1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = FixedVectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM) 399 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 400 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 401 Builder(PSE.getSE()->getContext()), 402 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 403 virtual ~InnerLoopVectorizer() = default; 404 405 /// Create a new empty loop. Unlink the old loop and connect the new one. 406 /// Return the pre-header block of the new loop. 407 BasicBlock *createVectorizedLoopSkeleton(); 408 409 /// Widen a single instruction within the innermost loop. 410 void widenInstruction(Instruction &I, VPUser &Operands, 411 VPTransformState &State); 412 413 /// Widen a single call instruction within the innermost loop. 414 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 415 VPTransformState &State); 416 417 /// Widen a single select instruction within the innermost loop. 418 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 419 bool InvariantCond, VPTransformState &State); 420 421 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 422 void fixVectorizedLoop(); 423 424 // Return true if any runtime check is added. 425 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 426 427 /// A type for vectorized values in the new loop. Each value from the 428 /// original loop, when vectorized, is represented by UF vector values in the 429 /// new unrolled loop, where UF is the unroll factor. 430 using VectorParts = SmallVector<Value *, 2>; 431 432 /// Vectorize a single GetElementPtrInst based on information gathered and 433 /// decisions taken during planning. 434 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 435 unsigned VF, bool IsPtrLoopInvariant, 436 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 437 438 /// Vectorize a single PHINode in a block. This method handles the induction 439 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 440 /// arbitrary length vectors. 441 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 442 443 /// A helper function to scalarize a single Instruction in the innermost loop. 444 /// Generates a sequence of scalar instances for each lane between \p MinLane 445 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 446 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 447 /// Instr's operands. 448 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 449 const VPIteration &Instance, bool IfPredicateInstr, 450 VPTransformState &State); 451 452 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 453 /// is provided, the integer induction variable will first be truncated to 454 /// the corresponding type. 455 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 456 457 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 458 /// vector or scalar value on-demand if one is not yet available. When 459 /// vectorizing a loop, we visit the definition of an instruction before its 460 /// uses. When visiting the definition, we either vectorize or scalarize the 461 /// instruction, creating an entry for it in the corresponding map. (In some 462 /// cases, such as induction variables, we will create both vector and scalar 463 /// entries.) Then, as we encounter uses of the definition, we derive values 464 /// for each scalar or vector use unless such a value is already available. 465 /// For example, if we scalarize a definition and one of its uses is vector, 466 /// we build the required vector on-demand with an insertelement sequence 467 /// when visiting the use. Otherwise, if the use is scalar, we can use the 468 /// existing scalar definition. 469 /// 470 /// Return a value in the new loop corresponding to \p V from the original 471 /// loop at unroll index \p Part. If the value has already been vectorized, 472 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 473 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 474 /// a new vector value on-demand by inserting the scalar values into a vector 475 /// with an insertelement sequence. If the value has been neither vectorized 476 /// nor scalarized, it must be loop invariant, so we simply broadcast the 477 /// value into a vector. 478 Value *getOrCreateVectorValue(Value *V, unsigned Part); 479 480 /// Return a value in the new loop corresponding to \p V from the original 481 /// loop at unroll and vector indices \p Instance. If the value has been 482 /// vectorized but not scalarized, the necessary extractelement instruction 483 /// will be generated. 484 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 485 486 /// Construct the vector value of a scalarized value \p V one lane at a time. 487 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 488 489 /// Try to vectorize interleaved access group \p Group with the base address 490 /// given in \p Addr, optionally masking the vector operations if \p 491 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 492 /// values in the vectorized loop. 493 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 494 VPTransformState &State, VPValue *Addr, 495 VPValue *BlockInMask = nullptr); 496 497 /// Vectorize Load and Store instructions with the base address given in \p 498 /// Addr, optionally masking the vector operations if \p BlockInMask is 499 /// non-null. Use \p State to translate given VPValues to IR values in the 500 /// vectorized loop. 501 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 502 VPValue *Addr, VPValue *StoredValue, 503 VPValue *BlockInMask); 504 505 /// Set the debug location in the builder using the debug location in 506 /// the instruction. 507 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 508 509 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 510 void fixNonInductionPHIs(void); 511 512 protected: 513 friend class LoopVectorizationPlanner; 514 515 /// A small list of PHINodes. 516 using PhiVector = SmallVector<PHINode *, 4>; 517 518 /// A type for scalarized values in the new loop. Each value from the 519 /// original loop, when scalarized, is represented by UF x VF scalar values 520 /// in the new unrolled loop, where UF is the unroll factor and VF is the 521 /// vectorization factor. 