1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/BlockFrequencyInfo.h" 59 #include "llvm/Analysis/LoopInfo.h" 60 #include "llvm/Analysis/LoopIterator.h" 61 #include "llvm/Analysis/LoopPass.h" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/Analysis/ScalarEvolutionExpander.h" 64 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/Analysis/ValueTracking.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugInfo.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/DiagnosticInfo.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/PatternMatch.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/IR/ValueHandle.h" 83 #include "llvm/IR/Verifier.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/BranchProbability.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Scalar.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/VectorUtils.h" 93 #include <algorithm> 94 #include <map> 95 #include <tuple> 96 97 using namespace llvm; 98 using namespace llvm::PatternMatch; 99 100 #define LV_NAME "loop-vectorize" 101 #define DEBUG_TYPE LV_NAME 102 103 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 104 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 105 106 static cl::opt<unsigned> 107 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 108 cl::desc("Sets the SIMD width. Zero is autoselect.")); 109 110 static cl::opt<unsigned> 111 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 112 cl::desc("Sets the vectorization unroll count. " 113 "Zero is autoselect.")); 114 115 static cl::opt<bool> 116 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 117 cl::desc("Enable if-conversion during vectorization.")); 118 119 /// We don't vectorize loops with a known constant trip count below this number. 120 static cl::opt<unsigned> 121 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 122 cl::Hidden, 123 cl::desc("Don't vectorize loops with a constant " 124 "trip count that is smaller than this " 125 "value.")); 126 127 /// This enables versioning on the strides of symbolically striding memory 128 /// accesses in code like the following. 129 /// for (i = 0; i < N; ++i) 130 /// A[i * Stride1] += B[i * Stride2] ... 131 /// 132 /// Will be roughly translated to 133 /// if (Stride1 == 1 && Stride2 == 1) { 134 /// for (i = 0; i < N; i+=4) 135 /// A[i:i+3] += ... 136 /// } else 137 /// ... 138 static cl::opt<bool> EnableMemAccessVersioning( 139 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 140 cl::desc("Enable symblic stride memory access versioning")); 141 142 /// We don't unroll loops with a known constant trip count below this number. 143 static const unsigned TinyTripCountUnrollThreshold = 128; 144 145 /// When performing memory disambiguation checks at runtime do not make more 146 /// than this number of comparisons. 147 static const unsigned RuntimeMemoryCheckThreshold = 8; 148 149 /// Maximum simd width. 150 static const unsigned MaxVectorWidth = 64; 151 152 static cl::opt<unsigned> ForceTargetNumScalarRegs( 153 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 154 cl::desc("A flag that overrides the target's number of scalar registers.")); 155 156 static cl::opt<unsigned> ForceTargetNumVectorRegs( 157 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's number of vector registers.")); 159 160 /// Maximum vectorization unroll count. 161 static const unsigned MaxUnrollFactor = 16; 162 163 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor( 164 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's max unroll factor for scalar " 166 "loops.")); 167 168 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor( 169 "force-target-max-vector-unroll", cl::init(0), cl::Hidden, 170 cl::desc("A flag that overrides the target's max unroll factor for " 171 "vectorized loops.")); 172 173 static cl::opt<unsigned> ForceTargetInstructionCost( 174 "force-target-instruction-cost", cl::init(0), cl::Hidden, 175 cl::desc("A flag that overrides the target's expected cost for " 176 "an instruction to a single constant value. Mostly " 177 "useful for getting consistent testing.")); 178 179 static cl::opt<unsigned> SmallLoopCost( 180 "small-loop-cost", cl::init(20), cl::Hidden, 181 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 182 183 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 184 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 185 cl::desc("Enable the use of the block frequency analysis to access PGO " 186 "heuristics minimizing code growth in cold regions and being more " 187 "aggressive in hot regions.")); 188 189 // Runtime unroll loops for load/store throughput. 190 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 191 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 192 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 193 194 /// The number of stores in a loop that are allowed to need predication. 195 static cl::opt<unsigned> NumberOfStoresToPredicate( 196 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 197 cl::desc("Max number of stores to be predicated behind an if.")); 198 199 static cl::opt<bool> EnableIndVarRegisterHeur( 200 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 201 cl::desc("Count the induction variable only once when unrolling")); 202 203 static cl::opt<bool> EnableCondStoresVectorization( 204 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 205 cl::desc("Enable if predication of stores during vectorization.")); 206 207 static cl::opt<unsigned> MaxNestedScalarReductionUF( 208 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 209 cl::desc("The maximum unroll factor to use when unrolling a scalar " 210 "reduction in a nested loop.")); 211 212 namespace { 213 214 // Forward declarations. 215 class LoopVectorizationLegality; 216 class LoopVectorizationCostModel; 217 class LoopVectorizeHints; 218 219 /// Optimization analysis message produced during vectorization. Messages inform 220 /// the user why vectorization did not occur. 221 class Report { 222 std::string Message; 223 raw_string_ostream Out; 224 Instruction *Instr; 225 226 public: 227 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 228 Out << "loop not vectorized: "; 229 } 230 231 template <typename A> Report &operator<<(const A &Value) { 232 Out << Value; 233 return *this; 234 } 235 236 Instruction *getInstr() { return Instr; } 237 238 std::string &str() { return Out.str(); } 239 operator Twine() { return Out.str(); } 240 }; 241 242 /// InnerLoopVectorizer vectorizes loops which contain only one basic 243 /// block to a specified vectorization factor (VF). 244 /// This class performs the widening of scalars into vectors, or multiple 245 /// scalars. This class also implements the following features: 246 /// * It inserts an epilogue loop for handling loops that don't have iteration 247 /// counts that are known to be a multiple of the vectorization factor. 248 /// * It handles the code generation for reduction variables. 249 /// * Scalarization (implementation using scalars) of un-vectorizable 250 /// instructions. 251 /// InnerLoopVectorizer does not perform any vectorization-legality 252 /// checks, and relies on the caller to check for the different legality 253 /// aspects. The InnerLoopVectorizer relies on the 254 /// LoopVectorizationLegality class to provide information about the induction 255 /// and reduction variables that were found to a given vectorization factor. 256 class InnerLoopVectorizer { 257 public: 258 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 259 DominatorTree *DT, const DataLayout *DL, 260 const TargetLibraryInfo *TLI, unsigned VecWidth, 261 unsigned UnrollFactor) 262 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 263 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 264 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 265 Legal(nullptr) {} 266 267 // Perform the actual loop widening (vectorization). 268 void vectorize(LoopVectorizationLegality *L) { 269 Legal = L; 270 // Create a new empty loop. Unlink the old loop and connect the new one. 271 createEmptyLoop(); 272 // Widen each instruction in the old loop to a new one in the new loop. 273 // Use the Legality module to find the induction and reduction variables. 274 vectorizeLoop(); 275 // Register the new loop and update the analysis passes. 276 updateAnalysis(); 277 } 278 279 virtual ~InnerLoopVectorizer() {} 280 281 protected: 282 /// A small list of PHINodes. 283 typedef SmallVector<PHINode*, 4> PhiVector; 284 /// When we unroll loops we have multiple vector values for each scalar. 285 /// This data structure holds the unrolled and vectorized values that 286 /// originated from one scalar instruction. 287 typedef SmallVector<Value*, 2> VectorParts; 288 289 // When we if-convert we need create edge masks. We have to cache values so 290 // that we don't end up with exponential recursion/IR. 291 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 292 VectorParts> EdgeMaskCache; 293 294 /// \brief Add code that checks at runtime if the accessed arrays overlap. 295 /// 296 /// Returns a pair of instructions where the first element is the first 297 /// instruction generated in possibly a sequence of instructions and the 298 /// second value is the final comparator value or NULL if no check is needed. 299 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 300 301 /// \brief Add checks for strides that where assumed to be 1. 302 /// 303 /// Returns the last check instruction and the first check instruction in the 304 /// pair as (first, last). 305 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 306 307 /// Create an empty loop, based on the loop ranges of the old loop. 308 void createEmptyLoop(); 309 /// Copy and widen the instructions from the old loop. 310 virtual void vectorizeLoop(); 311 312 /// \brief The Loop exit block may have single value PHI nodes where the 313 /// incoming value is 'Undef'. While vectorizing we only handled real values 314 /// that were defined inside the loop. Here we fix the 'undef case'. 315 /// See PR14725. 316 void fixLCSSAPHIs(); 317 318 /// A helper function that computes the predicate of the block BB, assuming 319 /// that the header block of the loop is set to True. It returns the *entry* 320 /// mask for the block BB. 321 VectorParts createBlockInMask(BasicBlock *BB); 322 /// A helper function that computes the predicate of the edge between SRC 323 /// and DST. 324 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 325 326 /// A helper function to vectorize a single BB within the innermost loop. 327 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 328 329 /// Vectorize a single PHINode in a block. This method handles the induction 330 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 331 /// arbitrary length vectors. 332 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 333 unsigned UF, unsigned VF, PhiVector *PV); 334 335 /// Insert the new loop to the loop hierarchy and pass manager 336 /// and update the analysis passes. 337 void updateAnalysis(); 338 339 /// This instruction is un-vectorizable. Implement it as a sequence 340 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 341 /// scalarized instruction behind an if block predicated on the control 342 /// dependence of the instruction. 343 virtual void scalarizeInstruction(Instruction *Instr, 344 bool IfPredicateStore=false); 345 346 /// Vectorize Load and Store instructions, 347 virtual void vectorizeMemoryInstruction(Instruction *Instr); 348 349 /// Create a broadcast instruction. This method generates a broadcast 350 /// instruction (shuffle) for loop invariant values and for the induction 351 /// value. If this is the induction variable then we extend it to N, N+1, ... 352 /// this is needed because each iteration in the loop corresponds to a SIMD 353 /// element. 354 virtual Value *getBroadcastInstrs(Value *V); 355 356 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 357 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 358 /// The sequence starts at StartIndex. 359 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 360 361 /// When we go over instructions in the basic block we rely on previous 362 /// values within the current basic block or on loop invariant values. 363 /// When we widen (vectorize) values we place them in the map. If the values 364 /// are not within the map, they have to be loop invariant, so we simply 365 /// broadcast them into a vector. 366 VectorParts &getVectorValue(Value *V); 367 368 /// Generate a shuffle sequence that will reverse the vector Vec. 369 virtual Value *reverseVector(Value *Vec); 370 371 /// This is a helper class that holds the vectorizer state. It maps scalar 372 /// instructions to vector instructions. When the code is 'unrolled' then 373 /// then a single scalar value is mapped to multiple vector parts. The parts 374 /// are stored in the VectorPart type. 375 struct ValueMap { 376 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 377 /// are mapped. 378 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 379 380 /// \return True if 'Key' is saved in the Value Map. 381 bool has(Value *Key) const { return MapStorage.count(Key); } 382 383 /// Initializes a new entry in the map. Sets all of the vector parts to the 384 /// save value in 'Val'. 385 /// \return A reference to a vector with splat values. 386 VectorParts &splat(Value *Key, Value *Val) { 387 VectorParts &Entry = MapStorage[Key]; 388 Entry.assign(UF, Val); 389 return Entry; 390 } 391 392 ///\return A reference to the value that is stored at 'Key'. 393 VectorParts &get(Value *Key) { 394 VectorParts &Entry = MapStorage[Key]; 395 if (Entry.empty()) 396 Entry.resize(UF); 397 assert(Entry.size() == UF); 398 return Entry; 399 } 400 401 private: 402 /// The unroll factor. Each entry in the map stores this number of vector 403 /// elements. 404 unsigned UF; 405 406 /// Map storage. We use std::map and not DenseMap because insertions to a 407 /// dense map invalidates its iterators. 408 std::map<Value *, VectorParts> MapStorage; 409 }; 410 411 /// The original loop. 412 Loop *OrigLoop; 413 /// Scev analysis to use. 414 ScalarEvolution *SE; 415 /// Loop Info. 416 LoopInfo *LI; 417 /// Dominator Tree. 418 DominatorTree *DT; 419 /// Alias Analysis. 420 AliasAnalysis *AA; 421 /// Data Layout. 422 const DataLayout *DL; 423 /// Target Library Info. 424 const TargetLibraryInfo *TLI; 425 426 /// The vectorization SIMD factor to use. Each vector will have this many 427 /// vector elements. 428 unsigned VF; 429 430 protected: 431 /// The vectorization unroll factor to use. Each scalar is vectorized to this 432 /// many different vector instructions. 433 unsigned UF; 434 435 /// The builder that we use 436 IRBuilder<> Builder; 437 438 // --- Vectorization state --- 439 440 /// The vector-loop preheader. 441 BasicBlock *LoopVectorPreHeader; 442 /// The scalar-loop preheader. 443 BasicBlock *LoopScalarPreHeader; 444 /// Middle Block between the vector and the scalar. 445 BasicBlock *LoopMiddleBlock; 446 ///The ExitBlock of the scalar loop. 447 BasicBlock *LoopExitBlock; 448 ///The vector loop body. 449 SmallVector<BasicBlock *, 4> LoopVectorBody; 450 ///The scalar loop body. 451 BasicBlock *LoopScalarBody; 452 /// A list of all bypass blocks. The first block is the entry of the loop. 453 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 454 455 /// The new Induction variable which was added to the new block. 456 PHINode *Induction; 457 /// The induction variable of the old basic block. 458 PHINode *OldInduction; 459 /// Holds the extended (to the widest induction type) start index. 460 Value *ExtendedIdx; 461 /// Maps scalars to widened vectors. 462 ValueMap WidenMap; 463 EdgeMaskCache MaskCache; 464 465 LoopVectorizationLegality *Legal; 466 }; 467 468 class InnerLoopUnroller : public InnerLoopVectorizer { 469 public: 470 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 471 DominatorTree *DT, const DataLayout *DL, 472 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 473 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 474 475 private: 476 void scalarizeInstruction(Instruction *Instr, 477 bool IfPredicateStore = false) override; 478 void vectorizeMemoryInstruction(Instruction *Instr) override; 479 Value *getBroadcastInstrs(Value *V) override; 480 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 481 Value *reverseVector(Value *Vec) override; 482 }; 483 484 /// \brief Look for a meaningful debug location on the instruction or it's 485 /// operands. 486 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 487 if (!I) 488 return I; 489 490 DebugLoc Empty; 491 if (I->getDebugLoc() != Empty) 492 return I; 493 494 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 495 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 496 if (OpInst->getDebugLoc() != Empty) 497 return OpInst; 498 } 499 500 return I; 501 } 502 503 /// \brief Set the debug location in the builder using the debug location in the 504 /// instruction. 505 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 506 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 507 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 508 else 509 B.SetCurrentDebugLocation(DebugLoc()); 510 } 511 512 #ifndef NDEBUG 513 /// \return string containing a file name and a line # for the given loop. 514 static std::string getDebugLocString(const Loop *L) { 515 std::string Result; 516 if (L) { 517 raw_string_ostream OS(Result); 518 const DebugLoc LoopDbgLoc = L->getStartLoc(); 519 if (!LoopDbgLoc.isUnknown()) 520 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 521 else 522 // Just print the module name. 523 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 524 OS.flush(); 525 } 526 return Result; 527 } 528 #endif 529 530 /// \brief Propagate known metadata from one instruction to another. 531 static void propagateMetadata(Instruction *To, const Instruction *From) { 532 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 533 From->getAllMetadataOtherThanDebugLoc(Metadata); 534 535 for (auto M : Metadata) { 536 unsigned Kind = M.first; 537 538 // These are safe to transfer (this is safe for TBAA, even when we 539 // if-convert, because should that metadata have had a control dependency 540 // on the condition, and thus actually aliased with some other 541 // non-speculated memory access when the condition was false, this would be 542 // caught by the runtime overlap checks). 543 if (Kind != LLVMContext::MD_tbaa && 544 Kind != LLVMContext::MD_alias_scope && 545 Kind != LLVMContext::MD_noalias && 546 Kind != LLVMContext::MD_fpmath) 547 continue; 548 549 To->setMetadata(Kind, M.second); 550 } 551 } 552 553 /// \brief Propagate known metadata from one instruction to a vector of others. 554 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 555 for (Value *V : To) 556 if (Instruction *I = dyn_cast<Instruction>(V)) 557 propagateMetadata(I, From); 558 } 559 560 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 561 /// to what vectorization factor. 562 /// This class does not look at the profitability of vectorization, only the 563 /// legality. This class has two main kinds of checks: 564 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 565 /// will change the order of memory accesses in a way that will change the 566 /// correctness of the program. 567 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 568 /// checks for a number of different conditions, such as the availability of a 569 /// single induction variable, that all types are supported and vectorize-able, 570 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 571 /// This class is also used by InnerLoopVectorizer for identifying 572 /// induction variable and the different reduction variables. 573 class LoopVectorizationLegality { 574 public: 575 unsigned NumLoads; 576 unsigned NumStores; 577 unsigned NumPredStores; 578 579 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 580 DominatorTree *DT, TargetLibraryInfo *TLI, 581 AliasAnalysis *AA, Function *F) 582 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 583 DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr), 584 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 585 } 586 587 /// This enum represents the kinds of reductions that we support. 588 enum ReductionKind { 589 RK_NoReduction, ///< Not a reduction. 590 RK_IntegerAdd, ///< Sum of integers. 591 RK_IntegerMult, ///< Product of integers. 592 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 593 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 594 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 595 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 596 RK_FloatAdd, ///< Sum of floats. 597 RK_FloatMult, ///< Product of floats. 598 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 599 }; 600 601 /// This enum represents the kinds of inductions that we support. 602 enum InductionKind { 603 IK_NoInduction, ///< Not an induction variable. 604 IK_IntInduction, ///< Integer induction variable. Step = 1. 605 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 606 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 607 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 608 }; 609 610 // This enum represents the kind of minmax reduction. 611 enum MinMaxReductionKind { 612 MRK_Invalid, 613 MRK_UIntMin, 614 MRK_UIntMax, 615 MRK_SIntMin, 616 MRK_SIntMax, 617 MRK_FloatMin, 618 MRK_FloatMax 619 }; 620 621 /// This struct holds information about reduction variables. 622 struct ReductionDescriptor { 623 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 624 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 625 626 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 627 MinMaxReductionKind MK) 628 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 629 630 // The starting value of the reduction. 631 // It does not have to be zero! 632 TrackingVH<Value> StartValue; 633 // The instruction who's value is used outside the loop. 634 Instruction *LoopExitInstr; 635 // The kind of the reduction. 636 ReductionKind Kind; 637 // If this a min/max reduction the kind of reduction. 638 MinMaxReductionKind MinMaxKind; 639 }; 640 641 /// This POD struct holds information about a potential reduction operation. 642 struct ReductionInstDesc { 643 ReductionInstDesc(bool IsRedux, Instruction *I) : 644 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 645 646 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 647 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 648 649 // Is this instruction a reduction candidate. 650 bool IsReduction; 651 // The last instruction in a min/max pattern (select of the select(icmp()) 652 // pattern), or the current reduction instruction otherwise. 653 Instruction *PatternLastInst; 654 // If this is a min/max pattern the comparison predicate. 655 MinMaxReductionKind MinMaxKind; 656 }; 657 658 /// This struct holds information about the memory runtime legality 659 /// check that a group of pointers do not overlap. 660 struct RuntimePointerCheck { 661 RuntimePointerCheck() : Need(false) {} 662 663 /// Reset the state of the pointer runtime information. 664 void reset() { 665 Need = false; 666 Pointers.clear(); 667 Starts.clear(); 668 Ends.clear(); 669 IsWritePtr.clear(); 670 DependencySetId.clear(); 671 AliasSetId.clear(); 672 } 673 674 /// Insert a pointer and calculate the start and end SCEVs. 675 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 676 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides); 677 678 /// This flag indicates if we need to add the runtime check. 679 bool Need; 680 /// Holds the pointers that we need to check. 681 SmallVector<TrackingVH<Value>, 2> Pointers; 682 /// Holds the pointer value at the beginning of the loop. 683 SmallVector<const SCEV*, 2> Starts; 684 /// Holds the pointer value at the end of the loop. 685 SmallVector<const SCEV*, 2> Ends; 686 /// Holds the information if this pointer is used for writing to memory. 687 SmallVector<bool, 2> IsWritePtr; 688 /// Holds the id of the set of pointers that could be dependent because of a 689 /// shared underlying object. 690 SmallVector<unsigned, 2> DependencySetId; 691 /// Holds the id of the disjoint alias set to which this pointer belongs. 692 SmallVector<unsigned, 2> AliasSetId; 693 }; 694 695 /// A struct for saving information about induction variables. 696 struct InductionInfo { 697 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 698 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 699 /// Start value. 700 TrackingVH<Value> StartValue; 701 /// Induction kind. 702 InductionKind IK; 703 }; 704 705 /// ReductionList contains the reduction descriptors for all 706 /// of the reductions that were found in the loop. 707 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 708 709 /// InductionList saves induction variables and maps them to the 710 /// induction descriptor. 711 typedef MapVector<PHINode*, InductionInfo> InductionList; 712 713 /// Returns true if it is legal to vectorize this loop. 714 /// This does not mean that it is profitable to vectorize this 715 /// loop, only that it is legal to do so. 716 bool canVectorize(); 717 718 /// Returns the Induction variable. 719 PHINode *getInduction() { return Induction; } 720 721 /// Returns the reduction variables found in the loop. 722 ReductionList *getReductionVars() { return &Reductions; } 723 724 /// Returns the induction variables found in the loop. 725 InductionList *getInductionVars() { return &Inductions; } 726 727 /// Returns the widest induction type. 728 Type *getWidestInductionType() { return WidestIndTy; } 729 730 /// Returns True if V is an induction variable in this loop. 731 bool isInductionVariable(const Value *V); 732 733 /// Return true if the block BB needs to be predicated in order for the loop 734 /// to be vectorized. 735 bool blockNeedsPredication(BasicBlock *BB); 736 737 /// Check if this pointer is consecutive when vectorizing. This happens 738 /// when the last index of the GEP is the induction variable, or that the 739 /// pointer itself is an induction variable. 740 /// This check allows us to vectorize A[idx] into a wide load/store. 741 /// Returns: 742 /// 0 - Stride is unknown or non-consecutive. 743 /// 1 - Address is consecutive. 744 /// -1 - Address is consecutive, and decreasing. 745 int isConsecutivePtr(Value *Ptr); 746 747 /// Returns true if the value V is uniform within the loop. 748 bool isUniform(Value *V); 749 750 /// Returns true if this instruction will remain scalar after vectorization. 751 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 752 753 /// Returns the information that we collected about runtime memory check. 754 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 755 756 /// This function returns the identity element (or neutral element) for 757 /// the operation K. 758 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 759 760 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 761 762 bool hasStride(Value *V) { return StrideSet.count(V); } 763 bool mustCheckStrides() { return !StrideSet.empty(); } 764 SmallPtrSet<Value *, 8>::iterator strides_begin() { 765 return StrideSet.begin(); 766 } 767 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 768 769 private: 770 /// Check if a single basic block loop is vectorizable. 771 /// At this point we know that this is a loop with a constant trip count 772 /// and we only need to check individual instructions. 773 bool canVectorizeInstrs(); 774 775 /// When we vectorize loops we may change the order in which 776 /// we read and write from memory. This method checks if it is 777 /// legal to vectorize the code, considering only memory constrains. 778 /// Returns true if the loop is vectorizable 779 bool canVectorizeMemory(); 780 781 /// Return true if we can vectorize this loop using the IF-conversion 782 /// transformation. 783 bool canVectorizeWithIfConvert(); 784 785 /// Collect the variables that need to stay uniform after vectorization. 786 void collectLoopUniforms(); 787 788 /// Return true if all of the instructions in the block can be speculatively 789 /// executed. \p SafePtrs is a list of addresses that are known to be legal 790 /// and we know that we can read from them without segfault. 