1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ProfileSummaryInfo.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/Metadata.h" 115 #include "llvm/IR/Module.h" 116 #include "llvm/IR/Operator.h" 117 #include "llvm/IR/PatternMatch.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/InitializePasses.h" 125 #include "llvm/Pass.h" 126 #include "llvm/Support/Casting.h" 127 #include "llvm/Support/CommandLine.h" 128 #include "llvm/Support/Compiler.h" 129 #include "llvm/Support/Debug.h" 130 #include "llvm/Support/ErrorHandling.h" 131 #include "llvm/Support/InstructionCost.h" 132 #include "llvm/Support/MathExtras.h" 133 #include "llvm/Support/raw_ostream.h" 134 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 135 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 140 #include "llvm/Transforms/Utils/SizeOpts.h" 141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 142 #include <algorithm> 143 #include <cassert> 144 #include <cstdint> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <map> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 #ifndef NDEBUG 160 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 161 #endif 162 163 /// @{ 164 /// Metadata attribute names 165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 166 const char LLVMLoopVectorizeFollowupVectorized[] = 167 "llvm.loop.vectorize.followup_vectorized"; 168 const char LLVMLoopVectorizeFollowupEpilogue[] = 169 "llvm.loop.vectorize.followup_epilogue"; 170 /// @} 171 172 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 175 176 static cl::opt<bool> EnableEpilogueVectorization( 177 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 178 cl::desc("Enable vectorization of epilogue loops.")); 179 180 static cl::opt<unsigned> EpilogueVectorizationForceVF( 181 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 182 cl::desc("When epilogue vectorization is enabled, and a value greater than " 183 "1 is specified, forces the given VF for all applicable epilogue " 184 "loops.")); 185 186 static cl::opt<unsigned> EpilogueVectorizationMinVF( 187 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 188 cl::desc("Only loops with vectorization factor equal to or larger than " 189 "the specified value are considered for epilogue vectorization.")); 190 191 /// Loops with a known constant trip count below this number are vectorized only 192 /// if no scalar iteration overheads are incurred. 193 static cl::opt<unsigned> TinyTripCountVectorThreshold( 194 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 195 cl::desc("Loops with a constant trip count that is smaller than this " 196 "value are vectorized only if no scalar iteration overheads " 197 "are incurred.")); 198 199 static cl::opt<unsigned> VectorizeMemoryCheckThreshold( 200 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 201 cl::desc("The maximum allowed number of runtime memory checks")); 202 203 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 204 // that predication is preferred, and this lists all options. I.e., the 205 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 206 // and predicate the instructions accordingly. If tail-folding fails, there are 207 // different fallback strategies depending on these values: 208 namespace PreferPredicateTy { 209 enum Option { 210 ScalarEpilogue = 0, 211 PredicateElseScalarEpilogue, 212 PredicateOrDontVectorize 213 }; 214 } // namespace PreferPredicateTy 215 216 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 217 "prefer-predicate-over-epilogue", 218 cl::init(PreferPredicateTy::ScalarEpilogue), 219 cl::Hidden, 220 cl::desc("Tail-folding and predication preferences over creating a scalar " 221 "epilogue loop."), 222 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 223 "scalar-epilogue", 224 "Don't tail-predicate loops, create scalar epilogue"), 225 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 226 "predicate-else-scalar-epilogue", 227 "prefer tail-folding, create scalar epilogue if tail " 228 "folding fails."), 229 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 230 "predicate-dont-vectorize", 231 "prefers tail-folding, don't attempt vectorization if " 232 "tail-folding fails."))); 233 234 static cl::opt<bool> MaximizeBandwidth( 235 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 236 cl::desc("Maximize bandwidth when selecting vectorization factor which " 237 "will be determined by the smallest type in loop.")); 238 239 static cl::opt<bool> EnableInterleavedMemAccesses( 240 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 241 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 242 243 /// An interleave-group may need masking if it resides in a block that needs 244 /// predication, or in order to mask away gaps. 245 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 246 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 247 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 248 249 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 250 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 251 cl::desc("We don't interleave loops with a estimated constant trip count " 252 "below this number")); 253 254 static cl::opt<unsigned> ForceTargetNumScalarRegs( 255 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 256 cl::desc("A flag that overrides the target's number of scalar registers.")); 257 258 static cl::opt<unsigned> ForceTargetNumVectorRegs( 259 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of vector registers.")); 261 262 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 263 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's max interleave factor for " 265 "scalar loops.")); 266 267 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 268 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 269 cl::desc("A flag that overrides the target's max interleave factor for " 270 "vectorized loops.")); 271 272 static cl::opt<unsigned> ForceTargetInstructionCost( 273 "force-target-instruction-cost", cl::init(0), cl::Hidden, 274 cl::desc("A flag that overrides the target's expected cost for " 275 "an instruction to a single constant value. Mostly " 276 "useful for getting consistent testing.")); 277 278 static cl::opt<bool> ForceTargetSupportsScalableVectors( 279 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 280 cl::desc( 281 "Pretend that scalable vectors are supported, even if the target does " 282 "not support them. This flag should only be used for testing.")); 283 284 static cl::opt<unsigned> SmallLoopCost( 285 "small-loop-cost", cl::init(20), cl::Hidden, 286 cl::desc( 287 "The cost of a loop that is considered 'small' by the interleaver.")); 288 289 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 290 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 291 cl::desc("Enable the use of the block frequency analysis to access PGO " 292 "heuristics minimizing code growth in cold regions and being more " 293 "aggressive in hot regions.")); 294 295 // Runtime interleave loops for load/store throughput. 296 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 297 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 298 cl::desc( 299 "Enable runtime interleaving until load/store ports are saturated")); 300 301 /// Interleave small loops with scalar reductions. 302 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 303 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 304 cl::desc("Enable interleaving for loops with small iteration counts that " 305 "contain scalar reductions to expose ILP.")); 306 307 /// The number of stores in a loop that are allowed to need predication. 308 static cl::opt<unsigned> NumberOfStoresToPredicate( 309 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 310 cl::desc("Max number of stores to be predicated behind an if.")); 311 312 static cl::opt<bool> EnableIndVarRegisterHeur( 313 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 314 cl::desc("Count the induction variable only once when interleaving")); 315 316 static cl::opt<bool> EnableCondStoresVectorization( 317 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 318 cl::desc("Enable if predication of stores during vectorization.")); 319 320 static cl::opt<unsigned> MaxNestedScalarReductionIC( 321 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 322 cl::desc("The maximum interleave count to use when interleaving a scalar " 323 "reduction in a nested loop.")); 324 325 static cl::opt<bool> 326 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 327 cl::Hidden, 328 cl::desc("Prefer in-loop vector reductions, " 329 "overriding the targets preference.")); 330 331 static cl::opt<bool> ForceOrderedReductions( 332 "force-ordered-reductions", cl::init(false), cl::Hidden, 333 cl::desc("Enable the vectorisation of loops with in-order (strict) " 334 "FP reductions")); 335 336 static cl::opt<bool> PreferPredicatedReductionSelect( 337 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 338 cl::desc( 339 "Prefer predicating a reduction operation over an after loop select.")); 340 341 cl::opt<bool> EnableVPlanNativePath( 342 "enable-vplan-native-path", cl::init(false), cl::Hidden, 343 cl::desc("Enable VPlan-native vectorization path with " 344 "support for outer loop vectorization.")); 345 346 // This flag enables the stress testing of the VPlan H-CFG construction in the 347 // VPlan-native vectorization path. It must be used in conjuction with 348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 349 // verification of the H-CFGs built. 350 static cl::opt<bool> VPlanBuildStressTest( 351 "vplan-build-stress-test", cl::init(false), cl::Hidden, 352 cl::desc( 353 "Build VPlan for every supported loop nest in the function and bail " 354 "out right after the build (stress test the VPlan H-CFG construction " 355 "in the VPlan-native vectorization path).")); 356 357 cl::opt<bool> llvm::EnableLoopInterleaving( 358 "interleave-loops", cl::init(true), cl::Hidden, 359 cl::desc("Enable loop interleaving in Loop vectorization passes")); 360 cl::opt<bool> llvm::EnableLoopVectorization( 361 "vectorize-loops", cl::init(true), cl::Hidden, 362 cl::desc("Run the Loop vectorization passes")); 363 364 cl::opt<bool> PrintVPlansInDotFormat( 365 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 366 cl::desc("Use dot format instead of plain text when dumping VPlans")); 367 368 /// A helper function that returns true if the given type is irregular. The 369 /// type is irregular if its allocated size doesn't equal the store size of an 370 /// element of the corresponding vector type. 371 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 372 // Determine if an array of N elements of type Ty is "bitcast compatible" 373 // with a <N x Ty> vector. 374 // This is only true if there is no padding between the array elements. 375 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 376 } 377 378 /// A helper function that returns the reciprocal of the block probability of 379 /// predicated blocks. If we return X, we are assuming the predicated block 380 /// will execute once for every X iterations of the loop header. 381 /// 382 /// TODO: We should use actual block probability here, if available. Currently, 383 /// we always assume predicated blocks have a 50% chance of executing. 384 static unsigned getReciprocalPredBlockProb() { return 2; } 385 386 /// A helper function that returns an integer or floating-point constant with 387 /// value C. 388 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 389 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 390 : ConstantFP::get(Ty, C); 391 } 392 393 /// Returns "best known" trip count for the specified loop \p L as defined by 394 /// the following procedure: 395 /// 1) Returns exact trip count if it is known. 396 /// 2) Returns expected trip count according to profile data if any. 397 /// 3) Returns upper bound estimate if it is known. 398 /// 4) Returns None if all of the above failed. 399 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 400 // Check if exact trip count is known. 401 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 402 return ExpectedTC; 403 404 // Check if there is an expected trip count available from profile data. 405 if (LoopVectorizeWithBlockFrequency) 406 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 407 return EstimatedTC; 408 409 // Check if upper bound estimate is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 411 return ExpectedTC; 412 413 return None; 414 } 415 416 // Forward declare GeneratedRTChecks. 417 class GeneratedRTChecks; 418 419 namespace llvm { 420 421 AnalysisKey ShouldRunExtraVectorPasses::Key; 422 423 /// InnerLoopVectorizer vectorizes loops which contain only one basic 424 /// block to a specified vectorization factor (VF). 425 /// This class performs the widening of scalars into vectors, or multiple 426 /// scalars. This class also implements the following features: 427 /// * It inserts an epilogue loop for handling loops that don't have iteration 428 /// counts that are known to be a multiple of the vectorization factor. 429 /// * It handles the code generation for reduction variables. 430 /// * Scalarization (implementation using scalars) of un-vectorizable 431 /// instructions. 432 /// InnerLoopVectorizer does not perform any vectorization-legality 433 /// checks, and relies on the caller to check for the different legality 434 /// aspects. The InnerLoopVectorizer relies on the 435 /// LoopVectorizationLegality class to provide information about the induction 436 /// and reduction variables that were found to a given vectorization factor. 437 class InnerLoopVectorizer { 438 public: 439 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 440 LoopInfo *LI, DominatorTree *DT, 441 const TargetLibraryInfo *TLI, 442 const TargetTransformInfo *TTI, AssumptionCache *AC, 443 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 444 ElementCount MinProfitableTripCount, 445 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 446 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 447 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 448 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 449 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 450 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 451 PSI(PSI), RTChecks(RTChecks) { 452 // Query this against the original loop and save it here because the profile 453 // of the original loop header may change as the transformation happens. 454 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 455 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 456 457 if (MinProfitableTripCount.isZero()) 458 this->MinProfitableTripCount = VecWidth; 459 else 460 this->MinProfitableTripCount = MinProfitableTripCount; 461 } 462 463 virtual ~InnerLoopVectorizer() = default; 464 465 /// Create a new empty loop that will contain vectorized instructions later 466 /// on, while the old loop will be used as the scalar remainder. Control flow 467 /// is generated around the vectorized (and scalar epilogue) loops consisting 468 /// of various checks and bypasses. Return the pre-header block of the new 469 /// loop and the start value for the canonical induction, if it is != 0. The 470 /// latter is the case when vectorizing the epilogue loop. In the case of 471 /// epilogue vectorization, this function is overriden to handle the more 472 /// complex control flow around the loops. 473 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 474 475 /// Widen a single call instruction within the innermost loop. 476 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 477 VPTransformState &State); 478 479 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 480 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 481 482 // Return true if any runtime check is added. 483 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 484 485 /// A type for vectorized values in the new loop. Each value from the 486 /// original loop, when vectorized, is represented by UF vector values in the 487 /// new unrolled loop, where UF is the unroll factor. 488 using VectorParts = SmallVector<Value *, 2>; 489 490 /// A helper function to scalarize a single Instruction in the innermost loop. 491 /// Generates a sequence of scalar instances for each lane between \p MinLane 492 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 493 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 494 /// Instr's operands. 495 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 496 const VPIteration &Instance, bool IfPredicateInstr, 497 VPTransformState &State); 498 499 /// Construct the vector value of a scalarized value \p V one lane at a time. 500 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 501 VPTransformState &State); 502 503 /// Try to vectorize interleaved access group \p Group with the base address 504 /// given in \p Addr, optionally masking the vector operations if \p 505 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 506 /// values in the vectorized loop. 507 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 508 ArrayRef<VPValue *> VPDefs, 509 VPTransformState &State, VPValue *Addr, 510 ArrayRef<VPValue *> StoredValues, 511 VPValue *BlockInMask = nullptr); 512 513 /// Fix the non-induction PHIs in \p Plan. 514 void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); 515 516 /// Returns true if the reordering of FP operations is not allowed, but we are 517 /// able to vectorize with strict in-order reductions for the given RdxDesc. 518 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 519 520 /// Create a broadcast instruction. This method generates a broadcast 521 /// instruction (shuffle) for loop invariant values and for the induction 522 /// value. If this is the induction variable then we extend it to N, N+1, ... 523 /// this is needed because each iteration in the loop corresponds to a SIMD 524 /// element. 525 virtual Value *getBroadcastInstrs(Value *V); 526 527 // Returns the resume value (bc.merge.rdx) for a reduction as 528 // generated by fixReduction. 529 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 530 531 protected: 532 friend class LoopVectorizationPlanner; 533 534 /// A small list of PHINodes. 535 using PhiVector = SmallVector<PHINode *, 4>; 536 537 /// A type for scalarized values in the new loop. Each value from the 538 /// original loop, when scalarized, is represented by UF x VF scalar values 539 /// in the new unrolled loop, where UF is the unroll factor and VF is the 540 /// vectorization factor. 541 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 542 543 /// Set up the values of the IVs correctly when exiting the vector loop. 544 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 545 Value *VectorTripCount, Value *EndValue, 546 BasicBlock *MiddleBlock, BasicBlock *VectorHeader, 547 VPlan &Plan); 548 549 /// Handle all cross-iteration phis in the header. 550 void fixCrossIterationPHIs(VPTransformState &State); 551 552 /// Create the exit value of first order recurrences in the middle block and 553 /// update their users. 554 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 555 VPTransformState &State); 556 557 /// Create code for the loop exit value of the reduction. 558 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 559 560 /// Clear NSW/NUW flags from reduction instructions if necessary. 561 void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 562 VPTransformState &State); 563 564 /// Iteratively sink the scalarized operands of a predicated instruction into 565 /// the block that was created for it. 566 void sinkScalarOperands(Instruction *PredInst); 567 568 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 569 /// represented as. 570 void truncateToMinimalBitwidths(VPTransformState &State); 571 572 /// Returns (and creates if needed) the original loop trip count. 573 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 574 575 /// Returns (and creates if needed) the trip count of the widened loop. 576 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 577 578 /// Returns a bitcasted value to the requested vector type. 579 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 580 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 581 const DataLayout &DL); 582 583 /// Emit a bypass check to see if the vector trip count is zero, including if 584 /// it overflows. 585 void emitIterationCountCheck(BasicBlock *Bypass); 586 587 /// Emit a bypass check to see if all of the SCEV assumptions we've 588 /// had to make are correct. Returns the block containing the checks or 589 /// nullptr if no checks have been added. 590 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 591 592 /// Emit bypass checks to check any memory assumptions we may have made. 593 /// Returns the block containing the checks or nullptr if no checks have been 594 /// added. 595 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 596 597 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 598 /// vector loop preheader, middle block and scalar preheader. 599 void createVectorLoopSkeleton(StringRef Prefix); 600 601 /// Create new phi nodes for the induction variables to resume iteration count 602 /// in the scalar epilogue, from where the vectorized loop left off. 603 /// In cases where the loop skeleton is more complicated (eg. epilogue 604 /// vectorization) and the resume values can come from an additional bypass 605 /// block, the \p AdditionalBypass pair provides information about the bypass 606 /// block and the end value on the edge from bypass to this loop. 607 void createInductionResumeValues( 608 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 609 610 /// Complete the loop skeleton by adding debug MDs, creating appropriate 611 /// conditional branches in the middle block, preparing the builder and 612 /// running the verifier. Return the preheader of the completed vector loop. 613 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 614 615 /// Collect poison-generating recipes that may generate a poison value that is 616 /// used after vectorization, even when their operands are not poison. Those 617 /// recipes meet the following conditions: 618 /// * Contribute to the address computation of a recipe generating a widen 619 /// memory load/store (VPWidenMemoryInstructionRecipe or 620 /// VPInterleaveRecipe). 621 /// * Such a widen memory load/store has at least one underlying Instruction 622 /// that is in a basic block that needs predication and after vectorization 623 /// the generated instruction won't be predicated. 624 void collectPoisonGeneratingRecipes(VPTransformState &State); 625 626 /// Allow subclasses to override and print debug traces before/after vplan 627 /// execution, when trace information is requested. 628 virtual void printDebugTracesAtStart(){}; 629 virtual void printDebugTracesAtEnd(){}; 630 631 /// The original loop. 632 Loop *OrigLoop; 633 634 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 635 /// dynamic knowledge to simplify SCEV expressions and converts them to a 636 /// more usable form. 637 PredicatedScalarEvolution &PSE; 638 639 /// Loop Info. 640 LoopInfo *LI; 641 642 /// Dominator Tree. 643 DominatorTree *DT; 644 645 /// Alias Analysis. 646 AAResults *AA; 647 648 /// Target Library Info. 649 const TargetLibraryInfo *TLI; 650 651 /// Target Transform Info. 652 const TargetTransformInfo *TTI; 653 654 /// Assumption Cache. 655 AssumptionCache *AC; 656 657 /// Interface to emit optimization remarks. 658 OptimizationRemarkEmitter *ORE; 659 660 /// The vectorization SIMD factor to use. Each vector will have this many 661 /// vector elements. 662 ElementCount VF; 663 664 ElementCount MinProfitableTripCount; 665 666 /// The vectorization unroll factor to use. Each scalar is vectorized to this 667 /// many different vector instructions. 668 unsigned UF; 669 670 /// The builder that we use 671 IRBuilder<> Builder; 672 673 // --- Vectorization state --- 674 675 /// The vector-loop preheader. 676 BasicBlock *LoopVectorPreHeader; 677 678 /// The scalar-loop preheader. 679 BasicBlock *LoopScalarPreHeader; 680 681 /// Middle Block between the vector and the scalar. 682 BasicBlock *LoopMiddleBlock; 683 684 /// The unique ExitBlock of the scalar loop if one exists. Note that 685 /// there can be multiple exiting edges reaching this block. 686 BasicBlock *LoopExitBlock; 687 688 /// The scalar loop body. 689 BasicBlock *LoopScalarBody; 690 691 /// A list of all bypass blocks. The first block is the entry of the loop. 692 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 693 694 /// Store instructions that were predicated. 695 SmallVector<Instruction *, 4> PredicatedInstructions; 696 697 /// Trip count of the original loop. 698 Value *TripCount = nullptr; 699 700 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 701 Value *VectorTripCount = nullptr; 702 703 /// The legality analysis. 704 LoopVectorizationLegality *Legal; 705 706 /// The profitablity analysis. 707 LoopVectorizationCostModel *Cost; 708 709 // Record whether runtime checks are added. 710 bool AddedSafetyChecks = false; 711 712 // Holds the end values for each induction variable. We save the end values 713 // so we can later fix-up the external users of the induction variables. 714 DenseMap<PHINode *, Value *> IVEndValues; 715 716 /// BFI and PSI are used to check for profile guided size optimizations. 717 BlockFrequencyInfo *BFI; 718 ProfileSummaryInfo *PSI; 719 720 // Whether this loop should be optimized for size based on profile guided size 721 // optimizatios. 722 bool OptForSizeBasedOnProfile; 723 724 /// Structure to hold information about generated runtime checks, responsible 725 /// for cleaning the checks, if vectorization turns out unprofitable. 726 GeneratedRTChecks &RTChecks; 727 728 // Holds the resume values for reductions in the loops, used to set the 729 // correct start value of reduction PHIs when vectorizing the epilogue. 730 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 731 ReductionResumeValues; 732 }; 733 734 class InnerLoopUnroller : public InnerLoopVectorizer { 735 public: 736 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 737 LoopInfo *LI, DominatorTree *DT, 738 const TargetLibraryInfo *TLI, 739 const TargetTransformInfo *TTI, AssumptionCache *AC, 740 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 741 LoopVectorizationLegality *LVL, 742 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 743 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 744 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 745 ElementCount::getFixed(1), 746 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 747 BFI, PSI, Check) {} 748 749 private: 750 Value *getBroadcastInstrs(Value *V) override; 751 }; 752 753 /// Encapsulate information regarding vectorization of a loop and its epilogue. 754 /// This information is meant to be updated and used across two stages of 755 /// epilogue vectorization. 756 struct EpilogueLoopVectorizationInfo { 757 ElementCount MainLoopVF = ElementCount::getFixed(0); 758 unsigned MainLoopUF = 0; 759 ElementCount EpilogueVF = ElementCount::getFixed(0); 760 unsigned EpilogueUF = 0; 761 BasicBlock *MainLoopIterationCountCheck = nullptr; 762 BasicBlock *EpilogueIterationCountCheck = nullptr; 763 BasicBlock *SCEVSafetyCheck = nullptr; 764 BasicBlock *MemSafetyCheck = nullptr; 765 Value *TripCount = nullptr; 766 Value *VectorTripCount = nullptr; 767 768 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 769 ElementCount EVF, unsigned EUF) 770 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 771 assert(EUF == 1 && 772 "A high UF for the epilogue loop is likely not beneficial."); 773 } 774 }; 775 776 /// An extension of the inner loop vectorizer that creates a skeleton for a 777 /// vectorized loop that has its epilogue (residual) also vectorized. 778 /// The idea is to run the vplan on a given loop twice, firstly to setup the 779 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 780 /// from the first step and vectorize the epilogue. This is achieved by 781 /// deriving two concrete strategy classes from this base class and invoking 782 /// them in succession from the loop vectorizer planner. 783 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 784 public: 785 InnerLoopAndEpilogueVectorizer( 786 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 787 DominatorTree *DT, const TargetLibraryInfo *TLI, 788 const TargetTransformInfo *TTI, AssumptionCache *AC, 789 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 790 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 791 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 792 GeneratedRTChecks &Checks) 793 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 794 EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, 795 CM, BFI, PSI, Checks), 796 EPI(EPI) {} 797 798 // Override this function to handle the more complex control flow around the 799 // three loops. 800 std::pair<BasicBlock *, Value *> 801 createVectorizedLoopSkeleton() final override { 802 return createEpilogueVectorizedLoopSkeleton(); 803 } 804 805 /// The interface for creating a vectorized skeleton using one of two 806 /// different strategies, each corresponding to one execution of the vplan 807 /// as described above. 808 virtual std::pair<BasicBlock *, Value *> 809 createEpilogueVectorizedLoopSkeleton() = 0; 810 811 /// Holds and updates state information required to vectorize the main loop 812 /// and its epilogue in two separate passes. This setup helps us avoid 813 /// regenerating and recomputing runtime safety checks. It also helps us to 814 /// shorten the iteration-count-check path length for the cases where the 815 /// iteration count of the loop is so small that the main vector loop is 816 /// completely skipped. 817 EpilogueLoopVectorizationInfo &EPI; 818 }; 819 820 /// A specialized derived class of inner loop vectorizer that performs 821 /// vectorization of *main* loops in the process of vectorizing loops and their 822 /// epilogues. 823 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 824 public: 825 EpilogueVectorizerMainLoop( 826 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 827 DominatorTree *DT, const TargetLibraryInfo *TLI, 828 const TargetTransformInfo *TTI, AssumptionCache *AC, 829 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 830 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 831 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 832 GeneratedRTChecks &Check) 833 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 834 EPI, LVL, CM, BFI, PSI, Check) {} 835 /// Implements the interface for creating a vectorized skeleton using the 836 /// *main loop* strategy (ie the first pass of vplan execution). 837 std::pair<BasicBlock *, Value *> 838 createEpilogueVectorizedLoopSkeleton() final override; 839 840 protected: 841 /// Emits an iteration count bypass check once for the main loop (when \p 842 /// ForEpilogue is false) and once for the epilogue loop (when \p 843 /// ForEpilogue is true). 844 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 845 void printDebugTracesAtStart() override; 846 void printDebugTracesAtEnd() override; 847 }; 848 849 // A specialized derived class of inner loop vectorizer that performs 850 // vectorization of *epilogue* loops in the process of vectorizing loops and 851 // their epilogues. 852 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 853 public: 854 EpilogueVectorizerEpilogueLoop( 855 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 856 DominatorTree *DT, const TargetLibraryInfo *TLI, 857 const TargetTransformInfo *TTI, AssumptionCache *AC, 858 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 859 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 860 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 861 GeneratedRTChecks &Checks) 862 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 863 EPI, LVL, CM, BFI, PSI, Checks) { 864 TripCount = EPI.TripCount; 865 } 866 /// Implements the interface for creating a vectorized skeleton using the 867 /// *epilogue loop* strategy (ie the second pass of vplan execution). 868 std::pair<BasicBlock *, Value *> 869 createEpilogueVectorizedLoopSkeleton() final override; 870 871 protected: 872 /// Emits an iteration count bypass check after the main vector loop has 873 /// finished to see if there are any iterations left to execute by either 874 /// the vector epilogue or the scalar epilogue. 875 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 876 BasicBlock *Bypass, 877 BasicBlock *Insert); 878 void printDebugTracesAtStart() override; 879 void printDebugTracesAtEnd() override; 880 }; 881 } // end namespace llvm 882 883 /// Look for a meaningful debug location on the instruction or it's 884 /// operands. 885 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 886 if (!I) 887 return I; 888 889 DebugLoc Empty; 890 if (I->getDebugLoc() != Empty) 891 return I; 892 893 for (Use &Op : I->operands()) { 894 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 895 if (OpInst->getDebugLoc() != Empty) 896 return OpInst; 897 } 898 899 return I; 900 } 901 902 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 903 /// is passed, the message relates to that particular instruction. 904 #ifndef NDEBUG 905 static void debugVectorizationMessage(const StringRef Prefix, 906 const StringRef DebugMsg, 907 Instruction *I) { 908 dbgs() << "LV: " << Prefix << DebugMsg; 909 if (I != nullptr) 910 dbgs() << " " << *I; 911 else 912 dbgs() << '.'; 913 dbgs() << '\n'; 914 } 915 #endif 916 917 /// Create an analysis remark that explains why vectorization failed 918 /// 919 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 920 /// RemarkName is the identifier for the remark. If \p I is passed it is an 921 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 922 /// the location of the remark. \return the remark object that can be 923 /// streamed to. 924 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 925 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 926 Value *CodeRegion = TheLoop->getHeader(); 927 DebugLoc DL = TheLoop->getStartLoc(); 928 929 if (I) { 930 CodeRegion = I->getParent(); 931 // If there is no debug location attached to the instruction, revert back to 932 // using the loop's. 933 if (I->getDebugLoc()) 934 DL = I->getDebugLoc(); 935 } 936 937 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 938 } 939 940 namespace llvm { 941 942 /// Return a value for Step multiplied by VF. 943 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 944 int64_t Step) { 945 assert(Ty->isIntegerTy() && "Expected an integer step"); 946 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 947 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 948 } 949 950 /// Return the runtime value for VF. 951 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 952 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 953 return VF.isScalable() ? B.CreateVScale(EC) : EC; 954 } 955 956 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 957 ElementCount VF) { 958 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 959 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 960 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 961 return B.CreateUIToFP(RuntimeVF, FTy); 962 } 963 964 void reportVectorizationFailure(const StringRef DebugMsg, 965 const StringRef OREMsg, const StringRef ORETag, 966 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 967 Instruction *I) { 968 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 969 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 970 ORE->emit( 971 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 972 << "loop not vectorized: " << OREMsg); 973 } 974 975 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 976 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 977 Instruction *I) { 978 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 979 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 980 ORE->emit( 981 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 982 << Msg); 983 } 984 985 } // end namespace llvm 986 987 #ifndef NDEBUG 988 /// \return string containing a file name and a line # for the given loop. 989 static std::string getDebugLocString(const Loop *L) { 990 std::string Result; 991 if (L) { 992 raw_string_ostream OS(Result); 993 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 994 LoopDbgLoc.print(OS); 995 else 996 // Just print the module name. 997 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 998 OS.flush(); 999 } 1000 return Result; 1001 } 1002 #endif 1003 1004 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1005 VPTransformState &State) { 1006 1007 // Collect recipes in the backward slice of `Root` that may generate a poison 1008 // value that is used after vectorization. 1009 SmallPtrSet<VPRecipeBase *, 16> Visited; 1010 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1011 SmallVector<VPRecipeBase *, 16> Worklist; 1012 Worklist.push_back(Root); 1013 1014 // Traverse the backward slice of Root through its use-def chain. 1015 while (!Worklist.empty()) { 1016 VPRecipeBase *CurRec = Worklist.back(); 1017 Worklist.pop_back(); 1018 1019 if (!Visited.insert(CurRec).second) 1020 continue; 1021 1022 // Prune search if we find another recipe generating a widen memory 1023 // instruction. Widen memory instructions involved in address computation 1024 // will lead to gather/scatter instructions, which don't need to be 1025 // handled. 1026 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1027 isa<VPInterleaveRecipe>(CurRec) || 1028 isa<VPScalarIVStepsRecipe>(CurRec) || 1029 isa<VPCanonicalIVPHIRecipe>(CurRec) || 1030 isa<VPActiveLaneMaskPHIRecipe>(CurRec)) 1031 continue; 1032 1033 // This recipe contributes to the address computation of a widen 1034 // load/store. Collect recipe if its underlying instruction has 1035 // poison-generating flags. 1036 Instruction *Instr = CurRec->getUnderlyingInstr(); 1037 if (Instr && Instr->hasPoisonGeneratingFlags()) 1038 State.MayGeneratePoisonRecipes.insert(CurRec); 1039 1040 // Add new definitions to the worklist. 1041 for (VPValue *operand : CurRec->operands()) 1042 if (VPDef *OpDef = operand->getDef()) 1043 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1044 } 1045 }); 1046 1047 // Traverse all the recipes in the VPlan and collect the poison-generating 1048 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1049 // VPInterleaveRecipe. 1050 auto Iter = depth_first( 1051 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1052 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1053 for (VPRecipeBase &Recipe : *VPBB) { 1054 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1055 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1056 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1057 if (AddrDef && WidenRec->isConsecutive() && 1058 Legal->blockNeedsPredication(UnderlyingInstr.getParent())) 1059 collectPoisonGeneratingInstrsInBackwardSlice( 1060 cast<VPRecipeBase>(AddrDef)); 1061 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1062 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1063 if (AddrDef) { 1064 // Check if any member of the interleave group needs predication. 1065 const InterleaveGroup<Instruction> *InterGroup = 1066 InterleaveRec->getInterleaveGroup(); 1067 bool NeedPredication = false; 1068 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1069 I < NumMembers; ++I) { 1070 Instruction *Member = InterGroup->getMember(I); 1071 if (Member) 1072 NeedPredication |= 1073 Legal->blockNeedsPredication(Member->getParent()); 1074 } 1075 1076 if (NeedPredication) 1077 collectPoisonGeneratingInstrsInBackwardSlice( 1078 cast<VPRecipeBase>(AddrDef)); 1079 } 1080 } 1081 } 1082 } 1083 } 1084 1085 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1086 const RecurrenceDescriptor &RdxDesc) { 1087 auto It = ReductionResumeValues.find(&RdxDesc); 1088 assert(It != ReductionResumeValues.end() && 1089 "Expected to find a resume value for the reduction."); 1090 return It->second; 1091 } 1092 1093 namespace llvm { 1094 1095 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1096 // lowered. 1097 enum ScalarEpilogueLowering { 1098 1099 // The default: allowing scalar epilogues. 1100 CM_ScalarEpilogueAllowed, 1101 1102 // Vectorization with OptForSize: don't allow epilogues. 1103 CM_ScalarEpilogueNotAllowedOptSize, 1104 1105 // A special case of vectorisation with OptForSize: loops with a very small 1106 // trip count are considered for vectorization under OptForSize, thereby 1107 // making sure the cost of their loop body is dominant, free of runtime 1108 // guards and scalar iteration overheads. 1109 CM_ScalarEpilogueNotAllowedLowTripLoop, 1110 1111 // Loop hint predicate indicating an epilogue is undesired. 1112 CM_ScalarEpilogueNotNeededUsePredicate, 1113 1114 // Directive indicating we must either tail fold or not vectorize 1115 CM_ScalarEpilogueNotAllowedUsePredicate 1116 }; 1117 1118 /// ElementCountComparator creates a total ordering for ElementCount 1119 /// for the purposes of using it in a set structure. 1120 struct ElementCountComparator { 1121 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1122 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1123 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1124 } 1125 }; 1126 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1127 1128 /// LoopVectorizationCostModel - estimates the expected speedups due to 1129 /// vectorization. 1130 /// In many cases vectorization is not profitable. This can happen because of 1131 /// a number of reasons. In this class we mainly attempt to predict the 1132 /// expected speedup/slowdowns due to the supported instruction set. We use the 1133 /// TargetTransformInfo to query the different backends for the cost of 1134 /// different operations. 1135 class LoopVectorizationCostModel { 1136 public: 1137 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1138 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1139 LoopVectorizationLegality *Legal, 1140 const TargetTransformInfo &TTI, 1141 const TargetLibraryInfo *TLI, DemandedBits *DB, 1142 AssumptionCache *AC, 1143 OptimizationRemarkEmitter *ORE, const Function *F, 1144 const LoopVectorizeHints *Hints, 1145 InterleavedAccessInfo &IAI) 1146 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1147 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1148 Hints(Hints), InterleaveInfo(IAI) {} 1149 1150 /// \return An upper bound for the vectorization factors (both fixed and 1151 /// scalable). If the factors are 0, vectorization and interleaving should be 1152 /// avoided up front. 1153 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1154 1155 /// \return True if runtime checks are required for vectorization, and false 1156 /// otherwise. 1157 bool runtimeChecksRequired(); 1158 1159 /// \return The most profitable vectorization factor and the cost of that VF. 1160 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1161 /// then this vectorization factor will be selected if vectorization is 1162 /// possible. 1163 VectorizationFactor 1164 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1165 1166 VectorizationFactor 1167 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1168 const LoopVectorizationPlanner &LVP); 1169 1170 /// Setup cost-based decisions for user vectorization factor. 1171 /// \return true if the UserVF is a feasible VF to be chosen. 1172 bool selectUserVectorizationFactor(ElementCount UserVF) { 1173 collectUniformsAndScalars(UserVF); 1174 collectInstsToScalarize(UserVF); 1175 return expectedCost(UserVF).first.isValid(); 1176 } 1177 1178 /// \return The size (in bits) of the smallest and widest types in the code 1179 /// that needs to be vectorized. We ignore values that remain scalar such as 1180 /// 64 bit loop indices. 1181 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1182 1183 /// \return The desired interleave count. 1184 /// If interleave count has been specified by metadata it will be returned. 1185 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1186 /// are the selected vectorization factor and the cost of the selected VF. 1187 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1188 1189 /// Memory access instruction may be vectorized in more than one way. 1190 /// Form of instruction after vectorization depends on cost. 1191 /// This function takes cost-based decisions for Load/Store instructions 1192 /// and collects them in a map. This decisions map is used for building 1193 /// the lists of loop-uniform and loop-scalar instructions. 1194 /// The calculated cost is saved with widening decision in order to 1195 /// avoid redundant calculations. 1196 void setCostBasedWideningDecision(ElementCount VF); 1197 1198 /// A struct that represents some properties of the register usage 1199 /// of a loop. 1200 struct RegisterUsage { 1201 /// Holds the number of loop invariant values that are used in the loop. 1202 /// The key is ClassID of target-provided register class. 1203 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1204 /// Holds the maximum number of concurrent live intervals in the loop. 1205 /// The key is ClassID of target-provided register class. 1206 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1207 }; 1208 1209 /// \return Returns information about the register usages of the loop for the 1210 /// given vectorization factors. 1211 SmallVector<RegisterUsage, 8> 1212 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1213 1214 /// Collect values we want to ignore in the cost model. 1215 void collectValuesToIgnore(); 1216 1217 /// Collect all element types in the loop for which widening is needed. 1218 void collectElementTypesForWidening(); 1219 1220 /// Split reductions into those that happen in the loop, and those that happen 1221 /// outside. In loop reductions are collected into InLoopReductionChains. 1222 void collectInLoopReductions(); 1223 1224 /// Returns true if we should use strict in-order reductions for the given 1225 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1226 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1227 /// of FP operations. 1228 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1229 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1230 } 1231 1232 /// \returns The smallest bitwidth each instruction can be represented with. 1233 /// The vector equivalents of these instructions should be truncated to this 1234 /// type. 1235 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1236 return MinBWs; 1237 } 1238 1239 /// \returns True if it is more profitable to scalarize instruction \p I for 1240 /// vectorization factor \p VF. 1241 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1242 assert(VF.isVector() && 1243 "Profitable to scalarize relevant only for VF > 1."); 1244 1245 // Cost model is not run in the VPlan-native path - return conservative 1246 // result until this changes. 1247 if (EnableVPlanNativePath) 1248 return false; 1249 1250 auto Scalars = InstsToScalarize.find(VF); 1251 assert(Scalars != InstsToScalarize.end() && 1252 "VF not yet analyzed for scalarization profitability"); 1253 return Scalars->second.find(I) != Scalars->second.end(); 1254 } 1255 1256 /// Returns true if \p I is known to be uniform after vectorization. 1257 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1258 if (VF.isScalar()) 1259 return true; 1260 1261 // Cost model is not run in the VPlan-native path - return conservative 1262 // result until this changes. 1263 if (EnableVPlanNativePath) 1264 return false; 1265 1266 auto UniformsPerVF = Uniforms.find(VF); 1267 assert(UniformsPerVF != Uniforms.end() && 1268 "VF not yet analyzed for uniformity"); 1269 return UniformsPerVF->second.count(I); 1270 } 1271 1272 /// Returns true if \p I is known to be scalar after vectorization. 1273 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1274 if (VF.isScalar()) 1275 return true; 1276 1277 // Cost model is not run in the VPlan-native path - return conservative 1278 // result until this changes. 1279 if (EnableVPlanNativePath) 1280 return false; 1281 1282 auto ScalarsPerVF = Scalars.find(VF); 1283 assert(ScalarsPerVF != Scalars.end() && 1284 "Scalar values are not calculated for VF"); 1285 return ScalarsPerVF->second.count(I); 1286 } 1287 1288 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1289 /// for vectorization factor \p VF. 1290 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1291 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1292 !isProfitableToScalarize(I, VF) && 1293 !isScalarAfterVectorization(I, VF); 1294 } 1295 1296 /// Decision that was taken during cost calculation for memory instruction. 1297 enum InstWidening { 1298 CM_Unknown, 1299 CM_Widen, // For consecutive accesses with stride +1. 1300 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1301 CM_Interleave, 1302 CM_GatherScatter, 1303 CM_Scalarize 1304 }; 1305 1306 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1307 /// instruction \p I and vector width \p VF. 1308 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1309 InstructionCost Cost) { 1310 assert(VF.isVector() && "Expected VF >=2"); 1311 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1312 } 1313 1314 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1315 /// interleaving group \p Grp and vector width \p VF. 1316 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1317 ElementCount VF, InstWidening W, 1318 InstructionCost Cost) { 1319 assert(VF.isVector() && "Expected VF >=2"); 1320 /// Broadcast this decicion to all instructions inside the group. 1321 /// But the cost will be assigned to one instruction only. 1322 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1323 if (auto *I = Grp->getMember(i)) { 1324 if (Grp->getInsertPos() == I) 1325 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1326 else 1327 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1328 } 1329 } 1330 } 1331 1332 /// Return the cost model decision for the given instruction \p I and vector 1333 /// width \p VF. Return CM_Unknown if this instruction did not pass 1334 /// through the cost modeling. 1335 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1336 assert(VF.isVector() && "Expected VF to be a vector VF"); 1337 // Cost model is not run in the VPlan-native path - return conservative 1338 // result until this changes. 1339 if (EnableVPlanNativePath) 1340 return CM_GatherScatter; 1341 1342 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1343 auto Itr = WideningDecisions.find(InstOnVF); 1344 if (Itr == WideningDecisions.end()) 1345 return CM_Unknown; 1346 return Itr->second.first; 1347 } 1348 1349 /// Return the vectorization cost for the given instruction \p I and vector 1350 /// width \p VF. 1351 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1352 assert(VF.isVector() && "Expected VF >=2"); 1353 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1354 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1355 "The cost is not calculated"); 1356 return WideningDecisions[InstOnVF].second; 1357 } 1358 1359 /// Return True if instruction \p I is an optimizable truncate whose operand 1360 /// is an induction variable. Such a truncate will be removed by adding a new 1361 /// induction variable with the destination type. 1362 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1363 // If the instruction is not a truncate, return false. 1364 auto *Trunc = dyn_cast<TruncInst>(I); 1365 if (!Trunc) 1366 return false; 1367 1368 // Get the source and destination types of the truncate. 1369 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1370 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1371 1372 // If the truncate is free for the given types, return false. Replacing a 1373 // free truncate with an induction variable would add an induction variable 1374 // update instruction to each iteration of the loop. We exclude from this 1375 // check the primary induction variable since it will need an update 1376 // instruction regardless. 1377 Value *Op = Trunc->getOperand(0); 1378 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1379 return false; 1380 1381 // If the truncated value is not an induction variable, return false. 1382 return Legal->isInductionPhi(Op); 1383 } 1384 1385 /// Collects the instructions to scalarize for each predicated instruction in 1386 /// the loop. 1387 void collectInstsToScalarize(ElementCount VF); 1388 1389 /// Collect Uniform and Scalar values for the given \p VF. 1390 /// The sets depend on CM decision for Load/Store instructions 1391 /// that may be vectorized as interleave, gather-scatter or scalarized. 1392 void collectUniformsAndScalars(ElementCount VF) { 1393 // Do the analysis once. 1394 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1395 return; 1396 setCostBasedWideningDecision(VF); 1397 collectLoopUniforms(VF); 1398 collectLoopScalars(VF); 1399 } 1400 1401 /// Returns true if the target machine supports masked store operation 1402 /// for the given \p DataType and kind of access to \p Ptr. 1403 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1404 return Legal->isConsecutivePtr(DataType, Ptr) && 1405 TTI.isLegalMaskedStore(DataType, Alignment); 1406 } 1407 1408 /// Returns true if the target machine supports masked load operation 1409 /// for the given \p DataType and kind of access to \p Ptr. 1410 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1411 return Legal->isConsecutivePtr(DataType, Ptr) && 1412 TTI.isLegalMaskedLoad(DataType, Alignment); 1413 } 1414 1415 /// Returns true if the target machine can represent \p V as a masked gather 1416 /// or scatter operation. 