522 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 523 524 /// Set up the values of the IVs correctly when exiting the vector loop. 525 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 526 Value *CountRoundDown, Value *EndValue, 527 BasicBlock *MiddleBlock); 528 529 /// Create a new induction variable inside L. 530 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 531 Value *Step, Instruction *DL); 532 533 /// Handle all cross-iteration phis in the header. 534 void fixCrossIterationPHIs(); 535 536 /// Fix a first-order recurrence. This is the second phase of vectorizing 537 /// this phi node. 538 void fixFirstOrderRecurrence(PHINode *Phi); 539 540 /// Fix a reduction cross-iteration phi. This is the second phase of 541 /// vectorizing this phi node. 542 void fixReduction(PHINode *Phi); 543 544 /// Clear NSW/NUW flags from reduction instructions if necessary. 545 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 546 547 /// The Loop exit block may have single value PHI nodes with some 548 /// incoming value. While vectorizing we only handled real values 549 /// that were defined inside the loop and we should have one value for 550 /// each predecessor of its parent basic block. See PR14725. 551 void fixLCSSAPHIs(); 552 553 /// Iteratively sink the scalarized operands of a predicated instruction into 554 /// the block that was created for it. 555 void sinkScalarOperands(Instruction *PredInst); 556 557 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 558 /// represented as. 559 void truncateToMinimalBitwidths(); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 569 /// to each vector element of Val. The sequence starts at StartIndex. 570 /// \p Opcode is relevant for FP induction variable. 571 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 572 Instruction::BinaryOps Opcode = 573 Instruction::BinaryOpsEnd); 574 575 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 576 /// variable on which to base the steps, \p Step is the size of the step, and 577 /// \p EntryVal is the value from the original loop that maps to the steps. 578 /// Note that \p EntryVal doesn't have to be an induction variable - it 579 /// can also be a truncate instruction. 580 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 581 const InductionDescriptor &ID); 582 583 /// Create a vector induction phi node based on an existing scalar one. \p 584 /// EntryVal is the value from the original loop that maps to the vector phi 585 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 586 /// truncate instruction, instead of widening the original IV, we widen a 587 /// version of the IV truncated to \p EntryVal's type. 588 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 589 Value *Step, Instruction *EntryVal); 590 591 /// Returns true if an instruction \p I should be scalarized instead of 592 /// vectorized for the chosen vectorization factor. 593 bool shouldScalarizeInstruction(Instruction *I) const; 594 595 /// Returns true if we should generate a scalar version of \p IV. 596 bool needsScalarInduction(Instruction *IV) const; 597 598 /// If there is a cast involved in the induction variable \p ID, which should 599 /// be ignored in the vectorized loop body, this function records the 600 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 601 /// cast. We had already proved that the casted Phi is equal to the uncasted 602 /// Phi in the vectorized loop (under a runtime guard), and therefore 603 /// there is no need to vectorize the cast - the same value can be used in the 604 /// vector loop for both the Phi and the cast. 605 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 606 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 607 /// 608 /// \p EntryVal is the value from the original loop that maps to the vector 609 /// phi node and is used to distinguish what is the IV currently being 610 /// processed - original one (if \p EntryVal is a phi corresponding to the 611 /// original IV) or the "newly-created" one based on the proof mentioned above 612 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 613 /// latter case \p EntryVal is a TruncInst and we must not record anything for 614 /// that IV, but it's error-prone to expect callers of this routine to care 615 /// about that, hence this explicit parameter. 616 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 617 const Instruction *EntryVal, 618 Value *VectorLoopValue, 619 unsigned Part, 620 unsigned Lane = UINT_MAX); 621 622 /// Generate a shuffle sequence that will reverse the vector Vec. 623 virtual Value *reverseVector(Value *Vec); 624 625 /// Returns (and creates if needed) the original loop trip count. 626 Value *getOrCreateTripCount(Loop *NewLoop); 627 628 /// Returns (and creates if needed) the trip count of the widened loop. 629 Value *getOrCreateVectorTripCount(Loop *NewLoop); 630 631 /// Returns a bitcasted value to the requested vector type. 632 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 633 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 634 const DataLayout &DL); 635 636 /// Emit a bypass check to see if the vector trip count is zero, including if 637 /// it overflows. 638 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 639 640 /// Emit a bypass check to see if all of the SCEV assumptions we've 641 /// had to make are correct. 642 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 643 644 /// Emit bypass checks to check any memory assumptions we may have made. 645 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 646 647 /// Compute the transformed value of Index at offset StartValue using step 648 /// StepValue. 649 /// For integer induction, returns StartValue + Index * StepValue. 650 /// For pointer induction, returns StartValue[Index * StepValue]. 651 /// FIXME: The newly created binary instructions should contain nsw/nuw 652 /// flags, which can be found from the original scalar operations. 