791 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 792 793 /// Returns True, if 'Phi' is the kind of reduction variable for type 794 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 795 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 796 /// Returns a struct describing if the instruction 'I' can be a reduction 797 /// variable of type 'Kind'. If the reduction is a min/max pattern of 798 /// select(icmp()) this function advances the instruction pointer 'I' from the 799 /// compare instruction to the select instruction and stores this pointer in 800 /// 'PatternLastInst' member of the returned struct. 801 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 802 ReductionInstDesc &Desc); 803 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 804 /// pattern corresponding to a min(X, Y) or max(X, Y). 805 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 806 ReductionInstDesc &Prev); 807 /// Returns the induction kind of Phi. This function may return NoInduction 808 /// if the PHI is not an induction variable. 809 InductionKind isInductionVariable(PHINode *Phi); 810 811 /// \brief Collect memory access with loop invariant strides. 812 /// 813 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 814 /// invariant. 815 void collectStridedAcccess(Value *LoadOrStoreInst); 816 817 /// Report an analysis message to assist the user in diagnosing loops that are 818 /// not vectorized. 819 void emitAnalysis(Report &Message) { 820 DebugLoc DL = TheLoop->getStartLoc(); 821 if (Instruction *I = Message.getInstr()) 822 DL = I->getDebugLoc(); 823 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 824 *TheFunction, DL, Message.str()); 825 } 826 827 /// The loop that we evaluate. 828 Loop *TheLoop; 829 /// Scev analysis. 830 ScalarEvolution *SE; 831 /// DataLayout analysis. 832 const DataLayout *DL; 833 /// Dominators. 834 DominatorTree *DT; 835 /// Target Library Info. 836 TargetLibraryInfo *TLI; 837 /// Alias analysis. 838 AliasAnalysis *AA; 839 /// Parent function 840 Function *TheFunction; 841 842 // --- vectorization state --- // 843 844 /// Holds the integer induction variable. This is the counter of the 845 /// loop. 846 PHINode *Induction; 847 /// Holds the reduction variables. 848 ReductionList Reductions; 849 /// Holds all of the induction variables that we found in the loop. 850 /// Notice that inductions don't need to start at zero and that induction 851 /// variables can be pointers. 852 InductionList Inductions; 853 /// Holds the widest induction type encountered. 854 Type *WidestIndTy; 855 856 /// Allowed outside users. This holds the reduction 857 /// vars which can be accessed from outside the loop. 858 SmallPtrSet<Value*, 4> AllowedExit; 859 /// This set holds the variables which are known to be uniform after 860 /// vectorization. 861 SmallPtrSet<Instruction*, 4> Uniforms; 862 /// We need to check that all of the pointers in this list are disjoint 863 /// at runtime. 864 RuntimePointerCheck PtrRtCheck; 865 /// Can we assume the absence of NaNs. 866 bool HasFunNoNaNAttr; 867 868 unsigned MaxSafeDepDistBytes; 869 870 ValueToValueMap Strides; 871 SmallPtrSet<Value *, 8> StrideSet; 872 }; 873 874 /// LoopVectorizationCostModel - estimates the expected speedups due to 875 /// vectorization. 876 /// In many cases vectorization is not profitable. This can happen because of 877 /// a number of reasons. In this class we mainly attempt to predict the 878 /// expected speedup/slowdowns due to the supported instruction set. We use the 879 /// TargetTransformInfo to query the different backends for the cost of 880 /// different operations. 881 class LoopVectorizationCostModel { 882 public: 883 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 884 LoopVectorizationLegality *Legal, 885 const TargetTransformInfo &TTI, 886 const DataLayout *DL, const TargetLibraryInfo *TLI, 887 const Function *F, const LoopVectorizeHints *Hints) 888 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), TheFunction(F), Hints(Hints) {} 889 890 /// Information about vectorization costs 891 struct VectorizationFactor { 892 unsigned Width; // Vector width with best cost 893 unsigned Cost; // Cost of the loop with that width 894 }; 895 /// \return The most profitable vectorization factor and the cost of that VF. 896 /// This method checks every power of two up to VF. If UserVF is not ZERO 897 /// then this vectorization factor will be selected if vectorization is 898 /// possible. 899 VectorizationFactor selectVectorizationFactor(bool OptForSize); 900 901 /// \return The size (in bits) of the widest type in the code that 902 /// needs to be vectorized. We ignore values that remain scalar such as 903 /// 64 bit loop indices. 904 unsigned getWidestType(); 905 906 /// \return The most profitable unroll factor. 907 /// If UserUF is non-zero then this method finds the best unroll-factor 908 /// based on register pressure and other parameters. 909 /// VF and LoopCost are the selected vectorization factor and the cost of the 910 /// selected VF. 911 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 912 913 /// \brief A struct that represents some properties of the register usage 914 /// of a loop. 915 struct RegisterUsage { 916 /// Holds the number of loop invariant values that are used in the loop. 917 unsigned LoopInvariantRegs; 918 /// Holds the maximum number of concurrent live intervals in the loop. 919 unsigned MaxLocalUsers; 920 /// Holds the number of instructions in the loop. 921 unsigned NumInstructions; 922 }; 923 924 /// \return information about the register usage of the loop. 925 RegisterUsage calculateRegisterUsage(); 926 927 private: 928 /// Returns the expected execution cost. The unit of the cost does 929 /// not matter because we use the 'cost' units to compare different 930 /// vector widths. The cost that is returned is *not* normalized by 931 /// the factor width. 932 unsigned expectedCost(unsigned VF); 933 934 /// Returns the execution time cost of an instruction for a given vector 935 /// width. Vector width of one means scalar. 936 unsigned getInstructionCost(Instruction *I, unsigned VF); 937 938 /// A helper function for converting Scalar types to vector types. 939 /// If the incoming type is void, we return void. If the VF is 1, we return 940 /// the scalar type. 941 static Type* ToVectorTy(Type *Scalar, unsigned VF); 942 943 /// Returns whether the instruction is a load or store and will be a emitted 944 /// as a vector operation. 945 bool isConsecutiveLoadOrStore(Instruction *I); 946 947 /// Report an analysis message to assist the user in diagnosing loops that are 948 /// not vectorized. 949 void emitAnalysis(Report &Message) { 950 DebugLoc DL = TheLoop->getStartLoc(); 951 if (Instruction *I = Message.getInstr()) 952 DL = I->getDebugLoc(); 953 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 954 *TheFunction, DL, Message.str()); 955 } 956 957 /// The loop that we evaluate. 958 Loop *TheLoop; 959 /// Scev analysis. 960 ScalarEvolution *SE; 961 /// Loop Info analysis. 962 LoopInfo *LI; 963 /// Vectorization legality. 964 LoopVectorizationLegality *Legal; 965 /// Vector target information. 966 const TargetTransformInfo &TTI; 967 /// Target data layout information. 968 const DataLayout *DL; 969 /// Target Library Info. 970 const TargetLibraryInfo *TLI; 971 const Function *TheFunction; 972 // Loop Vectorize Hint. 973 const LoopVectorizeHints *Hints; 974 }; 975 976 /// Utility class for getting and setting loop vectorizer hints in the form 977 /// of loop metadata. 978 class LoopVectorizeHints { 979 public: 980 enum ForceKind { 981 FK_Undefined = -1, ///< Not selected. 982 FK_Disabled = 0, ///< Forcing disabled. 983 FK_Enabled = 1, ///< Forcing enabled. 984 }; 985 986 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 987 : Width(VectorizationFactor), 988 Unroll(DisableUnrolling), 989 Force(FK_Undefined), 990 LoopID(L->getLoopID()) { 991 getHints(L); 992 // force-vector-unroll overrides DisableUnrolling. 993 if (VectorizationUnroll.getNumOccurrences() > 0) 994 Unroll = VectorizationUnroll; 995 996 DEBUG(if (DisableUnrolling && Unroll == 1) dbgs() 997 << "LV: Unrolling disabled by the pass manager\n"); 998 } 999 1000 /// Return the loop metadata prefix. 1001 static StringRef Prefix() { return "llvm.loop."; } 1002 1003 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const { 1004 SmallVector<Value*, 2> Vals; 1005 Vals.push_back(MDString::get(Context, Name)); 1006 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 1007 return MDNode::get(Context, Vals); 1008 } 1009 1010 /// Mark the loop L as already vectorized by setting the width to 1. 1011 void setAlreadyVectorized(Loop *L) { 1012 LLVMContext &Context = L->getHeader()->getContext(); 1013 1014 Width = 1; 1015 1016 // Create a new loop id with one more operand for the already_vectorized 1017 // hint. If the loop already has a loop id then copy the existing operands. 1018 SmallVector<Value*, 4> Vals(1); 1019 if (LoopID) 1020 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 1021 Vals.push_back(LoopID->getOperand(i)); 1022 1023 Vals.push_back( 1024 createHint(Context, Twine(Prefix(), "vectorize.width").str(), Width)); 1025 Vals.push_back( 1026 createHint(Context, Twine(Prefix(), "interleave.count").str(), 1)); 1027 1028 MDNode *NewLoopID = MDNode::get(Context, Vals); 1029 // Set operand 0 to refer to the loop id itself. 1030 NewLoopID->replaceOperandWith(0, NewLoopID); 1031 1032 L->setLoopID(NewLoopID); 1033 if (LoopID) 1034 LoopID->replaceAllUsesWith(NewLoopID); 1035 1036 LoopID = NewLoopID; 1037 } 1038 1039 std::string emitRemark() const { 1040 Report R; 1041 if (Force == LoopVectorizeHints::FK_Disabled) 1042 R << "vectorization is explicitly disabled"; 1043 else { 1044 R << "use -Rpass-analysis=loop-vectorize for more info"; 1045 if (Force == LoopVectorizeHints::FK_Enabled) { 1046 R << " (Force=true"; 1047 if (Width != 0) 1048 R << ", Vector Width=" << Width; 1049 if (Unroll != 0) 1050 R << ", Interleave Count=" << Unroll; 1051 R << ")"; 1052 } 1053 } 1054 1055 return R.str(); 1056 } 1057 1058 unsigned getWidth() const { return Width; } 1059 unsigned getUnroll() const { return Unroll; } 1060 enum ForceKind getForce() const { return Force; } 1061 MDNode *getLoopID() const { return LoopID; } 1062 1063 private: 1064 /// Find hints specified in the loop metadata. 1065 void getHints(const Loop *L) { 1066 if (!LoopID) 1067 return; 1068 1069 // First operand should refer to the loop id itself. 1070 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1071 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1072 1073 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1074 const MDString *S = nullptr; 1075 SmallVector<Value*, 4> Args; 1076 1077 // The expected hint is either a MDString or a MDNode with the first 1078 // operand a MDString. 1079 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1080 if (!MD || MD->getNumOperands() == 0) 1081 continue; 1082 S = dyn_cast<MDString>(MD->getOperand(0)); 1083 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1084 Args.push_back(MD->getOperand(i)); 1085 } else { 1086 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1087 assert(Args.size() == 0 && "too many arguments for MDString"); 1088 } 1089 1090 if (!S) 1091 continue; 1092 1093 // Check if the hint starts with the loop metadata prefix. 1094 StringRef Hint = S->getString(); 1095 if (!Hint.startswith(Prefix())) 1096 continue; 1097 // Remove the prefix. 1098 Hint = Hint.substr(Prefix().size(), StringRef::npos); 1099 1100 if (Args.size() == 1) 1101 getHint(Hint, Args[0]); 1102 } 1103 } 1104 1105 // Check string hint with one operand. 1106 void getHint(StringRef Hint, Value *Arg) { 1107 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 1108 if (!C) return; 1109 unsigned Val = C->getZExtValue(); 1110 1111 if (Hint == "vectorize.width") { 1112 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 1113 Width = Val; 1114 else 1115 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 1116 } else if (Hint == "vectorize.enable") { 1117 if (C->getBitWidth() == 1) 1118 Force = Val == 1 ? LoopVectorizeHints::FK_Enabled 1119 : LoopVectorizeHints::FK_Disabled; 1120 else 1121 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n"); 1122 } else if (Hint == "interleave.count") { 1123 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 1124 Unroll = Val; 1125 else 1126 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 1127 } else { 1128 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 1129 } 1130 } 1131 1132 /// Vectorization width. 1133 unsigned Width; 1134 /// Vectorization unroll factor. 1135 unsigned Unroll; 1136 /// Vectorization forced 1137 enum ForceKind Force; 1138 1139 MDNode *LoopID; 1140 }; 1141 1142 static void emitMissedWarning(Function *F, Loop *L, 1143 const LoopVectorizeHints &LH) { 1144 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1145 L->getStartLoc(), LH.emitRemark()); 1146 1147 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1148 if (LH.getWidth() != 1) 1149 emitLoopVectorizeWarning( 1150 F->getContext(), *F, L->getStartLoc(), 1151 "failed explicitly specified loop vectorization"); 1152 else if (LH.getUnroll() != 1) 1153 emitLoopInterleaveWarning( 1154 F->getContext(), *F, L->getStartLoc(), 1155 "failed explicitly specified loop interleaving"); 1156 } 1157 } 1158 1159 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1160 if (L.empty()) 1161 return V.push_back(&L); 1162 1163 for (Loop *InnerL : L) 1164 addInnerLoop(*InnerL, V); 1165 } 1166 1167 /// The LoopVectorize Pass. 1168 struct LoopVectorize : public FunctionPass { 1169 /// Pass identification, replacement for typeid 1170 static char ID; 1171 1172 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1173 : FunctionPass(ID), 1174 DisableUnrolling(NoUnrolling), 1175 AlwaysVectorize(AlwaysVectorize) { 1176 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1177 } 1178 1179 ScalarEvolution *SE; 1180 const DataLayout *DL; 1181 LoopInfo *LI; 1182 TargetTransformInfo *TTI; 1183 DominatorTree *DT; 1184 BlockFrequencyInfo *BFI; 1185 TargetLibraryInfo *TLI; 1186 AliasAnalysis *AA; 1187 bool DisableUnrolling; 1188 bool AlwaysVectorize; 1189 1190 BlockFrequency ColdEntryFreq; 1191 1192 bool runOnFunction(Function &F) override { 1193 SE = &getAnalysis<ScalarEvolution>(); 1194 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1195 DL = DLP ? &DLP->getDataLayout() : nullptr; 1196 LI = &getAnalysis<LoopInfo>(); 1197 TTI = &getAnalysis<TargetTransformInfo>(); 1198 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1199 BFI = &getAnalysis<BlockFrequencyInfo>(); 1200 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1201 AA = &getAnalysis<AliasAnalysis>(); 1202 1203 // Compute some weights outside of the loop over the loops. Compute this 1204 // using a BranchProbability to re-use its scaling math. 1205 const BranchProbability ColdProb(1, 5); // 20% 1206 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1207 1208 // If the target claims to have no vector registers don't attempt 1209 // vectorization. 1210 if (!TTI->getNumberOfRegisters(true)) 1211 return false; 1212 1213 if (!DL) { 1214 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1215 << ": Missing data layout\n"); 1216 return false; 1217 } 1218 1219 // Build up a worklist of inner-loops to vectorize. This is necessary as 1220 // the act of vectorizing or partially unrolling a loop creates new loops 1221 // and can invalidate iterators across the loops. 1222 SmallVector<Loop *, 8> Worklist; 1223 1224 for (Loop *L : *LI) 1225 addInnerLoop(*L, Worklist); 1226 1227 LoopsAnalyzed += Worklist.size(); 1228 1229 // Now walk the identified inner loops. 1230 bool Changed = false; 1231 while (!Worklist.empty()) 1232 Changed |= processLoop(Worklist.pop_back_val()); 1233 1234 // Process each loop nest in the function. 1235 return Changed; 1236 } 1237 1238 bool processLoop(Loop *L) { 1239 assert(L->empty() && "Only process inner loops."); 1240 1241 #ifndef NDEBUG 1242 const std::string DebugLocStr = getDebugLocString(L); 1243 #endif /* NDEBUG */ 1244 1245 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1246 << L->getHeader()->getParent()->getName() << "\" from " 1247 << DebugLocStr << "\n"); 1248 1249 LoopVectorizeHints Hints(L, DisableUnrolling); 1250 1251 DEBUG(dbgs() << "LV: Loop hints:" 1252 << " force=" 1253 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1254 ? "disabled" 1255 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1256 ? "enabled" 1257 : "?")) << " width=" << Hints.getWidth() 1258 << " unroll=" << Hints.getUnroll() << "\n"); 1259 1260 // Function containing loop 1261 Function *F = L->getHeader()->getParent(); 1262 1263 // Looking at the diagnostic output is the only way to determine if a loop 1264 // was vectorized (other than looking at the IR or machine code), so it 1265 // is important to generate an optimization remark for each loop. Most of 1266 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1267 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1268 // less verbose reporting vectorized loops and unvectorized loops that may 1269 // benefit from vectorization, respectively. 1270 1271 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1272 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1273 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1274 L->getStartLoc(), Hints.emitRemark()); 1275 return false; 1276 } 1277 1278 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1279 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1280 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1281 L->getStartLoc(), Hints.emitRemark()); 1282 return false; 1283 } 1284 1285 if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) { 1286 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1287 emitOptimizationRemarkAnalysis( 1288 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1289 "loop not vectorized: vector width and interleave count are " 1290 "explicitly set to 1"); 1291 return false; 1292 } 1293 1294 // Check the loop for a trip count threshold: 1295 // do not vectorize loops with a tiny trip count. 1296 BasicBlock *Latch = L->getLoopLatch(); 1297 const unsigned TC = SE->getSmallConstantTripCount(L, Latch); 1298 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1299 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1300 << "This loop is not worth vectorizing."); 1301 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1302 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1303 else { 1304 DEBUG(dbgs() << "\n"); 1305 emitOptimizationRemarkAnalysis( 1306 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1307 "vectorization is not beneficial and is not explicitly forced"); 1308 return false; 1309 } 1310 } 1311 1312 // Check if it is legal to vectorize the loop. 1313 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F); 1314 if (!LVL.canVectorize()) { 1315 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1316 emitMissedWarning(F, L, Hints); 1317 return false; 1318 } 1319 1320 // Use the cost model. 1321 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, F, &Hints); 1322 1323 // Check the function attributes to find out if this function should be 1324 // optimized for size. 1325 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1326 F->hasFnAttribute(Attribute::OptimizeForSize); 1327 1328 // Compute the weighted frequency of this loop being executed and see if it 1329 // is less than 20% of the function entry baseline frequency. Note that we 1330 // always have a canonical loop here because we think we *can* vectoriez. 1331 // FIXME: This is hidden behind a flag due to pervasive problems with 1332 // exactly what block frequency models. 1333 if (LoopVectorizeWithBlockFrequency) { 1334 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1335 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1336 LoopEntryFreq < ColdEntryFreq) 1337 OptForSize = true; 1338 } 1339 1340 // Check the function attributes to see if implicit floats are allowed.a 1341 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1342 // an integer loop and the vector instructions selected are purely integer 1343 // vector instructions? 1344 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1345 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1346 "attribute is used.\n"); 1347 emitOptimizationRemarkAnalysis( 1348 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1349 "loop not vectorized due to NoImplicitFloat attribute"); 1350 emitMissedWarning(F, L, Hints); 1351 return false; 1352 } 1353 1354 // Select the optimal vectorization factor. 1355 const LoopVectorizationCostModel::VectorizationFactor VF = 1356 CM.selectVectorizationFactor(OptForSize); 1357 1358 // Select the unroll factor. 1359 const unsigned UF = 1360 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1361 1362 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1363 << DebugLocStr << '\n'); 1364 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1365 1366 if (VF.Width == 1) { 1367 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1368 1369 if (UF == 1) { 1370 emitOptimizationRemarkAnalysis( 1371 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1372 "not beneficial to vectorize and user disabled interleaving"); 1373 return false; 1374 } 1375 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1376 1377 // Report the unrolling decision. 1378 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1379 Twine("unrolled with interleaving factor " + 1380 Twine(UF) + 1381 " (vectorization not beneficial)")); 1382 1383 // We decided not to vectorize, but we may want to unroll. 1384 1385 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1386 Unroller.vectorize(&LVL); 1387 } else { 1388 // If we decided that it is *legal* to vectorize the loop then do it. 1389 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1390 LB.vectorize(&LVL); 1391 ++LoopsVectorized; 1392 1393 // Report the vectorization decision. 1394 emitOptimizationRemark( 1395 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1396 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1397 ", unrolling interleave factor: " + Twine(UF) + ")"); 1398 } 1399 1400 // Mark the loop as already vectorized to avoid vectorizing again. 1401 Hints.setAlreadyVectorized(L); 1402 1403 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1404 return true; 1405 } 1406 1407 void getAnalysisUsage(AnalysisUsage &AU) const override { 1408 AU.addRequiredID(LoopSimplifyID); 1409 AU.addRequiredID(LCSSAID); 1410 AU.addRequired<BlockFrequencyInfo>(); 1411 AU.addRequired<DominatorTreeWrapperPass>(); 1412 AU.addRequired<LoopInfo>(); 1413 AU.addRequired<ScalarEvolution>(); 1414 AU.addRequired<TargetTransformInfo>(); 1415 AU.addRequired<AliasAnalysis>(); 1416 AU.addPreserved<LoopInfo>(); 1417 AU.addPreserved<DominatorTreeWrapperPass>(); 1418 AU.addPreserved<AliasAnalysis>(); 1419 } 1420 1421 }; 1422 1423 } // end anonymous namespace 1424 1425 //===----------------------------------------------------------------------===// 1426 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1427 // LoopVectorizationCostModel. 1428 //===----------------------------------------------------------------------===// 1429 1430 static Value *stripIntegerCast(Value *V) { 1431 if (CastInst *CI = dyn_cast<CastInst>(V)) 1432 if (CI->getOperand(0)->getType()->isIntegerTy()) 1433 return CI->getOperand(0); 1434 return V; 1435 } 1436 1437 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1438 /// 1439 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1440 /// \p Ptr. 1441 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1442 ValueToValueMap &PtrToStride, 1443 Value *Ptr, Value *OrigPtr = nullptr) { 1444 1445 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1446 1447 // If there is an entry in the map return the SCEV of the pointer with the 1448 // symbolic stride replaced by one. 1449 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1450 if (SI != PtrToStride.end()) { 1451 Value *StrideVal = SI->second; 1452 1453 // Strip casts. 1454 StrideVal = stripIntegerCast(StrideVal); 1455 1456 // Replace symbolic stride by one. 1457 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1458 ValueToValueMap RewriteMap; 1459 RewriteMap[StrideVal] = One; 1460 1461 const SCEV *ByOne = 1462 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1463 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1464 << "\n"); 1465 return ByOne; 1466 } 1467 1468 // Otherwise, just return the SCEV of the original pointer. 1469 return SE->getSCEV(Ptr); 1470 } 1471 1472 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1473 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1474 unsigned ASId, ValueToValueMap &Strides) { 1475 // Get the stride replaced scev. 1476 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1477 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1478 assert(AR && "Invalid addrec expression"); 1479 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1480 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1481 Pointers.push_back(Ptr); 1482 Starts.push_back(AR->getStart()); 1483 Ends.push_back(ScEnd); 1484 IsWritePtr.push_back(WritePtr); 1485 DependencySetId.push_back(DepSetId); 1486 AliasSetId.push_back(ASId); 1487 } 1488 1489 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1490 // We need to place the broadcast of invariant variables outside the loop. 1491 Instruction *Instr = dyn_cast<Instruction>(V); 1492 bool NewInstr = 1493 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1494 Instr->getParent()) != LoopVectorBody.end()); 1495 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1496 1497 // Place the code for broadcasting invariant variables in the new preheader. 1498 IRBuilder<>::InsertPointGuard Guard(Builder); 1499 if (Invariant) 1500 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1501 1502 // Broadcast the scalar into all locations in the vector. 1503 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1504 1505 return Shuf; 1506 } 1507 1508 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1509 bool Negate) { 1510 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1511 assert(Val->getType()->getScalarType()->isIntegerTy() && 1512 "Elem must be an integer"); 1513 // Create the types. 1514 Type *ITy = Val->getType()->getScalarType(); 1515 VectorType *Ty = cast<VectorType>(Val->getType()); 1516 int VLen = Ty->getNumElements(); 1517 SmallVector<Constant*, 8> Indices; 1518 1519 // Create a vector of consecutive numbers from zero to VF. 1520 for (int i = 0; i < VLen; ++i) { 1521 int64_t Idx = Negate ? (-i) : i; 1522 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1523 } 1524 1525 // Add the consecutive indices to the vector value. 1526 Constant *Cv = ConstantVector::get(Indices); 1527 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1528 return Builder.CreateAdd(Val, Cv, "induction"); 1529 } 1530 1531 /// \brief Find the operand of the GEP that should be checked for consecutive 1532 /// stores. This ignores trailing indices that have no effect on the final 1533 /// pointer. 1534 static unsigned getGEPInductionOperand(const DataLayout *DL, 1535 const GetElementPtrInst *Gep) { 1536 unsigned LastOperand = Gep->getNumOperands() - 1; 1537 unsigned GEPAllocSize = DL->getTypeAllocSize( 1538 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1539 1540 // Walk backwards and try to peel off zeros. 1541 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1542 // Find the type we're currently indexing into. 1543 gep_type_iterator GEPTI = gep_type_begin(Gep); 1544 std::advance(GEPTI, LastOperand - 1); 1545 1546 // If it's a type with the same allocation size as the result of the GEP we 1547 // can peel off the zero index. 1548 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1549 break; 1550 --LastOperand; 1551 } 1552 1553 return LastOperand; 1554 } 1555 1556 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1557 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1558 // Make sure that the pointer does not point to structs. 1559 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1560 return 0; 1561 1562 // If this value is a pointer induction variable we know it is consecutive. 