1417 bool isLegalGatherOrScatter(Value *V, 1418 ElementCount VF = ElementCount::getFixed(1)) { 1419 bool LI = isa<LoadInst>(V); 1420 bool SI = isa<StoreInst>(V); 1421 if (!LI && !SI) 1422 return false; 1423 auto *Ty = getLoadStoreType(V); 1424 Align Align = getLoadStoreAlignment(V); 1425 if (VF.isVector()) 1426 Ty = VectorType::get(Ty, VF); 1427 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1428 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1429 } 1430 1431 /// Returns true if the target machine supports all of the reduction 1432 /// variables found for the given VF. 1433 bool canVectorizeReductions(ElementCount VF) const { 1434 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1435 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1436 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1437 })); 1438 } 1439 1440 /// Returns true if \p I is an instruction that will be scalarized with 1441 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1442 /// instructions include conditional stores and instructions that may divide 1443 /// by zero. 1444 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1445 1446 // Returns true if \p I is an instruction that will be predicated either 1447 // through scalar predication or masked load/store or masked gather/scatter. 1448 // \p VF is the vectorization factor that will be used to vectorize \p I. 1449 // Superset of instructions that return true for isScalarWithPredication. 1450 bool isPredicatedInst(Instruction *I, ElementCount VF, 1451 bool IsKnownUniform = false) { 1452 // When we know the load is uniform and the original scalar loop was not 1453 // predicated we don't need to mark it as a predicated instruction. Any 1454 // vectorised blocks created when tail-folding are something artificial we 1455 // have introduced and we know there is always at least one active lane. 1456 // That's why we call Legal->blockNeedsPredication here because it doesn't 1457 // query tail-folding. 1458 if (IsKnownUniform && isa<LoadInst>(I) && 1459 !Legal->blockNeedsPredication(I->getParent())) 1460 return false; 1461 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1462 return false; 1463 // Loads and stores that need some form of masked operation are predicated 1464 // instructions. 1465 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1466 return Legal->isMaskRequired(I); 1467 return isScalarWithPredication(I, VF); 1468 } 1469 1470 /// Returns true if \p I is a memory instruction with consecutive memory 1471 /// access that can be widened. 1472 bool 1473 memoryInstructionCanBeWidened(Instruction *I, 1474 ElementCount VF = ElementCount::getFixed(1)); 1475 1476 /// Returns true if \p I is a memory instruction in an interleaved-group 1477 /// of memory accesses that can be vectorized with wide vector loads/stores 1478 /// and shuffles. 1479 bool 1480 interleavedAccessCanBeWidened(Instruction *I, 1481 ElementCount VF = ElementCount::getFixed(1)); 1482 1483 /// Check if \p Instr belongs to any interleaved access group. 1484 bool isAccessInterleaved(Instruction *Instr) { 1485 return InterleaveInfo.isInterleaved(Instr); 1486 } 1487 1488 /// Get the interleaved access group that \p Instr belongs to. 1489 const InterleaveGroup<Instruction> * 1490 getInterleavedAccessGroup(Instruction *Instr) { 1491 return InterleaveInfo.getInterleaveGroup(Instr); 1492 } 1493 1494 /// Returns true if we're required to use a scalar epilogue for at least 1495 /// the final iteration of the original loop. 1496 bool requiresScalarEpilogue(ElementCount VF) const { 1497 if (!isScalarEpilogueAllowed()) 1498 return false; 1499 // If we might exit from anywhere but the latch, must run the exiting 1500 // iteration in scalar form. 1501 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1502 return true; 1503 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1504 } 1505 1506 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1507 /// loop hint annotation. 1508 bool isScalarEpilogueAllowed() const { 1509 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1510 } 1511 1512 /// Returns true if all loop blocks should be masked to fold tail loop. 1513 bool foldTailByMasking() const { return FoldTailByMasking; } 1514 1515 /// Returns true if were tail-folding and want to use the active lane mask 1516 /// for vector loop control flow. 1517 bool useActiveLaneMaskForControlFlow() const { 1518 return FoldTailByMasking && 1519 TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow; 1520 } 1521 1522 /// Returns true if the instructions in this block requires predication 1523 /// for any reason, e.g. because tail folding now requires a predicate 1524 /// or because the block in the original loop was predicated. 1525 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1526 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1527 } 1528 1529 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1530 /// nodes to the chain of instructions representing the reductions. Uses a 1531 /// MapVector to ensure deterministic iteration order. 1532 using ReductionChainMap = 1533 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1534 1535 /// Return the chain of instructions representing an inloop reduction. 1536 const ReductionChainMap &getInLoopReductionChains() const { 1537 return InLoopReductionChains; 1538 } 1539 1540 /// Returns true if the Phi is part of an inloop reduction. 1541 bool isInLoopReduction(PHINode *Phi) const { 1542 return InLoopReductionChains.count(Phi); 1543 } 1544 1545 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1546 /// with factor VF. Return the cost of the instruction, including 1547 /// scalarization overhead if it's needed. 1548 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1549 1550 /// Estimate cost of a call instruction CI if it were vectorized with factor 1551 /// VF. Return the cost of the instruction, including scalarization overhead 1552 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1553 /// scalarized - 1554 /// i.e. either vector version isn't available, or is too expensive. 1555 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1556 bool &NeedToScalarize) const; 1557 1558 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1559 /// that of B. 1560 bool isMoreProfitable(const VectorizationFactor &A, 1561 const VectorizationFactor &B) const; 1562 1563 /// Invalidates decisions already taken by the cost model. 1564 void invalidateCostModelingDecisions() { 1565 WideningDecisions.clear(); 1566 Uniforms.clear(); 1567 Scalars.clear(); 1568 } 1569 1570 /// Convenience function that returns the value of vscale_range iff 1571 /// vscale_range.min == vscale_range.max or otherwise returns the value 1572 /// returned by the corresponding TLI method. 1573 Optional<unsigned> getVScaleForTuning() const; 1574 1575 private: 1576 unsigned NumPredStores = 0; 1577 1578 /// \return An upper bound for the vectorization factors for both 1579 /// fixed and scalable vectorization, where the minimum-known number of 1580 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1581 /// disabled or unsupported, then the scalable part will be equal to 1582 /// ElementCount::getScalable(0). 1583 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1584 ElementCount UserVF, 1585 bool FoldTailByMasking); 1586 1587 /// \return the maximized element count based on the targets vector 1588 /// registers and the loop trip-count, but limited to a maximum safe VF. 1589 /// This is a helper function of computeFeasibleMaxVF. 1590 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1591 unsigned SmallestType, 1592 unsigned WidestType, 1593 ElementCount MaxSafeVF, 1594 bool FoldTailByMasking); 1595 1596 /// \return the maximum legal scalable VF, based on the safe max number 1597 /// of elements. 1598 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1599 1600 /// The vectorization cost is a combination of the cost itself and a boolean 1601 /// indicating whether any of the contributing operations will actually 1602 /// operate on vector values after type legalization in the backend. If this 1603 /// latter value is false, then all operations will be scalarized (i.e. no 1604 /// vectorization has actually taken place). 1605 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1606 1607 /// Returns the expected execution cost. The unit of the cost does 1608 /// not matter because we use the 'cost' units to compare different 1609 /// vector widths. The cost that is returned is *not* normalized by 1610 /// the factor width. If \p Invalid is not nullptr, this function 1611 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1612 /// each instruction that has an Invalid cost for the given VF. 1613 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1614 VectorizationCostTy 1615 expectedCost(ElementCount VF, 1616 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1617 1618 /// Returns the execution time cost of an instruction for a given vector 1619 /// width. Vector width of one means scalar. 1620 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1621 1622 /// The cost-computation logic from getInstructionCost which provides 1623 /// the vector type as an output parameter. 1624 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1625 Type *&VectorTy); 1626 1627 /// Return the cost of instructions in an inloop reduction pattern, if I is 1628 /// part of that pattern. 1629 Optional<InstructionCost> 1630 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1631 TTI::TargetCostKind CostKind); 1632 1633 /// Calculate vectorization cost of memory instruction \p I. 1634 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1635 1636 /// The cost computation for scalarized memory instruction. 1637 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1638 1639 /// The cost computation for interleaving group of memory instructions. 1640 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1641 1642 /// The cost computation for Gather/Scatter instruction. 1643 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1644 1645 /// The cost computation for widening instruction \p I with consecutive 1646 /// memory access. 1647 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1648 1649 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1650 /// Load: scalar load + broadcast. 1651 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1652 /// element) 1653 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1654 1655 /// Estimate the overhead of scalarizing an instruction. This is a 1656 /// convenience wrapper for the type-based getScalarizationOverhead API. 1657 InstructionCost getScalarizationOverhead(Instruction *I, 1658 ElementCount VF) const; 1659 1660 /// Returns whether the instruction is a load or store and will be a emitted 1661 /// as a vector operation. 1662 bool isConsecutiveLoadOrStore(Instruction *I); 1663 1664 /// Returns true if an artificially high cost for emulated masked memrefs 1665 /// should be used. 1666 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1667 1668 /// Map of scalar integer values to the smallest bitwidth they can be legally 1669 /// represented as. The vector equivalents of these values should be truncated 1670 /// to this type. 1671 MapVector<Instruction *, uint64_t> MinBWs; 1672 1673 /// A type representing the costs for instructions if they were to be 1674 /// scalarized rather than vectorized. The entries are Instruction-Cost 1675 /// pairs. 1676 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1677 1678 /// A set containing all BasicBlocks that are known to present after 1679 /// vectorization as a predicated block. 1680 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> 1681 PredicatedBBsAfterVectorization; 1682 1683 /// Records whether it is allowed to have the original scalar loop execute at 1684 /// least once. This may be needed as a fallback loop in case runtime 1685 /// aliasing/dependence checks fail, or to handle the tail/remainder 1686 /// iterations when the trip count is unknown or doesn't divide by the VF, 1687 /// or as a peel-loop to handle gaps in interleave-groups. 1688 /// Under optsize and when the trip count is very small we don't allow any 1689 /// iterations to execute in the scalar loop. 1690 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1691 1692 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1693 bool FoldTailByMasking = false; 1694 1695 /// A map holding scalar costs for different vectorization factors. The 1696 /// presence of a cost for an instruction in the mapping indicates that the 1697 /// instruction will be scalarized when vectorizing with the associated 1698 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1699 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1700 1701 /// Holds the instructions known to be uniform after vectorization. 1702 /// The data is collected per VF. 1703 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1704 1705 /// Holds the instructions known to be scalar after vectorization. 1706 /// The data is collected per VF. 1707 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1708 1709 /// Holds the instructions (address computations) that are forced to be 1710 /// scalarized. 1711 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1712 1713 /// PHINodes of the reductions that should be expanded in-loop along with 1714 /// their associated chains of reduction operations, in program order from top 1715 /// (PHI) to bottom 1716 ReductionChainMap InLoopReductionChains; 1717 1718 /// A Map of inloop reduction operations and their immediate chain operand. 1719 /// FIXME: This can be removed once reductions can be costed correctly in 1720 /// vplan. This was added to allow quick lookup to the inloop operations, 1721 /// without having to loop through InLoopReductionChains. 1722 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1723 1724 /// Returns the expected difference in cost from scalarizing the expression 1725 /// feeding a predicated instruction \p PredInst. The instructions to 1726 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1727 /// non-negative return value implies the expression will be scalarized. 1728 /// Currently, only single-use chains are considered for scalarization. 1729 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1730 ElementCount VF); 1731 1732 /// Collect the instructions that are uniform after vectorization. An 1733 /// instruction is uniform if we represent it with a single scalar value in 1734 /// the vectorized loop corresponding to each vector iteration. Examples of 1735 /// uniform instructions include pointer operands of consecutive or 1736 /// interleaved memory accesses. Note that although uniformity implies an 1737 /// instruction will be scalar, the reverse is not true. In general, a 1738 /// scalarized instruction will be represented by VF scalar values in the 1739 /// vectorized loop, each corresponding to an iteration of the original 1740 /// scalar loop. 1741 void collectLoopUniforms(ElementCount VF); 1742 1743 /// Collect the instructions that are scalar after vectorization. An 1744 /// instruction is scalar if it is known to be uniform or will be scalarized 1745 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1746 /// to the list if they are used by a load/store instruction that is marked as 1747 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1748 /// VF values in the vectorized loop, each corresponding to an iteration of 1749 /// the original scalar loop. 1750 void collectLoopScalars(ElementCount VF); 1751 1752 /// Keeps cost model vectorization decision and cost for instructions. 1753 /// Right now it is used for memory instructions only. 1754 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1755 std::pair<InstWidening, InstructionCost>>; 1756 1757 DecisionList WideningDecisions; 1758 1759 /// Returns true if \p V is expected to be vectorized and it needs to be 1760 /// extracted. 1761 bool needsExtract(Value *V, ElementCount VF) const { 1762 Instruction *I = dyn_cast<Instruction>(V); 1763 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1764 TheLoop->isLoopInvariant(I)) 1765 return false; 1766 1767 // Assume we can vectorize V (and hence we need extraction) if the 1768 // scalars are not computed yet. This can happen, because it is called 1769 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1770 // the scalars are collected. That should be a safe assumption in most 1771 // cases, because we check if the operands have vectorizable types 1772 // beforehand in LoopVectorizationLegality. 1773 return Scalars.find(VF) == Scalars.end() || 1774 !isScalarAfterVectorization(I, VF); 1775 }; 1776 1777 /// Returns a range containing only operands needing to be extracted. 1778 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1779 ElementCount VF) const { 1780 return SmallVector<Value *, 4>(make_filter_range( 1781 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1782 } 1783 1784 /// Determines if we have the infrastructure to vectorize loop \p L and its 1785 /// epilogue, assuming the main loop is vectorized by \p VF. 1786 bool isCandidateForEpilogueVectorization(const Loop &L, 1787 const ElementCount VF) const; 1788 1789 /// Returns true if epilogue vectorization is considered profitable, and 1790 /// false otherwise. 1791 /// \p VF is the vectorization factor chosen for the original loop. 1792 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1793 1794 public: 1795 /// The loop that we evaluate. 1796 Loop *TheLoop; 1797 1798 /// Predicated scalar evolution analysis. 1799 PredicatedScalarEvolution &PSE; 1800 1801 /// Loop Info analysis. 1802 LoopInfo *LI; 1803 1804 /// Vectorization legality. 1805 LoopVectorizationLegality *Legal; 1806 1807 /// Vector target information. 1808 const TargetTransformInfo &TTI; 1809 1810 /// Target Library Info. 1811 const TargetLibraryInfo *TLI; 1812 1813 /// Demanded bits analysis. 1814 DemandedBits *DB; 1815 1816 /// Assumption cache. 1817 AssumptionCache *AC; 1818 1819 /// Interface to emit optimization remarks. 1820 OptimizationRemarkEmitter *ORE; 1821 1822 const Function *TheFunction; 1823 1824 /// Loop Vectorize Hint. 1825 const LoopVectorizeHints *Hints; 1826 1827 /// The interleave access information contains groups of interleaved accesses 1828 /// with the same stride and close to each other. 1829 InterleavedAccessInfo &InterleaveInfo; 1830 1831 /// Values to ignore in the cost model. 1832 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1833 1834 /// Values to ignore in the cost model when VF > 1. 1835 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1836 1837 /// All element types found in the loop. 1838 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1839 1840 /// Profitable vector factors. 1841 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1842 }; 1843 } // end namespace llvm 1844 1845 /// Helper struct to manage generating runtime checks for vectorization. 1846 /// 1847 /// The runtime checks are created up-front in temporary blocks to allow better 1848 /// estimating the cost and un-linked from the existing IR. After deciding to 1849 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1850 /// temporary blocks are completely removed. 1851 class GeneratedRTChecks { 1852 /// Basic block which contains the generated SCEV checks, if any. 1853 BasicBlock *SCEVCheckBlock = nullptr; 1854 1855 /// The value representing the result of the generated SCEV checks. If it is 1856 /// nullptr, either no SCEV checks have been generated or they have been used. 1857 Value *SCEVCheckCond = nullptr; 1858 1859 /// Basic block which contains the generated memory runtime checks, if any. 1860 BasicBlock *MemCheckBlock = nullptr; 1861 1862 /// The value representing the result of the generated memory runtime checks. 1863 /// If it is nullptr, either no memory runtime checks have been generated or 1864 /// they have been used. 1865 Value *MemRuntimeCheckCond = nullptr; 1866 1867 DominatorTree *DT; 1868 LoopInfo *LI; 1869 TargetTransformInfo *TTI; 1870 1871 SCEVExpander SCEVExp; 1872 SCEVExpander MemCheckExp; 1873 1874 bool CostTooHigh = false; 1875 1876 public: 1877 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1878 TargetTransformInfo *TTI, const DataLayout &DL) 1879 : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"), 1880 MemCheckExp(SE, DL, "scev.check") {} 1881 1882 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1883 /// accurately estimate the cost of the runtime checks. The blocks are 1884 /// un-linked from the IR and is added back during vector code generation. If 1885 /// there is no vector code generation, the check blocks are removed 1886 /// completely. 1887 void Create(Loop *L, const LoopAccessInfo &LAI, 1888 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1889 1890 // Hard cutoff to limit compile-time increase in case a very large number of 1891 // runtime checks needs to be generated. 1892 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to 1893 // profile info. 1894 CostTooHigh = 1895 LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; 1896 if (CostTooHigh) 1897 return; 1898 1899 BasicBlock *LoopHeader = L->getHeader(); 1900 BasicBlock *Preheader = L->getLoopPreheader(); 1901 1902 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1903 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1904 // may be used by SCEVExpander. The blocks will be un-linked from their 1905 // predecessors and removed from LI & DT at the end of the function. 1906 if (!UnionPred.isAlwaysTrue()) { 1907 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1908 nullptr, "vector.scevcheck"); 1909 1910 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1911 &UnionPred, SCEVCheckBlock->getTerminator()); 1912 } 1913 1914 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1915 if (RtPtrChecking.Need) { 1916 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1917 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1918 "vector.memcheck"); 1919 1920 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1921 if (DiffChecks) { 1922 MemRuntimeCheckCond = addDiffRuntimeChecks( 1923 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 1924 [VF](IRBuilderBase &B, unsigned Bits) { 1925 return getRuntimeVF(B, B.getIntNTy(Bits), VF); 1926 }, 1927 IC); 1928 } else { 1929 MemRuntimeCheckCond = 1930 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1931 RtPtrChecking.getChecks(), MemCheckExp); 1932 } 1933 assert(MemRuntimeCheckCond && 1934 "no RT checks generated although RtPtrChecking " 1935 "claimed checks are required"); 1936 } 1937 1938 if (!MemCheckBlock && !SCEVCheckBlock) 1939 return; 1940 1941 // Unhook the temporary block with the checks, update various places 1942 // accordingly. 1943 if (SCEVCheckBlock) 1944 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1945 if (MemCheckBlock) 1946 MemCheckBlock->replaceAllUsesWith(Preheader); 1947 1948 if (SCEVCheckBlock) { 1949 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1950 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1951 Preheader->getTerminator()->eraseFromParent(); 1952 } 1953 if (MemCheckBlock) { 1954 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1955 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1956 Preheader->getTerminator()->eraseFromParent(); 1957 } 1958 1959 DT->changeImmediateDominator(LoopHeader, Preheader); 1960 if (MemCheckBlock) { 1961 DT->eraseNode(MemCheckBlock); 1962 LI->removeBlock(MemCheckBlock); 1963 } 1964 if (SCEVCheckBlock) { 1965 DT->eraseNode(SCEVCheckBlock); 1966 LI->removeBlock(SCEVCheckBlock); 1967 } 1968 } 1969 1970 InstructionCost getCost() { 1971 if (SCEVCheckBlock || MemCheckBlock) 1972 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); 1973 1974 if (CostTooHigh) { 1975 InstructionCost Cost; 1976 Cost.setInvalid(); 1977 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); 1978 return Cost; 1979 } 1980 1981 InstructionCost RTCheckCost = 0; 1982 if (SCEVCheckBlock) 1983 for (Instruction &I : *SCEVCheckBlock) { 1984 if (SCEVCheckBlock->getTerminator() == &I) 1985 continue; 1986 InstructionCost C = 1987 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1988 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1989 RTCheckCost += C; 1990 } 1991 if (MemCheckBlock) 1992 for (Instruction &I : *MemCheckBlock) { 1993 if (MemCheckBlock->getTerminator() == &I) 1994 continue; 1995 InstructionCost C = 1996 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1997 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1998 RTCheckCost += C; 1999 } 2000 2001 if (SCEVCheckBlock || MemCheckBlock) 2002 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost 2003 << "\n"); 2004 2005 return RTCheckCost; 2006 } 2007 2008 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2009 /// unused. 2010 ~GeneratedRTChecks() { 2011 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2012 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2013 if (!SCEVCheckCond) 2014 SCEVCleaner.markResultUsed(); 2015 2016 if (!MemRuntimeCheckCond) 2017 MemCheckCleaner.markResultUsed(); 2018 2019 if (MemRuntimeCheckCond) { 2020 auto &SE = *MemCheckExp.getSE(); 2021 // Memory runtime check generation creates compares that use expanded 2022 // values. Remove them before running the SCEVExpanderCleaners. 2023 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2024 if (MemCheckExp.isInsertedInstruction(&I)) 2025 continue; 2026 SE.forgetValue(&I); 2027 I.eraseFromParent(); 2028 } 2029 } 2030 MemCheckCleaner.cleanup(); 2031 SCEVCleaner.cleanup(); 2032 2033 if (SCEVCheckCond) 2034 SCEVCheckBlock->eraseFromParent(); 2035 if (MemRuntimeCheckCond) 2036 MemCheckBlock->eraseFromParent(); 2037 } 2038 2039 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2040 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2041 /// depending on the generated condition. 2042 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2043 BasicBlock *LoopVectorPreHeader, 2044 BasicBlock *LoopExitBlock) { 2045 if (!SCEVCheckCond) 2046 return nullptr; 2047 2048 Value *Cond = SCEVCheckCond; 2049 // Mark the check as used, to prevent it from being removed during cleanup. 2050 SCEVCheckCond = nullptr; 2051 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2052 if (C->isZero()) 2053 return nullptr; 2054 2055 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2056 2057 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2058 // Create new preheader for vector loop. 2059 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2060 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2061 2062 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2063 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2064 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2065 SCEVCheckBlock); 2066 2067 DT->addNewBlock(SCEVCheckBlock, Pred); 2068 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2069 2070 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2071 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2072 return SCEVCheckBlock; 2073 } 2074 2075 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2076 /// the branches to branch to the vector preheader or \p Bypass, depending on 2077 /// the generated condition. 2078 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2079 BasicBlock *LoopVectorPreHeader) { 2080 // Check if we generated code that checks in runtime if arrays overlap. 2081 if (!MemRuntimeCheckCond) 2082 return nullptr; 2083 2084 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2085 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2086 MemCheckBlock); 2087 2088 DT->addNewBlock(MemCheckBlock, Pred); 2089 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2090 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2091 2092 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2093 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2094 2095 ReplaceInstWithInst( 2096 MemCheckBlock->getTerminator(), 2097 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2098 MemCheckBlock->getTerminator()->setDebugLoc( 2099 Pred->getTerminator()->getDebugLoc()); 2100 2101 // Mark the check as used, to prevent it from being removed during cleanup. 2102 MemRuntimeCheckCond = nullptr; 2103 return MemCheckBlock; 2104 } 2105 }; 2106 2107 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2108 // vectorization. The loop needs to be annotated with #pragma omp simd 2109 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2110 // vector length information is not provided, vectorization is not considered 2111 // explicit. Interleave hints are not allowed either. These limitations will be 2112 // relaxed in the future. 2113 // Please, note that we are currently forced to abuse the pragma 'clang 2114 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2115 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2116 // provides *explicit vectorization hints* (LV can bypass legal checks and 2117 // assume that vectorization is legal). However, both hints are implemented 2118 // using the same metadata (llvm.loop.vectorize, processed by 2119 // LoopVectorizeHints). This will be fixed in the future when the native IR 2120 // representation for pragma 'omp simd' is introduced. 2121 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2122 OptimizationRemarkEmitter *ORE) { 2123 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2124 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2125 2126 // Only outer loops with an explicit vectorization hint are supported. 2127 // Unannotated outer loops are ignored. 2128 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2129 return false; 2130 2131 Function *Fn = OuterLp->getHeader()->getParent(); 2132 if (!Hints.allowVectorization(Fn, OuterLp, 2133 true /*VectorizeOnlyWhenForced*/)) { 2134 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2135 return false; 2136 } 2137 2138 if (Hints.getInterleave() > 1) { 2139 // TODO: Interleave support is future work. 2140 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2141 "outer loops.\n"); 2142 Hints.emitRemarkWithHints(); 2143 return false; 2144 } 2145 2146 return true; 2147 } 2148 2149 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2150 OptimizationRemarkEmitter *ORE, 2151 SmallVectorImpl<Loop *> &V) { 2152 // Collect inner loops and outer loops without irreducible control flow. For 2153 // now, only collect outer loops that have explicit vectorization hints. If we 2154 // are stress testing the VPlan H-CFG construction, we collect the outermost 2155 // loop of every loop nest. 2156 if (L.isInnermost() || VPlanBuildStressTest || 2157 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2158 LoopBlocksRPO RPOT(&L); 2159 RPOT.perform(LI); 2160 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2161 V.push_back(&L); 2162 // TODO: Collect inner loops inside marked outer loops in case 2163 // vectorization fails for the outer loop. Do not invoke 2164 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2165 // already known to be reducible. We can use an inherited attribute for 2166 // that. 2167 return; 2168 } 2169 } 2170 for (Loop *InnerL : L) 2171 collectSupportedLoops(*InnerL, LI, ORE, V); 2172 } 2173 2174 namespace { 2175 2176 /// The LoopVectorize Pass. 2177 struct LoopVectorize : public FunctionPass { 2178 /// Pass identification, replacement for typeid 2179 static char ID; 2180 2181 LoopVectorizePass Impl; 2182 2183 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2184 bool VectorizeOnlyWhenForced = false) 2185 : FunctionPass(ID), 2186 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2187 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2188 } 2189 2190 bool runOnFunction(Function &F) override { 2191 if (skipFunction(F)) 2192 return false; 2193 2194 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2195 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2196 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2197 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2198 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2199 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2200 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2201 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2202 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2203 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2204 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2205 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2206 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2207 2208 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2209 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2210 2211 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2212 GetLAA, *ORE, PSI).MadeAnyChange; 2213 } 2214 2215 void getAnalysisUsage(AnalysisUsage &AU) const override { 2216 AU.addRequired<AssumptionCacheTracker>(); 2217 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2218 AU.addRequired<DominatorTreeWrapperPass>(); 2219 AU.addRequired<LoopInfoWrapperPass>(); 2220 AU.addRequired<ScalarEvolutionWrapperPass>(); 2221 AU.addRequired<TargetTransformInfoWrapperPass>(); 2222 AU.addRequired<AAResultsWrapperPass>(); 2223 AU.addRequired<LoopAccessLegacyAnalysis>(); 2224 AU.addRequired<DemandedBitsWrapperPass>(); 2225 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2226 AU.addRequired<InjectTLIMappingsLegacy>(); 2227 2228 // We currently do not preserve loopinfo/dominator analyses with outer loop 2229 // vectorization. Until this is addressed, mark these analyses as preserved 2230 // only for non-VPlan-native path. 2231 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2232 if (!EnableVPlanNativePath) { 2233 AU.addPreserved<LoopInfoWrapperPass>(); 2234 AU.addPreserved<DominatorTreeWrapperPass>(); 2235 } 2236 2237 AU.addPreserved<BasicAAWrapperPass>(); 2238 AU.addPreserved<GlobalsAAWrapperPass>(); 2239 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2240 } 2241 }; 2242 2243 } // end anonymous namespace 2244 2245 //===----------------------------------------------------------------------===// 2246 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2247 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2248 //===----------------------------------------------------------------------===// 2249 2250 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2251 // We need to place the broadcast of invariant variables outside the loop, 2252 // but only if it's proven safe to do so. Else, broadcast will be inside 2253 // vector loop body. 2254 Instruction *Instr = dyn_cast<Instruction>(V); 2255 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2256 (!Instr || 2257 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2258 // Place the code for broadcasting invariant variables in the new preheader. 2259 IRBuilder<>::InsertPointGuard Guard(Builder); 2260 if (SafeToHoist) 2261 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2262 2263 // Broadcast the scalar into all locations in the vector. 2264 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2265 2266 return Shuf; 2267 } 2268 2269 /// This function adds 2270 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2271 /// to each vector element of Val. The sequence starts at StartIndex. 2272 /// \p Opcode is relevant for FP induction variable. 2273 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2274 Instruction::BinaryOps BinOp, ElementCount VF, 2275 IRBuilderBase &Builder) { 2276 assert(VF.isVector() && "only vector VFs are supported"); 2277 2278 // Create and check the types. 2279 auto *ValVTy = cast<VectorType>(Val->getType()); 2280 ElementCount VLen = ValVTy->getElementCount(); 2281 2282 Type *STy = Val->getType()->getScalarType(); 2283 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2284 "Induction Step must be an integer or FP"); 2285 assert(Step->getType() == STy && "Step has wrong type"); 2286 2287 SmallVector<Constant *, 8> Indices; 2288 2289 // Create a vector of consecutive numbers from zero to VF. 2290 VectorType *InitVecValVTy = ValVTy; 2291 if (STy->isFloatingPointTy()) { 2292 Type *InitVecValSTy = 2293 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2294 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2295 } 2296 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2297 2298 // Splat the StartIdx 2299 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2300 2301 if (STy->isIntegerTy()) { 2302 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2303 Step = Builder.CreateVectorSplat(VLen, Step); 2304 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2305 // FIXME: The newly created binary instructions should contain nsw/nuw 2306 // flags, which can be found from the original scalar operations. 2307 Step = Builder.CreateMul(InitVec, Step); 2308 return Builder.CreateAdd(Val, Step, "induction"); 2309 } 2310 2311 // Floating point induction. 2312 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2313 "Binary Opcode should be specified for FP induction"); 2314 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2315 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2316 2317 Step = Builder.CreateVectorSplat(VLen, Step); 2318 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2319 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2320 } 2321 2322 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2323 /// variable on which to base the steps, \p Step is the size of the step. 2324 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2325 const InductionDescriptor &ID, VPValue *Def, 2326 VPTransformState &State) { 2327 IRBuilderBase &Builder = State.Builder; 2328 // We shouldn't have to build scalar steps if we aren't vectorizing. 2329 assert(State.VF.isVector() && "VF should be greater than one"); 2330 // Get the value type and ensure it and the step have the same integer type. 2331 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2332 assert(ScalarIVTy == Step->getType() && 2333 "Val and Step should have the same type"); 2334 2335 // We build scalar steps for both integer and floating-point induction 2336 // variables. Here, we determine the kind of arithmetic we will perform. 2337 Instruction::BinaryOps AddOp; 2338 Instruction::BinaryOps MulOp; 2339 if (ScalarIVTy->isIntegerTy()) { 2340 AddOp = Instruction::Add; 2341 MulOp = Instruction::Mul; 2342 } else { 2343 AddOp = ID.getInductionOpcode(); 2344 MulOp = Instruction::FMul; 2345 } 2346 2347 // Determine the number of scalars we need to generate for each unroll 2348 // iteration. 2349 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2350 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2351 // Compute the scalar steps and save the results in State. 2352 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2353 ScalarIVTy->getScalarSizeInBits()); 2354 Type *VecIVTy = nullptr; 2355 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2356 if (!FirstLaneOnly && State.VF.isScalable()) { 2357 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2358 UnitStepVec = 2359 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2360 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2361 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2362 } 2363 2364 for (unsigned Part = 0; Part < State.UF; ++Part) { 2365 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2366 2367 if (!FirstLaneOnly && State.VF.isScalable()) { 2368 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2369 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2370 if (ScalarIVTy->isFloatingPointTy()) 2371 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2372 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2373 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2374 State.set(Def, Add, Part); 2375 // It's useful to record the lane values too for the known minimum number 2376 // of elements so we do those below. This improves the code quality when 2377 // trying to extract the first element, for example. 2378 } 2379 2380 if (ScalarIVTy->isFloatingPointTy()) 2381 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2382 2383 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2384 Value *StartIdx = Builder.CreateBinOp( 2385 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2386 // The step returned by `createStepForVF` is a runtime-evaluated value 2387 // when VF is scalable. Otherwise, it should be folded into a Constant. 2388 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2389 "Expected StartIdx to be folded to a constant when VF is not " 2390 "scalable"); 2391 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2392 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2393 State.set(Def, Add, VPIteration(Part, Lane)); 2394 } 2395 } 2396 } 2397 2398 // Generate code for the induction step. Note that induction steps are 2399 // required to be loop-invariant 2400 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2401 Instruction *InsertBefore, 2402 Loop *OrigLoop = nullptr) { 2403 const DataLayout &DL = SE.getDataLayout(); 2404 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2405 "Induction step should be loop invariant"); 2406 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2407 return E->getValue(); 2408 2409 SCEVExpander Exp(SE, DL, "induction"); 2410 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2411 } 2412 2413 /// Compute the transformed value of Index at offset StartValue using step 2414 /// StepValue. 2415 /// For integer induction, returns StartValue + Index * StepValue. 2416 /// For pointer induction, returns StartValue[Index * StepValue]. 2417 /// FIXME: The newly created binary instructions should contain nsw/nuw 2418 /// flags, which can be found from the original scalar operations. 2419 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2420 Value *StartValue, Value *Step, 2421 const InductionDescriptor &ID) { 2422 assert(Index->getType()->getScalarType() == Step->getType() && 2423 "Index scalar type does not match StepValue type"); 2424 2425 // Note: the IR at this point is broken. We cannot use SE to create any new 2426 // SCEV and then expand it, hoping that SCEV's simplification will give us 2427 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2428 // lead to various SCEV crashes. So all we can do is to use builder and rely 2429 // on InstCombine for future simplifications. Here we handle some trivial 2430 // cases only. 2431 auto CreateAdd = [&B](Value *X, Value *Y) { 2432 assert(X->getType() == Y->getType() && "Types don't match!"); 2433 if (auto *CX = dyn_cast<ConstantInt>(X)) 2434 if (CX->isZero()) 2435 return Y; 2436 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2437 if (CY->isZero()) 2438 return X; 2439 return B.CreateAdd(X, Y); 2440 }; 2441 2442 // We allow X to be a vector type, in which case Y will potentially be 2443 // splatted into a vector with the same element count. 2444 auto CreateMul = [&B](Value *X, Value *Y) { 2445 assert(X->getType()->getScalarType() == Y->getType() && 2446 "Types don't match!"); 2447 if (auto *CX = dyn_cast<ConstantInt>(X)) 2448 if (CX->isOne()) 2449 return Y; 2450 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2451 if (CY->isOne()) 2452 return X; 2453 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2454 if (XVTy && !isa<VectorType>(Y->getType())) 2455 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2456 return B.CreateMul(X, Y); 2457 }; 2458 2459 switch (ID.getKind()) { 2460 case InductionDescriptor::IK_IntInduction: { 2461 assert(!isa<VectorType>(Index->getType()) && 2462 "Vector indices not supported for integer inductions yet"); 2463 assert(Index->getType() == StartValue->getType() && 2464 "Index type does not match StartValue type"); 2465 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2466 return B.CreateSub(StartValue, Index); 2467 auto *Offset = CreateMul(Index, Step); 2468 return CreateAdd(StartValue, Offset); 2469 } 2470 case InductionDescriptor::IK_PtrInduction: { 2471 assert(isa<Constant>(Step) && 2472 "Expected constant step for pointer induction"); 2473 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2474 } 2475 case InductionDescriptor::IK_FpInduction: { 2476 assert(!isa<VectorType>(Index->getType()) && 2477 "Vector indices not supported for FP inductions yet"); 2478 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2479 auto InductionBinOp = ID.getInductionBinOp(); 2480 assert(InductionBinOp && 2481 (InductionBinOp->getOpcode() == Instruction::FAdd || 2482 InductionBinOp->getOpcode() == Instruction::FSub) && 2483 "Original bin op should be defined for FP induction"); 2484 2485 Value *MulExp = B.CreateFMul(Step, Index); 2486 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2487 "induction"); 2488 } 2489 case InductionDescriptor::IK_NoInduction: 2490 return nullptr; 2491 } 2492 llvm_unreachable("invalid enum"); 2493 } 2494 2495 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2496 const VPIteration &Instance, 2497 VPTransformState &State) { 2498 Value *ScalarInst = State.get(Def, Instance); 2499 Value *VectorValue = State.get(Def, Instance.Part); 2500 VectorValue = Builder.CreateInsertElement( 2501 VectorValue, ScalarInst, 2502 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2503 State.set(Def, VectorValue, Instance.Part); 2504 } 2505 2506 // Return whether we allow using masked interleave-groups (for dealing with 2507 // strided loads/stores that reside in predicated blocks, or for dealing 2508 // with gaps). 2509 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2510 // If an override option has been passed in for interleaved accesses, use it. 2511 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2512 return EnableMaskedInterleavedMemAccesses; 2513 2514 return TTI.enableMaskedInterleavedAccessVectorization(); 2515 } 2516 2517 // Try to vectorize the interleave group that \p Instr belongs to. 2518 // 2519 // E.g. Translate following interleaved load group (factor = 3): 2520 // for (i = 0; i < N; i+=3) { 2521 // R = Pic[i]; // Member of index 0 2522 // G = Pic[i+1]; // Member of index 1 2523 // B = Pic[i+2]; // Member of index 2 2524 // ... // do something to R, G, B 2525 // } 2526 // To: 2527 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2528 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2529 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2530 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2531 // 2532 // Or translate following interleaved store group (factor = 3): 2533 // for (i = 0; i < N; i+=3) { 2534 // ... do something to R, G, B 2535 // Pic[i] = R; // Member of index 0 2536 // Pic[i+1] = G; // Member of index 1 2537 // Pic[i+2] = B; // Member of index 2 2538 // } 2539 // To: 2540 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2541 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2542 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2543 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2544 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2545 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2546 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2547 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2548 VPValue *BlockInMask) { 2549 Instruction *Instr = Group->getInsertPos(); 2550 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2551 2552 // Prepare for the vector type of the interleaved load/store. 2553 Type *ScalarTy = getLoadStoreType(Instr); 2554 unsigned InterleaveFactor = Group->getFactor(); 2555 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2556 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2557 2558 // Prepare for the new pointers. 2559 SmallVector<Value *, 2> AddrParts; 2560 unsigned Index = Group->getIndex(Instr); 2561 2562 // TODO: extend the masked interleaved-group support to reversed access. 2563 assert((!BlockInMask || !Group->isReverse()) && 2564 "Reversed masked interleave-group not supported."); 2565 2566 // If the group is reverse, adjust the index to refer to the last vector lane 2567 // instead of the first. We adjust the index from the first vector lane, 2568 // rather than directly getting the pointer for lane VF - 1, because the 2569 // pointer operand of the interleaved access is supposed to be uniform. For 2570 // uniform instructions, we're only required to generate a value for the 2571 // first vector lane in each unroll iteration. 2572 if (Group->isReverse()) 2573 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2574 2575 for (unsigned Part = 0; Part < UF; Part++) { 2576 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2577 State.setDebugLocFromInst(AddrPart); 2578 2579 // Notice current instruction could be any index. Need to adjust the address 2580 // to the member of index 0. 2581 // 2582 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2583 // b = A[i]; // Member of index 0 2584 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2585 // 2586 // E.g. A[i+1] = a; // Member of index 1 2587 // A[i] = b; // Member of index 0 2588 // A[i+2] = c; // Member of index 2 (Current instruction) 2589 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2590 2591 bool InBounds = false; 2592 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2593 InBounds = gep->isInBounds(); 2594 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2595 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2596 2597 // Cast to the vector pointer type. 2598 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2599 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2600 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2601 } 2602 2603 State.setDebugLocFromInst(Instr); 2604 Value *PoisonVec = PoisonValue::get(VecTy); 2605 2606 Value *MaskForGaps = nullptr; 2607 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2608 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2609 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2610 } 2611 2612 // Vectorize the interleaved load group. 2613 if (isa<LoadInst>(Instr)) { 2614 // For each unroll part, create a wide load for the group. 2615 SmallVector<Value *, 2> NewLoads; 2616 for (unsigned Part = 0; Part < UF; Part++) { 2617 Instruction *NewLoad; 2618 if (BlockInMask || MaskForGaps) { 2619 assert(useMaskedInterleavedAccesses(*TTI) && 2620 "masked interleaved groups are not allowed."); 2621 Value *GroupMask = MaskForGaps; 2622 if (BlockInMask) { 2623 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2624 Value *ShuffledMask = Builder.CreateShuffleVector( 2625 BlockInMaskPart, 2626 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2627 "interleaved.mask"); 2628 GroupMask = MaskForGaps 2629 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2630 MaskForGaps) 2631 : ShuffledMask; 2632 } 2633 NewLoad = 2634 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2635 GroupMask, PoisonVec, "wide.masked.vec"); 2636 } 2637 else 2638 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2639 Group->getAlign(), "wide.vec"); 2640 Group->addMetadata(NewLoad); 2641 NewLoads.push_back(NewLoad); 2642 } 2643 2644 // For each member in the group, shuffle out the appropriate data from the 2645 // wide loads. 2646 unsigned J = 0; 2647 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2648 Instruction *Member = Group->getMember(I); 2649 2650 // Skip the gaps in the group. 2651 if (!Member) 2652 continue; 2653 2654 auto StrideMask = 2655 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2656 for (unsigned Part = 0; Part < UF; Part++) { 2657 Value *StridedVec = Builder.CreateShuffleVector( 2658 NewLoads[Part], StrideMask, "strided.vec"); 2659 2660 // If this member has different type, cast the result type. 2661 if (Member->getType() != ScalarTy) { 2662 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2663 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2664 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2665 } 2666 2667 if (Group->isReverse()) 2668 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2669 2670 State.set(VPDefs[J], StridedVec, Part); 2671 } 2672 ++J; 2673 } 2674 return; 2675 } 2676 2677 // The sub vector type for current instruction. 2678 auto *SubVT = VectorType::get(ScalarTy, VF); 2679 2680 // Vectorize the interleaved store group. 2681 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2682 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2683 "masked interleaved groups are not allowed."); 2684 assert((!MaskForGaps || !VF.isScalable()) && 2685 "masking gaps for scalable vectors is not yet supported."); 2686 for (unsigned Part = 0; Part < UF; Part++) { 2687 // Collect the stored vector from each member. 2688 SmallVector<Value *, 4> StoredVecs; 2689 for (unsigned i = 0; i < InterleaveFactor; i++) { 2690 assert((Group->getMember(i) || MaskForGaps) && 2691 "Fail to get a member from an interleaved store group"); 2692 Instruction *Member = Group->getMember(i); 2693 2694 // Skip the gaps in the group. 