653 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 654 const DataLayout &DL, 655 const InductionDescriptor &ID) const; 656 657 /// Add additional metadata to \p To that was not present on \p Orig. 658 /// 659 /// Currently this is used to add the noalias annotations based on the 660 /// inserted memchecks. Use this for instructions that are *cloned* into the 661 /// vector loop. 662 void addNewMetadata(Instruction *To, const Instruction *Orig); 663 664 /// Add metadata from one instruction to another. 665 /// 666 /// This includes both the original MDs from \p From and additional ones (\see 667 /// addNewMetadata). Use this for *newly created* instructions in the vector 668 /// loop. 669 void addMetadata(Instruction *To, Instruction *From); 670 671 /// Similar to the previous function but it adds the metadata to a 672 /// vector of instructions. 673 void addMetadata(ArrayRef<Value *> To, Instruction *From); 674 675 /// The original loop. 676 Loop *OrigLoop; 677 678 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 679 /// dynamic knowledge to simplify SCEV expressions and converts them to a 680 /// more usable form. 681 PredicatedScalarEvolution &PSE; 682 683 /// Loop Info. 684 LoopInfo *LI; 685 686 /// Dominator Tree. 687 DominatorTree *DT; 688 689 /// Alias Analysis. 690 AAResults *AA; 691 692 /// Target Library Info. 693 const TargetLibraryInfo *TLI; 694 695 /// Target Transform Info. 696 const TargetTransformInfo *TTI; 697 698 /// Assumption Cache. 699 AssumptionCache *AC; 700 701 /// Interface to emit optimization remarks. 702 OptimizationRemarkEmitter *ORE; 703 704 /// LoopVersioning. It's only set up (non-null) if memchecks were 705 /// used. 706 /// 707 /// This is currently only used to add no-alias metadata based on the 708 /// memchecks. The actually versioning is performed manually. 709 std::unique_ptr<LoopVersioning> LVer; 710 711 /// The vectorization SIMD factor to use. Each vector will have this many 712 /// vector elements. 713 unsigned VF; 714 715 /// The vectorization unroll factor to use. Each scalar is vectorized to this 716 /// many different vector instructions. 717 unsigned UF; 718 719 /// The builder that we use 720 IRBuilder<> Builder; 721 722 // --- Vectorization state --- 723 724 /// The vector-loop preheader. 725 BasicBlock *LoopVectorPreHeader; 726 727 /// The scalar-loop preheader. 728 BasicBlock *LoopScalarPreHeader; 729 730 /// Middle Block between the vector and the scalar. 731 BasicBlock *LoopMiddleBlock; 732 733 /// The ExitBlock of the scalar loop. 734 BasicBlock *LoopExitBlock; 735 736 /// The vector loop body. 737 BasicBlock *LoopVectorBody; 738 739 /// The scalar loop body. 740 BasicBlock *LoopScalarBody; 741 742 /// A list of all bypass blocks. The first block is the entry of the loop. 743 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 744 745 /// The new Induction variable which was added to the new block. 746 PHINode *Induction = nullptr; 747 748 /// The induction variable of the old basic block. 749 PHINode *OldInduction = nullptr; 750 751 /// Maps values from the original loop to their corresponding values in the 752 /// vectorized loop. A key value can map to either vector values, scalar 753 /// values or both kinds of values, depending on whether the key was 754 /// vectorized and scalarized. 755 VectorizerValueMap VectorLoopValueMap; 756 757 /// Store instructions that were predicated. 758 SmallVector<Instruction *, 4> PredicatedInstructions; 759 760 /// Trip count of the original loop. 761 Value *TripCount = nullptr; 762 763 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 764 Value *VectorTripCount = nullptr; 765 766 /// The legality analysis. 767 LoopVectorizationLegality *Legal; 768 769 /// The profitablity analysis. 770 LoopVectorizationCostModel *Cost; 771 772 // Record whether runtime checks are added. 773 bool AddedSafetyChecks = false; 774 775 // Holds the end values for each induction variable. We save the end values 776 // so we can later fix-up the external users of the induction variables. 777 DenseMap<PHINode *, Value *> IVEndValues; 778 779 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 780 // fixed up at the end of vector code generation. 781 SmallVector<PHINode *, 8> OrigPHIsToFix; 782 }; 783 784 class InnerLoopUnroller : public InnerLoopVectorizer { 785 public: 786 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 787 LoopInfo *LI, DominatorTree *DT, 788 const TargetLibraryInfo *TLI, 789 const TargetTransformInfo *TTI, AssumptionCache *AC, 790 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 791 LoopVectorizationLegality *LVL, 792 LoopVectorizationCostModel *CM) 793 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 794 UnrollFactor, LVL, CM) {} 795 796 private: 797 Value *getBroadcastInstrs(Value *V) override; 798 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 799 Instruction::BinaryOps Opcode = 800 Instruction::BinaryOpsEnd) override; 801 Value *reverseVector(Value *Vec) override; 802 }; 803 804 } // end namespace llvm 805 806 /// Look for a meaningful debug location on the instruction or it's 807 /// operands. 808 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 809 if (!I) 810 return I; 811 812 DebugLoc Empty; 813 if (I->getDebugLoc() != Empty) 814 return I; 815 816 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 817 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 818 if (OpInst->getDebugLoc() != Empty) 819 return OpInst; 820 } 821 822 return I; 823 } 824 825 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 826 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 827 const DILocation *DIL = Inst->getDebugLoc(); 828 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 829 !isa<DbgInfoIntrinsic>(Inst)) { 830 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 831 if (NewDIL) 832 B.SetCurrentDebugLocation(NewDIL.getValue()); 833 else 834 LLVM_DEBUG(dbgs() 835 << "Failed to create new discriminator: " 836 << DIL->getFilename() << " Line: " << DIL->getLine()); 837 } 838 else 839 B.SetCurrentDebugLocation(DIL); 840 } else 841 B.SetCurrentDebugLocation(DebugLoc()); 842 } 843 844 /// Write a record \p DebugMsg about vectorization failure to the debug 845 /// output stream. If \p I is passed, it is an instruction that prevents 846 /// vectorization. 