTI.enableAggressiveInterleaving(HasReductions);
5823   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5824       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5825     // We assume that the cost overhead is 1 and we use the cost model
5826     // to estimate the cost of the loop and interleave until the cost of the
5827     // loop overhead is about 5% of the cost of the loop.
5828     unsigned SmallIC =
5829         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5830 
5831     // Interleave until store/load ports (estimated by max interleave count) are
5832     // saturated.
5833     unsigned NumStores = Legal->getNumStores();
5834     unsigned NumLoads = Legal->getNumLoads();
5835     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5836     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5837 
5838     // There is little point in interleaving for reductions containing selects
5839     // and compares when VF=1 since it may just create more overhead than it's
5840     // worth for loops with small trip counts. This is because we still have to
5841     // do the final reduction after the loop.
5842     bool HasSelectCmpReductions =
5843         HasReductions &&
5844         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5845           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5846           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5847               RdxDesc.getRecurrenceKind());
5848         });
5849     if (HasSelectCmpReductions) {
5850       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5851       return 1;
5852     }
5853 
5854     // If we have a scalar reduction (vector reductions are already dealt with
5855     // by this point), we can increase the critical path length if the loop
5856     // we're interleaving is inside another loop. For tree-wise reductions
5857     // set the limit to 2, and for ordered reductions it's best to disable
5858     // interleaving entirely.
5859     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5860       bool HasOrderedReductions =
5861           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5862             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5863             return RdxDesc.isOrdered();
5864           });
5865       if (HasOrderedReductions) {
5866         LLVM_DEBUG(
5867             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5868         return 1;
5869       }
5870 
5871       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5872       SmallIC = std::min(SmallIC, F);
5873       StoresIC = std::min(StoresIC, F);
5874       LoadsIC = std::min(LoadsIC, F);
5875     }
5876 
5877     if (EnableLoadStoreRuntimeInterleave &&
5878         std::max(StoresIC, LoadsIC) > SmallIC) {
5879       LLVM_DEBUG(
5880           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5881       return std::max(StoresIC, LoadsIC);
5882     }
5883 
5884     // If there are scalar reductions and TTI has enabled aggressive
5885     // interleaving for reductions, we will interleave to expose ILP.
5886     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5887         AggressivelyInterleaveReductions) {
5888       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5889       // Interleave no less than SmallIC but not as aggressive as the normal IC
5890       // to satisfy the rare situation when resources are too limited.
5891       return std::max(IC / 2, SmallIC);
5892     } else {
5893       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5894       return SmallIC;
5895     }
5896   }
5897 
5898   // Interleave if this is a large loop (small loops are already dealt with by
5899   // this point) that could benefit from interleaving.
5900   if (AggressivelyInterleaveReductions) {
5901     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5902     return IC;
5903   }
5904 
5905   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5906   return 1;
5907 }
5908 
5909 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5910 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5911   // This function calculates the register usage by measuring the highest number
5912   // of values that are alive at a single location. Obviously, this is a very
5913   // rough estimation. We scan the loop in a topological order in order and
5914   // assign a number to each instruction. We use RPO to ensure that defs are
5915   // met before their users. We assume that each instruction that has in-loop
5916   // users starts an interval. We record every time that an in-loop value is
5917   // used, so we have a list of the first and last occurrences of each
5918   // instruction. Next, we transpose this data structure into a multi map that
5919   // holds the list of intervals that *end* at a specific location. This multi
5920   // map allows us to perform a linear search. We scan the instructions linearly
5921   // and record each time that a new interval starts, by placing it in a set.
5922   // If we find this value in the multi-map then we remove it from the set.
5923   // The max register usage is the maximum size of the set.
5924   // We also search for instructions that are defined outside the loop, but are
5925   // used inside the loop. We need this number separately from the max-interval
5926   // usage number because when we unroll, loop-invariant values do not take
5927   // more register.
5928   LoopBlocksDFS DFS(TheLoop);
5929   DFS.perform(LI);
5930 
5931   RegisterUsage RU;
5932 
5933   // Each 'key' in the map opens a new interval. The values
5934   // of the map are the index of the 'last seen' usage of the
5935   // instruction that is the key.
5936   using IntervalMap = DenseMap<Instruction *, unsigned>;
5937 
5938   // Maps instruction to its index.
5939   SmallVector<Instruction *, 64> IdxToInstr;
5940   // Marks the end of each interval.
5941   IntervalMap EndPoint;
5942   // Saves the list of instruction indices that are used in the loop.
5943   SmallPtrSet<Instruction *, 8> Ends;
5944   // Saves the list of values that are used in the loop but are
5945   // defined outside the loop, such as arguments and constants.
5946   SmallPtrSet<Value *, 8> LoopInvariants;
5947 
5948   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5949     for (Instruction &I : BB->instructionsWithoutDebug()) {
5950       IdxToInstr.push_back(&I);
5951 
5952       // Save the end location of each USE.
5953       for (Value *U : I.operands()) {
5954         auto *Instr = dyn_cast<Instruction>(U);
5955 
5956         // Ignore non-instruction values such as arguments, constants, etc.
5957         if (!Instr)
5958           continue;
5959 
5960         // If this instruction is outside the loop then record it and continue.
5961         if (!TheLoop->contains(Instr)) {
5962           LoopInvariants.insert(Instr);
5963           continue;
5964         }
5965 
5966         // Overwrite previous end points.
5967         EndPoint[Instr] = IdxToInstr.size();
5968         Ends.insert(Instr);
5969       }
5970     }
5971   }
5972 
5973   // Saves the list of intervals that end with the index in 'key'.
5974   using InstrList = SmallVector<Instruction *, 2>;
5975   DenseMap<unsigned, InstrList> TransposeEnds;
5976 
5977   // Transpose the EndPoints to a list of values that end at each index.
5978   for (auto &Interval : EndPoint)
5979     TransposeEnds[Interval.second].push_back(Interval.first);
5980 
5981   SmallPtrSet<Instruction *, 8> OpenIntervals;
5982   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5983   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5984 
5985   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5986 
5987   // A lambda that gets the register usage for the given type and VF.
5988   const auto &TTICapture = TTI;
5989   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
5990     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5991       return 0;
5992     InstructionCost::CostType RegUsage =
5993         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
5994     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
5995            "Nonsensical values for register usage.");
5996     return RegUsage;
5997   };
5998 
5999   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6000     Instruction *I = IdxToInstr[i];
6001 
6002     // Remove all of the instructions that end at this location.
6003     InstrList &List = TransposeEnds[i];
6004     for (Instruction *ToRemove : List)
6005       OpenIntervals.erase(ToRemove);
6006 
6007     // Ignore instructions that are never used within the loop.
6008     if (!Ends.count(I))
6009       continue;
6010 
6011     // Skip ignored values.
6012     if (ValuesToIgnore.count(I))
6013       continue;
6014 
6015     // For each VF find the maximum usage of registers.
6016     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6017       // Count the number of live intervals.
6018       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6019 
6020       if (VFs[j].isScalar()) {
6021         for (auto Inst : OpenIntervals) {
6022           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6023           if (RegUsage.find(ClassID) == RegUsage.end())
6024             RegUsage[ClassID] = 1;
6025           else
6026             RegUsage[ClassID] += 1;
6027         }
6028       } else {
6029         collectUniformsAndScalars(VFs[j]);
6030         for (auto Inst : OpenIntervals) {
6031           // Skip ignored values for VF > 1.
6032           if (VecValuesToIgnore.count(Inst))
6033             continue;
6034           if (isScalarAfterVectorization(Inst, VFs[j])) {
6035             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6036             if (RegUsage.find(ClassID) == RegUsage.end())
6037               RegUsage[ClassID] = 1;
6038             else
6039               RegUsage[ClassID] += 1;
6040           } else {
6041             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6042             if (RegUsage.find(ClassID) == RegUsage.end())
6043               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6044             else
6045               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6046           }
6047         }
6048       }
6049 
6050       for (auto& pair : RegUsage) {
6051         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6052           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6053         else
6054           MaxUsages[j][pair.first] = pair.second;
6055       }
6056     }
6057 
6058     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6059                       << OpenIntervals.size() << '\n');
6060 
6061     // Add the current instruction to the list of open intervals.
6062     OpenIntervals.insert(I);
6063   }
6064 
6065   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6066     SmallMapVector<unsigned, unsigned, 4> Invariant;
6067 
6068     for (auto Inst : LoopInvariants) {
6069       unsigned Usage =
6070           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6071       unsigned ClassID =
6072           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6073       if (Invariant.find(ClassID) == Invariant.end())
6074         Invariant[ClassID] = Usage;
6075       else
6076         Invariant[ClassID] += Usage;
6077     }
6078 
6079     LLVM_DEBUG({
6080       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6081       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6082              << " item\n";
6083       for (const auto &pair : MaxUsages[i]) {
6084         dbgs() << "LV(REG): RegisterClass: "
6085                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6086                << " registers\n";
6087       }
6088       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6089              << " item\n";
6090       for (const auto &pair : Invariant) {
6091         dbgs() << "LV(REG): RegisterClass: "
6092                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6093                << " registers\n";
6094       }
6095     });
6096 
6097     RU.LoopInvariantRegs = Invariant;
6098     RU.MaxLocalUsers = MaxUsages[i];
6099     RUs[i] = RU;
6100   }
6101 
6102   return RUs;
6103 }
6104 
6105 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6106                                                            ElementCount VF) {
6107   // TODO: Cost model for emulated masked load/store is completely
6108   // broken. This hack guides the cost model to use an artificially
6109   // high enough value to practically disable vectorization with such
6110   // operations, except where previously deployed legality hack allowed
6111   // using very low cost values. This is to avoid regressions coming simply
6112   // from moving "masked load/store" check from legality to cost model.
6113   // Masked Load/Gather emulation was previously never allowed.
6114   // Limited number of Masked Store/Scatter emulation was allowed.
6115   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6116   return isa<LoadInst>(I) ||
6117          (isa<StoreInst>(I) &&
6118           NumPredStores > NumberOfStoresToPredicate);
6119 }
6120 
6121 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6122   // If we aren't vectorizing the loop, or if we've already collected the
6123   // instructions to scalarize, there's nothing to do. Collection may already
6124   // have occurred if we have a user-selected VF and are now computing the
6125   // expected cost for interleaving.
6126   if (VF.isScalar() || VF.isZero() ||
6127       InstsToScalarize.find(VF) != InstsToScalarize.end())
6128     return;
6129 
6130   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6131   // not profitable to scalarize any instructions, the presence of VF in the
6132   // map will indicate that we've analyzed it already.
6133   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6134 
6135   // Find all the instructions that are scalar with predication in the loop and
6136   // determine if it would be better to not if-convert the blocks they are in.
6137   // If so, we also record the instructions to scalarize.
6138   for (BasicBlock *BB : TheLoop->blocks()) {
6139     if (!blockNeedsPredicationForAnyReason(BB))
6140       continue;
6141     for (Instruction &I : *BB)
6142       if (isScalarWithPredication(&I, VF)) {
6143         ScalarCostsTy ScalarCosts;
6144         // Do not apply discount if scalable, because that would lead to
6145         // invalid scalarization costs.
6146         // Do not apply discount logic if hacked cost is needed
6147         // for emulated masked memrefs.
6148         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6149             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6150           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6151         // Remember that BB will remain after vectorization.
6152         PredicatedBBsAfterVectorization.insert(BB);
6153       }
6154   }
6155 }
6156 
6157 int LoopVectorizationCostModel::computePredInstDiscount(
6158     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6159   assert(!isUniformAfterVectorization(PredInst, VF) &&
6160          "Instruction marked uniform-after-vectorization will be predicated");
6161 
6162   // Initialize the discount to zero, meaning that the scalar version and the
6163   // vector version cost the same.
6164   InstructionCost Discount = 0;
6165 
6166   // Holds instructions to analyze. The instructions we visit are mapped in
6167   // ScalarCosts. Those instructions are the ones that would be scalarized if
6168   // we find that the scalar version costs less.
6169   SmallVector<Instruction *, 8> Worklist;
6170 
6171   // Returns true if the given instruction can be scalarized.
6172   auto canBeScalarized = [&](Instruction *I) -> bool {
6173     // We only attempt to scalarize instructions forming a single-use chain
6174     // from the original predicated block that would otherwise be vectorized.
6175     // Although not strictly necessary, we give up on instructions we know will
6176     // already be scalar to avoid traversing chains that are unlikely to be
6177     // beneficial.
6178     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6179         isScalarAfterVectorization(I, VF))
6180       return false;
6181 
6182     // If the instruction is scalar with predication, it will be analyzed
6183     // separately. We ignore it within the context of PredInst.
6184     if (isScalarWithPredication(I, VF))
6185       return false;
6186 
6187     // If any of the instruction's operands are uniform after vectorization,
6188     // the instruction cannot be scalarized. This prevents, for example, a
6189     // masked load from being scalarized.
6190     //
6191     // We assume we will only emit a value for lane zero of an instruction
6192     // marked uniform after vectorization, rather than VF identical values.
6193     // Thus, if we scalarize an instruction that uses a uniform, we would
6194     // create uses of values corresponding to the lanes we aren't emitting code
6195     // for. This behavior can be changed by allowing getScalarValue to clone
6196     // the lane zero values for uniforms rather than asserting.
6197     for (Use &U : I->operands())
6198       if (auto *J = dyn_cast<Instruction>(U.get()))
6199         if (isUniformAfterVectorization(J, VF))
6200           return false;
6201 
6202     // Otherwise, we can scalarize the instruction.
6203     return true;
6204   };
6205 
6206   // Compute the expected cost discount from scalarizing the entire expression
6207   // feeding the predicated instruction. We currently only consider expressions
6208   // that are single-use instruction chains.
6209   Worklist.push_back(PredInst);
6210   while (!Worklist.empty()) {
6211     Instruction *I = Worklist.pop_back_val();
6212 
6213     // If we've already analyzed the instruction, there's nothing to do.
6214     if (ScalarCosts.find(I) != ScalarCosts.end())
6215       continue;
6216 
6217     // Compute the cost of the vector instruction. Note that this cost already
6218     // includes the scalarization overhead of the predicated instruction.
6219     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6220 
6221     // Compute the cost of the scalarized instruction. This cost is the cost of
6222     // the instruction as if it wasn't if-converted and instead remained in the
6223     // predicated block. We will scale this cost by block probability after
6224     // computing the scalarization overhead.
6225     InstructionCost ScalarCost =
6226         VF.getFixedValue() *
6227         getInstructionCost(I, ElementCount::getFixed(1)).first;
6228 
6229     // Compute the scalarization overhead of needed insertelement instructions
6230     // and phi nodes.
6231     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6232       ScalarCost += TTI.getScalarizationOverhead(
6233           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6234           APInt::getAllOnes(VF.getFixedValue()), true, false);
6235       ScalarCost +=
6236           VF.getFixedValue() *
6237           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6238     }
6239 
6240     // Compute the scalarization overhead of needed extractelement
6241     // instructions. For each of the instruction's operands, if the operand can
6242     // be scalarized, add it to the worklist; otherwise, account for the
6243     // overhead.
6244     for (Use &U : I->operands())
6245       if (auto *J = dyn_cast<Instruction>(U.get())) {
6246         assert(VectorType::isValidElementType(J->getType()) &&
6247                "Instruction has non-scalar type");
6248         if (canBeScalarized(J))
6249           Worklist.push_back(J);
6250         else if (needsExtract(J, VF)) {
6251           ScalarCost += TTI.getScalarizationOverhead(
6252               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6253               APInt::getAllOnes(VF.getFixedValue()), false, true);
6254         }
6255       }
6256 
6257     // Scale the total scalar cost by block probability.
6258     ScalarCost /= getReciprocalPredBlockProb();
6259 
6260     // Compute the discount. A non-negative discount means the vector version
6261     // of the instruction costs more, and scalarizing would be beneficial.
6262     Discount += VectorCost - ScalarCost;
6263     ScalarCosts[I] = ScalarCost;
6264   }
6265 
6266   return *Discount.getValue();
6267 }
6268 
6269 LoopVectorizationCostModel::VectorizationCostTy
6270 LoopVectorizationCostModel::expectedCost(
6271     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6272   VectorizationCostTy Cost;
6273 
6274   // For each block.
6275   for (BasicBlock *BB : TheLoop->blocks()) {
6276     VectorizationCostTy BlockCost;
6277 
6278     // For each instruction in the old loop.
6279     for (Instruction &I : BB->instructionsWithoutDebug()) {
6280       // Skip ignored values.
6281       if (ValuesToIgnore.count(&I) ||
6282           (VF.isVector() && VecValuesToIgnore.count(&I)))
6283         continue;
6284 
6285       VectorizationCostTy C = getInstructionCost(&I, VF);
6286 
6287       // Check if we should override the cost.
6288       if (C.first.isValid() &&
6289           ForceTargetInstructionCost.getNumOccurrences() > 0)
6290         C.first = InstructionCost(ForceTargetInstructionCost);
6291 
6292       // Keep a list of instructions with invalid costs.
6293       if (Invalid && !C.first.isValid())
6294         Invalid->emplace_back(&I, VF);
6295 
6296       BlockCost.first += C.first;
6297       BlockCost.second |= C.second;
6298       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6299                         << " for VF " << VF << " For instruction: " << I
6300                         << '\n');
6301     }
6302 
6303     // If we are vectorizing a predicated block, it will have been
6304     // if-converted. This means that the block's instructions (aside from
6305     // stores and instructions that may divide by zero) will now be
6306     // unconditionally executed. For the scalar case, we may not always execute
6307     // the predicated block, if it is an if-else block. Thus, scale the block's
6308     // cost by the probability of executing it. blockNeedsPredication from
6309     // Legal is used so as to not include all blocks in tail folded loops.
6310     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6311       BlockCost.first /= getReciprocalPredBlockProb();
6312 
6313     Cost.first += BlockCost.first;
6314     Cost.second |= BlockCost.second;
6315   }
6316 
6317   return Cost;
6318 }
6319 
6320 /// Gets Address Access SCEV after verifying that the access pattern
6321 /// is loop invariant except the induction variable dependence.
6322 ///
6323 /// This SCEV can be sent to the Target in order to estimate the address
6324 /// calculation cost.
6325 static const SCEV *getAddressAccessSCEV(
6326               Value *Ptr,
6327               LoopVectorizationLegality *Legal,
6328               PredicatedScalarEvolution &PSE,
6329               const Loop *TheLoop) {
6330 
6331   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6332   if (!Gep)
6333     return nullptr;
6334 
6335   // We are looking for a gep with all loop invariant indices except for one
6336   // which should be an induction variable.
6337   auto SE = PSE.getSE();
6338   unsigned NumOperands = Gep->getNumOperands();
6339   for (unsigned i = 1; i < NumOperands; ++i) {
6340     Value *Opd = Gep->getOperand(i);
6341     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6342         !Legal->isInductionVariable(Opd))
6343       return nullptr;
6344   }
6345 
6346   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6347   return PSE.getSCEV(Ptr);
6348 }
6349 
6350 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6351   return Legal->hasStride(I->getOperand(0)) ||
6352          Legal->hasStride(I->getOperand(1));
6353 }
6354 
6355 InstructionCost
6356 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6357                                                         ElementCount VF) {
6358   assert(VF.isVector() &&
6359          "Scalarization cost of instruction implies vectorization.");
6360   if (VF.isScalable())
6361     return InstructionCost::getInvalid();
6362 
6363   Type *ValTy = getLoadStoreType(I);
6364   auto SE = PSE.getSE();
6365 
6366   unsigned AS = getLoadStoreAddressSpace(I);
6367   Value *Ptr = getLoadStorePointerOperand(I);
6368   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6369   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6370   //       that it is being called from this specific place.
6371 
6372   // Figure out whether the access is strided and get the stride value
6373   // if it's known in compile time
6374   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6375 
6376   // Get the cost of the scalar memory instruction and address computation.
6377   InstructionCost Cost =
6378       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6379 
6380   // Don't pass *I here, since it is scalar but will actually be part of a
6381   // vectorized loop where the user of it is a vectorized instruction.
6382   const Align Alignment = getLoadStoreAlignment(I);
6383   Cost += VF.getKnownMinValue() *
6384           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6385                               AS, TTI::TCK_RecipThroughput);
6386 
6387   // Get the overhead of the extractelement and insertelement instructions
6388   // we might create due to scalarization.