1563 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1564 if (Phi && Inductions.count(Phi)) { 1565 InductionInfo II = Inductions[Phi]; 1566 if (IK_PtrInduction == II.IK) 1567 return 1; 1568 else if (IK_ReversePtrInduction == II.IK) 1569 return -1; 1570 } 1571 1572 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1573 if (!Gep) 1574 return 0; 1575 1576 unsigned NumOperands = Gep->getNumOperands(); 1577 Value *GpPtr = Gep->getPointerOperand(); 1578 // If this GEP value is a consecutive pointer induction variable and all of 1579 // the indices are constant then we know it is consecutive. We can 1580 Phi = dyn_cast<PHINode>(GpPtr); 1581 if (Phi && Inductions.count(Phi)) { 1582 1583 // Make sure that the pointer does not point to structs. 1584 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1585 if (GepPtrType->getElementType()->isAggregateType()) 1586 return 0; 1587 1588 // Make sure that all of the index operands are loop invariant. 1589 for (unsigned i = 1; i < NumOperands; ++i) 1590 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1591 return 0; 1592 1593 InductionInfo II = Inductions[Phi]; 1594 if (IK_PtrInduction == II.IK) 1595 return 1; 1596 else if (IK_ReversePtrInduction == II.IK) 1597 return -1; 1598 } 1599 1600 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1601 1602 // Check that all of the gep indices are uniform except for our induction 1603 // operand. 1604 for (unsigned i = 0; i != NumOperands; ++i) 1605 if (i != InductionOperand && 1606 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1607 return 0; 1608 1609 // We can emit wide load/stores only if the last non-zero index is the 1610 // induction variable. 1611 const SCEV *Last = nullptr; 1612 if (!Strides.count(Gep)) 1613 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1614 else { 1615 // Because of the multiplication by a stride we can have a s/zext cast. 1616 // We are going to replace this stride by 1 so the cast is safe to ignore. 1617 // 1618 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1619 // %0 = trunc i64 %indvars.iv to i32 1620 // %mul = mul i32 %0, %Stride1 1621 // %idxprom = zext i32 %mul to i64 << Safe cast. 1622 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1623 // 1624 Last = replaceSymbolicStrideSCEV(SE, Strides, 1625 Gep->getOperand(InductionOperand), Gep); 1626 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1627 Last = 1628 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1629 ? C->getOperand() 1630 : Last; 1631 } 1632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1633 const SCEV *Step = AR->getStepRecurrence(*SE); 1634 1635 // The memory is consecutive because the last index is consecutive 1636 // and all other indices are loop invariant. 1637 if (Step->isOne()) 1638 return 1; 1639 if (Step->isAllOnesValue()) 1640 return -1; 1641 } 1642 1643 return 0; 1644 } 1645 1646 bool LoopVectorizationLegality::isUniform(Value *V) { 1647 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1648 } 1649 1650 InnerLoopVectorizer::VectorParts& 1651 InnerLoopVectorizer::getVectorValue(Value *V) { 1652 assert(V != Induction && "The new induction variable should not be used."); 1653 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1654 1655 // If we have a stride that is replaced by one, do it here. 1656 if (Legal->hasStride(V)) 1657 V = ConstantInt::get(V->getType(), 1); 1658 1659 // If we have this scalar in the map, return it. 1660 if (WidenMap.has(V)) 1661 return WidenMap.get(V); 1662 1663 // If this scalar is unknown, assume that it is a constant or that it is 1664 // loop invariant. Broadcast V and save the value for future uses. 1665 Value *B = getBroadcastInstrs(V); 1666 return WidenMap.splat(V, B); 1667 } 1668 1669 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1670 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1671 SmallVector<Constant*, 8> ShuffleMask; 1672 for (unsigned i = 0; i < VF; ++i) 1673 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1674 1675 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1676 ConstantVector::get(ShuffleMask), 1677 "reverse"); 1678 } 1679 1680 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1681 // Attempt to issue a wide load. 1682 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1683 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1684 1685 assert((LI || SI) && "Invalid Load/Store instruction"); 1686 1687 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1688 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1689 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1690 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1691 // An alignment of 0 means target abi alignment. We need to use the scalar's 1692 // target abi alignment in such a case. 1693 if (!Alignment) 1694 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1695 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1696 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1697 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1698 1699 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1700 return scalarizeInstruction(Instr, true); 1701 1702 if (ScalarAllocatedSize != VectorElementSize) 1703 return scalarizeInstruction(Instr); 1704 1705 // If the pointer is loop invariant or if it is non-consecutive, 1706 // scalarize the load. 1707 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1708 bool Reverse = ConsecutiveStride < 0; 1709 bool UniformLoad = LI && Legal->isUniform(Ptr); 1710 if (!ConsecutiveStride || UniformLoad) 1711 return scalarizeInstruction(Instr); 1712 1713 Constant *Zero = Builder.getInt32(0); 1714 VectorParts &Entry = WidenMap.get(Instr); 1715 1716 // Handle consecutive loads/stores. 1717 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1718 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1719 setDebugLocFromInst(Builder, Gep); 1720 Value *PtrOperand = Gep->getPointerOperand(); 1721 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1722 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1723 1724 // Create the new GEP with the new induction variable. 1725 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1726 Gep2->setOperand(0, FirstBasePtr); 1727 Gep2->setName("gep.indvar.base"); 1728 Ptr = Builder.Insert(Gep2); 1729 } else if (Gep) { 1730 setDebugLocFromInst(Builder, Gep); 1731 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1732 OrigLoop) && "Base ptr must be invariant"); 1733 1734 // The last index does not have to be the induction. It can be 1735 // consecutive and be a function of the index. For example A[I+1]; 1736 unsigned NumOperands = Gep->getNumOperands(); 1737 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1738 // Create the new GEP with the new induction variable. 1739 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1740 1741 for (unsigned i = 0; i < NumOperands; ++i) { 1742 Value *GepOperand = Gep->getOperand(i); 1743 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1744 1745 // Update last index or loop invariant instruction anchored in loop. 1746 if (i == InductionOperand || 1747 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1748 assert((i == InductionOperand || 1749 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1750 "Must be last index or loop invariant"); 1751 1752 VectorParts &GEPParts = getVectorValue(GepOperand); 1753 Value *Index = GEPParts[0]; 1754 Index = Builder.CreateExtractElement(Index, Zero); 1755 Gep2->setOperand(i, Index); 1756 Gep2->setName("gep.indvar.idx"); 1757 } 1758 } 1759 Ptr = Builder.Insert(Gep2); 1760 } else { 1761 // Use the induction element ptr. 1762 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1763 setDebugLocFromInst(Builder, Ptr); 1764 VectorParts &PtrVal = getVectorValue(Ptr); 1765 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1766 } 1767 1768 // Handle Stores: 1769 if (SI) { 1770 assert(!Legal->isUniform(SI->getPointerOperand()) && 1771 "We do not allow storing to uniform addresses"); 1772 setDebugLocFromInst(Builder, SI); 1773 // We don't want to update the value in the map as it might be used in 1774 // another expression. So don't use a reference type for "StoredVal". 1775 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1776 1777 for (unsigned Part = 0; Part < UF; ++Part) { 1778 // Calculate the pointer for the specific unroll-part. 1779 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1780 1781 if (Reverse) { 1782 // If we store to reverse consecutive memory locations then we need 1783 // to reverse the order of elements in the stored value. 1784 StoredVal[Part] = reverseVector(StoredVal[Part]); 1785 // If the address is consecutive but reversed, then the 1786 // wide store needs to start at the last vector element. 1787 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1788 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1789 } 1790 1791 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1792 DataTy->getPointerTo(AddressSpace)); 1793 StoreInst *NewSI = 1794 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1795 propagateMetadata(NewSI, SI); 1796 } 1797 return; 1798 } 1799 1800 // Handle loads. 1801 assert(LI && "Must have a load instruction"); 1802 setDebugLocFromInst(Builder, LI); 1803 for (unsigned Part = 0; Part < UF; ++Part) { 1804 // Calculate the pointer for the specific unroll-part. 1805 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1806 1807 if (Reverse) { 1808 // If the address is consecutive but reversed, then the 1809 // wide store needs to start at the last vector element. 1810 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1811 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1812 } 1813 1814 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1815 DataTy->getPointerTo(AddressSpace)); 1816 LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1817 propagateMetadata(NewLI, LI); 1818 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1819 } 1820 } 1821 1822 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1823 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1824 // Holds vector parameters or scalars, in case of uniform vals. 1825 SmallVector<VectorParts, 4> Params; 1826 1827 setDebugLocFromInst(Builder, Instr); 1828 1829 // Find all of the vectorized parameters. 1830 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1831 Value *SrcOp = Instr->getOperand(op); 1832 1833 // If we are accessing the old induction variable, use the new one. 1834 if (SrcOp == OldInduction) { 1835 Params.push_back(getVectorValue(SrcOp)); 1836 continue; 1837 } 1838 1839 // Try using previously calculated values. 1840 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1841 1842 // If the src is an instruction that appeared earlier in the basic block 1843 // then it should already be vectorized. 1844 if (SrcInst && OrigLoop->contains(SrcInst)) { 1845 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1846 // The parameter is a vector value from earlier. 1847 Params.push_back(WidenMap.get(SrcInst)); 1848 } else { 1849 // The parameter is a scalar from outside the loop. Maybe even a constant. 1850 VectorParts Scalars; 1851 Scalars.append(UF, SrcOp); 1852 Params.push_back(Scalars); 1853 } 1854 } 1855 1856 assert(Params.size() == Instr->getNumOperands() && 1857 "Invalid number of operands"); 1858 1859 // Does this instruction return a value ? 1860 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1861 1862 Value *UndefVec = IsVoidRetTy ? nullptr : 1863 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1864 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1865 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1866 1867 Instruction *InsertPt = Builder.GetInsertPoint(); 1868 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1869 BasicBlock *CondBlock = nullptr; 1870 1871 VectorParts Cond; 1872 Loop *VectorLp = nullptr; 1873 if (IfPredicateStore) { 1874 assert(Instr->getParent()->getSinglePredecessor() && 1875 "Only support single predecessor blocks"); 1876 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1877 Instr->getParent()); 1878 VectorLp = LI->getLoopFor(IfBlock); 1879 assert(VectorLp && "Must have a loop for this block"); 1880 } 1881 1882 // For each vector unroll 'part': 1883 for (unsigned Part = 0; Part < UF; ++Part) { 1884 // For each scalar that we create: 1885 for (unsigned Width = 0; Width < VF; ++Width) { 1886 1887 // Start if-block. 1888 Value *Cmp = nullptr; 1889 if (IfPredicateStore) { 1890 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1891 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1892 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1893 LoopVectorBody.push_back(CondBlock); 1894 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1895 // Update Builder with newly created basic block. 1896 Builder.SetInsertPoint(InsertPt); 1897 } 1898 1899 Instruction *Cloned = Instr->clone(); 1900 if (!IsVoidRetTy) 1901 Cloned->setName(Instr->getName() + ".cloned"); 1902 // Replace the operands of the cloned instructions with extracted scalars. 1903 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1904 Value *Op = Params[op][Part]; 1905 // Param is a vector. Need to extract the right lane. 1906 if (Op->getType()->isVectorTy()) 1907 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1908 Cloned->setOperand(op, Op); 1909 } 1910 1911 // Place the cloned scalar in the new loop. 1912 Builder.Insert(Cloned); 1913 1914 // If the original scalar returns a value we need to place it in a vector 1915 // so that future users will be able to use it. 1916 if (!IsVoidRetTy) 1917 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1918 Builder.getInt32(Width)); 1919 // End if-block. 1920 if (IfPredicateStore) { 1921 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1922 LoopVectorBody.push_back(NewIfBlock); 1923 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 1924 Builder.SetInsertPoint(InsertPt); 1925 Instruction *OldBr = IfBlock->getTerminator(); 1926 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1927 OldBr->eraseFromParent(); 1928 IfBlock = NewIfBlock; 1929 } 1930 } 1931 } 1932 } 1933 1934 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1935 Instruction *Loc) { 1936 if (FirstInst) 1937 return FirstInst; 1938 if (Instruction *I = dyn_cast<Instruction>(V)) 1939 return I->getParent() == Loc->getParent() ? I : nullptr; 1940 return nullptr; 1941 } 1942 1943 std::pair<Instruction *, Instruction *> 1944 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1945 Instruction *tnullptr = nullptr; 1946 if (!Legal->mustCheckStrides()) 1947 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1948 1949 IRBuilder<> ChkBuilder(Loc); 1950 1951 // Emit checks. 1952 Value *Check = nullptr; 1953 Instruction *FirstInst = nullptr; 1954 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1955 SE = Legal->strides_end(); 1956 SI != SE; ++SI) { 1957 Value *Ptr = stripIntegerCast(*SI); 1958 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1959 "stride.chk"); 1960 // Store the first instruction we create. 1961 FirstInst = getFirstInst(FirstInst, C, Loc); 1962 if (Check) 1963 Check = ChkBuilder.CreateOr(Check, C); 1964 else 1965 Check = C; 1966 } 1967 1968 // We have to do this trickery because the IRBuilder might fold the check to a 1969 // constant expression in which case there is no Instruction anchored in a 1970 // the block. 1971 LLVMContext &Ctx = Loc->getContext(); 1972 Instruction *TheCheck = 1973 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1974 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1975 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1976 1977 return std::make_pair(FirstInst, TheCheck); 1978 } 1979 1980 std::pair<Instruction *, Instruction *> 1981 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 1982 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1983 Legal->getRuntimePointerCheck(); 1984 1985 Instruction *tnullptr = nullptr; 1986 if (!PtrRtCheck->Need) 1987 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1988 1989 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1990 SmallVector<TrackingVH<Value> , 2> Starts; 1991 SmallVector<TrackingVH<Value> , 2> Ends; 1992 1993 LLVMContext &Ctx = Loc->getContext(); 1994 SCEVExpander Exp(*SE, "induction"); 1995 Instruction *FirstInst = nullptr; 1996 1997 for (unsigned i = 0; i < NumPointers; ++i) { 1998 Value *Ptr = PtrRtCheck->Pointers[i]; 1999 const SCEV *Sc = SE->getSCEV(Ptr); 2000 2001 if (SE->isLoopInvariant(Sc, OrigLoop)) { 2002 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 2003 *Ptr <<"\n"); 2004 Starts.push_back(Ptr); 2005 Ends.push_back(Ptr); 2006 } else { 2007 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 2008 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2009 2010 // Use this type for pointer arithmetic. 2011 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2012 2013 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 2014 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 2015 Starts.push_back(Start); 2016 Ends.push_back(End); 2017 } 2018 } 2019 2020 IRBuilder<> ChkBuilder(Loc); 2021 // Our instructions might fold to a constant. 2022 Value *MemoryRuntimeCheck = nullptr; 2023 for (unsigned i = 0; i < NumPointers; ++i) { 2024 for (unsigned j = i+1; j < NumPointers; ++j) { 2025 // No need to check if two readonly pointers intersect. 2026 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 2027 continue; 2028 2029 // Only need to check pointers between two different dependency sets. 2030 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 2031 continue; 2032 // Only need to check pointers in the same alias set. 2033 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 2034 continue; 2035 2036 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 2037 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 2038 2039 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 2040 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 2041 "Trying to bounds check pointers with different address spaces"); 2042 2043 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2044 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2045 2046 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 2047 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 2048 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 2049 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 2050 2051 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 2052 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2053 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 2054 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2055 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2056 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2057 if (MemoryRuntimeCheck) { 2058 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 2059 "conflict.rdx"); 2060 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2061 } 2062 MemoryRuntimeCheck = IsConflict; 2063 } 2064 } 2065 2066 // We have to do this trickery because the IRBuilder might fold the check to a 2067 // constant expression in which case there is no Instruction anchored in a 2068 // the block. 2069 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2070 ConstantInt::getTrue(Ctx)); 2071 ChkBuilder.Insert(Check, "memcheck.conflict"); 2072 FirstInst = getFirstInst(FirstInst, Check, Loc); 2073 return std::make_pair(FirstInst, Check); 2074 } 2075 2076 void InnerLoopVectorizer::createEmptyLoop() { 2077 /* 2078 In this function we generate a new loop. The new loop will contain 2079 the vectorized instructions while the old loop will continue to run the 2080 scalar remainder. 2081 2082 [ ] <-- Back-edge taken count overflow check. 2083 / | 2084 / v 2085 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2086 | / | 2087 | / v 2088 || [ ] <-- vector pre header. 2089 || | 2090 || v 2091 || [ ] \ 2092 || [ ]_| <-- vector loop. 2093 || | 2094 | \ v 2095 | >[ ] <--- middle-block. 2096 | / | 2097 | / v 2098 -|- >[ ] <--- new preheader. 2099 | | 2100 | v 2101 | [ ] \ 2102 | [ ]_| <-- old scalar loop to handle remainder. 2103 \ | 2104 \ v 2105 >[ ] <-- exit block. 2106 ... 2107 */ 2108 2109 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2110 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2111 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2112 assert(BypassBlock && "Invalid loop structure"); 2113 assert(ExitBlock && "Must have an exit block"); 2114 2115 // Some loops have a single integer induction variable, while other loops 2116 // don't. One example is c++ iterators that often have multiple pointer 2117 // induction variables. In the code below we also support a case where we 2118 // don't have a single induction variable. 2119 OldInduction = Legal->getInduction(); 2120 Type *IdxTy = Legal->getWidestInductionType(); 2121 2122 // Find the loop boundaries. 2123 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2124 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2125 2126 // The exit count might have the type of i64 while the phi is i32. This can 2127 // happen if we have an induction variable that is sign extended before the 2128 // compare. The only way that we get a backedge taken count is that the 2129 // induction variable was signed and as such will not overflow. In such a case 2130 // truncation is legal. 2131 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2132 IdxTy->getPrimitiveSizeInBits()) 2133 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2134 2135 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2136 // Get the total trip count from the count by adding 1. 2137 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2138 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2139 2140 // Expand the trip count and place the new instructions in the preheader. 2141 // Notice that the pre-header does not change, only the loop body. 2142 SCEVExpander Exp(*SE, "induction"); 2143 2144 // We need to test whether the backedge-taken count is uint##_max. Adding one 2145 // to it will cause overflow and an incorrect loop trip count in the vector 2146 // body. In case of overflow we want to directly jump to the scalar remainder 2147 // loop. 2148 Value *BackedgeCount = 2149 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2150 BypassBlock->getTerminator()); 2151 if (BackedgeCount->getType()->isPointerTy()) 2152 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2153 "backedge.ptrcnt.to.int", 2154 BypassBlock->getTerminator()); 2155 Instruction *CheckBCOverflow = 2156 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2157 Constant::getAllOnesValue(BackedgeCount->getType()), 2158 "backedge.overflow", BypassBlock->getTerminator()); 2159 2160 // The loop index does not have to start at Zero. Find the original start 2161 // value from the induction PHI node. If we don't have an induction variable 2162 // then we know that it starts at zero. 2163 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2164 Value *StartIdx = ExtendedIdx = OldInduction ? 2165 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2166 IdxTy): 2167 ConstantInt::get(IdxTy, 0); 2168 2169 // We need an instruction to anchor the overflow check on. StartIdx needs to 2170 // be defined before the overflow check branch. Because the scalar preheader 2171 // is going to merge the start index and so the overflow branch block needs to 2172 // contain a definition of the start index. 2173 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2174 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2175 BypassBlock->getTerminator()); 2176 2177 // Count holds the overall loop count (N). 2178 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2179 BypassBlock->getTerminator()); 2180 2181 LoopBypassBlocks.push_back(BypassBlock); 2182 2183 // Split the single block loop into the two loop structure described above. 2184 BasicBlock *VectorPH = 2185 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2186 BasicBlock *VecBody = 2187 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2188 BasicBlock *MiddleBlock = 2189 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2190 BasicBlock *ScalarPH = 2191 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2192 2193 // Create and register the new vector loop. 2194 Loop* Lp = new Loop(); 2195 Loop *ParentLoop = OrigLoop->getParentLoop(); 2196 2197 // Insert the new loop into the loop nest and register the new basic blocks 2198 // before calling any utilities such as SCEV that require valid LoopInfo. 2199 if (ParentLoop) { 2200 ParentLoop->addChildLoop(Lp); 2201 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2202 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2203 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2204 } else { 2205 LI->addTopLevelLoop(Lp); 2206 } 2207 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2208 2209 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2210 // inside the loop. 2211 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2212 2213 // Generate the induction variable. 2214 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2215 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2216 // The loop step is equal to the vectorization factor (num of SIMD elements) 2217 // times the unroll factor (num of SIMD instructions). 2218 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2219 2220 // This is the IR builder that we use to add all of the logic for bypassing 2221 // the new vector loop. 2222 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2223 setDebugLocFromInst(BypassBuilder, 2224 getDebugLocFromInstOrOperands(OldInduction)); 2225 2226 // We may need to extend the index in case there is a type mismatch. 2227 // We know that the count starts at zero and does not overflow. 2228 if (Count->getType() != IdxTy) { 2229 // The exit count can be of pointer type. Convert it to the correct 2230 // integer type. 2231 if (ExitCount->getType()->isPointerTy()) 2232 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2233 else 2234 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2235 } 2236 2237 // Add the start index to the loop count to get the new end index. 2238 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2239 2240 // Now we need to generate the expression for N - (N % VF), which is 2241 // the part that the vectorized body will execute. 2242 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2243 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2244 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2245 "end.idx.rnd.down"); 2246 2247 // Now, compare the new count to zero. If it is zero skip the vector loop and 2248 // jump to the scalar loop. 2249 Value *Cmp = 2250 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2251 2252 BasicBlock *LastBypassBlock = BypassBlock; 2253 2254 // Generate code to check that the loops trip count that we computed by adding 2255 // one to the backedge-taken count will not overflow. 2256 { 2257 auto PastOverflowCheck = 2258 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2259 BasicBlock *CheckBlock = 2260 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2261 if (ParentLoop) 2262 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2263 LoopBypassBlocks.push_back(CheckBlock); 2264 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2265 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2266 OldTerm->eraseFromParent(); 2267 LastBypassBlock = CheckBlock; 2268 } 2269 2270 // Generate the code to check that the strides we assumed to be one are really 2271 // one. We want the new basic block to start at the first instruction in a 2272 // sequence of instructions that form a check. 2273 Instruction *StrideCheck; 2274 Instruction *FirstCheckInst; 2275 std::tie(FirstCheckInst, StrideCheck) = 2276 addStrideCheck(LastBypassBlock->getTerminator()); 2277 if (StrideCheck) { 2278 // Create a new block containing the stride check. 2279 BasicBlock *CheckBlock = 2280 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2281 if (ParentLoop) 2282 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2283 LoopBypassBlocks.push_back(CheckBlock); 2284 2285 // Replace the branch into the memory check block with a conditional branch 2286 // for the "few elements case". 2287 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2288 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2289 OldTerm->eraseFromParent(); 2290 2291 Cmp = StrideCheck; 2292 LastBypassBlock = CheckBlock; 2293 } 2294 2295 // Generate the code that checks in runtime if arrays overlap. We put the 2296 // checks into a separate block to make the more common case of few elements 2297 // faster. 