847 #ifndef NDEBUG 848 static void debugVectorizationFailure(const StringRef DebugMsg, 849 Instruction *I) { 850 dbgs() << "LV: Not vectorizing: " << DebugMsg; 851 if (I != nullptr) 852 dbgs() << " " << *I; 853 else 854 dbgs() << '.'; 855 dbgs() << '\n'; 856 } 857 #endif 858 859 /// Create an analysis remark that explains why vectorization failed 860 /// 861 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 862 /// RemarkName is the identifier for the remark. If \p I is passed it is an 863 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 864 /// the location of the remark. \return the remark object that can be 865 /// streamed to. 866 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 867 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 868 Value *CodeRegion = TheLoop->getHeader(); 869 DebugLoc DL = TheLoop->getStartLoc(); 870 871 if (I) { 872 CodeRegion = I->getParent(); 873 // If there is no debug location attached to the instruction, revert back to 874 // using the loop's. 875 if (I->getDebugLoc()) 876 DL = I->getDebugLoc(); 877 } 878 879 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 880 R << "loop not vectorized: "; 881 return R; 882 } 883 884 namespace llvm { 885 886 void reportVectorizationFailure(const StringRef DebugMsg, 887 const StringRef OREMsg, const StringRef ORETag, 888 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 889 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 890 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 891 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 892 ORETag, TheLoop, I) << OREMsg); 893 } 894 895 } // end namespace llvm 896 897 #ifndef NDEBUG 898 /// \return string containing a file name and a line # for the given loop. 899 static std::string getDebugLocString(const Loop *L) { 900 std::string Result; 901 if (L) { 902 raw_string_ostream OS(Result); 903 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 904 LoopDbgLoc.print(OS); 905 else 906 // Just print the module name. 907 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 908 OS.flush(); 909 } 910 return Result; 911 } 912 #endif 913 914 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 915 const Instruction *Orig) { 916 // If the loop was versioned with memchecks, add the corresponding no-alias 917 // metadata. 918 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 919 LVer->annotateInstWithNoAlias(To, Orig); 920 } 921 922 void InnerLoopVectorizer::addMetadata(Instruction *To, 923 Instruction *From) { 924 propagateMetadata(To, From); 925 addNewMetadata(To, From); 926 } 927 928 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 929 Instruction *From) { 930 for (Value *V : To) { 931 if (Instruction *I = dyn_cast<Instruction>(V)) 932 addMetadata(I, From); 933 } 934 } 935 936 namespace llvm { 937 938 // Loop vectorization cost-model hints how the scalar epilogue loop should be 939 // lowered. 940 enum ScalarEpilogueLowering { 941 942 // The default: allowing scalar epilogues. 943 CM_ScalarEpilogueAllowed, 944 945 // Vectorization with OptForSize: don't allow epilogues. 946 CM_ScalarEpilogueNotAllowedOptSize, 947 948 // A special case of vectorisation with OptForSize: loops with a very small 949 // trip count are considered for vectorization under OptForSize, thereby 950 // making sure the cost of their loop body is dominant, free of runtime 951 // guards and scalar iteration overheads. 952 CM_ScalarEpilogueNotAllowedLowTripLoop, 953 954 // Loop hint predicate indicating an epilogue is undesired. 955 CM_ScalarEpilogueNotNeededUsePredicate 956 }; 957 958 /// LoopVectorizationCostModel - estimates the expected speedups due to 959 /// vectorization. 960 /// In many cases vectorization is not profitable. This can happen because of 961 /// a number of reasons. In this class we mainly attempt to predict the 962 /// expected speedup/slowdowns due to the supported instruction set. We use the 963 /// TargetTransformInfo to query the different backends for the cost of 964 /// different operations. 965 class LoopVectorizationCostModel { 966 public: 967 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 968 PredicatedScalarEvolution &PSE, LoopInfo *LI, 969 LoopVectorizationLegality *Legal, 970 const TargetTransformInfo &TTI, 971 const TargetLibraryInfo *TLI, DemandedBits *DB, 972 AssumptionCache *AC, 973 OptimizationRemarkEmitter *ORE, const Function *F, 974 const LoopVectorizeHints *Hints, 975 InterleavedAccessInfo &IAI) 976 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 977 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 978 Hints(Hints), InterleaveInfo(IAI) {} 979 980 /// \return An upper bound for the vectorization factor, or None if 981 /// vectorization and interleaving should be avoided up front. 982 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 983 984 /// \return True if runtime checks are required for vectorization, and false 985 /// otherwise. 986 bool runtimeChecksRequired(); 987 988 /// \return The most profitable vectorization factor and the cost of that VF. 989 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 990 /// then this vectorization factor will be selected if vectorization is 991 /// possible. 992 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 993 994 /// Setup cost-based decisions for user vectorization factor. 995 void selectUserVectorizationFactor(unsigned UserVF) { 996 collectUniformsAndScalars(UserVF); 997 collectInstsToScalarize(UserVF); 998 } 999 1000 /// \return The size (in bits) of the smallest and widest types in the code 1001 /// that needs to be vectorized. We ignore values that remain scalar such as 1002 /// 64 bit loop indices. 1003 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1004 1005 /// \return The desired interleave count. 