6389   Cost += getScalarizationOverhead(I, VF);
6390 
6391   // If we have a predicated load/store, it will need extra i1 extracts and
6392   // conditional branches, but may not be executed for each vector lane. Scale
6393   // the cost by the probability of executing the predicated block.
6394   if (isPredicatedInst(I, VF)) {
6395     Cost /= getReciprocalPredBlockProb();
6396 
6397     // Add the cost of an i1 extract and a branch
6398     auto *Vec_i1Ty =
6399         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6400     Cost += TTI.getScalarizationOverhead(
6401         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6402         /*Insert=*/false, /*Extract=*/true);
6403     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6404 
6405     if (useEmulatedMaskMemRefHack(I, VF))
6406       // Artificially setting to a high enough value to practically disable
6407       // vectorization with such operations.
6408       Cost = 3000000;
6409   }
6410 
6411   return Cost;
6412 }
6413 
6414 InstructionCost
6415 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6416                                                     ElementCount VF) {
6417   Type *ValTy = getLoadStoreType(I);
6418   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6419   Value *Ptr = getLoadStorePointerOperand(I);
6420   unsigned AS = getLoadStoreAddressSpace(I);
6421   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6422   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6423 
6424   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6425          "Stride should be 1 or -1 for consecutive memory access");
6426   const Align Alignment = getLoadStoreAlignment(I);
6427   InstructionCost Cost = 0;
6428   if (Legal->isMaskRequired(I))
6429     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6430                                       CostKind);
6431   else
6432     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6433                                 CostKind, I);
6434 
6435   bool Reverse = ConsecutiveStride < 0;
6436   if (Reverse)
6437     Cost +=
6438         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6439   return Cost;
6440 }
6441 
6442 InstructionCost
6443 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6444                                                 ElementCount VF) {
6445   assert(Legal->isUniformMemOp(*I));
6446 
6447   Type *ValTy = getLoadStoreType(I);
6448   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6449   const Align Alignment = getLoadStoreAlignment(I);
6450   unsigned AS = getLoadStoreAddressSpace(I);
6451   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6452   if (isa<LoadInst>(I)) {
6453     return TTI.getAddressComputationCost(ValTy) +
6454            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6455                                CostKind) +
6456            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6457   }
6458   StoreInst *SI = cast<StoreInst>(I);
6459 
6460   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6461   return TTI.getAddressComputationCost(ValTy) +
6462          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6463                              CostKind) +
6464          (isLoopInvariantStoreValue
6465               ? 0
6466               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6467                                        VF.getKnownMinValue() - 1));
6468 }
6469 
6470 InstructionCost
6471 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6472                                                  ElementCount VF) {
6473   Type *ValTy = getLoadStoreType(I);
6474   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6475   const Align Alignment = getLoadStoreAlignment(I);
6476   const Value *Ptr = getLoadStorePointerOperand(I);
6477 
6478   return TTI.getAddressComputationCost(VectorTy) +
6479          TTI.getGatherScatterOpCost(
6480              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6481              TargetTransformInfo::TCK_RecipThroughput, I);
6482 }
6483 
6484 InstructionCost
6485 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6486                                                    ElementCount VF) {
6487   // TODO: Once we have support for interleaving with scalable vectors
6488   // we can calculate the cost properly here.
6489   if (VF.isScalable())
6490     return InstructionCost::getInvalid();
6491 
6492   Type *ValTy = getLoadStoreType(I);
6493   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6494   unsigned AS = getLoadStoreAddressSpace(I);
6495 
6496   auto Group = getInterleavedAccessGroup(I);
6497   assert(Group && "Fail to get an interleaved access group.");
6498 
6499   unsigned InterleaveFactor = Group->getFactor();
6500   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6501 
6502   // Holds the indices of existing members in the interleaved group.
6503   SmallVector<unsigned, 4> Indices;
6504   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6505     if (Group->getMember(IF))
6506       Indices.push_back(IF);
6507 
6508   // Calculate the cost of the whole interleaved group.
6509   bool UseMaskForGaps =
6510       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6511       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6512   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6513       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6514       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6515 
6516   if (Group->isReverse()) {
6517     // TODO: Add support for reversed masked interleaved access.
6518     assert(!Legal->isMaskRequired(I) &&
6519            "Reverse masked interleaved access not supported.");
6520     Cost +=
6521         Group->getNumMembers() *
6522         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6523   }
6524   return Cost;
6525 }
6526 
6527 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6528     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6529   using namespace llvm::PatternMatch;
6530   // Early exit for no inloop reductions
6531   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6532     return None;
6533   auto *VectorTy = cast<VectorType>(Ty);
6534 
6535   // We are looking for a pattern of, and finding the minimal acceptable cost:
6536   //  reduce(mul(ext(A), ext(B))) or
6537   //  reduce(mul(A, B)) or
6538   //  reduce(ext(A)) or
6539   //  reduce(A).
6540   // The basic idea is that we walk down the tree to do that, finding the root
6541   // reduction instruction in InLoopReductionImmediateChains. From there we find
6542   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6543   // of the components. If the reduction cost is lower then we return it for the
6544   // reduction instruction and 0 for the other instructions in the pattern. If
6545   // it is not we return an invalid cost specifying the orignal cost method
6546   // should be used.
6547   Instruction *RetI = I;
6548   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6549     if (!RetI->hasOneUser())
6550       return None;
6551     RetI = RetI->user_back();
6552   }
6553   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6554       RetI->user_back()->getOpcode() == Instruction::Add) {
6555     if (!RetI->hasOneUser())
6556       return None;
6557     RetI = RetI->user_back();
6558   }
6559 
6560   // Test if the found instruction is a reduction, and if not return an invalid
6561   // cost specifying the parent to use the original cost modelling.
6562   if (!InLoopReductionImmediateChains.count(RetI))
6563     return None;
6564 
6565   // Find the reduction this chain is a part of and calculate the basic cost of
6566   // the reduction on its own.
6567   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6568   Instruction *ReductionPhi = LastChain;
6569   while (!isa<PHINode>(ReductionPhi))
6570     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6571 
6572   const RecurrenceDescriptor &RdxDesc =
6573       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6574 
6575   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6576       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6577 
6578   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6579   // normal fmul instruction to the cost of the fadd reduction.
6580   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6581     BaseCost +=
6582         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6583 
6584   // If we're using ordered reductions then we can just return the base cost
6585   // here, since getArithmeticReductionCost calculates the full ordered
6586   // reduction cost when FP reassociation is not allowed.
6587   if (useOrderedReductions(RdxDesc))
6588     return BaseCost;
6589 
6590   // Get the operand that was not the reduction chain and match it to one of the
6591   // patterns, returning the better cost if it is found.
6592   Instruction *RedOp = RetI->getOperand(1) == LastChain
6593                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6594                            : dyn_cast<Instruction>(RetI->getOperand(1));
6595 
6596   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6597 
6598   Instruction *Op0, *Op1;
6599   if (RedOp &&
6600       match(RedOp,
6601             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6602       match(Op0, m_ZExtOrSExt(m_Value())) &&
6603       Op0->getOpcode() == Op1->getOpcode() &&
6604       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6605       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6606       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6607 
6608     // Matched reduce(ext(mul(ext(A), ext(B)))
6609     // Note that the extend opcodes need to all match, or if A==B they will have
6610     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6611     // which is equally fine.
6612     bool IsUnsigned = isa<ZExtInst>(Op0);
6613     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6614     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6615 
6616     InstructionCost ExtCost =
6617         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6618                              TTI::CastContextHint::None, CostKind, Op0);
6619     InstructionCost MulCost =
6620         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6621     InstructionCost Ext2Cost =
6622         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6623                              TTI::CastContextHint::None, CostKind, RedOp);
6624 
6625     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6626         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6627         CostKind);
6628 
6629     if (RedCost.isValid() &&
6630         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6631       return I == RetI ? RedCost : 0;
6632   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6633              !TheLoop->isLoopInvariant(RedOp)) {
6634     // Matched reduce(ext(A))
6635     bool IsUnsigned = isa<ZExtInst>(RedOp);
6636     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6637     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6638         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6639         CostKind);
6640 
6641     InstructionCost ExtCost =
6642         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6643                              TTI::CastContextHint::None, CostKind, RedOp);
6644     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6645       return I == RetI ? RedCost : 0;
6646   } else if (RedOp &&
6647              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6648     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6649         Op0->getOpcode() == Op1->getOpcode() &&
6650         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6651       bool IsUnsigned = isa<ZExtInst>(Op0);
6652       Type *Op0Ty = Op0->getOperand(0)->getType();
6653       Type *Op1Ty = Op1->getOperand(0)->getType();
6654       Type *LargestOpTy =
6655           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6656                                                                     : Op0Ty;
6657       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6658 
6659       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6660       // different sizes. We take the largest type as the ext to reduce, and add
6661       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6662       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6663           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6664           TTI::CastContextHint::None, CostKind, Op0);
6665       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6666           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6667           TTI::CastContextHint::None, CostKind, Op1);
6668       InstructionCost MulCost =
6669           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6670 
6671       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6672           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6673           CostKind);
6674       InstructionCost ExtraExtCost = 0;
6675       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6676         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6677         ExtraExtCost = TTI.getCastInstrCost(
6678             ExtraExtOp->getOpcode(), ExtType,
6679             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6680             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6681       }
6682 
6683       if (RedCost.isValid() &&
6684           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6685         return I == RetI ? RedCost : 0;
6686     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6687       // Matched reduce(mul())
6688       InstructionCost MulCost =
6689           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6690 
6691       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6692           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6693           CostKind);
6694 
6695       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6696         return I == RetI ? RedCost : 0;
6697     }
6698   }
6699 
6700   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6701 }
6702 
6703 InstructionCost
6704 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6705                                                      ElementCount VF) {
6706   // Calculate scalar cost only. Vectorization cost should be ready at this
6707   // moment.
6708   if (VF.isScalar()) {
6709     Type *ValTy = getLoadStoreType(I);
6710     const Align Alignment = getLoadStoreAlignment(I);
6711     unsigned AS = getLoadStoreAddressSpace(I);
6712 
6713     return TTI.getAddressComputationCost(ValTy) +
6714            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6715                                TTI::TCK_RecipThroughput, I);
6716   }
6717   return getWideningCost(I, VF);
6718 }
6719 
6720 LoopVectorizationCostModel::VectorizationCostTy
6721 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6722                                                ElementCount VF) {
6723   // If we know that this instruction will remain uniform, check the cost of
6724   // the scalar version.
6725   if (isUniformAfterVectorization(I, VF))
6726     VF = ElementCount::getFixed(1);
6727 
6728   if (VF.isVector() && isProfitableToScalarize(I, VF))
6729     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6730 
6731   // Forced scalars do not have any scalarization overhead.
6732   auto ForcedScalar = ForcedScalars.find(VF);
6733   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6734     auto InstSet = ForcedScalar->second;
6735     if (InstSet.count(I))
6736       return VectorizationCostTy(
6737           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6738            VF.getKnownMinValue()),
6739           false);
6740   }
6741 
6742   Type *VectorTy;
6743   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6744 
6745   bool TypeNotScalarized = false;
6746   if (VF.isVector() && VectorTy->isVectorTy()) {
6747     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6748     if (NumParts)
6749       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6750     else
6751       C = InstructionCost::getInvalid();
6752   }
6753   return VectorizationCostTy(C, TypeNotScalarized);
6754 }
6755 
6756 InstructionCost
6757 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6758                                                      ElementCount VF) const {
6759 
6760   // There is no mechanism yet to create a scalable scalarization loop,
6761   // so this is currently Invalid.
6762   if (VF.isScalable())
6763     return InstructionCost::getInvalid();
6764 
6765   if (VF.isScalar())
6766     return 0;
6767 
6768   InstructionCost Cost = 0;
6769   Type *RetTy = ToVectorTy(I->getType(), VF);
6770   if (!RetTy->isVoidTy() &&
6771       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6772     Cost += TTI.getScalarizationOverhead(
6773         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6774         false);
6775 
6776   // Some targets keep addresses scalar.
6777   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6778     return Cost;
6779 
6780   // Some targets support efficient element stores.
6781   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6782     return Cost;
6783 
6784   // Collect operands to consider.
6785   CallInst *CI = dyn_cast<CallInst>(I);
6786   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6787 
6788   // Skip operands that do not require extraction/scalarization and do not incur
6789   // any overhead.
6790   SmallVector<Type *> Tys;
6791   for (auto *V : filterExtractingOperands(Ops, VF))
6792     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6793   return Cost + TTI.getOperandsScalarizationOverhead(
6794                     filterExtractingOperands(Ops, VF), Tys);
6795 }
6796 
6797 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6798   if (VF.isScalar())
6799     return;
6800   NumPredStores = 0;
6801   for (BasicBlock *BB : TheLoop->blocks()) {
6802     // For each instruction in the old loop.
6803     for (Instruction &I : *BB) {
6804       Value *Ptr =  getLoadStorePointerOperand(&I);
6805       if (!Ptr)
6806         continue;
6807 
6808       // TODO: We should generate better code and update the cost model for
6809       // predicated uniform stores. Today they are treated as any other
6810       // predicated store (see added test cases in
6811       // invariant-store-vectorization.ll).
6812       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6813         NumPredStores++;
6814 
6815       if (Legal->isUniformMemOp(I)) {
6816         // TODO: Avoid replicating loads and stores instead of
6817         // relying on instcombine to remove them.
6818         // Load: Scalar load + broadcast
6819         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6820         InstructionCost Cost;
6821         if (isa<StoreInst>(&I) && VF.isScalable() &&
6822             isLegalGatherOrScatter(&I, VF)) {
6823           Cost = getGatherScatterCost(&I, VF);
6824           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6825         } else {
6826           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
6827                  "Cannot yet scalarize uniform stores");
6828           Cost = getUniformMemOpCost(&I, VF);
6829           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6830         }
6831         continue;
6832       }
6833 
6834       // We assume that widening is the best solution when possible.
6835       if (memoryInstructionCanBeWidened(&I, VF)) {
6836         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6837         int ConsecutiveStride = Legal->isConsecutivePtr(
6838             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6839         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6840                "Expected consecutive stride.");
6841         InstWidening Decision =
6842             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6843         setWideningDecision(&I, VF, Decision, Cost);
6844         continue;
6845       }
6846 
6847       // Choose between Interleaving, Gather/Scatter or Scalarization.
6848       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6849       unsigned NumAccesses = 1;
6850       if (isAccessInterleaved(&I)) {
6851         auto Group = getInterleavedAccessGroup(&I);
6852         assert(Group && "Fail to get an interleaved access group.");
6853 
6854         // Make one decision for the whole group.
6855         if (getWideningDecision(&I, VF) != CM_Unknown)
6856           continue;
6857 
6858         NumAccesses = Group->getNumMembers();
6859         if (interleavedAccessCanBeWidened(&I, VF))
6860           InterleaveCost = getInterleaveGroupCost(&I, VF);
6861       }
6862 
6863       InstructionCost GatherScatterCost =
6864           isLegalGatherOrScatter(&I, VF)
6865               ? getGatherScatterCost(&I, VF) * NumAccesses
6866               : InstructionCost::getInvalid();
6867 
6868       InstructionCost ScalarizationCost =
6869           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6870 
6871       // Choose better solution for the current VF,
6872       // write down this decision and use it during vectorization.
6873       InstructionCost Cost;
6874       InstWidening Decision;
6875       if (InterleaveCost <= GatherScatterCost &&
6876           InterleaveCost < ScalarizationCost) {
6877         Decision = CM_Interleave;
6878         Cost = InterleaveCost;
6879       } else if (GatherScatterCost < ScalarizationCost) {
6880         Decision = CM_GatherScatter;
6881         Cost = GatherScatterCost;
6882       } else {
6883         Decision = CM_Scalarize;
6884         Cost = ScalarizationCost;
6885       }
6886       // If the instructions belongs to an interleave group, the whole group
6887       // receives the same decision. The whole group receives the cost, but
6888       // the cost will actually be assigned to one instruction.
6889       if (auto Group = getInterleavedAccessGroup(&I))
6890         setWideningDecision(Group, VF, Decision, Cost);
6891       else
6892         setWideningDecision(&I, VF, Decision, Cost);
6893     }
6894   }
6895 
6896   // Make sure that any load of address and any other address computation
6897   // remains scalar unless there is gather/scatter support. This avoids
6898   // inevitable extracts into address registers, and also has the benefit of
6899   // activating LSR more, since that pass can't optimize vectorized
6900   // addresses.
6901   if (TTI.prefersVectorizedAddressing())
6902     return;
6903 
6904   // Start with all scalar pointer uses.
6905   SmallPtrSet<Instruction *, 8> AddrDefs;
6906   for (BasicBlock *BB : TheLoop->blocks())
6907     for (Instruction &I : *BB) {
6908       Instruction *PtrDef =
6909         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6910       if (PtrDef && TheLoop->contains(PtrDef) &&
6911           getWideningDecision(&I, VF) != CM_GatherScatter)
6912         AddrDefs.insert(PtrDef);
6913     }
6914 
6915   // Add all instructions used to generate the addresses.
6916   SmallVector<Instruction *, 4> Worklist;
6917   append_range(Worklist, AddrDefs);
6918   while (!Worklist.empty()) {
6919     Instruction *I = Worklist.pop_back_val();
6920     for (auto &Op : I->operands())
6921       if (auto *InstOp = dyn_cast<Instruction>(Op))
6922         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6923             AddrDefs.insert(InstOp).second)
6924           Worklist.push_back(InstOp);
6925   }
6926 
6927   for (auto *I : AddrDefs) {
6928     if (isa<LoadInst>(I)) {
6929       // Setting the desired widening decision should ideally be handled in
6930       // by cost functions, but since this involves the task of finding out
6931       // if the loaded register is involved in an address computation, it is
6932       // instead changed here when we know this is the case.
6933       InstWidening Decision = getWideningDecision(I, VF);
6934       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6935         // Scalarize a widened load of address.
6936         setWideningDecision(
6937             I, VF, CM_Scalarize,
6938             (VF.getKnownMinValue() *
6939              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6940       else if (auto Group = getInterleavedAccessGroup(I)) {
6941         // Scalarize an interleave group of address loads.
6942         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6943           if (Instruction *Member = Group->getMember(I))
6944             setWideningDecision(
6945                 Member, VF, CM_Scalarize,
6946                 (VF.getKnownMinValue() *
6947                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6948         }
6949       }
6950     } else
6951       // Make sure I gets scalarized and a cost estimate without
6952       // scalarization overhead.
6953       ForcedScalars[VF].insert(I);
6954   }
6955 }
6956 
6957 InstructionCost
6958 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6959                                                Type *&VectorTy) {
6960   Type *RetTy = I->getType();
6961   if (canTruncateToMinimalBitwidth(I, VF))
6962     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6963   auto SE = PSE.getSE();
6964   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6965 
6966   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6967                                                 ElementCount VF) -> bool {
6968     if (VF.isScalar())
6969       return true;
6970 
6971     auto Scalarized = InstsToScalarize.find(VF);
6972     assert(Scalarized != InstsToScalarize.end() &&
6973            "VF not yet analyzed for scalarization profitability");
6974     return !Scalarized->second.count(I) &&
6975            llvm::all_of(I->users(), [&](User *U) {
6976              auto *UI = cast<Instruction>(U);
6977              return !Scalarized->second.count(UI);
6978            });
6979   };
6980   (void) hasSingleCopyAfterVectorization;
6981 
6982   if (isScalarAfterVectorization(I, VF)) {
6983     // With the exception of GEPs and PHIs, after scalarization there should
6984     // only be one copy of the instruction generated in the loop. This is
6985     // because the VF is either 1, or any instructions that need scalarizing
6986     // have already been dealt with by the the time we get here. As a result,
6987     // it means we don't have to multiply the instruction cost by VF.
6988     assert(I->getOpcode() == Instruction::GetElementPtr ||
6989            I->getOpcode() == Instruction::PHI ||
6990            (I->getOpcode() == Instruction::BitCast &&
6991             I->getType()->isPointerTy()) ||
6992            hasSingleCopyAfterVectorization(I, VF));
6993     VectorTy = RetTy;
6994   } else
6995     VectorTy = ToVectorTy(RetTy, VF);
6996 
6997   // TODO: We need to estimate the cost of intrinsic calls.