2298 Instruction *MemRuntimeCheck; 2299 std::tie(FirstCheckInst, MemRuntimeCheck) = 2300 addRuntimeCheck(LastBypassBlock->getTerminator()); 2301 if (MemRuntimeCheck) { 2302 // Create a new block containing the memory check. 2303 BasicBlock *CheckBlock = 2304 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2305 if (ParentLoop) 2306 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2307 LoopBypassBlocks.push_back(CheckBlock); 2308 2309 // Replace the branch into the memory check block with a conditional branch 2310 // for the "few elements case". 2311 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2312 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2313 OldTerm->eraseFromParent(); 2314 2315 Cmp = MemRuntimeCheck; 2316 LastBypassBlock = CheckBlock; 2317 } 2318 2319 LastBypassBlock->getTerminator()->eraseFromParent(); 2320 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2321 LastBypassBlock); 2322 2323 // We are going to resume the execution of the scalar loop. 2324 // Go over all of the induction variables that we found and fix the 2325 // PHIs that are left in the scalar version of the loop. 2326 // The starting values of PHI nodes depend on the counter of the last 2327 // iteration in the vectorized loop. 2328 // If we come from a bypass edge then we need to start from the original 2329 // start value. 2330 2331 // This variable saves the new starting index for the scalar loop. 2332 PHINode *ResumeIndex = nullptr; 2333 LoopVectorizationLegality::InductionList::iterator I, E; 2334 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2335 // Set builder to point to last bypass block. 2336 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2337 for (I = List->begin(), E = List->end(); I != E; ++I) { 2338 PHINode *OrigPhi = I->first; 2339 LoopVectorizationLegality::InductionInfo II = I->second; 2340 2341 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2342 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2343 MiddleBlock->getTerminator()); 2344 // We might have extended the type of the induction variable but we need a 2345 // truncated version for the scalar loop. 2346 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2347 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2348 MiddleBlock->getTerminator()) : nullptr; 2349 2350 // Create phi nodes to merge from the backedge-taken check block. 2351 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2352 ScalarPH->getTerminator()); 2353 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2354 2355 PHINode *BCTruncResumeVal = nullptr; 2356 if (OrigPhi == OldInduction) { 2357 BCTruncResumeVal = 2358 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2359 ScalarPH->getTerminator()); 2360 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2361 } 2362 2363 Value *EndValue = nullptr; 2364 switch (II.IK) { 2365 case LoopVectorizationLegality::IK_NoInduction: 2366 llvm_unreachable("Unknown induction"); 2367 case LoopVectorizationLegality::IK_IntInduction: { 2368 // Handle the integer induction counter. 2369 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2370 2371 // We have the canonical induction variable. 2372 if (OrigPhi == OldInduction) { 2373 // Create a truncated version of the resume value for the scalar loop, 2374 // we might have promoted the type to a larger width. 2375 EndValue = 2376 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2377 // The new PHI merges the original incoming value, in case of a bypass, 2378 // or the value at the end of the vectorized loop. 2379 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2380 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2381 TruncResumeVal->addIncoming(EndValue, VecBody); 2382 2383 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2384 2385 // We know what the end value is. 2386 EndValue = IdxEndRoundDown; 2387 // We also know which PHI node holds it. 2388 ResumeIndex = ResumeVal; 2389 break; 2390 } 2391 2392 // Not the canonical induction variable - add the vector loop count to the 2393 // start value. 2394 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2395 II.StartValue->getType(), 2396 "cast.crd"); 2397 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2398 break; 2399 } 2400 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2401 // Convert the CountRoundDown variable to the PHI size. 2402 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2403 II.StartValue->getType(), 2404 "cast.crd"); 2405 // Handle reverse integer induction counter. 2406 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2407 break; 2408 } 2409 case LoopVectorizationLegality::IK_PtrInduction: { 2410 // For pointer induction variables, calculate the offset using 2411 // the end index. 2412 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2413 "ptr.ind.end"); 2414 break; 2415 } 2416 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2417 // The value at the end of the loop for the reverse pointer is calculated 2418 // by creating a GEP with a negative index starting from the start value. 2419 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2420 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2421 "rev.ind.end"); 2422 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2423 "rev.ptr.ind.end"); 2424 break; 2425 } 2426 }// end of case 2427 2428 // The new PHI merges the original incoming value, in case of a bypass, 2429 // or the value at the end of the vectorized loop. 2430 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2431 if (OrigPhi == OldInduction) 2432 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2433 else 2434 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2435 } 2436 ResumeVal->addIncoming(EndValue, VecBody); 2437 2438 // Fix the scalar body counter (PHI node). 2439 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2440 2441 // The old induction's phi node in the scalar body needs the truncated 2442 // value. 2443 if (OrigPhi == OldInduction) { 2444 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2445 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2446 } else { 2447 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2448 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2449 } 2450 } 2451 2452 // If we are generating a new induction variable then we also need to 2453 // generate the code that calculates the exit value. This value is not 2454 // simply the end of the counter because we may skip the vectorized body 2455 // in case of a runtime check. 2456 if (!OldInduction){ 2457 assert(!ResumeIndex && "Unexpected resume value found"); 2458 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2459 MiddleBlock->getTerminator()); 2460 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2461 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2462 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2463 } 2464 2465 // Make sure that we found the index where scalar loop needs to continue. 2466 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2467 "Invalid resume Index"); 2468 2469 // Add a check in the middle block to see if we have completed 2470 // all of the iterations in the first vector loop. 2471 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2472 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2473 ResumeIndex, "cmp.n", 2474 MiddleBlock->getTerminator()); 2475 2476 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2477 // Remove the old terminator. 2478 MiddleBlock->getTerminator()->eraseFromParent(); 2479 2480 // Create i+1 and fill the PHINode. 2481 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2482 Induction->addIncoming(StartIdx, VectorPH); 2483 Induction->addIncoming(NextIdx, VecBody); 2484 // Create the compare. 2485 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2486 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2487 2488 // Now we have two terminators. Remove the old one from the block. 2489 VecBody->getTerminator()->eraseFromParent(); 2490 2491 // Get ready to start creating new instructions into the vectorized body. 2492 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2493 2494 // Save the state. 2495 LoopVectorPreHeader = VectorPH; 2496 LoopScalarPreHeader = ScalarPH; 2497 LoopMiddleBlock = MiddleBlock; 2498 LoopExitBlock = ExitBlock; 2499 LoopVectorBody.push_back(VecBody); 2500 LoopScalarBody = OldBasicBlock; 2501 2502 LoopVectorizeHints Hints(Lp, true); 2503 Hints.setAlreadyVectorized(Lp); 2504 } 2505 2506 /// This function returns the identity element (or neutral element) for 2507 /// the operation K. 2508 Constant* 2509 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2510 switch (K) { 2511 case RK_IntegerXor: 2512 case RK_IntegerAdd: 2513 case RK_IntegerOr: 2514 // Adding, Xoring, Oring zero to a number does not change it. 2515 return ConstantInt::get(Tp, 0); 2516 case RK_IntegerMult: 2517 // Multiplying a number by 1 does not change it. 2518 return ConstantInt::get(Tp, 1); 2519 case RK_IntegerAnd: 2520 // AND-ing a number with an all-1 value does not change it. 2521 return ConstantInt::get(Tp, -1, true); 2522 case RK_FloatMult: 2523 // Multiplying a number by 1 does not change it. 2524 return ConstantFP::get(Tp, 1.0L); 2525 case RK_FloatAdd: 2526 // Adding zero to a number does not change it. 2527 return ConstantFP::get(Tp, 0.0L); 2528 default: 2529 llvm_unreachable("Unknown reduction kind"); 2530 } 2531 } 2532 2533 /// This function translates the reduction kind to an LLVM binary operator. 2534 static unsigned 2535 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2536 switch (Kind) { 2537 case LoopVectorizationLegality::RK_IntegerAdd: 2538 return Instruction::Add; 2539 case LoopVectorizationLegality::RK_IntegerMult: 2540 return Instruction::Mul; 2541 case LoopVectorizationLegality::RK_IntegerOr: 2542 return Instruction::Or; 2543 case LoopVectorizationLegality::RK_IntegerAnd: 2544 return Instruction::And; 2545 case LoopVectorizationLegality::RK_IntegerXor: 2546 return Instruction::Xor; 2547 case LoopVectorizationLegality::RK_FloatMult: 2548 return Instruction::FMul; 2549 case LoopVectorizationLegality::RK_FloatAdd: 2550 return Instruction::FAdd; 2551 case LoopVectorizationLegality::RK_IntegerMinMax: 2552 return Instruction::ICmp; 2553 case LoopVectorizationLegality::RK_FloatMinMax: 2554 return Instruction::FCmp; 2555 default: 2556 llvm_unreachable("Unknown reduction operation"); 2557 } 2558 } 2559 2560 Value *createMinMaxOp(IRBuilder<> &Builder, 2561 LoopVectorizationLegality::MinMaxReductionKind RK, 2562 Value *Left, 2563 Value *Right) { 2564 CmpInst::Predicate P = CmpInst::ICMP_NE; 2565 switch (RK) { 2566 default: 2567 llvm_unreachable("Unknown min/max reduction kind"); 2568 case LoopVectorizationLegality::MRK_UIntMin: 2569 P = CmpInst::ICMP_ULT; 2570 break; 2571 case LoopVectorizationLegality::MRK_UIntMax: 2572 P = CmpInst::ICMP_UGT; 2573 break; 2574 case LoopVectorizationLegality::MRK_SIntMin: 2575 P = CmpInst::ICMP_SLT; 2576 break; 2577 case LoopVectorizationLegality::MRK_SIntMax: 2578 P = CmpInst::ICMP_SGT; 2579 break; 2580 case LoopVectorizationLegality::MRK_FloatMin: 2581 P = CmpInst::FCMP_OLT; 2582 break; 2583 case LoopVectorizationLegality::MRK_FloatMax: 2584 P = CmpInst::FCMP_OGT; 2585 break; 2586 } 2587 2588 Value *Cmp; 2589 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2590 RK == LoopVectorizationLegality::MRK_FloatMax) 2591 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2592 else 2593 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2594 2595 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2596 return Select; 2597 } 2598 2599 namespace { 2600 struct CSEDenseMapInfo { 2601 static bool canHandle(Instruction *I) { 2602 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2603 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2604 } 2605 static inline Instruction *getEmptyKey() { 2606 return DenseMapInfo<Instruction *>::getEmptyKey(); 2607 } 2608 static inline Instruction *getTombstoneKey() { 2609 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2610 } 2611 static unsigned getHashValue(Instruction *I) { 2612 assert(canHandle(I) && "Unknown instruction!"); 2613 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2614 I->value_op_end())); 2615 } 2616 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2617 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2618 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2619 return LHS == RHS; 2620 return LHS->isIdenticalTo(RHS); 2621 } 2622 }; 2623 } 2624 2625 /// \brief Check whether this block is a predicated block. 2626 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2627 /// = ...; " blocks. We start with one vectorized basic block. For every 2628 /// conditional block we split this vectorized block. Therefore, every second 2629 /// block will be a predicated one. 2630 static bool isPredicatedBlock(unsigned BlockNum) { 2631 return BlockNum % 2; 2632 } 2633 2634 ///\brief Perform cse of induction variable instructions. 2635 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2636 // Perform simple cse. 2637 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2638 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2639 BasicBlock *BB = BBs[i]; 2640 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2641 Instruction *In = I++; 2642 2643 if (!CSEDenseMapInfo::canHandle(In)) 2644 continue; 2645 2646 // Check if we can replace this instruction with any of the 2647 // visited instructions. 2648 if (Instruction *V = CSEMap.lookup(In)) { 2649 In->replaceAllUsesWith(V); 2650 In->eraseFromParent(); 2651 continue; 2652 } 2653 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2654 // ...;" blocks for predicated stores. Every second block is a predicated 2655 // block. 2656 if (isPredicatedBlock(i)) 2657 continue; 2658 2659 CSEMap[In] = In; 2660 } 2661 } 2662 } 2663 2664 /// \brief Adds a 'fast' flag to floating point operations. 2665 static Value *addFastMathFlag(Value *V) { 2666 if (isa<FPMathOperator>(V)){ 2667 FastMathFlags Flags; 2668 Flags.setUnsafeAlgebra(); 2669 cast<Instruction>(V)->setFastMathFlags(Flags); 2670 } 2671 return V; 2672 } 2673 2674 void InnerLoopVectorizer::vectorizeLoop() { 2675 //===------------------------------------------------===// 2676 // 2677 // Notice: any optimization or new instruction that go 2678 // into the code below should be also be implemented in 2679 // the cost-model. 2680 // 2681 //===------------------------------------------------===// 2682 Constant *Zero = Builder.getInt32(0); 2683 2684 // In order to support reduction variables we need to be able to vectorize 2685 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2686 // stages. First, we create a new vector PHI node with no incoming edges. 2687 // We use this value when we vectorize all of the instructions that use the 2688 // PHI. Next, after all of the instructions in the block are complete we 2689 // add the new incoming edges to the PHI. At this point all of the 2690 // instructions in the basic block are vectorized, so we can use them to 2691 // construct the PHI. 2692 PhiVector RdxPHIsToFix; 2693 2694 // Scan the loop in a topological order to ensure that defs are vectorized 2695 // before users. 2696 LoopBlocksDFS DFS(OrigLoop); 2697 DFS.perform(LI); 2698 2699 // Vectorize all of the blocks in the original loop. 2700 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2701 be = DFS.endRPO(); bb != be; ++bb) 2702 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2703 2704 // At this point every instruction in the original loop is widened to 2705 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2706 // that we vectorized. The PHI nodes are currently empty because we did 2707 // not want to introduce cycles. Notice that the remaining PHI nodes 2708 // that we need to fix are reduction variables. 2709 2710 // Create the 'reduced' values for each of the induction vars. 2711 // The reduced values are the vector values that we scalarize and combine 2712 // after the loop is finished. 2713 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2714 it != e; ++it) { 2715 PHINode *RdxPhi = *it; 2716 assert(RdxPhi && "Unable to recover vectorized PHI"); 2717 2718 // Find the reduction variable descriptor. 2719 assert(Legal->getReductionVars()->count(RdxPhi) && 2720 "Unable to find the reduction variable"); 2721 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2722 (*Legal->getReductionVars())[RdxPhi]; 2723 2724 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2725 2726 // We need to generate a reduction vector from the incoming scalar. 2727 // To do so, we need to generate the 'identity' vector and override 2728 // one of the elements with the incoming scalar reduction. We need 2729 // to do it in the vector-loop preheader. 2730 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2731 2732 // This is the vector-clone of the value that leaves the loop. 2733 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2734 Type *VecTy = VectorExit[0]->getType(); 2735 2736 // Find the reduction identity variable. Zero for addition, or, xor, 2737 // one for multiplication, -1 for And. 2738 Value *Identity; 2739 Value *VectorStart; 2740 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2741 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2742 // MinMax reduction have the start value as their identify. 2743 if (VF == 1) { 2744 VectorStart = Identity = RdxDesc.StartValue; 2745 } else { 2746 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2747 RdxDesc.StartValue, 2748 "minmax.ident"); 2749 } 2750 } else { 2751 // Handle other reduction kinds: 2752 Constant *Iden = 2753 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2754 VecTy->getScalarType()); 2755 if (VF == 1) { 2756 Identity = Iden; 2757 // This vector is the Identity vector where the first element is the 2758 // incoming scalar reduction. 2759 VectorStart = RdxDesc.StartValue; 2760 } else { 2761 Identity = ConstantVector::getSplat(VF, Iden); 2762 2763 // This vector is the Identity vector where the first element is the 2764 // incoming scalar reduction. 2765 VectorStart = Builder.CreateInsertElement(Identity, 2766 RdxDesc.StartValue, Zero); 2767 } 2768 } 2769 2770 // Fix the vector-loop phi. 2771 // We created the induction variable so we know that the 2772 // preheader is the first entry. 2773 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2774 2775 // Reductions do not have to start at zero. They can start with 2776 // any loop invariant values. 2777 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2778 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2779 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2780 VectorParts &Val = getVectorValue(LoopVal); 2781 for (unsigned part = 0; part < UF; ++part) { 2782 // Make sure to add the reduction stat value only to the 2783 // first unroll part. 2784 Value *StartVal = (part == 0) ? VectorStart : Identity; 2785 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2786 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2787 LoopVectorBody.back()); 2788 } 2789 2790 // Before each round, move the insertion point right between 2791 // the PHIs and the values we are going to write. 2792 // This allows us to write both PHINodes and the extractelement 2793 // instructions. 2794 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2795 2796 VectorParts RdxParts; 2797 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2798 for (unsigned part = 0; part < UF; ++part) { 2799 // This PHINode contains the vectorized reduction variable, or 2800 // the initial value vector, if we bypass the vector loop. 2801 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2802 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2803 Value *StartVal = (part == 0) ? VectorStart : Identity; 2804 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2805 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2806 NewPhi->addIncoming(RdxExitVal[part], 2807 LoopVectorBody.back()); 2808 RdxParts.push_back(NewPhi); 2809 } 2810 2811 // Reduce all of the unrolled parts into a single vector. 2812 Value *ReducedPartRdx = RdxParts[0]; 2813 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2814 setDebugLocFromInst(Builder, ReducedPartRdx); 2815 for (unsigned part = 1; part < UF; ++part) { 2816 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2817 // Floating point operations had to be 'fast' to enable the reduction. 2818 ReducedPartRdx = addFastMathFlag( 2819 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2820 ReducedPartRdx, "bin.rdx")); 2821 else 2822 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2823 ReducedPartRdx, RdxParts[part]); 2824 } 2825 2826 if (VF > 1) { 2827 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2828 // and vector ops, reducing the set of values being computed by half each 2829 // round. 2830 assert(isPowerOf2_32(VF) && 2831 "Reduction emission only supported for pow2 vectors!"); 2832 Value *TmpVec = ReducedPartRdx; 2833 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2834 for (unsigned i = VF; i != 1; i >>= 1) { 2835 // Move the upper half of the vector to the lower half. 2836 for (unsigned j = 0; j != i/2; ++j) 2837 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2838 2839 // Fill the rest of the mask with undef. 2840 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2841 UndefValue::get(Builder.getInt32Ty())); 2842 2843 Value *Shuf = 2844 Builder.CreateShuffleVector(TmpVec, 2845 UndefValue::get(TmpVec->getType()), 2846 ConstantVector::get(ShuffleMask), 2847 "rdx.shuf"); 2848 2849 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2850 // Floating point operations had to be 'fast' to enable the reduction. 2851 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2852 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2853 else 2854 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2855 } 2856 2857 // The result is in the first element of the vector. 2858 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2859 Builder.getInt32(0)); 2860 } 2861 2862 // Create a phi node that merges control-flow from the backedge-taken check 2863 // block and the middle block. 2864 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2865 LoopScalarPreHeader->getTerminator()); 2866 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2867 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2868 2869 // Now, we need to fix the users of the reduction variable 2870 // inside and outside of the scalar remainder loop. 2871 // We know that the loop is in LCSSA form. We need to update the 2872 // PHI nodes in the exit blocks. 2873 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2874 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2875 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2876 if (!LCSSAPhi) break; 2877 2878 // All PHINodes need to have a single entry edge, or two if 2879 // we already fixed them. 2880 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2881 2882 // We found our reduction value exit-PHI. Update it with the 2883 // incoming bypass edge. 2884 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2885 // Add an edge coming from the bypass. 2886 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2887 break; 2888 } 2889 }// end of the LCSSA phi scan. 2890 2891 // Fix the scalar loop reduction variable with the incoming reduction sum 2892 // from the vector body and from the backedge value. 2893 int IncomingEdgeBlockIdx = 2894 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2895 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2896 // Pick the other block. 2897 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2898 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2899 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2900 }// end of for each redux variable. 2901 2902 fixLCSSAPHIs(); 2903 2904 // Remove redundant induction instructions. 2905 cse(LoopVectorBody); 2906 } 2907 2908 void InnerLoopVectorizer::fixLCSSAPHIs() { 2909 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2910 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2911 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2912 if (!LCSSAPhi) break; 2913 if (LCSSAPhi->getNumIncomingValues() == 1) 2914 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2915 LoopMiddleBlock); 2916 } 2917 } 2918 2919 InnerLoopVectorizer::VectorParts 2920 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2921 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2922 "Invalid edge"); 2923 2924 // Look for cached value. 2925 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2926 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2927 if (ECEntryIt != MaskCache.end()) 2928 return ECEntryIt->second; 2929 2930 VectorParts SrcMask = createBlockInMask(Src); 2931 2932 // The terminator has to be a branch inst! 2933 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2934 assert(BI && "Unexpected terminator found"); 2935 2936 if (BI->isConditional()) { 2937 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2938 2939 if (BI->getSuccessor(0) != Dst) 2940 for (unsigned part = 0; part < UF; ++part) 2941 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2942 2943 for (unsigned part = 0; part < UF; ++part) 2944 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2945 2946 MaskCache[Edge] = EdgeMask; 2947 return EdgeMask; 2948 } 2949 2950 MaskCache[Edge] = SrcMask; 2951 return SrcMask; 2952 } 2953 2954 InnerLoopVectorizer::VectorParts 2955 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2956 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2957 2958 // Loop incoming mask is all-one. 2959 if (OrigLoop->getHeader() == BB) { 2960 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2961 return getVectorValue(C); 2962 } 2963 2964 // This is the block mask. We OR all incoming edges, and with zero. 2965 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2966 VectorParts BlockMask = getVectorValue(Zero); 2967 2968 // For each pred: 2969 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2970 VectorParts EM = createEdgeMask(*it, BB); 2971 for (unsigned part = 0; part < UF; ++part) 2972 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2973 } 2974 2975 return BlockMask; 2976 } 2977 2978 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2979 InnerLoopVectorizer::VectorParts &Entry, 2980 unsigned UF, unsigned VF, PhiVector *PV) { 2981 PHINode* P = cast<PHINode>(PN); 2982 // Handle reduction variables: 2983 if (Legal->getReductionVars()->count(P)) { 2984 for (unsigned part = 0; part < UF; ++part) { 2985 // This is phase one of vectorizing PHIs. 2986 Type *VecTy = (VF == 1) ? PN->getType() : 2987 VectorType::get(PN->getType(), VF); 2988 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2989 LoopVectorBody.back()-> getFirstInsertionPt()); 2990 } 2991 PV->push_back(P); 2992 return; 2993 } 2994 2995 setDebugLocFromInst(Builder, P); 2996 // Check for PHI nodes that are lowered to vector selects. 2997 if (P->getParent() != OrigLoop->getHeader()) { 2998 // We know that all PHIs in non-header blocks are converted into 2999 // selects, so we don't have to worry about the insertion order and we 3000 // can just use the builder. 3001 // At this point we generate the predication tree. There may be 3002 // duplications since this is a simple recursive scan, but future 3003 // optimizations will clean it up. 3004 3005 unsigned NumIncoming = P->getNumIncomingValues(); 3006 3007 // Generate a sequence of selects of the form: 3008 // SELECT(Mask3, In3, 3009 // SELECT(Mask2, In2, 3010 // ( ...))) 3011 for (unsigned In = 0; In < NumIncoming; In++) { 3012 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3013 P->getParent()); 3014 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3015 3016 for (unsigned part = 0; part < UF; ++part) { 3017 // We might have single edge PHIs (blocks) - use an identity 3018 // 'select' for the first PHI operand. 3019 if (In == 0) 3020 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3021 In0[part]); 3022 else 3023 // Select between the current value and the previous incoming edge 3024 // based on the incoming mask. 3025 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3026 Entry[part], "predphi"); 3027 } 3028 } 3029 return; 3030 } 3031 3032 // This PHINode must be an induction variable. 