1006 /// If interleave count has been specified by metadata it will be returned. 1007 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1008 /// are the selected vectorization factor and the cost of the selected VF. 1009 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1010 1011 /// Memory access instruction may be vectorized in more than one way. 1012 /// Form of instruction after vectorization depends on cost. 1013 /// This function takes cost-based decisions for Load/Store instructions 1014 /// and collects them in a map. This decisions map is used for building 1015 /// the lists of loop-uniform and loop-scalar instructions. 1016 /// The calculated cost is saved with widening decision in order to 1017 /// avoid redundant calculations. 1018 void setCostBasedWideningDecision(unsigned VF); 1019 1020 /// A struct that represents some properties of the register usage 1021 /// of a loop. 1022 struct RegisterUsage { 1023 /// Holds the number of loop invariant values that are used in the loop. 1024 /// The key is ClassID of target-provided register class. 1025 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1026 /// Holds the maximum number of concurrent live intervals in the loop. 1027 /// The key is ClassID of target-provided register class. 1028 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1029 }; 1030 1031 /// \return Returns information about the register usages of the loop for the 1032 /// given vectorization factors. 1033 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1034 1035 /// Collect values we want to ignore in the cost model. 1036 void collectValuesToIgnore(); 1037 1038 /// \returns The smallest bitwidth each instruction can be represented with. 1039 /// The vector equivalents of these instructions should be truncated to this 1040 /// type. 1041 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1042 return MinBWs; 1043 } 1044 1045 /// \returns True if it is more profitable to scalarize instruction \p I for 1046 /// vectorization factor \p VF. 1047 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1048 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1049 1050 // Cost model is not run in the VPlan-native path - return conservative 1051 // result until this changes. 1052 if (EnableVPlanNativePath) 1053 return false; 1054 1055 auto Scalars = InstsToScalarize.find(VF); 1056 assert(Scalars != InstsToScalarize.end() && 1057 "VF not yet analyzed for scalarization profitability"); 1058 return Scalars->second.find(I) != Scalars->second.end(); 1059 } 1060 1061 /// Returns true if \p I is known to be uniform after vectorization. 1062 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1063 if (VF == 1) 1064 return true; 1065 1066 // Cost model is not run in the VPlan-native path - return conservative 1067 // result until this changes. 1068 if (EnableVPlanNativePath) 1069 return false; 1070 1071 auto UniformsPerVF = Uniforms.find(VF); 1072 assert(UniformsPerVF != Uniforms.end() && 1073 "VF not yet analyzed for uniformity"); 1074 return UniformsPerVF->second.count(I); 1075 } 1076 1077 /// Returns true if \p I is known to be scalar after vectorization. 1078 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1079 if (VF == 1) 1080 return true; 1081 1082 // Cost model is not run in the VPlan-native path - return conservative 1083 // result until this changes. 1084 if (EnableVPlanNativePath) 1085 return false; 1086 1087 auto ScalarsPerVF = Scalars.find(VF); 1088 assert(ScalarsPerVF != Scalars.end() && 1089 "Scalar values are not calculated for VF"); 1090 return ScalarsPerVF->second.count(I); 1091 } 1092 1093 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1094 /// for vectorization factor \p VF. 1095 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1096 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1097 !isProfitableToScalarize(I, VF) && 1098 !isScalarAfterVectorization(I, VF); 1099 } 1100 1101 /// Decision that was taken during cost calculation for memory instruction. 1102 enum InstWidening { 1103 CM_Unknown, 1104 CM_Widen, // For consecutive accesses with stride +1. 1105 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1106 CM_Interleave, 1107 CM_GatherScatter, 1108 CM_Scalarize 1109 }; 1110 1111 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1112 /// instruction \p I and vector width \p VF. 1113 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1114 unsigned Cost) { 1115 assert(VF >= 2 && "Expected VF >=2"); 1116 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1117 } 1118 1119 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1120 /// interleaving group \p Grp and vector width \p VF. 1121 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1122 InstWidening W, unsigned Cost) { 1123 assert(VF >= 2 && "Expected VF >=2"); 1124 /// Broadcast this decicion to all instructions inside the group. 1125 /// But the cost will be assigned to one instruction only. 1126 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1127 if (auto *I = Grp->getMember(i)) { 1128 if (Grp->getInsertPos() == I) 1129 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1130 else 1131 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1132 } 1133 } 1134 } 1135 1136 /// Return the cost model decision for the given instruction \p I and vector 1137 /// width \p VF. Return CM_Unknown if this instruction did not pass 1138 /// through the cost modeling. 1139 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1140 assert(VF >= 2 && "Expected VF >=2"); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return CM_GatherScatter; 1146 1147 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1148 auto Itr = WideningDecisions.find(InstOnVF); 1149 if (Itr == WideningDecisions.end()) 1150 return CM_Unknown; 1151 return Itr->second.first; 1152 } 1153 1154 /// Return the vectorization cost for the given instruction \p I and vector 1155 /// width \p VF. 1156 unsigned getWideningCost(Instruction *I, unsigned VF) { 1157 assert(VF >= 2 && "Expected VF >=2"); 1158 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1159 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1160 "The cost is not calculated"); 1161 return WideningDecisions[InstOnVF].second; 1162 } 1163 1164 /// Return True if instruction \p I is an optimizable truncate whose operand 1165 /// is an induction variable. Such a truncate will be removed by adding a new 1166 /// induction variable with the destination type. 1167 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1168 // If the instruction is not a truncate, return false. 