6998   switch (I->getOpcode()) {
6999   case Instruction::GetElementPtr:
7000     // We mark this instruction as zero-cost because the cost of GEPs in
7001     // vectorized code depends on whether the corresponding memory instruction
7002     // is scalarized or not. Therefore, we handle GEPs with the memory
7003     // instruction cost.
7004     return 0;
7005   case Instruction::Br: {
7006     // In cases of scalarized and predicated instructions, there will be VF
7007     // predicated blocks in the vectorized loop. Each branch around these
7008     // blocks requires also an extract of its vector compare i1 element.
7009     bool ScalarPredicatedBB = false;
7010     BranchInst *BI = cast<BranchInst>(I);
7011     if (VF.isVector() && BI->isConditional() &&
7012         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7013          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7014       ScalarPredicatedBB = true;
7015 
7016     if (ScalarPredicatedBB) {
7017       // Not possible to scalarize scalable vector with predicated instructions.
7018       if (VF.isScalable())
7019         return InstructionCost::getInvalid();
7020       // Return cost for branches around scalarized and predicated blocks.
7021       auto *Vec_i1Ty =
7022           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7023       return (
7024           TTI.getScalarizationOverhead(
7025               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7026           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7027     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7028       // The back-edge branch will remain, as will all scalar branches.
7029       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7030     else
7031       // This branch will be eliminated by if-conversion.
7032       return 0;
7033     // Note: We currently assume zero cost for an unconditional branch inside
7034     // a predicated block since it will become a fall-through, although we
7035     // may decide in the future to call TTI for all branches.
7036   }
7037   case Instruction::PHI: {
7038     auto *Phi = cast<PHINode>(I);
7039 
7040     // First-order recurrences are replaced by vector shuffles inside the loop.
7041     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7042     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7043       return TTI.getShuffleCost(
7044           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7045           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7046 
7047     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7048     // converted into select instructions. We require N - 1 selects per phi
7049     // node, where N is the number of incoming values.
7050     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7051       return (Phi->getNumIncomingValues() - 1) *
7052              TTI.getCmpSelInstrCost(
7053                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7054                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7055                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7056 
7057     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7058   }
7059   case Instruction::UDiv:
7060   case Instruction::SDiv:
7061   case Instruction::URem:
7062   case Instruction::SRem:
7063     // If we have a predicated instruction, it may not be executed for each
7064     // vector lane. Get the scalarization cost and scale this amount by the
7065     // probability of executing the predicated block. If the instruction is not
7066     // predicated, we fall through to the next case.
7067     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7068       InstructionCost Cost = 0;
7069 
7070       // These instructions have a non-void type, so account for the phi nodes
7071       // that we will create. This cost is likely to be zero. The phi node
7072       // cost, if any, should be scaled by the block probability because it
7073       // models a copy at the end of each predicated block.
7074       Cost += VF.getKnownMinValue() *
7075               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7076 
7077       // The cost of the non-predicated instruction.
7078       Cost += VF.getKnownMinValue() *
7079               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7080 
7081       // The cost of insertelement and extractelement instructions needed for
7082       // scalarization.
7083       Cost += getScalarizationOverhead(I, VF);
7084 
7085       // Scale the cost by the probability of executing the predicated blocks.
7086       // This assumes the predicated block for each vector lane is equally
7087       // likely.
7088       return Cost / getReciprocalPredBlockProb();
7089     }
7090     LLVM_FALLTHROUGH;
7091   case Instruction::Add:
7092   case Instruction::FAdd:
7093   case Instruction::Sub:
7094   case Instruction::FSub:
7095   case Instruction::Mul:
7096   case Instruction::FMul:
7097   case Instruction::FDiv:
7098   case Instruction::FRem:
7099   case Instruction::Shl:
7100   case Instruction::LShr:
7101   case Instruction::AShr:
7102   case Instruction::And:
7103   case Instruction::Or:
7104   case Instruction::Xor: {
7105     // Since we will replace the stride by 1 the multiplication should go away.
7106     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7107       return 0;
7108 
7109     // Detect reduction patterns
7110     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7111       return *RedCost;
7112 
7113     // Certain instructions can be cheaper to vectorize if they have a constant
7114     // second vector operand. One example of this are shifts on x86.
7115     Value *Op2 = I->getOperand(1);
7116     TargetTransformInfo::OperandValueProperties Op2VP;
7117     TargetTransformInfo::OperandValueKind Op2VK =
7118         TTI.getOperandInfo(Op2, Op2VP);
7119     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7120       Op2VK = TargetTransformInfo::OK_UniformValue;
7121 
7122     SmallVector<const Value *, 4> Operands(I->operand_values());
7123     return TTI.getArithmeticInstrCost(
7124         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7125         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7126   }
7127   case Instruction::FNeg: {
7128     return TTI.getArithmeticInstrCost(
7129         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7130         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7131         TargetTransformInfo::OP_None, I->getOperand(0), I);
7132   }
7133   case Instruction::Select: {
7134     SelectInst *SI = cast<SelectInst>(I);
7135     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7136     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7137 
7138     const Value *Op0, *Op1;
7139     using namespace llvm::PatternMatch;
7140     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7141                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7142       // select x, y, false --> x & y
7143       // select x, true, y --> x | y
7144       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7145       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7146       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7147       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7148       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7149               Op1->getType()->getScalarSizeInBits() == 1);
7150 
7151       SmallVector<const Value *, 2> Operands{Op0, Op1};
7152       return TTI.getArithmeticInstrCost(
7153           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7154           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7155     }
7156 
7157     Type *CondTy = SI->getCondition()->getType();
7158     if (!ScalarCond)
7159       CondTy = VectorType::get(CondTy, VF);
7160 
7161     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7162     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7163       Pred = Cmp->getPredicate();
7164     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7165                                   CostKind, I);
7166   }
7167   case Instruction::ICmp:
7168   case Instruction::FCmp: {
7169     Type *ValTy = I->getOperand(0)->getType();
7170     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7171     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7172       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7173     VectorTy = ToVectorTy(ValTy, VF);
7174     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7175                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7176                                   I);
7177   }
7178   case Instruction::Store:
7179   case Instruction::Load: {
7180     ElementCount Width = VF;
7181     if (Width.isVector()) {
7182       InstWidening Decision = getWideningDecision(I, Width);
7183       assert(Decision != CM_Unknown &&
7184              "CM decision should be taken at this point");
7185       if (Decision == CM_Scalarize)
7186         Width = ElementCount::getFixed(1);
7187     }
7188     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7189     return getMemoryInstructionCost(I, VF);
7190   }
7191   case Instruction::BitCast:
7192     if (I->getType()->isPointerTy())
7193       return 0;
7194     LLVM_FALLTHROUGH;
7195   case Instruction::ZExt:
7196   case Instruction::SExt:
7197   case Instruction::FPToUI:
7198   case Instruction::FPToSI:
7199   case Instruction::FPExt:
7200   case Instruction::PtrToInt:
7201   case Instruction::IntToPtr:
7202   case Instruction::SIToFP:
7203   case Instruction::UIToFP:
7204   case Instruction::Trunc:
7205   case Instruction::FPTrunc: {
7206     // Computes the CastContextHint from a Load/Store instruction.
7207     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7208       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7209              "Expected a load or a store!");
7210 
7211       if (VF.isScalar() || !TheLoop->contains(I))
7212         return TTI::CastContextHint::Normal;
7213 
7214       switch (getWideningDecision(I, VF)) {
7215       case LoopVectorizationCostModel::CM_GatherScatter:
7216         return TTI::CastContextHint::GatherScatter;
7217       case LoopVectorizationCostModel::CM_Interleave:
7218         return TTI::CastContextHint::Interleave;
7219       case LoopVectorizationCostModel::CM_Scalarize:
7220       case LoopVectorizationCostModel::CM_Widen:
7221         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7222                                         : TTI::CastContextHint::Normal;
7223       case LoopVectorizationCostModel::CM_Widen_Reverse:
7224         return TTI::CastContextHint::Reversed;
7225       case LoopVectorizationCostModel::CM_Unknown:
7226         llvm_unreachable("Instr did not go through cost modelling?");
7227       }
7228 
7229       llvm_unreachable("Unhandled case!");
7230     };
7231 
7232     unsigned Opcode = I->getOpcode();
7233     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7234     // For Trunc, the context is the only user, which must be a StoreInst.
7235     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7236       if (I->hasOneUse())
7237         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7238           CCH = ComputeCCH(Store);
7239     }
7240     // For Z/Sext, the context is the operand, which must be a LoadInst.
7241     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7242              Opcode == Instruction::FPExt) {
7243       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7244         CCH = ComputeCCH(Load);
7245     }
7246 
7247     // We optimize the truncation of induction variables having constant
7248     // integer steps. The cost of these truncations is the same as the scalar
7249     // operation.
7250     if (isOptimizableIVTruncate(I, VF)) {
7251       auto *Trunc = cast<TruncInst>(I);
7252       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7253                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7254     }
7255 
7256     // Detect reduction patterns
7257     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7258       return *RedCost;
7259 
7260     Type *SrcScalarTy = I->getOperand(0)->getType();
7261     Type *SrcVecTy =
7262         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7263     if (canTruncateToMinimalBitwidth(I, VF)) {
7264       // This cast is going to be shrunk. This may remove the cast or it might
7265       // turn it into slightly different cast. For example, if MinBW == 16,
7266       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7267       //
7268       // Calculate the modified src and dest types.
7269       Type *MinVecTy = VectorTy;
7270       if (Opcode == Instruction::Trunc) {
7271         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7272         VectorTy =
7273             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7274       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7275         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7276         VectorTy =
7277             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7278       }
7279     }
7280 
7281     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7282   }
7283   case Instruction::Call: {
7284     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7285       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7286         return *RedCost;
7287     bool NeedToScalarize;
7288     CallInst *CI = cast<CallInst>(I);
7289     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7290     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7291       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7292       return std::min(CallCost, IntrinsicCost);
7293     }
7294     return CallCost;
7295   }
7296   case Instruction::ExtractValue:
7297     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7298   case Instruction::Alloca:
7299     // We cannot easily widen alloca to a scalable alloca, as
7300     // the result would need to be a vector of pointers.
7301     if (VF.isScalable())
7302       return InstructionCost::getInvalid();
7303     LLVM_FALLTHROUGH;
7304   default:
7305     // This opcode is unknown. Assume that it is the same as 'mul'.
7306     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7307   } // end of switch.
7308 }
7309 
7310 char LoopVectorize::ID = 0;
7311 
7312 static const char lv_name[] = "Loop Vectorization";
7313 
7314 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7315 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7316 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7317 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7318 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7319 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7320 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7321 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7322 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7323 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7324 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7325 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7326 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7327 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7328 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7329 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7330 
7331 namespace llvm {
7332 
7333 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7334 
7335 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7336                               bool VectorizeOnlyWhenForced) {
7337   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7338 }
7339 
7340 } // end namespace llvm
7341 
7342 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7343   // Check if the pointer operand of a load or store instruction is
7344   // consecutive.
7345   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7346     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7347   return false;
7348 }
7349 
7350 void LoopVectorizationCostModel::collectValuesToIgnore() {
7351   // Ignore ephemeral values.
7352   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7353 
7354   // Ignore type-promoting instructions we identified during reduction
7355   // detection.
7356   for (auto &Reduction : Legal->getReductionVars()) {
7357     const RecurrenceDescriptor &RedDes = Reduction.second;
7358     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7359     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7360   }
7361   // Ignore type-casting instructions we identified during induction
7362   // detection.
7363   for (auto &Induction : Legal->getInductionVars()) {
7364     const InductionDescriptor &IndDes = Induction.second;
7365     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7366     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7367   }
7368 }
7369 
7370 void LoopVectorizationCostModel::collectInLoopReductions() {
7371   for (auto &Reduction : Legal->getReductionVars()) {
7372     PHINode *Phi = Reduction.first;
7373     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7374 
7375     // We don't collect reductions that are type promoted (yet).
7376     if (RdxDesc.getRecurrenceType() != Phi->getType())
7377       continue;
7378 
7379     // If the target would prefer this reduction to happen "in-loop", then we
7380     // want to record it as such.
7381     unsigned Opcode = RdxDesc.getOpcode();
7382     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7383         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7384                                    TargetTransformInfo::ReductionFlags()))
7385       continue;
7386 
7387     // Check that we can correctly put the reductions into the loop, by
7388     // finding the chain of operations that leads from the phi to the loop
7389     // exit value.
7390     SmallVector<Instruction *, 4> ReductionOperations =
7391         RdxDesc.getReductionOpChain(Phi, TheLoop);
7392     bool InLoop = !ReductionOperations.empty();
7393     if (InLoop) {
7394       InLoopReductionChains[Phi] = ReductionOperations;
7395       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7396       Instruction *LastChain = Phi;
7397       for (auto *I : ReductionOperations) {
7398         InLoopReductionImmediateChains[I] = LastChain;
7399         LastChain = I;
7400       }
7401     }
7402     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7403                       << " reduction for phi: " << *Phi << "\n");
7404   }
7405 }
7406 
7407 // TODO: we could return a pair of values that specify the max VF and
7408 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7409 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7410 // doesn't have a cost model that can choose which plan to execute if
7411 // more than one is generated.
7412 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7413                                  LoopVectorizationCostModel &CM) {
7414   unsigned WidestType;
7415   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7416   return WidestVectorRegBits / WidestType;
7417 }
7418 
7419 VectorizationFactor
7420 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7421   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7422   ElementCount VF = UserVF;
7423   // Outer loop handling: They may require CFG and instruction level
7424   // transformations before even evaluating whether vectorization is profitable.
7425   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7426   // the vectorization pipeline.
7427   if (!OrigLoop->isInnermost()) {
7428     // If the user doesn't provide a vectorization factor, determine a
7429     // reasonable one.
7430     if (UserVF.isZero()) {
7431       VF = ElementCount::getFixed(determineVPlanVF(
7432           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7433               .getFixedSize(),
7434           CM));
7435       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7436 
7437       // Make sure we have a VF > 1 for stress testing.
7438       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7439         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7440                           << "overriding computed VF.\n");
7441         VF = ElementCount::getFixed(4);
7442       }
7443     }
7444     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7445     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7446            "VF needs to be a power of two");
7447     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7448                       << "VF " << VF << " to build VPlans.\n");
7449     buildVPlans(VF, VF);
7450 
7451     // For VPlan build stress testing, we bail out after VPlan construction.
7452     if (VPlanBuildStressTest)
7453       return VectorizationFactor::Disabled();
7454 
7455     return {VF, 0 /*Cost*/};
7456   }
7457 
7458   LLVM_DEBUG(
7459       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7460                 "VPlan-native path.\n");
7461   return VectorizationFactor::Disabled();
7462 }
7463 
7464 Optional<VectorizationFactor>
7465 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7466   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7467   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7468   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7469     return None;
7470 
7471   // Invalidate interleave groups if all blocks of loop will be predicated.
7472   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7473       !useMaskedInterleavedAccesses(*TTI)) {
7474     LLVM_DEBUG(
7475         dbgs()
7476         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7477            "which requires masked-interleaved support.\n");
7478     if (CM.InterleaveInfo.invalidateGroups())
7479       // Invalidating interleave groups also requires invalidating all decisions
7480       // based on them, which includes widening decisions and uniform and scalar
7481       // values.
7482       CM.invalidateCostModelingDecisions();
7483   }
7484 
7485   ElementCount MaxUserVF =
7486       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7487   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7488   if (!UserVF.isZero() && UserVFIsLegal) {
7489     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7490            "VF needs to be a power of two");
7491     // Collect the instructions (and their associated costs) that will be more
7492     // profitable to scalarize.
7493     if (CM.selectUserVectorizationFactor(UserVF)) {
7494       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7495       CM.collectInLoopReductions();
7496       buildVPlansWithVPRecipes(UserVF, UserVF);
7497       LLVM_DEBUG(printPlans(dbgs()));
7498       return {{UserVF, 0}};
7499     } else
7500       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7501                               "InvalidCost", ORE, OrigLoop);
7502   }
7503 
7504   // Populate the set of Vectorization Factor Candidates.
7505   ElementCountSet VFCandidates;
7506   for (auto VF = ElementCount::getFixed(1);
7507        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7508     VFCandidates.insert(VF);
7509   for (auto VF = ElementCount::getScalable(1);
7510        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7511     VFCandidates.insert(VF);
7512 
7513   for (const auto &VF : VFCandidates) {
7514     // Collect Uniform and Scalar instructions after vectorization with VF.
7515     CM.collectUniformsAndScalars(VF);
7516 
7517     // Collect the instructions (and their associated costs) that will be more
7518     // profitable to scalarize.
7519     if (VF.isVector())
7520       CM.collectInstsToScalarize(VF);
7521   }
7522 
7523   CM.collectInLoopReductions();
7524   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7525   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7526 
7527   LLVM_DEBUG(printPlans(dbgs()));
7528   if (!MaxFactors.hasVector())
7529     return VectorizationFactor::Disabled();
7530 
7531   // Select the optimal vectorization factor.
7532   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7533 
7534   // Check if it is profitable to vectorize with runtime checks.
7535   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7536   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7537     bool PragmaThresholdReached =
7538         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7539     bool ThresholdReached =
7540         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7541     if ((ThresholdReached && !Hints.allowReordering()) ||
7542         PragmaThresholdReached) {
7543       ORE->emit([&]() {
7544         return OptimizationRemarkAnalysisAliasing(
7545                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7546                    OrigLoop->getHeader())
7547                << "loop not vectorized: cannot prove it is safe to reorder "
7548                   "memory operations";
7549       });
7550       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7551       Hints.emitRemarkWithHints();
7552       return VectorizationFactor::Disabled();
7553     }
7554   }
7555   return SelectedVF;
7556 }
7557 
7558 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7559   assert(count_if(VPlans,
7560                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7561              1 &&
7562          "Best VF has not a single VPlan.");
7563 
7564   for (const VPlanPtr &Plan : VPlans) {
7565     if (Plan->hasVF(VF))
7566       return *Plan.get();
7567   }
7568   llvm_unreachable("No plan found!");
7569 }
7570 
7571 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7572   SmallVector<Metadata *, 4> MDs;
7573   // Reserve first location for self reference to the LoopID metadata node.
7574   MDs.push_back(nullptr);
7575   bool IsUnrollMetadata = false;
7576   MDNode *LoopID = L->getLoopID();
7577   if (LoopID) {
7578     // First find existing loop unrolling disable metadata.
7579     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7580       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7581       if (MD) {
7582         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7583         IsUnrollMetadata =
7584             S && S->getString().startswith("llvm.loop.unroll.disable");
7585       }
7586       MDs.push_back(LoopID->getOperand(i));
7587     }
7588   }
7589 
7590   if (!IsUnrollMetadata) {
7591     // Add runtime unroll disable metadata.
7592     LLVMContext &Context = L->getHeader()->getContext();
7593     SmallVector<Metadata *, 1> DisableOperands;
7594     DisableOperands.push_back(
7595         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7596     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7597     MDs.push_back(DisableNode);
7598     MDNode *NewLoopID = MDNode::get(Context, MDs);
7599     // Set operand 0 to refer to the loop id itself.
7600     NewLoopID->replaceOperandWith(0, NewLoopID);
7601     L->setLoopID(NewLoopID);
7602   }
7603 }
7604 
7605 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7606                                            VPlan &BestVPlan,
7607                                            InnerLoopVectorizer &ILV,
7608                                            DominatorTree *DT) {
7609   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7610                     << '\n');
7611 
7612   // Perform the actual loop transformation.
7613 
7614   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7615   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7616   Value *CanonicalIVStartValue;
7617   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7618       ILV.createVectorizedLoopSkeleton();
7619   ILV.collectPoisonGeneratingRecipes(State);
7620 
7621   ILV.printDebugTracesAtStart();
7622 
7623   //===------------------------------------------------===//
7624   //
7625   // Notice: any optimization or new instruction that go
7626   // into the code below should also be implemented in
7627   // the cost-model.
7628   //
7629   //===------------------------------------------------===//
7630 
7631   // 2. Copy and widen instructions from the old loop into the new loop.
7632   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7633                              ILV.getOrCreateVectorTripCount(nullptr),
7634                              CanonicalIVStartValue, State);
7635   BestVPlan.execute(&State);
7636 
7637   // Keep all loop hints from the original loop on the vector loop (we'll
7638   // replace the vectorizer-specific hints below).