2695 if (!Member) { 2696 Value *Undef = PoisonValue::get(SubVT); 2697 StoredVecs.push_back(Undef); 2698 continue; 2699 } 2700 2701 Value *StoredVec = State.get(StoredValues[i], Part); 2702 2703 if (Group->isReverse()) 2704 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2705 2706 // If this member has different type, cast it to a unified type. 2707 2708 if (StoredVec->getType() != SubVT) 2709 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2710 2711 StoredVecs.push_back(StoredVec); 2712 } 2713 2714 // Concatenate all vectors into a wide vector. 2715 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2716 2717 // Interleave the elements in the wide vector. 2718 Value *IVec = Builder.CreateShuffleVector( 2719 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2720 "interleaved.vec"); 2721 2722 Instruction *NewStoreInstr; 2723 if (BlockInMask || MaskForGaps) { 2724 Value *GroupMask = MaskForGaps; 2725 if (BlockInMask) { 2726 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2727 Value *ShuffledMask = Builder.CreateShuffleVector( 2728 BlockInMaskPart, 2729 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2730 "interleaved.mask"); 2731 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2732 ShuffledMask, MaskForGaps) 2733 : ShuffledMask; 2734 } 2735 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2736 Group->getAlign(), GroupMask); 2737 } else 2738 NewStoreInstr = 2739 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2740 2741 Group->addMetadata(NewStoreInstr); 2742 } 2743 } 2744 2745 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2746 VPReplicateRecipe *RepRecipe, 2747 const VPIteration &Instance, 2748 bool IfPredicateInstr, 2749 VPTransformState &State) { 2750 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2751 2752 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2753 // the first lane and part. 2754 if (isa<NoAliasScopeDeclInst>(Instr)) 2755 if (!Instance.isFirstIteration()) 2756 return; 2757 2758 // Does this instruction return a value ? 2759 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2760 2761 Instruction *Cloned = Instr->clone(); 2762 if (!IsVoidRetTy) 2763 Cloned->setName(Instr->getName() + ".cloned"); 2764 2765 // If the scalarized instruction contributes to the address computation of a 2766 // widen masked load/store which was in a basic block that needed predication 2767 // and is not predicated after vectorization, we can't propagate 2768 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2769 // instruction could feed a poison value to the base address of the widen 2770 // load/store. 2771 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2772 Cloned->dropPoisonGeneratingFlags(); 2773 2774 if (Instr->getDebugLoc()) 2775 State.setDebugLocFromInst(Instr); 2776 2777 // Replace the operands of the cloned instructions with their scalar 2778 // equivalents in the new loop. 2779 for (auto &I : enumerate(RepRecipe->operands())) { 2780 auto InputInstance = Instance; 2781 VPValue *Operand = I.value(); 2782 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2783 if (OperandR && OperandR->isUniform()) 2784 InputInstance.Lane = VPLane::getFirstLane(); 2785 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2786 } 2787 State.addNewMetadata(Cloned, Instr); 2788 2789 // Place the cloned scalar in the new loop. 2790 State.Builder.Insert(Cloned); 2791 2792 State.set(RepRecipe, Cloned, Instance); 2793 2794 // If we just cloned a new assumption, add it the assumption cache. 2795 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2796 AC->registerAssumption(II); 2797 2798 // End if-block. 2799 if (IfPredicateInstr) 2800 PredicatedInstructions.push_back(Cloned); 2801 } 2802 2803 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2804 if (TripCount) 2805 return TripCount; 2806 2807 assert(InsertBlock); 2808 IRBuilder<> Builder(InsertBlock->getTerminator()); 2809 // Find the loop boundaries. 2810 ScalarEvolution *SE = PSE.getSE(); 2811 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2812 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2813 "Invalid loop count"); 2814 2815 Type *IdxTy = Legal->getWidestInductionType(); 2816 assert(IdxTy && "No type for induction"); 2817 2818 // The exit count might have the type of i64 while the phi is i32. This can 2819 // happen if we have an induction variable that is sign extended before the 2820 // compare. The only way that we get a backedge taken count is that the 2821 // induction variable was signed and as such will not overflow. In such a case 2822 // truncation is legal. 2823 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2824 IdxTy->getPrimitiveSizeInBits()) 2825 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2826 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2827 2828 // Get the total trip count from the count by adding 1. 2829 const SCEV *ExitCount = SE->getAddExpr( 2830 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2831 2832 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2833 2834 // Expand the trip count and place the new instructions in the preheader. 2835 // Notice that the pre-header does not change, only the loop body. 2836 SCEVExpander Exp(*SE, DL, "induction"); 2837 2838 // Count holds the overall loop count (N). 2839 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2840 InsertBlock->getTerminator()); 2841 2842 if (TripCount->getType()->isPointerTy()) 2843 TripCount = 2844 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2845 InsertBlock->getTerminator()); 2846 2847 return TripCount; 2848 } 2849 2850 Value * 2851 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2852 if (VectorTripCount) 2853 return VectorTripCount; 2854 2855 Value *TC = getOrCreateTripCount(InsertBlock); 2856 IRBuilder<> Builder(InsertBlock->getTerminator()); 2857 2858 Type *Ty = TC->getType(); 2859 // This is where we can make the step a runtime constant. 2860 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2861 2862 // If the tail is to be folded by masking, round the number of iterations N 2863 // up to a multiple of Step instead of rounding down. This is done by first 2864 // adding Step-1 and then rounding down. Note that it's ok if this addition 2865 // overflows: the vector induction variable will eventually wrap to zero given 2866 // that it starts at zero and its Step is a power of two; the loop will then 2867 // exit, with the last early-exit vector comparison also producing all-true. 2868 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2869 // is accounted for in emitIterationCountCheck that adds an overflow check. 2870 if (Cost->foldTailByMasking()) { 2871 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2872 "VF*UF must be a power of 2 when folding tail by masking"); 2873 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2874 TC = Builder.CreateAdd( 2875 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2876 } 2877 2878 // Now we need to generate the expression for the part of the loop that the 2879 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2880 // iterations are not required for correctness, or N - Step, otherwise. Step 2881 // is equal to the vectorization factor (number of SIMD elements) times the 2882 // unroll factor (number of SIMD instructions). 2883 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2884 2885 // There are cases where we *must* run at least one iteration in the remainder 2886 // loop. See the cost model for when this can happen. If the step evenly 2887 // divides the trip count, we set the remainder to be equal to the step. If 2888 // the step does not evenly divide the trip count, no adjustment is necessary 2889 // since there will already be scalar iterations. Note that the minimum 2890 // iterations check ensures that N >= Step. 2891 if (Cost->requiresScalarEpilogue(VF)) { 2892 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2893 R = Builder.CreateSelect(IsZero, Step, R); 2894 } 2895 2896 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2897 2898 return VectorTripCount; 2899 } 2900 2901 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2902 const DataLayout &DL) { 2903 // Verify that V is a vector type with same number of elements as DstVTy. 2904 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2905 unsigned VF = DstFVTy->getNumElements(); 2906 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2907 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2908 Type *SrcElemTy = SrcVecTy->getElementType(); 2909 Type *DstElemTy = DstFVTy->getElementType(); 2910 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2911 "Vector elements must have same size"); 2912 2913 // Do a direct cast if element types are castable. 2914 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2915 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2916 } 2917 // V cannot be directly casted to desired vector type. 2918 // May happen when V is a floating point vector but DstVTy is a vector of 2919 // pointers or vice-versa. Handle this using a two-step bitcast using an 2920 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2921 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2922 "Only one type should be a pointer type"); 2923 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2924 "Only one type should be a floating point type"); 2925 Type *IntTy = 2926 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2927 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2928 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2929 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2930 } 2931 2932 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2933 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2934 // Reuse existing vector loop preheader for TC checks. 2935 // Note that new preheader block is generated for vector loop. 2936 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2937 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2938 2939 // Generate code to check if the loop's trip count is less than VF * UF, or 2940 // equal to it in case a scalar epilogue is required; this implies that the 2941 // vector trip count is zero. This check also covers the case where adding one 2942 // to the backedge-taken count overflowed leading to an incorrect trip count 2943 // of zero. In this case we will also jump to the scalar loop. 2944 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2945 : ICmpInst::ICMP_ULT; 2946 2947 // If tail is to be folded, vector loop takes care of all iterations. 2948 Type *CountTy = Count->getType(); 2949 Value *CheckMinIters = Builder.getFalse(); 2950 auto CreateStep = [&]() { 2951 // Create step with max(MinProTripCount, UF * VF). 2952 if (UF * VF.getKnownMinValue() < MinProfitableTripCount.getKnownMinValue()) 2953 return createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); 2954 return createStepForVF(Builder, CountTy, VF, UF); 2955 }; 2956 2957 if (!Cost->foldTailByMasking()) 2958 CheckMinIters = 2959 Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check"); 2960 else if (VF.isScalable()) { 2961 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2962 // an overflow to zero when updating induction variables and so an 2963 // additional overflow check is required before entering the vector loop. 2964 2965 // Get the maximum unsigned value for the type. 2966 Value *MaxUIntTripCount = 2967 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2968 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2969 2970 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2971 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); 2972 } 2973 2974 // Create new preheader for vector loop. 2975 LoopVectorPreHeader = 2976 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2977 "vector.ph"); 2978 2979 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2980 DT->getNode(Bypass)->getIDom()) && 2981 "TC check is expected to dominate Bypass"); 2982 2983 // Update dominator for Bypass & LoopExit (if needed). 2984 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2985 if (!Cost->requiresScalarEpilogue(VF)) 2986 // If there is an epilogue which must run, there's no edge from the 2987 // middle block to exit blocks and thus no need to update the immediate 2988 // dominator of the exit blocks. 2989 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2990 2991 ReplaceInstWithInst( 2992 TCCheckBlock->getTerminator(), 2993 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2994 LoopBypassBlocks.push_back(TCCheckBlock); 2995 } 2996 2997 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 2998 BasicBlock *const SCEVCheckBlock = 2999 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3000 if (!SCEVCheckBlock) 3001 return nullptr; 3002 3003 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3004 (OptForSizeBasedOnProfile && 3005 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3006 "Cannot SCEV check stride or overflow when optimizing for size"); 3007 3008 3009 // Update dominator only if this is first RT check. 3010 if (LoopBypassBlocks.empty()) { 3011 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3012 if (!Cost->requiresScalarEpilogue(VF)) 3013 // If there is an epilogue which must run, there's no edge from the 3014 // middle block to exit blocks and thus no need to update the immediate 3015 // dominator of the exit blocks. 3016 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3017 } 3018 3019 LoopBypassBlocks.push_back(SCEVCheckBlock); 3020 AddedSafetyChecks = true; 3021 return SCEVCheckBlock; 3022 } 3023 3024 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3025 // VPlan-native path does not do any analysis for runtime checks currently. 3026 if (EnableVPlanNativePath) 3027 return nullptr; 3028 3029 BasicBlock *const MemCheckBlock = 3030 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3031 3032 // Check if we generated code that checks in runtime if arrays overlap. We put 3033 // the checks into a separate block to make the more common case of few 3034 // elements faster. 3035 if (!MemCheckBlock) 3036 return nullptr; 3037 3038 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3039 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3040 "Cannot emit memory checks when optimizing for size, unless forced " 3041 "to vectorize."); 3042 ORE->emit([&]() { 3043 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3044 OrigLoop->getStartLoc(), 3045 OrigLoop->getHeader()) 3046 << "Code-size may be reduced by not forcing " 3047 "vectorization, or by source-code modifications " 3048 "eliminating the need for runtime checks " 3049 "(e.g., adding 'restrict')."; 3050 }); 3051 } 3052 3053 LoopBypassBlocks.push_back(MemCheckBlock); 3054 3055 AddedSafetyChecks = true; 3056 3057 return MemCheckBlock; 3058 } 3059 3060 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3061 LoopScalarBody = OrigLoop->getHeader(); 3062 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3063 assert(LoopVectorPreHeader && "Invalid loop structure"); 3064 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3065 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3066 "multiple exit loop without required epilogue?"); 3067 3068 LoopMiddleBlock = 3069 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3070 LI, nullptr, Twine(Prefix) + "middle.block"); 3071 LoopScalarPreHeader = 3072 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3073 nullptr, Twine(Prefix) + "scalar.ph"); 3074 3075 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3076 3077 // Set up the middle block terminator. Two cases: 3078 // 1) If we know that we must execute the scalar epilogue, emit an 3079 // unconditional branch. 3080 // 2) Otherwise, we must have a single unique exit block (due to how we 3081 // implement the multiple exit case). In this case, set up a conditonal 3082 // branch from the middle block to the loop scalar preheader, and the 3083 // exit block. completeLoopSkeleton will update the condition to use an 3084 // iteration check, if required to decide whether to execute the remainder. 3085 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3086 BranchInst::Create(LoopScalarPreHeader) : 3087 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3088 Builder.getTrue()); 3089 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3090 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3091 3092 // Update dominator for loop exit. During skeleton creation, only the vector 3093 // pre-header and the middle block are created. The vector loop is entirely 3094 // created during VPlan exection. 3095 if (!Cost->requiresScalarEpilogue(VF)) 3096 // If there is an epilogue which must run, there's no edge from the 3097 // middle block to exit blocks and thus no need to update the immediate 3098 // dominator of the exit blocks. 3099 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3100 } 3101 3102 void InnerLoopVectorizer::createInductionResumeValues( 3103 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3104 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3105 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3106 "Inconsistent information about additional bypass."); 3107 3108 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3109 assert(VectorTripCount && "Expected valid arguments"); 3110 // We are going to resume the execution of the scalar loop. 3111 // Go over all of the induction variables that we found and fix the 3112 // PHIs that are left in the scalar version of the loop. 3113 // The starting values of PHI nodes depend on the counter of the last 3114 // iteration in the vectorized loop. 3115 // If we come from a bypass edge then we need to start from the original 3116 // start value. 3117 Instruction *OldInduction = Legal->getPrimaryInduction(); 3118 for (auto &InductionEntry : Legal->getInductionVars()) { 3119 PHINode *OrigPhi = InductionEntry.first; 3120 InductionDescriptor II = InductionEntry.second; 3121 3122 Value *&EndValue = IVEndValues[OrigPhi]; 3123 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3124 if (OrigPhi == OldInduction) { 3125 // We know what the end value is. 3126 EndValue = VectorTripCount; 3127 } else { 3128 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3129 3130 // Fast-math-flags propagate from the original induction instruction. 3131 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3132 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3133 3134 Type *StepType = II.getStep()->getType(); 3135 Instruction::CastOps CastOp = 3136 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3137 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3138 Value *Step = 3139 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3140 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3141 EndValue->setName("ind.end"); 3142 3143 // Compute the end value for the additional bypass (if applicable). 3144 if (AdditionalBypass.first) { 3145 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3146 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3147 StepType, true); 3148 Value *Step = 3149 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3150 VTC = 3151 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3152 EndValueFromAdditionalBypass = 3153 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3154 EndValueFromAdditionalBypass->setName("ind.end"); 3155 } 3156 } 3157 3158 // Create phi nodes to merge from the backedge-taken check block. 3159 PHINode *BCResumeVal = 3160 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3161 LoopScalarPreHeader->getTerminator()); 3162 // Copy original phi DL over to the new one. 3163 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3164 3165 // The new PHI merges the original incoming value, in case of a bypass, 3166 // or the value at the end of the vectorized loop. 3167 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3168 3169 // Fix the scalar body counter (PHI node). 3170 // The old induction's phi node in the scalar body needs the truncated 3171 // value. 3172 for (BasicBlock *BB : LoopBypassBlocks) 3173 BCResumeVal->addIncoming(II.getStartValue(), BB); 3174 3175 if (AdditionalBypass.first) 3176 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3177 EndValueFromAdditionalBypass); 3178 3179 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3180 } 3181 } 3182 3183 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3184 // The trip counts should be cached by now. 3185 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3186 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3187 3188 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3189 3190 // Add a check in the middle block to see if we have completed 3191 // all of the iterations in the first vector loop. Three cases: 3192 // 1) If we require a scalar epilogue, there is no conditional branch as 3193 // we unconditionally branch to the scalar preheader. Do nothing. 3194 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3195 // Thus if tail is to be folded, we know we don't need to run the 3196 // remainder and we can use the previous value for the condition (true). 3197 // 3) Otherwise, construct a runtime check. 3198 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3199 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3200 Count, VectorTripCount, "cmp.n", 3201 LoopMiddleBlock->getTerminator()); 3202 3203 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3204 // of the corresponding compare because they may have ended up with 3205 // different line numbers and we want to avoid awkward line stepping while 3206 // debugging. Eg. if the compare has got a line number inside the loop. 3207 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3208 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3209 } 3210 3211 #ifdef EXPENSIVE_CHECKS 3212 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3213 #endif 3214 3215 return LoopVectorPreHeader; 3216 } 3217 3218 std::pair<BasicBlock *, Value *> 3219 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3220 /* 3221 In this function we generate a new loop. The new loop will contain 3222 the vectorized instructions while the old loop will continue to run the 3223 scalar remainder. 3224 3225 [ ] <-- loop iteration number check. 3226 / | 3227 / v 3228 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3229 | / | 3230 | / v 3231 || [ ] <-- vector pre header. 3232 |/ | 3233 | v 3234 | [ ] \ 3235 | [ ]_| <-- vector loop (created during VPlan execution). 3236 | | 3237 | v 3238 \ -[ ] <--- middle-block. 3239 \/ | 3240 /\ v 3241 | ->[ ] <--- new preheader. 3242 | | 3243 (opt) v <-- edge from middle to exit iff epilogue is not required. 3244 | [ ] \ 3245 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3246 \ | 3247 \ v 3248 >[ ] <-- exit block(s). 3249 ... 3250 */ 3251 3252 // Get the metadata of the original loop before it gets modified. 3253 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3254 3255 // Workaround! Compute the trip count of the original loop and cache it 3256 // before we start modifying the CFG. This code has a systemic problem 3257 // wherein it tries to run analysis over partially constructed IR; this is 3258 // wrong, and not simply for SCEV. The trip count of the original loop 3259 // simply happens to be prone to hitting this in practice. In theory, we 3260 // can hit the same issue for any SCEV, or ValueTracking query done during 3261 // mutation. See PR49900. 3262 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3263 3264 // Create an empty vector loop, and prepare basic blocks for the runtime 3265 // checks. 3266 createVectorLoopSkeleton(""); 3267 3268 // Now, compare the new count to zero. If it is zero skip the vector loop and 3269 // jump to the scalar loop. This check also covers the case where the 3270 // backedge-taken count is uint##_max: adding one to it will overflow leading 3271 // to an incorrect trip count of zero. In this (rare) case we will also jump 3272 // to the scalar loop. 3273 emitIterationCountCheck(LoopScalarPreHeader); 3274 3275 // Generate the code to check any assumptions that we've made for SCEV 3276 // expressions. 3277 emitSCEVChecks(LoopScalarPreHeader); 3278 3279 // Generate the code that checks in runtime if arrays overlap. We put the 3280 // checks into a separate block to make the more common case of few elements 3281 // faster. 3282 emitMemRuntimeChecks(LoopScalarPreHeader); 3283 3284 // Emit phis for the new starting index of the scalar loop. 3285 createInductionResumeValues(); 3286 3287 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3288 } 3289 3290 // Fix up external users of the induction variable. At this point, we are 3291 // in LCSSA form, with all external PHIs that use the IV having one input value, 3292 // coming from the remainder loop. We need those PHIs to also have a correct 3293 // value for the IV when arriving directly from the middle block. 3294 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3295 const InductionDescriptor &II, 3296 Value *VectorTripCount, Value *EndValue, 3297 BasicBlock *MiddleBlock, 3298 BasicBlock *VectorHeader, VPlan &Plan) { 3299 // There are two kinds of external IV usages - those that use the value 3300 // computed in the last iteration (the PHI) and those that use the penultimate 3301 // value (the value that feeds into the phi from the loop latch). 3302 // We allow both, but they, obviously, have different values. 3303 3304 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3305 3306 DenseMap<Value *, Value *> MissingVals; 3307 3308 // An external user of the last iteration's value should see the value that 3309 // the remainder loop uses to initialize its own IV. 3310 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3311 for (User *U : PostInc->users()) { 3312 Instruction *UI = cast<Instruction>(U); 3313 if (!OrigLoop->contains(UI)) { 3314 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3315 MissingVals[UI] = EndValue; 3316 } 3317 } 3318 3319 // An external user of the penultimate value need to see EndValue - Step. 3320 // The simplest way to get this is to recompute it from the constituent SCEVs, 3321 // that is Start + (Step * (CRD - 1)). 3322 for (User *U : OrigPhi->users()) { 3323 auto *UI = cast<Instruction>(U); 3324 if (!OrigLoop->contains(UI)) { 3325 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3326 3327 IRBuilder<> B(MiddleBlock->getTerminator()); 3328 3329 // Fast-math-flags propagate from the original induction instruction. 3330 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3331 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3332 3333 Value *CountMinusOne = B.CreateSub( 3334 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3335 Value *CMO = 3336 !II.getStep()->getType()->isIntegerTy() 3337 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3338 II.getStep()->getType()) 3339 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3340 CMO->setName("cast.cmo"); 3341 3342 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3343 VectorHeader->getTerminator()); 3344 Value *Escape = 3345 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3346 Escape->setName("ind.escape"); 3347 MissingVals[UI] = Escape; 3348 } 3349 } 3350 3351 for (auto &I : MissingVals) { 3352 PHINode *PHI = cast<PHINode>(I.first); 3353 // One corner case we have to handle is two IVs "chasing" each-other, 3354 // that is %IV2 = phi [...], [ %IV1, %latch ] 3355 // In this case, if IV1 has an external use, we need to avoid adding both 3356 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3357 // don't already have an incoming value for the middle block. 3358 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { 3359 PHI->addIncoming(I.second, MiddleBlock); 3360 Plan.removeLiveOut(PHI); 3361 } 3362 } 3363 } 3364 3365 namespace { 3366 3367 struct CSEDenseMapInfo { 3368 static bool canHandle(const Instruction *I) { 3369 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3370 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3371 } 3372 3373 static inline Instruction *getEmptyKey() { 3374 return DenseMapInfo<Instruction *>::getEmptyKey(); 3375 } 3376 3377 static inline Instruction *getTombstoneKey() { 3378 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3379 } 3380 3381 static unsigned getHashValue(const Instruction *I) { 3382 assert(canHandle(I) && "Unknown instruction!"); 3383 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3384 I->value_op_end())); 3385 } 3386 3387 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3388 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3389 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3390 return LHS == RHS; 3391 return LHS->isIdenticalTo(RHS); 3392 } 3393 }; 3394 3395 } // end anonymous namespace 3396 3397 ///Perform cse of induction variable instructions. 3398 static void cse(BasicBlock *BB) { 3399 // Perform simple cse. 3400 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3401 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3402 if (!CSEDenseMapInfo::canHandle(&In)) 3403 continue; 3404 3405 // Check if we can replace this instruction with any of the 3406 // visited instructions. 3407 if (Instruction *V = CSEMap.lookup(&In)) { 3408 In.replaceAllUsesWith(V); 3409 In.eraseFromParent(); 3410 continue; 3411 } 3412 3413 CSEMap[&In] = &In; 3414 } 3415 } 3416 3417 InstructionCost 3418 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3419 bool &NeedToScalarize) const { 3420 Function *F = CI->getCalledFunction(); 3421 Type *ScalarRetTy = CI->getType(); 3422 SmallVector<Type *, 4> Tys, ScalarTys; 3423 for (auto &ArgOp : CI->args()) 3424 ScalarTys.push_back(ArgOp->getType()); 3425 3426 // Estimate cost of scalarized vector call. The source operands are assumed 3427 // to be vectors, so we need to extract individual elements from there, 3428 // execute VF scalar calls, and then gather the result into the vector return 3429 // value. 3430 InstructionCost ScalarCallCost = 3431 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3432 if (VF.isScalar()) 3433 return ScalarCallCost; 3434 3435 // Compute corresponding vector type for return value and arguments. 3436 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3437 for (Type *ScalarTy : ScalarTys) 3438 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3439 3440 // Compute costs of unpacking argument values for the scalar calls and 3441 // packing the return values to a vector. 3442 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3443 3444 InstructionCost Cost = 3445 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3446 3447 // If we can't emit a vector call for this function, then the currently found 3448 // cost is the cost we need to return. 3449 NeedToScalarize = true; 3450 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3451 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3452 3453 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3454 return Cost; 3455 3456 // If the corresponding vector cost is cheaper, return its cost. 3457 InstructionCost VectorCallCost = 3458 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3459 if (VectorCallCost < Cost) { 3460 NeedToScalarize = false; 3461 Cost = VectorCallCost; 3462 } 3463 return Cost; 3464 } 3465 3466 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3467 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3468 return Elt; 3469 return VectorType::get(Elt, VF); 3470 } 3471 3472 InstructionCost 3473 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3474 ElementCount VF) const { 3475 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3476 assert(ID && "Expected intrinsic call!"); 3477 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3478 FastMathFlags FMF; 3479 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3480 FMF = FPMO->getFastMathFlags(); 3481 3482 SmallVector<const Value *> Arguments(CI->args()); 3483 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3484 SmallVector<Type *> ParamTys; 3485 std::transform(FTy->param_begin(), FTy->param_end(), 3486 std::back_inserter(ParamTys), 3487 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3488 3489 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3490 dyn_cast<IntrinsicInst>(CI)); 3491 return TTI.getIntrinsicInstrCost(CostAttrs, 3492 TargetTransformInfo::TCK_RecipThroughput); 3493 } 3494 3495 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3496 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3497 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3498 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3499 } 3500 3501 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3502 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3503 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3504 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3505 } 3506 3507 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3508 // For every instruction `I` in MinBWs, truncate the operands, create a 3509 // truncated version of `I` and reextend its result. InstCombine runs 3510 // later and will remove any ext/trunc pairs. 3511 SmallPtrSet<Value *, 4> Erased; 3512 for (const auto &KV : Cost->getMinimalBitwidths()) { 3513 // If the value wasn't vectorized, we must maintain the original scalar 3514 // type. The absence of the value from State indicates that it 3515 // wasn't vectorized. 3516 // FIXME: Should not rely on getVPValue at this point. 3517 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3518 if (!State.hasAnyVectorValue(Def)) 3519 continue; 3520 for (unsigned Part = 0; Part < UF; ++Part) { 3521 Value *I = State.get(Def, Part); 3522 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3523 continue; 3524 Type *OriginalTy = I->getType(); 3525 Type *ScalarTruncatedTy = 3526 IntegerType::get(OriginalTy->getContext(), KV.second); 3527 auto *TruncatedTy = VectorType::get( 3528 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3529 if (TruncatedTy == OriginalTy) 3530 continue; 3531 3532 IRBuilder<> B(cast<Instruction>(I)); 3533 auto ShrinkOperand = [&](Value *V) -> Value * { 3534 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3535 if (ZI->getSrcTy() == TruncatedTy) 3536 return ZI->getOperand(0); 3537 return B.CreateZExtOrTrunc(V, TruncatedTy); 3538 }; 3539 3540 // The actual instruction modification depends on the instruction type, 3541 // unfortunately. 3542 Value *NewI = nullptr; 3543 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3544 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3545 ShrinkOperand(BO->getOperand(1))); 3546 3547 // Any wrapping introduced by shrinking this operation shouldn't be 3548 // considered undefined behavior. So, we can't unconditionally copy 3549 // arithmetic wrapping flags to NewI. 3550 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3551 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3552 NewI = 3553 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3554 ShrinkOperand(CI->getOperand(1))); 3555 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3556 NewI = B.CreateSelect(SI->getCondition(), 3557 ShrinkOperand(SI->getTrueValue()), 3558 ShrinkOperand(SI->getFalseValue())); 3559 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3560 switch (CI->getOpcode()) { 3561 default: 3562 llvm_unreachable("Unhandled cast!"); 3563 case Instruction::Trunc: 3564 NewI = ShrinkOperand(CI->getOperand(0)); 3565 break; 3566 case Instruction::SExt: 3567 NewI = B.CreateSExtOrTrunc( 3568 CI->getOperand(0), 3569 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3570 break; 3571 case Instruction::ZExt: 3572 NewI = B.CreateZExtOrTrunc( 3573 CI->getOperand(0), 3574 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3575 break; 3576 } 3577 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3578 auto Elements0 = 3579 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3580 auto *O0 = B.CreateZExtOrTrunc( 3581 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3582 auto Elements1 = 3583 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3584 auto *O1 = B.CreateZExtOrTrunc( 3585 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3586 3587 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3588 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3589 // Don't do anything with the operands, just extend the result. 3590 continue; 3591 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3592 auto Elements = 3593 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3594 auto *O0 = B.CreateZExtOrTrunc( 3595 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3596 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3597 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3598 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3599 auto Elements = 3600 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3601 auto *O0 = B.CreateZExtOrTrunc( 3602 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3603 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3604 } else { 3605 // If we don't know what to do, be conservative and don't do anything. 3606 continue; 3607 } 3608 3609 // Lastly, extend the result. 3610 NewI->takeName(cast<Instruction>(I)); 3611 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3612 I->replaceAllUsesWith(Res); 3613 cast<Instruction>(I)->eraseFromParent(); 3614 Erased.insert(I); 3615 State.reset(Def, Res, Part); 3616 } 3617 } 3618 3619 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3620 for (const auto &KV : Cost->getMinimalBitwidths()) { 3621 // If the value wasn't vectorized, we must maintain the original scalar 3622 // type. The absence of the value from State indicates that it 3623 // wasn't vectorized. 3624 // FIXME: Should not rely on getVPValue at this point. 3625 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3626 if (!State.hasAnyVectorValue(Def)) 3627 continue; 3628 for (unsigned Part = 0; Part < UF; ++Part) { 3629 Value *I = State.get(Def, Part); 3630 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3631 if (Inst && Inst->use_empty()) { 3632 Value *NewI = Inst->getOperand(0); 3633 Inst->eraseFromParent(); 3634 State.reset(Def, NewI, Part); 3635 } 3636 } 3637 } 3638 } 3639 3640 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3641 VPlan &Plan) { 3642 // Insert truncates and extends for any truncated instructions as hints to 3643 // InstCombine. 3644 if (VF.isVector()) 3645 truncateToMinimalBitwidths(State); 3646 3647 // Fix widened non-induction PHIs by setting up the PHI operands. 3648 if (EnableVPlanNativePath) 3649 fixNonInductionPHIs(Plan, State); 3650 3651 // At this point every instruction in the original loop is widened to a 3652 // vector form. Now we need to fix the recurrences in the loop. These PHI 3653 // nodes are currently empty because we did not want to introduce cycles. 3654 // This is the second stage of vectorizing recurrences. 3655 fixCrossIterationPHIs(State); 3656 3657 // Forget the original basic block. 3658 PSE.getSE()->forgetLoop(OrigLoop); 3659 3660 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); 3661 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3662 if (Cost->requiresScalarEpilogue(VF)) { 3663 // No edge from the middle block to the unique exit block has been inserted 3664 // and there is nothing to fix from vector loop; phis should have incoming 3665 // from scalar loop only. 3666 Plan.clearLiveOuts(); 3667 } else { 3668 // If we inserted an edge from the middle block to the unique exit block, 3669 // update uses outside the loop (phis) to account for the newly inserted 3670 // edge. 3671 3672 // Fix-up external users of the induction variables. 3673 for (auto &Entry : Legal->getInductionVars()) 3674 fixupIVUsers(Entry.first, Entry.second, 3675 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3676 IVEndValues[Entry.first], LoopMiddleBlock, 3677 VectorLoop->getHeader(), Plan); 3678 } 3679 3680 // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated 3681 // in the exit block, so update the builder. 3682 State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); 3683 for (auto &KV : Plan.getLiveOuts()) 3684 KV.second->fixPhi(Plan, State); 3685 3686 for (Instruction *PI : PredicatedInstructions) 3687 sinkScalarOperands(&*PI); 3688 3689 // Remove redundant induction instructions. 3690 cse(VectorLoop->getHeader()); 3691 3692 // Set/update profile weights for the vector and remainder loops as original 3693 // loop iterations are now distributed among them. Note that original loop 3694 // represented by LoopScalarBody becomes remainder loop after vectorization. 3695 // 3696 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3697 // end up getting slightly roughened result but that should be OK since 3698 // profile is not inherently precise anyway. Note also possible bypass of 3699 // vector code caused by legality checks is ignored, assigning all the weight 3700 // to the vector loop, optimistically. 3701 // 3702 // For scalable vectorization we can't know at compile time how many iterations 3703 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3704 // vscale of '1'. 3705 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3706 LI->getLoopFor(LoopScalarBody), 3707 VF.getKnownMinValue() * UF); 3708 } 3709 3710 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3711 // In order to support recurrences we need to be able to vectorize Phi nodes. 3712 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3713 // stage #2: We now need to fix the recurrences by adding incoming edges to 3714 // the currently empty PHI nodes. At this point every instruction in the 3715 // original loop is widened to a vector form so we can use them to construct 3716 // the incoming edges. 3717 VPBasicBlock *Header = 3718 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3719 for (VPRecipeBase &R : Header->phis()) { 3720 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3721 fixReduction(ReductionPhi, State); 3722 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3723 fixFirstOrderRecurrence(FOR, State); 3724 } 3725 } 3726 3727 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3728 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3729 // This is the second phase of vectorizing first-order recurrences. An 3730 // overview of the transformation is described below. Suppose we have the 3731 // following loop. 3732 // 3733 // for (int i = 0; i < n; ++i) 3734 // b[i] = a[i] - a[i - 1]; 3735 // 3736 // There is a first-order recurrence on "a". For this loop, the shorthand 3737 // scalar IR looks like: 3738 // 3739 // scalar.ph: 3740 // s_init = a[-1] 3741 // br scalar.body 3742 // 3743 // scalar.body: 3744 // i = phi [0, scalar.ph], [i+1, scalar.body] 3745 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3746 // s2 = a[i] 3747 // b[i] = s2 - s1 3748 // br cond, scalar.body, ... 3749 // 3750 // In this example, s1 is a recurrence because it's value depends on the 3751 // previous iteration. In the first phase of vectorization, we created a 3752 // vector phi v1 for s1. We now complete the vectorization and produce the 3753 // shorthand vector IR shown below (for VF = 4, UF = 1). 3754 // 3755 // vector.ph: 3756 // v_init = vector(..., ..., ..., a[-1]) 3757 // br vector.body 3758 // 3759 // vector.body 3760 // i = phi [0, vector.ph], [i+4, vector.body] 3761 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3762 // v2 = a[i, i+1, i+2, i+3]; 3763 // v3 = vector(v1(3), v2(0, 1, 2)) 3764 // b[i, i+1, i+2, i+3] = v2 - v3 3765 // br cond, vector.body, middle.block 3766 // 3767 // middle.block: 3768 // x = v2(3) 3769 // br scalar.ph 3770 // 3771 // scalar.ph: 3772 // s_init = phi [x, middle.block], [a[-1], otherwise] 3773 // br scalar.body 3774 // 3775 // After execution completes the vector loop, we extract the next value of 3776 // the recurrence (x) to use as the initial value in the scalar loop. 3777 3778 // Extract the last vector element in the middle block. This will be the 3779 // initial value for the recurrence when jumping to the scalar loop. 3780 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3781 Value *Incoming = State.get(PreviousDef, UF - 1); 3782 auto *ExtractForScalar = Incoming; 3783 auto *IdxTy = Builder.getInt32Ty(); 3784 if (VF.isVector()) { 3785 auto *One = ConstantInt::get(IdxTy, 1); 3786 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3787 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3788 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3789 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3790 "vector.recur.extract"); 3791 } 3792 // Extract the second last element in the middle block if the 3793 // Phi is used outside the loop. We need to extract the phi itself 3794 // and not the last element (the phi update in the current iteration). This 3795 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3796 // when the scalar loop is not run at all. 3797 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3798 if (VF.isVector()) { 3799 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3800 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3801 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3802 Incoming, Idx, "vector.recur.extract.for.phi"); 3803 } else if (UF > 1) 3804 // When loop is unrolled without vectorizing, initialize 3805 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3806 // of `Incoming`. This is analogous to the vectorized case above: extracting 3807 // the second last element when VF > 1. 3808 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3809 3810 // Fix the initial value of the original recurrence in the scalar loop. 3811 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3812 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3813 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3814 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3815 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3816 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3817 Start->addIncoming(Incoming, BB); 3818 } 3819 3820 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3821 Phi->setName("scalar.recur"); 3822 3823 // Finally, fix users of the recurrence outside the loop. The users will need 3824 // either the last value of the scalar recurrence or the last value of the 3825 // vector recurrence we extracted in the middle block. Since the loop is in 3826 // LCSSA form, we just need to find all the phi nodes for the original scalar 3827 // recurrence in the exit block, and then add an edge for the middle block. 3828 // Note that LCSSA does not imply single entry when the original scalar loop 3829 // had multiple exiting edges (as we always run the last iteration in the 3830 // scalar epilogue); in that case, there is no edge from middle to exit and 3831 // and thus no phis which needed updated. 3832 if (!Cost->requiresScalarEpilogue(VF)) 3833 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3834 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { 3835 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3836 State.Plan->removeLiveOut(&LCSSAPhi); 3837 } 3838 } 3839 3840 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3841 VPTransformState &State) { 3842 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3843 // Get it's reduction variable descriptor. 3844 assert(Legal->isReductionVariable(OrigPhi) && 3845 "Unable to find the reduction variable"); 3846 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3847 3848 RecurKind RK = RdxDesc.getRecurrenceKind(); 3849 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3850 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3851 State.setDebugLocFromInst(ReductionStartValue); 3852 3853 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3854 // This is the vector-clone of the value that leaves the loop. 3855 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3856 3857 // Wrap flags are in general invalid after vectorization, clear them. 3858 clearReductionWrapFlags(PhiR, State); 3859 3860 // Before each round, move the insertion point right between 3861 // the PHIs and the values we are going to write. 3862 // This allows us to write both PHINodes and the extractelement 3863 // instructions. 3864 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3865 3866 State.setDebugLocFromInst(LoopExitInst); 3867 3868 Type *PhiTy = OrigPhi->getType(); 3869 3870 VPBasicBlock *LatchVPBB = 3871 PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); 3872 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3873 // If tail is folded by masking, the vector value to leave the loop should be 3874 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3875 // instead of the former. For an inloop reduction the reduction will already 3876 // be predicated, and does not need to be handled here. 3877 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3878 for (unsigned Part = 0; Part < UF; ++Part) { 3879 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3880 SelectInst *Sel = nullptr; 3881 for (User *U : VecLoopExitInst->users()) { 3882 if (isa<SelectInst>(U)) { 3883 assert(!Sel && "Reduction exit feeding two selects"); 3884 Sel = cast<SelectInst>(U); 3885 } else 3886 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3887 } 3888 assert(Sel && "Reduction exit feeds no select"); 3889 State.reset(LoopExitInstDef, Sel, Part); 3890 3891 if (isa<FPMathOperator>(Sel)) 3892 Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); 3893 3894 // If the target can create a predicated operator for the reduction at no 3895 // extra cost in the loop (for example a predicated vadd), it can be 3896 // cheaper for the select to remain in the loop than be sunk out of it, 3897 // and so use the select value for the phi instead of the old 3898 // LoopExitValue. 3899 if (PreferPredicatedReductionSelect || 3900 TTI->preferPredicatedReductionSelect( 3901 RdxDesc.getOpcode(), PhiTy, 3902 TargetTransformInfo::ReductionFlags())) { 3903 auto *VecRdxPhi = 3904 cast<PHINode>(State.get(PhiR, Part)); 3905 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3906 } 3907 } 3908 } 3909 3910 // If the vector reduction can be performed in a smaller type, we truncate 3911 // then extend the loop exit value to enable InstCombine to evaluate the 3912 // entire expression in the smaller type. 3913 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3914 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3915 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3916 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3917 VectorParts RdxParts(UF); 3918 for (unsigned Part = 0; Part < UF; ++Part) { 3919 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3920 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3921 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3922 : Builder.CreateZExt(Trunc, VecTy); 3923 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3924 if (U != Trunc) { 3925 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3926 RdxParts[Part] = Extnd; 3927 } 3928 } 3929 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3930 for (unsigned Part = 0; Part < UF; ++Part) { 3931 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3932 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3933 } 3934 } 3935 3936 // Reduce all of the unrolled parts into a single vector. 3937 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3938 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3939 3940 // The middle block terminator has already been assigned a DebugLoc here (the 3941 // OrigLoop's single latch terminator). We want the whole middle block to 3942 // appear to execute on this line because: (a) it is all compiler generated, 3943 // (b) these instructions are always executed after evaluating the latch 3944 // conditional branch, and (c) other passes may add new predecessors which 3945 // terminate on this line. This is the easiest way to ensure we don't 3946 // accidentally cause an extra step back into the loop while debugging. 3947 State.setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3948 if (PhiR->isOrdered()) 3949 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3950 else { 3951 // Floating-point operations should have some FMF to enable the reduction. 3952 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3953 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3954 for (unsigned Part = 1; Part < UF; ++Part) { 3955 Value *RdxPart = State.get(LoopExitInstDef, Part); 3956 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3957 ReducedPartRdx = Builder.CreateBinOp( 3958 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3959 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3960 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3961 ReducedPartRdx, RdxPart); 3962 else 3963 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3964 } 3965 } 3966 3967 // Create the reduction after the loop. Note that inloop reductions create the 3968 // target reduction in the loop using a Reduction recipe. 3969 if (VF.isVector() && !PhiR->isInLoop()) { 3970 ReducedPartRdx = 3971 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3972 // If the reduction can be performed in a smaller type, we need to extend 3973 // the reduction to the wider type before we branch to the original loop. 3974 if (PhiTy != RdxDesc.getRecurrenceType()) 3975 ReducedPartRdx = RdxDesc.isSigned() 3976 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3977 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3978 } 3979 3980 PHINode *ResumePhi = 3981 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3982 3983 // Create a phi node that merges control-flow from the backedge-taken check 3984 // block and the middle block. 