1169 auto *Trunc = dyn_cast<TruncInst>(I); 1170 if (!Trunc) 1171 return false; 1172 1173 // Get the source and destination types of the truncate. 1174 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1175 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1176 1177 // If the truncate is free for the given types, return false. Replacing a 1178 // free truncate with an induction variable would add an induction variable 1179 // update instruction to each iteration of the loop. We exclude from this 1180 // check the primary induction variable since it will need an update 1181 // instruction regardless. 1182 Value *Op = Trunc->getOperand(0); 1183 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1184 return false; 1185 1186 // If the truncated value is not an induction variable, return false. 1187 return Legal->isInductionPhi(Op); 1188 } 1189 1190 /// Collects the instructions to scalarize for each predicated instruction in 1191 /// the loop. 1192 void collectInstsToScalarize(unsigned VF); 1193 1194 /// Collect Uniform and Scalar values for the given \p VF. 1195 /// The sets depend on CM decision for Load/Store instructions 1196 /// that may be vectorized as interleave, gather-scatter or scalarized. 1197 void collectUniformsAndScalars(unsigned VF) { 1198 // Do the analysis once. 1199 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1200 return; 1201 setCostBasedWideningDecision(VF); 1202 collectLoopUniforms(VF); 1203 collectLoopScalars(VF); 1204 } 1205 1206 /// Returns true if the target machine supports masked store operation 1207 /// for the given \p DataType and kind of access to \p Ptr. 1208 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1209 return Legal->isConsecutivePtr(Ptr) && 1210 TTI.isLegalMaskedStore(DataType, Alignment); 1211 } 1212 1213 /// Returns true if the target machine supports masked load operation 1214 /// for the given \p DataType and kind of access to \p Ptr. 1215 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1216 return Legal->isConsecutivePtr(Ptr) && 1217 TTI.isLegalMaskedLoad(DataType, Alignment); 1218 } 1219 1220 /// Returns true if the target machine supports masked scatter operation 1221 /// for the given \p DataType. 1222 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1223 return TTI.isLegalMaskedScatter(DataType, Alignment); 1224 } 1225 1226 /// Returns true if the target machine supports masked gather operation 1227 /// for the given \p DataType. 1228 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1229 return TTI.isLegalMaskedGather(DataType, Alignment); 1230 } 1231 1232 /// Returns true if the target machine can represent \p V as a masked gather 1233 /// or scatter operation. 1234 bool isLegalGatherOrScatter(Value *V) { 1235 bool LI = isa<LoadInst>(V); 1236 bool SI = isa<StoreInst>(V); 1237 if (!LI && !SI) 1238 return false; 1239 auto *Ty = getMemInstValueType(V); 1240 Align Align = getLoadStoreAlignment(V); 1241 return (LI && isLegalMaskedGather(Ty, Align)) || 1242 (SI && isLegalMaskedScatter(Ty, Align)); 1243 } 1244 1245 /// Returns true if \p I is an instruction that will be scalarized with 1246 /// predication. Such instructions include conditional stores and 1247 /// instructions that may divide by zero. 1248 /// If a non-zero VF has been calculated, we check if I will be scalarized 1249 /// predication for that VF. 1250 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1251 1252 // Returns true if \p I is an instruction that will be predicated either 1253 // through scalar predication or masked load/store or masked gather/scatter. 1254 // Superset of instructions that return true for isScalarWithPredication. 1255 bool isPredicatedInst(Instruction *I) { 1256 if (!blockNeedsPredication(I->getParent())) 1257 return false; 1258 // Loads and stores that need some form of masked operation are predicated 1259 // instructions. 1260 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1261 return Legal->isMaskRequired(I); 1262 return isScalarWithPredication(I); 1263 } 1264 1265 /// Returns true if \p I is a memory instruction with consecutive memory 1266 /// access that can be widened. 1267 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1268 1269 /// Returns true if \p I is a memory instruction in an interleaved-group 1270 /// of memory accesses that can be vectorized with wide vector loads/stores 1271 /// and shuffles. 1272 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1273 1274 /// Check if \p Instr belongs to any interleaved access group. 1275 bool isAccessInterleaved(Instruction *Instr) { 1276 return InterleaveInfo.isInterleaved(Instr); 1277 } 1278 1279 /// Get the interleaved access group that \p Instr belongs to. 1280 const InterleaveGroup<Instruction> * 1281 getInterleavedAccessGroup(Instruction *Instr) { 1282 return InterleaveInfo.getInterleaveGroup(Instr); 1283 } 1284 1285 /// Returns true if an interleaved group requires a scalar iteration 1286 /// to handle accesses with gaps, and there is nothing preventing us from 1287 /// creating a scalar epilogue. 1288 bool requiresScalarEpilogue() const { 1289 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1290 } 1291 1292 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1293 /// loop hint annotation. 1294 bool isScalarEpilogueAllowed() const { 1295 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1296 } 1297 1298 /// Returns true if all loop blocks should be masked to fold tail loop. 1299 bool foldTailByMasking() const { return FoldTailByMasking; } 1300 1301 bool blockNeedsPredication(BasicBlock *BB) { 1302 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1303 } 1304 1305 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1306 /// with factor VF. Return the cost of the instruction, including 1307 /// scalarization overhead if it's needed. 