7639   MDNode *OrigLoopID = OrigLoop->getLoopID();
7640 
7641   Optional<MDNode *> VectorizedLoopID =
7642       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7643                                       LLVMLoopVectorizeFollowupVectorized});
7644 
7645   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7646   if (VectorizedLoopID.hasValue())
7647     L->setLoopID(VectorizedLoopID.getValue());
7648   else {
7649     // Keep all loop hints from the original loop on the vector loop (we'll
7650     // replace the vectorizer-specific hints below).
7651     if (MDNode *LID = OrigLoop->getLoopID())
7652       L->setLoopID(LID);
7653 
7654     LoopVectorizeHints Hints(L, true, *ORE);
7655     Hints.setAlreadyVectorized();
7656   }
7657   // Disable runtime unrolling when vectorizing the epilogue loop.
7658   if (CanonicalIVStartValue)
7659     AddRuntimeUnrollDisableMetaData(L);
7660 
7661   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7662   //    predication, updating analyses.
7663   ILV.fixVectorizedLoop(State);
7664 
7665   ILV.printDebugTracesAtEnd();
7666 }
7667 
7668 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7669 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7670   for (const auto &Plan : VPlans)
7671     if (PrintVPlansInDotFormat)
7672       Plan->printDOT(O);
7673     else
7674       Plan->print(O);
7675 }
7676 #endif
7677 
7678 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7679     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7680 
7681   // We create new control-flow for the vectorized loop, so the original exit
7682   // conditions will be dead after vectorization if it's only used by the
7683   // terminator
7684   SmallVector<BasicBlock*> ExitingBlocks;
7685   OrigLoop->getExitingBlocks(ExitingBlocks);
7686   for (auto *BB : ExitingBlocks) {
7687     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7688     if (!Cmp || !Cmp->hasOneUse())
7689       continue;
7690 
7691     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7692     if (!DeadInstructions.insert(Cmp).second)
7693       continue;
7694 
7695     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7696     // TODO: can recurse through operands in general
7697     for (Value *Op : Cmp->operands()) {
7698       if (isa<TruncInst>(Op) && Op->hasOneUse())
7699           DeadInstructions.insert(cast<Instruction>(Op));
7700     }
7701   }
7702 
7703   // We create new "steps" for induction variable updates to which the original
7704   // induction variables map. An original update instruction will be dead if
7705   // all its users except the induction variable are dead.
7706   auto *Latch = OrigLoop->getLoopLatch();
7707   for (auto &Induction : Legal->getInductionVars()) {
7708     PHINode *Ind = Induction.first;
7709     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7710 
7711     // If the tail is to be folded by masking, the primary induction variable,
7712     // if exists, isn't dead: it will be used for masking. Don't kill it.
7713     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7714       continue;
7715 
7716     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7717           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7718         }))
7719       DeadInstructions.insert(IndUpdate);
7720   }
7721 }
7722 
7723 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7724 
7725 //===--------------------------------------------------------------------===//
7726 // EpilogueVectorizerMainLoop
7727 //===--------------------------------------------------------------------===//
7728 
7729 /// This function is partially responsible for generating the control flow
7730 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7731 std::pair<BasicBlock *, Value *>
7732 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7733   MDNode *OrigLoopID = OrigLoop->getLoopID();
7734   Loop *Lp = createVectorLoopSkeleton("");
7735 
7736   // Generate the code to check the minimum iteration count of the vector
7737   // epilogue (see below).
7738   EPI.EpilogueIterationCountCheck =
7739       emitMinimumIterationCountCheck(LoopScalarPreHeader, true);
7740   EPI.EpilogueIterationCountCheck->setName("iter.check");
7741 
7742   // Generate the code to check any assumptions that we've made for SCEV
7743   // expressions.
7744   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7745 
7746   // Generate the code that checks at runtime if arrays overlap. We put the
7747   // checks into a separate block to make the more common case of few elements
7748   // faster.
7749   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7750 
7751   // Generate the iteration count check for the main loop, *after* the check
7752   // for the epilogue loop, so that the path-length is shorter for the case
7753   // that goes directly through the vector epilogue. The longer-path length for
7754   // the main loop is compensated for, by the gain from vectorizing the larger
7755   // trip count. Note: the branch will get updated later on when we vectorize
7756   // the epilogue.
7757   EPI.MainLoopIterationCountCheck =
7758       emitMinimumIterationCountCheck(LoopScalarPreHeader, false);
7759 
7760   // Generate the induction variable.
7761   Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader);
7762   EPI.VectorTripCount = CountRoundDown;
7763   createHeaderBranch(Lp);
7764 
7765   // Skip induction resume value creation here because they will be created in
7766   // the second pass. If we created them here, they wouldn't be used anyway,
7767   // because the vplan in the second pass still contains the inductions from the
7768   // original loop.
7769 
7770   return {completeLoopSkeleton(OrigLoopID), nullptr};
7771 }
7772 
7773 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7774   LLVM_DEBUG({
7775     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7776            << "Main Loop VF:" << EPI.MainLoopVF
7777            << ", Main Loop UF:" << EPI.MainLoopUF
7778            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7779            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7780   });
7781 }
7782 
7783 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7784   DEBUG_WITH_TYPE(VerboseDebug, {
7785     dbgs() << "intermediate fn:\n"
7786            << *OrigLoop->getHeader()->getParent() << "\n";
7787   });
7788 }
7789 
7790 BasicBlock *
7791 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass,
7792                                                            bool ForEpilogue) {
7793   assert(Bypass && "Expected valid bypass basic block.");
7794   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7795   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7796   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7797   // Reuse existing vector loop preheader for TC checks.
7798   // Note that new preheader block is generated for vector loop.
7799   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7800   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7801 
7802   // Generate code to check if the loop's trip count is less than VF * UF of the
7803   // main vector loop.
7804   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7805       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7806 
7807   Value *CheckMinIters = Builder.CreateICmp(
7808       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7809       "min.iters.check");
7810 
7811   if (!ForEpilogue)
7812     TCCheckBlock->setName("vector.main.loop.iter.check");
7813 
7814   // Create new preheader for vector loop.
7815   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7816                                    DT, LI, nullptr, "vector.ph");
7817 
7818   if (ForEpilogue) {
7819     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7820                                  DT->getNode(Bypass)->getIDom()) &&
7821            "TC check is expected to dominate Bypass");
7822 
7823     // Update dominator for Bypass & LoopExit.
7824     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7825     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7826       // For loops with multiple exits, there's no edge from the middle block
7827       // to exit blocks (as the epilogue must run) and thus no need to update
7828       // the immediate dominator of the exit blocks.
7829       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7830 
7831     LoopBypassBlocks.push_back(TCCheckBlock);
7832 
7833     // Save the trip count so we don't have to regenerate it in the
7834     // vec.epilog.iter.check. This is safe to do because the trip count
7835     // generated here dominates the vector epilog iter check.
7836     EPI.TripCount = Count;
7837   }
7838 
7839   ReplaceInstWithInst(
7840       TCCheckBlock->getTerminator(),
7841       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7842 
7843   return TCCheckBlock;
7844 }
7845 
7846 //===--------------------------------------------------------------------===//
7847 // EpilogueVectorizerEpilogueLoop
7848 //===--------------------------------------------------------------------===//
7849 
7850 /// This function is partially responsible for generating the control flow
7851 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7852 std::pair<BasicBlock *, Value *>
7853 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7854   MDNode *OrigLoopID = OrigLoop->getLoopID();
7855   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
7856 
7857   // Now, compare the remaining count and if there aren't enough iterations to
7858   // execute the vectorized epilogue skip to the scalar part.
7859   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7860   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7861   LoopVectorPreHeader =
7862       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7863                  LI, nullptr, "vec.epilog.ph");
7864   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7865                                           VecEpilogueIterationCountCheck);
7866 
7867   // Adjust the control flow taking the state info from the main loop
7868   // vectorization into account.
7869   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7870          "expected this to be saved from the previous pass.");
7871   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7872       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7873 
7874   DT->changeImmediateDominator(LoopVectorPreHeader,
7875                                EPI.MainLoopIterationCountCheck);
7876 
7877   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7878       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7879 
7880   if (EPI.SCEVSafetyCheck)
7881     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7882         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7883   if (EPI.MemSafetyCheck)
7884     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7885         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7886 
7887   DT->changeImmediateDominator(
7888       VecEpilogueIterationCountCheck,
7889       VecEpilogueIterationCountCheck->getSinglePredecessor());
7890 
7891   DT->changeImmediateDominator(LoopScalarPreHeader,
7892                                EPI.EpilogueIterationCountCheck);
7893   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7894     // If there is an epilogue which must run, there's no edge from the
7895     // middle block to exit blocks  and thus no need to update the immediate
7896     // dominator of the exit blocks.
7897     DT->changeImmediateDominator(LoopExitBlock,
7898                                  EPI.EpilogueIterationCountCheck);
7899 
7900   // Keep track of bypass blocks, as they feed start values to the induction
7901   // phis in the scalar loop preheader.
7902   if (EPI.SCEVSafetyCheck)
7903     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7904   if (EPI.MemSafetyCheck)
7905     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7906   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7907 
7908   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7909   // merge control-flow from the latch block and the middle block. Update the
7910   // incoming values here and move the Phi into the preheader.
7911   SmallVector<PHINode *, 4> PhisInBlock;
7912   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7913     PhisInBlock.push_back(&Phi);
7914 
7915   for (PHINode *Phi : PhisInBlock) {
7916     Phi->replaceIncomingBlockWith(
7917         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7918         VecEpilogueIterationCountCheck);
7919     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7920     if (EPI.SCEVSafetyCheck)
7921       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7922     if (EPI.MemSafetyCheck)
7923       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7924     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7925   }
7926 
7927   // Generate a resume induction for the vector epilogue and put it in the
7928   // vector epilogue preheader
7929   Type *IdxTy = Legal->getWidestInductionType();
7930   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7931                                          LoopVectorPreHeader->getFirstNonPHI());
7932   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7933   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7934                            EPI.MainLoopIterationCountCheck);
7935 
7936   // Generate the induction variable.
7937   createHeaderBranch(Lp);
7938 
7939   // Generate induction resume values. These variables save the new starting
7940   // indexes for the scalar loop. They are used to test if there are any tail
7941   // iterations left once the vector loop has completed.
7942   // Note that when the vectorized epilogue is skipped due to iteration count
7943   // check, then the resume value for the induction variable comes from
7944   // the trip count of the main vector loop, hence passing the AdditionalBypass
7945   // argument.
7946   createInductionResumeValues({VecEpilogueIterationCountCheck,
7947                                EPI.VectorTripCount} /* AdditionalBypass */);
7948 
7949   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7950 }
7951 
7952 BasicBlock *
7953 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7954     BasicBlock *Bypass, BasicBlock *Insert) {
7955 
7956   assert(EPI.TripCount &&
7957          "Expected trip count to have been safed in the first pass.");
7958   assert(
7959       (!isa<Instruction>(EPI.TripCount) ||
7960        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7961       "saved trip count does not dominate insertion point.");
7962   Value *TC = EPI.TripCount;
7963   IRBuilder<> Builder(Insert->getTerminator());
7964   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7965 
7966   // Generate code to check if the loop's trip count is less than VF * UF of the
7967   // vector epilogue loop.
7968   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7969       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7970 
7971   Value *CheckMinIters =
7972       Builder.CreateICmp(P, Count,
7973                          createStepForVF(Builder, Count->getType(),
7974                                          EPI.EpilogueVF, EPI.EpilogueUF),
7975                          "min.epilog.iters.check");
7976 
7977   ReplaceInstWithInst(
7978       Insert->getTerminator(),
7979       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7980 
7981   LoopBypassBlocks.push_back(Insert);
7982   return Insert;
7983 }
7984 
7985 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7986   LLVM_DEBUG({
7987     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7988            << "Epilogue Loop VF:" << EPI.EpilogueVF
7989            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7990   });
7991 }
7992 
7993 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7994   DEBUG_WITH_TYPE(VerboseDebug, {
7995     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7996   });
7997 }
7998 
7999 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8000     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8001   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8002   bool PredicateAtRangeStart = Predicate(Range.Start);
8003 
8004   for (ElementCount TmpVF = Range.Start * 2;
8005        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8006     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8007       Range.End = TmpVF;
8008       break;
8009     }
8010 
8011   return PredicateAtRangeStart;
8012 }
8013 
8014 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8015 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8016 /// of VF's starting at a given VF and extending it as much as possible. Each
8017 /// vectorization decision can potentially shorten this sub-range during
8018 /// buildVPlan().
8019 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8020                                            ElementCount MaxVF) {
8021   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8022   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8023     VFRange SubRange = {VF, MaxVFPlusOne};
8024     VPlans.push_back(buildVPlan(SubRange));
8025     VF = SubRange.End;
8026   }
8027 }
8028 
8029 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8030                                          VPlanPtr &Plan) {
8031   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8032 
8033   // Look for cached value.
8034   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8035   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8036   if (ECEntryIt != EdgeMaskCache.end())
8037     return ECEntryIt->second;
8038 
8039   VPValue *SrcMask = createBlockInMask(Src, Plan);
8040 
8041   // The terminator has to be a branch inst!
8042   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8043   assert(BI && "Unexpected terminator found");
8044 
8045   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8046     return EdgeMaskCache[Edge] = SrcMask;
8047 
8048   // If source is an exiting block, we know the exit edge is dynamically dead
8049   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8050   // adding uses of an otherwise potentially dead instruction.
8051   if (OrigLoop->isLoopExiting(Src))
8052     return EdgeMaskCache[Edge] = SrcMask;
8053 
8054   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8055   assert(EdgeMask && "No Edge Mask found for condition");
8056 
8057   if (BI->getSuccessor(0) != Dst)
8058     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8059 
8060   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8061     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8062     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8063     // The select version does not introduce new UB if SrcMask is false and
8064     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8065     VPValue *False = Plan->getOrAddVPValue(
8066         ConstantInt::getFalse(BI->getCondition()->getType()));
8067     EdgeMask =
8068         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8069   }
8070 
8071   return EdgeMaskCache[Edge] = EdgeMask;
8072 }
8073 
8074 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8075   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8076 
8077   // Look for cached value.
8078   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8079   if (BCEntryIt != BlockMaskCache.end())
8080     return BCEntryIt->second;
8081 
8082   // All-one mask is modelled as no-mask following the convention for masked
8083   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8084   VPValue *BlockMask = nullptr;
8085 
8086   if (OrigLoop->getHeader() == BB) {
8087     if (!CM.blockNeedsPredicationForAnyReason(BB))
8088       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8089 
8090     // Introduce the early-exit compare IV <= BTC to form header block mask.
8091     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8092     // constructing the desired canonical IV in the header block as its first
8093     // non-phi instructions.
8094     assert(CM.foldTailByMasking() && "must fold the tail");
8095     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8096     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8097     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8098     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8099 
8100     VPBuilder::InsertPointGuard Guard(Builder);
8101     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8102     if (CM.TTI.emitGetActiveLaneMask()) {
8103       VPValue *TC = Plan->getOrCreateTripCount();
8104       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8105     } else {
8106       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8107       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8108     }
8109     return BlockMaskCache[BB] = BlockMask;
8110   }
8111 
8112   // This is the block mask. We OR all incoming edges.
8113   for (auto *Predecessor : predecessors(BB)) {
8114     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8115     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8116       return BlockMaskCache[BB] = EdgeMask;
8117 
8118     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8119       BlockMask = EdgeMask;
8120       continue;
8121     }
8122 
8123     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8124   }
8125 
8126   return BlockMaskCache[BB] = BlockMask;
8127 }
8128 
8129 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8130                                                 ArrayRef<VPValue *> Operands,
8131                                                 VFRange &Range,
8132                                                 VPlanPtr &Plan) {
8133   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8134          "Must be called with either a load or store");
8135 
8136   auto willWiden = [&](ElementCount VF) -> bool {
8137     if (VF.isScalar())
8138       return false;
8139     LoopVectorizationCostModel::InstWidening Decision =
8140         CM.getWideningDecision(I, VF);
8141     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8142            "CM decision should be taken at this point.");
8143     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8144       return true;
8145     if (CM.isScalarAfterVectorization(I, VF) ||
8146         CM.isProfitableToScalarize(I, VF))
8147       return false;
8148     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8149   };
8150 
8151   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8152     return nullptr;
8153 
8154   VPValue *Mask = nullptr;
8155   if (Legal->isMaskRequired(I))
8156     Mask = createBlockInMask(I->getParent(), Plan);
8157 
8158   // Determine if the pointer operand of the access is either consecutive or
8159   // reverse consecutive.
8160   LoopVectorizationCostModel::InstWidening Decision =
8161       CM.getWideningDecision(I, Range.Start);
8162   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8163   bool Consecutive =
8164       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8165 
8166   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8167     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8168                                               Consecutive, Reverse);
8169 
8170   StoreInst *Store = cast<StoreInst>(I);
8171   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8172                                             Mask, Consecutive, Reverse);
8173 }
8174 
8175 static VPWidenIntOrFpInductionRecipe *
8176 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8177                            VPValue *Start, const InductionDescriptor &IndDesc,
8178                            LoopVectorizationCostModel &CM, ScalarEvolution &SE,
8179                            Loop &OrigLoop, VFRange &Range) {
8180   // Returns true if an instruction \p I should be scalarized instead of
8181   // vectorized for the chosen vectorization factor.
8182   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8183     return CM.isScalarAfterVectorization(I, VF) ||
8184            CM.isProfitableToScalarize(I, VF);
8185   };
8186 
8187   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8188       [&](ElementCount VF) {
8189         // Returns true if we should generate a scalar version of \p IV.
8190         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8191           return true;
8192         auto isScalarInst = [&](User *U) -> bool {
8193           auto *I = cast<Instruction>(U);
8194           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8195         };
8196         return any_of(PhiOrTrunc->users(), isScalarInst);
8197       },
8198       Range);
8199   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8200       [&](ElementCount VF) {
8201         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8202       },
8203       Range);
8204   assert(IndDesc.getStartValue() ==
8205          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8206   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8207          "step must be loop invariant");
8208   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8209     return new VPWidenIntOrFpInductionRecipe(
8210         Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE);
8211   }
8212   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8213   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8214                                            !NeedsScalarIVOnly, SE);
8215 }
8216 
8217 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8218     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8219 
8220   // Check if this is an integer or fp induction. If so, build the recipe that
8221   // produces its scalar and vector values.
8222   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8223     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM,
8224                                       *PSE.getSE(), *OrigLoop, Range);
8225 
8226   // Check if this is pointer induction. If so, build the recipe for it.
8227   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8228     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8229                                              *PSE.getSE());
8230   return nullptr;
8231 }
8232 
8233 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8234     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8235     VPlan &Plan) const {
8236   // Optimize the special case where the source is a constant integer
8237   // induction variable. Notice that we can only optimize the 'trunc' case
8238   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8239   // (c) other casts depend on pointer size.
8240 
8241   // Determine whether \p K is a truncation based on an induction variable that
8242   // can be optimized.
8243   auto isOptimizableIVTruncate =
8244       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8245     return [=](ElementCount VF) -> bool {
8246       return CM.isOptimizableIVTruncate(K, VF);
8247     };
8248   };
8249 
8250   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8251           isOptimizableIVTruncate(I), Range)) {
8252 
8253     auto *Phi = cast<PHINode>(I->getOperand(0));
8254     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8255     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8256     return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(),
8257                                       *OrigLoop, Range);
8258   }
8259   return nullptr;
8260 }
8261 
8262 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8263                                                 ArrayRef<VPValue *> Operands,
8264                                                 VPlanPtr &Plan) {
8265   // If all incoming values are equal, the incoming VPValue can be used directly
8266   // instead of creating a new VPBlendRecipe.
8267   VPValue *FirstIncoming = Operands[0];
8268   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8269         return FirstIncoming == Inc;
8270       })) {
8271     return Operands[0];
8272   }
8273 
8274   unsigned NumIncoming = Phi->getNumIncomingValues();
8275   // For in-loop reductions, we do not need to create an additional select.
8276   VPValue *InLoopVal = nullptr;
8277   for (unsigned In = 0; In < NumIncoming; In++) {
8278     PHINode *PhiOp =
8279         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8280     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8281       assert(!InLoopVal && "Found more than one in-loop reduction!");
8282       InLoopVal = Operands[In];
8283     }
8284   }
8285 
8286   assert((!InLoopVal || NumIncoming == 2) &&
8287          "Found an in-loop reduction for PHI with unexpected number of "
8288          "incoming values");
8289   if (InLoopVal)
8290     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8291 
8292   // We know that all PHIs in non-header blocks are converted into selects, so
8293   // we don't have to worry about the insertion order and we can just use the
8294   // builder. At this point we generate the predication tree. There may be
8295   // duplications since this is a simple recursive scan, but future
8296   // optimizations will clean it up.