3033 // Make sure that we know about it. 3034 assert(Legal->getInductionVars()->count(P) && 3035 "Not an induction variable"); 3036 3037 LoopVectorizationLegality::InductionInfo II = 3038 Legal->getInductionVars()->lookup(P); 3039 3040 switch (II.IK) { 3041 case LoopVectorizationLegality::IK_NoInduction: 3042 llvm_unreachable("Unknown induction"); 3043 case LoopVectorizationLegality::IK_IntInduction: { 3044 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3045 Type *PhiTy = P->getType(); 3046 Value *Broadcasted; 3047 if (P == OldInduction) { 3048 // Handle the canonical induction variable. We might have had to 3049 // extend the type. 3050 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3051 } else { 3052 // Handle other induction variables that are now based on the 3053 // canonical one. 3054 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3055 "normalized.idx"); 3056 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3057 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 3058 "offset.idx"); 3059 } 3060 Broadcasted = getBroadcastInstrs(Broadcasted); 3061 // After broadcasting the induction variable we need to make the vector 3062 // consecutive by adding 0, 1, 2, etc. 3063 for (unsigned part = 0; part < UF; ++part) 3064 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 3065 return; 3066 } 3067 case LoopVectorizationLegality::IK_ReverseIntInduction: 3068 case LoopVectorizationLegality::IK_PtrInduction: 3069 case LoopVectorizationLegality::IK_ReversePtrInduction: 3070 // Handle reverse integer and pointer inductions. 3071 Value *StartIdx = ExtendedIdx; 3072 // This is the normalized GEP that starts counting at zero. 3073 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 3074 "normalized.idx"); 3075 3076 // Handle the reverse integer induction variable case. 3077 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3078 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3079 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3080 "resize.norm.idx"); 3081 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3082 "reverse.idx"); 3083 3084 // This is a new value so do not hoist it out. 3085 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3086 // After broadcasting the induction variable we need to make the 3087 // vector consecutive by adding ... -3, -2, -1, 0. 3088 for (unsigned part = 0; part < UF; ++part) 3089 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3090 true); 3091 return; 3092 } 3093 3094 // Handle the pointer induction variable case. 3095 assert(P->getType()->isPointerTy() && "Unexpected type."); 3096 3097 // Is this a reverse induction ptr or a consecutive induction ptr. 3098 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3099 II.IK); 3100 3101 // This is the vector of results. Notice that we don't generate 3102 // vector geps because scalar geps result in better code. 3103 for (unsigned part = 0; part < UF; ++part) { 3104 if (VF == 1) { 3105 int EltIndex = (part) * (Reverse ? -1 : 1); 3106 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3107 Value *GlobalIdx; 3108 if (Reverse) 3109 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3110 else 3111 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3112 3113 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3114 "next.gep"); 3115 Entry[part] = SclrGep; 3116 continue; 3117 } 3118 3119 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3120 for (unsigned int i = 0; i < VF; ++i) { 3121 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3122 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3123 Value *GlobalIdx; 3124 if (!Reverse) 3125 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3126 else 3127 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3128 3129 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3130 "next.gep"); 3131 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3132 Builder.getInt32(i), 3133 "insert.gep"); 3134 } 3135 Entry[part] = VecVal; 3136 } 3137 return; 3138 } 3139 } 3140 3141 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3142 // For each instruction in the old loop. 3143 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3144 VectorParts &Entry = WidenMap.get(it); 3145 switch (it->getOpcode()) { 3146 case Instruction::Br: 3147 // Nothing to do for PHIs and BR, since we already took care of the 3148 // loop control flow instructions. 3149 continue; 3150 case Instruction::PHI:{ 3151 // Vectorize PHINodes. 3152 widenPHIInstruction(it, Entry, UF, VF, PV); 3153 continue; 3154 }// End of PHI. 3155 3156 case Instruction::Add: 3157 case Instruction::FAdd: 3158 case Instruction::Sub: 3159 case Instruction::FSub: 3160 case Instruction::Mul: 3161 case Instruction::FMul: 3162 case Instruction::UDiv: 3163 case Instruction::SDiv: 3164 case Instruction::FDiv: 3165 case Instruction::URem: 3166 case Instruction::SRem: 3167 case Instruction::FRem: 3168 case Instruction::Shl: 3169 case Instruction::LShr: 3170 case Instruction::AShr: 3171 case Instruction::And: 3172 case Instruction::Or: 3173 case Instruction::Xor: { 3174 // Just widen binops. 3175 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3176 setDebugLocFromInst(Builder, BinOp); 3177 VectorParts &A = getVectorValue(it->getOperand(0)); 3178 VectorParts &B = getVectorValue(it->getOperand(1)); 3179 3180 // Use this vector value for all users of the original instruction. 3181 for (unsigned Part = 0; Part < UF; ++Part) { 3182 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3183 3184 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 3185 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 3186 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 3187 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 3188 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 3189 } 3190 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 3191 VecOp->setIsExact(BinOp->isExact()); 3192 3193 // Copy the fast-math flags. 3194 if (VecOp && isa<FPMathOperator>(V)) 3195 VecOp->setFastMathFlags(it->getFastMathFlags()); 3196 3197 Entry[Part] = V; 3198 } 3199 3200 propagateMetadata(Entry, it); 3201 break; 3202 } 3203 case Instruction::Select: { 3204 // Widen selects. 3205 // If the selector is loop invariant we can create a select 3206 // instruction with a scalar condition. Otherwise, use vector-select. 3207 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3208 OrigLoop); 3209 setDebugLocFromInst(Builder, it); 3210 3211 // The condition can be loop invariant but still defined inside the 3212 // loop. This means that we can't just use the original 'cond' value. 3213 // We have to take the 'vectorized' value and pick the first lane. 3214 // Instcombine will make this a no-op. 3215 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3216 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3217 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3218 3219 Value *ScalarCond = (VF == 1) ? Cond[0] : 3220 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3221 3222 for (unsigned Part = 0; Part < UF; ++Part) { 3223 Entry[Part] = Builder.CreateSelect( 3224 InvariantCond ? ScalarCond : Cond[Part], 3225 Op0[Part], 3226 Op1[Part]); 3227 } 3228 3229 propagateMetadata(Entry, it); 3230 break; 3231 } 3232 3233 case Instruction::ICmp: 3234 case Instruction::FCmp: { 3235 // Widen compares. Generate vector compares. 3236 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3237 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3238 setDebugLocFromInst(Builder, it); 3239 VectorParts &A = getVectorValue(it->getOperand(0)); 3240 VectorParts &B = getVectorValue(it->getOperand(1)); 3241 for (unsigned Part = 0; Part < UF; ++Part) { 3242 Value *C = nullptr; 3243 if (FCmp) 3244 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3245 else 3246 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3247 Entry[Part] = C; 3248 } 3249 3250 propagateMetadata(Entry, it); 3251 break; 3252 } 3253 3254 case Instruction::Store: 3255 case Instruction::Load: 3256 vectorizeMemoryInstruction(it); 3257 break; 3258 case Instruction::ZExt: 3259 case Instruction::SExt: 3260 case Instruction::FPToUI: 3261 case Instruction::FPToSI: 3262 case Instruction::FPExt: 3263 case Instruction::PtrToInt: 3264 case Instruction::IntToPtr: 3265 case Instruction::SIToFP: 3266 case Instruction::UIToFP: 3267 case Instruction::Trunc: 3268 case Instruction::FPTrunc: 3269 case Instruction::BitCast: { 3270 CastInst *CI = dyn_cast<CastInst>(it); 3271 setDebugLocFromInst(Builder, it); 3272 /// Optimize the special case where the source is the induction 3273 /// variable. Notice that we can only optimize the 'trunc' case 3274 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3275 /// c. other casts depend on pointer size. 3276 if (CI->getOperand(0) == OldInduction && 3277 it->getOpcode() == Instruction::Trunc) { 3278 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3279 CI->getType()); 3280 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3281 for (unsigned Part = 0; Part < UF; ++Part) 3282 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3283 propagateMetadata(Entry, it); 3284 break; 3285 } 3286 /// Vectorize casts. 3287 Type *DestTy = (VF == 1) ? CI->getType() : 3288 VectorType::get(CI->getType(), VF); 3289 3290 VectorParts &A = getVectorValue(it->getOperand(0)); 3291 for (unsigned Part = 0; Part < UF; ++Part) 3292 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3293 propagateMetadata(Entry, it); 3294 break; 3295 } 3296 3297 case Instruction::Call: { 3298 // Ignore dbg intrinsics. 3299 if (isa<DbgInfoIntrinsic>(it)) 3300 break; 3301 setDebugLocFromInst(Builder, it); 3302 3303 Module *M = BB->getParent()->getParent(); 3304 CallInst *CI = cast<CallInst>(it); 3305 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3306 assert(ID && "Not an intrinsic call!"); 3307 switch (ID) { 3308 case Intrinsic::lifetime_end: 3309 case Intrinsic::lifetime_start: 3310 scalarizeInstruction(it); 3311 break; 3312 default: 3313 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3314 for (unsigned Part = 0; Part < UF; ++Part) { 3315 SmallVector<Value *, 4> Args; 3316 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3317 if (HasScalarOpd && i == 1) { 3318 Args.push_back(CI->getArgOperand(i)); 3319 continue; 3320 } 3321 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3322 Args.push_back(Arg[Part]); 3323 } 3324 Type *Tys[] = {CI->getType()}; 3325 if (VF > 1) 3326 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3327 3328 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3329 Entry[Part] = Builder.CreateCall(F, Args); 3330 } 3331 3332 propagateMetadata(Entry, it); 3333 break; 3334 } 3335 break; 3336 } 3337 3338 default: 3339 // All other instructions are unsupported. Scalarize them. 3340 scalarizeInstruction(it); 3341 break; 3342 }// end of switch. 3343 }// end of for_each instr. 3344 } 3345 3346 void InnerLoopVectorizer::updateAnalysis() { 3347 // Forget the original basic block. 3348 SE->forgetLoop(OrigLoop); 3349 3350 // Update the dominator tree information. 3351 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3352 "Entry does not dominate exit."); 3353 3354 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3355 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3356 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3357 3358 // Due to if predication of stores we might create a sequence of "if(pred) 3359 // a[i] = ...; " blocks. 3360 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3361 if (i == 0) 3362 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3363 else if (isPredicatedBlock(i)) { 3364 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3365 } else { 3366 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3367 } 3368 } 3369 3370 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3371 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3372 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3373 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3374 3375 DEBUG(DT->verifyDomTree()); 3376 } 3377 3378 /// \brief Check whether it is safe to if-convert this phi node. 3379 /// 3380 /// Phi nodes with constant expressions that can trap are not safe to if 3381 /// convert. 3382 static bool canIfConvertPHINodes(BasicBlock *BB) { 3383 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3384 PHINode *Phi = dyn_cast<PHINode>(I); 3385 if (!Phi) 3386 return true; 3387 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3388 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3389 if (C->canTrap()) 3390 return false; 3391 } 3392 return true; 3393 } 3394 3395 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3396 if (!EnableIfConversion) { 3397 emitAnalysis(Report() << "if-conversion is disabled"); 3398 return false; 3399 } 3400 3401 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3402 3403 // A list of pointers that we can safely read and write to. 3404 SmallPtrSet<Value *, 8> SafePointes; 3405 3406 // Collect safe addresses. 3407 for (Loop::block_iterator BI = TheLoop->block_begin(), 3408 BE = TheLoop->block_end(); BI != BE; ++BI) { 3409 BasicBlock *BB = *BI; 3410 3411 if (blockNeedsPredication(BB)) 3412 continue; 3413 3414 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3415 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3416 SafePointes.insert(LI->getPointerOperand()); 3417 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3418 SafePointes.insert(SI->getPointerOperand()); 3419 } 3420 } 3421 3422 // Collect the blocks that need predication. 3423 BasicBlock *Header = TheLoop->getHeader(); 3424 for (Loop::block_iterator BI = TheLoop->block_begin(), 3425 BE = TheLoop->block_end(); BI != BE; ++BI) { 3426 BasicBlock *BB = *BI; 3427 3428 // We don't support switch statements inside loops. 3429 if (!isa<BranchInst>(BB->getTerminator())) { 3430 emitAnalysis(Report(BB->getTerminator()) 3431 << "loop contains a switch statement"); 3432 return false; 3433 } 3434 3435 // We must be able to predicate all blocks that need to be predicated. 3436 if (blockNeedsPredication(BB)) { 3437 if (!blockCanBePredicated(BB, SafePointes)) { 3438 emitAnalysis(Report(BB->getTerminator()) 3439 << "control flow cannot be substituted for a select"); 3440 return false; 3441 } 3442 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3443 emitAnalysis(Report(BB->getTerminator()) 3444 << "control flow cannot be substituted for a select"); 3445 return false; 3446 } 3447 } 3448 3449 // We can if-convert this loop. 3450 return true; 3451 } 3452 3453 bool LoopVectorizationLegality::canVectorize() { 3454 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3455 // be canonicalized. 3456 if (!TheLoop->getLoopPreheader()) { 3457 emitAnalysis( 3458 Report() << "loop control flow is not understood by vectorizer"); 3459 return false; 3460 } 3461 3462 // We can only vectorize innermost loops. 3463 if (TheLoop->getSubLoopsVector().size()) { 3464 emitAnalysis(Report() << "loop is not the innermost loop"); 3465 return false; 3466 } 3467 3468 // We must have a single backedge. 3469 if (TheLoop->getNumBackEdges() != 1) { 3470 emitAnalysis( 3471 Report() << "loop control flow is not understood by vectorizer"); 3472 return false; 3473 } 3474 3475 // We must have a single exiting block. 3476 if (!TheLoop->getExitingBlock()) { 3477 emitAnalysis( 3478 Report() << "loop control flow is not understood by vectorizer"); 3479 return false; 3480 } 3481 3482 // We need to have a loop header. 3483 DEBUG(dbgs() << "LV: Found a loop: " << 3484 TheLoop->getHeader()->getName() << '\n'); 3485 3486 // Check if we can if-convert non-single-bb loops. 3487 unsigned NumBlocks = TheLoop->getNumBlocks(); 3488 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3489 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3490 return false; 3491 } 3492 3493 // ScalarEvolution needs to be able to find the exit count. 3494 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3495 if (ExitCount == SE->getCouldNotCompute()) { 3496 emitAnalysis(Report() << "could not determine number of loop iterations"); 3497 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3498 return false; 3499 } 3500 3501 // Check if we can vectorize the instructions and CFG in this loop. 3502 if (!canVectorizeInstrs()) { 3503 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3504 return false; 3505 } 3506 3507 // Go over each instruction and look at memory deps. 3508 if (!canVectorizeMemory()) { 3509 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3510 return false; 3511 } 3512 3513 // Collect all of the variables that remain uniform after vectorization. 3514 collectLoopUniforms(); 3515 3516 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3517 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3518 <<"!\n"); 3519 3520 // Okay! We can vectorize. At this point we don't have any other mem analysis 3521 // which may limit our maximum vectorization factor, so just return true with 3522 // no restrictions. 3523 return true; 3524 } 3525 3526 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3527 if (Ty->isPointerTy()) 3528 return DL.getIntPtrType(Ty); 3529 3530 // It is possible that char's or short's overflow when we ask for the loop's 3531 // trip count, work around this by changing the type size. 3532 if (Ty->getScalarSizeInBits() < 32) 3533 return Type::getInt32Ty(Ty->getContext()); 3534 3535 return Ty; 3536 } 3537 3538 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3539 Ty0 = convertPointerToIntegerType(DL, Ty0); 3540 Ty1 = convertPointerToIntegerType(DL, Ty1); 3541 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3542 return Ty0; 3543 return Ty1; 3544 } 3545 3546 /// \brief Check that the instruction has outside loop users and is not an 3547 /// identified reduction variable. 3548 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3549 SmallPtrSetImpl<Value *> &Reductions) { 3550 // Reduction instructions are allowed to have exit users. All other 3551 // instructions must not have external users. 3552 if (!Reductions.count(Inst)) 3553 //Check that all of the users of the loop are inside the BB. 3554 for (User *U : Inst->users()) { 3555 Instruction *UI = cast<Instruction>(U); 3556 // This user may be a reduction exit value. 3557 if (!TheLoop->contains(UI)) { 3558 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3559 return true; 3560 } 3561 } 3562 return false; 3563 } 3564 3565 bool LoopVectorizationLegality::canVectorizeInstrs() { 3566 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3567 BasicBlock *Header = TheLoop->getHeader(); 3568 3569 // Look for the attribute signaling the absence of NaNs. 3570 Function &F = *Header->getParent(); 3571 if (F.hasFnAttribute("no-nans-fp-math")) 3572 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3573 AttributeSet::FunctionIndex, 3574 "no-nans-fp-math").getValueAsString() == "true"; 3575 3576 // For each block in the loop. 3577 for (Loop::block_iterator bb = TheLoop->block_begin(), 3578 be = TheLoop->block_end(); bb != be; ++bb) { 3579 3580 // Scan the instructions in the block and look for hazards. 3581 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3582 ++it) { 3583 3584 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3585 Type *PhiTy = Phi->getType(); 3586 // Check that this PHI type is allowed. 3587 if (!PhiTy->isIntegerTy() && 3588 !PhiTy->isFloatingPointTy() && 3589 !PhiTy->isPointerTy()) { 3590 emitAnalysis(Report(it) 3591 << "loop control flow is not understood by vectorizer"); 3592 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3593 return false; 3594 } 3595 3596 // If this PHINode is not in the header block, then we know that we 3597 // can convert it to select during if-conversion. No need to check if 3598 // the PHIs in this block are induction or reduction variables. 3599 if (*bb != Header) { 3600 // Check that this instruction has no outside users or is an 3601 // identified reduction value with an outside user. 3602 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3603 continue; 3604 emitAnalysis(Report(it) << "value could not be identified as " 3605 "an induction or reduction variable"); 3606 return false; 3607 } 3608 3609 // We only allow if-converted PHIs with more than two incoming values. 3610 if (Phi->getNumIncomingValues() != 2) { 3611 emitAnalysis(Report(it) 3612 << "control flow not understood by vectorizer"); 3613 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3614 return false; 3615 } 3616 3617 // This is the value coming from the preheader. 3618 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3619 // Check if this is an induction variable. 3620 InductionKind IK = isInductionVariable(Phi); 3621 3622 if (IK_NoInduction != IK) { 3623 // Get the widest type. 3624 if (!WidestIndTy) 3625 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3626 else 3627 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3628 3629 // Int inductions are special because we only allow one IV. 3630 if (IK == IK_IntInduction) { 3631 // Use the phi node with the widest type as induction. Use the last 3632 // one if there are multiple (no good reason for doing this other 3633 // than it is expedient). 3634 if (!Induction || PhiTy == WidestIndTy) 3635 Induction = Phi; 3636 } 3637 3638 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3639 Inductions[Phi] = InductionInfo(StartValue, IK); 3640 3641 // Until we explicitly handle the case of an induction variable with 3642 // an outside loop user we have to give up vectorizing this loop. 3643 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3644 emitAnalysis(Report(it) << "use of induction value outside of the " 3645 "loop is not handled by vectorizer"); 3646 return false; 3647 } 3648 3649 continue; 3650 } 3651 3652 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3653 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3654 continue; 3655 } 3656 if (AddReductionVar(Phi, RK_IntegerMult)) { 3657 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3658 continue; 3659 } 3660 if (AddReductionVar(Phi, RK_IntegerOr)) { 3661 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3662 continue; 3663 } 3664 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3665 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3666 continue; 3667 } 3668 if (AddReductionVar(Phi, RK_IntegerXor)) { 3669 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3670 continue; 3671 } 3672 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3673 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3674 continue; 3675 } 3676 if (AddReductionVar(Phi, RK_FloatMult)) { 3677 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3678 continue; 3679 } 3680 if (AddReductionVar(Phi, RK_FloatAdd)) { 3681 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3682 continue; 3683 } 3684 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3685 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3686 "\n"); 3687 continue; 3688 } 3689 3690 emitAnalysis(Report(it) << "value that could not be identified as " 3691 "reduction is used outside the loop"); 3692 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3693 return false; 3694 }// end of PHI handling 3695 3696 // We still don't handle functions. However, we can ignore dbg intrinsic 3697 // calls and we do handle certain intrinsic and libm functions. 3698 CallInst *CI = dyn_cast<CallInst>(it); 3699 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3700 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3701 DEBUG(dbgs() << "LV: Found a call site.\n"); 3702 return false; 3703 } 3704 3705 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3706 // second argument is the same (i.e. loop invariant) 3707 if (CI && 3708 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3709 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3710 emitAnalysis(Report(it) 3711 << "intrinsic instruction cannot be vectorized"); 3712 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3713 return false; 3714 } 3715 } 3716 3717 // Check that the instruction return type is vectorizable. 3718 // Also, we can't vectorize extractelement instructions. 3719 if ((!VectorType::isValidElementType(it->getType()) && 3720 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3721 emitAnalysis(Report(it) 3722 << "instruction return type cannot be vectorized"); 3723 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3724 return false; 3725 } 3726 3727 // Check that the stored type is vectorizable. 3728 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3729 Type *T = ST->getValueOperand()->getType(); 3730 if (!VectorType::isValidElementType(T)) { 3731 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3732 return false; 3733 } 3734 if (EnableMemAccessVersioning) 3735 collectStridedAcccess(ST); 3736 } 3737 3738 if (EnableMemAccessVersioning) 3739 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3740 collectStridedAcccess(LI); 3741 3742 // Reduction instructions are allowed to have exit users. 3743 // All other instructions must not have external users. 3744 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3745 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3746 return false; 3747 } 3748 3749 } // next instr. 3750 3751 } 3752 3753 if (!Induction) { 3754 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3755 if (Inductions.empty()) { 3756 emitAnalysis(Report() 3757 << "loop induction variable could not be identified"); 3758 return false; 3759 } 3760 } 3761 3762 return true; 3763 } 3764 3765 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3766 /// return the induction operand of the gep pointer. 3767 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3768 const DataLayout *DL, Loop *Lp) { 3769 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3770 if (!GEP) 3771 return Ptr; 3772 3773 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3774 3775 // Check that all of the gep indices are uniform except for our induction 3776 // operand. 3777 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3778 if (i != InductionOperand && 3779 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3780 return Ptr; 3781 return GEP->getOperand(InductionOperand); 3782 } 3783 3784 ///\brief Look for a cast use of the passed value. 3785 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3786 Value *UniqueCast = nullptr; 3787 for (User *U : Ptr->users()) { 3788 CastInst *CI = dyn_cast<CastInst>(U); 3789 if (CI && CI->getType() == Ty) { 3790 if (!UniqueCast) 3791 UniqueCast = CI; 3792 else 3793 return nullptr; 3794 } 3795 } 3796 return UniqueCast; 3797 } 3798 3799 ///\brief Get the stride of a pointer access in a loop. 3800 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3801 /// pointer to the Value, or null otherwise. 3802 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3803 const DataLayout *DL, Loop *Lp) { 3804 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3805 if (!PtrTy || PtrTy->isAggregateType()) 3806 return nullptr; 3807 3808 // Try to remove a gep instruction to make the pointer (actually index at this 3809 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3810 // pointer, otherwise, we are analyzing the index. 3811 Value *OrigPtr = Ptr; 3812 3813 // The size of the pointer access. 3814 int64_t PtrAccessSize = 1; 3815 3816 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3817 const SCEV *V = SE->getSCEV(Ptr); 3818 3819 if (Ptr != OrigPtr) 3820 // Strip off casts. 3821 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3822 V = C->getOperand(); 3823 3824 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3825 if (!S) 3826 return nullptr; 3827 3828 V = S->getStepRecurrence(*SE); 3829 if (!V) 3830 return nullptr; 3831 3832 // Strip off the size of access multiplication if we are still analyzing the 3833 // pointer. 3834 if (OrigPtr == Ptr) { 3835 DL->getTypeAllocSize(PtrTy->getElementType()); 3836 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3837 if (M->getOperand(0)->getSCEVType() != scConstant) 3838 return nullptr; 3839 3840 const APInt &APStepVal = 3841 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3842 3843 // Huge step value - give up. 3844 if (APStepVal.getBitWidth() > 64) 3845 return nullptr; 3846 3847 int64_t StepVal = APStepVal.getSExtValue(); 3848 if (PtrAccessSize != StepVal) 3849 return nullptr; 3850 V = M->getOperand(1); 3851 } 3852 } 3853 3854 // Strip off casts. 