3985 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3986 LoopScalarPreHeader->getTerminator()); 3987 3988 // If we are fixing reductions in the epilogue loop then we should already 3989 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3990 // we carry over the incoming values correctly. 3991 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 3992 if (Incoming == LoopMiddleBlock) 3993 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 3994 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 3995 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 3996 Incoming); 3997 else 3998 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 3999 } 4000 4001 // Set the resume value for this reduction 4002 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4003 4004 // If there were stores of the reduction value to a uniform memory address 4005 // inside the loop, create the final store here. 4006 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4007 StoreInst *NewSI = 4008 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4009 propagateMetadata(NewSI, SI); 4010 4011 // If the reduction value is used in other places, 4012 // then let the code below create PHI's for that. 4013 } 4014 4015 // Now, we need to fix the users of the reduction variable 4016 // inside and outside of the scalar remainder loop. 4017 4018 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4019 // in the exit blocks. See comment on analogous loop in 4020 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4021 if (!Cost->requiresScalarEpilogue(VF)) 4022 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4023 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { 4024 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4025 State.Plan->removeLiveOut(&LCSSAPhi); 4026 } 4027 4028 // Fix the scalar loop reduction variable with the incoming reduction sum 4029 // from the vector body and from the backedge value. 4030 int IncomingEdgeBlockIdx = 4031 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4032 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4033 // Pick the other block. 4034 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4035 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4036 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4037 } 4038 4039 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 4040 VPTransformState &State) { 4041 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4042 RecurKind RK = RdxDesc.getRecurrenceKind(); 4043 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4044 return; 4045 4046 SmallVector<VPValue *, 8> Worklist; 4047 SmallPtrSet<VPValue *, 8> Visited; 4048 Worklist.push_back(PhiR); 4049 Visited.insert(PhiR); 4050 4051 while (!Worklist.empty()) { 4052 VPValue *Cur = Worklist.pop_back_val(); 4053 for (unsigned Part = 0; Part < UF; ++Part) { 4054 Value *V = State.get(Cur, Part); 4055 if (!isa<OverflowingBinaryOperator>(V)) 4056 break; 4057 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4058 } 4059 4060 for (VPUser *U : Cur->users()) { 4061 auto *UserRecipe = dyn_cast<VPRecipeBase>(U); 4062 if (!UserRecipe) 4063 continue; 4064 for (VPValue *V : UserRecipe->definedValues()) 4065 if (Visited.insert(V).second) 4066 Worklist.push_back(V); 4067 } 4068 } 4069 } 4070 4071 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4072 // The basic block and loop containing the predicated instruction. 4073 auto *PredBB = PredInst->getParent(); 4074 auto *VectorLoop = LI->getLoopFor(PredBB); 4075 4076 // Initialize a worklist with the operands of the predicated instruction. 4077 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4078 4079 // Holds instructions that we need to analyze again. An instruction may be 4080 // reanalyzed if we don't yet know if we can sink it or not. 4081 SmallVector<Instruction *, 8> InstsToReanalyze; 4082 4083 // Returns true if a given use occurs in the predicated block. Phi nodes use 4084 // their operands in their corresponding predecessor blocks. 4085 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4086 auto *I = cast<Instruction>(U.getUser()); 4087 BasicBlock *BB = I->getParent(); 4088 if (auto *Phi = dyn_cast<PHINode>(I)) 4089 BB = Phi->getIncomingBlock( 4090 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4091 return BB == PredBB; 4092 }; 4093 4094 // Iteratively sink the scalarized operands of the predicated instruction 4095 // into the block we created for it. When an instruction is sunk, it's 4096 // operands are then added to the worklist. The algorithm ends after one pass 4097 // through the worklist doesn't sink a single instruction. 4098 bool Changed; 4099 do { 4100 // Add the instructions that need to be reanalyzed to the worklist, and 4101 // reset the changed indicator. 4102 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4103 InstsToReanalyze.clear(); 4104 Changed = false; 4105 4106 while (!Worklist.empty()) { 4107 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4108 4109 // We can't sink an instruction if it is a phi node, is not in the loop, 4110 // or may have side effects. 4111 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4112 I->mayHaveSideEffects()) 4113 continue; 4114 4115 // If the instruction is already in PredBB, check if we can sink its 4116 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4117 // sinking the scalar instruction I, hence it appears in PredBB; but it 4118 // may have failed to sink I's operands (recursively), which we try 4119 // (again) here. 4120 if (I->getParent() == PredBB) { 4121 Worklist.insert(I->op_begin(), I->op_end()); 4122 continue; 4123 } 4124 4125 // It's legal to sink the instruction if all its uses occur in the 4126 // predicated block. Otherwise, there's nothing to do yet, and we may 4127 // need to reanalyze the instruction. 4128 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4129 InstsToReanalyze.push_back(I); 4130 continue; 4131 } 4132 4133 // Move the instruction to the beginning of the predicated block, and add 4134 // it's operands to the worklist. 4135 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4136 Worklist.insert(I->op_begin(), I->op_end()); 4137 4138 // The sinking may have enabled other instructions to be sunk, so we will 4139 // need to iterate. 4140 Changed = true; 4141 } 4142 } while (Changed); 4143 } 4144 4145 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, 4146 VPTransformState &State) { 4147 auto Iter = depth_first( 4148 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())); 4149 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4150 for (VPRecipeBase &P : VPBB->phis()) { 4151 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 4152 if (!VPPhi) 4153 continue; 4154 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4155 // Make sure the builder has a valid insert point. 4156 Builder.SetInsertPoint(NewPhi); 4157 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4158 VPValue *Inc = VPPhi->getIncomingValue(i); 4159 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4160 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4161 } 4162 } 4163 } 4164 } 4165 4166 bool InnerLoopVectorizer::useOrderedReductions( 4167 const RecurrenceDescriptor &RdxDesc) { 4168 return Cost->useOrderedReductions(RdxDesc); 4169 } 4170 4171 /// A helper function for checking whether an integer division-related 4172 /// instruction may divide by zero (in which case it must be predicated if 4173 /// executed conditionally in the scalar code). 4174 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4175 /// Non-zero divisors that are non compile-time constants will not be 4176 /// converted into multiplication, so we will still end up scalarizing 4177 /// the division, but can do so w/o predication. 4178 static bool mayDivideByZero(Instruction &I) { 4179 assert((I.getOpcode() == Instruction::UDiv || 4180 I.getOpcode() == Instruction::SDiv || 4181 I.getOpcode() == Instruction::URem || 4182 I.getOpcode() == Instruction::SRem) && 4183 "Unexpected instruction"); 4184 Value *Divisor = I.getOperand(1); 4185 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4186 return !CInt || CInt->isZero(); 4187 } 4188 4189 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4190 VPUser &ArgOperands, 4191 VPTransformState &State) { 4192 assert(!isa<DbgInfoIntrinsic>(I) && 4193 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4194 State.setDebugLocFromInst(&I); 4195 4196 Module *M = I.getParent()->getParent()->getParent(); 4197 auto *CI = cast<CallInst>(&I); 4198 4199 SmallVector<Type *, 4> Tys; 4200 for (Value *ArgOperand : CI->args()) 4201 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4202 4203 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4204 4205 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4206 // version of the instruction. 4207 // Is it beneficial to perform intrinsic call compared to lib call? 4208 bool NeedToScalarize = false; 4209 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4210 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4211 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4212 assert((UseVectorIntrinsic || !NeedToScalarize) && 4213 "Instruction should be scalarized elsewhere."); 4214 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4215 "Either the intrinsic cost or vector call cost must be valid"); 4216 4217 for (unsigned Part = 0; Part < UF; ++Part) { 4218 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4219 SmallVector<Value *, 4> Args; 4220 for (auto &I : enumerate(ArgOperands.operands())) { 4221 // Some intrinsics have a scalar argument - don't replace it with a 4222 // vector. 4223 Value *Arg; 4224 if (!UseVectorIntrinsic || 4225 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4226 Arg = State.get(I.value(), Part); 4227 else 4228 Arg = State.get(I.value(), VPIteration(0, 0)); 4229 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4230 TysForDecl.push_back(Arg->getType()); 4231 Args.push_back(Arg); 4232 } 4233 4234 Function *VectorF; 4235 if (UseVectorIntrinsic) { 4236 // Use vector version of the intrinsic. 4237 if (VF.isVector()) 4238 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4239 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4240 assert(VectorF && "Can't retrieve vector intrinsic."); 4241 } else { 4242 // Use vector version of the function call. 4243 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4244 #ifndef NDEBUG 4245 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4246 "Can't create vector function."); 4247 #endif 4248 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4249 } 4250 SmallVector<OperandBundleDef, 1> OpBundles; 4251 CI->getOperandBundlesAsDefs(OpBundles); 4252 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4253 4254 if (isa<FPMathOperator>(V)) 4255 V->copyFastMathFlags(CI); 4256 4257 State.set(Def, V, Part); 4258 State.addMetadata(V, &I); 4259 } 4260 } 4261 4262 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4263 // We should not collect Scalars more than once per VF. Right now, this 4264 // function is called from collectUniformsAndScalars(), which already does 4265 // this check. Collecting Scalars for VF=1 does not make any sense. 4266 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4267 "This function should not be visited twice for the same VF"); 4268 4269 // This avoids any chances of creating a REPLICATE recipe during planning 4270 // since that would result in generation of scalarized code during execution, 4271 // which is not supported for scalable vectors. 4272 if (VF.isScalable()) { 4273 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4274 return; 4275 } 4276 4277 SmallSetVector<Instruction *, 8> Worklist; 4278 4279 // These sets are used to seed the analysis with pointers used by memory 4280 // accesses that will remain scalar. 4281 SmallSetVector<Instruction *, 8> ScalarPtrs; 4282 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4283 auto *Latch = TheLoop->getLoopLatch(); 4284 4285 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4286 // The pointer operands of loads and stores will be scalar as long as the 4287 // memory access is not a gather or scatter operation. The value operand of a 4288 // store will remain scalar if the store is scalarized. 4289 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4290 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4291 assert(WideningDecision != CM_Unknown && 4292 "Widening decision should be ready at this moment"); 4293 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4294 if (Ptr == Store->getValueOperand()) 4295 return WideningDecision == CM_Scalarize; 4296 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4297 "Ptr is neither a value or pointer operand"); 4298 return WideningDecision != CM_GatherScatter; 4299 }; 4300 4301 // A helper that returns true if the given value is a bitcast or 4302 // getelementptr instruction contained in the loop. 4303 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4304 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4305 isa<GetElementPtrInst>(V)) && 4306 !TheLoop->isLoopInvariant(V); 4307 }; 4308 4309 // A helper that evaluates a memory access's use of a pointer. If the use will 4310 // be a scalar use and the pointer is only used by memory accesses, we place 4311 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4312 // PossibleNonScalarPtrs. 4313 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4314 // We only care about bitcast and getelementptr instructions contained in 4315 // the loop. 4316 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4317 return; 4318 4319 // If the pointer has already been identified as scalar (e.g., if it was 4320 // also identified as uniform), there's nothing to do. 4321 auto *I = cast<Instruction>(Ptr); 4322 if (Worklist.count(I)) 4323 return; 4324 4325 // If the use of the pointer will be a scalar use, and all users of the 4326 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4327 // place the pointer in PossibleNonScalarPtrs. 4328 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4329 return isa<LoadInst>(U) || isa<StoreInst>(U); 4330 })) 4331 ScalarPtrs.insert(I); 4332 else 4333 PossibleNonScalarPtrs.insert(I); 4334 }; 4335 4336 // We seed the scalars analysis with three classes of instructions: (1) 4337 // instructions marked uniform-after-vectorization and (2) bitcast, 4338 // getelementptr and (pointer) phi instructions used by memory accesses 4339 // requiring a scalar use. 4340 // 4341 // (1) Add to the worklist all instructions that have been identified as 4342 // uniform-after-vectorization. 4343 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4344 4345 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4346 // memory accesses requiring a scalar use. The pointer operands of loads and 4347 // stores will be scalar as long as the memory accesses is not a gather or 4348 // scatter operation. The value operand of a store will remain scalar if the 4349 // store is scalarized. 4350 for (auto *BB : TheLoop->blocks()) 4351 for (auto &I : *BB) { 4352 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4353 evaluatePtrUse(Load, Load->getPointerOperand()); 4354 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4355 evaluatePtrUse(Store, Store->getPointerOperand()); 4356 evaluatePtrUse(Store, Store->getValueOperand()); 4357 } 4358 } 4359 for (auto *I : ScalarPtrs) 4360 if (!PossibleNonScalarPtrs.count(I)) { 4361 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4362 Worklist.insert(I); 4363 } 4364 4365 // Insert the forced scalars. 4366 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector 4367 // induction variable when the PHI user is scalarized. 4368 auto ForcedScalar = ForcedScalars.find(VF); 4369 if (ForcedScalar != ForcedScalars.end()) 4370 for (auto *I : ForcedScalar->second) 4371 Worklist.insert(I); 4372 4373 // Expand the worklist by looking through any bitcasts and getelementptr 4374 // instructions we've already identified as scalar. This is similar to the 4375 // expansion step in collectLoopUniforms(); however, here we're only 4376 // expanding to include additional bitcasts and getelementptr instructions. 4377 unsigned Idx = 0; 4378 while (Idx != Worklist.size()) { 4379 Instruction *Dst = Worklist[Idx++]; 4380 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4381 continue; 4382 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4383 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4384 auto *J = cast<Instruction>(U); 4385 return !TheLoop->contains(J) || Worklist.count(J) || 4386 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4387 isScalarUse(J, Src)); 4388 })) { 4389 Worklist.insert(Src); 4390 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4391 } 4392 } 4393 4394 // An induction variable will remain scalar if all users of the induction 4395 // variable and induction variable update remain scalar. 4396 for (auto &Induction : Legal->getInductionVars()) { 4397 auto *Ind = Induction.first; 4398 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4399 4400 // If tail-folding is applied, the primary induction variable will be used 4401 // to feed a vector compare. 4402 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4403 continue; 4404 4405 // Returns true if \p Indvar is a pointer induction that is used directly by 4406 // load/store instruction \p I. 4407 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4408 Instruction *I) { 4409 return Induction.second.getKind() == 4410 InductionDescriptor::IK_PtrInduction && 4411 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4412 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4413 }; 4414 4415 // Determine if all users of the induction variable are scalar after 4416 // vectorization. 4417 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4418 auto *I = cast<Instruction>(U); 4419 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4420 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4421 }); 4422 if (!ScalarInd) 4423 continue; 4424 4425 // Determine if all users of the induction variable update instruction are 4426 // scalar after vectorization. 4427 auto ScalarIndUpdate = 4428 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4429 auto *I = cast<Instruction>(U); 4430 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4431 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4432 }); 4433 if (!ScalarIndUpdate) 4434 continue; 4435 4436 // The induction variable and its update instruction will remain scalar. 4437 Worklist.insert(Ind); 4438 Worklist.insert(IndUpdate); 4439 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4440 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4441 << "\n"); 4442 } 4443 4444 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4445 } 4446 4447 bool LoopVectorizationCostModel::isScalarWithPredication( 4448 Instruction *I, ElementCount VF) const { 4449 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4450 return false; 4451 switch(I->getOpcode()) { 4452 default: 4453 break; 4454 case Instruction::Load: 4455 case Instruction::Store: { 4456 if (!Legal->isMaskRequired(I)) 4457 return false; 4458 auto *Ptr = getLoadStorePointerOperand(I); 4459 auto *Ty = getLoadStoreType(I); 4460 Type *VTy = Ty; 4461 if (VF.isVector()) 4462 VTy = VectorType::get(Ty, VF); 4463 const Align Alignment = getLoadStoreAlignment(I); 4464 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4465 TTI.isLegalMaskedGather(VTy, Alignment)) 4466 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4467 TTI.isLegalMaskedScatter(VTy, Alignment)); 4468 } 4469 case Instruction::UDiv: 4470 case Instruction::SDiv: 4471 case Instruction::SRem: 4472 case Instruction::URem: 4473 return mayDivideByZero(*I); 4474 } 4475 return false; 4476 } 4477 4478 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4479 Instruction *I, ElementCount VF) { 4480 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4481 assert(getWideningDecision(I, VF) == CM_Unknown && 4482 "Decision should not be set yet."); 4483 auto *Group = getInterleavedAccessGroup(I); 4484 assert(Group && "Must have a group."); 4485 4486 // If the instruction's allocated size doesn't equal it's type size, it 4487 // requires padding and will be scalarized. 4488 auto &DL = I->getModule()->getDataLayout(); 4489 auto *ScalarTy = getLoadStoreType(I); 4490 if (hasIrregularType(ScalarTy, DL)) 4491 return false; 4492 4493 // If the group involves a non-integral pointer, we may not be able to 4494 // losslessly cast all values to a common type. 4495 unsigned InterleaveFactor = Group->getFactor(); 4496 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4497 for (unsigned i = 0; i < InterleaveFactor; i++) { 4498 Instruction *Member = Group->getMember(i); 4499 if (!Member) 4500 continue; 4501 auto *MemberTy = getLoadStoreType(Member); 4502 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4503 // Don't coerce non-integral pointers to integers or vice versa. 4504 if (MemberNI != ScalarNI) { 4505 // TODO: Consider adding special nullptr value case here 4506 return false; 4507 } else if (MemberNI && ScalarNI && 4508 ScalarTy->getPointerAddressSpace() != 4509 MemberTy->getPointerAddressSpace()) { 4510 return false; 4511 } 4512 } 4513 4514 // Check if masking is required. 4515 // A Group may need masking for one of two reasons: it resides in a block that 4516 // needs predication, or it was decided to use masking to deal with gaps 4517 // (either a gap at the end of a load-access that may result in a speculative 4518 // load, or any gaps in a store-access). 4519 bool PredicatedAccessRequiresMasking = 4520 blockNeedsPredicationForAnyReason(I->getParent()) && 4521 Legal->isMaskRequired(I); 4522 bool LoadAccessWithGapsRequiresEpilogMasking = 4523 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4524 !isScalarEpilogueAllowed(); 4525 bool StoreAccessWithGapsRequiresMasking = 4526 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4527 if (!PredicatedAccessRequiresMasking && 4528 !LoadAccessWithGapsRequiresEpilogMasking && 4529 !StoreAccessWithGapsRequiresMasking) 4530 return true; 4531 4532 // If masked interleaving is required, we expect that the user/target had 4533 // enabled it, because otherwise it either wouldn't have been created or 4534 // it should have been invalidated by the CostModel. 4535 assert(useMaskedInterleavedAccesses(TTI) && 4536 "Masked interleave-groups for predicated accesses are not enabled."); 4537 4538 if (Group->isReverse()) 4539 return false; 4540 4541 auto *Ty = getLoadStoreType(I); 4542 const Align Alignment = getLoadStoreAlignment(I); 4543 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4544 : TTI.isLegalMaskedStore(Ty, Alignment); 4545 } 4546 4547 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4548 Instruction *I, ElementCount VF) { 4549 // Get and ensure we have a valid memory instruction. 4550 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4551 4552 auto *Ptr = getLoadStorePointerOperand(I); 4553 auto *ScalarTy = getLoadStoreType(I); 4554 4555 // In order to be widened, the pointer should be consecutive, first of all. 4556 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4557 return false; 4558 4559 // If the instruction is a store located in a predicated block, it will be 4560 // scalarized. 4561 if (isScalarWithPredication(I, VF)) 4562 return false; 4563 4564 // If the instruction's allocated size doesn't equal it's type size, it 4565 // requires padding and will be scalarized. 4566 auto &DL = I->getModule()->getDataLayout(); 4567 if (hasIrregularType(ScalarTy, DL)) 4568 return false; 4569 4570 return true; 4571 } 4572 4573 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4574 // We should not collect Uniforms more than once per VF. Right now, 4575 // this function is called from collectUniformsAndScalars(), which 4576 // already does this check. Collecting Uniforms for VF=1 does not make any 4577 // sense. 4578 4579 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4580 "This function should not be visited twice for the same VF"); 4581 4582 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4583 // not analyze again. Uniforms.count(VF) will return 1. 4584 Uniforms[VF].clear(); 4585 4586 // We now know that the loop is vectorizable! 4587 // Collect instructions inside the loop that will remain uniform after 4588 // vectorization. 4589 4590 // Global values, params and instructions outside of current loop are out of 4591 // scope. 4592 auto isOutOfScope = [&](Value *V) -> bool { 4593 Instruction *I = dyn_cast<Instruction>(V); 4594 return (!I || !TheLoop->contains(I)); 4595 }; 4596 4597 // Worklist containing uniform instructions demanding lane 0. 4598 SetVector<Instruction *> Worklist; 4599 BasicBlock *Latch = TheLoop->getLoopLatch(); 4600 4601 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4602 // that are scalar with predication must not be considered uniform after 4603 // vectorization, because that would create an erroneous replicating region 4604 // where only a single instance out of VF should be formed. 4605 // TODO: optimize such seldom cases if found important, see PR40816. 4606 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4607 if (isOutOfScope(I)) { 4608 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4609 << *I << "\n"); 4610 return; 4611 } 4612 if (isScalarWithPredication(I, VF)) { 4613 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4614 << *I << "\n"); 4615 return; 4616 } 4617 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4618 Worklist.insert(I); 4619 }; 4620 4621 // Start with the conditional branch. If the branch condition is an 4622 // instruction contained in the loop that is only used by the branch, it is 4623 // uniform. 4624 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4625 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4626 addToWorklistIfAllowed(Cmp); 4627 4628 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4629 InstWidening WideningDecision = getWideningDecision(I, VF); 4630 assert(WideningDecision != CM_Unknown && 4631 "Widening decision should be ready at this moment"); 4632 4633 // A uniform memory op is itself uniform. We exclude uniform stores 4634 // here as they demand the last lane, not the first one. 4635 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4636 assert(WideningDecision == CM_Scalarize); 4637 return true; 4638 } 4639 4640 return (WideningDecision == CM_Widen || 4641 WideningDecision == CM_Widen_Reverse || 4642 WideningDecision == CM_Interleave); 4643 }; 4644 4645 4646 // Returns true if Ptr is the pointer operand of a memory access instruction 4647 // I, and I is known to not require scalarization. 4648 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4649 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4650 }; 4651 4652 // Holds a list of values which are known to have at least one uniform use. 4653 // Note that there may be other uses which aren't uniform. A "uniform use" 4654 // here is something which only demands lane 0 of the unrolled iterations; 4655 // it does not imply that all lanes produce the same value (e.g. this is not 4656 // the usual meaning of uniform) 4657 SetVector<Value *> HasUniformUse; 4658 4659 // Scan the loop for instructions which are either a) known to have only 4660 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4661 for (auto *BB : TheLoop->blocks()) 4662 for (auto &I : *BB) { 4663 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4664 switch (II->getIntrinsicID()) { 4665 case Intrinsic::sideeffect: 4666 case Intrinsic::experimental_noalias_scope_decl: 4667 case Intrinsic::assume: 4668 case Intrinsic::lifetime_start: 4669 case Intrinsic::lifetime_end: 4670 if (TheLoop->hasLoopInvariantOperands(&I)) 4671 addToWorklistIfAllowed(&I); 4672 break; 4673 default: 4674 break; 4675 } 4676 } 4677 4678 // ExtractValue instructions must be uniform, because the operands are 4679 // known to be loop-invariant. 4680 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4681 assert(isOutOfScope(EVI->getAggregateOperand()) && 4682 "Expected aggregate value to be loop invariant"); 4683 addToWorklistIfAllowed(EVI); 4684 continue; 4685 } 4686 4687 // If there's no pointer operand, there's nothing to do. 4688 auto *Ptr = getLoadStorePointerOperand(&I); 4689 if (!Ptr) 4690 continue; 4691 4692 // A uniform memory op is itself uniform. We exclude uniform stores 4693 // here as they demand the last lane, not the first one. 4694 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4695 addToWorklistIfAllowed(&I); 4696 4697 if (isUniformDecision(&I, VF)) { 4698 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4699 HasUniformUse.insert(Ptr); 4700 } 4701 } 4702 4703 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4704 // demanding) users. Since loops are assumed to be in LCSSA form, this 4705 // disallows uses outside the loop as well. 4706 for (auto *V : HasUniformUse) { 4707 if (isOutOfScope(V)) 4708 continue; 4709 auto *I = cast<Instruction>(V); 4710 auto UsersAreMemAccesses = 4711 llvm::all_of(I->users(), [&](User *U) -> bool { 4712 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4713 }); 4714 if (UsersAreMemAccesses) 4715 addToWorklistIfAllowed(I); 4716 } 4717 4718 // Expand Worklist in topological order: whenever a new instruction 4719 // is added , its users should be already inside Worklist. It ensures 4720 // a uniform instruction will only be used by uniform instructions. 4721 unsigned idx = 0; 4722 while (idx != Worklist.size()) { 4723 Instruction *I = Worklist[idx++]; 4724 4725 for (auto OV : I->operand_values()) { 4726 // isOutOfScope operands cannot be uniform instructions. 4727 if (isOutOfScope(OV)) 4728 continue; 4729 // First order recurrence Phi's should typically be considered 4730 // non-uniform. 4731 auto *OP = dyn_cast<PHINode>(OV); 4732 if (OP && Legal->isFirstOrderRecurrence(OP)) 4733 continue; 4734 // If all the users of the operand are uniform, then add the 4735 // operand into the uniform worklist. 4736 auto *OI = cast<Instruction>(OV); 4737 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4738 auto *J = cast<Instruction>(U); 4739 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4740 })) 4741 addToWorklistIfAllowed(OI); 4742 } 4743 } 4744 4745 // For an instruction to be added into Worklist above, all its users inside 4746 // the loop should also be in Worklist. However, this condition cannot be 4747 // true for phi nodes that form a cyclic dependence. We must process phi 4748 // nodes separately. An induction variable will remain uniform if all users 4749 // of the induction variable and induction variable update remain uniform. 4750 // The code below handles both pointer and non-pointer induction variables. 4751 for (auto &Induction : Legal->getInductionVars()) { 4752 auto *Ind = Induction.first; 4753 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4754 4755 // Determine if all users of the induction variable are uniform after 4756 // vectorization. 4757 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4758 auto *I = cast<Instruction>(U); 4759 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4760 isVectorizedMemAccessUse(I, Ind); 4761 }); 4762 if (!UniformInd) 4763 continue; 4764 4765 // Determine if all users of the induction variable update instruction are 4766 // uniform after vectorization. 4767 auto UniformIndUpdate = 4768 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4769 auto *I = cast<Instruction>(U); 4770 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4771 isVectorizedMemAccessUse(I, IndUpdate); 4772 }); 4773 if (!UniformIndUpdate) 4774 continue; 4775 4776 // The induction variable and its update instruction will remain uniform. 4777 addToWorklistIfAllowed(Ind); 4778 addToWorklistIfAllowed(IndUpdate); 4779 } 4780 4781 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4782 } 4783 4784 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4785 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4786 4787 if (Legal->getRuntimePointerChecking()->Need) { 4788 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4789 "runtime pointer checks needed. Enable vectorization of this " 4790 "loop with '#pragma clang loop vectorize(enable)' when " 4791 "compiling with -Os/-Oz", 4792 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4793 return true; 4794 } 4795 4796 if (!PSE.getPredicate().isAlwaysTrue()) { 4797 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4798 "runtime SCEV checks needed. Enable vectorization of this " 4799 "loop with '#pragma clang loop vectorize(enable)' when " 4800 "compiling with -Os/-Oz", 4801 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4802 return true; 4803 } 4804 4805 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4806 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4807 reportVectorizationFailure("Runtime stride check for small trip count", 4808 "runtime stride == 1 checks needed. Enable vectorization of " 4809 "this loop without such check by compiling with -Os/-Oz", 4810 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4811 return true; 4812 } 4813 4814 return false; 4815 } 4816 4817 ElementCount 4818 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4819 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4820 return ElementCount::getScalable(0); 4821 4822 if (Hints->isScalableVectorizationDisabled()) { 4823 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4824 "ScalableVectorizationDisabled", ORE, TheLoop); 4825 return ElementCount::getScalable(0); 4826 } 4827 4828 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4829 4830 auto MaxScalableVF = ElementCount::getScalable( 4831 std::numeric_limits<ElementCount::ScalarTy>::max()); 4832 4833 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4834 // FIXME: While for scalable vectors this is currently sufficient, this should 4835 // be replaced by a more detailed mechanism that filters out specific VFs, 4836 // instead of invalidating vectorization for a whole set of VFs based on the 4837 // MaxVF. 4838 4839 // Disable scalable vectorization if the loop contains unsupported reductions. 4840 if (!canVectorizeReductions(MaxScalableVF)) { 4841 reportVectorizationInfo( 4842 "Scalable vectorization not supported for the reduction " 4843 "operations found in this loop.", 4844 "ScalableVFUnfeasible", ORE, TheLoop); 4845 return ElementCount::getScalable(0); 4846 } 4847 4848 // Disable scalable vectorization if the loop contains any instructions 4849 // with element types not supported for scalable vectors. 4850 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4851 return !Ty->isVoidTy() && 4852 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4853 })) { 4854 reportVectorizationInfo("Scalable vectorization is not supported " 4855 "for all element types found in this loop.", 4856 "ScalableVFUnfeasible", ORE, TheLoop); 4857 return ElementCount::getScalable(0); 4858 } 4859 4860 if (Legal->isSafeForAnyVectorWidth()) 4861 return MaxScalableVF; 4862 4863 // Limit MaxScalableVF by the maximum safe dependence distance. 4864 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4865 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4866 MaxVScale = 4867 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4868 MaxScalableVF = ElementCount::getScalable( 4869 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4870 if (!MaxScalableVF) 4871 reportVectorizationInfo( 4872 "Max legal vector width too small, scalable vectorization " 4873 "unfeasible.", 4874 "ScalableVFUnfeasible", ORE, TheLoop); 4875 4876 return MaxScalableVF; 4877 } 4878 4879 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4880 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4881 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4882 unsigned SmallestType, WidestType; 4883 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4884 4885 // Get the maximum safe dependence distance in bits computed by LAA. 4886 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4887 // the memory accesses that is most restrictive (involved in the smallest 4888 // dependence distance). 4889 unsigned MaxSafeElements = 4890 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4891 4892 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4893 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4894 4895 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4896 << ".\n"); 4897 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4898 << ".\n"); 4899 4900 // First analyze the UserVF, fall back if the UserVF should be ignored. 4901 if (UserVF) { 4902 auto MaxSafeUserVF = 4903 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4904 4905 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4906 // If `VF=vscale x N` is safe, then so is `VF=N` 4907 if (UserVF.isScalable()) 4908 return FixedScalableVFPair( 4909 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4910 else 4911 return UserVF; 4912 } 4913 4914 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4915 4916 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4917 // is better to ignore the hint and let the compiler choose a suitable VF. 4918 if (!UserVF.isScalable()) { 4919 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4920 << " is unsafe, clamping to max safe VF=" 4921 << MaxSafeFixedVF << ".\n"); 4922 ORE->emit([&]() { 4923 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4924 TheLoop->getStartLoc(), 4925 TheLoop->getHeader()) 4926 << "User-specified vectorization factor " 4927 << ore::NV("UserVectorizationFactor", UserVF) 4928 << " is unsafe, clamping to maximum safe vectorization factor " 4929 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4930 }); 4931 return MaxSafeFixedVF; 4932 } 4933 4934 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4935 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4936 << " is ignored because scalable vectors are not " 4937 "available.\n"); 4938 ORE->emit([&]() { 4939 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4940 TheLoop->getStartLoc(), 4941 TheLoop->getHeader()) 4942 << "User-specified vectorization factor " 4943 << ore::NV("UserVectorizationFactor", UserVF) 4944 << " is ignored because the target does not support scalable " 4945 "vectors. The compiler will pick a more suitable value."; 4946 }); 4947 } else { 4948 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4949 << " is unsafe. Ignoring scalable UserVF.\n"); 4950 ORE->emit([&]() { 4951 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4952 TheLoop->getStartLoc(), 4953 TheLoop->getHeader()) 4954 << "User-specified vectorization factor " 4955 << ore::NV("UserVectorizationFactor", UserVF) 4956 << " is unsafe. Ignoring the hint to let the compiler pick a " 4957 "more suitable value."; 4958 }); 4959 } 4960 } 4961 4962 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4963 << " / " << WidestType << " bits.\n"); 4964 4965 FixedScalableVFPair Result(ElementCount::getFixed(1), 4966 ElementCount::getScalable(0)); 4967 if (auto MaxVF = 4968 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4969 MaxSafeFixedVF, FoldTailByMasking)) 4970 Result.FixedVF = MaxVF; 4971 4972 if (auto MaxVF = 4973 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4974 MaxSafeScalableVF, FoldTailByMasking)) 4975 if (MaxVF.isScalable()) { 4976 Result.ScalableVF = MaxVF; 4977 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4978 << "\n"); 4979 } 4980 4981 return Result; 4982 } 4983 4984 FixedScalableVFPair 4985 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 4986 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4987 // TODO: It may by useful to do since it's still likely to be dynamically 4988 // uniform if the target can skip. 4989 reportVectorizationFailure( 4990 "Not inserting runtime ptr check for divergent target", 4991 "runtime pointer checks needed. Not enabled for divergent target", 4992 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4993 return FixedScalableVFPair::getNone(); 4994 } 4995 4996 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4997 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4998 if (TC == 1) { 4999 reportVectorizationFailure("Single iteration (non) loop", 5000 "loop trip count is one, irrelevant for vectorization", 5001 "SingleIterationLoop", ORE, TheLoop); 5002 return FixedScalableVFPair::getNone(); 5003 } 5004 5005 switch (ScalarEpilogueStatus) { 5006 case CM_ScalarEpilogueAllowed: 5007 return computeFeasibleMaxVF(TC, UserVF, false); 5008 case CM_ScalarEpilogueNotAllowedUsePredicate: 5009 LLVM_FALLTHROUGH; 5010 case CM_ScalarEpilogueNotNeededUsePredicate: 5011 LLVM_DEBUG( 5012 dbgs() << "LV: vector predicate hint/switch found.\n" 5013 << "LV: Not allowing scalar epilogue, creating predicated " 5014 << "vector loop.\n"); 5015 break; 5016 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5017 // fallthrough as a special case of OptForSize 5018 case CM_ScalarEpilogueNotAllowedOptSize: 5019 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5020 LLVM_DEBUG( 5021 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5022 else 5023 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5024 << "count.\n"); 5025 5026 // Bail if runtime checks are required, which are not good when optimising 5027 // for size. 5028 if (runtimeChecksRequired()) 5029 return FixedScalableVFPair::getNone(); 5030 5031 break; 5032 } 5033 5034 // The only loops we can vectorize without a scalar epilogue, are loops with 5035 // a bottom-test and a single exiting block. We'd have to handle the fact 5036 // that not every instruction executes on the last iteration. This will 5037 // require a lane mask which varies through the vector loop body. (TODO) 5038 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5039 // If there was a tail-folding hint/switch, but we can't fold the tail by 5040 // masking, fallback to a vectorization with a scalar epilogue. 5041 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5042 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5043 "scalar epilogue instead.\n"); 5044 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5045 return computeFeasibleMaxVF(TC, UserVF, false); 5046 } 5047 return FixedScalableVFPair::getNone(); 5048 } 5049 5050 // Now try the tail folding 5051 5052 // Invalidate interleave groups that require an epilogue if we can't mask 5053 // the interleave-group. 5054 if (!useMaskedInterleavedAccesses(TTI)) { 5055 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5056 "No decisions should have been taken at this point"); 5057 // Note: There is no need to invalidate any cost modeling decisions here, as 5058 // non where taken so far. 5059 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5060 } 5061 5062 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5063 // Avoid tail folding if the trip count is known to be a multiple of any VF 5064 // we chose. 5065 // FIXME: The condition below pessimises the case for fixed-width vectors, 5066 // when scalable VFs are also candidates for vectorization. 5067 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5068 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5069 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5070 "MaxFixedVF must be a power of 2"); 5071 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5072 : MaxFixedVF.getFixedValue(); 5073 ScalarEvolution *SE = PSE.getSE(); 5074 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5075 const SCEV *ExitCount = SE->getAddExpr( 5076 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5077 const SCEV *Rem = SE->getURemExpr( 5078 SE->applyLoopGuards(ExitCount, TheLoop), 5079 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5080 if (Rem->isZero()) { 5081 // Accept MaxFixedVF if we do not have a tail. 5082 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5083 return MaxFactors; 5084 } 5085 } 5086 5087 // If we don't know the precise trip count, or if the trip count that we 5088 // found modulo the vectorization factor is not zero, try to fold the tail 5089 // by masking. 5090 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5091 if (Legal->prepareToFoldTailByMasking()) { 5092 FoldTailByMasking = true; 5093 return MaxFactors; 5094 } 5095 5096 // If there was a tail-folding hint/switch, but we can't fold the tail by 5097 // masking, fallback to a vectorization with a scalar epilogue. 5098 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5099 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5100 "scalar epilogue instead.\n"); 5101 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5102 return MaxFactors; 5103 } 5104 5105 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5106 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5107 return FixedScalableVFPair::getNone(); 5108 } 5109 5110 if (TC == 0) { 5111 reportVectorizationFailure( 5112 "Unable to calculate the loop count due to complex control flow", 5113 "unable to calculate the loop count due to complex control flow", 5114 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5115 return FixedScalableVFPair::getNone(); 5116 } 5117 5118 reportVectorizationFailure( 5119 "Cannot optimize for size and vectorize at the same time.", 5120 "cannot optimize for size and vectorize at the same time. " 5121 "Enable vectorization of this loop with '#pragma clang loop " 5122 "vectorize(enable)' when compiling with -Os/-Oz", 5123 "NoTailLoopWithOptForSize", ORE, TheLoop); 5124 return FixedScalableVFPair::getNone(); 5125 } 5126 5127 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5128 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5129 ElementCount MaxSafeVF, bool FoldTailByMasking) { 5130 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5131 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5132 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5133 : TargetTransformInfo::RGK_FixedWidthVector); 5134 5135 // Convenience function to return the minimum of two ElementCounts. 5136 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5137 assert((LHS.isScalable() == RHS.isScalable()) && 5138 "Scalable flags must match"); 5139 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5140 }; 5141 5142 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5143 // Note that both WidestRegister and WidestType may not be a powers of 2. 5144 auto MaxVectorElementCount = ElementCount::get( 5145 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5146 ComputeScalableMaxVF); 5147 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5148 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5149 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5150 5151 if (!MaxVectorElementCount) { 5152 LLVM_DEBUG(dbgs() << "LV: The target has no " 5153 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5154 << " vector registers.\n"); 5155 return ElementCount::getFixed(1); 5156 } 5157 5158 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5159 if (ConstTripCount && 5160 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5161 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5162 // If loop trip count (TC) is known at compile time there is no point in 5163 // choosing VF greater than TC (as done in the loop below). Select maximum 5164 // power of two which doesn't exceed TC. 5165 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5166 // when the TC is less than or equal to the known number of lanes. 5167 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5168 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5169 "exceeding the constant trip count: " 5170 << ClampedConstTripCount << "\n"); 5171 return ElementCount::getFixed(ClampedConstTripCount); 5172 } 5173 5174 TargetTransformInfo::RegisterKind RegKind = 5175 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5176 : TargetTransformInfo::RGK_FixedWidthVector; 5177 ElementCount MaxVF = MaxVectorElementCount; 5178 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5179 TTI.shouldMaximizeVectorBandwidth(RegKind))) { 5180 auto MaxVectorElementCountMaxBW = ElementCount::get( 5181 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5182 ComputeScalableMaxVF); 5183 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5184 5185 // Collect all viable vectorization factors larger than the default MaxVF 5186 // (i.e. MaxVectorElementCount). 5187 SmallVector<ElementCount, 8> VFs; 5188 for (ElementCount VS = MaxVectorElementCount * 2; 5189 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5190 VFs.push_back(VS); 5191 5192 // For each VF calculate its register usage. 5193 auto RUs = calculateRegisterUsage(VFs); 5194 5195 // Select the largest VF which doesn't require more registers than existing 5196 // ones. 5197 for (int i = RUs.size() - 1; i >= 0; --i) { 5198 bool Selected = true; 5199 for (auto &pair : RUs[i].MaxLocalUsers) { 5200 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5201 if (pair.second > TargetNumRegisters) 5202 Selected = false; 5203 } 5204 if (Selected) { 5205 MaxVF = VFs[i]; 5206 break; 5207 } 5208 } 5209 if (ElementCount MinVF = 5210 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5211 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5212 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5213 << ") with target's minimum: " << MinVF << '\n'); 5214 MaxVF = MinVF; 5215 } 5216 } 5217 5218 // Invalidate any widening decisions we might have made, in case the loop 5219 // requires prediction (decided later), but we have already made some 5220 // load/store widening decisions. 5221 invalidateCostModelingDecisions(); 5222 } 5223 return MaxVF; 5224 } 5225 5226 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5227 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5228 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5229 auto Min = Attr.getVScaleRangeMin(); 5230 auto Max = Attr.getVScaleRangeMax(); 5231 if (Max && Min == Max) 5232 return Max; 5233 } 5234 5235 return TTI.getVScaleForTuning(); 5236 } 5237 5238 bool LoopVectorizationCostModel::isMoreProfitable( 5239 const VectorizationFactor &A, const VectorizationFactor &B) const { 5240 InstructionCost CostA = A.Cost; 5241 InstructionCost CostB = B.Cost; 5242 5243 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5244 5245 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5246 MaxTripCount) { 5247 // If we are folding the tail and the trip count is a known (possibly small) 5248 // constant, the trip count will be rounded up to an integer number of 5249 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5250 // which we compare directly. When not folding the tail, the total cost will 5251 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5252 // approximated with the per-lane cost below instead of using the tripcount 5253 // as here. 5254 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5255 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5256 return RTCostA < RTCostB; 5257 } 5258 5259 // Improve estimate for the vector width if it is scalable. 5260 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5261 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5262 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5263 if (A.Width.isScalable()) 5264 EstimatedWidthA *= VScale.getValue(); 5265 if (B.Width.isScalable()) 5266 EstimatedWidthB *= VScale.getValue(); 5267 } 5268 5269 // Assume vscale may be larger than 1 (or the value being tuned for), 5270 // so that scalable vectorization is slightly favorable over fixed-width 5271 // vectorization. 5272 if (A.Width.isScalable() && !B.Width.isScalable()) 5273 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5274 5275 // To avoid the need for FP division: 5276 // (CostA / A.Width) < (CostB / B.Width) 5277 // <=> (CostA * B.Width) < (CostB * A.Width) 5278 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5279 } 5280 5281 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5282 const ElementCountSet &VFCandidates) { 5283 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5284 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5285 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5286 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5287 "Expected Scalar VF to be a candidate"); 5288 5289 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, 5290 ExpectedCost); 5291 VectorizationFactor ChosenFactor = ScalarCost; 5292 5293 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5294 if (ForceVectorization && VFCandidates.size() > 1) { 5295 // Ignore scalar width, because the user explicitly wants vectorization. 5296 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5297 // evaluation. 5298 ChosenFactor.Cost = InstructionCost::getMax(); 5299 } 5300 5301 SmallVector<InstructionVFPair> InvalidCosts; 5302 for (const auto &i : VFCandidates) { 5303 // The cost for scalar VF=1 is already calculated, so ignore it. 5304 if (i.isScalar()) 5305 continue; 5306 5307 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5308 VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost); 5309 5310 #ifndef NDEBUG 5311 unsigned AssumedMinimumVscale = 1; 5312 if (Optional<unsigned> VScale = getVScaleForTuning()) 5313 AssumedMinimumVscale = *VScale; 5314 unsigned Width = 5315 Candidate.Width.isScalable() 5316 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5317 : Candidate.Width.getFixedValue(); 5318 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5319 << " costs: " << (Candidate.Cost / Width)); 5320 if (i.isScalable()) 5321 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5322 << AssumedMinimumVscale << ")"); 5323 LLVM_DEBUG(dbgs() << ".