8297   SmallVector<VPValue *, 2> OperandsWithMask;
8298 
8299   for (unsigned In = 0; In < NumIncoming; In++) {
8300     VPValue *EdgeMask =
8301       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8302     assert((EdgeMask || NumIncoming == 1) &&
8303            "Multiple predecessors with one having a full mask");
8304     OperandsWithMask.push_back(Operands[In]);
8305     if (EdgeMask)
8306       OperandsWithMask.push_back(EdgeMask);
8307   }
8308   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8309 }
8310 
8311 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8312                                                    ArrayRef<VPValue *> Operands,
8313                                                    VFRange &Range) const {
8314 
8315   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8316       [this, CI](ElementCount VF) {
8317         return CM.isScalarWithPredication(CI, VF);
8318       },
8319       Range);
8320 
8321   if (IsPredicated)
8322     return nullptr;
8323 
8324   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8325   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8326              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8327              ID == Intrinsic::pseudoprobe ||
8328              ID == Intrinsic::experimental_noalias_scope_decl))
8329     return nullptr;
8330 
8331   auto willWiden = [&](ElementCount VF) -> bool {
8332     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8333     // The following case may be scalarized depending on the VF.
8334     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8335     // version of the instruction.
8336     // Is it beneficial to perform intrinsic call compared to lib call?
8337     bool NeedToScalarize = false;
8338     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8339     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8340     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8341     return UseVectorIntrinsic || !NeedToScalarize;
8342   };
8343 
8344   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8345     return nullptr;
8346 
8347   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8348   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8349 }
8350 
8351 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8352   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8353          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8354   // Instruction should be widened, unless it is scalar after vectorization,
8355   // scalarization is profitable or it is predicated.
8356   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8357     return CM.isScalarAfterVectorization(I, VF) ||
8358            CM.isProfitableToScalarize(I, VF) ||
8359            CM.isScalarWithPredication(I, VF);
8360   };
8361   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8362                                                              Range);
8363 }
8364 
8365 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8366                                            ArrayRef<VPValue *> Operands) const {
8367   auto IsVectorizableOpcode = [](unsigned Opcode) {
8368     switch (Opcode) {
8369     case Instruction::Add:
8370     case Instruction::And:
8371     case Instruction::AShr:
8372     case Instruction::BitCast:
8373     case Instruction::FAdd:
8374     case Instruction::FCmp:
8375     case Instruction::FDiv:
8376     case Instruction::FMul:
8377     case Instruction::FNeg:
8378     case Instruction::FPExt:
8379     case Instruction::FPToSI:
8380     case Instruction::FPToUI:
8381     case Instruction::FPTrunc:
8382     case Instruction::FRem:
8383     case Instruction::FSub:
8384     case Instruction::ICmp:
8385     case Instruction::IntToPtr:
8386     case Instruction::LShr:
8387     case Instruction::Mul:
8388     case Instruction::Or:
8389     case Instruction::PtrToInt:
8390     case Instruction::SDiv:
8391     case Instruction::Select:
8392     case Instruction::SExt:
8393     case Instruction::Shl:
8394     case Instruction::SIToFP:
8395     case Instruction::SRem:
8396     case Instruction::Sub:
8397     case Instruction::Trunc:
8398     case Instruction::UDiv:
8399     case Instruction::UIToFP:
8400     case Instruction::URem:
8401     case Instruction::Xor:
8402     case Instruction::ZExt:
8403       return true;
8404     }
8405     return false;
8406   };
8407 
8408   if (!IsVectorizableOpcode(I->getOpcode()))
8409     return nullptr;
8410 
8411   // Success: widen this instruction.
8412   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8413 }
8414 
8415 void VPRecipeBuilder::fixHeaderPhis() {
8416   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8417   for (VPHeaderPHIRecipe *R : PhisToFix) {
8418     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8419     VPRecipeBase *IncR =
8420         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8421     R->addOperand(IncR->getVPSingleValue());
8422   }
8423 }
8424 
8425 VPBasicBlock *VPRecipeBuilder::handleReplication(
8426     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8427     VPlanPtr &Plan) {
8428   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8429       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8430       Range);
8431 
8432   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8433       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8434       Range);
8435 
8436   // Even if the instruction is not marked as uniform, there are certain
8437   // intrinsic calls that can be effectively treated as such, so we check for
8438   // them here. Conservatively, we only do this for scalable vectors, since
8439   // for fixed-width VFs we can always fall back on full scalarization.
8440   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8441     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8442     case Intrinsic::assume:
8443     case Intrinsic::lifetime_start:
8444     case Intrinsic::lifetime_end:
8445       // For scalable vectors if one of the operands is variant then we still
8446       // want to mark as uniform, which will generate one instruction for just
8447       // the first lane of the vector. We can't scalarize the call in the same
8448       // way as for fixed-width vectors because we don't know how many lanes
8449       // there are.
8450       //
8451       // The reasons for doing it this way for scalable vectors are:
8452       //   1. For the assume intrinsic generating the instruction for the first
8453       //      lane is still be better than not generating any at all. For
8454       //      example, the input may be a splat across all lanes.
8455       //   2. For the lifetime start/end intrinsics the pointer operand only
8456       //      does anything useful when the input comes from a stack object,
8457       //      which suggests it should always be uniform. For non-stack objects
8458       //      the effect is to poison the object, which still allows us to
8459       //      remove the call.
8460       IsUniform = true;
8461       break;
8462     default:
8463       break;
8464     }
8465   }
8466 
8467   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8468                                        IsUniform, IsPredicated);
8469   setRecipe(I, Recipe);
8470   Plan->addVPValue(I, Recipe);
8471 
8472   // Find if I uses a predicated instruction. If so, it will use its scalar
8473   // value. Avoid hoisting the insert-element which packs the scalar value into
8474   // a vector value, as that happens iff all users use the vector value.
8475   for (VPValue *Op : Recipe->operands()) {
8476     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8477     if (!PredR)
8478       continue;
8479     auto *RepR =
8480         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8481     assert(RepR->isPredicated() &&
8482            "expected Replicate recipe to be predicated");
8483     RepR->setAlsoPack(false);
8484   }
8485 
8486   // Finalize the recipe for Instr, first if it is not predicated.
8487   if (!IsPredicated) {
8488     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8489     VPBB->appendRecipe(Recipe);
8490     return VPBB;
8491   }
8492   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8493 
8494   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8495   assert(SingleSucc && "VPBB must have a single successor when handling "
8496                        "predicated replication.");
8497   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8498   // Record predicated instructions for above packing optimizations.
8499   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8500   VPBlockUtils::insertBlockAfter(Region, VPBB);
8501   auto *RegSucc = new VPBasicBlock();
8502   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8503   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8504   return RegSucc;
8505 }
8506 
8507 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8508                                                       VPRecipeBase *PredRecipe,
8509                                                       VPlanPtr &Plan) {
8510   // Instructions marked for predication are replicated and placed under an
8511   // if-then construct to prevent side-effects.
8512 
8513   // Generate recipes to compute the block mask for this region.
8514   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8515 
8516   // Build the triangular if-then region.
8517   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8518   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8519   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8520   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8521   auto *PHIRecipe = Instr->getType()->isVoidTy()
8522                         ? nullptr
8523                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8524   if (PHIRecipe) {
8525     Plan->removeVPValueFor(Instr);
8526     Plan->addVPValue(Instr, PHIRecipe);
8527   }
8528   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8529   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8530   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8531 
8532   // Note: first set Entry as region entry and then connect successors starting
8533   // from it in order, to propagate the "parent" of each VPBasicBlock.
8534   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8535   VPBlockUtils::connectBlocks(Pred, Exit);
8536 
8537   return Region;
8538 }
8539 
8540 VPRecipeOrVPValueTy
8541 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8542                                         ArrayRef<VPValue *> Operands,
8543                                         VFRange &Range, VPlanPtr &Plan) {
8544   // First, check for specific widening recipes that deal with calls, memory
8545   // operations, inductions and Phi nodes.
8546   if (auto *CI = dyn_cast<CallInst>(Instr))
8547     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8548 
8549   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8550     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8551 
8552   VPRecipeBase *Recipe;
8553   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8554     if (Phi->getParent() != OrigLoop->getHeader())
8555       return tryToBlend(Phi, Operands, Plan);
8556     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8557       return toVPRecipeResult(Recipe);
8558 
8559     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8560     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8561       VPValue *StartV = Operands[0];
8562       if (Legal->isReductionVariable(Phi)) {
8563         const RecurrenceDescriptor &RdxDesc =
8564             Legal->getReductionVars().find(Phi)->second;
8565         assert(RdxDesc.getRecurrenceStartValue() ==
8566                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8567         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8568                                              CM.isInLoopReduction(Phi),
8569                                              CM.useOrderedReductions(RdxDesc));
8570       } else {
8571         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8572       }
8573 
8574       // Record the incoming value from the backedge, so we can add the incoming
8575       // value from the backedge after all recipes have been created.
8576       recordRecipeOf(cast<Instruction>(
8577           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8578       PhisToFix.push_back(PhiRecipe);
8579     } else {
8580       // TODO: record backedge value for remaining pointer induction phis.
8581       assert(Phi->getType()->isPointerTy() &&
8582              "only pointer phis should be handled here");
8583       assert(Legal->getInductionVars().count(Phi) &&
8584              "Not an induction variable");
8585       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8586       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8587       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8588     }
8589 
8590     return toVPRecipeResult(PhiRecipe);
8591   }
8592 
8593   if (isa<TruncInst>(Instr) &&
8594       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8595                                                Range, *Plan)))
8596     return toVPRecipeResult(Recipe);
8597 
8598   if (!shouldWiden(Instr, Range))
8599     return nullptr;
8600 
8601   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8602     return toVPRecipeResult(new VPWidenGEPRecipe(
8603         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8604 
8605   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8606     bool InvariantCond =
8607         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8608     return toVPRecipeResult(new VPWidenSelectRecipe(
8609         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8610   }
8611 
8612   return toVPRecipeResult(tryToWiden(Instr, Operands));
8613 }
8614 
8615 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8616                                                         ElementCount MaxVF) {
8617   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8618 
8619   // Collect instructions from the original loop that will become trivially dead
8620   // in the vectorized loop. We don't need to vectorize these instructions. For
8621   // example, original induction update instructions can become dead because we
8622   // separately emit induction "steps" when generating code for the new loop.
8623   // Similarly, we create a new latch condition when setting up the structure
8624   // of the new loop, so the old one can become dead.
8625   SmallPtrSet<Instruction *, 4> DeadInstructions;
8626   collectTriviallyDeadInstructions(DeadInstructions);
8627 
8628   // Add assume instructions we need to drop to DeadInstructions, to prevent
8629   // them from being added to the VPlan.
8630   // TODO: We only need to drop assumes in blocks that get flattend. If the
8631   // control flow is preserved, we should keep them.
8632   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8633   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8634 
8635   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8636   // Dead instructions do not need sinking. Remove them from SinkAfter.
8637   for (Instruction *I : DeadInstructions)
8638     SinkAfter.erase(I);
8639 
8640   // Cannot sink instructions after dead instructions (there won't be any
8641   // recipes for them). Instead, find the first non-dead previous instruction.
8642   for (auto &P : Legal->getSinkAfter()) {
8643     Instruction *SinkTarget = P.second;
8644     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8645     (void)FirstInst;
8646     while (DeadInstructions.contains(SinkTarget)) {
8647       assert(
8648           SinkTarget != FirstInst &&
8649           "Must find a live instruction (at least the one feeding the "
8650           "first-order recurrence PHI) before reaching beginning of the block");
8651       SinkTarget = SinkTarget->getPrevNode();
8652       assert(SinkTarget != P.first &&
8653              "sink source equals target, no sinking required");
8654     }
8655     P.second = SinkTarget;
8656   }
8657 
8658   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8659   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8660     VFRange SubRange = {VF, MaxVFPlusOne};
8661     VPlans.push_back(
8662         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8663     VF = SubRange.End;
8664   }
8665 }
8666 
8667 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8668 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8669 // BranchOnCount VPInstruction to the latch.
8670 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8671                                   bool HasNUW, bool IsVPlanNative) {
8672   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8673   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8674 
8675   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8676   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8677   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8678   if (IsVPlanNative)
8679     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8680   Header->insert(CanonicalIVPHI, Header->begin());
8681 
8682   auto *CanonicalIVIncrement =
8683       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8684                                : VPInstruction::CanonicalIVIncrement,
8685                         {CanonicalIVPHI}, DL);
8686   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8687 
8688   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8689   if (IsVPlanNative) {
8690     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
8691     EB->setCondBit(nullptr);
8692   }
8693   EB->appendRecipe(CanonicalIVIncrement);
8694 
8695   auto *BranchOnCount =
8696       new VPInstruction(VPInstruction::BranchOnCount,
8697                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8698   EB->appendRecipe(BranchOnCount);
8699 }
8700 
8701 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8702     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8703     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8704 
8705   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8706 
8707   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8708 
8709   // ---------------------------------------------------------------------------
8710   // Pre-construction: record ingredients whose recipes we'll need to further
8711   // process after constructing the initial VPlan.
8712   // ---------------------------------------------------------------------------
8713 
8714   // Mark instructions we'll need to sink later and their targets as
8715   // ingredients whose recipe we'll need to record.
8716   for (auto &Entry : SinkAfter) {
8717     RecipeBuilder.recordRecipeOf(Entry.first);
8718     RecipeBuilder.recordRecipeOf(Entry.second);
8719   }
8720   for (auto &Reduction : CM.getInLoopReductionChains()) {
8721     PHINode *Phi = Reduction.first;
8722     RecurKind Kind =
8723         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8724     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8725 
8726     RecipeBuilder.recordRecipeOf(Phi);
8727     for (auto &R : ReductionOperations) {
8728       RecipeBuilder.recordRecipeOf(R);
8729       // For min/max reductions, where we have a pair of icmp/select, we also
8730       // need to record the ICmp recipe, so it can be removed later.
8731       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8732              "Only min/max recurrences allowed for inloop reductions");
8733       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8734         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8735     }
8736   }
8737 
8738   // For each interleave group which is relevant for this (possibly trimmed)
8739   // Range, add it to the set of groups to be later applied to the VPlan and add
8740   // placeholders for its members' Recipes which we'll be replacing with a
8741   // single VPInterleaveRecipe.
8742   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8743     auto applyIG = [IG, this](ElementCount VF) -> bool {
8744       return (VF.isVector() && // Query is illegal for VF == 1
8745               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8746                   LoopVectorizationCostModel::CM_Interleave);
8747     };
8748     if (!getDecisionAndClampRange(applyIG, Range))
8749       continue;
8750     InterleaveGroups.insert(IG);
8751     for (unsigned i = 0; i < IG->getFactor(); i++)
8752       if (Instruction *Member = IG->getMember(i))
8753         RecipeBuilder.recordRecipeOf(Member);
8754   };
8755 
8756   // ---------------------------------------------------------------------------
8757   // Build initial VPlan: Scan the body of the loop in a topological order to
8758   // visit each basic block after having visited its predecessor basic blocks.
8759   // ---------------------------------------------------------------------------
8760 
8761   // Create initial VPlan skeleton, with separate header and latch blocks.
8762   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
8763   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8764   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8765   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8766   auto Plan = std::make_unique<VPlan>(TopRegion);
8767 
8768   Instruction *DLInst =
8769       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8770   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8771                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8772                         !CM.foldTailByMasking(), false);
8773 
8774   // Scan the body of the loop in a topological order to visit each basic block
8775   // after having visited its predecessor basic blocks.
8776   LoopBlocksDFS DFS(OrigLoop);
8777   DFS.perform(LI);
8778 
8779   VPBasicBlock *VPBB = HeaderVPBB;
8780   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8781   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8782     // Relevant instructions from basic block BB will be grouped into VPRecipe
8783     // ingredients and fill a new VPBasicBlock.
8784     unsigned VPBBsForBB = 0;
8785     VPBB->setName(BB->getName());
8786     Builder.setInsertPoint(VPBB);
8787 
8788     // Introduce each ingredient into VPlan.
8789     // TODO: Model and preserve debug instrinsics in VPlan.
8790     for (Instruction &I : BB->instructionsWithoutDebug()) {
8791       Instruction *Instr = &I;
8792 
8793       // First filter out irrelevant instructions, to ensure no recipes are
8794       // built for them.
8795       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8796         continue;
8797 
8798       SmallVector<VPValue *, 4> Operands;
8799       auto *Phi = dyn_cast<PHINode>(Instr);
8800       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8801         Operands.push_back(Plan->getOrAddVPValue(
8802             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8803       } else {
8804         auto OpRange = Plan->mapToVPValues(Instr->operands());
8805         Operands = {OpRange.begin(), OpRange.end()};
8806       }
8807       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8808               Instr, Operands, Range, Plan)) {
8809         // If Instr can be simplified to an existing VPValue, use it.
8810         if (RecipeOrValue.is<VPValue *>()) {
8811           auto *VPV = RecipeOrValue.get<VPValue *>();
8812           Plan->addVPValue(Instr, VPV);
8813           // If the re-used value is a recipe, register the recipe for the
8814           // instruction, in case the recipe for Instr needs to be recorded.
8815           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8816             RecipeBuilder.setRecipe(Instr, R);
8817           continue;
8818         }
8819         // Otherwise, add the new recipe.
8820         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8821         for (auto *Def : Recipe->definedValues()) {
8822           auto *UV = Def->getUnderlyingValue();
8823           Plan->addVPValue(UV, Def);
8824         }
8825 
8826         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8827             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8828           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8829           // of the header block. That can happen for truncates of induction
8830           // variables. Those recipes are moved to the phi section of the header
8831           // block after applying SinkAfter, which relies on the original
8832           // position of the trunc.
8833           assert(isa<TruncInst>(Instr));
8834           InductionsToMove.push_back(
8835               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8836         }
8837         RecipeBuilder.setRecipe(Instr, Recipe);
8838         VPBB->appendRecipe(Recipe);
8839         continue;
8840       }
8841 
8842       // Otherwise, if all widening options failed, Instruction is to be
8843       // replicated. This may create a successor for VPBB.
8844       VPBasicBlock *NextVPBB =
8845           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8846       if (NextVPBB != VPBB) {
8847         VPBB = NextVPBB;
8848         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8849                                     : "");
8850       }
8851     }
8852 
8853     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8854     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8855   }
8856 
8857   // Fold the last, empty block into its predecessor.
8858   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8859   assert(VPBB && "expected to fold last (empty) block");
8860   // After here, VPBB should not be used.
8861   VPBB = nullptr;
8862 
8863   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
8864          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
8865          "entry block must be set to a VPRegionBlock having a non-empty entry "
8866          "VPBasicBlock");
8867   RecipeBuilder.fixHeaderPhis();
8868 
8869   // ---------------------------------------------------------------------------
8870   // Transform initial VPlan: Apply previously taken decisions, in order, to
8871   // bring the VPlan to its final state.
8872   // ---------------------------------------------------------------------------
8873 
8874   // Apply Sink-After legal constraints.
8875   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8876     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8877     if (Region && Region->isReplicator()) {
8878       assert(Region->getNumSuccessors() == 1 &&
8879              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8880       assert(R->getParent()->size() == 1 &&
8881              "A recipe in an original replicator region must be the only "
8882              "recipe in its block");
8883       return Region;
8884     }
8885     return nullptr;
8886   };
8887   for (auto &Entry : SinkAfter) {
8888     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8889     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8890 
8891     auto *TargetRegion = GetReplicateRegion(Target);
8892     auto *SinkRegion = GetReplicateRegion(Sink);
8893     if (!SinkRegion) {
8894       // If the sink source is not a replicate region, sink the recipe directly.
8895       if (TargetRegion) {
8896         // The target is in a replication region, make sure to move Sink to
8897         // the block after it, not into the replication region itself.
8898         VPBasicBlock *NextBlock =
8899             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8900         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8901       } else
8902         Sink->moveAfter(Target);
8903       continue;
8904     }
8905 
8906     // The sink source is in a replicate region. Unhook the region from the CFG.