3855 Type *StripedOffRecurrenceCast = nullptr; 3856 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3857 StripedOffRecurrenceCast = C->getType(); 3858 V = C->getOperand(); 3859 } 3860 3861 // Look for the loop invariant symbolic value. 3862 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3863 if (!U) 3864 return nullptr; 3865 3866 Value *Stride = U->getValue(); 3867 if (!Lp->isLoopInvariant(Stride)) 3868 return nullptr; 3869 3870 // If we have stripped off the recurrence cast we have to make sure that we 3871 // return the value that is used in this loop so that we can replace it later. 3872 if (StripedOffRecurrenceCast) 3873 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3874 3875 return Stride; 3876 } 3877 3878 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3879 Value *Ptr = nullptr; 3880 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3881 Ptr = LI->getPointerOperand(); 3882 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3883 Ptr = SI->getPointerOperand(); 3884 else 3885 return; 3886 3887 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3888 if (!Stride) 3889 return; 3890 3891 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3892 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3893 Strides[Ptr] = Stride; 3894 StrideSet.insert(Stride); 3895 } 3896 3897 void LoopVectorizationLegality::collectLoopUniforms() { 3898 // We now know that the loop is vectorizable! 3899 // Collect variables that will remain uniform after vectorization. 3900 std::vector<Value*> Worklist; 3901 BasicBlock *Latch = TheLoop->getLoopLatch(); 3902 3903 // Start with the conditional branch and walk up the block. 3904 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3905 3906 // Also add all consecutive pointer values; these values will be uniform 3907 // after vectorization (and subsequent cleanup) and, until revectorization is 3908 // supported, all dependencies must also be uniform. 3909 for (Loop::block_iterator B = TheLoop->block_begin(), 3910 BE = TheLoop->block_end(); B != BE; ++B) 3911 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3912 I != IE; ++I) 3913 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3914 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3915 3916 while (Worklist.size()) { 3917 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3918 Worklist.pop_back(); 3919 3920 // Look at instructions inside this loop. 3921 // Stop when reaching PHI nodes. 3922 // TODO: we need to follow values all over the loop, not only in this block. 3923 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3924 continue; 3925 3926 // This is a known uniform. 3927 Uniforms.insert(I); 3928 3929 // Insert all operands. 3930 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3931 } 3932 } 3933 3934 namespace { 3935 /// \brief Analyses memory accesses in a loop. 3936 /// 3937 /// Checks whether run time pointer checks are needed and builds sets for data 3938 /// dependence checking. 3939 class AccessAnalysis { 3940 public: 3941 /// \brief Read or write access location. 3942 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3943 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3944 3945 /// \brief Set of potential dependent memory accesses. 3946 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3947 3948 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 3949 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 3950 3951 /// \brief Register a load and whether it is only read from. 3952 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 3953 Value *Ptr = const_cast<Value*>(Loc.Ptr); 3954 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 3955 Accesses.insert(MemAccessInfo(Ptr, false)); 3956 if (IsReadOnly) 3957 ReadOnlyPtr.insert(Ptr); 3958 } 3959 3960 /// \brief Register a store. 3961 void addStore(AliasAnalysis::Location &Loc) { 3962 Value *Ptr = const_cast<Value*>(Loc.Ptr); 3963 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 3964 Accesses.insert(MemAccessInfo(Ptr, true)); 3965 } 3966 3967 /// \brief Check whether we can check the pointers at runtime for 3968 /// non-intersection. 3969 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3970 unsigned &NumComparisons, ScalarEvolution *SE, 3971 Loop *TheLoop, ValueToValueMap &Strides, 3972 bool ShouldCheckStride = false); 3973 3974 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3975 /// and builds sets of dependent accesses. 3976 void buildDependenceSets() { 3977 processMemAccesses(); 3978 } 3979 3980 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3981 3982 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3983 void resetDepChecks() { CheckDeps.clear(); } 3984 3985 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3986 3987 private: 3988 typedef SetVector<MemAccessInfo> PtrAccessSet; 3989 3990 /// \brief Go over all memory access and check whether runtime pointer checks 3991 /// are needed /// and build sets of dependency check candidates. 3992 void processMemAccesses(); 3993 3994 /// Set of all accesses. 3995 PtrAccessSet Accesses; 3996 3997 /// Set of accesses that need a further dependence check. 3998 MemAccessInfoSet CheckDeps; 3999 4000 /// Set of pointers that are read only. 4001 SmallPtrSet<Value*, 16> ReadOnlyPtr; 4002 4003 const DataLayout *DL; 4004 4005 /// An alias set tracker to partition the access set by underlying object and 4006 //intrinsic property (such as TBAA metadata). 4007 AliasSetTracker AST; 4008 4009 /// Sets of potentially dependent accesses - members of one set share an 4010 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 4011 /// dependence check. 4012 DepCandidates &DepCands; 4013 4014 bool IsRTCheckNeeded; 4015 }; 4016 4017 } // end anonymous namespace 4018 4019 /// \brief Check whether a pointer can participate in a runtime bounds check. 4020 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 4021 Value *Ptr) { 4022 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4023 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4024 if (!AR) 4025 return false; 4026 4027 return AR->isAffine(); 4028 } 4029 4030 /// \brief Check the stride of the pointer and ensure that it does not wrap in 4031 /// the address space. 4032 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4033 const Loop *Lp, ValueToValueMap &StridesMap); 4034 4035 bool AccessAnalysis::canCheckPtrAtRT( 4036 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4037 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 4038 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 4039 // Find pointers with computable bounds. We are going to use this information 4040 // to place a runtime bound check. 4041 bool CanDoRT = true; 4042 4043 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 4044 NumComparisons = 0; 4045 4046 // We assign a consecutive id to access from different alias sets. 4047 // Accesses between different groups doesn't need to be checked. 4048 unsigned ASId = 1; 4049 for (auto &AS : AST) { 4050 unsigned NumReadPtrChecks = 0; 4051 unsigned NumWritePtrChecks = 0; 4052 4053 // We assign consecutive id to access from different dependence sets. 4054 // Accesses within the same set don't need a runtime check. 4055 unsigned RunningDepId = 1; 4056 DenseMap<Value *, unsigned> DepSetId; 4057 4058 for (auto A : AS) { 4059 Value *Ptr = A.getValue(); 4060 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 4061 MemAccessInfo Access(Ptr, IsWrite); 4062 4063 if (IsWrite) 4064 ++NumWritePtrChecks; 4065 else 4066 ++NumReadPtrChecks; 4067 4068 if (hasComputableBounds(SE, StridesMap, Ptr) && 4069 // When we run after a failing dependency check we have to make sure we 4070 // don't have wrapping pointers. 4071 (!ShouldCheckStride || 4072 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 4073 // The id of the dependence set. 4074 unsigned DepId; 4075 4076 if (IsDepCheckNeeded) { 4077 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 4078 unsigned &LeaderId = DepSetId[Leader]; 4079 if (!LeaderId) 4080 LeaderId = RunningDepId++; 4081 DepId = LeaderId; 4082 } else 4083 // Each access has its own dependence set. 4084 DepId = RunningDepId++; 4085 4086 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 4087 4088 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4089 } else { 4090 CanDoRT = false; 4091 } 4092 } 4093 4094 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4095 NumComparisons += 0; // Only one dependence set. 4096 else { 4097 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 4098 NumWritePtrChecks - 1)); 4099 } 4100 4101 ++ASId; 4102 } 4103 4104 // If the pointers that we would use for the bounds comparison have different 4105 // address spaces, assume the values aren't directly comparable, so we can't 4106 // use them for the runtime check. We also have to assume they could 4107 // overlap. In the future there should be metadata for whether address spaces 4108 // are disjoint. 4109 unsigned NumPointers = RtCheck.Pointers.size(); 4110 for (unsigned i = 0; i < NumPointers; ++i) { 4111 for (unsigned j = i + 1; j < NumPointers; ++j) { 4112 // Only need to check pointers between two different dependency sets. 4113 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4114 continue; 4115 // Only need to check pointers in the same alias set. 4116 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 4117 continue; 4118 4119 Value *PtrI = RtCheck.Pointers[i]; 4120 Value *PtrJ = RtCheck.Pointers[j]; 4121 4122 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4123 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4124 if (ASi != ASj) { 4125 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4126 " different address spaces\n"); 4127 return false; 4128 } 4129 } 4130 } 4131 4132 return CanDoRT; 4133 } 4134 4135 void AccessAnalysis::processMemAccesses() { 4136 // We process the set twice: first we process read-write pointers, last we 4137 // process read-only pointers. This allows us to skip dependence tests for 4138 // read-only pointers. 4139 4140 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 4141 DEBUG(dbgs() << " AST: "; AST.dump()); 4142 DEBUG(dbgs() << "LV: Accesses:\n"); 4143 DEBUG({ 4144 for (auto A : Accesses) 4145 dbgs() << "\t" << *A.getPointer() << " (" << 4146 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 4147 "read-only" : "read")) << ")\n"; 4148 }); 4149 4150 // The AliasSetTracker has nicely partitioned our pointers by metadata 4151 // compatibility and potential for underlying-object overlap. As a result, we 4152 // only need to check for potential pointer dependencies within each alias 4153 // set. 4154 for (auto &AS : AST) { 4155 // Note that both the alias-set tracker and the alias sets themselves used 4156 // linked lists internally and so the iteration order here is deterministic 4157 // (matching the original instruction order within each set). 4158 4159 bool SetHasWrite = false; 4160 4161 // Map of pointers to last access encountered. 4162 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 4163 UnderlyingObjToAccessMap ObjToLastAccess; 4164 4165 // Set of access to check after all writes have been processed. 4166 PtrAccessSet DeferredAccesses; 4167 4168 // Iterate over each alias set twice, once to process read/write pointers, 4169 // and then to process read-only pointers. 4170 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 4171 bool UseDeferred = SetIteration > 0; 4172 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4173 4174 for (auto A : AS) { 4175 Value *Ptr = A.getValue(); 4176 bool IsWrite = S.count(MemAccessInfo(Ptr, true)); 4177 4178 // If we're using the deferred access set, then it contains only reads. 4179 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4180 if (UseDeferred && !IsReadOnlyPtr) 4181 continue; 4182 // Otherwise, the pointer must be in the PtrAccessSet, either as a read 4183 // or a write. 4184 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 4185 S.count(MemAccessInfo(Ptr, false))) && 4186 "Alias-set pointer not in the access set?"); 4187 4188 MemAccessInfo Access(Ptr, IsWrite); 4189 DepCands.insert(Access); 4190 4191 // Memorize read-only pointers for later processing and skip them in the 4192 // first round (they need to be checked after we have seen all write 4193 // pointers). Note: we also mark pointer that are not consecutive as 4194 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need 4195 // the second check for "!IsWrite". 4196 if (!UseDeferred && IsReadOnlyPtr) { 4197 DeferredAccesses.insert(Access); 4198 continue; 4199 } 4200 4201 // If this is a write - check other reads and writes for conflicts. If 4202 // this is a read only check other writes for conflicts (but only if 4203 // there is no other write to the ptr - this is an optimization to 4204 // catch "a[i] = a[i] + " without having to do a dependence check). 4205 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 4206 CheckDeps.insert(Access); 4207 IsRTCheckNeeded = true; 4208 } 4209 4210 if (IsWrite) 4211 SetHasWrite = true; 4212 4213 // Create sets of pointers connected by a shared alias set and 4214 // underlying object. 4215 typedef SmallVector<Value*, 16> ValueVector; 4216 ValueVector TempObjects; 4217 GetUnderlyingObjects(Ptr, TempObjects, DL); 4218 for (Value *UnderlyingObj : TempObjects) { 4219 UnderlyingObjToAccessMap::iterator Prev = 4220 ObjToLastAccess.find(UnderlyingObj); 4221 if (Prev != ObjToLastAccess.end()) 4222 DepCands.unionSets(Access, Prev->second); 4223 4224 ObjToLastAccess[UnderlyingObj] = Access; 4225 } 4226 } 4227 } 4228 } 4229 } 4230 4231 namespace { 4232 /// \brief Checks memory dependences among accesses to the same underlying 4233 /// object to determine whether there vectorization is legal or not (and at 4234 /// which vectorization factor). 4235 /// 4236 /// This class works under the assumption that we already checked that memory 4237 /// locations with different underlying pointers are "must-not alias". 4238 /// We use the ScalarEvolution framework to symbolically evalutate access 4239 /// functions pairs. Since we currently don't restructure the loop we can rely 4240 /// on the program order of memory accesses to determine their safety. 4241 /// At the moment we will only deem accesses as safe for: 4242 /// * A negative constant distance assuming program order. 4243 /// 4244 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4245 /// a[i] = tmp; y = a[i]; 4246 /// 4247 /// The latter case is safe because later checks guarantuee that there can't 4248 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4249 /// the same variable: a header phi can only be an induction or a reduction, a 4250 /// reduction can't have a memory sink, an induction can't have a memory 4251 /// source). This is important and must not be violated (or we have to 4252 /// resort to checking for cycles through memory). 4253 /// 4254 /// * A positive constant distance assuming program order that is bigger 4255 /// than the biggest memory access. 4256 /// 4257 /// tmp = a[i] OR b[i] = x 4258 /// a[i+2] = tmp y = b[i+2]; 4259 /// 4260 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4261 /// 4262 /// * Zero distances and all accesses have the same size. 4263 /// 4264 class MemoryDepChecker { 4265 public: 4266 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4267 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4268 4269 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4270 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4271 ShouldRetryWithRuntimeCheck(false) {} 4272 4273 /// \brief Register the location (instructions are given increasing numbers) 4274 /// of a write access. 4275 void addAccess(StoreInst *SI) { 4276 Value *Ptr = SI->getPointerOperand(); 4277 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4278 InstMap.push_back(SI); 4279 ++AccessIdx; 4280 } 4281 4282 /// \brief Register the location (instructions are given increasing numbers) 4283 /// of a write access. 4284 void addAccess(LoadInst *LI) { 4285 Value *Ptr = LI->getPointerOperand(); 4286 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4287 InstMap.push_back(LI); 4288 ++AccessIdx; 4289 } 4290 4291 /// \brief Check whether the dependencies between the accesses are safe. 4292 /// 4293 /// Only checks sets with elements in \p CheckDeps. 4294 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4295 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4296 4297 /// \brief The maximum number of bytes of a vector register we can vectorize 4298 /// the accesses safely with. 4299 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4300 4301 /// \brief In same cases when the dependency check fails we can still 4302 /// vectorize the loop with a dynamic array access check. 4303 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4304 4305 private: 4306 ScalarEvolution *SE; 4307 const DataLayout *DL; 4308 const Loop *InnermostLoop; 4309 4310 /// \brief Maps access locations (ptr, read/write) to program order. 4311 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4312 4313 /// \brief Memory access instructions in program order. 4314 SmallVector<Instruction *, 16> InstMap; 4315 4316 /// \brief The program order index to be used for the next instruction. 4317 unsigned AccessIdx; 4318 4319 // We can access this many bytes in parallel safely. 4320 unsigned MaxSafeDepDistBytes; 4321 4322 /// \brief If we see a non-constant dependence distance we can still try to 4323 /// vectorize this loop with runtime checks. 4324 bool ShouldRetryWithRuntimeCheck; 4325 4326 /// \brief Check whether there is a plausible dependence between the two 4327 /// accesses. 4328 /// 4329 /// Access \p A must happen before \p B in program order. The two indices 4330 /// identify the index into the program order map. 4331 /// 4332 /// This function checks whether there is a plausible dependence (or the 4333 /// absence of such can't be proved) between the two accesses. If there is a 4334 /// plausible dependence but the dependence distance is bigger than one 4335 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4336 /// distance is smaller than any other distance encountered so far). 4337 /// Otherwise, this function returns true signaling a possible dependence. 4338 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4339 const MemAccessInfo &B, unsigned BIdx, 4340 ValueToValueMap &Strides); 4341 4342 /// \brief Check whether the data dependence could prevent store-load 4343 /// forwarding. 4344 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4345 }; 4346 4347 } // end anonymous namespace 4348 4349 static bool isInBoundsGep(Value *Ptr) { 4350 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4351 return GEP->isInBounds(); 4352 return false; 4353 } 4354 4355 /// \brief Check whether the access through \p Ptr has a constant stride. 4356 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4357 const Loop *Lp, ValueToValueMap &StridesMap) { 4358 const Type *Ty = Ptr->getType(); 4359 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4360 4361 // Make sure that the pointer does not point to aggregate types. 4362 const PointerType *PtrTy = cast<PointerType>(Ty); 4363 if (PtrTy->getElementType()->isAggregateType()) { 4364 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4365 "\n"); 4366 return 0; 4367 } 4368 4369 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4370 4371 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4372 if (!AR) { 4373 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4374 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4375 return 0; 4376 } 4377 4378 // The accesss function must stride over the innermost loop. 4379 if (Lp != AR->getLoop()) { 4380 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4381 *Ptr << " SCEV: " << *PtrScev << "\n"); 4382 } 4383 4384 // The address calculation must not wrap. Otherwise, a dependence could be 4385 // inverted. 4386 // An inbounds getelementptr that is a AddRec with a unit stride 4387 // cannot wrap per definition. The unit stride requirement is checked later. 4388 // An getelementptr without an inbounds attribute and unit stride would have 4389 // to access the pointer value "0" which is undefined behavior in address 4390 // space 0, therefore we can also vectorize this case. 4391 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4392 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4393 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4394 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4395 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4396 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4397 return 0; 4398 } 4399 4400 // Check the step is constant. 4401 const SCEV *Step = AR->getStepRecurrence(*SE); 4402 4403 // Calculate the pointer stride and check if it is consecutive. 4404 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4405 if (!C) { 4406 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4407 " SCEV: " << *PtrScev << "\n"); 4408 return 0; 4409 } 4410 4411 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4412 const APInt &APStepVal = C->getValue()->getValue(); 4413 4414 // Huge step value - give up. 4415 if (APStepVal.getBitWidth() > 64) 4416 return 0; 4417 4418 int64_t StepVal = APStepVal.getSExtValue(); 4419 4420 // Strided access. 4421 int64_t Stride = StepVal / Size; 4422 int64_t Rem = StepVal % Size; 4423 if (Rem) 4424 return 0; 4425 4426 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4427 // know we can't "wrap around the address space". In case of address space 4428 // zero we know that this won't happen without triggering undefined behavior. 4429 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4430 Stride != 1 && Stride != -1) 4431 return 0; 4432 4433 return Stride; 4434 } 4435 4436 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4437 unsigned TypeByteSize) { 4438 // If loads occur at a distance that is not a multiple of a feasible vector 4439 // factor store-load forwarding does not take place. 4440 // Positive dependences might cause troubles because vectorizing them might 4441 // prevent store-load forwarding making vectorized code run a lot slower. 4442 // a[i] = a[i-3] ^ a[i-8]; 4443 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4444 // hence on your typical architecture store-load forwarding does not take 4445 // place. Vectorizing in such cases does not make sense. 4446 // Store-load forwarding distance. 4447 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4448 // Maximum vector factor. 4449 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4450 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4451 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4452 4453 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4454 vf *= 2) { 4455 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4456 MaxVFWithoutSLForwardIssues = (vf >>=1); 4457 break; 4458 } 4459 } 4460 4461 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4462 DEBUG(dbgs() << "LV: Distance " << Distance << 4463 " that could cause a store-load forwarding conflict\n"); 4464 return true; 4465 } 4466 4467 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4468 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4469 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4470 return false; 4471 } 4472 4473 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4474 const MemAccessInfo &B, unsigned BIdx, 4475 ValueToValueMap &Strides) { 4476 assert (AIdx < BIdx && "Must pass arguments in program order"); 4477 4478 Value *APtr = A.getPointer(); 4479 Value *BPtr = B.getPointer(); 4480 bool AIsWrite = A.getInt(); 4481 bool BIsWrite = B.getInt(); 4482 4483 // Two reads are independent. 4484 if (!AIsWrite && !BIsWrite) 4485 return false; 4486 4487 // We cannot check pointers in different address spaces. 4488 if (APtr->getType()->getPointerAddressSpace() != 4489 BPtr->getType()->getPointerAddressSpace()) 4490 return true; 4491 4492 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4493 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4494 4495 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4496 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4497 4498 const SCEV *Src = AScev; 4499 const SCEV *Sink = BScev; 4500 4501 // If the induction step is negative we have to invert source and sink of the 4502 // dependence. 4503 if (StrideAPtr < 0) { 4504 //Src = BScev; 4505 //Sink = AScev; 4506 std::swap(APtr, BPtr); 4507 std::swap(Src, Sink); 4508 std::swap(AIsWrite, BIsWrite); 4509 std::swap(AIdx, BIdx); 4510 std::swap(StrideAPtr, StrideBPtr); 4511 } 4512 4513 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4514 4515 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4516 << "(Induction step: " << StrideAPtr << ")\n"); 4517 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4518 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4519 4520 // Need consecutive accesses. We don't want to vectorize 4521 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4522 // the address space. 4523 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4524 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4525 return true; 4526 } 4527 4528 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4529 if (!C) { 4530 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4531 ShouldRetryWithRuntimeCheck = true; 4532 return true; 4533 } 4534 4535 Type *ATy = APtr->getType()->getPointerElementType(); 4536 Type *BTy = BPtr->getType()->getPointerElementType(); 4537 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4538 4539 // Negative distances are not plausible dependencies. 4540 const APInt &Val = C->getValue()->getValue(); 4541 if (Val.isNegative()) { 4542 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4543 if (IsTrueDataDependence && 4544 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4545 ATy != BTy)) 4546 return true; 4547 4548 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4549 return false; 4550 } 4551 4552 // Write to the same location with the same size. 4553 // Could be improved to assert type sizes are the same (i32 == float, etc). 4554 if (Val == 0) { 4555 if (ATy == BTy) 4556 return false; 4557 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4558 return true; 4559 } 4560 4561 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4562 4563 // Positive distance bigger than max vectorization factor. 4564 if (ATy != BTy) { 4565 DEBUG(dbgs() << 4566 "LV: ReadWrite-Write positive dependency with different types\n"); 4567 return false; 4568 } 4569 4570 unsigned Distance = (unsigned) Val.getZExtValue(); 4571 4572 // Bail out early if passed-in parameters make vectorization not feasible. 4573 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4574 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4575 4576 // The distance must be bigger than the size needed for a vectorized version 4577 // of the operation and the size of the vectorized operation must not be 4578 // bigger than the currrent maximum size. 4579 if (Distance < 2*TypeByteSize || 4580 2*TypeByteSize > MaxSafeDepDistBytes || 4581 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4582 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4583 << Val.getSExtValue() << '\n'); 4584 return true; 4585 } 4586 4587 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4588 Distance : MaxSafeDepDistBytes; 4589 4590 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4591 if (IsTrueDataDependence && 4592 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4593 return true; 4594 4595 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4596 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4597 4598 return false; 4599 } 4600 4601 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4602 MemAccessInfoSet &CheckDeps, 4603 ValueToValueMap &Strides) { 4604 4605 MaxSafeDepDistBytes = -1U; 4606 while (!CheckDeps.empty()) { 4607 MemAccessInfo CurAccess = *CheckDeps.begin(); 4608 4609 // Get the relevant memory access set. 4610 EquivalenceClasses<MemAccessInfo>::iterator I = 4611 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4612 4613 // Check accesses within this set. 4614 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4615 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4616 4617 // Check every access pair. 4618 while (AI != AE) { 4619 CheckDeps.erase(*AI); 4620 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4621 while (OI != AE) { 4622 // Check every accessing instruction pair in program order. 