\n"); 5324 #endif 5325 5326 if (!C.second && !ForceVectorization) { 5327 LLVM_DEBUG( 5328 dbgs() << "LV: Not considering vector loop of width " << i 5329 << " because it will not generate any vector instructions.\n"); 5330 continue; 5331 } 5332 5333 // If profitable add it to ProfitableVF list. 5334 if (isMoreProfitable(Candidate, ScalarCost)) 5335 ProfitableVFs.push_back(Candidate); 5336 5337 if (isMoreProfitable(Candidate, ChosenFactor)) 5338 ChosenFactor = Candidate; 5339 } 5340 5341 // Emit a report of VFs with invalid costs in the loop. 5342 if (!InvalidCosts.empty()) { 5343 // Group the remarks per instruction, keeping the instruction order from 5344 // InvalidCosts. 5345 std::map<Instruction *, unsigned> Numbering; 5346 unsigned I = 0; 5347 for (auto &Pair : InvalidCosts) 5348 if (!Numbering.count(Pair.first)) 5349 Numbering[Pair.first] = I++; 5350 5351 // Sort the list, first on instruction(number) then on VF. 5352 llvm::sort(InvalidCosts, 5353 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5354 if (Numbering[A.first] != Numbering[B.first]) 5355 return Numbering[A.first] < Numbering[B.first]; 5356 ElementCountComparator ECC; 5357 return ECC(A.second, B.second); 5358 }); 5359 5360 // For a list of ordered instruction-vf pairs: 5361 // [(load, vf1), (load, vf2), (store, vf1)] 5362 // Group the instructions together to emit separate remarks for: 5363 // load (vf1, vf2) 5364 // store (vf1) 5365 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5366 auto Subset = ArrayRef<InstructionVFPair>(); 5367 do { 5368 if (Subset.empty()) 5369 Subset = Tail.take_front(1); 5370 5371 Instruction *I = Subset.front().first; 5372 5373 // If the next instruction is different, or if there are no other pairs, 5374 // emit a remark for the collated subset. e.g. 5375 // [(load, vf1), (load, vf2))] 5376 // to emit: 5377 // remark: invalid costs for 'load' at VF=(vf, vf2) 5378 if (Subset == Tail || Tail[Subset.size()].first != I) { 5379 std::string OutString; 5380 raw_string_ostream OS(OutString); 5381 assert(!Subset.empty() && "Unexpected empty range"); 5382 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5383 for (auto &Pair : Subset) 5384 OS << (Pair.second == Subset.front().second ? "" : ", ") 5385 << Pair.second; 5386 OS << "):"; 5387 if (auto *CI = dyn_cast<CallInst>(I)) 5388 OS << " call to " << CI->getCalledFunction()->getName(); 5389 else 5390 OS << " " << I->getOpcodeName(); 5391 OS.flush(); 5392 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5393 Tail = Tail.drop_front(Subset.size()); 5394 Subset = {}; 5395 } else 5396 // Grow the subset by one element 5397 Subset = Tail.take_front(Subset.size() + 1); 5398 } while (!Tail.empty()); 5399 } 5400 5401 if (!EnableCondStoresVectorization && NumPredStores) { 5402 reportVectorizationFailure("There are conditional stores.", 5403 "store that is conditionally executed prevents vectorization", 5404 "ConditionalStore", ORE, TheLoop); 5405 ChosenFactor = ScalarCost; 5406 } 5407 5408 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5409 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5410 << "LV: Vectorization seems to be not beneficial, " 5411 << "but was forced by a user.\n"); 5412 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5413 return ChosenFactor; 5414 } 5415 5416 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5417 const Loop &L, ElementCount VF) const { 5418 // Cross iteration phis such as reductions need special handling and are 5419 // currently unsupported. 5420 if (any_of(L.getHeader()->phis(), 5421 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5422 return false; 5423 5424 // Phis with uses outside of the loop require special handling and are 5425 // currently unsupported. 5426 for (auto &Entry : Legal->getInductionVars()) { 5427 // Look for uses of the value of the induction at the last iteration. 5428 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5429 for (User *U : PostInc->users()) 5430 if (!L.contains(cast<Instruction>(U))) 5431 return false; 5432 // Look for uses of penultimate value of the induction. 5433 for (User *U : Entry.first->users()) 5434 if (!L.contains(cast<Instruction>(U))) 5435 return false; 5436 } 5437 5438 // Induction variables that are widened require special handling that is 5439 // currently not supported. 5440 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5441 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5442 this->isProfitableToScalarize(Entry.first, VF)); 5443 })) 5444 return false; 5445 5446 // Epilogue vectorization code has not been auditted to ensure it handles 5447 // non-latch exits properly. It may be fine, but it needs auditted and 5448 // tested. 5449 if (L.getExitingBlock() != L.getLoopLatch()) 5450 return false; 5451 5452 return true; 5453 } 5454 5455 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5456 const ElementCount VF) const { 5457 // FIXME: We need a much better cost-model to take different parameters such 5458 // as register pressure, code size increase and cost of extra branches into 5459 // account. For now we apply a very crude heuristic and only consider loops 5460 // with vectorization factors larger than a certain value. 5461 // We also consider epilogue vectorization unprofitable for targets that don't 5462 // consider interleaving beneficial (eg. MVE). 5463 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5464 return false; 5465 // FIXME: We should consider changing the threshold for scalable 5466 // vectors to take VScaleForTuning into account. 5467 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5468 return true; 5469 return false; 5470 } 5471 5472 VectorizationFactor 5473 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5474 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5475 VectorizationFactor Result = VectorizationFactor::Disabled(); 5476 if (!EnableEpilogueVectorization) { 5477 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5478 return Result; 5479 } 5480 5481 if (!isScalarEpilogueAllowed()) { 5482 LLVM_DEBUG( 5483 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5484 "allowed.\n";); 5485 return Result; 5486 } 5487 5488 // Not really a cost consideration, but check for unsupported cases here to 5489 // simplify the logic. 5490 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5491 LLVM_DEBUG( 5492 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5493 "not a supported candidate.\n";); 5494 return Result; 5495 } 5496 5497 if (EpilogueVectorizationForceVF > 1) { 5498 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5499 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5500 if (LVP.hasPlanWithVF(ForcedEC)) 5501 return {ForcedEC, 0, 0}; 5502 else { 5503 LLVM_DEBUG( 5504 dbgs() 5505 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5506 return Result; 5507 } 5508 } 5509 5510 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5511 TheLoop->getHeader()->getParent()->hasMinSize()) { 5512 LLVM_DEBUG( 5513 dbgs() 5514 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5515 return Result; 5516 } 5517 5518 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5519 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5520 "this loop\n"); 5521 return Result; 5522 } 5523 5524 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5525 // the main loop handles 8 lanes per iteration. We could still benefit from 5526 // vectorizing the epilogue loop with VF=4. 5527 ElementCount EstimatedRuntimeVF = MainLoopVF; 5528 if (MainLoopVF.isScalable()) { 5529 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5530 if (Optional<unsigned> VScale = getVScaleForTuning()) 5531 EstimatedRuntimeVF *= *VScale; 5532 } 5533 5534 for (auto &NextVF : ProfitableVFs) 5535 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5536 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5537 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5538 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5539 LVP.hasPlanWithVF(NextVF.Width)) 5540 Result = NextVF; 5541 5542 if (Result != VectorizationFactor::Disabled()) 5543 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5544 << Result.Width << "\n";); 5545 return Result; 5546 } 5547 5548 std::pair<unsigned, unsigned> 5549 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5550 unsigned MinWidth = -1U; 5551 unsigned MaxWidth = 8; 5552 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5553 // For in-loop reductions, no element types are added to ElementTypesInLoop 5554 // if there are no loads/stores in the loop. In this case, check through the 5555 // reduction variables to determine the maximum width. 5556 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5557 // Reset MaxWidth so that we can find the smallest type used by recurrences 5558 // in the loop. 5559 MaxWidth = -1U; 5560 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5561 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5562 // When finding the min width used by the recurrence we need to account 5563 // for casts on the input operands of the recurrence. 5564 MaxWidth = std::min<unsigned>( 5565 MaxWidth, std::min<unsigned>( 5566 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5567 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5568 } 5569 } else { 5570 for (Type *T : ElementTypesInLoop) { 5571 MinWidth = std::min<unsigned>( 5572 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5573 MaxWidth = std::max<unsigned>( 5574 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5575 } 5576 } 5577 return {MinWidth, MaxWidth}; 5578 } 5579 5580 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5581 ElementTypesInLoop.clear(); 5582 // For each block. 5583 for (BasicBlock *BB : TheLoop->blocks()) { 5584 // For each instruction in the loop. 5585 for (Instruction &I : BB->instructionsWithoutDebug()) { 5586 Type *T = I.getType(); 5587 5588 // Skip ignored values. 5589 if (ValuesToIgnore.count(&I)) 5590 continue; 5591 5592 // Only examine Loads, Stores and PHINodes. 5593 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5594 continue; 5595 5596 // Examine PHI nodes that are reduction variables. Update the type to 5597 // account for the recurrence type. 5598 if (auto *PN = dyn_cast<PHINode>(&I)) { 5599 if (!Legal->isReductionVariable(PN)) 5600 continue; 5601 const RecurrenceDescriptor &RdxDesc = 5602 Legal->getReductionVars().find(PN)->second; 5603 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5604 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5605 RdxDesc.getRecurrenceType(), 5606 TargetTransformInfo::ReductionFlags())) 5607 continue; 5608 T = RdxDesc.getRecurrenceType(); 5609 } 5610 5611 // Examine the stored values. 5612 if (auto *ST = dyn_cast<StoreInst>(&I)) 5613 T = ST->getValueOperand()->getType(); 5614 5615 assert(T->isSized() && 5616 "Expected the load/store/recurrence type to be sized"); 5617 5618 ElementTypesInLoop.insert(T); 5619 } 5620 } 5621 } 5622 5623 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5624 unsigned LoopCost) { 5625 // -- The interleave heuristics -- 5626 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5627 // There are many micro-architectural considerations that we can't predict 5628 // at this level. For example, frontend pressure (on decode or fetch) due to 5629 // code size, or the number and capabilities of the execution ports. 5630 // 5631 // We use the following heuristics to select the interleave count: 5632 // 1. If the code has reductions, then we interleave to break the cross 5633 // iteration dependency. 5634 // 2. If the loop is really small, then we interleave to reduce the loop 5635 // overhead. 5636 // 3. We don't interleave if we think that we will spill registers to memory 5637 // due to the increased register pressure. 5638 5639 if (!isScalarEpilogueAllowed()) 5640 return 1; 5641 5642 // We used the distance for the interleave count. 5643 if (Legal->getMaxSafeDepDistBytes() != -1U) 5644 return 1; 5645 5646 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5647 const bool HasReductions = !Legal->getReductionVars().empty(); 5648 // Do not interleave loops with a relatively small known or estimated trip 5649 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5650 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5651 // because with the above conditions interleaving can expose ILP and break 5652 // cross iteration dependences for reductions. 5653 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5654 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5655 return 1; 5656 5657 // If we did not calculate the cost for VF (because the user selected the VF) 5658 // then we calculate the cost of VF here. 5659 if (LoopCost == 0) { 5660 InstructionCost C = expectedCost(VF).first; 5661 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5662 LoopCost = *C.getValue(); 5663 5664 // Loop body is free and there is no need for interleaving. 5665 if (LoopCost == 0) 5666 return 1; 5667 } 5668 5669 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5670 // We divide by these constants so assume that we have at least one 5671 // instruction that uses at least one register. 5672 for (auto& pair : R.MaxLocalUsers) { 5673 pair.second = std::max(pair.second, 1U); 5674 } 5675 5676 // We calculate the interleave count using the following formula. 5677 // Subtract the number of loop invariants from the number of available 5678 // registers. These registers are used by all of the interleaved instances. 5679 // Next, divide the remaining registers by the number of registers that is 5680 // required by the loop, in order to estimate how many parallel instances 5681 // fit without causing spills. All of this is rounded down if necessary to be 5682 // a power of two. We want power of two interleave count to simplify any 5683 // addressing operations or alignment considerations. 5684 // We also want power of two interleave counts to ensure that the induction 5685 // variable of the vector loop wraps to zero, when tail is folded by masking; 5686 // this currently happens when OptForSize, in which case IC is set to 1 above. 5687 unsigned IC = UINT_MAX; 5688 5689 for (auto& pair : R.MaxLocalUsers) { 5690 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5691 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5692 << " registers of " 5693 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5694 if (VF.isScalar()) { 5695 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5696 TargetNumRegisters = ForceTargetNumScalarRegs; 5697 } else { 5698 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5699 TargetNumRegisters = ForceTargetNumVectorRegs; 5700 } 5701 unsigned MaxLocalUsers = pair.second; 5702 unsigned LoopInvariantRegs = 0; 5703 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5704 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5705 5706 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5707 // Don't count the induction variable as interleaved. 5708 if (EnableIndVarRegisterHeur) { 5709 TmpIC = 5710 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5711 std::max(1U, (MaxLocalUsers - 1))); 5712 } 5713 5714 IC = std::min(IC, TmpIC); 5715 } 5716 5717 // Clamp the interleave ranges to reasonable counts. 5718 unsigned MaxInterleaveCount = 5719 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5720 5721 // Check if the user has overridden the max. 5722 if (VF.isScalar()) { 5723 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5724 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5725 } else { 5726 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5727 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5728 } 5729 5730 // If trip count is known or estimated compile time constant, limit the 5731 // interleave count to be less than the trip count divided by VF, provided it 5732 // is at least 1. 5733 // 5734 // For scalable vectors we can't know if interleaving is beneficial. It may 5735 // not be beneficial for small loops if none of the lanes in the second vector 5736 // iterations is enabled. However, for larger loops, there is likely to be a 5737 // similar benefit as for fixed-width vectors. For now, we choose to leave 5738 // the InterleaveCount as if vscale is '1', although if some information about 5739 // the vector is known (e.g. min vector size), we can make a better decision. 5740 if (BestKnownTC) { 5741 MaxInterleaveCount = 5742 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5743 // Make sure MaxInterleaveCount is greater than 0. 5744 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5745 } 5746 5747 assert(MaxInterleaveCount > 0 && 5748 "Maximum interleave count must be greater than 0"); 5749 5750 // Clamp the calculated IC to be between the 1 and the max interleave count 5751 // that the target and trip count allows. 5752 if (IC > MaxInterleaveCount) 5753 IC = MaxInterleaveCount; 5754 else 5755 // Make sure IC is greater than 0. 5756 IC = std::max(1u, IC); 5757 5758 assert(IC > 0 && "Interleave count must be greater than 0."); 5759 5760 // Interleave if we vectorized this loop and there is a reduction that could 5761 // benefit from interleaving. 5762 if (VF.isVector() && HasReductions) { 5763 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5764 return IC; 5765 } 5766 5767 // For any scalar loop that either requires runtime checks or predication we 5768 // are better off leaving this to the unroller. Note that if we've already 5769 // vectorized the loop we will have done the runtime check and so interleaving 5770 // won't require further checks. 5771 bool ScalarInterleavingRequiresPredication = 5772 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5773 return Legal->blockNeedsPredication(BB); 5774 })); 5775 bool ScalarInterleavingRequiresRuntimePointerCheck = 5776 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5777 5778 // We want to interleave small loops in order to reduce the loop overhead and 5779 // potentially expose ILP opportunities. 5780 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5781 << "LV: IC is " << IC << '\n' 5782 << "LV: VF is " << VF << '\n'); 5783 const bool AggressivelyInterleaveReductions = 5784 TTI.enableAggressiveInterleaving(HasReductions); 5785 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5786 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5787 // We assume that the cost overhead is 1 and we use the cost model 5788 // to estimate the cost of the loop and interleave until the cost of the 5789 // loop overhead is about 5% of the cost of the loop. 5790 unsigned SmallIC = 5791 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5792 5793 // Interleave until store/load ports (estimated by max interleave count) are 5794 // saturated. 5795 unsigned NumStores = Legal->getNumStores(); 5796 unsigned NumLoads = Legal->getNumLoads(); 5797 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5798 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5799 5800 // There is little point in interleaving for reductions containing selects 5801 // and compares when VF=1 since it may just create more overhead than it's 5802 // worth for loops with small trip counts. This is because we still have to 5803 // do the final reduction after the loop. 5804 bool HasSelectCmpReductions = 5805 HasReductions && 5806 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5807 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5808 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5809 RdxDesc.getRecurrenceKind()); 5810 }); 5811 if (HasSelectCmpReductions) { 5812 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5813 return 1; 5814 } 5815 5816 // If we have a scalar reduction (vector reductions are already dealt with 5817 // by this point), we can increase the critical path length if the loop 5818 // we're interleaving is inside another loop. For tree-wise reductions 5819 // set the limit to 2, and for ordered reductions it's best to disable 5820 // interleaving entirely. 5821 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5822 bool HasOrderedReductions = 5823 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5824 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5825 return RdxDesc.isOrdered(); 5826 }); 5827 if (HasOrderedReductions) { 5828 LLVM_DEBUG( 5829 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5830 return 1; 5831 } 5832 5833 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5834 SmallIC = std::min(SmallIC, F); 5835 StoresIC = std::min(StoresIC, F); 5836 LoadsIC = std::min(LoadsIC, F); 5837 } 5838 5839 if (EnableLoadStoreRuntimeInterleave && 5840 std::max(StoresIC, LoadsIC) > SmallIC) { 5841 LLVM_DEBUG( 5842 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5843 return std::max(StoresIC, LoadsIC); 5844 } 5845 5846 // If there are scalar reductions and TTI has enabled aggressive 5847 // interleaving for reductions, we will interleave to expose ILP. 5848 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5849 AggressivelyInterleaveReductions) { 5850 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5851 // Interleave no less than SmallIC but not as aggressive as the normal IC 5852 // to satisfy the rare situation when resources are too limited. 5853 return std::max(IC / 2, SmallIC); 5854 } else { 5855 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5856 return SmallIC; 5857 } 5858 } 5859 5860 // Interleave if this is a large loop (small loops are already dealt with by 5861 // this point) that could benefit from interleaving. 5862 if (AggressivelyInterleaveReductions) { 5863 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5864 return IC; 5865 } 5866 5867 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5868 return 1; 5869 } 5870 5871 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5872 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5873 // This function calculates the register usage by measuring the highest number 5874 // of values that are alive at a single location. Obviously, this is a very 5875 // rough estimation. We scan the loop in a topological order in order and 5876 // assign a number to each instruction. We use RPO to ensure that defs are 5877 // met before their users. We assume that each instruction that has in-loop 5878 // users starts an interval. We record every time that an in-loop value is 5879 // used, so we have a list of the first and last occurrences of each 5880 // instruction. Next, we transpose this data structure into a multi map that 5881 // holds the list of intervals that *end* at a specific location. This multi 5882 // map allows us to perform a linear search. We scan the instructions linearly 5883 // and record each time that a new interval starts, by placing it in a set. 5884 // If we find this value in the multi-map then we remove it from the set. 5885 // The max register usage is the maximum size of the set. 5886 // We also search for instructions that are defined outside the loop, but are 5887 // used inside the loop. We need this number separately from the max-interval 5888 // usage number because when we unroll, loop-invariant values do not take 5889 // more register. 5890 LoopBlocksDFS DFS(TheLoop); 5891 DFS.perform(LI); 5892 5893 RegisterUsage RU; 5894 5895 // Each 'key' in the map opens a new interval. The values 5896 // of the map are the index of the 'last seen' usage of the 5897 // instruction that is the key. 5898 using IntervalMap = DenseMap<Instruction *, unsigned>; 5899 5900 // Maps instruction to its index. 5901 SmallVector<Instruction *, 64> IdxToInstr; 5902 // Marks the end of each interval. 5903 IntervalMap EndPoint; 5904 // Saves the list of instruction indices that are used in the loop. 5905 SmallPtrSet<Instruction *, 8> Ends; 5906 // Saves the list of values that are used in the loop but are 5907 // defined outside the loop, such as arguments and constants. 5908 SmallPtrSet<Value *, 8> LoopInvariants; 5909 5910 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5911 for (Instruction &I : BB->instructionsWithoutDebug()) { 5912 IdxToInstr.push_back(&I); 5913 5914 // Save the end location of each USE. 5915 for (Value *U : I.operands()) { 5916 auto *Instr = dyn_cast<Instruction>(U); 5917 5918 // Ignore non-instruction values such as arguments, constants, etc. 5919 if (!Instr) 5920 continue; 5921 5922 // If this instruction is outside the loop then record it and continue. 5923 if (!TheLoop->contains(Instr)) { 5924 LoopInvariants.insert(Instr); 5925 continue; 5926 } 5927 5928 // Overwrite previous end points. 5929 EndPoint[Instr] = IdxToInstr.size(); 5930 Ends.insert(Instr); 5931 } 5932 } 5933 } 5934 5935 // Saves the list of intervals that end with the index in 'key'. 5936 using InstrList = SmallVector<Instruction *, 2>; 5937 DenseMap<unsigned, InstrList> TransposeEnds; 5938 5939 // Transpose the EndPoints to a list of values that end at each index. 5940 for (auto &Interval : EndPoint) 5941 TransposeEnds[Interval.second].push_back(Interval.first); 5942 5943 SmallPtrSet<Instruction *, 8> OpenIntervals; 5944 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5945 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5946 5947 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5948 5949 const auto &TTICapture = TTI; 5950 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5951 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5952 return 0; 5953 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5954 }; 5955 5956 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5957 Instruction *I = IdxToInstr[i]; 5958 5959 // Remove all of the instructions that end at this location. 5960 InstrList &List = TransposeEnds[i]; 5961 for (Instruction *ToRemove : List) 5962 OpenIntervals.erase(ToRemove); 5963 5964 // Ignore instructions that are never used within the loop. 5965 if (!Ends.count(I)) 5966 continue; 5967 5968 // Skip ignored values. 5969 if (ValuesToIgnore.count(I)) 5970 continue; 5971 5972 // For each VF find the maximum usage of registers. 5973 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5974 // Count the number of live intervals. 5975 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5976 5977 if (VFs[j].isScalar()) { 5978 for (auto Inst : OpenIntervals) { 5979 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5980 if (RegUsage.find(ClassID) == RegUsage.end()) 5981 RegUsage[ClassID] = 1; 5982 else 5983 RegUsage[ClassID] += 1; 5984 } 5985 } else { 5986 collectUniformsAndScalars(VFs[j]); 5987 for (auto Inst : OpenIntervals) { 5988 // Skip ignored values for VF > 1. 5989 if (VecValuesToIgnore.count(Inst)) 5990 continue; 5991 if (isScalarAfterVectorization(Inst, VFs[j])) { 5992 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5993 if (RegUsage.find(ClassID) == RegUsage.end()) 5994 RegUsage[ClassID] = 1; 5995 else 5996 RegUsage[ClassID] += 1; 5997 } else { 5998 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5999 if (RegUsage.find(ClassID) == RegUsage.end()) 6000 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6001 else 6002 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6003 } 6004 } 6005 } 6006 6007 for (auto& pair : RegUsage) { 6008 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6009 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6010 else 6011 MaxUsages[j][pair.first] = pair.second; 6012 } 6013 } 6014 6015 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6016 << OpenIntervals.size() << '\n'); 6017 6018 // Add the current instruction to the list of open intervals. 6019 OpenIntervals.insert(I); 6020 } 6021 6022 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6023 SmallMapVector<unsigned, unsigned, 4> Invariant; 6024 6025 for (auto Inst : LoopInvariants) { 6026 unsigned Usage = 6027 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6028 unsigned ClassID = 6029 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6030 if (Invariant.find(ClassID) == Invariant.end()) 6031 Invariant[ClassID] = Usage; 6032 else 6033 Invariant[ClassID] += Usage; 6034 } 6035 6036 LLVM_DEBUG({ 6037 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6038 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6039 << " item\n"; 6040 for (const auto &pair : MaxUsages[i]) { 6041 dbgs() << "LV(REG): RegisterClass: " 6042 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6043 << " registers\n"; 6044 } 6045 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6046 << " item\n"; 6047 for (const auto &pair : Invariant) { 6048 dbgs() << "LV(REG): RegisterClass: " 6049 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6050 << " registers\n"; 6051 } 6052 }); 6053 6054 RU.LoopInvariantRegs = Invariant; 6055 RU.MaxLocalUsers = MaxUsages[i]; 6056 RUs[i] = RU; 6057 } 6058 6059 return RUs; 6060 } 6061 6062 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6063 ElementCount VF) { 6064 // TODO: Cost model for emulated masked load/store is completely 6065 // broken. This hack guides the cost model to use an artificially 6066 // high enough value to practically disable vectorization with such 6067 // operations, except where previously deployed legality hack allowed 6068 // using very low cost values. This is to avoid regressions coming simply 6069 // from moving "masked load/store" check from legality to cost model. 6070 // Masked Load/Gather emulation was previously never allowed. 6071 // Limited number of Masked Store/Scatter emulation was allowed. 6072 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6073 return isa<LoadInst>(I) || 6074 (isa<StoreInst>(I) && 6075 NumPredStores > NumberOfStoresToPredicate); 6076 } 6077 6078 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6079 // If we aren't vectorizing the loop, or if we've already collected the 6080 // instructions to scalarize, there's nothing to do. Collection may already 6081 // have occurred if we have a user-selected VF and are now computing the 6082 // expected cost for interleaving. 6083 if (VF.isScalar() || VF.isZero() || 6084 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6085 return; 6086 6087 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6088 // not profitable to scalarize any instructions, the presence of VF in the 6089 // map will indicate that we've analyzed it already. 6090 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6091 6092 PredicatedBBsAfterVectorization[VF].clear(); 6093 6094 // Find all the instructions that are scalar with predication in the loop and 6095 // determine if it would be better to not if-convert the blocks they are in. 6096 // If so, we also record the instructions to scalarize. 6097 for (BasicBlock *BB : TheLoop->blocks()) { 6098 if (!blockNeedsPredicationForAnyReason(BB)) 6099 continue; 6100 for (Instruction &I : *BB) 6101 if (isScalarWithPredication(&I, VF)) { 6102 ScalarCostsTy ScalarCosts; 6103 // Do not apply discount if scalable, because that would lead to 6104 // invalid scalarization costs. 6105 // Do not apply discount logic if hacked cost is needed 6106 // for emulated masked memrefs. 6107 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6108 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6109 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6110 // Remember that BB will remain after vectorization. 6111 PredicatedBBsAfterVectorization[VF].insert(BB); 6112 } 6113 } 6114 } 6115 6116 int LoopVectorizationCostModel::computePredInstDiscount( 6117 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6118 assert(!isUniformAfterVectorization(PredInst, VF) && 6119 "Instruction marked uniform-after-vectorization will be predicated"); 6120 6121 // Initialize the discount to zero, meaning that the scalar version and the 6122 // vector version cost the same. 6123 InstructionCost Discount = 0; 6124 6125 // Holds instructions to analyze. The instructions we visit are mapped in 6126 // ScalarCosts. Those instructions are the ones that would be scalarized if 6127 // we find that the scalar version costs less. 6128 SmallVector<Instruction *, 8> Worklist; 6129 6130 // Returns true if the given instruction can be scalarized. 6131 auto canBeScalarized = [&](Instruction *I) -> bool { 6132 // We only attempt to scalarize instructions forming a single-use chain 6133 // from the original predicated block that would otherwise be vectorized. 6134 // Although not strictly necessary, we give up on instructions we know will 6135 // already be scalar to avoid traversing chains that are unlikely to be 6136 // beneficial. 6137 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6138 isScalarAfterVectorization(I, VF)) 6139 return false; 6140 6141 // If the instruction is scalar with predication, it will be analyzed 6142 // separately. We ignore it within the context of PredInst. 6143 if (isScalarWithPredication(I, VF)) 6144 return false; 6145 6146 // If any of the instruction's operands are uniform after vectorization, 6147 // the instruction cannot be scalarized. This prevents, for example, a 6148 // masked load from being scalarized. 6149 // 6150 // We assume we will only emit a value for lane zero of an instruction 6151 // marked uniform after vectorization, rather than VF identical values. 6152 // Thus, if we scalarize an instruction that uses a uniform, we would 6153 // create uses of values corresponding to the lanes we aren't emitting code 6154 // for. This behavior can be changed by allowing getScalarValue to clone 6155 // the lane zero values for uniforms rather than asserting. 6156 for (Use &U : I->operands()) 6157 if (auto *J = dyn_cast<Instruction>(U.get())) 6158 if (isUniformAfterVectorization(J, VF)) 6159 return false; 6160 6161 // Otherwise, we can scalarize the instruction. 6162 return true; 6163 }; 6164 6165 // Compute the expected cost discount from scalarizing the entire expression 6166 // feeding the predicated instruction. We currently only consider expressions 6167 // that are single-use instruction chains. 6168 Worklist.push_back(PredInst); 6169 while (!Worklist.empty()) { 6170 Instruction *I = Worklist.pop_back_val(); 6171 6172 // If we've already analyzed the instruction, there's nothing to do. 6173 if (ScalarCosts.find(I) != ScalarCosts.end()) 6174 continue; 6175 6176 // Compute the cost of the vector instruction. Note that this cost already 6177 // includes the scalarization overhead of the predicated instruction. 6178 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6179 6180 // Compute the cost of the scalarized instruction. This cost is the cost of 6181 // the instruction as if it wasn't if-converted and instead remained in the 6182 // predicated block. We will scale this cost by block probability after 6183 // computing the scalarization overhead. 6184 InstructionCost ScalarCost = 6185 VF.getFixedValue() * 6186 getInstructionCost(I, ElementCount::getFixed(1)).first; 6187 6188 // Compute the scalarization overhead of needed insertelement instructions 6189 // and phi nodes. 6190 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6191 ScalarCost += TTI.getScalarizationOverhead( 6192 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6193 APInt::getAllOnes(VF.getFixedValue()), true, false); 6194 ScalarCost += 6195 VF.getFixedValue() * 6196 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6197 } 6198 6199 // Compute the scalarization overhead of needed extractelement 6200 // instructions. For each of the instruction's operands, if the operand can 6201 // be scalarized, add it to the worklist; otherwise, account for the 6202 // overhead. 6203 for (Use &U : I->operands()) 6204 if (auto *J = dyn_cast<Instruction>(U.get())) { 6205 assert(VectorType::isValidElementType(J->getType()) && 6206 "Instruction has non-scalar type"); 6207 if (canBeScalarized(J)) 6208 Worklist.push_back(J); 6209 else if (needsExtract(J, VF)) { 6210 ScalarCost += TTI.getScalarizationOverhead( 6211 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6212 APInt::getAllOnes(VF.getFixedValue()), false, true); 6213 } 6214 } 6215 6216 // Scale the total scalar cost by block probability. 6217 ScalarCost /= getReciprocalPredBlockProb(); 6218 6219 // Compute the discount. A non-negative discount means the vector version 6220 // of the instruction costs more, and scalarizing would be beneficial. 6221 Discount += VectorCost - ScalarCost; 6222 ScalarCosts[I] = ScalarCost; 6223 } 6224 6225 return *Discount.getValue(); 6226 } 6227 6228 LoopVectorizationCostModel::VectorizationCostTy 6229 LoopVectorizationCostModel::expectedCost( 6230 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6231 VectorizationCostTy Cost; 6232 6233 // For each block. 6234 for (BasicBlock *BB : TheLoop->blocks()) { 6235 VectorizationCostTy BlockCost; 6236 6237 // For each instruction in the old loop. 6238 for (Instruction &I : BB->instructionsWithoutDebug()) { 6239 // Skip ignored values. 6240 if (ValuesToIgnore.count(&I) || 6241 (VF.isVector() && VecValuesToIgnore.count(&I))) 6242 continue; 6243 6244 VectorizationCostTy C = getInstructionCost(&I, VF); 6245 6246 // Check if we should override the cost. 6247 if (C.first.isValid() && 6248 ForceTargetInstructionCost.getNumOccurrences() > 0) 6249 C.first = InstructionCost(ForceTargetInstructionCost); 6250 6251 // Keep a list of instructions with invalid costs. 6252 if (Invalid && !C.first.isValid()) 6253 Invalid->emplace_back(&I, VF); 6254 6255 BlockCost.first += C.first; 6256 BlockCost.second |= C.second; 6257 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6258 << " for VF " << VF << " For instruction: " << I 6259 << '\n'); 6260 } 6261 6262 // If we are vectorizing a predicated block, it will have been 6263 // if-converted. This means that the block's instructions (aside from 6264 // stores and instructions that may divide by zero) will now be 6265 // unconditionally executed. For the scalar case, we may not always execute 6266 // the predicated block, if it is an if-else block. Thus, scale the block's 6267 // cost by the probability of executing it. blockNeedsPredication from 6268 // Legal is used so as to not include all blocks in tail folded loops. 6269 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6270 BlockCost.first /= getReciprocalPredBlockProb(); 6271 6272 Cost.first += BlockCost.first; 6273 Cost.second |= BlockCost.second; 6274 } 6275 6276 return Cost; 6277 } 6278 6279 /// Gets Address Access SCEV after verifying that the access pattern 6280 /// is loop invariant except the induction variable dependence. 6281 /// 6282 /// This SCEV can be sent to the Target in order to estimate the address 6283 /// calculation cost. 6284 static const SCEV *getAddressAccessSCEV( 6285 Value *Ptr, 6286 LoopVectorizationLegality *Legal, 6287 PredicatedScalarEvolution &PSE, 6288 const Loop *TheLoop) { 6289 6290 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6291 if (!Gep) 6292 return nullptr; 6293 6294 // We are looking for a gep with all loop invariant indices except for one 6295 // which should be an induction variable. 6296 auto SE = PSE.getSE(); 6297 unsigned NumOperands = Gep->getNumOperands(); 6298 for (unsigned i = 1; i < NumOperands; ++i) { 6299 Value *Opd = Gep->getOperand(i); 6300 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6301 !Legal->isInductionVariable(Opd)) 6302 return nullptr; 6303 } 6304 6305 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6306 return PSE.getSCEV(Ptr); 6307 } 6308 6309 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6310 return Legal->hasStride(I->getOperand(0)) || 6311 Legal->hasStride(I->getOperand(1)); 6312 } 6313 6314 InstructionCost 6315 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6316 ElementCount VF) { 6317 assert(VF.isVector() && 6318 "Scalarization cost of instruction implies vectorization."); 6319 if (VF.isScalable()) 6320 return InstructionCost::getInvalid(); 6321 6322 Type *ValTy = getLoadStoreType(I); 6323 auto SE = PSE.getSE(); 6324 6325 unsigned AS = getLoadStoreAddressSpace(I); 6326 Value *Ptr = getLoadStorePointerOperand(I); 6327 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6328 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6329 // that it is being called from this specific place. 6330 6331 // Figure out whether the access is strided and get the stride value 6332 // if it's known in compile time 6333 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6334 6335 // Get the cost of the scalar memory instruction and address computation. 6336 InstructionCost Cost = 6337 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6338 6339 // Don't pass *I here, since it is scalar but will actually be part of a 6340 // vectorized loop where the user of it is a vectorized instruction. 6341 const Align Alignment = getLoadStoreAlignment(I); 6342 Cost += VF.getKnownMinValue() * 6343 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6344 AS, TTI::TCK_RecipThroughput); 6345 6346 // Get the overhead of the extractelement and insertelement instructions 6347 // we might create due to scalarization. 6348 Cost += getScalarizationOverhead(I, VF); 6349 6350 // If we have a predicated load/store, it will need extra i1 extracts and 6351 // conditional branches, but may not be executed for each vector lane. Scale 6352 // the cost by the probability of executing the predicated block. 6353 if (isPredicatedInst(I, VF)) { 6354 Cost /= getReciprocalPredBlockProb(); 6355 6356 // Add the cost of an i1 extract and a branch 6357 auto *Vec_i1Ty = 6358 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6359 Cost += TTI.getScalarizationOverhead( 6360 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6361 /*Insert=*/false, /*Extract=*/true); 6362 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6363 6364 if (useEmulatedMaskMemRefHack(I, VF)) 6365 // Artificially setting to a high enough value to practically disable 6366 // vectorization with such operations. 6367 Cost = 3000000; 6368 } 6369 6370 return Cost; 6371 } 6372 6373 InstructionCost 6374 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6375 ElementCount VF) { 6376 Type *ValTy = getLoadStoreType(I); 6377 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6378 Value *Ptr = getLoadStorePointerOperand(I); 6379 unsigned AS = getLoadStoreAddressSpace(I); 6380 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6381 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6382 6383 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6384 "Stride should be 1 or -1 for consecutive memory access"); 6385 const Align Alignment = getLoadStoreAlignment(I); 6386 InstructionCost Cost = 0; 6387 if (Legal->isMaskRequired(I)) 6388 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6389 CostKind); 6390 else 6391 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6392 CostKind, I); 6393 6394 bool Reverse = ConsecutiveStride < 0; 6395 if (Reverse) 6396 Cost += 6397 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6398 return Cost; 6399 } 6400 6401 InstructionCost 6402 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6403 ElementCount VF) { 6404 assert(Legal->isUniformMemOp(*I)); 6405 6406 Type *ValTy = getLoadStoreType(I); 6407 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6408 const Align Alignment = getLoadStoreAlignment(I); 6409 unsigned AS = getLoadStoreAddressSpace(I); 6410 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6411 if (isa<LoadInst>(I)) { 6412 return TTI.getAddressComputationCost(ValTy) + 6413 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6414 CostKind) + 6415 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6416 } 6417 StoreInst *SI = cast<StoreInst>(I); 6418 6419 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6420 return TTI.getAddressComputationCost(ValTy) + 6421 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6422 CostKind) + 6423 (isLoopInvariantStoreValue 6424 ? 0 6425 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6426 VF.getKnownMinValue() - 1)); 6427 } 6428 6429 InstructionCost 6430 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6431 ElementCount VF) { 6432 Type *ValTy = getLoadStoreType(I); 6433 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6434 const Align Alignment = getLoadStoreAlignment(I); 6435 const Value *Ptr = getLoadStorePointerOperand(I); 6436 6437 return TTI.getAddressComputationCost(VectorTy) + 6438 TTI.getGatherScatterOpCost( 6439 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6440 TargetTransformInfo::TCK_RecipThroughput, I); 6441 } 6442 6443 InstructionCost 6444 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6445 ElementCount VF) { 6446 // TODO: Once we have support for interleaving with scalable vectors 6447 // we can calculate the cost properly here. 6448 if (VF.isScalable()) 6449 return InstructionCost::getInvalid(); 6450 6451 Type *ValTy = getLoadStoreType(I); 6452 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6453 unsigned AS = getLoadStoreAddressSpace(I); 6454 6455 auto Group = getInterleavedAccessGroup(I); 6456 assert(Group && "Fail to get an interleaved access group."); 6457 6458 unsigned InterleaveFactor = Group->getFactor(); 6459 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6460 6461 // Holds the indices of existing members in the interleaved group. 6462 SmallVector<unsigned, 4> Indices; 6463 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6464 if (Group->getMember(IF)) 6465 Indices.push_back(IF); 6466 6467 // Calculate the cost of the whole interleaved group. 6468 bool UseMaskForGaps = 6469 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6470 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6471 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6472 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6473 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6474 6475 if (Group->isReverse()) { 6476 // TODO: Add support for reversed masked interleaved access. 6477 assert(!Legal->isMaskRequired(I) && 6478 "Reverse masked interleaved access not supported."); 6479 Cost += 6480 Group->getNumMembers() * 6481 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6482 } 6483 return Cost; 6484 } 6485 6486 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6487 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6488 using namespace llvm::PatternMatch; 6489 // Early exit for no inloop reductions 6490 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6491 return None; 6492 auto *VectorTy = cast<VectorType>(Ty); 6493 6494 // We are looking for a pattern of, and finding the minimal acceptable cost: 6495 // reduce(mul(ext(A), ext(B))) or 6496 // reduce(mul(A, B)) or 6497 // reduce(ext(A)) or 6498 // reduce(A). 6499 // The basic idea is that we walk down the tree to do that, finding the root 6500 // reduction instruction in InLoopReductionImmediateChains. From there we find 6501 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6502 // of the components. If the reduction cost is lower then we return it for the 6503 // reduction instruction and 0 for the other instructions in the pattern. If 6504 // it is not we return an invalid cost specifying the orignal cost method 6505 // should be used. 6506 Instruction *RetI = I; 6507 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6508 if (!RetI->hasOneUser()) 6509 return None; 6510 RetI = RetI->user_back(); 6511 } 6512 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6513 RetI->user_back()->getOpcode() == Instruction::Add) { 6514 if (!RetI->hasOneUser()) 6515 return None; 6516 RetI = RetI->user_back(); 6517 } 6518 6519 // Test if the found instruction is a reduction, and if not return an invalid 6520 // cost specifying the parent to use the original cost modelling. 6521 if (!InLoopReductionImmediateChains.count(RetI)) 6522 return None; 6523 6524 // Find the reduction this chain is a part of and calculate the basic cost of 6525 // the reduction on its own. 6526 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6527 Instruction *ReductionPhi = LastChain; 6528 while (!isa<PHINode>(ReductionPhi)) 6529 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6530 6531 const RecurrenceDescriptor &RdxDesc = 6532 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6533 6534 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6535 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6536 6537 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6538 // normal fmul instruction to the cost of the fadd reduction. 6539 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6540 BaseCost += 6541 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6542 6543 // If we're using ordered reductions then we can just return the base cost 6544 // here, since getArithmeticReductionCost calculates the full ordered 6545 // reduction cost when FP reassociation is not allowed. 6546 if (useOrderedReductions(RdxDesc)) 6547 return BaseCost; 6548 6549 // Get the operand that was not the reduction chain and match it to one of the 6550 // patterns, returning the better cost if it is found. 6551 Instruction *RedOp = RetI->getOperand(1) == LastChain 6552 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6553 : dyn_cast<Instruction>(RetI->getOperand(1)); 6554 6555 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6556 6557 Instruction *Op0, *Op1; 6558 if (RedOp && 6559 match(RedOp, 6560 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6561 match(Op0, m_ZExtOrSExt(m_Value())) && 6562 Op0->getOpcode() == Op1->getOpcode() && 6563 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6564 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6565 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6566 6567 // Matched reduce(ext(mul(ext(A), ext(B))) 6568 // Note that the extend opcodes need to all match, or if A==B they will have 6569 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6570 // which is equally fine. 6571 bool IsUnsigned = isa<ZExtInst>(Op0); 6572 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6573 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6574 6575 InstructionCost ExtCost = 6576 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6577 TTI::CastContextHint::None, CostKind, Op0); 6578 InstructionCost MulCost = 6579 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6580 InstructionCost Ext2Cost = 6581 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6582 TTI::CastContextHint::None, CostKind, RedOp); 6583 6584 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6585 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6586 CostKind); 6587 6588 if (RedCost.isValid() && 6589 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6590 return I == RetI ? RedCost : 0; 6591 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6592 !TheLoop->isLoopInvariant(RedOp)) { 6593 // Matched reduce(ext(A)) 6594 bool IsUnsigned = isa<ZExtInst>(RedOp); 6595 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6596 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6597 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6598 CostKind); 6599 6600 InstructionCost ExtCost = 6601 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6602 TTI::CastContextHint::None, CostKind, RedOp); 6603 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6604 return I == RetI ? RedCost : 0; 6605 } else if (RedOp && 6606 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6607 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6608 Op0->getOpcode() == Op1->getOpcode() && 6609 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6610 bool IsUnsigned = isa<ZExtInst>(Op0); 6611 Type *Op0Ty = Op0->getOperand(0)->getType(); 6612 Type *Op1Ty = Op1->getOperand(0)->getType(); 6613 Type *LargestOpTy = 6614 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6615 : Op0Ty; 6616 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6617 6618 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6619 // different sizes. We take the largest type as the ext to reduce, and add 6620 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6621 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6622 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6623 TTI::CastContextHint::None, CostKind, Op0); 6624 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6625 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6626 TTI::CastContextHint::None, CostKind, Op1); 6627 InstructionCost MulCost = 6628 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6629 6630 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6631 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6632 CostKind); 6633 InstructionCost ExtraExtCost = 0; 6634 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6635 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6636 ExtraExtCost = TTI.getCastInstrCost( 6637 ExtraExtOp->getOpcode(), ExtType, 6638 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6639 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6640 } 6641 6642 if (RedCost.isValid() && 6643 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6644 return I == RetI ? RedCost : 0; 6645 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6646 // Matched reduce(mul()) 6647 InstructionCost MulCost = 6648 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6649 6650 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6651 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6652 CostKind); 6653 6654 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6655 return I == RetI ? RedCost : 0; 6656 } 6657 } 6658 6659 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6660 } 6661 6662 InstructionCost 6663 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6664 ElementCount VF) { 6665 // Calculate scalar cost only. Vectorization cost should be ready at this 6666 // moment. 