1308 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1309 1310 /// Estimate cost of a call instruction CI if it were vectorized with factor 1311 /// VF. Return the cost of the instruction, including scalarization overhead 1312 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1313 /// scalarized - 1314 /// i.e. either vector version isn't available, or is too expensive. 1315 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1316 1317 /// Invalidates decisions already taken by the cost model. 1318 void invalidateCostModelingDecisions() { 1319 WideningDecisions.clear(); 1320 Uniforms.clear(); 1321 Scalars.clear(); 1322 } 1323 1324 private: 1325 unsigned NumPredStores = 0; 1326 1327 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1328 /// than zero. One is returned if vectorization should best be avoided due 1329 /// to cost. 1330 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1331 1332 /// The vectorization cost is a combination of the cost itself and a boolean 1333 /// indicating whether any of the contributing operations will actually 1334 /// operate on 1335 /// vector values after type legalization in the backend. If this latter value 1336 /// is 1337 /// false, then all operations will be scalarized (i.e. no vectorization has 1338 /// actually taken place). 1339 using VectorizationCostTy = std::pair<unsigned, bool>; 1340 1341 /// Returns the expected execution cost. The unit of the cost does 1342 /// not matter because we use the 'cost' units to compare different 1343 /// vector widths. The cost that is returned is *not* normalized by 1344 /// the factor width. 1345 VectorizationCostTy expectedCost(unsigned VF); 1346 1347 /// Returns the execution time cost of an instruction for a given vector 1348 /// width. Vector width of one means scalar. 1349 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1350 1351 /// The cost-computation logic from getInstructionCost which provides 1352 /// the vector type as an output parameter. 1353 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1354 1355 /// Calculate vectorization cost of memory instruction \p I. 1356 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1357 1358 /// The cost computation for scalarized memory instruction. 1359 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1360 1361 /// The cost computation for interleaving group of memory instructions. 1362 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1363 1364 /// The cost computation for Gather/Scatter instruction. 1365 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1366 1367 /// The cost computation for widening instruction \p I with consecutive 1368 /// memory access. 1369 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1370 1371 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1372 /// Load: scalar load + broadcast. 1373 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1374 /// element) 1375 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1376 1377 /// Estimate the overhead of scalarizing an instruction. This is a 1378 /// convenience wrapper for the type-based getScalarizationOverhead API. 1379 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1380 1381 /// Returns whether the instruction is a load or store and will be a emitted 1382 /// as a vector operation. 1383 bool isConsecutiveLoadOrStore(Instruction *I); 1384 1385 /// Returns true if an artificially high cost for emulated masked memrefs 1386 /// should be used. 1387 bool useEmulatedMaskMemRefHack(Instruction *I); 1388 1389 /// Map of scalar integer values to the smallest bitwidth they can be legally 1390 /// represented as. The vector equivalents of these values should be truncated 1391 /// to this type. 1392 MapVector<Instruction *, uint64_t> MinBWs; 1393 1394 /// A type representing the costs for instructions if they were to be 1395 /// scalarized rather than vectorized. The entries are Instruction-Cost 1396 /// pairs. 1397 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1398 1399 /// A set containing all BasicBlocks that are known to present after 1400 /// vectorization as a predicated block. 1401 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1402 1403 /// Records whether it is allowed to have the original scalar loop execute at 1404 /// least once. This may be needed as a fallback loop in case runtime 1405 /// aliasing/dependence checks fail, or to handle the tail/remainder 1406 /// iterations when the trip count is unknown or doesn't divide by the VF, 1407 /// or as a peel-loop to handle gaps in interleave-groups. 1408 /// Under optsize and when the trip count is very small we don't allow any 1409 /// iterations to execute in the scalar loop. 1410 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1411 1412 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1413 bool FoldTailByMasking = false; 1414 1415 /// A map holding scalar costs for different vectorization factors. The 1416 /// presence of a cost for an instruction in the mapping indicates that the 1417 /// instruction will be scalarized when vectorizing with the associated 1418 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1419 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1420 1421 /// Holds the instructions known to be uniform after vectorization. 1422 /// The data is collected per VF. 1423 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1424 1425 /// Holds the instructions known to be scalar after vectorization. 1426 /// The data is collected per VF. 1427 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1428 1429 /// Holds the instructions (address computations) that are forced to be 1430 /// scalarized. 