4623 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4624 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4625 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4626 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4627 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4628 return false; 4629 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4630 return false; 4631 } 4632 ++OI; 4633 } 4634 AI++; 4635 } 4636 } 4637 return true; 4638 } 4639 4640 bool LoopVectorizationLegality::canVectorizeMemory() { 4641 4642 typedef SmallVector<Value*, 16> ValueVector; 4643 typedef SmallPtrSet<Value*, 16> ValueSet; 4644 4645 // Holds the Load and Store *instructions*. 4646 ValueVector Loads; 4647 ValueVector Stores; 4648 4649 // Holds all the different accesses in the loop. 4650 unsigned NumReads = 0; 4651 unsigned NumReadWrites = 0; 4652 4653 PtrRtCheck.Pointers.clear(); 4654 PtrRtCheck.Need = false; 4655 4656 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4657 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4658 4659 // For each block. 4660 for (Loop::block_iterator bb = TheLoop->block_begin(), 4661 be = TheLoop->block_end(); bb != be; ++bb) { 4662 4663 // Scan the BB and collect legal loads and stores. 4664 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4665 ++it) { 4666 4667 // If this is a load, save it. If this instruction can read from memory 4668 // but is not a load, then we quit. Notice that we don't handle function 4669 // calls that read or write. 4670 if (it->mayReadFromMemory()) { 4671 // Many math library functions read the rounding mode. We will only 4672 // vectorize a loop if it contains known function calls that don't set 4673 // the flag. Therefore, it is safe to ignore this read from memory. 4674 CallInst *Call = dyn_cast<CallInst>(it); 4675 if (Call && getIntrinsicIDForCall(Call, TLI)) 4676 continue; 4677 4678 LoadInst *Ld = dyn_cast<LoadInst>(it); 4679 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4680 emitAnalysis(Report(Ld) 4681 << "read with atomic ordering or volatile read"); 4682 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4683 return false; 4684 } 4685 NumLoads++; 4686 Loads.push_back(Ld); 4687 DepChecker.addAccess(Ld); 4688 continue; 4689 } 4690 4691 // Save 'store' instructions. Abort if other instructions write to memory. 4692 if (it->mayWriteToMemory()) { 4693 StoreInst *St = dyn_cast<StoreInst>(it); 4694 if (!St) { 4695 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4696 return false; 4697 } 4698 if (!St->isSimple() && !IsAnnotatedParallel) { 4699 emitAnalysis(Report(St) 4700 << "write with atomic ordering or volatile write"); 4701 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4702 return false; 4703 } 4704 NumStores++; 4705 Stores.push_back(St); 4706 DepChecker.addAccess(St); 4707 } 4708 } // Next instr. 4709 } // Next block. 4710 4711 // Now we have two lists that hold the loads and the stores. 4712 // Next, we find the pointers that they use. 4713 4714 // Check if we see any stores. If there are no stores, then we don't 4715 // care if the pointers are *restrict*. 4716 if (!Stores.size()) { 4717 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4718 return true; 4719 } 4720 4721 AccessAnalysis::DepCandidates DependentAccesses; 4722 AccessAnalysis Accesses(DL, AA, DependentAccesses); 4723 4724 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4725 // multiple times on the same object. If the ptr is accessed twice, once 4726 // for read and once for write, it will only appear once (on the write 4727 // list). This is okay, since we are going to check for conflicts between 4728 // writes and between reads and writes, but not between reads and reads. 4729 ValueSet Seen; 4730 4731 ValueVector::iterator I, IE; 4732 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4733 StoreInst *ST = cast<StoreInst>(*I); 4734 Value* Ptr = ST->getPointerOperand(); 4735 4736 if (isUniform(Ptr)) { 4737 emitAnalysis( 4738 Report(ST) 4739 << "write to a loop invariant address could not be vectorized"); 4740 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4741 return false; 4742 } 4743 4744 // If we did *not* see this pointer before, insert it to the read-write 4745 // list. At this phase it is only a 'write' list. 4746 if (Seen.insert(Ptr)) { 4747 ++NumReadWrites; 4748 4749 AliasAnalysis::Location Loc = AA->getLocation(ST); 4750 // The TBAA metadata could have a control dependency on the predication 4751 // condition, so we cannot rely on it when determining whether or not we 4752 // need runtime pointer checks. 4753 if (blockNeedsPredication(ST->getParent())) 4754 Loc.AATags.TBAA = nullptr; 4755 4756 Accesses.addStore(Loc); 4757 } 4758 } 4759 4760 if (IsAnnotatedParallel) { 4761 DEBUG(dbgs() 4762 << "LV: A loop annotated parallel, ignore memory dependency " 4763 << "checks.\n"); 4764 return true; 4765 } 4766 4767 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4768 LoadInst *LD = cast<LoadInst>(*I); 4769 Value* Ptr = LD->getPointerOperand(); 4770 // If we did *not* see this pointer before, insert it to the 4771 // read list. If we *did* see it before, then it is already in 4772 // the read-write list. This allows us to vectorize expressions 4773 // such as A[i] += x; Because the address of A[i] is a read-write 4774 // pointer. This only works if the index of A[i] is consecutive. 4775 // If the address of i is unknown (for example A[B[i]]) then we may 4776 // read a few words, modify, and write a few words, and some of the 4777 // words may be written to the same address. 4778 bool IsReadOnlyPtr = false; 4779 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4780 ++NumReads; 4781 IsReadOnlyPtr = true; 4782 } 4783 4784 AliasAnalysis::Location Loc = AA->getLocation(LD); 4785 // The TBAA metadata could have a control dependency on the predication 4786 // condition, so we cannot rely on it when determining whether or not we 4787 // need runtime pointer checks. 4788 if (blockNeedsPredication(LD->getParent())) 4789 Loc.AATags.TBAA = nullptr; 4790 4791 Accesses.addLoad(Loc, IsReadOnlyPtr); 4792 } 4793 4794 // If we write (or read-write) to a single destination and there are no 4795 // other reads in this loop then is it safe to vectorize. 4796 if (NumReadWrites == 1 && NumReads == 0) { 4797 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4798 return true; 4799 } 4800 4801 // Build dependence sets and check whether we need a runtime pointer bounds 4802 // check. 4803 Accesses.buildDependenceSets(); 4804 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4805 4806 // Find pointers with computable bounds. We are going to use this information 4807 // to place a runtime bound check. 4808 unsigned NumComparisons = 0; 4809 bool CanDoRT = false; 4810 if (NeedRTCheck) 4811 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4812 Strides); 4813 4814 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4815 " pointer comparisons.\n"); 4816 4817 // If we only have one set of dependences to check pointers among we don't 4818 // need a runtime check. 4819 if (NumComparisons == 0 && NeedRTCheck) 4820 NeedRTCheck = false; 4821 4822 // Check that we did not collect too many pointers or found an unsizeable 4823 // pointer. 4824 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4825 PtrRtCheck.reset(); 4826 CanDoRT = false; 4827 } 4828 4829 if (CanDoRT) { 4830 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4831 } 4832 4833 if (NeedRTCheck && !CanDoRT) { 4834 emitAnalysis(Report() << "cannot identify array bounds"); 4835 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4836 "the array bounds.\n"); 4837 PtrRtCheck.reset(); 4838 return false; 4839 } 4840 4841 PtrRtCheck.Need = NeedRTCheck; 4842 4843 bool CanVecMem = true; 4844 if (Accesses.isDependencyCheckNeeded()) { 4845 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4846 CanVecMem = DepChecker.areDepsSafe( 4847 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4848 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4849 4850 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4851 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4852 NeedRTCheck = true; 4853 4854 // Clear the dependency checks. We assume they are not needed. 4855 Accesses.resetDepChecks(); 4856 4857 PtrRtCheck.reset(); 4858 PtrRtCheck.Need = true; 4859 4860 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4861 TheLoop, Strides, true); 4862 // Check that we did not collect too many pointers or found an unsizeable 4863 // pointer. 4864 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4865 if (!CanDoRT && NumComparisons > 0) 4866 emitAnalysis(Report() 4867 << "cannot check memory dependencies at runtime"); 4868 else 4869 emitAnalysis(Report() 4870 << NumComparisons << " exceeds limit of " 4871 << RuntimeMemoryCheckThreshold 4872 << " dependent memory operations checked at runtime"); 4873 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4874 PtrRtCheck.reset(); 4875 return false; 4876 } 4877 4878 CanVecMem = true; 4879 } 4880 } 4881 4882 if (!CanVecMem) 4883 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4884 4885 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4886 " need a runtime memory check.\n"); 4887 4888 return CanVecMem; 4889 } 4890 4891 static bool hasMultipleUsesOf(Instruction *I, 4892 SmallPtrSetImpl<Instruction *> &Insts) { 4893 unsigned NumUses = 0; 4894 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4895 if (Insts.count(dyn_cast<Instruction>(*Use))) 4896 ++NumUses; 4897 if (NumUses > 1) 4898 return true; 4899 } 4900 4901 return false; 4902 } 4903 4904 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 4905 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4906 if (!Set.count(dyn_cast<Instruction>(*Use))) 4907 return false; 4908 return true; 4909 } 4910 4911 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4912 ReductionKind Kind) { 4913 if (Phi->getNumIncomingValues() != 2) 4914 return false; 4915 4916 // Reduction variables are only found in the loop header block. 4917 if (Phi->getParent() != TheLoop->getHeader()) 4918 return false; 4919 4920 // Obtain the reduction start value from the value that comes from the loop 4921 // preheader. 4922 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4923 4924 // ExitInstruction is the single value which is used outside the loop. 4925 // We only allow for a single reduction value to be used outside the loop. 4926 // This includes users of the reduction, variables (which form a cycle 4927 // which ends in the phi node). 4928 Instruction *ExitInstruction = nullptr; 4929 // Indicates that we found a reduction operation in our scan. 4930 bool FoundReduxOp = false; 4931 4932 // We start with the PHI node and scan for all of the users of this 4933 // instruction. All users must be instructions that can be used as reduction 4934 // variables (such as ADD). We must have a single out-of-block user. The cycle 4935 // must include the original PHI. 4936 bool FoundStartPHI = false; 4937 4938 // To recognize min/max patterns formed by a icmp select sequence, we store 4939 // the number of instruction we saw from the recognized min/max pattern, 4940 // to make sure we only see exactly the two instructions. 4941 unsigned NumCmpSelectPatternInst = 0; 4942 ReductionInstDesc ReduxDesc(false, nullptr); 4943 4944 SmallPtrSet<Instruction *, 8> VisitedInsts; 4945 SmallVector<Instruction *, 8> Worklist; 4946 Worklist.push_back(Phi); 4947 VisitedInsts.insert(Phi); 4948 4949 // A value in the reduction can be used: 4950 // - By the reduction: 4951 // - Reduction operation: 4952 // - One use of reduction value (safe). 4953 // - Multiple use of reduction value (not safe). 4954 // - PHI: 4955 // - All uses of the PHI must be the reduction (safe). 4956 // - Otherwise, not safe. 4957 // - By one instruction outside of the loop (safe). 4958 // - By further instructions outside of the loop (not safe). 4959 // - By an instruction that is not part of the reduction (not safe). 4960 // This is either: 4961 // * An instruction type other than PHI or the reduction operation. 4962 // * A PHI in the header other than the initial PHI. 4963 while (!Worklist.empty()) { 4964 Instruction *Cur = Worklist.back(); 4965 Worklist.pop_back(); 4966 4967 // No Users. 4968 // If the instruction has no users then this is a broken chain and can't be 4969 // a reduction variable. 4970 if (Cur->use_empty()) 4971 return false; 4972 4973 bool IsAPhi = isa<PHINode>(Cur); 4974 4975 // A header PHI use other than the original PHI. 4976 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4977 return false; 4978 4979 // Reductions of instructions such as Div, and Sub is only possible if the 4980 // LHS is the reduction variable. 4981 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4982 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4983 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4984 return false; 4985 4986 // Any reduction instruction must be of one of the allowed kinds. 4987 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4988 if (!ReduxDesc.IsReduction) 4989 return false; 4990 4991 // A reduction operation must only have one use of the reduction value. 4992 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4993 hasMultipleUsesOf(Cur, VisitedInsts)) 4994 return false; 4995 4996 // All inputs to a PHI node must be a reduction value. 4997 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4998 return false; 4999 5000 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 5001 isa<SelectInst>(Cur))) 5002 ++NumCmpSelectPatternInst; 5003 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 5004 isa<SelectInst>(Cur))) 5005 ++NumCmpSelectPatternInst; 5006 5007 // Check whether we found a reduction operator. 5008 FoundReduxOp |= !IsAPhi; 5009 5010 // Process users of current instruction. Push non-PHI nodes after PHI nodes 5011 // onto the stack. This way we are going to have seen all inputs to PHI 5012 // nodes once we get to them. 5013 SmallVector<Instruction *, 8> NonPHIs; 5014 SmallVector<Instruction *, 8> PHIs; 5015 for (User *U : Cur->users()) { 5016 Instruction *UI = cast<Instruction>(U); 5017 5018 // Check if we found the exit user. 5019 BasicBlock *Parent = UI->getParent(); 5020 if (!TheLoop->contains(Parent)) { 5021 // Exit if you find multiple outside users or if the header phi node is 5022 // being used. In this case the user uses the value of the previous 5023 // iteration, in which case we would loose "VF-1" iterations of the 5024 // reduction operation if we vectorize. 5025 if (ExitInstruction != nullptr || Cur == Phi) 5026 return false; 5027 5028 // The instruction used by an outside user must be the last instruction 5029 // before we feed back to the reduction phi. Otherwise, we loose VF-1 5030 // operations on the value. 5031 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 5032 return false; 5033 5034 ExitInstruction = Cur; 5035 continue; 5036 } 5037 5038 // Process instructions only once (termination). Each reduction cycle 5039 // value must only be used once, except by phi nodes and min/max 5040 // reductions which are represented as a cmp followed by a select. 5041 ReductionInstDesc IgnoredVal(false, nullptr); 5042 if (VisitedInsts.insert(UI)) { 5043 if (isa<PHINode>(UI)) 5044 PHIs.push_back(UI); 5045 else 5046 NonPHIs.push_back(UI); 5047 } else if (!isa<PHINode>(UI) && 5048 ((!isa<FCmpInst>(UI) && 5049 !isa<ICmpInst>(UI) && 5050 !isa<SelectInst>(UI)) || 5051 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 5052 return false; 5053 5054 // Remember that we completed the cycle. 5055 if (UI == Phi) 5056 FoundStartPHI = true; 5057 } 5058 Worklist.append(PHIs.begin(), PHIs.end()); 5059 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 5060 } 5061 5062 // This means we have seen one but not the other instruction of the 5063 // pattern or more than just a select and cmp. 5064 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 5065 NumCmpSelectPatternInst != 2) 5066 return false; 5067 5068 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 5069 return false; 5070 5071 // We found a reduction var if we have reached the original phi node and we 5072 // only have a single instruction with out-of-loop users. 5073 5074 // This instruction is allowed to have out-of-loop users. 5075 AllowedExit.insert(ExitInstruction); 5076 5077 // Save the description of this reduction variable. 5078 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 5079 ReduxDesc.MinMaxKind); 5080 Reductions[Phi] = RD; 5081 // We've ended the cycle. This is a reduction variable if we have an 5082 // outside user and it has a binary op. 5083 5084 return true; 5085 } 5086 5087 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 5088 /// pattern corresponding to a min(X, Y) or max(X, Y). 5089 LoopVectorizationLegality::ReductionInstDesc 5090 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 5091 ReductionInstDesc &Prev) { 5092 5093 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 5094 "Expect a select instruction"); 5095 Instruction *Cmp = nullptr; 5096 SelectInst *Select = nullptr; 5097 5098 // We must handle the select(cmp()) as a single instruction. Advance to the 5099 // select. 5100 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 5101 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 5102 return ReductionInstDesc(false, I); 5103 return ReductionInstDesc(Select, Prev.MinMaxKind); 5104 } 5105 5106 // Only handle single use cases for now. 5107 if (!(Select = dyn_cast<SelectInst>(I))) 5108 return ReductionInstDesc(false, I); 5109 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 5110 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 5111 return ReductionInstDesc(false, I); 5112 if (!Cmp->hasOneUse()) 5113 return ReductionInstDesc(false, I); 5114 5115 Value *CmpLeft; 5116 Value *CmpRight; 5117 5118 // Look for a min/max pattern. 5119 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5120 return ReductionInstDesc(Select, MRK_UIntMin); 5121 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5122 return ReductionInstDesc(Select, MRK_UIntMax); 5123 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5124 return ReductionInstDesc(Select, MRK_SIntMax); 5125 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5126 return ReductionInstDesc(Select, MRK_SIntMin); 5127 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5128 return ReductionInstDesc(Select, MRK_FloatMin); 5129 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5130 return ReductionInstDesc(Select, MRK_FloatMax); 5131 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5132 return ReductionInstDesc(Select, MRK_FloatMin); 5133 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5134 return ReductionInstDesc(Select, MRK_FloatMax); 5135 5136 return ReductionInstDesc(false, I); 5137 } 5138 5139 LoopVectorizationLegality::ReductionInstDesc 5140 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5141 ReductionKind Kind, 5142 ReductionInstDesc &Prev) { 5143 bool FP = I->getType()->isFloatingPointTy(); 5144 bool FastMath = FP && I->hasUnsafeAlgebra(); 5145 switch (I->getOpcode()) { 5146 default: 5147 return ReductionInstDesc(false, I); 5148 case Instruction::PHI: 5149 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5150 Kind != RK_FloatMinMax)) 5151 return ReductionInstDesc(false, I); 5152 return ReductionInstDesc(I, Prev.MinMaxKind); 5153 case Instruction::Sub: 5154 case Instruction::Add: 5155 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5156 case Instruction::Mul: 5157 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5158 case Instruction::And: 5159 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5160 case Instruction::Or: 5161 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5162 case Instruction::Xor: 5163 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5164 case Instruction::FMul: 5165 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5166 case Instruction::FSub: 5167 case Instruction::FAdd: 5168 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5169 case Instruction::FCmp: 5170 case Instruction::ICmp: 5171 case Instruction::Select: 5172 if (Kind != RK_IntegerMinMax && 5173 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5174 return ReductionInstDesc(false, I); 5175 return isMinMaxSelectCmpPattern(I, Prev); 5176 } 5177 } 5178 5179 LoopVectorizationLegality::InductionKind 5180 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5181 Type *PhiTy = Phi->getType(); 5182 // We only handle integer and pointer inductions variables. 5183 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5184 return IK_NoInduction; 5185 5186 // Check that the PHI is consecutive. 5187 const SCEV *PhiScev = SE->getSCEV(Phi); 5188 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5189 if (!AR) { 5190 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5191 return IK_NoInduction; 5192 } 5193 const SCEV *Step = AR->getStepRecurrence(*SE); 5194 5195 // Integer inductions need to have a stride of one. 5196 if (PhiTy->isIntegerTy()) { 5197 if (Step->isOne()) 5198 return IK_IntInduction; 5199 if (Step->isAllOnesValue()) 5200 return IK_ReverseIntInduction; 5201 return IK_NoInduction; 5202 } 5203 5204 // Calculate the pointer stride and check if it is consecutive. 5205 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5206 if (!C) 5207 return IK_NoInduction; 5208 5209 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5210 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 5211 if (C->getValue()->equalsInt(Size)) 5212 return IK_PtrInduction; 5213 else if (C->getValue()->equalsInt(0 - Size)) 5214 return IK_ReversePtrInduction; 5215 5216 return IK_NoInduction; 5217 } 5218 5219 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5220 Value *In0 = const_cast<Value*>(V); 5221 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5222 if (!PN) 5223 return false; 5224 5225 return Inductions.count(PN); 5226 } 5227 5228 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5229 assert(TheLoop->contains(BB) && "Unknown block used"); 5230 5231 // Blocks that do not dominate the latch need predication. 5232 BasicBlock* Latch = TheLoop->getLoopLatch(); 5233 return !DT->dominates(BB, Latch); 5234 } 5235 5236 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5237 SmallPtrSetImpl<Value *> &SafePtrs) { 5238 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5239 // We might be able to hoist the load. 5240 if (it->mayReadFromMemory()) { 5241 LoadInst *LI = dyn_cast<LoadInst>(it); 5242 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 5243 return false; 5244 } 5245 5246 // We don't predicate stores at the moment. 5247 if (it->mayWriteToMemory()) { 5248 StoreInst *SI = dyn_cast<StoreInst>(it); 5249 // We only support predication of stores in basic blocks with one 5250 // predecessor. 5251 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 5252 !SafePtrs.count(SI->getPointerOperand()) || 5253 !SI->getParent()->getSinglePredecessor()) 5254 return false; 5255 } 5256 if (it->mayThrow()) 5257 return false; 5258 5259 // Check that we don't have a constant expression that can trap as operand. 5260 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5261 OI != OE; ++OI) { 5262 if (Constant *C = dyn_cast<Constant>(*OI)) 5263 if (C->canTrap()) 5264 return false; 5265 } 5266 5267 // The instructions below can trap. 5268 switch (it->getOpcode()) { 5269 default: continue; 5270 case Instruction::UDiv: 5271 case Instruction::SDiv: 5272 case Instruction::URem: 5273 case Instruction::SRem: 5274 return false; 5275 } 5276 } 5277 5278 return true; 5279 } 5280 5281 LoopVectorizationCostModel::VectorizationFactor 5282 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5283 // Width 1 means no vectorize 5284 VectorizationFactor Factor = { 1U, 0U }; 5285 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5286 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5287 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5288 return Factor; 5289 } 5290 5291 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5292 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization"); 5293 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5294 return Factor; 5295 } 5296 5297 // Find the trip count. 5298 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 5299 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5300 5301 unsigned WidestType = getWidestType(); 5302 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5303 unsigned MaxSafeDepDist = -1U; 5304 if (Legal->getMaxSafeDepDistBytes() != -1U) 5305 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5306 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5307 WidestRegister : MaxSafeDepDist); 5308 unsigned MaxVectorSize = WidestRegister / WidestType; 5309 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5310 DEBUG(dbgs() << "LV: The Widest register is: " 5311 << WidestRegister << " bits.\n"); 5312 5313 if (MaxVectorSize == 0) { 5314 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5315 MaxVectorSize = 1; 5316 } 5317 5318 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 5319 " into one vector!"); 5320 5321 unsigned VF = MaxVectorSize; 5322 5323 // If we optimize the program for size, avoid creating the tail loop. 5324 if (OptForSize) { 5325 // If we are unable to calculate the trip count then don't try to vectorize. 5326 if (TC < 2) { 5327 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow"); 5328 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5329 return Factor; 5330 } 5331 5332 // Find the maximum SIMD width that can fit within the trip count. 5333 VF = TC % MaxVectorSize; 5334 5335 if (VF == 0) 5336 VF = MaxVectorSize; 5337 5338 // If the trip count that we found modulo the vectorization factor is not 5339 // zero then we require a tail. 5340 if (VF < 2) { 5341 emitAnalysis(Report() << "cannot optimize for size and vectorize at the same time. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5342 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5343 return Factor; 5344 } 5345 } 5346 5347 int UserVF = Hints->getWidth(); 5348 if (UserVF != 0) { 5349 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5350 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5351 5352 Factor.Width = UserVF; 5353 return Factor; 5354 } 5355 5356 float Cost = expectedCost(1); 5357 #ifndef NDEBUG 5358 const float ScalarCost = Cost; 5359 #endif /* NDEBUG */ 5360 unsigned Width = 1; 5361 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5362 5363 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5364 // Ignore scalar width, because the user explicitly wants vectorization. 5365 if (ForceVectorization && VF > 1) { 5366 Width = 2; 5367 Cost = expectedCost(Width) / (float)Width; 5368 } 5369 5370 for (unsigned i=2; i <= VF; i*=2) { 5371 // Notice that the vector loop needs to be executed less times, so 5372 // we need to divide the cost of the vector loops by the width of 5373 // the vector elements. 5374 float VectorCost = expectedCost(i) / (float)i; 5375 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5376 (int)VectorCost << ".\n"); 5377 if (VectorCost < Cost) { 5378 Cost = VectorCost; 5379 Width = i; 5380 } 5381 } 5382 5383 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5384 << "LV: Vectorization seems to be not beneficial, " 5385 << "but was forced by a user.\n"); 5386 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5387 Factor.Width = Width; 5388 Factor.Cost = Width * Cost; 5389 return Factor; 5390 } 5391 5392 unsigned LoopVectorizationCostModel::getWidestType() { 5393 unsigned MaxWidth = 8; 5394 5395 // For each block. 5396 for (Loop::block_iterator bb = TheLoop->block_begin(), 5397 be = TheLoop->block_end(); bb != be; ++bb) { 5398 BasicBlock *BB = *bb; 5399 5400 // For each instruction in the loop. 5401 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5402 Type *T = it->getType(); 5403 5404 // Only examine Loads, Stores and PHINodes. 5405 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5406 continue; 5407 5408 // Examine PHI nodes that are reduction variables. 