6667 if (VF.isScalar()) { 6668 Type *ValTy = getLoadStoreType(I); 6669 const Align Alignment = getLoadStoreAlignment(I); 6670 unsigned AS = getLoadStoreAddressSpace(I); 6671 6672 return TTI.getAddressComputationCost(ValTy) + 6673 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6674 TTI::TCK_RecipThroughput, I); 6675 } 6676 return getWideningCost(I, VF); 6677 } 6678 6679 LoopVectorizationCostModel::VectorizationCostTy 6680 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6681 ElementCount VF) { 6682 // If we know that this instruction will remain uniform, check the cost of 6683 // the scalar version. 6684 if (isUniformAfterVectorization(I, VF)) 6685 VF = ElementCount::getFixed(1); 6686 6687 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6688 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6689 6690 // Forced scalars do not have any scalarization overhead. 6691 auto ForcedScalar = ForcedScalars.find(VF); 6692 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6693 auto InstSet = ForcedScalar->second; 6694 if (InstSet.count(I)) 6695 return VectorizationCostTy( 6696 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6697 VF.getKnownMinValue()), 6698 false); 6699 } 6700 6701 Type *VectorTy; 6702 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6703 6704 bool TypeNotScalarized = false; 6705 if (VF.isVector() && VectorTy->isVectorTy()) { 6706 if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) { 6707 if (VF.isScalable()) 6708 // <vscale x 1 x iN> is assumed to be profitable over iN because 6709 // scalable registers are a distinct register class from scalar ones. 6710 // If we ever find a target which wants to lower scalable vectors 6711 // back to scalars, we'll need to update this code to explicitly 6712 // ask TTI about the register class uses for each part. 6713 TypeNotScalarized = NumParts <= VF.getKnownMinValue(); 6714 else 6715 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6716 } else 6717 C = InstructionCost::getInvalid(); 6718 } 6719 return VectorizationCostTy(C, TypeNotScalarized); 6720 } 6721 6722 InstructionCost 6723 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6724 ElementCount VF) const { 6725 6726 // There is no mechanism yet to create a scalable scalarization loop, 6727 // so this is currently Invalid. 6728 if (VF.isScalable()) 6729 return InstructionCost::getInvalid(); 6730 6731 if (VF.isScalar()) 6732 return 0; 6733 6734 InstructionCost Cost = 0; 6735 Type *RetTy = ToVectorTy(I->getType(), VF); 6736 if (!RetTy->isVoidTy() && 6737 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6738 Cost += TTI.getScalarizationOverhead( 6739 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6740 false); 6741 6742 // Some targets keep addresses scalar. 6743 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6744 return Cost; 6745 6746 // Some targets support efficient element stores. 6747 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6748 return Cost; 6749 6750 // Collect operands to consider. 6751 CallInst *CI = dyn_cast<CallInst>(I); 6752 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6753 6754 // Skip operands that do not require extraction/scalarization and do not incur 6755 // any overhead. 6756 SmallVector<Type *> Tys; 6757 for (auto *V : filterExtractingOperands(Ops, VF)) 6758 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6759 return Cost + TTI.getOperandsScalarizationOverhead( 6760 filterExtractingOperands(Ops, VF), Tys); 6761 } 6762 6763 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6764 if (VF.isScalar()) 6765 return; 6766 NumPredStores = 0; 6767 for (BasicBlock *BB : TheLoop->blocks()) { 6768 // For each instruction in the old loop. 6769 for (Instruction &I : *BB) { 6770 Value *Ptr = getLoadStorePointerOperand(&I); 6771 if (!Ptr) 6772 continue; 6773 6774 // TODO: We should generate better code and update the cost model for 6775 // predicated uniform stores. Today they are treated as any other 6776 // predicated store (see added test cases in 6777 // invariant-store-vectorization.ll). 6778 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6779 NumPredStores++; 6780 6781 if (Legal->isUniformMemOp(I)) { 6782 // TODO: Avoid replicating loads and stores instead of 6783 // relying on instcombine to remove them. 6784 // Load: Scalar load + broadcast 6785 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6786 InstructionCost Cost; 6787 if (isa<StoreInst>(&I) && VF.isScalable() && 6788 isLegalGatherOrScatter(&I, VF)) { 6789 Cost = getGatherScatterCost(&I, VF); 6790 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6791 } else { 6792 Cost = getUniformMemOpCost(&I, VF); 6793 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6794 } 6795 continue; 6796 } 6797 6798 // We assume that widening is the best solution when possible. 6799 if (memoryInstructionCanBeWidened(&I, VF)) { 6800 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6801 int ConsecutiveStride = Legal->isConsecutivePtr( 6802 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6803 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6804 "Expected consecutive stride."); 6805 InstWidening Decision = 6806 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6807 setWideningDecision(&I, VF, Decision, Cost); 6808 continue; 6809 } 6810 6811 // Choose between Interleaving, Gather/Scatter or Scalarization. 6812 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6813 unsigned NumAccesses = 1; 6814 if (isAccessInterleaved(&I)) { 6815 auto Group = getInterleavedAccessGroup(&I); 6816 assert(Group && "Fail to get an interleaved access group."); 6817 6818 // Make one decision for the whole group. 6819 if (getWideningDecision(&I, VF) != CM_Unknown) 6820 continue; 6821 6822 NumAccesses = Group->getNumMembers(); 6823 if (interleavedAccessCanBeWidened(&I, VF)) 6824 InterleaveCost = getInterleaveGroupCost(&I, VF); 6825 } 6826 6827 InstructionCost GatherScatterCost = 6828 isLegalGatherOrScatter(&I, VF) 6829 ? getGatherScatterCost(&I, VF) * NumAccesses 6830 : InstructionCost::getInvalid(); 6831 6832 InstructionCost ScalarizationCost = 6833 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6834 6835 // Choose better solution for the current VF, 6836 // write down this decision and use it during vectorization. 6837 InstructionCost Cost; 6838 InstWidening Decision; 6839 if (InterleaveCost <= GatherScatterCost && 6840 InterleaveCost < ScalarizationCost) { 6841 Decision = CM_Interleave; 6842 Cost = InterleaveCost; 6843 } else if (GatherScatterCost < ScalarizationCost) { 6844 Decision = CM_GatherScatter; 6845 Cost = GatherScatterCost; 6846 } else { 6847 Decision = CM_Scalarize; 6848 Cost = ScalarizationCost; 6849 } 6850 // If the instructions belongs to an interleave group, the whole group 6851 // receives the same decision. The whole group receives the cost, but 6852 // the cost will actually be assigned to one instruction. 6853 if (auto Group = getInterleavedAccessGroup(&I)) 6854 setWideningDecision(Group, VF, Decision, Cost); 6855 else 6856 setWideningDecision(&I, VF, Decision, Cost); 6857 } 6858 } 6859 6860 // Make sure that any load of address and any other address computation 6861 // remains scalar unless there is gather/scatter support. This avoids 6862 // inevitable extracts into address registers, and also has the benefit of 6863 // activating LSR more, since that pass can't optimize vectorized 6864 // addresses. 6865 if (TTI.prefersVectorizedAddressing()) 6866 return; 6867 6868 // Start with all scalar pointer uses. 6869 SmallPtrSet<Instruction *, 8> AddrDefs; 6870 for (BasicBlock *BB : TheLoop->blocks()) 6871 for (Instruction &I : *BB) { 6872 Instruction *PtrDef = 6873 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6874 if (PtrDef && TheLoop->contains(PtrDef) && 6875 getWideningDecision(&I, VF) != CM_GatherScatter) 6876 AddrDefs.insert(PtrDef); 6877 } 6878 6879 // Add all instructions used to generate the addresses. 6880 SmallVector<Instruction *, 4> Worklist; 6881 append_range(Worklist, AddrDefs); 6882 while (!Worklist.empty()) { 6883 Instruction *I = Worklist.pop_back_val(); 6884 for (auto &Op : I->operands()) 6885 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6886 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6887 AddrDefs.insert(InstOp).second) 6888 Worklist.push_back(InstOp); 6889 } 6890 6891 for (auto *I : AddrDefs) { 6892 if (isa<LoadInst>(I)) { 6893 // Setting the desired widening decision should ideally be handled in 6894 // by cost functions, but since this involves the task of finding out 6895 // if the loaded register is involved in an address computation, it is 6896 // instead changed here when we know this is the case. 6897 InstWidening Decision = getWideningDecision(I, VF); 6898 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6899 // Scalarize a widened load of address. 6900 setWideningDecision( 6901 I, VF, CM_Scalarize, 6902 (VF.getKnownMinValue() * 6903 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6904 else if (auto Group = getInterleavedAccessGroup(I)) { 6905 // Scalarize an interleave group of address loads. 6906 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6907 if (Instruction *Member = Group->getMember(I)) 6908 setWideningDecision( 6909 Member, VF, CM_Scalarize, 6910 (VF.getKnownMinValue() * 6911 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6912 } 6913 } 6914 } else 6915 // Make sure I gets scalarized and a cost estimate without 6916 // scalarization overhead. 6917 ForcedScalars[VF].insert(I); 6918 } 6919 } 6920 6921 InstructionCost 6922 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6923 Type *&VectorTy) { 6924 Type *RetTy = I->getType(); 6925 if (canTruncateToMinimalBitwidth(I, VF)) 6926 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6927 auto SE = PSE.getSE(); 6928 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6929 6930 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6931 ElementCount VF) -> bool { 6932 if (VF.isScalar()) 6933 return true; 6934 6935 auto Scalarized = InstsToScalarize.find(VF); 6936 assert(Scalarized != InstsToScalarize.end() && 6937 "VF not yet analyzed for scalarization profitability"); 6938 return !Scalarized->second.count(I) && 6939 llvm::all_of(I->users(), [&](User *U) { 6940 auto *UI = cast<Instruction>(U); 6941 return !Scalarized->second.count(UI); 6942 }); 6943 }; 6944 (void) hasSingleCopyAfterVectorization; 6945 6946 if (isScalarAfterVectorization(I, VF)) { 6947 // With the exception of GEPs and PHIs, after scalarization there should 6948 // only be one copy of the instruction generated in the loop. This is 6949 // because the VF is either 1, or any instructions that need scalarizing 6950 // have already been dealt with by the the time we get here. As a result, 6951 // it means we don't have to multiply the instruction cost by VF. 6952 assert(I->getOpcode() == Instruction::GetElementPtr || 6953 I->getOpcode() == Instruction::PHI || 6954 (I->getOpcode() == Instruction::BitCast && 6955 I->getType()->isPointerTy()) || 6956 hasSingleCopyAfterVectorization(I, VF)); 6957 VectorTy = RetTy; 6958 } else 6959 VectorTy = ToVectorTy(RetTy, VF); 6960 6961 // TODO: We need to estimate the cost of intrinsic calls. 6962 switch (I->getOpcode()) { 6963 case Instruction::GetElementPtr: 6964 // We mark this instruction as zero-cost because the cost of GEPs in 6965 // vectorized code depends on whether the corresponding memory instruction 6966 // is scalarized or not. Therefore, we handle GEPs with the memory 6967 // instruction cost. 6968 return 0; 6969 case Instruction::Br: { 6970 // In cases of scalarized and predicated instructions, there will be VF 6971 // predicated blocks in the vectorized loop. Each branch around these 6972 // blocks requires also an extract of its vector compare i1 element. 6973 bool ScalarPredicatedBB = false; 6974 BranchInst *BI = cast<BranchInst>(I); 6975 if (VF.isVector() && BI->isConditional() && 6976 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || 6977 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1)))) 6978 ScalarPredicatedBB = true; 6979 6980 if (ScalarPredicatedBB) { 6981 // Not possible to scalarize scalable vector with predicated instructions. 6982 if (VF.isScalable()) 6983 return InstructionCost::getInvalid(); 6984 // Return cost for branches around scalarized and predicated blocks. 6985 auto *Vec_i1Ty = 6986 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6987 return ( 6988 TTI.getScalarizationOverhead( 6989 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 6990 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6991 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6992 // The back-edge branch will remain, as will all scalar branches. 6993 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6994 else 6995 // This branch will be eliminated by if-conversion. 6996 return 0; 6997 // Note: We currently assume zero cost for an unconditional branch inside 6998 // a predicated block since it will become a fall-through, although we 6999 // may decide in the future to call TTI for all branches. 7000 } 7001 case Instruction::PHI: { 7002 auto *Phi = cast<PHINode>(I); 7003 7004 // First-order recurrences are replaced by vector shuffles inside the loop. 7005 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7006 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7007 return TTI.getShuffleCost( 7008 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7009 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7010 7011 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7012 // converted into select instructions. We require N - 1 selects per phi 7013 // node, where N is the number of incoming values. 7014 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7015 return (Phi->getNumIncomingValues() - 1) * 7016 TTI.getCmpSelInstrCost( 7017 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7018 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7019 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7020 7021 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7022 } 7023 case Instruction::UDiv: 7024 case Instruction::SDiv: 7025 case Instruction::URem: 7026 case Instruction::SRem: 7027 // If we have a predicated instruction, it may not be executed for each 7028 // vector lane. Get the scalarization cost and scale this amount by the 7029 // probability of executing the predicated block. If the instruction is not 7030 // predicated, we fall through to the next case. 7031 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7032 InstructionCost Cost = 0; 7033 7034 // These instructions have a non-void type, so account for the phi nodes 7035 // that we will create. This cost is likely to be zero. The phi node 7036 // cost, if any, should be scaled by the block probability because it 7037 // models a copy at the end of each predicated block. 7038 Cost += VF.getKnownMinValue() * 7039 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7040 7041 // The cost of the non-predicated instruction. 7042 Cost += VF.getKnownMinValue() * 7043 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7044 7045 // The cost of insertelement and extractelement instructions needed for 7046 // scalarization. 7047 Cost += getScalarizationOverhead(I, VF); 7048 7049 // Scale the cost by the probability of executing the predicated blocks. 7050 // This assumes the predicated block for each vector lane is equally 7051 // likely. 7052 return Cost / getReciprocalPredBlockProb(); 7053 } 7054 LLVM_FALLTHROUGH; 7055 case Instruction::Add: 7056 case Instruction::FAdd: 7057 case Instruction::Sub: 7058 case Instruction::FSub: 7059 case Instruction::Mul: 7060 case Instruction::FMul: 7061 case Instruction::FDiv: 7062 case Instruction::FRem: 7063 case Instruction::Shl: 7064 case Instruction::LShr: 7065 case Instruction::AShr: 7066 case Instruction::And: 7067 case Instruction::Or: 7068 case Instruction::Xor: { 7069 // Since we will replace the stride by 1 the multiplication should go away. 7070 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7071 return 0; 7072 7073 // Detect reduction patterns 7074 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7075 return *RedCost; 7076 7077 // Certain instructions can be cheaper to vectorize if they have a constant 7078 // second vector operand. One example of this are shifts on x86. 7079 Value *Op2 = I->getOperand(1); 7080 TargetTransformInfo::OperandValueProperties Op2VP; 7081 TargetTransformInfo::OperandValueKind Op2VK = 7082 TTI.getOperandInfo(Op2, Op2VP); 7083 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7084 Op2VK = TargetTransformInfo::OK_UniformValue; 7085 7086 SmallVector<const Value *, 4> Operands(I->operand_values()); 7087 return TTI.getArithmeticInstrCost( 7088 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7089 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7090 } 7091 case Instruction::FNeg: { 7092 return TTI.getArithmeticInstrCost( 7093 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7094 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7095 TargetTransformInfo::OP_None, I->getOperand(0), I); 7096 } 7097 case Instruction::Select: { 7098 SelectInst *SI = cast<SelectInst>(I); 7099 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7100 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7101 7102 const Value *Op0, *Op1; 7103 using namespace llvm::PatternMatch; 7104 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7105 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7106 // select x, y, false --> x & y 7107 // select x, true, y --> x | y 7108 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7109 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7110 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7111 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7112 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7113 Op1->getType()->getScalarSizeInBits() == 1); 7114 7115 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7116 return TTI.getArithmeticInstrCost( 7117 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7118 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7119 } 7120 7121 Type *CondTy = SI->getCondition()->getType(); 7122 if (!ScalarCond) 7123 CondTy = VectorType::get(CondTy, VF); 7124 7125 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7126 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7127 Pred = Cmp->getPredicate(); 7128 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7129 CostKind, I); 7130 } 7131 case Instruction::ICmp: 7132 case Instruction::FCmp: { 7133 Type *ValTy = I->getOperand(0)->getType(); 7134 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7135 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7136 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7137 VectorTy = ToVectorTy(ValTy, VF); 7138 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7139 cast<CmpInst>(I)->getPredicate(), CostKind, 7140 I); 7141 } 7142 case Instruction::Store: 7143 case Instruction::Load: { 7144 ElementCount Width = VF; 7145 if (Width.isVector()) { 7146 InstWidening Decision = getWideningDecision(I, Width); 7147 assert(Decision != CM_Unknown && 7148 "CM decision should be taken at this point"); 7149 if (Decision == CM_Scalarize) { 7150 if (VF.isScalable() && isa<StoreInst>(I)) 7151 // We can't scalarize a scalable vector store (even a uniform one 7152 // currently), return an invalid cost so as to prevent vectorization. 7153 return InstructionCost::getInvalid(); 7154 Width = ElementCount::getFixed(1); 7155 } 7156 } 7157 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7158 return getMemoryInstructionCost(I, VF); 7159 } 7160 case Instruction::BitCast: 7161 if (I->getType()->isPointerTy()) 7162 return 0; 7163 LLVM_FALLTHROUGH; 7164 case Instruction::ZExt: 7165 case Instruction::SExt: 7166 case Instruction::FPToUI: 7167 case Instruction::FPToSI: 7168 case Instruction::FPExt: 7169 case Instruction::PtrToInt: 7170 case Instruction::IntToPtr: 7171 case Instruction::SIToFP: 7172 case Instruction::UIToFP: 7173 case Instruction::Trunc: 7174 case Instruction::FPTrunc: { 7175 // Computes the CastContextHint from a Load/Store instruction. 7176 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7177 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7178 "Expected a load or a store!"); 7179 7180 if (VF.isScalar() || !TheLoop->contains(I)) 7181 return TTI::CastContextHint::Normal; 7182 7183 switch (getWideningDecision(I, VF)) { 7184 case LoopVectorizationCostModel::CM_GatherScatter: 7185 return TTI::CastContextHint::GatherScatter; 7186 case LoopVectorizationCostModel::CM_Interleave: 7187 return TTI::CastContextHint::Interleave; 7188 case LoopVectorizationCostModel::CM_Scalarize: 7189 case LoopVectorizationCostModel::CM_Widen: 7190 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7191 : TTI::CastContextHint::Normal; 7192 case LoopVectorizationCostModel::CM_Widen_Reverse: 7193 return TTI::CastContextHint::Reversed; 7194 case LoopVectorizationCostModel::CM_Unknown: 7195 llvm_unreachable("Instr did not go through cost modelling?"); 7196 } 7197 7198 llvm_unreachable("Unhandled case!"); 7199 }; 7200 7201 unsigned Opcode = I->getOpcode(); 7202 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7203 // For Trunc, the context is the only user, which must be a StoreInst. 7204 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7205 if (I->hasOneUse()) 7206 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7207 CCH = ComputeCCH(Store); 7208 } 7209 // For Z/Sext, the context is the operand, which must be a LoadInst. 7210 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7211 Opcode == Instruction::FPExt) { 7212 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7213 CCH = ComputeCCH(Load); 7214 } 7215 7216 // We optimize the truncation of induction variables having constant 7217 // integer steps. The cost of these truncations is the same as the scalar 7218 // operation. 7219 if (isOptimizableIVTruncate(I, VF)) { 7220 auto *Trunc = cast<TruncInst>(I); 7221 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7222 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7223 } 7224 7225 // Detect reduction patterns 7226 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7227 return *RedCost; 7228 7229 Type *SrcScalarTy = I->getOperand(0)->getType(); 7230 Type *SrcVecTy = 7231 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7232 if (canTruncateToMinimalBitwidth(I, VF)) { 7233 // This cast is going to be shrunk. This may remove the cast or it might 7234 // turn it into slightly different cast. For example, if MinBW == 16, 7235 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7236 // 7237 // Calculate the modified src and dest types. 7238 Type *MinVecTy = VectorTy; 7239 if (Opcode == Instruction::Trunc) { 7240 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7241 VectorTy = 7242 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7243 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7244 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7245 VectorTy = 7246 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7247 } 7248 } 7249 7250 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7251 } 7252 case Instruction::Call: { 7253 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7254 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7255 return *RedCost; 7256 bool NeedToScalarize; 7257 CallInst *CI = cast<CallInst>(I); 7258 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7259 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7260 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7261 return std::min(CallCost, IntrinsicCost); 7262 } 7263 return CallCost; 7264 } 7265 case Instruction::ExtractValue: 7266 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7267 case Instruction::Alloca: 7268 // We cannot easily widen alloca to a scalable alloca, as 7269 // the result would need to be a vector of pointers. 7270 if (VF.isScalable()) 7271 return InstructionCost::getInvalid(); 7272 LLVM_FALLTHROUGH; 7273 default: 7274 // This opcode is unknown. Assume that it is the same as 'mul'. 7275 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7276 } // end of switch. 7277 } 7278 7279 char LoopVectorize::ID = 0; 7280 7281 static const char lv_name[] = "Loop Vectorization"; 7282 7283 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7284 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7285 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7286 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7287 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7288 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7289 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7290 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7291 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7292 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7293 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7294 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7295 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7296 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7297 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7298 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7299 7300 namespace llvm { 7301 7302 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7303 7304 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7305 bool VectorizeOnlyWhenForced) { 7306 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7307 } 7308 7309 } // end namespace llvm 7310 7311 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7312 // Check if the pointer operand of a load or store instruction is 7313 // consecutive. 7314 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7315 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7316 return false; 7317 } 7318 7319 void LoopVectorizationCostModel::collectValuesToIgnore() { 7320 // Ignore ephemeral values. 7321 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7322 7323 // Find all stores to invariant variables. Since they are going to sink 7324 // outside the loop we do not need calculate cost for them. 7325 for (BasicBlock *BB : TheLoop->blocks()) 7326 for (Instruction &I : *BB) { 7327 StoreInst *SI; 7328 if ((SI = dyn_cast<StoreInst>(&I)) && 7329 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7330 ValuesToIgnore.insert(&I); 7331 } 7332 7333 // Ignore type-promoting instructions we identified during reduction 7334 // detection. 7335 for (auto &Reduction : Legal->getReductionVars()) { 7336 const RecurrenceDescriptor &RedDes = Reduction.second; 7337 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7338 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7339 } 7340 // Ignore type-casting instructions we identified during induction 7341 // detection. 7342 for (auto &Induction : Legal->getInductionVars()) { 7343 const InductionDescriptor &IndDes = Induction.second; 7344 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7345 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7346 } 7347 } 7348 7349 void LoopVectorizationCostModel::collectInLoopReductions() { 7350 for (auto &Reduction : Legal->getReductionVars()) { 7351 PHINode *Phi = Reduction.first; 7352 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7353 7354 // We don't collect reductions that are type promoted (yet). 7355 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7356 continue; 7357 7358 // If the target would prefer this reduction to happen "in-loop", then we 7359 // want to record it as such. 7360 unsigned Opcode = RdxDesc.getOpcode(); 7361 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7362 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7363 TargetTransformInfo::ReductionFlags())) 7364 continue; 7365 7366 // Check that we can correctly put the reductions into the loop, by 7367 // finding the chain of operations that leads from the phi to the loop 7368 // exit value. 7369 SmallVector<Instruction *, 4> ReductionOperations = 7370 RdxDesc.getReductionOpChain(Phi, TheLoop); 7371 bool InLoop = !ReductionOperations.empty(); 7372 if (InLoop) { 7373 InLoopReductionChains[Phi] = ReductionOperations; 7374 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7375 Instruction *LastChain = Phi; 7376 for (auto *I : ReductionOperations) { 7377 InLoopReductionImmediateChains[I] = LastChain; 7378 LastChain = I; 7379 } 7380 } 7381 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7382 << " reduction for phi: " << *Phi << "\n"); 7383 } 7384 } 7385 7386 // TODO: we could return a pair of values that specify the max VF and 7387 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7388 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7389 // doesn't have a cost model that can choose which plan to execute if 7390 // more than one is generated. 7391 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7392 LoopVectorizationCostModel &CM) { 7393 unsigned WidestType; 7394 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7395 return WidestVectorRegBits / WidestType; 7396 } 7397 7398 VectorizationFactor 7399 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7400 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7401 ElementCount VF = UserVF; 7402 // Outer loop handling: They may require CFG and instruction level 7403 // transformations before even evaluating whether vectorization is profitable. 7404 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7405 // the vectorization pipeline. 7406 if (!OrigLoop->isInnermost()) { 7407 // If the user doesn't provide a vectorization factor, determine a 7408 // reasonable one. 7409 if (UserVF.isZero()) { 7410 VF = ElementCount::getFixed(determineVPlanVF( 7411 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7412 .getFixedSize(), 7413 CM)); 7414 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7415 7416 // Make sure we have a VF > 1 for stress testing. 7417 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7418 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7419 << "overriding computed VF.\n"); 7420 VF = ElementCount::getFixed(4); 7421 } 7422 } 7423 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7424 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7425 "VF needs to be a power of two"); 7426 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7427 << "VF " << VF << " to build VPlans.\n"); 7428 buildVPlans(VF, VF); 7429 7430 // For VPlan build stress testing, we bail out after VPlan construction. 7431 if (VPlanBuildStressTest) 7432 return VectorizationFactor::Disabled(); 7433 7434 return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; 7435 } 7436 7437 LLVM_DEBUG( 7438 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7439 "VPlan-native path.\n"); 7440 return VectorizationFactor::Disabled(); 7441 } 7442 7443 Optional<VectorizationFactor> 7444 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7445 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7446 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7447 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7448 return None; 7449 7450 // Invalidate interleave groups if all blocks of loop will be predicated. 7451 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7452 !useMaskedInterleavedAccesses(*TTI)) { 7453 LLVM_DEBUG( 7454 dbgs() 7455 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7456 "which requires masked-interleaved support.\n"); 7457 if (CM.InterleaveInfo.invalidateGroups()) 7458 // Invalidating interleave groups also requires invalidating all decisions 7459 // based on them, which includes widening decisions and uniform and scalar 7460 // values. 7461 CM.invalidateCostModelingDecisions(); 7462 } 7463 7464 ElementCount MaxUserVF = 7465 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7466 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7467 if (!UserVF.isZero() && UserVFIsLegal) { 7468 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7469 "VF needs to be a power of two"); 7470 // Collect the instructions (and their associated costs) that will be more 7471 // profitable to scalarize. 7472 if (CM.selectUserVectorizationFactor(UserVF)) { 7473 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7474 CM.collectInLoopReductions(); 7475 buildVPlansWithVPRecipes(UserVF, UserVF); 7476 LLVM_DEBUG(printPlans(dbgs())); 7477 return {{UserVF, 0, 0}}; 7478 } else 7479 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7480 "InvalidCost", ORE, OrigLoop); 7481 } 7482 7483 // Populate the set of Vectorization Factor Candidates. 7484 ElementCountSet VFCandidates; 7485 for (auto VF = ElementCount::getFixed(1); 7486 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7487 VFCandidates.insert(VF); 7488 for (auto VF = ElementCount::getScalable(1); 7489 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7490 VFCandidates.insert(VF); 7491 7492 for (const auto &VF : VFCandidates) { 7493 // Collect Uniform and Scalar instructions after vectorization with VF. 7494 CM.collectUniformsAndScalars(VF); 7495 7496 // Collect the instructions (and their associated costs) that will be more 7497 // profitable to scalarize. 7498 if (VF.isVector()) 7499 CM.collectInstsToScalarize(VF); 7500 } 7501 7502 CM.collectInLoopReductions(); 7503 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7504 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7505 7506 LLVM_DEBUG(printPlans(dbgs())); 7507 if (!MaxFactors.hasVector()) 7508 return VectorizationFactor::Disabled(); 7509 7510 // Select the optimal vectorization factor. 7511 VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates); 7512 assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero."); 7513 return VF; 7514 } 7515 7516 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7517 assert(count_if(VPlans, 7518 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7519 1 && 7520 "Best VF has not a single VPlan."); 7521 7522 for (const VPlanPtr &Plan : VPlans) { 7523 if (Plan->hasVF(VF)) 7524 return *Plan.get(); 7525 } 7526 llvm_unreachable("No plan found!"); 7527 } 7528 7529 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7530 SmallVector<Metadata *, 4> MDs; 7531 // Reserve first location for self reference to the LoopID metadata node. 7532 MDs.push_back(nullptr); 7533 bool IsUnrollMetadata = false; 7534 MDNode *LoopID = L->getLoopID(); 7535 if (LoopID) { 7536 // First find existing loop unrolling disable metadata. 7537 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7538 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7539 if (MD) { 7540 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7541 IsUnrollMetadata = 7542 S && S->getString().startswith("llvm.loop.unroll.disable"); 7543 } 7544 MDs.push_back(LoopID->getOperand(i)); 7545 } 7546 } 7547 7548 if (!IsUnrollMetadata) { 7549 // Add runtime unroll disable metadata. 7550 LLVMContext &Context = L->getHeader()->getContext(); 7551 SmallVector<Metadata *, 1> DisableOperands; 7552 DisableOperands.push_back( 7553 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7554 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7555 MDs.push_back(DisableNode); 7556 MDNode *NewLoopID = MDNode::get(Context, MDs); 7557 // Set operand 0 to refer to the loop id itself. 7558 NewLoopID->replaceOperandWith(0, NewLoopID); 7559 L->setLoopID(NewLoopID); 7560 } 7561 } 7562 7563 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7564 VPlan &BestVPlan, 7565 InnerLoopVectorizer &ILV, 7566 DominatorTree *DT, 7567 bool IsEpilogueVectorization) { 7568 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7569 << '\n'); 7570 7571 // Perform the actual loop transformation. 7572 7573 // 1. Set up the skeleton for vectorization, including vector pre-header and 7574 // middle block. The vector loop is created during VPlan execution. 7575 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7576 Value *CanonicalIVStartValue; 7577 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7578 ILV.createVectorizedLoopSkeleton(); 7579 7580 // Only use noalias metadata when using memory checks guaranteeing no overlap 7581 // across all iterations. 7582 const LoopAccessInfo *LAI = ILV.Legal->getLAI(); 7583 if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && 7584 !LAI->getRuntimePointerChecking()->getDiffChecks()) { 7585 7586 // We currently don't use LoopVersioning for the actual loop cloning but we 7587 // still use it to add the noalias metadata. 7588 // TODO: Find a better way to re-use LoopVersioning functionality to add 7589 // metadata. 7590 State.LVer = std::make_unique<LoopVersioning>( 7591 *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, 7592 PSE.getSE()); 7593 State.LVer->prepareNoAliasMetadata(); 7594 } 7595 7596 ILV.collectPoisonGeneratingRecipes(State); 7597 7598 ILV.printDebugTracesAtStart(); 7599 7600 //===------------------------------------------------===// 7601 // 7602 // Notice: any optimization or new instruction that go 7603 // into the code below should also be implemented in 7604 // the cost-model. 7605 // 7606 //===------------------------------------------------===// 7607 7608 // 2. Copy and widen instructions from the old loop into the new loop. 7609 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7610 ILV.getOrCreateVectorTripCount(nullptr), 7611 CanonicalIVStartValue, State, 7612 IsEpilogueVectorization); 7613 7614 BestVPlan.execute(&State); 7615 7616 // Keep all loop hints from the original loop on the vector loop (we'll 7617 // replace the vectorizer-specific hints below). 7618 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7619 7620 Optional<MDNode *> VectorizedLoopID = 7621 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7622 LLVMLoopVectorizeFollowupVectorized}); 7623 7624 VPBasicBlock *HeaderVPBB = 7625 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7626 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7627 if (VectorizedLoopID) 7628 L->setLoopID(VectorizedLoopID.getValue()); 7629 else { 7630 // Keep all loop hints from the original loop on the vector loop (we'll 7631 // replace the vectorizer-specific hints below). 7632 if (MDNode *LID = OrigLoop->getLoopID()) 7633 L->setLoopID(LID); 7634 7635 LoopVectorizeHints Hints(L, true, *ORE); 7636 Hints.setAlreadyVectorized(); 7637 } 7638 // Disable runtime unrolling when vectorizing the epilogue loop. 7639 if (CanonicalIVStartValue) 7640 AddRuntimeUnrollDisableMetaData(L); 7641 7642 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7643 // predication, updating analyses. 7644 ILV.fixVectorizedLoop(State, BestVPlan); 7645 7646 ILV.printDebugTracesAtEnd(); 7647 } 7648 7649 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7650 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7651 for (const auto &Plan : VPlans) 7652 if (PrintVPlansInDotFormat) 7653 Plan->printDOT(O); 7654 else 7655 Plan->print(O); 7656 } 7657 #endif 7658 7659 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7660 7661 //===--------------------------------------------------------------------===// 7662 // EpilogueVectorizerMainLoop 7663 //===--------------------------------------------------------------------===// 7664 7665 /// This function is partially responsible for generating the control flow 7666 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7667 std::pair<BasicBlock *, Value *> 7668 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7669 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7670 7671 // Workaround! Compute the trip count of the original loop and cache it 7672 // before we start modifying the CFG. This code has a systemic problem 7673 // wherein it tries to run analysis over partially constructed IR; this is 7674 // wrong, and not simply for SCEV. The trip count of the original loop 7675 // simply happens to be prone to hitting this in practice. In theory, we 7676 // can hit the same issue for any SCEV, or ValueTracking query done during 7677 // mutation. See PR49900. 7678 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7679 createVectorLoopSkeleton(""); 7680 7681 // Generate the code to check the minimum iteration count of the vector 7682 // epilogue (see below). 7683 EPI.EpilogueIterationCountCheck = 7684 emitIterationCountCheck(LoopScalarPreHeader, true); 7685 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7686 7687 // Generate the code to check any assumptions that we've made for SCEV 7688 // expressions. 7689 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7690 7691 // Generate the code that checks at runtime if arrays overlap. We put the 7692 // checks into a separate block to make the more common case of few elements 7693 // faster. 7694 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7695 7696 // Generate the iteration count check for the main loop, *after* the check 7697 // for the epilogue loop, so that the path-length is shorter for the case 7698 // that goes directly through the vector epilogue. The longer-path length for 7699 // the main loop is compensated for, by the gain from vectorizing the larger 7700 // trip count. Note: the branch will get updated later on when we vectorize 7701 // the epilogue. 7702 EPI.MainLoopIterationCountCheck = 7703 emitIterationCountCheck(LoopScalarPreHeader, false); 7704 7705 // Generate the induction variable. 7706 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7707 7708 // Skip induction resume value creation here because they will be created in 7709 // the second pass. If we created them here, they wouldn't be used anyway, 7710 // because the vplan in the second pass still contains the inductions from the 7711 // original loop. 7712 7713 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7714 } 7715 7716 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7717 LLVM_DEBUG({ 7718 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7719 << "Main Loop VF:" << EPI.MainLoopVF 7720 << ", Main Loop UF:" << EPI.MainLoopUF 7721 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7722 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7723 }); 7724 } 7725 7726 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7727 DEBUG_WITH_TYPE(VerboseDebug, { 7728 dbgs() << "intermediate fn:\n" 7729 << *OrigLoop->getHeader()->getParent() << "\n"; 7730 }); 7731 } 7732 7733 BasicBlock * 7734 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7735 bool ForEpilogue) { 7736 assert(Bypass && "Expected valid bypass basic block."); 7737 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7738 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7739 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7740 // Reuse existing vector loop preheader for TC checks. 7741 // Note that new preheader block is generated for vector loop. 7742 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7743 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7744 7745 // Generate code to check if the loop's trip count is less than VF * UF of the 7746 // main vector loop. 7747 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7748 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7749 7750 Value *CheckMinIters = Builder.CreateICmp( 7751 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7752 "min.iters.check"); 7753 7754 if (!ForEpilogue) 7755 TCCheckBlock->setName("vector.main.loop.iter.check"); 7756 7757 // Create new preheader for vector loop. 7758 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7759 DT, LI, nullptr, "vector.ph"); 7760 7761 if (ForEpilogue) { 7762 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7763 DT->getNode(Bypass)->getIDom()) && 7764 "TC check is expected to dominate Bypass"); 7765 7766 // Update dominator for Bypass & LoopExit. 7767 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7768 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7769 // For loops with multiple exits, there's no edge from the middle block 7770 // to exit blocks (as the epilogue must run) and thus no need to update 7771 // the immediate dominator of the exit blocks. 7772 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7773 7774 LoopBypassBlocks.push_back(TCCheckBlock); 7775 7776 // Save the trip count so we don't have to regenerate it in the 7777 // vec.epilog.iter.check. This is safe to do because the trip count 7778 // generated here dominates the vector epilog iter check. 7779 EPI.TripCount = Count; 7780 } 7781 7782 ReplaceInstWithInst( 7783 TCCheckBlock->getTerminator(), 7784 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7785 7786 return TCCheckBlock; 7787 } 7788 7789 //===--------------------------------------------------------------------===// 7790 // EpilogueVectorizerEpilogueLoop 7791 //===--------------------------------------------------------------------===// 7792 7793 /// This function is partially responsible for generating the control flow 7794 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7795 std::pair<BasicBlock *, Value *> 7796 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7797 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7798 createVectorLoopSkeleton("vec.epilog."); 7799 7800 // Now, compare the remaining count and if there aren't enough iterations to 7801 // execute the vectorized epilogue skip to the scalar part. 7802 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7803 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7804 LoopVectorPreHeader = 7805 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7806 LI, nullptr, "vec.epilog.ph"); 7807 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7808 VecEpilogueIterationCountCheck); 7809 7810 // Adjust the control flow taking the state info from the main loop 7811 // vectorization into account. 7812 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7813 "expected this to be saved from the previous pass."); 7814 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7815 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7816 7817 DT->changeImmediateDominator(LoopVectorPreHeader, 7818 EPI.MainLoopIterationCountCheck); 7819 7820 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7821 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7822 7823 if (EPI.SCEVSafetyCheck) 7824 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7825 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7826 if (EPI.MemSafetyCheck) 7827 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7828 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7829 7830 DT->changeImmediateDominator( 7831 VecEpilogueIterationCountCheck, 7832 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7833 7834 DT->changeImmediateDominator(LoopScalarPreHeader, 7835 EPI.EpilogueIterationCountCheck); 7836 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7837 // If there is an epilogue which must run, there's no edge from the 7838 // middle block to exit blocks and thus no need to update the immediate 7839 // dominator of the exit blocks. 7840 DT->changeImmediateDominator(LoopExitBlock, 7841 EPI.EpilogueIterationCountCheck); 7842 7843 // Keep track of bypass blocks, as they feed start values to the induction 7844 // phis in the scalar loop preheader. 7845 if (EPI.SCEVSafetyCheck) 7846 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7847 if (EPI.MemSafetyCheck) 7848 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7849 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7850 7851 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7852 // merge control-flow from the latch block and the middle block. Update the 7853 // incoming values here and move the Phi into the preheader. 7854 SmallVector<PHINode *, 4> PhisInBlock; 7855 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7856 PhisInBlock.push_back(&Phi); 7857 7858 for (PHINode *Phi : PhisInBlock) { 7859 Phi->replaceIncomingBlockWith( 7860 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7861 VecEpilogueIterationCountCheck); 7862 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7863 if (EPI.SCEVSafetyCheck) 7864 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7865 if (EPI.MemSafetyCheck) 7866 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7867 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7868 } 7869 7870 // Generate a resume induction for the vector epilogue and put it in the 7871 // vector epilogue preheader 7872 Type *IdxTy = Legal->getWidestInductionType(); 7873 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7874 LoopVectorPreHeader->getFirstNonPHI()); 7875 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7876 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7877 EPI.MainLoopIterationCountCheck); 7878 7879 // Generate induction resume values. These variables save the new starting 7880 // indexes for the scalar loop. They are used to test if there are any tail 7881 // iterations left once the vector loop has completed. 7882 // Note that when the vectorized epilogue is skipped due to iteration count 7883 // check, then the resume value for the induction variable comes from 7884 // the trip count of the main vector loop, hence passing the AdditionalBypass 7885 // argument. 7886 createInductionResumeValues({VecEpilogueIterationCountCheck, 7887 EPI.VectorTripCount} /* AdditionalBypass */); 7888 7889 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7890 } 7891 7892 BasicBlock * 7893 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7894 BasicBlock *Bypass, BasicBlock *Insert) { 7895 7896 assert(EPI.TripCount && 7897 "Expected trip count to have been safed in the first pass."); 7898 assert( 7899 (!isa<Instruction>(EPI.TripCount) || 7900 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7901 "saved trip count does not dominate insertion point."); 7902 Value *TC = EPI.TripCount; 7903 IRBuilder<> Builder(Insert->getTerminator()); 7904 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7905 7906 // Generate code to check if the loop's trip count is less than VF * UF of the 7907 // vector epilogue loop. 7908 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7909 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7910 7911 Value *CheckMinIters = 7912 Builder.CreateICmp(P, Count, 7913 createStepForVF(Builder, Count->getType(), 7914 EPI.EpilogueVF, EPI.EpilogueUF), 7915 "min.epilog.iters.check"); 7916 7917 ReplaceInstWithInst( 7918 Insert->getTerminator(), 7919 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7920 7921 LoopBypassBlocks.push_back(Insert); 7922 return Insert; 7923 } 7924 7925 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7926 LLVM_DEBUG({ 7927 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7928 << "Epilogue Loop VF:" << EPI.EpilogueVF 7929 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7930 }); 7931 } 7932 7933 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7934 DEBUG_WITH_TYPE(VerboseDebug, { 7935 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7936 }); 7937 } 7938 7939 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7940 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7941 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7942 bool PredicateAtRangeStart = Predicate(Range.Start); 7943 7944 for (ElementCount TmpVF = Range.Start * 2; 7945 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7946 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7947 Range.End = TmpVF; 7948 break; 7949 } 7950 7951 return PredicateAtRangeStart; 7952 } 7953 7954 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7955 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7956 /// of VF's starting at a given VF and extending it as much as possible. Each 7957 /// vectorization decision can potentially shorten this sub-range during 7958 /// buildVPlan(). 7959 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7960 ElementCount MaxVF) { 7961 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7962 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7963 VFRange SubRange = {VF, MaxVFPlusOne}; 7964 VPlans.push_back(buildVPlan(SubRange)); 7965 VF = SubRange.End; 7966 } 7967 } 7968 7969 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7970 VPlanPtr &Plan) { 7971 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7972 7973 // Look for cached value. 7974 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7975 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7976 if (ECEntryIt != EdgeMaskCache.end()) 7977 return ECEntryIt->second; 7978 7979 VPValue *SrcMask = createBlockInMask(Src, Plan); 7980 7981 // The terminator has to be a branch inst! 7982 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7983 assert(BI && "Unexpected terminator found"); 7984 7985 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7986 return EdgeMaskCache[Edge] = SrcMask; 7987 7988 // If source is an exiting block, we know the exit edge is dynamically dead 7989 // in the vector loop, and thus we don't need to restrict the mask. Avoid 7990 // adding uses of an otherwise potentially dead instruction. 