8907     auto *SinkPred = SinkRegion->getSinglePredecessor();
8908     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8909     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8910     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8911     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8912 
8913     if (TargetRegion) {
8914       // The target recipe is also in a replicate region, move the sink region
8915       // after the target region.
8916       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8917       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8918       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8919       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8920     } else {
8921       // The sink source is in a replicate region, we need to move the whole
8922       // replicate region, which should only contain a single recipe in the
8923       // main block.
8924       auto *SplitBlock =
8925           Target->getParent()->splitAt(std::next(Target->getIterator()));
8926 
8927       auto *SplitPred = SplitBlock->getSinglePredecessor();
8928 
8929       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8930       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8931       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8932     }
8933   }
8934 
8935   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8936   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8937 
8938   // Now that sink-after is done, move induction recipes for optimized truncates
8939   // to the phi section of the header block.
8940   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8941     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8942 
8943   // Adjust the recipes for any inloop reductions.
8944   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
8945                              RecipeBuilder, Range.Start);
8946 
8947   // Introduce a recipe to combine the incoming and previous values of a
8948   // first-order recurrence.
8949   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
8950     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8951     if (!RecurPhi)
8952       continue;
8953 
8954     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8955     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8956     auto *Region = GetReplicateRegion(PrevRecipe);
8957     if (Region)
8958       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
8959     if (Region || PrevRecipe->isPhi())
8960       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8961     else
8962       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8963 
8964     auto *RecurSplice = cast<VPInstruction>(
8965         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8966                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8967 
8968     RecurPhi->replaceAllUsesWith(RecurSplice);
8969     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8970     // all users.
8971     RecurSplice->setOperand(0, RecurPhi);
8972   }
8973 
8974   // Interleave memory: for each Interleave Group we marked earlier as relevant
8975   // for this VPlan, replace the Recipes widening its memory instructions with a
8976   // single VPInterleaveRecipe at its insertion point.
8977   for (auto IG : InterleaveGroups) {
8978     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8979         RecipeBuilder.getRecipe(IG->getInsertPos()));
8980     SmallVector<VPValue *, 4> StoredValues;
8981     for (unsigned i = 0; i < IG->getFactor(); ++i)
8982       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8983         auto *StoreR =
8984             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8985         StoredValues.push_back(StoreR->getStoredValue());
8986       }
8987 
8988     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8989                                         Recipe->getMask());
8990     VPIG->insertBefore(Recipe);
8991     unsigned J = 0;
8992     for (unsigned i = 0; i < IG->getFactor(); ++i)
8993       if (Instruction *Member = IG->getMember(i)) {
8994         if (!Member->getType()->isVoidTy()) {
8995           VPValue *OriginalV = Plan->getVPValue(Member);
8996           Plan->removeVPValueFor(Member);
8997           Plan->addVPValue(Member, VPIG->getVPValue(J));
8998           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8999           J++;
9000         }
9001         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9002       }
9003   }
9004 
9005   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9006   // in ways that accessing values using original IR values is incorrect.
9007   Plan->disableValue2VPValue();
9008 
9009   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9010   VPlanTransforms::sinkScalarOperands(*Plan);
9011   VPlanTransforms::mergeReplicateRegions(*Plan);
9012   VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop);
9013 
9014   std::string PlanName;
9015   raw_string_ostream RSO(PlanName);
9016   ElementCount VF = Range.Start;
9017   Plan->addVF(VF);
9018   RSO << "Initial VPlan for VF={" << VF;
9019   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9020     Plan->addVF(VF);
9021     RSO << "," << VF;
9022   }
9023   RSO << "},UF>=1";
9024   RSO.flush();
9025   Plan->setName(PlanName);
9026 
9027   // Fold Exit block into its predecessor if possible.
9028   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9029   // VPBasicBlock as exit.
9030   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9031 
9032   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9033   return Plan;
9034 }
9035 
9036 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9037   // Outer loop handling: They may require CFG and instruction level
9038   // transformations before even evaluating whether vectorization is profitable.
9039   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9040   // the vectorization pipeline.
9041   assert(!OrigLoop->isInnermost());
9042   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9043 
9044   // Create new empty VPlan
9045   auto Plan = std::make_unique<VPlan>();
9046 
9047   // Build hierarchical CFG
9048   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9049   HCFGBuilder.buildHierarchicalCFG();
9050 
9051   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9052        VF *= 2)
9053     Plan->addVF(VF);
9054 
9055   if (EnableVPlanPredication) {
9056     VPlanPredicator VPP(*Plan);
9057     VPP.predicate();
9058 
9059     // Avoid running transformation to recipes until masked code generation in
9060     // VPlan-native path is in place.
9061     return Plan;
9062   }
9063 
9064   SmallPtrSet<Instruction *, 1> DeadInstructions;
9065   VPlanTransforms::VPInstructionsToVPRecipes(
9066       OrigLoop, Plan,
9067       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9068       DeadInstructions, *PSE.getSE());
9069 
9070   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9071                         true, true);
9072   return Plan;
9073 }
9074 
9075 // Adjust the recipes for reductions. For in-loop reductions the chain of
9076 // instructions leading from the loop exit instr to the phi need to be converted
9077 // to reductions, with one operand being vector and the other being the scalar
9078 // reduction chain. For other reductions, a select is introduced between the phi
9079 // and live-out recipes when folding the tail.
9080 void LoopVectorizationPlanner::adjustRecipesForReductions(
9081     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9082     ElementCount MinVF) {
9083   for (auto &Reduction : CM.getInLoopReductionChains()) {
9084     PHINode *Phi = Reduction.first;
9085     const RecurrenceDescriptor &RdxDesc =
9086         Legal->getReductionVars().find(Phi)->second;
9087     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9088 
9089     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9090       continue;
9091 
9092     // ReductionOperations are orders top-down from the phi's use to the
9093     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9094     // which of the two operands will remain scalar and which will be reduced.
9095     // For minmax the chain will be the select instructions.
9096     Instruction *Chain = Phi;
9097     for (Instruction *R : ReductionOperations) {
9098       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9099       RecurKind Kind = RdxDesc.getRecurrenceKind();
9100 
9101       VPValue *ChainOp = Plan->getVPValue(Chain);
9102       unsigned FirstOpId;
9103       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9104              "Only min/max recurrences allowed for inloop reductions");
9105       // Recognize a call to the llvm.fmuladd intrinsic.
9106       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9107       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9108              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9109       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9110         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9111                "Expected to replace a VPWidenSelectSC");
9112         FirstOpId = 1;
9113       } else {
9114         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9115                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9116                "Expected to replace a VPWidenSC");
9117         FirstOpId = 0;
9118       }
9119       unsigned VecOpId =
9120           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9121       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9122 
9123       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9124                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9125                          : nullptr;
9126 
9127       if (IsFMulAdd) {
9128         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9129         // need to create an fmul recipe to use as the vector operand for the
9130         // fadd reduction.
9131         VPInstruction *FMulRecipe = new VPInstruction(
9132             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9133         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9134         WidenRecipe->getParent()->insert(FMulRecipe,
9135                                          WidenRecipe->getIterator());
9136         VecOp = FMulRecipe;
9137       }
9138       VPReductionRecipe *RedRecipe =
9139           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9140       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9141       Plan->removeVPValueFor(R);
9142       Plan->addVPValue(R, RedRecipe);
9143       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9144       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9145       WidenRecipe->eraseFromParent();
9146 
9147       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9148         VPRecipeBase *CompareRecipe =
9149             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9150         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9151                "Expected to replace a VPWidenSC");
9152         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9153                "Expected no remaining users");
9154         CompareRecipe->eraseFromParent();
9155       }
9156       Chain = R;
9157     }
9158   }
9159 
9160   // If tail is folded by masking, introduce selects between the phi
9161   // and the live-out instruction of each reduction, at the beginning of the
9162   // dedicated latch block.
9163   if (CM.foldTailByMasking()) {
9164     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9165     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9166       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9167       if (!PhiR || PhiR->isInLoop())
9168         continue;
9169       VPValue *Cond =
9170           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9171       VPValue *Red = PhiR->getBackedgeValue();
9172       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9173              "reduction recipe must be defined before latch");
9174       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9175     }
9176   }
9177 }
9178 
9179 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9180 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9181                                VPSlotTracker &SlotTracker) const {
9182   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9183   IG->getInsertPos()->printAsOperand(O, false);
9184   O << ", ";
9185   getAddr()->printAsOperand(O, SlotTracker);
9186   VPValue *Mask = getMask();
9187   if (Mask) {
9188     O << ", ";
9189     Mask->printAsOperand(O, SlotTracker);
9190   }
9191 
9192   unsigned OpIdx = 0;
9193   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9194     if (!IG->getMember(i))
9195       continue;
9196     if (getNumStoreOperands() > 0) {
9197       O << "\n" << Indent << "  store ";
9198       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9199       O << " to index " << i;
9200     } else {
9201       O << "\n" << Indent << "  ";
9202       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9203       O << " = load from index " << i;
9204     }
9205     ++OpIdx;
9206   }
9207 }
9208 #endif
9209 
9210 void VPWidenCallRecipe::execute(VPTransformState &State) {
9211   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9212                                   *this, State);
9213 }
9214 
9215 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9216   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9217   State.ILV->setDebugLocFromInst(&I);
9218 
9219   // The condition can be loop invariant  but still defined inside the
9220   // loop. This means that we can't just use the original 'cond' value.
9221   // We have to take the 'vectorized' value and pick the first lane.
9222   // Instcombine will make this a no-op.
9223   auto *InvarCond =
9224       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9225 
9226   for (unsigned Part = 0; Part < State.UF; ++Part) {
9227     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9228     Value *Op0 = State.get(getOperand(1), Part);
9229     Value *Op1 = State.get(getOperand(2), Part);
9230     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9231     State.set(this, Sel, Part);
9232     State.ILV->addMetadata(Sel, &I);
9233   }
9234 }
9235 
9236 void VPWidenRecipe::execute(VPTransformState &State) {
9237   auto &I = *cast<Instruction>(getUnderlyingValue());
9238   auto &Builder = State.Builder;
9239   switch (I.getOpcode()) {
9240   case Instruction::Call:
9241   case Instruction::Br:
9242   case Instruction::PHI:
9243   case Instruction::GetElementPtr:
9244   case Instruction::Select:
9245     llvm_unreachable("This instruction is handled by a different recipe.");
9246   case Instruction::UDiv:
9247   case Instruction::SDiv:
9248   case Instruction::SRem:
9249   case Instruction::URem:
9250   case Instruction::Add:
9251   case Instruction::FAdd:
9252   case Instruction::Sub:
9253   case Instruction::FSub:
9254   case Instruction::FNeg:
9255   case Instruction::Mul:
9256   case Instruction::FMul:
9257   case Instruction::FDiv:
9258   case Instruction::FRem:
9259   case Instruction::Shl:
9260   case Instruction::LShr:
9261   case Instruction::AShr:
9262   case Instruction::And:
9263   case Instruction::Or:
9264   case Instruction::Xor: {
9265     // Just widen unops and binops.
9266     State.ILV->setDebugLocFromInst(&I);
9267 
9268     for (unsigned Part = 0; Part < State.UF; ++Part) {
9269       SmallVector<Value *, 2> Ops;
9270       for (VPValue *VPOp : operands())
9271         Ops.push_back(State.get(VPOp, Part));
9272 
9273       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9274 
9275       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9276         VecOp->copyIRFlags(&I);
9277 
9278         // If the instruction is vectorized and was in a basic block that needed
9279         // predication, we can't propagate poison-generating flags (nuw/nsw,
9280         // exact, etc.). The control flow has been linearized and the
9281         // instruction is no longer guarded by the predicate, which could make
9282         // the flag properties to no longer hold.
9283         if (State.MayGeneratePoisonRecipes.contains(this))
9284           VecOp->dropPoisonGeneratingFlags();
9285       }
9286 
9287       // Use this vector value for all users of the original instruction.
9288       State.set(this, V, Part);
9289       State.ILV->addMetadata(V, &I);
9290     }
9291 
9292     break;
9293   }
9294   case Instruction::ICmp:
9295   case Instruction::FCmp: {
9296     // Widen compares. Generate vector compares.
9297     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9298     auto *Cmp = cast<CmpInst>(&I);
9299     State.ILV->setDebugLocFromInst(Cmp);
9300     for (unsigned Part = 0; Part < State.UF; ++Part) {
9301       Value *A = State.get(getOperand(0), Part);
9302       Value *B = State.get(getOperand(1), Part);
9303       Value *C = nullptr;
9304       if (FCmp) {
9305         // Propagate fast math flags.
9306         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9307         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9308         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9309       } else {
9310         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9311       }
9312       State.set(this, C, Part);
9313       State.ILV->addMetadata(C, &I);
9314     }
9315 
9316     break;
9317   }
9318 
9319   case Instruction::ZExt:
9320   case Instruction::SExt:
9321   case Instruction::FPToUI:
9322   case Instruction::FPToSI:
9323   case Instruction::FPExt:
9324   case Instruction::PtrToInt:
9325   case Instruction::IntToPtr:
9326   case Instruction::SIToFP:
9327   case Instruction::UIToFP:
9328   case Instruction::Trunc:
9329   case Instruction::FPTrunc:
9330   case Instruction::BitCast: {
9331     auto *CI = cast<CastInst>(&I);
9332     State.ILV->setDebugLocFromInst(CI);
9333 
9334     /// Vectorize casts.
9335     Type *DestTy = (State.VF.isScalar())
9336                        ? CI->getType()
9337                        : VectorType::get(CI->getType(), State.VF);
9338 
9339     for (unsigned Part = 0; Part < State.UF; ++Part) {
9340       Value *A = State.get(getOperand(0), Part);
9341       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9342       State.set(this, Cast, Part);
9343       State.ILV->addMetadata(Cast, &I);
9344     }
9345     break;
9346   }
9347   default:
9348     // This instruction is not vectorized by simple widening.
9349     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9350     llvm_unreachable("Unhandled instruction!");
9351   } // end of switch.
9352 }
9353 
9354 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9355   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9356   // Construct a vector GEP by widening the operands of the scalar GEP as
9357   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9358   // results in a vector of pointers when at least one operand of the GEP
9359   // is vector-typed. Thus, to keep the representation compact, we only use
9360   // vector-typed operands for loop-varying values.
9361 
9362   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9363     // If we are vectorizing, but the GEP has only loop-invariant operands,
9364     // the GEP we build (by only using vector-typed operands for
9365     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9366     // produce a vector of pointers, we need to either arbitrarily pick an
9367     // operand to broadcast, or broadcast a clone of the original GEP.
9368     // Here, we broadcast a clone of the original.
9369     //
9370     // TODO: If at some point we decide to scalarize instructions having
9371     //       loop-invariant operands, this special case will no longer be
9372     //       required. We would add the scalarization decision to
9373     //       collectLoopScalars() and teach getVectorValue() to broadcast
9374     //       the lane-zero scalar value.
9375     auto *Clone = State.Builder.Insert(GEP->clone());
9376     for (unsigned Part = 0; Part < State.UF; ++Part) {
9377       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9378       State.set(this, EntryPart, Part);
9379       State.ILV->addMetadata(EntryPart, GEP);
9380     }
9381   } else {
9382     // If the GEP has at least one loop-varying operand, we are sure to
9383     // produce a vector of pointers. But if we are only unrolling, we want
9384     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9385     // produce with the code below will be scalar (if VF == 1) or vector
9386     // (otherwise). Note that for the unroll-only case, we still maintain
9387     // values in the vector mapping with initVector, as we do for other
9388     // instructions.
9389     for (unsigned Part = 0; Part < State.UF; ++Part) {
9390       // The pointer operand of the new GEP. If it's loop-invariant, we
9391       // won't broadcast it.
9392       auto *Ptr = IsPtrLoopInvariant
9393                       ? State.get(getOperand(0), VPIteration(0, 0))
9394                       : State.get(getOperand(0), Part);
9395 
9396       // Collect all the indices for the new GEP. If any index is
9397       // loop-invariant, we won't broadcast it.
9398       SmallVector<Value *, 4> Indices;
9399       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9400         VPValue *Operand = getOperand(I);
9401         if (IsIndexLoopInvariant[I - 1])
9402           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9403         else
9404           Indices.push_back(State.get(Operand, Part));
9405       }
9406 
9407       // If the GEP instruction is vectorized and was in a basic block that
9408       // needed predication, we can't propagate the poison-generating 'inbounds'
9409       // flag. The control flow has been linearized and the GEP is no longer
9410       // guarded by the predicate, which could make the 'inbounds' properties to
9411       // no longer hold.
9412       bool IsInBounds =
9413           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9414 
9415       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9416       // but it should be a vector, otherwise.
9417       auto *NewGEP = IsInBounds
9418                          ? State.Builder.CreateInBoundsGEP(
9419                                GEP->getSourceElementType(), Ptr, Indices)
9420                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9421                                                    Ptr, Indices);
9422       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9423              "NewGEP is not a pointer vector");
9424       State.set(this, NewGEP, Part);
9425       State.ILV->addMetadata(NewGEP, GEP);
9426     }
9427   }
9428 }
9429 
9430 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9431   assert(!State.Instance && "Int or FP induction being replicated.");
9432 
9433   Value *Start = getStartValue()->getLiveInIRValue();
9434   const InductionDescriptor &ID = getInductionDescriptor();
9435   TruncInst *Trunc = getTruncInst();
9436   IRBuilderBase &Builder = State.Builder;
9437   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9438   assert(State.VF.isVector() && "must have vector VF");
9439 
9440   // The value from the original loop to which we are mapping the new induction
9441   // variable.
9442   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9443 
9444   auto &DL = EntryVal->getModule()->getDataLayout();
9445 
9446   // Generate code for the induction step. Note that induction steps are
9447   // required to be loop-invariant
9448   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
9449     if (SE.isSCEVable(IV->getType())) {
9450       SCEVExpander Exp(SE, DL, "induction");
9451       return Exp.expandCodeFor(Step, Step->getType(),
9452                                State.CFG.VectorPreHeader->getTerminator());
9453     }
9454     return cast<SCEVUnknown>(Step)->getValue();
9455   };
9456 
9457   // Fast-math-flags propagate from the original induction instruction.
9458   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9459   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9460     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9461 
9462   // Now do the actual transformations, and start with creating the step value.
9463   Value *Step = CreateStepValue(ID.getStep());
9464 
9465   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9466          "Expected either an induction phi-node or a truncate of it!");
9467 
9468   // Construct the initial value of the vector IV in the vector loop preheader
9469   auto CurrIP = Builder.saveIP();
9470   Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
9471   if (isa<TruncInst>(EntryVal)) {
9472     assert(Start->getType()->isIntegerTy() &&
9473            "Truncation requires an integer type");
9474     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9475     Step = Builder.CreateTrunc(Step, TruncType);
9476     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9477   }
9478 
9479   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9480   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9481   Value *SteppedStart = getStepVector(
9482       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9483 
9484   // We create vector phi nodes for both integer and floating-point induction
9485   // variables. Here, we determine the kind of arithmetic we will perform.
9486   Instruction::BinaryOps AddOp;
9487   Instruction::BinaryOps MulOp;
9488   if (Step->getType()->isIntegerTy()) {
9489     AddOp = Instruction::Add;
9490     MulOp = Instruction::Mul;
9491   } else {
9492     AddOp = ID.getInductionOpcode();
9493     MulOp = Instruction::FMul;
9494   }
9495 
9496   // Multiply the vectorization factor by the step using integer or
9497   // floating-point arithmetic as appropriate.
9498   Type *StepType = Step->getType();
9499   Value *RuntimeVF;
9500   if (Step->getType()->isFloatingPointTy())
9501     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9502   else
9503     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9504   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9505 
9506   // Create a vector splat to use in the induction update.
9507   //
9508   // FIXME: If the step is non-constant, we create the vector splat with
9509   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9510   //        handle a constant vector splat.
9511   Value *SplatVF = isa<Constant>(Mul)
9512                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9513                        : Builder.CreateVectorSplat(State.VF, Mul);
9514   Builder.restoreIP(CurrIP);
9515 
9516   // We may need to add the step a number of times, depending on the unroll
9517   // factor. The last of those goes into the PHI.