5409 if (PHINode *PN = dyn_cast<PHINode>(it)) 5410 if (!Legal->getReductionVars()->count(PN)) 5411 continue; 5412 5413 // Examine the stored values. 5414 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5415 T = ST->getValueOperand()->getType(); 5416 5417 // Ignore loaded pointer types and stored pointer types that are not 5418 // consecutive. However, we do want to take consecutive stores/loads of 5419 // pointer vectors into account. 5420 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5421 continue; 5422 5423 MaxWidth = std::max(MaxWidth, 5424 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5425 } 5426 } 5427 5428 return MaxWidth; 5429 } 5430 5431 unsigned 5432 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5433 unsigned VF, 5434 unsigned LoopCost) { 5435 5436 // -- The unroll heuristics -- 5437 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5438 // There are many micro-architectural considerations that we can't predict 5439 // at this level. For example frontend pressure (on decode or fetch) due to 5440 // code size, or the number and capabilities of the execution ports. 5441 // 5442 // We use the following heuristics to select the unroll factor: 5443 // 1. If the code has reductions the we unroll in order to break the cross 5444 // iteration dependency. 5445 // 2. If the loop is really small then we unroll in order to reduce the loop 5446 // overhead. 5447 // 3. We don't unroll if we think that we will spill registers to memory due 5448 // to the increased register pressure. 5449 5450 // Use the user preference, unless 'auto' is selected. 5451 int UserUF = Hints->getUnroll(); 5452 if (UserUF != 0) 5453 return UserUF; 5454 5455 // When we optimize for size we don't unroll. 5456 if (OptForSize) 5457 return 1; 5458 5459 // We used the distance for the unroll factor. 5460 if (Legal->getMaxSafeDepDistBytes() != -1U) 5461 return 1; 5462 5463 // Do not unroll loops with a relatively small trip count. 5464 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 5465 TheLoop->getLoopLatch()); 5466 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5467 return 1; 5468 5469 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5470 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5471 " registers\n"); 5472 5473 if (VF == 1) { 5474 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5475 TargetNumRegisters = ForceTargetNumScalarRegs; 5476 } else { 5477 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5478 TargetNumRegisters = ForceTargetNumVectorRegs; 5479 } 5480 5481 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5482 // We divide by these constants so assume that we have at least one 5483 // instruction that uses at least one register. 5484 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5485 R.NumInstructions = std::max(R.NumInstructions, 1U); 5486 5487 // We calculate the unroll factor using the following formula. 5488 // Subtract the number of loop invariants from the number of available 5489 // registers. These registers are used by all of the unrolled instances. 5490 // Next, divide the remaining registers by the number of registers that is 5491 // required by the loop, in order to estimate how many parallel instances 5492 // fit without causing spills. All of this is rounded down if necessary to be 5493 // a power of two. We want power of two unroll factors to simplify any 5494 // addressing operations or alignment considerations. 5495 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5496 R.MaxLocalUsers); 5497 5498 // Don't count the induction variable as unrolled. 5499 if (EnableIndVarRegisterHeur) 5500 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5501 std::max(1U, (R.MaxLocalUsers - 1))); 5502 5503 // Clamp the unroll factor ranges to reasonable factors. 5504 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 5505 5506 // Check if the user has overridden the unroll max. 5507 if (VF == 1) { 5508 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0) 5509 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor; 5510 } else { 5511 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0) 5512 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor; 5513 } 5514 5515 // If we did not calculate the cost for VF (because the user selected the VF) 5516 // then we calculate the cost of VF here. 5517 if (LoopCost == 0) 5518 LoopCost = expectedCost(VF); 5519 5520 // Clamp the calculated UF to be between the 1 and the max unroll factor 5521 // that the target allows. 5522 if (UF > MaxUnrollSize) 5523 UF = MaxUnrollSize; 5524 else if (UF < 1) 5525 UF = 1; 5526 5527 // Unroll if we vectorized this loop and there is a reduction that could 5528 // benefit from unrolling. 5529 if (VF > 1 && Legal->getReductionVars()->size()) { 5530 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5531 return UF; 5532 } 5533 5534 // Note that if we've already vectorized the loop we will have done the 5535 // runtime check and so unrolling won't require further checks. 5536 bool UnrollingRequiresRuntimePointerCheck = 5537 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5538 5539 // We want to unroll small loops in order to reduce the loop overhead and 5540 // potentially expose ILP opportunities. 5541 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5542 if (!UnrollingRequiresRuntimePointerCheck && 5543 LoopCost < SmallLoopCost) { 5544 // We assume that the cost overhead is 1 and we use the cost model 5545 // to estimate the cost of the loop and unroll until the cost of the 5546 // loop overhead is about 5% of the cost of the loop. 5547 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5548 5549 // Unroll until store/load ports (estimated by max unroll factor) are 5550 // saturated. 5551 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5552 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5553 5554 // If we have a scalar reduction (vector reductions are already dealt with 5555 // by this point), we can increase the critical path length if the loop 5556 // we're unrolling is inside another loop. Limit, by default to 2, so the 5557 // critical path only gets increased by one reduction operation. 5558 if (Legal->getReductionVars()->size() && 5559 TheLoop->getLoopDepth() > 1) { 5560 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 5561 SmallUF = std::min(SmallUF, F); 5562 StoresUF = std::min(StoresUF, F); 5563 LoadsUF = std::min(LoadsUF, F); 5564 } 5565 5566 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5567 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5568 return std::max(StoresUF, LoadsUF); 5569 } 5570 5571 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5572 return SmallUF; 5573 } 5574 5575 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5576 return 1; 5577 } 5578 5579 LoopVectorizationCostModel::RegisterUsage 5580 LoopVectorizationCostModel::calculateRegisterUsage() { 5581 // This function calculates the register usage by measuring the highest number 5582 // of values that are alive at a single location. Obviously, this is a very 5583 // rough estimation. We scan the loop in a topological order in order and 5584 // assign a number to each instruction. We use RPO to ensure that defs are 5585 // met before their users. We assume that each instruction that has in-loop 5586 // users starts an interval. We record every time that an in-loop value is 5587 // used, so we have a list of the first and last occurrences of each 5588 // instruction. Next, we transpose this data structure into a multi map that 5589 // holds the list of intervals that *end* at a specific location. This multi 5590 // map allows us to perform a linear search. We scan the instructions linearly 5591 // and record each time that a new interval starts, by placing it in a set. 5592 // If we find this value in the multi-map then we remove it from the set. 5593 // The max register usage is the maximum size of the set. 5594 // We also search for instructions that are defined outside the loop, but are 5595 // used inside the loop. We need this number separately from the max-interval 5596 // usage number because when we unroll, loop-invariant values do not take 5597 // more register. 5598 LoopBlocksDFS DFS(TheLoop); 5599 DFS.perform(LI); 5600 5601 RegisterUsage R; 5602 R.NumInstructions = 0; 5603 5604 // Each 'key' in the map opens a new interval. The values 5605 // of the map are the index of the 'last seen' usage of the 5606 // instruction that is the key. 5607 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5608 // Maps instruction to its index. 5609 DenseMap<unsigned, Instruction*> IdxToInstr; 5610 // Marks the end of each interval. 5611 IntervalMap EndPoint; 5612 // Saves the list of instruction indices that are used in the loop. 5613 SmallSet<Instruction*, 8> Ends; 5614 // Saves the list of values that are used in the loop but are 5615 // defined outside the loop, such as arguments and constants. 5616 SmallPtrSet<Value*, 8> LoopInvariants; 5617 5618 unsigned Index = 0; 5619 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5620 be = DFS.endRPO(); bb != be; ++bb) { 5621 R.NumInstructions += (*bb)->size(); 5622 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5623 ++it) { 5624 Instruction *I = it; 5625 IdxToInstr[Index++] = I; 5626 5627 // Save the end location of each USE. 5628 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5629 Value *U = I->getOperand(i); 5630 Instruction *Instr = dyn_cast<Instruction>(U); 5631 5632 // Ignore non-instruction values such as arguments, constants, etc. 5633 if (!Instr) continue; 5634 5635 // If this instruction is outside the loop then record it and continue. 5636 if (!TheLoop->contains(Instr)) { 5637 LoopInvariants.insert(Instr); 5638 continue; 5639 } 5640 5641 // Overwrite previous end points. 5642 EndPoint[Instr] = Index; 5643 Ends.insert(Instr); 5644 } 5645 } 5646 } 5647 5648 // Saves the list of intervals that end with the index in 'key'. 5649 typedef SmallVector<Instruction*, 2> InstrList; 5650 DenseMap<unsigned, InstrList> TransposeEnds; 5651 5652 // Transpose the EndPoints to a list of values that end at each index. 5653 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5654 it != e; ++it) 5655 TransposeEnds[it->second].push_back(it->first); 5656 5657 SmallSet<Instruction*, 8> OpenIntervals; 5658 unsigned MaxUsage = 0; 5659 5660 5661 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5662 for (unsigned int i = 0; i < Index; ++i) { 5663 Instruction *I = IdxToInstr[i]; 5664 // Ignore instructions that are never used within the loop. 5665 if (!Ends.count(I)) continue; 5666 5667 // Remove all of the instructions that end at this location. 5668 InstrList &List = TransposeEnds[i]; 5669 for (unsigned int j=0, e = List.size(); j < e; ++j) 5670 OpenIntervals.erase(List[j]); 5671 5672 // Count the number of live interals. 5673 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5674 5675 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5676 OpenIntervals.size() << '\n'); 5677 5678 // Add the current instruction to the list of open intervals. 5679 OpenIntervals.insert(I); 5680 } 5681 5682 unsigned Invariant = LoopInvariants.size(); 5683 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5684 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5685 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5686 5687 R.LoopInvariantRegs = Invariant; 5688 R.MaxLocalUsers = MaxUsage; 5689 return R; 5690 } 5691 5692 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5693 unsigned Cost = 0; 5694 5695 // For each block. 5696 for (Loop::block_iterator bb = TheLoop->block_begin(), 5697 be = TheLoop->block_end(); bb != be; ++bb) { 5698 unsigned BlockCost = 0; 5699 BasicBlock *BB = *bb; 5700 5701 // For each instruction in the old loop. 5702 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5703 // Skip dbg intrinsics. 5704 if (isa<DbgInfoIntrinsic>(it)) 5705 continue; 5706 5707 unsigned C = getInstructionCost(it, VF); 5708 5709 // Check if we should override the cost. 5710 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5711 C = ForceTargetInstructionCost; 5712 5713 BlockCost += C; 5714 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5715 VF << " For instruction: " << *it << '\n'); 5716 } 5717 5718 // We assume that if-converted blocks have a 50% chance of being executed. 5719 // When the code is scalar then some of the blocks are avoided due to CF. 5720 // When the code is vectorized we execute all code paths. 5721 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5722 BlockCost /= 2; 5723 5724 Cost += BlockCost; 5725 } 5726 5727 return Cost; 5728 } 5729 5730 /// \brief Check whether the address computation for a non-consecutive memory 5731 /// access looks like an unlikely candidate for being merged into the indexing 5732 /// mode. 5733 /// 5734 /// We look for a GEP which has one index that is an induction variable and all 5735 /// other indices are loop invariant. If the stride of this access is also 5736 /// within a small bound we decide that this address computation can likely be 5737 /// merged into the addressing mode. 5738 /// In all other cases, we identify the address computation as complex. 5739 static bool isLikelyComplexAddressComputation(Value *Ptr, 5740 LoopVectorizationLegality *Legal, 5741 ScalarEvolution *SE, 5742 const Loop *TheLoop) { 5743 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5744 if (!Gep) 5745 return true; 5746 5747 // We are looking for a gep with all loop invariant indices except for one 5748 // which should be an induction variable. 5749 unsigned NumOperands = Gep->getNumOperands(); 5750 for (unsigned i = 1; i < NumOperands; ++i) { 5751 Value *Opd = Gep->getOperand(i); 5752 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5753 !Legal->isInductionVariable(Opd)) 5754 return true; 5755 } 5756 5757 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5758 // can likely be merged into the address computation. 5759 unsigned MaxMergeDistance = 64; 5760 5761 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5762 if (!AddRec) 5763 return true; 5764 5765 // Check the step is constant. 5766 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5767 // Calculate the pointer stride and check if it is consecutive. 5768 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5769 if (!C) 5770 return true; 5771 5772 const APInt &APStepVal = C->getValue()->getValue(); 5773 5774 // Huge step value - give up. 5775 if (APStepVal.getBitWidth() > 64) 5776 return true; 5777 5778 int64_t StepVal = APStepVal.getSExtValue(); 5779 5780 return StepVal > MaxMergeDistance; 5781 } 5782 5783 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5784 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5785 return true; 5786 return false; 5787 } 5788 5789 unsigned 5790 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5791 // If we know that this instruction will remain uniform, check the cost of 5792 // the scalar version. 5793 if (Legal->isUniformAfterVectorization(I)) 5794 VF = 1; 5795 5796 Type *RetTy = I->getType(); 5797 Type *VectorTy = ToVectorTy(RetTy, VF); 5798 5799 // TODO: We need to estimate the cost of intrinsic calls. 5800 switch (I->getOpcode()) { 5801 case Instruction::GetElementPtr: 5802 // We mark this instruction as zero-cost because the cost of GEPs in 5803 // vectorized code depends on whether the corresponding memory instruction 5804 // is scalarized or not. Therefore, we handle GEPs with the memory 5805 // instruction cost. 5806 return 0; 5807 case Instruction::Br: { 5808 return TTI.getCFInstrCost(I->getOpcode()); 5809 } 5810 case Instruction::PHI: 5811 //TODO: IF-converted IFs become selects. 5812 return 0; 5813 case Instruction::Add: 5814 case Instruction::FAdd: 5815 case Instruction::Sub: 5816 case Instruction::FSub: 5817 case Instruction::Mul: 5818 case Instruction::FMul: 5819 case Instruction::UDiv: 5820 case Instruction::SDiv: 5821 case Instruction::FDiv: 5822 case Instruction::URem: 5823 case Instruction::SRem: 5824 case Instruction::FRem: 5825 case Instruction::Shl: 5826 case Instruction::LShr: 5827 case Instruction::AShr: 5828 case Instruction::And: 5829 case Instruction::Or: 5830 case Instruction::Xor: { 5831 // Since we will replace the stride by 1 the multiplication should go away. 5832 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5833 return 0; 5834 // Certain instructions can be cheaper to vectorize if they have a constant 5835 // second vector operand. One example of this are shifts on x86. 5836 TargetTransformInfo::OperandValueKind Op1VK = 5837 TargetTransformInfo::OK_AnyValue; 5838 TargetTransformInfo::OperandValueKind Op2VK = 5839 TargetTransformInfo::OK_AnyValue; 5840 Value *Op2 = I->getOperand(1); 5841 5842 // Check for a splat of a constant or for a non uniform vector of constants. 5843 if (isa<ConstantInt>(Op2)) 5844 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5845 else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5846 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5847 if (cast<Constant>(Op2)->getSplatValue() != nullptr) 5848 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5849 } 5850 5851 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 5852 } 5853 case Instruction::Select: { 5854 SelectInst *SI = cast<SelectInst>(I); 5855 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5856 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5857 Type *CondTy = SI->getCondition()->getType(); 5858 if (!ScalarCond) 5859 CondTy = VectorType::get(CondTy, VF); 5860 5861 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5862 } 5863 case Instruction::ICmp: 5864 case Instruction::FCmp: { 5865 Type *ValTy = I->getOperand(0)->getType(); 5866 VectorTy = ToVectorTy(ValTy, VF); 5867 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5868 } 5869 case Instruction::Store: 5870 case Instruction::Load: { 5871 StoreInst *SI = dyn_cast<StoreInst>(I); 5872 LoadInst *LI = dyn_cast<LoadInst>(I); 5873 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5874 LI->getType()); 5875 VectorTy = ToVectorTy(ValTy, VF); 5876 5877 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5878 unsigned AS = SI ? SI->getPointerAddressSpace() : 5879 LI->getPointerAddressSpace(); 5880 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5881 // We add the cost of address computation here instead of with the gep 5882 // instruction because only here we know whether the operation is 5883 // scalarized. 5884 if (VF == 1) 5885 return TTI.getAddressComputationCost(VectorTy) + 5886 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5887 5888 // Scalarized loads/stores. 5889 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5890 bool Reverse = ConsecutiveStride < 0; 5891 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5892 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5893 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5894 bool IsComplexComputation = 5895 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5896 unsigned Cost = 0; 5897 // The cost of extracting from the value vector and pointer vector. 5898 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5899 for (unsigned i = 0; i < VF; ++i) { 5900 // The cost of extracting the pointer operand. 5901 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5902 // In case of STORE, the cost of ExtractElement from the vector. 5903 // In case of LOAD, the cost of InsertElement into the returned 5904 // vector. 5905 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5906 Instruction::InsertElement, 5907 VectorTy, i); 5908 } 5909 5910 // The cost of the scalar loads/stores. 5911 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5912 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5913 Alignment, AS); 5914 return Cost; 5915 } 5916 5917 // Wide load/stores. 5918 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5919 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5920 5921 if (Reverse) 5922 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5923 VectorTy, 0); 5924 return Cost; 5925 } 5926 case Instruction::ZExt: 5927 case Instruction::SExt: 5928 case Instruction::FPToUI: 5929 case Instruction::FPToSI: 5930 case Instruction::FPExt: 5931 case Instruction::PtrToInt: 5932 case Instruction::IntToPtr: 5933 case Instruction::SIToFP: 5934 case Instruction::UIToFP: 5935 case Instruction::Trunc: 5936 case Instruction::FPTrunc: 5937 case Instruction::BitCast: { 5938 // We optimize the truncation of induction variable. 5939 // The cost of these is the same as the scalar operation. 5940 if (I->getOpcode() == Instruction::Trunc && 5941 Legal->isInductionVariable(I->getOperand(0))) 5942 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5943 I->getOperand(0)->getType()); 5944 5945 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5946 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5947 } 5948 case Instruction::Call: { 5949 CallInst *CI = cast<CallInst>(I); 5950 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5951 assert(ID && "Not an intrinsic call!"); 5952 Type *RetTy = ToVectorTy(CI->getType(), VF); 5953 SmallVector<Type*, 4> Tys; 5954 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5955 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5956 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5957 } 5958 default: { 5959 // We are scalarizing the instruction. Return the cost of the scalar 5960 // instruction, plus the cost of insert and extract into vector 5961 // elements, times the vector width. 5962 unsigned Cost = 0; 5963 5964 if (!RetTy->isVoidTy() && VF != 1) { 5965 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5966 VectorTy); 5967 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5968 VectorTy); 5969 5970 // The cost of inserting the results plus extracting each one of the 5971 // operands. 5972 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5973 } 5974 5975 // The cost of executing VF copies of the scalar instruction. This opcode 5976 // is unknown. Assume that it is the same as 'mul'. 5977 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5978 return Cost; 5979 } 5980 }// end of switch. 5981 } 5982 5983 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5984 if (Scalar->isVoidTy() || VF == 1) 5985 return Scalar; 5986 return VectorType::get(Scalar, VF); 5987 } 5988 5989 char LoopVectorize::ID = 0; 5990 static const char lv_name[] = "Loop Vectorization"; 5991 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5992 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5993 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5994 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5995 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5996 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5997 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5998 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5999 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6000 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6001 6002 namespace llvm { 6003 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6004 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6005 } 6006 } 6007 6008 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6009 // Check for a store. 6010 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6011 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6012 6013 // Check for a load. 6014 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6015 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6016 6017 return false; 6018 } 6019 6020 6021 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6022 bool IfPredicateStore) { 6023 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6024 // Holds vector parameters or scalars, in case of uniform vals. 6025 SmallVector<VectorParts, 4> Params; 6026 6027 setDebugLocFromInst(Builder, Instr); 6028 6029 // Find all of the vectorized parameters. 6030 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6031 Value *SrcOp = Instr->getOperand(op); 6032 6033 // If we are accessing the old induction variable, use the new one. 6034 if (SrcOp == OldInduction) { 6035 Params.push_back(getVectorValue(SrcOp)); 6036 continue; 6037 } 6038 6039 // Try using previously calculated values. 6040 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6041 6042 // If the src is an instruction that appeared earlier in the basic block 6043 // then it should already be vectorized. 6044 if (SrcInst && OrigLoop->contains(SrcInst)) { 6045 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6046 // The parameter is a vector value from earlier. 6047 Params.push_back(WidenMap.get(SrcInst)); 6048 } else { 6049 // The parameter is a scalar from outside the loop. Maybe even a constant. 6050 VectorParts Scalars; 6051 Scalars.append(UF, SrcOp); 6052 Params.push_back(Scalars); 6053 } 6054 } 6055 6056 assert(Params.size() == Instr->getNumOperands() && 6057 "Invalid number of operands"); 6058 6059 // Does this instruction return a value ? 6060 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6061 6062 Value *UndefVec = IsVoidRetTy ? nullptr : 6063 UndefValue::get(Instr->getType()); 6064 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6065 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6066 6067 Instruction *InsertPt = Builder.GetInsertPoint(); 6068 BasicBlock *IfBlock = Builder.GetInsertBlock(); 6069 BasicBlock *CondBlock = nullptr; 6070 6071 VectorParts Cond; 6072 Loop *VectorLp = nullptr; 6073 if (IfPredicateStore) { 6074 assert(Instr->getParent()->getSinglePredecessor() && 6075 "Only support single predecessor blocks"); 6076 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6077 Instr->getParent()); 6078 VectorLp = LI->getLoopFor(IfBlock); 6079 assert(VectorLp && "Must have a loop for this block"); 6080 } 6081 6082 // For each vector unroll 'part': 6083 for (unsigned Part = 0; Part < UF; ++Part) { 6084 // For each scalar that we create: 6085 6086 // Start an "if (pred) a[i] = ..." block. 6087 Value *Cmp = nullptr; 6088 if (IfPredicateStore) { 6089 if (Cond[Part]->getType()->isVectorTy()) 6090 Cond[Part] = 6091 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6092 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6093 ConstantInt::get(Cond[Part]->getType(), 1)); 6094 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 6095 LoopVectorBody.push_back(CondBlock); 6096 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 6097 // Update Builder with newly created basic block. 6098 Builder.SetInsertPoint(InsertPt); 6099 } 6100 6101 Instruction *Cloned = Instr->clone(); 6102 if (!IsVoidRetTy) 6103 Cloned->setName(Instr->getName() + ".cloned"); 6104 // Replace the operands of the cloned instructions with extracted scalars. 6105 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6106 Value *Op = Params[op][Part]; 6107 Cloned->setOperand(op, Op); 6108 } 6109 6110 // Place the cloned scalar in the new loop. 6111 Builder.Insert(Cloned); 6112 6113 // If the original scalar returns a value we need to place it in a vector 6114 // so that future users will be able to use it. 6115 if (!IsVoidRetTy) 6116 VecResults[Part] = Cloned; 6117 6118 // End if-block. 6119 if (IfPredicateStore) { 6120 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 6121 LoopVectorBody.push_back(NewIfBlock); 6122 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 6123 Builder.SetInsertPoint(InsertPt); 6124 Instruction *OldBr = IfBlock->getTerminator(); 6125 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 6126 OldBr->eraseFromParent(); 6127 IfBlock = NewIfBlock; 6128 } 6129 } 6130 } 6131 6132 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6133 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6134 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6135 6136 return scalarizeInstruction(Instr, IfPredicateStore); 6137 } 6138 6139 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6140 return Vec; 6141 } 6142 6143 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6144 return V; 6145 } 6146 6147 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6148 bool Negate) { 6149 // When unrolling and the VF is 1, we only need to add a simple scalar. 6150 Type *ITy = Val->getType(); 6151 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6152 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6153 return Builder.CreateAdd(Val, C, "induction"); 6154 } 6155