7991 if (OrigLoop->isLoopExiting(Src)) 7992 return EdgeMaskCache[Edge] = SrcMask; 7993 7994 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 7995 assert(EdgeMask && "No Edge Mask found for condition"); 7996 7997 if (BI->getSuccessor(0) != Dst) 7998 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 7999 8000 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8001 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8002 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8003 // The select version does not introduce new UB if SrcMask is false and 8004 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8005 VPValue *False = Plan->getOrAddVPValue( 8006 ConstantInt::getFalse(BI->getCondition()->getType())); 8007 EdgeMask = 8008 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8009 } 8010 8011 return EdgeMaskCache[Edge] = EdgeMask; 8012 } 8013 8014 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8015 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8016 8017 // Look for cached value. 8018 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8019 if (BCEntryIt != BlockMaskCache.end()) 8020 return BCEntryIt->second; 8021 8022 // All-one mask is modelled as no-mask following the convention for masked 8023 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8024 VPValue *BlockMask = nullptr; 8025 8026 if (OrigLoop->getHeader() == BB) { 8027 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8028 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8029 8030 assert(CM.foldTailByMasking() && "must fold the tail"); 8031 8032 // If we're using the active lane mask for control flow, then we get the 8033 // mask from the active lane mask PHI that is cached in the VPlan. 8034 PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask(); 8035 if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow) 8036 return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi(); 8037 8038 // Introduce the early-exit compare IV <= BTC to form header block mask. 8039 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8040 // constructing the desired canonical IV in the header block as its first 8041 // non-phi instructions. 8042 8043 VPBasicBlock *HeaderVPBB = 8044 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8045 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8046 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8047 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8048 8049 VPBuilder::InsertPointGuard Guard(Builder); 8050 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8051 if (EmitGetActiveLaneMask != PredicationStyle::None) { 8052 VPValue *TC = Plan->getOrCreateTripCount(); 8053 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}, 8054 nullptr, "active.lane.mask"); 8055 } else { 8056 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8057 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8058 } 8059 return BlockMaskCache[BB] = BlockMask; 8060 } 8061 8062 // This is the block mask. We OR all incoming edges. 8063 for (auto *Predecessor : predecessors(BB)) { 8064 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8065 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8066 return BlockMaskCache[BB] = EdgeMask; 8067 8068 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8069 BlockMask = EdgeMask; 8070 continue; 8071 } 8072 8073 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8074 } 8075 8076 return BlockMaskCache[BB] = BlockMask; 8077 } 8078 8079 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8080 ArrayRef<VPValue *> Operands, 8081 VFRange &Range, 8082 VPlanPtr &Plan) { 8083 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8084 "Must be called with either a load or store"); 8085 8086 auto willWiden = [&](ElementCount VF) -> bool { 8087 LoopVectorizationCostModel::InstWidening Decision = 8088 CM.getWideningDecision(I, VF); 8089 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8090 "CM decision should be taken at this point."); 8091 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8092 return true; 8093 if (CM.isScalarAfterVectorization(I, VF) || 8094 CM.isProfitableToScalarize(I, VF)) 8095 return false; 8096 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8097 }; 8098 8099 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8100 return nullptr; 8101 8102 VPValue *Mask = nullptr; 8103 if (Legal->isMaskRequired(I)) 8104 Mask = createBlockInMask(I->getParent(), Plan); 8105 8106 // Determine if the pointer operand of the access is either consecutive or 8107 // reverse consecutive. 8108 LoopVectorizationCostModel::InstWidening Decision = 8109 CM.getWideningDecision(I, Range.Start); 8110 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8111 bool Consecutive = 8112 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8113 8114 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8115 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8116 Consecutive, Reverse); 8117 8118 StoreInst *Store = cast<StoreInst>(I); 8119 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8120 Mask, Consecutive, Reverse); 8121 } 8122 8123 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8124 /// insert a recipe to expand the step for the induction recipe. 8125 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8126 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8127 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8128 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8129 // Returns true if an instruction \p I should be scalarized instead of 8130 // vectorized for the chosen vectorization factor. 8131 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8132 return CM.isScalarAfterVectorization(I, VF) || 8133 CM.isProfitableToScalarize(I, VF); 8134 }; 8135 8136 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8137 [&](ElementCount VF) { 8138 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8139 }, 8140 Range); 8141 assert(IndDesc.getStartValue() == 8142 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8143 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8144 "step must be loop invariant"); 8145 8146 VPValue *Step = 8147 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8148 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8149 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8150 !NeedsScalarIVOnly); 8151 } 8152 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8153 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8154 !NeedsScalarIVOnly); 8155 } 8156 8157 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8158 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8159 8160 // Check if this is an integer or fp induction. If so, build the recipe that 8161 // produces its scalar and vector values. 8162 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8163 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8164 *PSE.getSE(), *OrigLoop, Range); 8165 8166 // Check if this is pointer induction. If so, build the recipe for it. 8167 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8168 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8169 *PSE.getSE()); 8170 return nullptr; 8171 } 8172 8173 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8174 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8175 // Optimize the special case where the source is a constant integer 8176 // induction variable. Notice that we can only optimize the 'trunc' case 8177 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8178 // (c) other casts depend on pointer size. 8179 8180 // Determine whether \p K is a truncation based on an induction variable that 8181 // can be optimized. 8182 auto isOptimizableIVTruncate = 8183 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8184 return [=](ElementCount VF) -> bool { 8185 return CM.isOptimizableIVTruncate(K, VF); 8186 }; 8187 }; 8188 8189 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8190 isOptimizableIVTruncate(I), Range)) { 8191 8192 auto *Phi = cast<PHINode>(I->getOperand(0)); 8193 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8194 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8195 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8196 *PSE.getSE(), *OrigLoop, Range); 8197 } 8198 return nullptr; 8199 } 8200 8201 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8202 ArrayRef<VPValue *> Operands, 8203 VPlanPtr &Plan) { 8204 // If all incoming values are equal, the incoming VPValue can be used directly 8205 // instead of creating a new VPBlendRecipe. 8206 VPValue *FirstIncoming = Operands[0]; 8207 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8208 return FirstIncoming == Inc; 8209 })) { 8210 return Operands[0]; 8211 } 8212 8213 unsigned NumIncoming = Phi->getNumIncomingValues(); 8214 // For in-loop reductions, we do not need to create an additional select. 8215 VPValue *InLoopVal = nullptr; 8216 for (unsigned In = 0; In < NumIncoming; In++) { 8217 PHINode *PhiOp = 8218 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8219 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8220 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8221 InLoopVal = Operands[In]; 8222 } 8223 } 8224 8225 assert((!InLoopVal || NumIncoming == 2) && 8226 "Found an in-loop reduction for PHI with unexpected number of " 8227 "incoming values"); 8228 if (InLoopVal) 8229 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8230 8231 // We know that all PHIs in non-header blocks are converted into selects, so 8232 // we don't have to worry about the insertion order and we can just use the 8233 // builder. At this point we generate the predication tree. There may be 8234 // duplications since this is a simple recursive scan, but future 8235 // optimizations will clean it up. 8236 SmallVector<VPValue *, 2> OperandsWithMask; 8237 8238 for (unsigned In = 0; In < NumIncoming; In++) { 8239 VPValue *EdgeMask = 8240 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8241 assert((EdgeMask || NumIncoming == 1) && 8242 "Multiple predecessors with one having a full mask"); 8243 OperandsWithMask.push_back(Operands[In]); 8244 if (EdgeMask) 8245 OperandsWithMask.push_back(EdgeMask); 8246 } 8247 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8248 } 8249 8250 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8251 ArrayRef<VPValue *> Operands, 8252 VFRange &Range) const { 8253 8254 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8255 [this, CI](ElementCount VF) { 8256 return CM.isScalarWithPredication(CI, VF); 8257 }, 8258 Range); 8259 8260 if (IsPredicated) 8261 return nullptr; 8262 8263 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8264 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8265 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8266 ID == Intrinsic::pseudoprobe || 8267 ID == Intrinsic::experimental_noalias_scope_decl)) 8268 return nullptr; 8269 8270 auto willWiden = [&](ElementCount VF) -> bool { 8271 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8272 // The following case may be scalarized depending on the VF. 8273 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8274 // version of the instruction. 8275 // Is it beneficial to perform intrinsic call compared to lib call? 8276 bool NeedToScalarize = false; 8277 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8278 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8279 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8280 return UseVectorIntrinsic || !NeedToScalarize; 8281 }; 8282 8283 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8284 return nullptr; 8285 8286 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8287 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8288 } 8289 8290 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8291 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8292 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8293 // Instruction should be widened, unless it is scalar after vectorization, 8294 // scalarization is profitable or it is predicated. 8295 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8296 return CM.isScalarAfterVectorization(I, VF) || 8297 CM.isProfitableToScalarize(I, VF) || 8298 CM.isScalarWithPredication(I, VF); 8299 }; 8300 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8301 Range); 8302 } 8303 8304 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8305 ArrayRef<VPValue *> Operands) const { 8306 auto IsVectorizableOpcode = [](unsigned Opcode) { 8307 switch (Opcode) { 8308 case Instruction::Add: 8309 case Instruction::And: 8310 case Instruction::AShr: 8311 case Instruction::BitCast: 8312 case Instruction::FAdd: 8313 case Instruction::FCmp: 8314 case Instruction::FDiv: 8315 case Instruction::FMul: 8316 case Instruction::FNeg: 8317 case Instruction::FPExt: 8318 case Instruction::FPToSI: 8319 case Instruction::FPToUI: 8320 case Instruction::FPTrunc: 8321 case Instruction::FRem: 8322 case Instruction::FSub: 8323 case Instruction::ICmp: 8324 case Instruction::IntToPtr: 8325 case Instruction::LShr: 8326 case Instruction::Mul: 8327 case Instruction::Or: 8328 case Instruction::PtrToInt: 8329 case Instruction::SDiv: 8330 case Instruction::Select: 8331 case Instruction::SExt: 8332 case Instruction::Shl: 8333 case Instruction::SIToFP: 8334 case Instruction::SRem: 8335 case Instruction::Sub: 8336 case Instruction::Trunc: 8337 case Instruction::UDiv: 8338 case Instruction::UIToFP: 8339 case Instruction::URem: 8340 case Instruction::Xor: 8341 case Instruction::ZExt: 8342 case Instruction::Freeze: 8343 return true; 8344 } 8345 return false; 8346 }; 8347 8348 if (!IsVectorizableOpcode(I->getOpcode())) 8349 return nullptr; 8350 8351 // Success: widen this instruction. 8352 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8353 } 8354 8355 void VPRecipeBuilder::fixHeaderPhis() { 8356 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8357 for (VPHeaderPHIRecipe *R : PhisToFix) { 8358 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8359 VPRecipeBase *IncR = 8360 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8361 R->addOperand(IncR->getVPSingleValue()); 8362 } 8363 } 8364 8365 VPBasicBlock *VPRecipeBuilder::handleReplication( 8366 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8367 VPlanPtr &Plan) { 8368 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8369 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8370 Range); 8371 8372 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8373 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8374 Range); 8375 8376 // Even if the instruction is not marked as uniform, there are certain 8377 // intrinsic calls that can be effectively treated as such, so we check for 8378 // them here. Conservatively, we only do this for scalable vectors, since 8379 // for fixed-width VFs we can always fall back on full scalarization. 8380 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8381 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8382 case Intrinsic::assume: 8383 case Intrinsic::lifetime_start: 8384 case Intrinsic::lifetime_end: 8385 // For scalable vectors if one of the operands is variant then we still 8386 // want to mark as uniform, which will generate one instruction for just 8387 // the first lane of the vector. We can't scalarize the call in the same 8388 // way as for fixed-width vectors because we don't know how many lanes 8389 // there are. 8390 // 8391 // The reasons for doing it this way for scalable vectors are: 8392 // 1. For the assume intrinsic generating the instruction for the first 8393 // lane is still be better than not generating any at all. For 8394 // example, the input may be a splat across all lanes. 8395 // 2. For the lifetime start/end intrinsics the pointer operand only 8396 // does anything useful when the input comes from a stack object, 8397 // which suggests it should always be uniform. For non-stack objects 8398 // the effect is to poison the object, which still allows us to 8399 // remove the call. 8400 IsUniform = true; 8401 break; 8402 default: 8403 break; 8404 } 8405 } 8406 8407 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8408 IsUniform, IsPredicated); 8409 setRecipe(I, Recipe); 8410 Plan->addVPValue(I, Recipe); 8411 8412 // Find if I uses a predicated instruction. If so, it will use its scalar 8413 // value. Avoid hoisting the insert-element which packs the scalar value into 8414 // a vector value, as that happens iff all users use the vector value. 8415 for (VPValue *Op : Recipe->operands()) { 8416 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8417 if (!PredR) 8418 continue; 8419 auto *RepR = 8420 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8421 assert(RepR->isPredicated() && 8422 "expected Replicate recipe to be predicated"); 8423 RepR->setAlsoPack(false); 8424 } 8425 8426 // Finalize the recipe for Instr, first if it is not predicated. 8427 if (!IsPredicated) { 8428 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8429 VPBB->appendRecipe(Recipe); 8430 return VPBB; 8431 } 8432 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8433 8434 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8435 assert(SingleSucc && "VPBB must have a single successor when handling " 8436 "predicated replication."); 8437 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8438 // Record predicated instructions for above packing optimizations. 8439 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8440 VPBlockUtils::insertBlockAfter(Region, VPBB); 8441 auto *RegSucc = new VPBasicBlock(); 8442 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8443 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8444 return RegSucc; 8445 } 8446 8447 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8448 VPRecipeBase *PredRecipe, 8449 VPlanPtr &Plan) { 8450 // Instructions marked for predication are replicated and placed under an 8451 // if-then construct to prevent side-effects. 8452 8453 // Generate recipes to compute the block mask for this region. 8454 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8455 8456 // Build the triangular if-then region. 8457 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8458 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8459 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8460 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8461 auto *PHIRecipe = Instr->getType()->isVoidTy() 8462 ? nullptr 8463 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8464 if (PHIRecipe) { 8465 Plan->removeVPValueFor(Instr); 8466 Plan->addVPValue(Instr, PHIRecipe); 8467 } 8468 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8469 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8470 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 8471 8472 // Note: first set Entry as region entry and then connect successors starting 8473 // from it in order, to propagate the "parent" of each VPBasicBlock. 8474 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 8475 VPBlockUtils::connectBlocks(Pred, Exiting); 8476 8477 return Region; 8478 } 8479 8480 VPRecipeOrVPValueTy 8481 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8482 ArrayRef<VPValue *> Operands, 8483 VFRange &Range, VPlanPtr &Plan) { 8484 // First, check for specific widening recipes that deal with inductions, Phi 8485 // nodes, calls and memory operations. 8486 VPRecipeBase *Recipe; 8487 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8488 if (Phi->getParent() != OrigLoop->getHeader()) 8489 return tryToBlend(Phi, Operands, Plan); 8490 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8491 return toVPRecipeResult(Recipe); 8492 8493 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8494 assert((Legal->isReductionVariable(Phi) || 8495 Legal->isFirstOrderRecurrence(Phi)) && 8496 "can only widen reductions and first-order recurrences here"); 8497 VPValue *StartV = Operands[0]; 8498 if (Legal->isReductionVariable(Phi)) { 8499 const RecurrenceDescriptor &RdxDesc = 8500 Legal->getReductionVars().find(Phi)->second; 8501 assert(RdxDesc.getRecurrenceStartValue() == 8502 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8503 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8504 CM.isInLoopReduction(Phi), 8505 CM.useOrderedReductions(RdxDesc)); 8506 } else { 8507 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8508 } 8509 8510 // Record the incoming value from the backedge, so we can add the incoming 8511 // value from the backedge after all recipes have been created. 8512 recordRecipeOf(cast<Instruction>( 8513 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8514 PhisToFix.push_back(PhiRecipe); 8515 return toVPRecipeResult(PhiRecipe); 8516 } 8517 8518 if (isa<TruncInst>(Instr) && 8519 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8520 Range, *Plan))) 8521 return toVPRecipeResult(Recipe); 8522 8523 // All widen recipes below deal only with VF > 1. 8524 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8525 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8526 return nullptr; 8527 8528 if (auto *CI = dyn_cast<CallInst>(Instr)) 8529 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8530 8531 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8532 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8533 8534 if (!shouldWiden(Instr, Range)) 8535 return nullptr; 8536 8537 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8538 return toVPRecipeResult(new VPWidenGEPRecipe( 8539 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8540 8541 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8542 bool InvariantCond = 8543 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8544 return toVPRecipeResult(new VPWidenSelectRecipe( 8545 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8546 } 8547 8548 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8549 } 8550 8551 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8552 ElementCount MaxVF) { 8553 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8554 8555 // Add assume instructions we need to drop to DeadInstructions, to prevent 8556 // them from being added to the VPlan. 8557 // TODO: We only need to drop assumes in blocks that get flattend. If the 8558 // control flow is preserved, we should keep them. 8559 SmallPtrSet<Instruction *, 4> DeadInstructions; 8560 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8561 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8562 8563 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8564 // Dead instructions do not need sinking. Remove them from SinkAfter. 8565 for (Instruction *I : DeadInstructions) 8566 SinkAfter.erase(I); 8567 8568 // Cannot sink instructions after dead instructions (there won't be any 8569 // recipes for them). Instead, find the first non-dead previous instruction. 8570 for (auto &P : Legal->getSinkAfter()) { 8571 Instruction *SinkTarget = P.second; 8572 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8573 (void)FirstInst; 8574 while (DeadInstructions.contains(SinkTarget)) { 8575 assert( 8576 SinkTarget != FirstInst && 8577 "Must find a live instruction (at least the one feeding the " 8578 "first-order recurrence PHI) before reaching beginning of the block"); 8579 SinkTarget = SinkTarget->getPrevNode(); 8580 assert(SinkTarget != P.first && 8581 "sink source equals target, no sinking required"); 8582 } 8583 P.second = SinkTarget; 8584 } 8585 8586 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8587 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8588 VFRange SubRange = {VF, MaxVFPlusOne}; 8589 VPlans.push_back( 8590 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8591 VF = SubRange.End; 8592 } 8593 } 8594 8595 // Add the necessary canonical IV and branch recipes required to control the 8596 // loop. 8597 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8598 bool HasNUW, 8599 bool UseLaneMaskForLoopControlFlow) { 8600 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8601 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8602 8603 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. 8604 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8605 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8606 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8607 Header->insert(CanonicalIVPHI, Header->begin()); 8608 8609 // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar 8610 // IV by VF * UF. 8611 auto *CanonicalIVIncrement = 8612 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8613 : VPInstruction::CanonicalIVIncrement, 8614 {CanonicalIVPHI}, DL, "index.next"); 8615 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8616 8617 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 8618 EB->appendRecipe(CanonicalIVIncrement); 8619 8620 if (UseLaneMaskForLoopControlFlow) { 8621 // Create the active lane mask instruction in the vplan preheader. 8622 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 8623 8624 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 8625 // we have to take unrolling into account. Each part needs to start at 8626 // Part * VF 8627 auto *CanonicalIVIncrementParts = 8628 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8629 : VPInstruction::CanonicalIVIncrementForPart, 8630 {StartV}, DL, "index.part.next"); 8631 Preheader->appendRecipe(CanonicalIVIncrementParts); 8632 8633 // Create the ActiveLaneMask instruction using the correct start values. 8634 VPValue *TC = Plan.getOrCreateTripCount(); 8635 auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8636 {CanonicalIVIncrementParts, TC}, DL, 8637 "active.lane.mask.entry"); 8638 Preheader->appendRecipe(EntryALM); 8639 8640 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 8641 // preheader ActiveLaneMask instruction. 8642 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 8643 Header->insert(LaneMaskPhi, Header->getFirstNonPhi()); 8644 8645 // Create the active lane mask for the next iteration of the loop. 8646 CanonicalIVIncrementParts = 8647 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8648 : VPInstruction::CanonicalIVIncrementForPart, 8649 {CanonicalIVIncrement}, DL); 8650 EB->appendRecipe(CanonicalIVIncrementParts); 8651 8652 auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8653 {CanonicalIVIncrementParts, TC}, DL, 8654 "active.lane.mask.next"); 8655 EB->appendRecipe(ALM); 8656 LaneMaskPhi->addOperand(ALM); 8657 8658 // We have to invert the mask here because a true condition means jumping 8659 // to the exit block. 8660 auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL); 8661 EB->appendRecipe(NotMask); 8662 8663 VPInstruction *BranchBack = 8664 new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL); 8665 EB->appendRecipe(BranchBack); 8666 } else { 8667 // Add the BranchOnCount VPInstruction to the latch. 8668 VPInstruction *BranchBack = new VPInstruction( 8669 VPInstruction::BranchOnCount, 8670 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8671 EB->appendRecipe(BranchBack); 8672 } 8673 } 8674 8675 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the 8676 // original exit block. 8677 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, 8678 VPBasicBlock *MiddleVPBB, Loop *OrigLoop, 8679 VPlan &Plan) { 8680 BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); 8681 BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); 8682 // Only handle single-exit loops with unique exit blocks for now. 8683 if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) 8684 return; 8685 8686 // Introduce VPUsers modeling the exit values. 8687 for (PHINode &ExitPhi : ExitBB->phis()) { 8688 Value *IncomingValue = 8689 ExitPhi.getIncomingValueForBlock(ExitingBB); 8690 VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); 8691 Plan.addLiveOut(&ExitPhi, V); 8692 } 8693 } 8694 8695 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8696 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8697 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8698 8699 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8700 8701 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8702 8703 // --------------------------------------------------------------------------- 8704 // Pre-construction: record ingredients whose recipes we'll need to further 8705 // process after constructing the initial VPlan. 8706 // --------------------------------------------------------------------------- 8707 8708 // Mark instructions we'll need to sink later and their targets as 8709 // ingredients whose recipe we'll need to record. 8710 for (auto &Entry : SinkAfter) { 8711 RecipeBuilder.recordRecipeOf(Entry.first); 8712 RecipeBuilder.recordRecipeOf(Entry.second); 8713 } 8714 for (auto &Reduction : CM.getInLoopReductionChains()) { 8715 PHINode *Phi = Reduction.first; 8716 RecurKind Kind = 8717 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8718 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8719 8720 RecipeBuilder.recordRecipeOf(Phi); 8721 for (auto &R : ReductionOperations) { 8722 RecipeBuilder.recordRecipeOf(R); 8723 // For min/max reductions, where we have a pair of icmp/select, we also 8724 // need to record the ICmp recipe, so it can be removed later. 8725 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8726 "Only min/max recurrences allowed for inloop reductions"); 8727 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8728 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8729 } 8730 } 8731 8732 // For each interleave group which is relevant for this (possibly trimmed) 8733 // Range, add it to the set of groups to be later applied to the VPlan and add 8734 // placeholders for its members' Recipes which we'll be replacing with a 8735 // single VPInterleaveRecipe. 8736 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8737 auto applyIG = [IG, this](ElementCount VF) -> bool { 8738 return (VF.isVector() && // Query is illegal for VF == 1 8739 CM.getWideningDecision(IG->getInsertPos(), VF) == 8740 LoopVectorizationCostModel::CM_Interleave); 8741 }; 8742 if (!getDecisionAndClampRange(applyIG, Range)) 8743 continue; 8744 InterleaveGroups.insert(IG); 8745 for (unsigned i = 0; i < IG->getFactor(); i++) 8746 if (Instruction *Member = IG->getMember(i)) 8747 RecipeBuilder.recordRecipeOf(Member); 8748 }; 8749 8750 // --------------------------------------------------------------------------- 8751 // Build initial VPlan: Scan the body of the loop in a topological order to 8752 // visit each basic block after having visited its predecessor basic blocks. 8753 // --------------------------------------------------------------------------- 8754 8755 // Create initial VPlan skeleton, starting with a block for the pre-header, 8756 // followed by a region for the vector loop, followed by the middle block. The 8757 // skeleton vector loop region contains a header and latch block. 8758 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8759 auto Plan = std::make_unique<VPlan>(Preheader); 8760 8761 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8762 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8763 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8764 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8765 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8766 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8767 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8768 8769 Instruction *DLInst = 8770 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8771 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8772 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8773 !CM.foldTailByMasking(), 8774 CM.useActiveLaneMaskForControlFlow()); 8775 8776 // Scan the body of the loop in a topological order to visit each basic block 8777 // after having visited its predecessor basic blocks. 8778 LoopBlocksDFS DFS(OrigLoop); 8779 DFS.perform(LI); 8780 8781 VPBasicBlock *VPBB = HeaderVPBB; 8782 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8783 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8784 // Relevant instructions from basic block BB will be grouped into VPRecipe 8785 // ingredients and fill a new VPBasicBlock. 8786 unsigned VPBBsForBB = 0; 8787 if (VPBB != HeaderVPBB) 8788 VPBB->setName(BB->getName()); 8789 Builder.setInsertPoint(VPBB); 8790 8791 // Introduce each ingredient into VPlan. 8792 // TODO: Model and preserve debug intrinsics in VPlan. 8793 for (Instruction &I : BB->instructionsWithoutDebug()) { 8794 Instruction *Instr = &I; 8795 8796 // First filter out irrelevant instructions, to ensure no recipes are 8797 // built for them. 8798 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8799 continue; 8800 8801 SmallVector<VPValue *, 4> Operands; 8802 auto *Phi = dyn_cast<PHINode>(Instr); 8803 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8804 Operands.push_back(Plan->getOrAddVPValue( 8805 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8806 } else { 8807 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8808 Operands = {OpRange.begin(), OpRange.end()}; 8809 } 8810 8811 // Invariant stores inside loop will be deleted and a single store 8812 // with the final reduction value will be added to the exit block 8813 StoreInst *SI; 8814 if ((SI = dyn_cast<StoreInst>(&I)) && 8815 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8816 continue; 8817 8818 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8819 Instr, Operands, Range, Plan)) { 8820 // If Instr can be simplified to an existing VPValue, use it. 8821 if (RecipeOrValue.is<VPValue *>()) { 8822 auto *VPV = RecipeOrValue.get<VPValue *>(); 8823 Plan->addVPValue(Instr, VPV); 8824 // If the re-used value is a recipe, register the recipe for the 8825 // instruction, in case the recipe for Instr needs to be recorded. 8826 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8827 RecipeBuilder.setRecipe(Instr, R); 8828 continue; 8829 } 8830 // Otherwise, add the new recipe. 8831 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8832 for (auto *Def : Recipe->definedValues()) { 8833 auto *UV = Def->getUnderlyingValue(); 8834 Plan->addVPValue(UV, Def); 8835 } 8836 8837 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8838 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8839 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8840 // of the header block. That can happen for truncates of induction 8841 // variables. Those recipes are moved to the phi section of the header 8842 // block after applying SinkAfter, which relies on the original 8843 // position of the trunc. 8844 assert(isa<TruncInst>(Instr)); 8845 InductionsToMove.push_back( 8846 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8847 } 8848 RecipeBuilder.setRecipe(Instr, Recipe); 8849 VPBB->appendRecipe(Recipe); 8850 continue; 8851 } 8852 8853 // Otherwise, if all widening options failed, Instruction is to be 8854 // replicated. This may create a successor for VPBB. 8855 VPBasicBlock *NextVPBB = 8856 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8857 if (NextVPBB != VPBB) { 8858 VPBB = NextVPBB; 8859 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8860 : ""); 8861 } 8862 } 8863 8864 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8865 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8866 } 8867 8868 HeaderVPBB->setName("vector.body"); 8869 8870 // Fold the last, empty block into its predecessor. 8871 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8872 assert(VPBB && "expected to fold last (empty) block"); 8873 // After here, VPBB should not be used. 8874 VPBB = nullptr; 8875 8876 addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); 8877 8878 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8879 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8880 "entry block must be set to a VPRegionBlock having a non-empty entry " 8881 "VPBasicBlock"); 8882 RecipeBuilder.fixHeaderPhis(); 8883 8884 // --------------------------------------------------------------------------- 8885 // Transform initial VPlan: Apply previously taken decisions, in order, to 8886 // bring the VPlan to its final state. 8887 // --------------------------------------------------------------------------- 8888 8889 // Apply Sink-After legal constraints. 8890 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8891 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8892 if (Region && Region->isReplicator()) { 8893 assert(Region->getNumSuccessors() == 1 && 8894 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8895 assert(R->getParent()->size() == 1 && 8896 "A recipe in an original replicator region must be the only " 8897 "recipe in its block"); 8898 return Region; 8899 } 8900 return nullptr; 8901 }; 8902 for (auto &Entry : SinkAfter) { 8903 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8904 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8905 8906 auto *TargetRegion = GetReplicateRegion(Target); 8907 auto *SinkRegion = GetReplicateRegion(Sink); 8908 if (!SinkRegion) { 8909 // If the sink source is not a replicate region, sink the recipe directly. 8910 if (TargetRegion) { 8911 // The target is in a replication region, make sure to move Sink to 8912 // the block after it, not into the replication region itself. 8913 VPBasicBlock *NextBlock = 8914 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8915 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8916 } else 8917 Sink->moveAfter(Target); 8918 continue; 8919 } 8920 8921 // The sink source is in a replicate region. Unhook the region from the CFG. 8922 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8923 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8924 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8925 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8926 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8927 8928 if (TargetRegion) { 8929 // The target recipe is also in a replicate region, move the sink region 8930 // after the target region. 8931 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8932 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8933 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8934 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8935 } else { 8936 // The sink source is in a replicate region, we need to move the whole 8937 // replicate region, which should only contain a single recipe in the 8938 // main block. 8939 auto *SplitBlock = 8940 Target->getParent()->splitAt(std::next(Target->getIterator())); 8941 8942 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8943 8944 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8945 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8946 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8947 } 8948 } 8949 8950 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8951 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8952 8953 // Now that sink-after is done, move induction recipes for optimized truncates 8954 // to the phi section of the header block. 8955 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8956 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8957 8958 // Adjust the recipes for any inloop reductions. 8959 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, 8960 RecipeBuilder, Range.Start); 8961 8962 // Introduce a recipe to combine the incoming and previous values of a 8963 // first-order recurrence. 8964 for (VPRecipeBase &R : 8965 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8966 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8967 if (!RecurPhi) 8968 continue; 8969 8970 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8971 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8972 auto *Region = GetReplicateRegion(PrevRecipe); 8973 if (Region) 8974 InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor()); 8975 if (!InsertBlock) { 8976 InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); 8977 VPBlockUtils::insertBlockAfter(InsertBlock, Region); 8978 } 8979 if (Region || PrevRecipe->isPhi()) 8980 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8981 else 8982 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8983 8984 auto *RecurSplice = cast<VPInstruction>( 8985 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8986 {RecurPhi, RecurPhi->getBackedgeValue()})); 8987 8988 RecurPhi->replaceAllUsesWith(RecurSplice); 8989 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8990 // all users. 8991 RecurSplice->setOperand(0, RecurPhi); 8992 } 8993 8994 // Interleave memory: for each Interleave Group we marked earlier as relevant 8995 // for this VPlan, replace the Recipes widening its memory instructions with a 8996 // single VPInterleaveRecipe at its insertion point. 8997 for (auto IG : InterleaveGroups) { 8998 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8999 RecipeBuilder.getRecipe(IG->getInsertPos())); 9000 SmallVector<VPValue *, 4> StoredValues; 9001 for (unsigned i = 0; i < IG->getFactor(); ++i) 9002 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9003 auto *StoreR = 9004 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9005 StoredValues.push_back(StoreR->getStoredValue()); 9006 } 9007 9008 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9009 Recipe->getMask()); 9010 VPIG->insertBefore(Recipe); 9011 unsigned J = 0; 9012 for (unsigned i = 0; i < IG->getFactor(); ++i) 9013 if (Instruction *Member = IG->getMember(i)) { 9014 if (!Member->getType()->isVoidTy()) { 9015 VPValue *OriginalV = Plan->getVPValue(Member); 9016 Plan->removeVPValueFor(Member); 9017 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9018 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9019 J++; 9020 } 9021 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9022 } 9023 } 9024 9025 std::string PlanName; 9026 raw_string_ostream RSO(PlanName); 9027 ElementCount VF = Range.Start; 9028 Plan->addVF(VF); 9029 RSO << "Initial VPlan for VF={" << VF; 9030 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9031 Plan->addVF(VF); 9032 RSO << "," << VF; 9033 } 9034 RSO << "},UF>=1"; 9035 RSO.flush(); 9036 Plan->setName(PlanName); 9037 9038 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9039 // in ways that accessing values using original IR values is incorrect. 9040 Plan->disableValue2VPValue(); 9041 9042 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9043 VPlanTransforms::sinkScalarOperands(*Plan); 9044 VPlanTransforms::removeDeadRecipes(*Plan); 9045 VPlanTransforms::mergeReplicateRegions(*Plan); 9046 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9047 9048 // Fold Exit block into its predecessor if possible. 9049 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9050 // VPBasicBlock as exit. 9051 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting()); 9052 9053 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9054 return Plan; 9055 } 9056 9057 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9058 // Outer loop handling: They may require CFG and instruction level 9059 // transformations before even evaluating whether vectorization is profitable. 9060 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9061 // the vectorization pipeline. 9062 assert(!OrigLoop->isInnermost()); 9063 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9064 9065 // Create new empty VPlan 9066 auto Plan = std::make_unique<VPlan>(); 9067 9068 // Build hierarchical CFG 9069 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9070 HCFGBuilder.buildHierarchicalCFG(); 9071 9072 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9073 VF *= 2) 9074 Plan->addVF(VF); 9075 9076 SmallPtrSet<Instruction *, 1> DeadInstructions; 9077 VPlanTransforms::VPInstructionsToVPRecipes( 9078 OrigLoop, Plan, 9079 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9080 DeadInstructions, *PSE.getSE()); 9081 9082 // Remove the existing terminator of the exiting block of the top-most region. 9083 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9084 auto *Term = 9085 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9086 Term->eraseFromParent(); 9087 9088 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9089 true, CM.useActiveLaneMaskForControlFlow()); 9090 return Plan; 9091 } 9092 9093 // Adjust the recipes for reductions. For in-loop reductions the chain of 9094 // instructions leading from the loop exit instr to the phi need to be converted 9095 // to reductions, with one operand being vector and the other being the scalar 9096 // reduction chain. For other reductions, a select is introduced between the phi 9097 // and live-out recipes when folding the tail. 9098 void LoopVectorizationPlanner::adjustRecipesForReductions( 9099 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9100 ElementCount MinVF) { 9101 for (auto &Reduction : CM.getInLoopReductionChains()) { 9102 PHINode *Phi = Reduction.first; 9103 const RecurrenceDescriptor &RdxDesc = 9104 Legal->getReductionVars().find(Phi)->second; 9105 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9106 9107 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9108 continue; 9109 9110 // ReductionOperations are orders top-down from the phi's use to the 9111 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9112 // which of the two operands will remain scalar and which will be reduced. 9113 // For minmax the chain will be the select instructions. 9114 Instruction *Chain = Phi; 9115 for (Instruction *R : ReductionOperations) { 9116 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9117 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9118 9119 VPValue *ChainOp = Plan->getVPValue(Chain); 9120 unsigned FirstOpId; 9121 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9122 "Only min/max recurrences allowed for inloop reductions"); 9123 // Recognize a call to the llvm.fmuladd intrinsic. 9124 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9125 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9126 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9127 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9128 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9129 "Expected to replace a VPWidenSelectSC"); 9130 FirstOpId = 1; 9131 } else { 9132 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9133 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9134 "Expected to replace a VPWidenSC"); 9135 FirstOpId = 0; 9136 } 9137 unsigned VecOpId = 9138 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9139 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9140 9141 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9142 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9143 : nullptr; 9144 9145 if (IsFMulAdd) { 9146 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9147 // need to create an fmul recipe to use as the vector operand for the 9148 // fadd reduction. 9149 VPInstruction *FMulRecipe = new VPInstruction( 9150 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9151 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9152 WidenRecipe->getParent()->insert(FMulRecipe, 9153 WidenRecipe->getIterator()); 9154 VecOp = FMulRecipe; 9155 } 9156 VPReductionRecipe *RedRecipe = 9157 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9158 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9159 Plan->removeVPValueFor(R); 9160 Plan->addVPValue(R, RedRecipe); 9161 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9162 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9163 WidenRecipe->eraseFromParent(); 9164 9165 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9166 VPRecipeBase *CompareRecipe = 9167 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9168 assert(isa<VPWidenRecipe>(CompareRecipe) && 9169 "Expected to replace a VPWidenSC"); 9170 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9171 "Expected no remaining users"); 9172 CompareRecipe->eraseFromParent(); 9173 } 9174 Chain = R; 9175 } 9176 } 9177 9178 // If tail is folded by masking, introduce selects between the phi 9179 // and the live-out instruction of each reduction, at the beginning of the 9180 // dedicated latch block. 9181 if (CM.foldTailByMasking()) { 9182 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9183 for (VPRecipeBase &R : 9184 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9185 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9186 if (!PhiR || PhiR->isInLoop()) 9187 continue; 9188 VPValue *Cond = 9189 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9190 VPValue *Red = PhiR->getBackedgeValue(); 9191 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9192 "reduction recipe must be defined before latch"); 9193 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9194 } 9195 } 9196 } 9197 9198 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9199 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9200 VPSlotTracker &SlotTracker) const { 9201 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9202 IG->getInsertPos()->printAsOperand(O, false); 9203 O << ", "; 9204 getAddr()->printAsOperand(O, SlotTracker); 9205 VPValue *Mask = getMask(); 9206 if (Mask) { 9207 O << ", "; 9208 Mask->printAsOperand(O, SlotTracker); 9209 } 9210 9211 unsigned OpIdx = 0; 9212 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9213 if (!IG->getMember(i)) 9214 continue; 9215 if (getNumStoreOperands() > 0) { 9216 O << "\n" << Indent << " store "; 9217 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9218 O << " to index " << i; 9219 } else { 9220 O << "\n" << Indent << " "; 9221 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9222 O << " = load from index " << i; 9223 } 9224 ++OpIdx; 9225 } 9226 } 9227 #endif 9228 9229 void VPWidenCallRecipe::execute(VPTransformState &State) { 9230 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9231 *this, State); 9232 } 9233 9234 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9235 assert(!State.Instance && "Int or FP induction being replicated."); 9236 9237 Value *Start = getStartValue()->getLiveInIRValue(); 9238 const InductionDescriptor &ID = getInductionDescriptor(); 9239 TruncInst *Trunc = getTruncInst(); 9240 IRBuilderBase &Builder = State.Builder; 9241 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9242 assert(State.VF.isVector() && "must have vector VF"); 9243 9244 // The value from the original loop to which we are mapping the new induction 9245 // variable. 9246 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9247 9248 // Fast-math-flags propagate from the original induction instruction. 9249 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9250 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9251 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9252 9253 // Now do the actual transformations, and start with fetching the step value. 9254 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9255 9256 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9257 "Expected either an induction phi-node or a truncate of it!"); 9258 9259 // Construct the initial value of the vector IV in the vector loop preheader 9260 auto CurrIP = Builder.saveIP(); 9261 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9262 Builder.SetInsertPoint(VectorPH->getTerminator()); 9263 if (isa<TruncInst>(EntryVal)) { 9264 assert(Start->getType()->isIntegerTy() && 9265 "Truncation requires an integer type"); 9266 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9267 Step = Builder.CreateTrunc(Step, TruncType); 9268 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9269 } 9270 9271 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9272 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9273 Value *SteppedStart = getStepVector( 9274 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9275 9276 // We create vector phi nodes for both integer and floating-point induction 9277 // variables. Here, we determine the kind of arithmetic we will perform. 9278 Instruction::BinaryOps AddOp; 9279 Instruction::BinaryOps MulOp; 9280 if (Step->getType()->isIntegerTy()) { 9281 AddOp = Instruction::Add; 9282 MulOp = Instruction::Mul; 9283 } else { 9284 AddOp = ID.getInductionOpcode(); 9285 MulOp = Instruction::FMul; 9286 } 9287 9288 // Multiply the vectorization factor by the step using integer or 9289 // floating-point arithmetic as appropriate. 9290 Type *StepType = Step->getType(); 9291 Value *RuntimeVF; 9292 if (Step->getType()->isFloatingPointTy()) 9293 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9294 else 9295 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9296 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9297 9298 // Create a vector splat to use in the induction update. 9299 // 9300 // FIXME: If the step is non-constant, we create the vector splat with 9301 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9302 // handle a constant vector splat. 