9518   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9519                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9520   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9521   Instruction *LastInduction = VecInd;
9522   for (unsigned Part = 0; Part < State.UF; ++Part) {
9523     State.set(this, LastInduction, Part);
9524 
9525     if (isa<TruncInst>(EntryVal))
9526       State.ILV->addMetadata(LastInduction, EntryVal);
9527 
9528     LastInduction = cast<Instruction>(
9529         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9530     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9531   }
9532 
9533   // Move the last step to the end of the latch block. This ensures consistent
9534   // placement of all induction updates.
9535   auto *LoopVectorLatch =
9536       State.LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
9537   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
9538   LastInduction->moveBefore(Br);
9539   LastInduction->setName("vec.ind.next");
9540 
9541   VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader);
9542   VecInd->addIncoming(LastInduction, LoopVectorLatch);
9543 }
9544 
9545 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9546   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9547          "Not a pointer induction according to InductionDescriptor!");
9548 
9549   PHINode *Phi = cast<PHINode>(getUnderlyingInstr());
9550   assert(Phi->getType()->isPointerTy() && "Unexpected type.");
9551 
9552   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9553   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9554 
9555   if (all_of(users(), [this](const VPUser *U) {
9556         return cast<VPRecipeBase>(U)->usesScalars(this);
9557       })) {
9558     // This is the normalized GEP that starts counting at zero.
9559     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9560         CanonicalIV, IndDesc.getStep()->getType());
9561     // Determine the number of scalars we need to generate for each unroll
9562     // iteration. If the instruction is uniform, we only need to generate the
9563     // first lane. Otherwise, we generate all VF values.
9564     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9565     assert((IsUniform || !State.VF.isScalable()) &&
9566            "Cannot scalarize a scalable VF");
9567     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9568 
9569     for (unsigned Part = 0; Part < State.UF; ++Part) {
9570       Value *PartStart =
9571           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9572 
9573       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9574         Value *Idx = State.Builder.CreateAdd(
9575             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9576         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9577 
9578         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9579                                       State.CFG.PrevBB->getTerminator());
9580         Value *SclrGep = emitTransformedIndex(
9581             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9582         SclrGep->setName("next.gep");
9583         State.set(this, SclrGep, VPIteration(Part, Lane));
9584       }
9585     }
9586     return;
9587   }
9588 
9589   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9590          "Induction step not a SCEV constant!");
9591   Type *PhiType = IndDesc.getStep()->getType();
9592 
9593   // Build a pointer phi
9594   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9595   Type *ScStValueType = ScalarStartValue->getType();
9596   PHINode *NewPointerPhi =
9597       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9598   NewPointerPhi->addIncoming(ScalarStartValue, State.CFG.VectorPreHeader);
9599 
9600   // A pointer induction, performed by using a gep
9601   BasicBlock *LoopLatch =
9602       State.LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
9603 
9604   const DataLayout &DL = LoopLatch->getModule()->getDataLayout();
9605   Instruction *InductionLoc = LoopLatch->getTerminator();
9606   const SCEV *ScalarStep = IndDesc.getStep();
9607   SCEVExpander Exp(SE, DL, "induction");
9608   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9609   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9610   Value *NumUnrolledElems =
9611       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9612   Value *InductionGEP = GetElementPtrInst::Create(
9613       IndDesc.getElementType(), NewPointerPhi,
9614       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9615       InductionLoc);
9616   NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
9617 
9618   // Create UF many actual address geps that use the pointer
9619   // phi as base and a vectorized version of the step value
9620   // (<step*0, ..., step*N>) as offset.
9621   for (unsigned Part = 0; Part < State.UF; ++Part) {
9622     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9623     Value *StartOffsetScalar =
9624         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9625     Value *StartOffset =
9626         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9627     // Create a vector of consecutive numbers from zero to VF.
9628     StartOffset = State.Builder.CreateAdd(
9629         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9630 
9631     Value *GEP = State.Builder.CreateGEP(
9632         IndDesc.getElementType(), NewPointerPhi,
9633         State.Builder.CreateMul(
9634             StartOffset,
9635             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9636             "vector.gep"));
9637     State.set(this, GEP, Part);
9638   }
9639 }
9640 
9641 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9642   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9643 
9644   // Fast-math-flags propagate from the original induction instruction.
9645   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9646   if (IndDesc.getInductionBinOp() &&
9647       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9648     State.Builder.setFastMathFlags(
9649         IndDesc.getInductionBinOp()->getFastMathFlags());
9650 
9651   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9652   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9653     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9654     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9655     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9656       ScalarIV =
9657           Ty->isIntegerTy()
9658               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9659               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9660       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9661                                       getStartValue()->getLiveInIRValue(), Step,
9662                                       IndDesc);
9663       ScalarIV->setName("offset.idx");
9664     }
9665     if (TruncToTy) {
9666       assert(Step->getType()->isIntegerTy() &&
9667              "Truncation requires an integer step");
9668       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9669       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9670     }
9671     return ScalarIV;
9672   };
9673 
9674   Value *ScalarIV = CreateScalarIV(Step);
9675   if (State.VF.isVector()) {
9676     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9677     return;
9678   }
9679 
9680   for (unsigned Part = 0; Part < State.UF; ++Part) {
9681     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9682     Value *EntryPart;
9683     if (Step->getType()->isFloatingPointTy()) {
9684       Value *StartIdx =
9685           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9686       // Floating-point operations inherit FMF via the builder's flags.
9687       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9688       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9689                                             ScalarIV, MulOp);
9690     } else {
9691       Value *StartIdx =
9692           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9693       EntryPart = State.Builder.CreateAdd(
9694           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9695     }
9696     State.set(this, EntryPart, Part);
9697   }
9698 }
9699 
9700 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9701   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9702                                  State);
9703 }
9704 
9705 void VPBlendRecipe::execute(VPTransformState &State) {
9706   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9707   // We know that all PHIs in non-header blocks are converted into
9708   // selects, so we don't have to worry about the insertion order and we
9709   // can just use the builder.
9710   // At this point we generate the predication tree. There may be
9711   // duplications since this is a simple recursive scan, but future
9712   // optimizations will clean it up.
9713 
9714   unsigned NumIncoming = getNumIncomingValues();
9715 
9716   // Generate a sequence of selects of the form:
9717   // SELECT(Mask3, In3,
9718   //        SELECT(Mask2, In2,
9719   //               SELECT(Mask1, In1,
9720   //                      In0)))
9721   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9722   // are essentially undef are taken from In0.
9723   InnerLoopVectorizer::VectorParts Entry(State.UF);
9724   for (unsigned In = 0; In < NumIncoming; ++In) {
9725     for (unsigned Part = 0; Part < State.UF; ++Part) {
9726       // We might have single edge PHIs (blocks) - use an identity
9727       // 'select' for the first PHI operand.
9728       Value *In0 = State.get(getIncomingValue(In), Part);
9729       if (In == 0)
9730         Entry[Part] = In0; // Initialize with the first incoming value.
9731       else {
9732         // Select between the current value and the previous incoming edge
9733         // based on the incoming mask.
9734         Value *Cond = State.get(getMask(In), Part);
9735         Entry[Part] =
9736             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9737       }
9738     }
9739   }
9740   for (unsigned Part = 0; Part < State.UF; ++Part)
9741     State.set(this, Entry[Part], Part);
9742 }
9743 
9744 void VPInterleaveRecipe::execute(VPTransformState &State) {
9745   assert(!State.Instance && "Interleave group being replicated.");
9746   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9747                                       getStoredValues(), getMask());
9748 }
9749 
9750 void VPReductionRecipe::execute(VPTransformState &State) {
9751   assert(!State.Instance && "Reduction being replicated.");
9752   Value *PrevInChain = State.get(getChainOp(), 0);
9753   RecurKind Kind = RdxDesc->getRecurrenceKind();
9754   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9755   // Propagate the fast-math flags carried by the underlying instruction.
9756   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9757   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9758   for (unsigned Part = 0; Part < State.UF; ++Part) {
9759     Value *NewVecOp = State.get(getVecOp(), Part);
9760     if (VPValue *Cond = getCondOp()) {
9761       Value *NewCond = State.get(Cond, Part);
9762       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9763       Value *Iden = RdxDesc->getRecurrenceIdentity(
9764           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9765       Value *IdenVec =
9766           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9767       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9768       NewVecOp = Select;
9769     }
9770     Value *NewRed;
9771     Value *NextInChain;
9772     if (IsOrdered) {
9773       if (State.VF.isVector())
9774         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9775                                         PrevInChain);
9776       else
9777         NewRed = State.Builder.CreateBinOp(
9778             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9779             NewVecOp);
9780       PrevInChain = NewRed;
9781     } else {
9782       PrevInChain = State.get(getChainOp(), Part);
9783       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9784     }
9785     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9786       NextInChain =
9787           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9788                          NewRed, PrevInChain);
9789     } else if (IsOrdered)
9790       NextInChain = NewRed;
9791     else
9792       NextInChain = State.Builder.CreateBinOp(
9793           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9794           PrevInChain);
9795     State.set(this, NextInChain, Part);
9796   }
9797 }
9798 
9799 void VPReplicateRecipe::execute(VPTransformState &State) {
9800   if (State.Instance) { // Generate a single instance.
9801     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9802     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9803                                     IsPredicated, State);
9804     // Insert scalar instance packing it into a vector.
9805     if (AlsoPack && State.VF.isVector()) {
9806       // If we're constructing lane 0, initialize to start from poison.
9807       if (State.Instance->Lane.isFirstLane()) {
9808         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9809         Value *Poison = PoisonValue::get(
9810             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9811         State.set(this, Poison, State.Instance->Part);
9812       }
9813       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9814     }
9815     return;
9816   }
9817 
9818   // Generate scalar instances for all VF lanes of all UF parts, unless the
9819   // instruction is uniform inwhich case generate only the first lane for each
9820   // of the UF parts.
9821   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9822   assert((!State.VF.isScalable() || IsUniform) &&
9823          "Can't scalarize a scalable vector");
9824   for (unsigned Part = 0; Part < State.UF; ++Part)
9825     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9826       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9827                                       VPIteration(Part, Lane), IsPredicated,
9828                                       State);
9829 }
9830 
9831 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9832   assert(State.Instance && "Branch on Mask works only on single instance.");
9833 
9834   unsigned Part = State.Instance->Part;
9835   unsigned Lane = State.Instance->Lane.getKnownLane();
9836 
9837   Value *ConditionBit = nullptr;
9838   VPValue *BlockInMask = getMask();
9839   if (BlockInMask) {
9840     ConditionBit = State.get(BlockInMask, Part);
9841     if (ConditionBit->getType()->isVectorTy())
9842       ConditionBit = State.Builder.CreateExtractElement(
9843           ConditionBit, State.Builder.getInt32(Lane));
9844   } else // Block in mask is all-one.
9845     ConditionBit = State.Builder.getTrue();
9846 
9847   // Replace the temporary unreachable terminator with a new conditional branch,
9848   // whose two destinations will be set later when they are created.
9849   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9850   assert(isa<UnreachableInst>(CurrentTerminator) &&
9851          "Expected to replace unreachable terminator with conditional branch.");
9852   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9853   CondBr->setSuccessor(0, nullptr);
9854   ReplaceInstWithInst(CurrentTerminator, CondBr);
9855 }
9856 
9857 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9858   assert(State.Instance && "Predicated instruction PHI works per instance.");
9859   Instruction *ScalarPredInst =
9860       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9861   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9862   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9863   assert(PredicatingBB && "Predicated block has no single predecessor.");
9864   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9865          "operand must be VPReplicateRecipe");
9866 
9867   // By current pack/unpack logic we need to generate only a single phi node: if
9868   // a vector value for the predicated instruction exists at this point it means
9869   // the instruction has vector users only, and a phi for the vector value is
9870   // needed. In this case the recipe of the predicated instruction is marked to
9871   // also do that packing, thereby "hoisting" the insert-element sequence.
9872   // Otherwise, a phi node for the scalar value is needed.
9873   unsigned Part = State.Instance->Part;
9874   if (State.hasVectorValue(getOperand(0), Part)) {
9875     Value *VectorValue = State.get(getOperand(0), Part);
9876     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9877     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9878     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9879     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9880     if (State.hasVectorValue(this, Part))
9881       State.reset(this, VPhi, Part);
9882     else
9883       State.set(this, VPhi, Part);
9884     // NOTE: Currently we need to update the value of the operand, so the next
9885     // predicated iteration inserts its generated value in the correct vector.
9886     State.reset(getOperand(0), VPhi, Part);
9887   } else {
9888     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9889     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9890     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9891                      PredicatingBB);
9892     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9893     if (State.hasScalarValue(this, *State.Instance))
9894       State.reset(this, Phi, *State.Instance);
9895     else
9896       State.set(this, Phi, *State.Instance);
9897     // NOTE: Currently we need to update the value of the operand, so the next
9898     // predicated iteration inserts its generated value in the correct vector.
9899     State.reset(getOperand(0), Phi, *State.Instance);
9900   }
9901 }
9902 
9903 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9904   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9905 
9906   // Attempt to issue a wide load.
9907   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9908   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9909 
9910   assert((LI || SI) && "Invalid Load/Store instruction");
9911   assert((!SI || StoredValue) && "No stored value provided for widened store");
9912   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9913 
9914   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9915 
9916   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9917   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9918   bool CreateGatherScatter = !Consecutive;
9919 
9920   auto &Builder = State.Builder;
9921   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9922   bool isMaskRequired = getMask();
9923   if (isMaskRequired)
9924     for (unsigned Part = 0; Part < State.UF; ++Part)
9925       BlockInMaskParts[Part] = State.get(getMask(), Part);
9926 
9927   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9928     // Calculate the pointer for the specific unroll-part.
9929     GetElementPtrInst *PartPtr = nullptr;
9930 
9931     bool InBounds = false;
9932     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9933       InBounds = gep->isInBounds();
9934     if (Reverse) {
9935       // If the address is consecutive but reversed, then the
9936       // wide store needs to start at the last vector element.
9937       // RunTimeVF =  VScale * VF.getKnownMinValue()
9938       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9939       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9940       // NumElt = -Part * RunTimeVF
9941       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9942       // LastLane = 1 - RunTimeVF
9943       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9944       PartPtr =
9945           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9946       PartPtr->setIsInBounds(InBounds);
9947       PartPtr = cast<GetElementPtrInst>(
9948           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9949       PartPtr->setIsInBounds(InBounds);
9950       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9951         BlockInMaskParts[Part] =
9952             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9953     } else {
9954       Value *Increment =
9955           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9956       PartPtr = cast<GetElementPtrInst>(
9957           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9958       PartPtr->setIsInBounds(InBounds);
9959     }
9960 
9961     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9962     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9963   };
9964 
9965   // Handle Stores:
9966   if (SI) {
9967     State.ILV->setDebugLocFromInst(SI);
9968 
9969     for (unsigned Part = 0; Part < State.UF; ++Part) {
9970       Instruction *NewSI = nullptr;
9971       Value *StoredVal = State.get(StoredValue, Part);
9972       if (CreateGatherScatter) {
9973         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9974         Value *VectorGep = State.get(getAddr(), Part);
9975         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9976                                             MaskPart);
9977       } else {
9978         if (Reverse) {
9979           // If we store to reverse consecutive memory locations, then we need
9980           // to reverse the order of elements in the stored value.
9981           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9982           // We don't want to update the value in the map as it might be used in
9983           // another expression. So don't call resetVectorValue(StoredVal).
9984         }
9985         auto *VecPtr =
9986             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9987         if (isMaskRequired)
9988           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9989                                             BlockInMaskParts[Part]);
9990         else
9991           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9992       }
9993       State.ILV->addMetadata(NewSI, SI);
9994     }
9995     return;
9996   }
9997 
9998   // Handle loads.
9999   assert(LI && "Must have a load instruction");
10000   State.ILV->setDebugLocFromInst(LI);
10001   for (unsigned Part = 0; Part < State.UF; ++Part) {
10002     Value *NewLI;
10003     if (CreateGatherScatter) {
10004       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10005       Value *VectorGep = State.get(getAddr(), Part);
10006       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10007                                          nullptr, "wide.masked.gather");
10008       State.ILV->addMetadata(NewLI, LI);
10009     } else {
10010       auto *VecPtr =
10011           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10012       if (isMaskRequired)
10013         NewLI = Builder.CreateMaskedLoad(
10014             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10015             PoisonValue::get(DataTy), "wide.masked.load");
10016       else
10017         NewLI =
10018             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10019 
10020       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10021       State.ILV->addMetadata(NewLI, LI);
10022       if (Reverse)
10023         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10024     }
10025 
10026     State.set(this, NewLI, Part);
10027   }
10028 }
10029 
10030 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10031 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10032 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10033 // for predication.
10034 static ScalarEpilogueLowering getScalarEpilogueLowering(
10035     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10036     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10037     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10038     LoopVectorizationLegality &LVL) {
10039   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10040   // don't look at hints or options, and don't request a scalar epilogue.
10041   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10042   // LoopAccessInfo (due to code dependency and not being able to reliably get
10043   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10044   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10045   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10046   // back to the old way and vectorize with versioning when forced. See D81345.)
10047   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10048                                                       PGSOQueryType::IRPass) &&
10049                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10050     return CM_ScalarEpilogueNotAllowedOptSize;
10051 
10052   // 2) If set, obey the directives
10053   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10054     switch (PreferPredicateOverEpilogue) {
10055     case PreferPredicateTy::ScalarEpilogue:
10056       return CM_ScalarEpilogueAllowed;
10057     case PreferPredicateTy::PredicateElseScalarEpilogue:
10058       return CM_ScalarEpilogueNotNeededUsePredicate;
10059     case PreferPredicateTy::PredicateOrDontVectorize:
10060       return CM_ScalarEpilogueNotAllowedUsePredicate;
10061     };
10062   }
10063 
10064   // 3) If set, obey the hints
10065   switch (Hints.getPredicate()) {
10066   case LoopVectorizeHints::FK_Enabled:
10067     return CM_ScalarEpilogueNotNeededUsePredicate;
10068   case LoopVectorizeHints::FK_Disabled:
10069     return CM_ScalarEpilogueAllowed;
10070   };
10071 
10072   // 4) if the TTI hook indicates this is profitable, request predication.
10073   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10074                                        LVL.getLAI()))
10075     return CM_ScalarEpilogueNotNeededUsePredicate;
10076 
10077   return CM_ScalarEpilogueAllowed;
10078 }
10079 
10080 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10081   // If Values have been set for this Def return the one relevant for \p Part.
10082   if (hasVectorValue(Def, Part))
10083     return Data.PerPartOutput[Def][Part];
10084 
10085   if (!hasScalarValue(Def, {Part, 0})) {
10086     Value *IRV = Def->getLiveInIRValue();
10087     Value *B = ILV->getBroadcastInstrs(IRV);
10088     set(Def, B, Part);
10089     return B;
10090   }
10091 
10092   Value *ScalarValue = get(Def, {Part, 0});
10093   // If we aren't vectorizing, we can just copy the scalar map values over
10094   // to the vector map.
10095   if (VF.isScalar()) {
10096     set(Def, ScalarValue, Part);
10097     return ScalarValue;
10098   }
10099 
10100   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10101   bool IsUniform = RepR && RepR->isUniform();
10102 
10103   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10104   // Check if there is a scalar value for the selected lane.
10105   if (!hasScalarValue(Def, {Part, LastLane})) {
10106     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10107     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10108             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10109            "unexpected recipe found to be invariant");
10110     IsUniform = true;
10111     LastLane = 0;
10112   }
10113 
10114   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10115   // Set the insert point after the last scalarized instruction or after the
10116   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10117   // will directly follow the scalar definitions.
10118   auto OldIP = Builder.saveIP();
10119   auto NewIP =
10120       isa<PHINode>(LastInst)
10121           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10122           : std::next(BasicBlock::iterator(LastInst));
10123   Builder.SetInsertPoint(&*NewIP);
10124 
10125   // However, if we are vectorizing, we need to construct the vector values.
10126   // If the value is known to be uniform after vectorization, we can just
10127   // broadcast the scalar value corresponding to lane zero for each unroll
10128   // iteration. Otherwise, we construct the vector values using
10129   // insertelement instructions. Since the resulting vectors are stored in
10130   // State, we will only generate the insertelements once.
10131   Value *VectorValue = nullptr;
10132   if (IsUniform) {
10133     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10134     set(Def, VectorValue, Part);
10135   } else {
10136     // Initialize packing with insertelements to start from undef.