9303 Value *SplatVF = isa<Constant>(Mul) 9304 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9305 : Builder.CreateVectorSplat(State.VF, Mul); 9306 Builder.restoreIP(CurrIP); 9307 9308 // We may need to add the step a number of times, depending on the unroll 9309 // factor. The last of those goes into the PHI. 9310 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9311 &*State.CFG.PrevBB->getFirstInsertionPt()); 9312 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9313 Instruction *LastInduction = VecInd; 9314 for (unsigned Part = 0; Part < State.UF; ++Part) { 9315 State.set(this, LastInduction, Part); 9316 9317 if (isa<TruncInst>(EntryVal)) 9318 State.addMetadata(LastInduction, EntryVal); 9319 9320 LastInduction = cast<Instruction>( 9321 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9322 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9323 } 9324 9325 LastInduction->setName("vec.ind.next"); 9326 VecInd->addIncoming(SteppedStart, VectorPH); 9327 // Add induction update using an incorrect block temporarily. The phi node 9328 // will be fixed after VPlan execution. Note that at this point the latch 9329 // block cannot be used, as it does not exist yet. 9330 // TODO: Model increment value in VPlan, by turning the recipe into a 9331 // multi-def and a subclass of VPHeaderPHIRecipe. 9332 VecInd->addIncoming(LastInduction, VectorPH); 9333 } 9334 9335 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9336 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9337 "Not a pointer induction according to InductionDescriptor!"); 9338 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9339 "Unexpected type."); 9340 9341 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9342 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9343 9344 if (onlyScalarsGenerated(State.VF)) { 9345 // This is the normalized GEP that starts counting at zero. 9346 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9347 CanonicalIV, IndDesc.getStep()->getType()); 9348 // Determine the number of scalars we need to generate for each unroll 9349 // iteration. If the instruction is uniform, we only need to generate the 9350 // first lane. Otherwise, we generate all VF values. 9351 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9352 assert((IsUniform || !State.VF.isScalable()) && 9353 "Cannot scalarize a scalable VF"); 9354 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9355 9356 for (unsigned Part = 0; Part < State.UF; ++Part) { 9357 Value *PartStart = 9358 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9359 9360 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9361 Value *Idx = State.Builder.CreateAdd( 9362 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9363 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9364 9365 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9366 State.CFG.PrevBB->getTerminator()); 9367 Value *SclrGep = emitTransformedIndex( 9368 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9369 SclrGep->setName("next.gep"); 9370 State.set(this, SclrGep, VPIteration(Part, Lane)); 9371 } 9372 } 9373 return; 9374 } 9375 9376 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9377 "Induction step not a SCEV constant!"); 9378 Type *PhiType = IndDesc.getStep()->getType(); 9379 9380 // Build a pointer phi 9381 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9382 Type *ScStValueType = ScalarStartValue->getType(); 9383 PHINode *NewPointerPhi = 9384 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9385 9386 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9387 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9388 9389 // A pointer induction, performed by using a gep 9390 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9391 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9392 9393 const SCEV *ScalarStep = IndDesc.getStep(); 9394 SCEVExpander Exp(SE, DL, "induction"); 9395 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9396 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9397 Value *NumUnrolledElems = 9398 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9399 Value *InductionGEP = GetElementPtrInst::Create( 9400 IndDesc.getElementType(), NewPointerPhi, 9401 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9402 InductionLoc); 9403 // Add induction update using an incorrect block temporarily. The phi node 9404 // will be fixed after VPlan execution. Note that at this point the latch 9405 // block cannot be used, as it does not exist yet. 9406 // TODO: Model increment value in VPlan, by turning the recipe into a 9407 // multi-def and a subclass of VPHeaderPHIRecipe. 9408 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9409 9410 // Create UF many actual address geps that use the pointer 9411 // phi as base and a vectorized version of the step value 9412 // (<step*0, ..., step*N>) as offset. 9413 for (unsigned Part = 0; Part < State.UF; ++Part) { 9414 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9415 Value *StartOffsetScalar = 9416 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9417 Value *StartOffset = 9418 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9419 // Create a vector of consecutive numbers from zero to VF. 9420 StartOffset = State.Builder.CreateAdd( 9421 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9422 9423 Value *GEP = State.Builder.CreateGEP( 9424 IndDesc.getElementType(), NewPointerPhi, 9425 State.Builder.CreateMul( 9426 StartOffset, 9427 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9428 "vector.gep")); 9429 State.set(this, GEP, Part); 9430 } 9431 } 9432 9433 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9434 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9435 9436 // Fast-math-flags propagate from the original induction instruction. 9437 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9438 if (IndDesc.getInductionBinOp() && 9439 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9440 State.Builder.setFastMathFlags( 9441 IndDesc.getInductionBinOp()->getFastMathFlags()); 9442 9443 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9444 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9445 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9446 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9447 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9448 ScalarIV = 9449 Ty->isIntegerTy() 9450 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9451 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9452 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9453 getStartValue()->getLiveInIRValue(), Step, 9454 IndDesc); 9455 ScalarIV->setName("offset.idx"); 9456 } 9457 if (TruncToTy) { 9458 assert(Step->getType()->isIntegerTy() && 9459 "Truncation requires an integer step"); 9460 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9461 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9462 } 9463 return ScalarIV; 9464 }; 9465 9466 Value *ScalarIV = CreateScalarIV(Step); 9467 if (State.VF.isVector()) { 9468 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9469 return; 9470 } 9471 9472 for (unsigned Part = 0; Part < State.UF; ++Part) { 9473 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9474 Value *EntryPart; 9475 if (Step->getType()->isFloatingPointTy()) { 9476 Value *StartIdx = 9477 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9478 // Floating-point operations inherit FMF via the builder's flags. 9479 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9480 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9481 ScalarIV, MulOp); 9482 } else { 9483 Value *StartIdx = 9484 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9485 EntryPart = State.Builder.CreateAdd( 9486 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9487 } 9488 State.set(this, EntryPart, Part); 9489 } 9490 } 9491 9492 void VPInterleaveRecipe::execute(VPTransformState &State) { 9493 assert(!State.Instance && "Interleave group being replicated."); 9494 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9495 getStoredValues(), getMask()); 9496 } 9497 9498 void VPReductionRecipe::execute(VPTransformState &State) { 9499 assert(!State.Instance && "Reduction being replicated."); 9500 Value *PrevInChain = State.get(getChainOp(), 0); 9501 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9502 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9503 // Propagate the fast-math flags carried by the underlying instruction. 9504 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9505 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9506 for (unsigned Part = 0; Part < State.UF; ++Part) { 9507 Value *NewVecOp = State.get(getVecOp(), Part); 9508 if (VPValue *Cond = getCondOp()) { 9509 Value *NewCond = State.get(Cond, Part); 9510 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9511 Value *Iden = RdxDesc->getRecurrenceIdentity( 9512 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9513 Value *IdenVec = 9514 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9515 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9516 NewVecOp = Select; 9517 } 9518 Value *NewRed; 9519 Value *NextInChain; 9520 if (IsOrdered) { 9521 if (State.VF.isVector()) 9522 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9523 PrevInChain); 9524 else 9525 NewRed = State.Builder.CreateBinOp( 9526 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9527 NewVecOp); 9528 PrevInChain = NewRed; 9529 } else { 9530 PrevInChain = State.get(getChainOp(), Part); 9531 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9532 } 9533 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9534 NextInChain = 9535 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9536 NewRed, PrevInChain); 9537 } else if (IsOrdered) 9538 NextInChain = NewRed; 9539 else 9540 NextInChain = State.Builder.CreateBinOp( 9541 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9542 PrevInChain); 9543 State.set(this, NextInChain, Part); 9544 } 9545 } 9546 9547 void VPReplicateRecipe::execute(VPTransformState &State) { 9548 if (State.Instance) { // Generate a single instance. 9549 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9550 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9551 IsPredicated, State); 9552 // Insert scalar instance packing it into a vector. 9553 if (AlsoPack && State.VF.isVector()) { 9554 // If we're constructing lane 0, initialize to start from poison. 9555 if (State.Instance->Lane.isFirstLane()) { 9556 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9557 Value *Poison = PoisonValue::get( 9558 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9559 State.set(this, Poison, State.Instance->Part); 9560 } 9561 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9562 } 9563 return; 9564 } 9565 9566 // Generate scalar instances for all VF lanes of all UF parts, unless the 9567 // instruction is uniform inwhich case generate only the first lane for each 9568 // of the UF parts. 9569 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9570 assert((!State.VF.isScalable() || IsUniform) && 9571 "Can't scalarize a scalable vector"); 9572 for (unsigned Part = 0; Part < State.UF; ++Part) 9573 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9574 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9575 VPIteration(Part, Lane), IsPredicated, 9576 State); 9577 } 9578 9579 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9580 assert(State.Instance && "Branch on Mask works only on single instance."); 9581 9582 unsigned Part = State.Instance->Part; 9583 unsigned Lane = State.Instance->Lane.getKnownLane(); 9584 9585 Value *ConditionBit = nullptr; 9586 VPValue *BlockInMask = getMask(); 9587 if (BlockInMask) { 9588 ConditionBit = State.get(BlockInMask, Part); 9589 if (ConditionBit->getType()->isVectorTy()) 9590 ConditionBit = State.Builder.CreateExtractElement( 9591 ConditionBit, State.Builder.getInt32(Lane)); 9592 } else // Block in mask is all-one. 9593 ConditionBit = State.Builder.getTrue(); 9594 9595 // Replace the temporary unreachable terminator with a new conditional branch, 9596 // whose two destinations will be set later when they are created. 9597 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9598 assert(isa<UnreachableInst>(CurrentTerminator) && 9599 "Expected to replace unreachable terminator with conditional branch."); 9600 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9601 CondBr->setSuccessor(0, nullptr); 9602 ReplaceInstWithInst(CurrentTerminator, CondBr); 9603 } 9604 9605 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9606 assert(State.Instance && "Predicated instruction PHI works per instance."); 9607 Instruction *ScalarPredInst = 9608 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9609 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9610 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9611 assert(PredicatingBB && "Predicated block has no single predecessor."); 9612 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9613 "operand must be VPReplicateRecipe"); 9614 9615 // By current pack/unpack logic we need to generate only a single phi node: if 9616 // a vector value for the predicated instruction exists at this point it means 9617 // the instruction has vector users only, and a phi for the vector value is 9618 // needed. In this case the recipe of the predicated instruction is marked to 9619 // also do that packing, thereby "hoisting" the insert-element sequence. 9620 // Otherwise, a phi node for the scalar value is needed. 9621 unsigned Part = State.Instance->Part; 9622 if (State.hasVectorValue(getOperand(0), Part)) { 9623 Value *VectorValue = State.get(getOperand(0), Part); 9624 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9625 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9626 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9627 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9628 if (State.hasVectorValue(this, Part)) 9629 State.reset(this, VPhi, Part); 9630 else 9631 State.set(this, VPhi, Part); 9632 // NOTE: Currently we need to update the value of the operand, so the next 9633 // predicated iteration inserts its generated value in the correct vector. 9634 State.reset(getOperand(0), VPhi, Part); 9635 } else { 9636 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9637 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9638 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9639 PredicatingBB); 9640 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9641 if (State.hasScalarValue(this, *State.Instance)) 9642 State.reset(this, Phi, *State.Instance); 9643 else 9644 State.set(this, Phi, *State.Instance); 9645 // NOTE: Currently we need to update the value of the operand, so the next 9646 // predicated iteration inserts its generated value in the correct vector. 9647 State.reset(getOperand(0), Phi, *State.Instance); 9648 } 9649 } 9650 9651 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9652 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9653 9654 // Attempt to issue a wide load. 9655 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9656 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9657 9658 assert((LI || SI) && "Invalid Load/Store instruction"); 9659 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9660 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9661 9662 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9663 9664 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9665 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9666 bool CreateGatherScatter = !Consecutive; 9667 9668 auto &Builder = State.Builder; 9669 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9670 bool isMaskRequired = getMask(); 9671 if (isMaskRequired) 9672 for (unsigned Part = 0; Part < State.UF; ++Part) 9673 BlockInMaskParts[Part] = State.get(getMask(), Part); 9674 9675 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9676 // Calculate the pointer for the specific unroll-part. 9677 GetElementPtrInst *PartPtr = nullptr; 9678 9679 bool InBounds = false; 9680 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9681 InBounds = gep->isInBounds(); 9682 if (Reverse) { 9683 // If the address is consecutive but reversed, then the 9684 // wide store needs to start at the last vector element. 9685 // RunTimeVF = VScale * VF.getKnownMinValue() 9686 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9687 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9688 // NumElt = -Part * RunTimeVF 9689 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9690 // LastLane = 1 - RunTimeVF 9691 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9692 PartPtr = 9693 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9694 PartPtr->setIsInBounds(InBounds); 9695 PartPtr = cast<GetElementPtrInst>( 9696 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9697 PartPtr->setIsInBounds(InBounds); 9698 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9699 BlockInMaskParts[Part] = 9700 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9701 } else { 9702 Value *Increment = 9703 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9704 PartPtr = cast<GetElementPtrInst>( 9705 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9706 PartPtr->setIsInBounds(InBounds); 9707 } 9708 9709 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9710 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9711 }; 9712 9713 // Handle Stores: 9714 if (SI) { 9715 State.setDebugLocFromInst(SI); 9716 9717 for (unsigned Part = 0; Part < State.UF; ++Part) { 9718 Instruction *NewSI = nullptr; 9719 Value *StoredVal = State.get(StoredValue, Part); 9720 if (CreateGatherScatter) { 9721 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9722 Value *VectorGep = State.get(getAddr(), Part); 9723 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9724 MaskPart); 9725 } else { 9726 if (Reverse) { 9727 // If we store to reverse consecutive memory locations, then we need 9728 // to reverse the order of elements in the stored value. 9729 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9730 // We don't want to update the value in the map as it might be used in 9731 // another expression. So don't call resetVectorValue(StoredVal). 9732 } 9733 auto *VecPtr = 9734 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9735 if (isMaskRequired) 9736 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9737 BlockInMaskParts[Part]); 9738 else 9739 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9740 } 9741 State.addMetadata(NewSI, SI); 9742 } 9743 return; 9744 } 9745 9746 // Handle loads. 9747 assert(LI && "Must have a load instruction"); 9748 State.setDebugLocFromInst(LI); 9749 for (unsigned Part = 0; Part < State.UF; ++Part) { 9750 Value *NewLI; 9751 if (CreateGatherScatter) { 9752 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9753 Value *VectorGep = State.get(getAddr(), Part); 9754 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 9755 nullptr, "wide.masked.gather"); 9756 State.addMetadata(NewLI, LI); 9757 } else { 9758 auto *VecPtr = 9759 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9760 if (isMaskRequired) 9761 NewLI = Builder.CreateMaskedLoad( 9762 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 9763 PoisonValue::get(DataTy), "wide.masked.load"); 9764 else 9765 NewLI = 9766 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 9767 9768 // Add metadata to the load, but setVectorValue to the reverse shuffle. 9769 State.addMetadata(NewLI, LI); 9770 if (Reverse) 9771 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 9772 } 9773 9774 State.set(getVPSingleValue(), NewLI, Part); 9775 } 9776 } 9777 9778 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9779 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9780 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9781 // for predication. 9782 static ScalarEpilogueLowering getScalarEpilogueLowering( 9783 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9784 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9785 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9786 LoopVectorizationLegality &LVL) { 9787 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9788 // don't look at hints or options, and don't request a scalar epilogue. 9789 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9790 // LoopAccessInfo (due to code dependency and not being able to reliably get 9791 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9792 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9793 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9794 // back to the old way and vectorize with versioning when forced. See D81345.) 9795 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9796 PGSOQueryType::IRPass) && 9797 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9798 return CM_ScalarEpilogueNotAllowedOptSize; 9799 9800 // 2) If set, obey the directives 9801 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9802 switch (PreferPredicateOverEpilogue) { 9803 case PreferPredicateTy::ScalarEpilogue: 9804 return CM_ScalarEpilogueAllowed; 9805 case PreferPredicateTy::PredicateElseScalarEpilogue: 9806 return CM_ScalarEpilogueNotNeededUsePredicate; 9807 case PreferPredicateTy::PredicateOrDontVectorize: 9808 return CM_ScalarEpilogueNotAllowedUsePredicate; 9809 }; 9810 } 9811 9812 // 3) If set, obey the hints 9813 switch (Hints.getPredicate()) { 9814 case LoopVectorizeHints::FK_Enabled: 9815 return CM_ScalarEpilogueNotNeededUsePredicate; 9816 case LoopVectorizeHints::FK_Disabled: 9817 return CM_ScalarEpilogueAllowed; 9818 }; 9819 9820 // 4) if the TTI hook indicates this is profitable, request predication. 9821 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9822 LVL.getLAI())) 9823 return CM_ScalarEpilogueNotNeededUsePredicate; 9824 9825 return CM_ScalarEpilogueAllowed; 9826 } 9827 9828 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9829 // If Values have been set for this Def return the one relevant for \p Part. 9830 if (hasVectorValue(Def, Part)) 9831 return Data.PerPartOutput[Def][Part]; 9832 9833 if (!hasScalarValue(Def, {Part, 0})) { 9834 Value *IRV = Def->getLiveInIRValue(); 9835 Value *B = ILV->getBroadcastInstrs(IRV); 9836 set(Def, B, Part); 9837 return B; 9838 } 9839 9840 Value *ScalarValue = get(Def, {Part, 0}); 9841 // If we aren't vectorizing, we can just copy the scalar map values over 9842 // to the vector map. 9843 if (VF.isScalar()) { 9844 set(Def, ScalarValue, Part); 9845 return ScalarValue; 9846 } 9847 9848 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9849 bool IsUniform = RepR && RepR->isUniform(); 9850 9851 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9852 // Check if there is a scalar value for the selected lane. 9853 if (!hasScalarValue(Def, {Part, LastLane})) { 9854 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9855 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 9856 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 9857 "unexpected recipe found to be invariant"); 9858 IsUniform = true; 9859 LastLane = 0; 9860 } 9861 9862 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9863 // Set the insert point after the last scalarized instruction or after the 9864 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9865 // will directly follow the scalar definitions. 9866 auto OldIP = Builder.saveIP(); 9867 auto NewIP = 9868 isa<PHINode>(LastInst) 9869 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9870 : std::next(BasicBlock::iterator(LastInst)); 9871 Builder.SetInsertPoint(&*NewIP); 9872 9873 // However, if we are vectorizing, we need to construct the vector values. 9874 // If the value is known to be uniform after vectorization, we can just 9875 // broadcast the scalar value corresponding to lane zero for each unroll 9876 // iteration. Otherwise, we construct the vector values using 9877 // insertelement instructions. Since the resulting vectors are stored in 9878 // State, we will only generate the insertelements once. 9879 Value *VectorValue = nullptr; 9880 if (IsUniform) { 9881 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9882 set(Def, VectorValue, Part); 9883 } else { 9884 // Initialize packing with insertelements to start from undef. 9885 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9886 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9887 set(Def, Undef, Part); 9888 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9889 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9890 VectorValue = get(Def, Part); 9891 } 9892 Builder.restoreIP(OldIP); 9893 return VectorValue; 9894 } 9895 9896 // Process the loop in the VPlan-native vectorization path. This path builds 9897 // VPlan upfront in the vectorization pipeline, which allows to apply 9898 // VPlan-to-VPlan transformations from the very beginning without modifying the 9899 // input LLVM IR. 9900 static bool processLoopInVPlanNativePath( 9901 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9902 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9903 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9904 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9905 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9906 LoopVectorizationRequirements &Requirements) { 9907 9908 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9909 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9910 return false; 9911 } 9912 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9913 Function *F = L->getHeader()->getParent(); 9914 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9915 9916 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9917 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9918 9919 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9920 &Hints, IAI); 9921 // Use the planner for outer loop vectorization. 9922 // TODO: CM is not used at this point inside the planner. Turn CM into an 9923 // optional argument if we don't need it in the future. 9924 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE); 9925 9926 // Get user vectorization factor. 9927 ElementCount UserVF = Hints.getWidth(); 9928 9929 CM.collectElementTypesForWidening(); 9930 9931 // Plan how to best vectorize, return the best VF and its cost. 9932 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9933 9934 // If we are stress testing VPlan builds, do not attempt to generate vector 9935 // code. Masked vector code generation support will follow soon. 9936 // Also, do not attempt to vectorize if no vector code will be produced. 9937 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 9938 return false; 9939 9940 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 9941 9942 { 9943 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 9944 F->getParent()->getDataLayout()); 9945 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 9946 VF.Width, 1, LVL, &CM, BFI, PSI, Checks); 9947 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9948 << L->getHeader()->getParent()->getName() << "\"\n"); 9949 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); 9950 } 9951 9952 // Mark the loop as already vectorized to avoid vectorizing again. 9953 Hints.setAlreadyVectorized(); 9954 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9955 return true; 9956 } 9957 9958 // Emit a remark if there are stores to floats that required a floating point 9959 // extension. If the vectorized loop was generated with floating point there 9960 // will be a performance penalty from the conversion overhead and the change in 9961 // the vector width. 9962 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9963 SmallVector<Instruction *, 4> Worklist; 9964 for (BasicBlock *BB : L->getBlocks()) { 9965 for (Instruction &Inst : *BB) { 9966 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9967 if (S->getValueOperand()->getType()->isFloatTy()) 9968 Worklist.push_back(S); 9969 } 9970 } 9971 } 9972 9973 // Traverse the floating point stores upwards searching, for floating point 9974 // conversions. 9975 SmallPtrSet<const Instruction *, 4> Visited; 9976 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9977 while (!Worklist.empty()) { 9978 auto *I = Worklist.pop_back_val(); 9979 if (!L->contains(I)) 9980 continue; 9981 if (!Visited.insert(I).second) 9982 continue; 9983 9984 // Emit a remark if the floating point store required a floating 9985 // point conversion. 9986 // TODO: More work could be done to identify the root cause such as a 9987 // constant or a function return type and point the user to it. 9988 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9989 ORE->emit([&]() { 9990 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9991 I->getDebugLoc(), L->getHeader()) 9992 << "floating point conversion changes vector width. " 9993 << "Mixed floating point precision requires an up/down " 9994 << "cast that will negatively impact performance."; 9995 }); 9996 9997 for (Use &Op : I->operands()) 9998 if (auto *OpI = dyn_cast<Instruction>(Op)) 9999 Worklist.push_back(OpI); 10000 } 10001 } 10002 10003 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, 10004 VectorizationFactor &VF, 10005 Optional<unsigned> VScale, Loop *L, 10006 ScalarEvolution &SE) { 10007 InstructionCost CheckCost = Checks.getCost(); 10008 if (!CheckCost.isValid()) 10009 return false; 10010 10011 // When interleaving only scalar and vector cost will be equal, which in turn 10012 // would lead to a divide by 0. Fall back to hard threshold. 10013 if (VF.Width.isScalar()) { 10014 if (CheckCost > VectorizeMemoryCheckThreshold) { 10015 LLVM_DEBUG( 10016 dbgs() 10017 << "LV: Interleaving only is not profitable due to runtime checks\n"); 10018 return false; 10019 } 10020 return true; 10021 } 10022 10023 // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. 10024 double ScalarC = *VF.ScalarCost.getValue(); 10025 if (ScalarC == 0) 10026 return true; 10027 10028 // First, compute the minimum iteration count required so that the vector 10029 // loop outperforms the scalar loop. 10030 // The total cost of the scalar loop is 10031 // ScalarC * TC 10032 // where 10033 // * TC is the actual trip count of the loop. 10034 // * ScalarC is the cost of a single scalar iteration. 10035 // 10036 // The total cost of the vector loop is 10037 // RtC + VecC * (TC / VF) + EpiC 10038 // where 10039 // * RtC is the cost of the generated runtime checks 10040 // * VecC is the cost of a single vector iteration. 10041 // * TC is the actual trip count of the loop 10042 // * VF is the vectorization factor 10043 // * EpiCost is the cost of the generated epilogue, including the cost 10044 // of the remaining scalar operations. 10045 // 10046 // Vectorization is profitable once the total vector cost is less than the 10047 // total scalar cost: 10048 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC 10049 // 10050 // Now we can compute the minimum required trip count TC as 10051 // (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC 10052 // 10053 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that 10054 // the computations are performed on doubles, not integers and the result 10055 // is rounded up, hence we get an upper estimate of the TC. 10056 unsigned IntVF = VF.Width.getKnownMinValue(); 10057 if (VF.Width.isScalable()) { 10058 unsigned AssumedMinimumVscale = 1; 10059 if (VScale) 10060 AssumedMinimumVscale = *VScale; 10061 IntVF *= AssumedMinimumVscale; 10062 } 10063 double VecCOverVF = double(*VF.Cost.getValue()) / IntVF; 10064 double RtC = *CheckCost.getValue(); 10065 double MinTC1 = RtC / (ScalarC - VecCOverVF); 10066 10067 // Second, compute a minimum iteration count so that the cost of the 10068 // runtime checks is only a fraction of the total scalar loop cost. This 10069 // adds a loop-dependent bound on the overhead incurred if the runtime 10070 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC 10071 // * TC. To bound the runtime check to be a fraction 1/X of the scalar 10072 // cost, compute 10073 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC 10074 double MinTC2 = RtC * 10 / ScalarC; 10075 10076 // Now pick the larger minimum. If it is not a multiple of VF, choose the 10077 // next closest multiple of VF. This should partly compensate for ignoring 10078 // the epilogue cost. 10079 uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2)); 10080 VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF)); 10081 10082 LLVM_DEBUG( 10083 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" 10084 << VF.MinProfitableTripCount << "\n"); 10085 10086 // Skip vectorization if the expected trip count is less than the minimum 10087 // required trip count. 10088 if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) { 10089 if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), 10090 VF.MinProfitableTripCount)) { 10091 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " 10092 "trip count < minimum profitable VF (" 10093 << *ExpectedTC << " < " << VF.MinProfitableTripCount 10094 << ")\n"); 10095 10096 return false; 10097 } 10098 } 10099 return true; 10100 } 10101 10102 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10103 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10104 !EnableLoopInterleaving), 10105 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10106 !EnableLoopVectorization) {} 10107 10108 bool LoopVectorizePass::processLoop(Loop *L) { 10109 assert((EnableVPlanNativePath || L->isInnermost()) && 10110 "VPlan-native path is not enabled. Only process inner loops."); 10111 10112 #ifndef NDEBUG 10113 const std::string DebugLocStr = getDebugLocString(L); 10114 #endif /* NDEBUG */ 10115 10116 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10117 << L->getHeader()->getParent()->getName() << "' from " 10118 << DebugLocStr << "\n"); 10119 10120 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10121 10122 LLVM_DEBUG( 10123 dbgs() << "LV: Loop hints:" 10124 << " force=" 10125 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10126 ? "disabled" 10127 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10128 ? "enabled" 10129 : "?")) 10130 << " width=" << Hints.getWidth() 10131 << " interleave=" << Hints.getInterleave() << "\n"); 10132 10133 // Function containing loop 10134 Function *F = L->getHeader()->getParent(); 10135 10136 // Looking at the diagnostic output is the only way to determine if a loop 10137 // was vectorized (other than looking at the IR or machine code), so it 10138 // is important to generate an optimization remark for each loop. Most of 10139 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10140 // generated as OptimizationRemark and OptimizationRemarkMissed are 10141 // less verbose reporting vectorized loops and unvectorized loops that may 10142 // benefit from vectorization, respectively. 10143 10144 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10145 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10146 return false; 10147 } 10148 10149 PredicatedScalarEvolution PSE(*SE, *L); 10150 10151 // Check if it is legal to vectorize the loop. 10152 LoopVectorizationRequirements Requirements; 10153 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10154 &Requirements, &Hints, DB, AC, BFI, PSI); 10155 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10156 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10157 Hints.emitRemarkWithHints(); 10158 return false; 10159 } 10160 10161 // Check the function attributes and profiles to find out if this function 10162 // should be optimized for size. 10163 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10164 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10165 10166 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10167 // here. They may require CFG and instruction level transformations before 10168 // even evaluating whether vectorization is profitable. Since we cannot modify 10169 // the incoming IR, we need to build VPlan upfront in the vectorization 10170 // pipeline. 10171 if (!L->isInnermost()) 10172 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10173 ORE, BFI, PSI, Hints, Requirements); 10174 10175 assert(L->isInnermost() && "Inner loop expected."); 10176 10177 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10178 // count by optimizing for size, to minimize overheads. 10179 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10180 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10181 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10182 << "This loop is worth vectorizing only if no scalar " 10183 << "iteration overheads are incurred."); 10184 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10185 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10186 else { 10187 LLVM_DEBUG(dbgs() << "\n"); 10188 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10189 } 10190 } 10191 10192 // Check the function attributes to see if implicit floats are allowed. 10193 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10194 // an integer loop and the vector instructions selected are purely integer 10195 // vector instructions? 10196 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10197 reportVectorizationFailure( 10198 "Can't vectorize when the NoImplicitFloat attribute is used", 10199 "loop not vectorized due to NoImplicitFloat attribute", 10200 "NoImplicitFloat", ORE, L); 10201 Hints.emitRemarkWithHints(); 10202 return false; 10203 } 10204 10205 // Check if the target supports potentially unsafe FP vectorization. 10206 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10207 // for the target we're vectorizing for, to make sure none of the 10208 // additional fp-math flags can help. 10209 if (Hints.isPotentiallyUnsafe() && 10210 TTI->isFPVectorizationPotentiallyUnsafe()) { 10211 reportVectorizationFailure( 10212 "Potentially unsafe FP op prevents vectorization", 10213 "loop not vectorized due to unsafe FP support.", 10214 "UnsafeFP", ORE, L); 10215 Hints.emitRemarkWithHints(); 10216 return false; 10217 } 10218 10219 bool AllowOrderedReductions; 10220 // If the flag is set, use that instead and override the TTI behaviour. 10221 if (ForceOrderedReductions.getNumOccurrences() > 0) 10222 AllowOrderedReductions = ForceOrderedReductions; 10223 else 10224 AllowOrderedReductions = TTI->enableOrderedReductions(); 10225 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10226 ORE->emit([&]() { 10227 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10228 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10229 ExactFPMathInst->getDebugLoc(), 10230 ExactFPMathInst->getParent()) 10231 << "loop not vectorized: cannot prove it is safe to reorder " 10232 "floating-point operations"; 10233 }); 10234 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10235 "reorder floating-point operations\n"); 10236 Hints.emitRemarkWithHints(); 10237 return false; 10238 } 10239 10240 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10241 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10242 10243 // If an override option has been passed in for interleaved accesses, use it. 10244 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10245 UseInterleaved = EnableInterleavedMemAccesses; 10246 10247 // Analyze interleaved memory accesses. 10248 if (UseInterleaved) { 10249 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10250 } 10251 10252 // Use the cost model. 10253 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10254 F, &Hints, IAI); 10255 CM.collectValuesToIgnore(); 10256 CM.collectElementTypesForWidening(); 10257 10258 // Use the planner for vectorization. 10259 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE); 10260 10261 // Get user vectorization factor and interleave count. 10262 ElementCount UserVF = Hints.getWidth(); 10263 unsigned UserIC = Hints.getInterleave(); 10264 10265 // Plan how to best vectorize, return the best VF and its cost. 10266 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10267 10268 VectorizationFactor VF = VectorizationFactor::Disabled(); 10269 unsigned IC = 1; 10270 10271 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 10272 F->getParent()->getDataLayout()); 10273 if (MaybeVF) { 10274 VF = *MaybeVF; 10275 // Select the interleave count. 10276 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10277 10278 unsigned SelectedIC = std::max(IC, UserIC); 10279 // Optimistically generate runtime checks if they are needed. Drop them if 10280 // they turn out to not be profitable. 10281 if (VF.Width.isVector() || SelectedIC > 1) 10282 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); 10283 10284 // Check if it is profitable to vectorize with runtime checks. 10285 bool ForceVectorization = 10286 Hints.getForce() == LoopVectorizeHints::FK_Enabled; 10287 if (!ForceVectorization && 10288 !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L, 10289 *PSE.getSE())) { 10290 ORE->emit([&]() { 10291 return OptimizationRemarkAnalysisAliasing( 10292 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10293 L->getHeader()) 10294 << "loop not vectorized: cannot prove it is safe to reorder " 10295 "memory operations"; 10296 }); 10297 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10298 Hints.emitRemarkWithHints(); 10299 return false; 10300 } 10301 } 10302 10303 // Identify the diagnostic messages that should be produced. 10304 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10305 bool VectorizeLoop = true, InterleaveLoop = true; 10306 if (VF.Width.isScalar()) { 10307 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10308 VecDiagMsg = std::make_pair( 10309 "VectorizationNotBeneficial", 10310 "the cost-model indicates that vectorization is not beneficial"); 10311 VectorizeLoop = false; 10312 } 10313 10314 if (!MaybeVF && UserIC > 1) { 10315 // Tell the user interleaving was avoided up-front, despite being explicitly 10316 // requested. 10317 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10318 "interleaving should be avoided up front\n"); 10319 IntDiagMsg = std::make_pair( 10320 "InterleavingAvoided", 10321 "Ignoring UserIC, because interleaving was avoided up front"); 10322 InterleaveLoop = false; 10323 } else if (IC == 1 && UserIC <= 1) { 10324 // Tell the user interleaving is not beneficial. 10325 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10326 IntDiagMsg = std::make_pair( 10327 "InterleavingNotBeneficial", 10328 "the cost-model indicates that interleaving is not beneficial"); 10329 InterleaveLoop = false; 10330 if (UserIC == 1) { 10331 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10332 IntDiagMsg.second += 10333 " and is explicitly disabled or interleave count is set to 1"; 10334 } 10335 } else if (IC > 1 && UserIC == 1) { 10336 // Tell the user interleaving is beneficial, but it explicitly disabled. 10337 LLVM_DEBUG( 10338 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10339 IntDiagMsg = std::make_pair( 10340 "InterleavingBeneficialButDisabled", 10341 "the cost-model indicates that interleaving is beneficial " 10342 "but is explicitly disabled or interleave count is set to 1"); 10343 InterleaveLoop = false; 10344 } 10345 10346 // Override IC if user provided an interleave count. 10347 IC = UserIC > 0 ? UserIC : IC; 10348 10349 // Emit diagnostic messages, if any. 10350 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10351 if (!VectorizeLoop && !InterleaveLoop) { 10352 // Do not vectorize or interleaving the loop. 10353 ORE->emit([&]() { 10354 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10355 L->getStartLoc(), L->getHeader()) 10356 << VecDiagMsg.second; 10357 }); 10358 ORE->emit([&]() { 10359 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10360 L->getStartLoc(), L->getHeader()) 10361 << IntDiagMsg.second; 10362 }); 10363 return false; 10364 } else if (!VectorizeLoop && InterleaveLoop) { 10365 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10366 ORE->emit([&]() { 10367 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10368 L->getStartLoc(), L->getHeader()) 10369 << VecDiagMsg.second; 10370 }); 10371 } else if (VectorizeLoop && !InterleaveLoop) { 10372 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10373 << ") in " << DebugLocStr << '\n'); 10374 ORE->emit([&]() { 10375 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10376 L->getStartLoc(), L->getHeader()) 10377 << IntDiagMsg.second; 10378 }); 10379 } else if (VectorizeLoop && InterleaveLoop) { 10380 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10381 << ") in " << DebugLocStr << '\n'); 10382 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10383 } 10384 10385 bool DisableRuntimeUnroll = false; 10386 MDNode *OrigLoopID = L->getLoopID(); 10387 { 10388 using namespace ore; 10389 if (!VectorizeLoop) { 10390 assert(IC > 1 && "interleave count should not be 1 or 0"); 10391 // If we decided that it is not legal to vectorize the loop, then 10392 // interleave it. 10393 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10394 &CM, BFI, PSI, Checks); 10395 10396 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10397 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); 10398 10399 ORE->emit([&]() { 10400 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10401 L->getHeader()) 10402 << "interleaved loop (interleaved count: " 10403 << NV("InterleaveCount", IC) << ")"; 10404 }); 10405 } else { 10406 // If we decided that it is *legal* to vectorize the loop, then do it. 10407 10408 // Consider vectorizing the epilogue too if it's profitable. 10409 VectorizationFactor EpilogueVF = 10410 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10411 if (EpilogueVF.Width.isVector()) { 10412 10413 // The first pass vectorizes the main loop and creates a scalar epilogue 10414 // to be vectorized by executing the plan (potentially with a different 10415 // factor) again shortly afterwards. 10416 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10417 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10418 EPI, &LVL, &CM, BFI, PSI, Checks); 10419 10420 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10421 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10422 DT, true); 10423 ++LoopsVectorized; 10424 10425 // Second pass vectorizes the epilogue and adjusts the control flow 10426 // edges from the first pass. 10427 EPI.MainLoopVF = EPI.EpilogueVF; 10428 EPI.MainLoopUF = EPI.EpilogueUF; 10429 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10430 ORE, EPI, &LVL, &CM, BFI, PSI, 10431 Checks); 10432 10433 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10434 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10435 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10436 Header->setName("vec.epilog.vector.body"); 10437 10438 // Ensure that the start values for any VPReductionPHIRecipes are 10439 // updated before vectorising the epilogue loop. 10440 for (VPRecipeBase &R : Header->phis()) { 10441 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10442 if (auto *Resume = MainILV.getReductionResumeValue( 10443 ReductionPhi->getRecurrenceDescriptor())) { 10444 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10445 ReductionPhi->setOperand(0, StartVal); 10446 } 10447 } 10448 } 10449 10450 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10451 DT, true); 10452 ++LoopsEpilogueVectorized; 10453 10454 if (!MainILV.areSafetyChecksAdded()) 10455 DisableRuntimeUnroll = true; 10456 } else { 10457 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 10458 VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, 10459 PSI, Checks); 10460 10461 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10462 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); 10463 ++LoopsVectorized; 10464 10465 // Add metadata to disable runtime unrolling a scalar loop when there 10466 // are no runtime checks about strides and memory. A scalar loop that is 10467 // rarely used is not worth unrolling. 10468 if (!LB.areSafetyChecksAdded()) 10469 DisableRuntimeUnroll = true; 10470 } 10471 // Report the vectorization decision. 10472 ORE->emit([&]() { 10473 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10474 L->getHeader()) 10475 << "vectorized loop (vectorization width: " 10476 << NV("VectorizationFactor", VF.Width) 10477 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10478 }); 10479 } 10480 10481 if (ORE->allowExtraAnalysis(LV_NAME)) 10482 checkMixedPrecision(L, ORE); 10483 } 10484 10485 Optional<MDNode *> RemainderLoopID = 10486 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10487 LLVMLoopVectorizeFollowupEpilogue}); 10488 if (RemainderLoopID) { 10489 L->setLoopID(RemainderLoopID.getValue()); 10490 } else { 10491 if (DisableRuntimeUnroll) 10492 AddRuntimeUnrollDisableMetaData(L); 10493 10494 // Mark the loop as already vectorized to avoid vectorizing again. 10495 Hints.setAlreadyVectorized(); 10496 } 10497 10498 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10499 return true; 10500 } 10501 10502 LoopVectorizeResult LoopVectorizePass::runImpl( 10503 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10504 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10505 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10506 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10507 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10508 SE = &SE_; 10509 LI = &LI_; 10510 TTI = &TTI_; 10511 DT = &DT_; 10512 BFI = &BFI_; 10513 TLI = TLI_; 10514 AA = &AA_; 10515 AC = &AC_; 10516 GetLAA = &GetLAA_; 10517 DB = &DB_; 10518 ORE = &ORE_; 10519 PSI = PSI_; 10520 10521 // Don't attempt if 10522 // 1. the target claims to have no vector registers, and 10523 // 2. interleaving won't help ILP. 10524 // 10525 // The second condition is necessary because, even if the target has no 10526 // vector registers, loop vectorization may still enable scalar 10527 // interleaving. 10528 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10529 TTI->getMaxInterleaveFactor(1) < 2) 10530 return LoopVectorizeResult(false, false); 10531 10532 bool Changed = false, CFGChanged = false; 10533 10534 // The vectorizer requires loops to be in simplified form. 10535 // Since simplification may add new inner loops, it has to run before the 10536 // legality and profitability checks. This means running the loop vectorizer 10537 // will simplify all loops, regardless of whether anything end up being 10538 // vectorized. 10539 for (auto &L : *LI) 10540 Changed |= CFGChanged |= 10541 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10542 10543 // Build up a worklist of inner-loops to vectorize. This is necessary as 10544 // the act of vectorizing or partially unrolling a loop creates new loops 10545 // and can invalidate iterators across the loops. 10546 SmallVector<Loop *, 8> Worklist; 10547 10548 for (Loop *L : *LI) 10549 collectSupportedLoops(*L, LI, ORE, Worklist); 10550 10551 LoopsAnalyzed += Worklist.size(); 10552 10553 // Now walk the identified inner loops. 10554 while (!Worklist.empty()) { 10555 Loop *L = Worklist.pop_back_val(); 10556 10557 // For the inner loops we actually process, form LCSSA to simplify the 10558 // transform. 10559 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10560 10561 Changed |= CFGChanged |= processLoop(L); 10562 } 10563 10564 // Process each loop nest in the function. 10565 return LoopVectorizeResult(Changed, CFGChanged); 10566 } 10567 10568 PreservedAnalyses LoopVectorizePass::run(Function &F, 10569 FunctionAnalysisManager &AM) { 10570 auto &LI = AM.getResult<LoopAnalysis>(F); 10571 // There are no loops in the function. Return before computing other expensive 10572 // analyses. 10573 if (LI.empty()) 10574 return PreservedAnalyses::all(); 10575 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10576 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10577 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10578 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10579 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10580 auto &AA = AM.getResult<AAManager>(F); 10581 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10582 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10583 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10584 10585 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10586 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10587 [&](Loop &L) -> const LoopAccessInfo & { 10588 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10589 TLI, TTI, nullptr, nullptr, nullptr}; 10590 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10591 }; 10592 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10593 ProfileSummaryInfo *PSI = 10594 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10595 LoopVectorizeResult Result = 10596 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10597 if (!Result.MadeAnyChange) 10598 return PreservedAnalyses::all(); 10599 PreservedAnalyses PA; 10600 10601 // We currently do not preserve loopinfo/dominator analyses with outer loop 10602 // vectorization. Until this is addressed, mark these analyses as preserved 10603 // only for non-VPlan-native path. 10604 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10605 if (!EnableVPlanNativePath) { 10606 PA.preserve<LoopAnalysis>(); 10607 PA.preserve<DominatorTreeAnalysis>(); 10608 } 10609 10610 if (Result.MadeCFGChange) { 10611 // Making CFG changes likely means a loop got vectorized. Indicate that 10612 // extra simplification passes should be run. 10613 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10614 // be run if runtime checks have been added. 10615 AM.getResult<ShouldRunExtraVectorPasses>(F); 10616 PA.preserve<ShouldRunExtraVectorPasses>(); 10617 } else { 10618 PA.preserveSet<CFGAnalyses>(); 10619 } 10620 return PA; 10621 } 10622 10623 void LoopVectorizePass::printPipeline( 10624 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10625 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10626 OS, MapClassName2PassName); 10627 10628 OS << "<"; 10629 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10630 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10631 OS << ">"; 10632 } 10633