10137     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10138     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10139     set(Def, Undef, Part);
10140     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10141       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10142     VectorValue = get(Def, Part);
10143   }
10144   Builder.restoreIP(OldIP);
10145   return VectorValue;
10146 }
10147 
10148 // Process the loop in the VPlan-native vectorization path. This path builds
10149 // VPlan upfront in the vectorization pipeline, which allows to apply
10150 // VPlan-to-VPlan transformations from the very beginning without modifying the
10151 // input LLVM IR.
10152 static bool processLoopInVPlanNativePath(
10153     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10154     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10155     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10156     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10157     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10158     LoopVectorizationRequirements &Requirements) {
10159 
10160   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10161     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10162     return false;
10163   }
10164   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10165   Function *F = L->getHeader()->getParent();
10166   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10167 
10168   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10169       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10170 
10171   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10172                                 &Hints, IAI);
10173   // Use the planner for outer loop vectorization.
10174   // TODO: CM is not used at this point inside the planner. Turn CM into an
10175   // optional argument if we don't need it in the future.
10176   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10177                                Requirements, ORE);
10178 
10179   // Get user vectorization factor.
10180   ElementCount UserVF = Hints.getWidth();
10181 
10182   CM.collectElementTypesForWidening();
10183 
10184   // Plan how to best vectorize, return the best VF and its cost.
10185   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10186 
10187   // If we are stress testing VPlan builds, do not attempt to generate vector
10188   // code. Masked vector code generation support will follow soon.
10189   // Also, do not attempt to vectorize if no vector code will be produced.
10190   if (VPlanBuildStressTest || EnableVPlanPredication ||
10191       VectorizationFactor::Disabled() == VF)
10192     return false;
10193 
10194   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10195 
10196   {
10197     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10198                              F->getParent()->getDataLayout());
10199     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10200                            &CM, BFI, PSI, Checks);
10201     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10202                       << L->getHeader()->getParent()->getName() << "\"\n");
10203     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10204   }
10205 
10206   // Mark the loop as already vectorized to avoid vectorizing again.
10207   Hints.setAlreadyVectorized();
10208   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10209   return true;
10210 }
10211 
10212 // Emit a remark if there are stores to floats that required a floating point
10213 // extension. If the vectorized loop was generated with floating point there
10214 // will be a performance penalty from the conversion overhead and the change in
10215 // the vector width.
10216 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10217   SmallVector<Instruction *, 4> Worklist;
10218   for (BasicBlock *BB : L->getBlocks()) {
10219     for (Instruction &Inst : *BB) {
10220       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10221         if (S->getValueOperand()->getType()->isFloatTy())
10222           Worklist.push_back(S);
10223       }
10224     }
10225   }
10226 
10227   // Traverse the floating point stores upwards searching, for floating point
10228   // conversions.
10229   SmallPtrSet<const Instruction *, 4> Visited;
10230   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10231   while (!Worklist.empty()) {
10232     auto *I = Worklist.pop_back_val();
10233     if (!L->contains(I))
10234       continue;
10235     if (!Visited.insert(I).second)
10236       continue;
10237 
10238     // Emit a remark if the floating point store required a floating
10239     // point conversion.
10240     // TODO: More work could be done to identify the root cause such as a
10241     // constant or a function return type and point the user to it.
10242     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10243       ORE->emit([&]() {
10244         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10245                                           I->getDebugLoc(), L->getHeader())
10246                << "floating point conversion changes vector width. "
10247                << "Mixed floating point precision requires an up/down "
10248                << "cast that will negatively impact performance.";
10249       });
10250 
10251     for (Use &Op : I->operands())
10252       if (auto *OpI = dyn_cast<Instruction>(Op))
10253         Worklist.push_back(OpI);
10254   }
10255 }
10256 
10257 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10258     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10259                                !EnableLoopInterleaving),
10260       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10261                               !EnableLoopVectorization) {}
10262 
10263 bool LoopVectorizePass::processLoop(Loop *L) {
10264   assert((EnableVPlanNativePath || L->isInnermost()) &&
10265          "VPlan-native path is not enabled. Only process inner loops.");
10266 
10267 #ifndef NDEBUG
10268   const std::string DebugLocStr = getDebugLocString(L);
10269 #endif /* NDEBUG */
10270 
10271   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10272                     << L->getHeader()->getParent()->getName() << "' from "
10273                     << DebugLocStr << "\n");
10274 
10275   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10276 
10277   LLVM_DEBUG(
10278       dbgs() << "LV: Loop hints:"
10279              << " force="
10280              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10281                      ? "disabled"
10282                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10283                             ? "enabled"
10284                             : "?"))
10285              << " width=" << Hints.getWidth()
10286              << " interleave=" << Hints.getInterleave() << "\n");
10287 
10288   // Function containing loop
10289   Function *F = L->getHeader()->getParent();
10290 
10291   // Looking at the diagnostic output is the only way to determine if a loop
10292   // was vectorized (other than looking at the IR or machine code), so it
10293   // is important to generate an optimization remark for each loop. Most of
10294   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10295   // generated as OptimizationRemark and OptimizationRemarkMissed are
10296   // less verbose reporting vectorized loops and unvectorized loops that may
10297   // benefit from vectorization, respectively.
10298 
10299   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10300     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10301     return false;
10302   }
10303 
10304   PredicatedScalarEvolution PSE(*SE, *L);
10305 
10306   // Check if it is legal to vectorize the loop.
10307   LoopVectorizationRequirements Requirements;
10308   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10309                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10310   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10311     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10312     Hints.emitRemarkWithHints();
10313     return false;
10314   }
10315 
10316   // Check the function attributes and profiles to find out if this function
10317   // should be optimized for size.
10318   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10319       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10320 
10321   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10322   // here. They may require CFG and instruction level transformations before
10323   // even evaluating whether vectorization is profitable. Since we cannot modify
10324   // the incoming IR, we need to build VPlan upfront in the vectorization
10325   // pipeline.
10326   if (!L->isInnermost())
10327     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10328                                         ORE, BFI, PSI, Hints, Requirements);
10329 
10330   assert(L->isInnermost() && "Inner loop expected.");
10331 
10332   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10333   // count by optimizing for size, to minimize overheads.
10334   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10335   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10336     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10337                       << "This loop is worth vectorizing only if no scalar "
10338                       << "iteration overheads are incurred.");
10339     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10340       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10341     else {
10342       LLVM_DEBUG(dbgs() << "\n");
10343       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10344     }
10345   }
10346 
10347   // Check the function attributes to see if implicit floats are allowed.
10348   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10349   // an integer loop and the vector instructions selected are purely integer
10350   // vector instructions?
10351   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10352     reportVectorizationFailure(
10353         "Can't vectorize when the NoImplicitFloat attribute is used",
10354         "loop not vectorized due to NoImplicitFloat attribute",
10355         "NoImplicitFloat", ORE, L);
10356     Hints.emitRemarkWithHints();
10357     return false;
10358   }
10359 
10360   // Check if the target supports potentially unsafe FP vectorization.
10361   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10362   // for the target we're vectorizing for, to make sure none of the
10363   // additional fp-math flags can help.
10364   if (Hints.isPotentiallyUnsafe() &&
10365       TTI->isFPVectorizationPotentiallyUnsafe()) {
10366     reportVectorizationFailure(
10367         "Potentially unsafe FP op prevents vectorization",
10368         "loop not vectorized due to unsafe FP support.",
10369         "UnsafeFP", ORE, L);
10370     Hints.emitRemarkWithHints();
10371     return false;
10372   }
10373 
10374   bool AllowOrderedReductions;
10375   // If the flag is set, use that instead and override the TTI behaviour.
10376   if (ForceOrderedReductions.getNumOccurrences() > 0)
10377     AllowOrderedReductions = ForceOrderedReductions;
10378   else
10379     AllowOrderedReductions = TTI->enableOrderedReductions();
10380   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10381     ORE->emit([&]() {
10382       auto *ExactFPMathInst = Requirements.getExactFPInst();
10383       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10384                                                  ExactFPMathInst->getDebugLoc(),
10385                                                  ExactFPMathInst->getParent())
10386              << "loop not vectorized: cannot prove it is safe to reorder "
10387                 "floating-point operations";
10388     });
10389     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10390                          "reorder floating-point operations\n");
10391     Hints.emitRemarkWithHints();
10392     return false;
10393   }
10394 
10395   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10396   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10397 
10398   // If an override option has been passed in for interleaved accesses, use it.
10399   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10400     UseInterleaved = EnableInterleavedMemAccesses;
10401 
10402   // Analyze interleaved memory accesses.
10403   if (UseInterleaved) {
10404     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10405   }
10406 
10407   // Use the cost model.
10408   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10409                                 F, &Hints, IAI);
10410   CM.collectValuesToIgnore();
10411   CM.collectElementTypesForWidening();
10412 
10413   // Use the planner for vectorization.
10414   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10415                                Requirements, ORE);
10416 
10417   // Get user vectorization factor and interleave count.
10418   ElementCount UserVF = Hints.getWidth();
10419   unsigned UserIC = Hints.getInterleave();
10420 
10421   // Plan how to best vectorize, return the best VF and its cost.
10422   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10423 
10424   VectorizationFactor VF = VectorizationFactor::Disabled();
10425   unsigned IC = 1;
10426 
10427   if (MaybeVF) {
10428     VF = *MaybeVF;
10429     // Select the interleave count.
10430     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10431   }
10432 
10433   // Identify the diagnostic messages that should be produced.
10434   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10435   bool VectorizeLoop = true, InterleaveLoop = true;
10436   if (VF.Width.isScalar()) {
10437     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10438     VecDiagMsg = std::make_pair(
10439         "VectorizationNotBeneficial",
10440         "the cost-model indicates that vectorization is not beneficial");
10441     VectorizeLoop = false;
10442   }
10443 
10444   if (!MaybeVF && UserIC > 1) {
10445     // Tell the user interleaving was avoided up-front, despite being explicitly
10446     // requested.
10447     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10448                          "interleaving should be avoided up front\n");
10449     IntDiagMsg = std::make_pair(
10450         "InterleavingAvoided",
10451         "Ignoring UserIC, because interleaving was avoided up front");
10452     InterleaveLoop = false;
10453   } else if (IC == 1 && UserIC <= 1) {
10454     // Tell the user interleaving is not beneficial.
10455     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10456     IntDiagMsg = std::make_pair(
10457         "InterleavingNotBeneficial",
10458         "the cost-model indicates that interleaving is not beneficial");
10459     InterleaveLoop = false;
10460     if (UserIC == 1) {
10461       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10462       IntDiagMsg.second +=
10463           " and is explicitly disabled or interleave count is set to 1";
10464     }
10465   } else if (IC > 1 && UserIC == 1) {
10466     // Tell the user interleaving is beneficial, but it explicitly disabled.
10467     LLVM_DEBUG(
10468         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10469     IntDiagMsg = std::make_pair(
10470         "InterleavingBeneficialButDisabled",
10471         "the cost-model indicates that interleaving is beneficial "
10472         "but is explicitly disabled or interleave count is set to 1");
10473     InterleaveLoop = false;
10474   }
10475 
10476   // Override IC if user provided an interleave count.
10477   IC = UserIC > 0 ? UserIC : IC;
10478 
10479   // Emit diagnostic messages, if any.
10480   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10481   if (!VectorizeLoop && !InterleaveLoop) {
10482     // Do not vectorize or interleaving the loop.
10483     ORE->emit([&]() {
10484       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10485                                       L->getStartLoc(), L->getHeader())
10486              << VecDiagMsg.second;
10487     });
10488     ORE->emit([&]() {
10489       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10490                                       L->getStartLoc(), L->getHeader())
10491              << IntDiagMsg.second;
10492     });
10493     return false;
10494   } else if (!VectorizeLoop && InterleaveLoop) {
10495     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10496     ORE->emit([&]() {
10497       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10498                                         L->getStartLoc(), L->getHeader())
10499              << VecDiagMsg.second;
10500     });
10501   } else if (VectorizeLoop && !InterleaveLoop) {
10502     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10503                       << ") in " << DebugLocStr << '\n');
10504     ORE->emit([&]() {
10505       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10506                                         L->getStartLoc(), L->getHeader())
10507              << IntDiagMsg.second;
10508     });
10509   } else if (VectorizeLoop && InterleaveLoop) {
10510     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10511                       << ") in " << DebugLocStr << '\n');
10512     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10513   }
10514 
10515   bool DisableRuntimeUnroll = false;
10516   MDNode *OrigLoopID = L->getLoopID();
10517   {
10518     // Optimistically generate runtime checks. Drop them if they turn out to not
10519     // be profitable. Limit the scope of Checks, so the cleanup happens
10520     // immediately after vector codegeneration is done.
10521     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10522                              F->getParent()->getDataLayout());
10523     if (!VF.Width.isScalar() || IC > 1)
10524       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate());
10525 
10526     using namespace ore;
10527     if (!VectorizeLoop) {
10528       assert(IC > 1 && "interleave count should not be 1 or 0");
10529       // If we decided that it is not legal to vectorize the loop, then
10530       // interleave it.
10531       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10532                                  &CM, BFI, PSI, Checks);
10533 
10534       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10535       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10536 
10537       ORE->emit([&]() {
10538         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10539                                   L->getHeader())
10540                << "interleaved loop (interleaved count: "
10541                << NV("InterleaveCount", IC) << ")";
10542       });
10543     } else {
10544       // If we decided that it is *legal* to vectorize the loop, then do it.
10545 
10546       // Consider vectorizing the epilogue too if it's profitable.
10547       VectorizationFactor EpilogueVF =
10548           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10549       if (EpilogueVF.Width.isVector()) {
10550 
10551         // The first pass vectorizes the main loop and creates a scalar epilogue
10552         // to be vectorized by executing the plan (potentially with a different
10553         // factor) again shortly afterwards.
10554         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10555         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10556                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10557 
10558         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10559         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10560                         DT);
10561         ++LoopsVectorized;
10562 
10563         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10564         formLCSSARecursively(*L, *DT, LI, SE);
10565 
10566         // Second pass vectorizes the epilogue and adjusts the control flow
10567         // edges from the first pass.
10568         EPI.MainLoopVF = EPI.EpilogueVF;
10569         EPI.MainLoopUF = EPI.EpilogueUF;
10570         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10571                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10572                                                  Checks);
10573 
10574         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10575 
10576         // Ensure that the start values for any VPReductionPHIRecipes are
10577         // updated before vectorising the epilogue loop.
10578         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10579         for (VPRecipeBase &R : Header->phis()) {
10580           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10581             if (auto *Resume = MainILV.getReductionResumeValue(
10582                     ReductionPhi->getRecurrenceDescriptor())) {
10583               VPValue *StartVal = new VPValue(Resume);
10584               BestEpiPlan.addExternalDef(StartVal);
10585               ReductionPhi->setOperand(0, StartVal);
10586             }
10587           }
10588         }
10589 
10590         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10591                         DT);
10592         ++LoopsEpilogueVectorized;
10593 
10594         if (!MainILV.areSafetyChecksAdded())
10595           DisableRuntimeUnroll = true;
10596       } else {
10597         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10598                                &LVL, &CM, BFI, PSI, Checks);
10599 
10600         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10601         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10602         ++LoopsVectorized;
10603 
10604         // Add metadata to disable runtime unrolling a scalar loop when there
10605         // are no runtime checks about strides and memory. A scalar loop that is
10606         // rarely used is not worth unrolling.
10607         if (!LB.areSafetyChecksAdded())
10608           DisableRuntimeUnroll = true;
10609       }
10610       // Report the vectorization decision.
10611       ORE->emit([&]() {
10612         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10613                                   L->getHeader())
10614                << "vectorized loop (vectorization width: "
10615                << NV("VectorizationFactor", VF.Width)
10616                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10617       });
10618     }
10619 
10620     if (ORE->allowExtraAnalysis(LV_NAME))
10621       checkMixedPrecision(L, ORE);
10622   }
10623 
10624   Optional<MDNode *> RemainderLoopID =
10625       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10626                                       LLVMLoopVectorizeFollowupEpilogue});
10627   if (RemainderLoopID.hasValue()) {
10628     L->setLoopID(RemainderLoopID.getValue());
10629   } else {
10630     if (DisableRuntimeUnroll)
10631       AddRuntimeUnrollDisableMetaData(L);
10632 
10633     // Mark the loop as already vectorized to avoid vectorizing again.
10634     Hints.setAlreadyVectorized();
10635   }
10636 
10637   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10638   return true;
10639 }
10640 
10641 LoopVectorizeResult LoopVectorizePass::runImpl(
10642     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10643     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10644     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10645     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10646     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10647   SE = &SE_;
10648   LI = &LI_;
10649   TTI = &TTI_;
10650   DT = &DT_;
10651   BFI = &BFI_;
10652   TLI = TLI_;
10653   AA = &AA_;
10654   AC = &AC_;
10655   GetLAA = &GetLAA_;
10656   DB = &DB_;
10657   ORE = &ORE_;
10658   PSI = PSI_;
10659 
10660   // Don't attempt if
10661   // 1. the target claims to have no vector registers, and
10662   // 2. interleaving won't help ILP.
10663   //
10664   // The second condition is necessary because, even if the target has no
10665   // vector registers, loop vectorization may still enable scalar
10666   // interleaving.
10667   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10668       TTI->getMaxInterleaveFactor(1) < 2)
10669     return LoopVectorizeResult(false, false);
10670 
10671   bool Changed = false, CFGChanged = false;
10672 
10673   // The vectorizer requires loops to be in simplified form.
10674   // Since simplification may add new inner loops, it has to run before the
10675   // legality and profitability checks. This means running the loop vectorizer
10676   // will simplify all loops, regardless of whether anything end up being
10677   // vectorized.
10678   for (auto &L : *LI)
10679     Changed |= CFGChanged |=
10680         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10681 
10682   // Build up a worklist of inner-loops to vectorize. This is necessary as
10683   // the act of vectorizing or partially unrolling a loop creates new loops
10684   // and can invalidate iterators across the loops.
10685   SmallVector<Loop *, 8> Worklist;
10686 
10687   for (Loop *L : *LI)
10688     collectSupportedLoops(*L, LI, ORE, Worklist);
10689 
10690   LoopsAnalyzed += Worklist.size();
10691 
10692   // Now walk the identified inner loops.
10693   while (!Worklist.empty()) {
10694     Loop *L = Worklist.pop_back_val();
10695 
10696     // For the inner loops we actually process, form LCSSA to simplify the
10697     // transform.
10698     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10699 
10700     Changed |= CFGChanged |= processLoop(L);
10701   }
10702 
10703   // Process each loop nest in the function.
10704   return LoopVectorizeResult(Changed, CFGChanged);
10705 }
10706 
10707 PreservedAnalyses LoopVectorizePass::run(Function &F,
10708                                          FunctionAnalysisManager &AM) {
10709     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10710     auto &LI = AM.getResult<LoopAnalysis>(F);
10711     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10712     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10713     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10714     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10715     auto &AA = AM.getResult<AAManager>(F);
10716     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10717     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10718     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10719 
10720     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10721     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10722         [&](Loop &L) -> const LoopAccessInfo & {
10723       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10724                                         TLI, TTI, nullptr, nullptr, nullptr};
10725       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10726     };
10727     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10728     ProfileSummaryInfo *PSI =
10729         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10730     LoopVectorizeResult Result =
10731         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10732     if (!Result.MadeAnyChange)
10733       return PreservedAnalyses::all();
10734     PreservedAnalyses PA;
10735 
10736     // We currently do not preserve loopinfo/dominator analyses with outer loop
10737     // vectorization. Until this is addressed, mark these analyses as preserved
10738     // only for non-VPlan-native path.
10739     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10740     if (!EnableVPlanNativePath) {
10741       PA.preserve<LoopAnalysis>();
10742       PA.preserve<DominatorTreeAnalysis>();
10743     }
10744 
10745     if (Result.MadeCFGChange) {
10746       // Making CFG changes likely means a loop got vectorized. Indicate that
10747       // extra simplification passes should be run.
10748       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10749       // be run if runtime checks have been added.
10750       AM.getResult<ShouldRunExtraVectorPasses>(F);
10751       PA.preserve<ShouldRunExtraVectorPasses>();
10752     } else {
10753       PA.preserveSet<CFGAnalyses>();
10754     }
10755     return PA;
10756 }
10757 
10758 void LoopVectorizePass::printPipeline(
10759     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10760   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10761       OS, MapClassName2PassName);
10762 
10763   OS << "<";
10764   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10765   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10766   OS << ">";
10767 }
10768