1431 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1432 1433 /// Returns the expected difference in cost from scalarizing the expression 1434 /// feeding a predicated instruction \p PredInst. The instructions to 1435 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1436 /// non-negative return value implies the expression will be scalarized. 1437 /// Currently, only single-use chains are considered for scalarization. 1438 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1439 unsigned VF); 1440 1441 /// Collect the instructions that are uniform after vectorization. An 1442 /// instruction is uniform if we represent it with a single scalar value in 1443 /// the vectorized loop corresponding to each vector iteration. Examples of 1444 /// uniform instructions include pointer operands of consecutive or 1445 /// interleaved memory accesses. Note that although uniformity implies an 1446 /// instruction will be scalar, the reverse is not true. In general, a 1447 /// scalarized instruction will be represented by VF scalar values in the 1448 /// vectorized loop, each corresponding to an iteration of the original 1449 /// scalar loop. 1450 void collectLoopUniforms(unsigned VF); 1451 1452 /// Collect the instructions that are scalar after vectorization. An 1453 /// instruction is scalar if it is known to be uniform or will be scalarized 1454 /// during vectorization. Non-uniform scalarized instructions will be 1455 /// represented by VF values in the vectorized loop, each corresponding to an 1456 /// iteration of the original scalar loop. 1457 void collectLoopScalars(unsigned VF); 1458 1459 /// Keeps cost model vectorization decision and cost for instructions. 1460 /// Right now it is used for memory instructions only. 1461 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1462 std::pair<InstWidening, unsigned>>; 1463 1464 DecisionList WideningDecisions; 1465 1466 /// Returns true if \p V is expected to be vectorized and it needs to be 1467 /// extracted. 1468 bool needsExtract(Value *V, unsigned VF) const { 1469 Instruction *I = dyn_cast<Instruction>(V); 1470 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1471 return false; 1472 1473 // Assume we can vectorize V (and hence we need extraction) if the 1474 // scalars are not computed yet. This can happen, because it is called 1475 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1476 // the scalars are collected. That should be a safe assumption in most 1477 // cases, because we check if the operands have vectorizable types 1478 // beforehand in LoopVectorizationLegality. 1479 return Scalars.find(VF) == Scalars.end() || 1480 !isScalarAfterVectorization(I, VF); 1481 }; 1482 1483 /// Returns a range containing only operands needing to be extracted. 1484 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1485 unsigned VF) { 1486 return SmallVector<Value *, 4>(make_filter_range( 1487 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1488 } 1489 1490 public: 1491 /// The loop that we evaluate. 1492 Loop *TheLoop; 1493 1494 /// Predicated scalar evolution analysis. 1495 PredicatedScalarEvolution &PSE; 1496 1497 /// Loop Info analysis. 1498 LoopInfo *LI; 1499 1500 /// Vectorization legality. 1501 LoopVectorizationLegality *Legal; 1502 1503 /// Vector target information. 1504 const TargetTransformInfo &TTI; 1505 1506 /// Target Library Info. 1507 const TargetLibraryInfo *TLI; 1508 1509 /// Demanded bits analysis. 1510 DemandedBits *DB; 1511 1512 /// Assumption cache. 1513 AssumptionCache *AC; 1514 1515 /// Interface to emit optimization remarks. 1516 OptimizationRemarkEmitter *ORE; 1517 1518 const Function *TheFunction; 1519 1520 /// Loop Vectorize Hint. 1521 const LoopVectorizeHints *Hints; 1522 1523 /// The interleave access information contains groups of interleaved accesses 1524 /// with the same stride and close to each other. 1525 InterleavedAccessInfo &InterleaveInfo; 1526 1527 /// Values to ignore in the cost model. 1528 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1529 1530 /// Values to ignore in the cost model when VF > 1. 1531 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1532 }; 1533 1534 } // end namespace llvm 1535 1536 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1537 // vectorization. The loop needs to be annotated with #pragma omp simd 1538 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1539 // vector length information is not provided, vectorization is not considered 1540 // explicit. Interleave hints are not allowed either. These limitations will be 1541 // relaxed in the future. 1542 // Please, note that we are currently forced to abuse the pragma 'clang 1543 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1544 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1545 // provides *explicit vectorization hints* (LV can bypass legal checks and 1546 // assume that vectorization is legal). However, both hints are implemented 1547 // using the same metadata (llvm.loop.vectorize, processed by 1548 // LoopVectorizeHints). This will be fixed in the future when the native IR 1549 // representation for pragma 'omp simd' is introduced. 1550 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1551 OptimizationRemarkEmitter *ORE) { 1552 assert(!OuterLp->empty() && "This is not an outer loop"); 1553 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1554 1555 // Only outer loops with an explicit vectorization hint are supported. 1556 // Unannotated outer loops are ignored. 1557 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1558 return false; 1559 1560 Function *Fn = OuterLp->getHeader()->getParent(); 1561 if (!Hints.allowVectorization(Fn, OuterLp, 1562 true /*VectorizeOnlyWhenForced*/)) { 1563 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1564 return false; 1565 } 1566 1567 if (Hints.getInterleave() > 1) { 1568 // TODO: Interleave support is future work. 1569 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1570 "outer loops.\n"); 1571 Hints.emitRemarkWithHints(); 1572 return false; 1573 } 1574 1575 return true; 1576 } 1577 1578 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1579 OptimizationRemarkEmitter *ORE, 1580 SmallVectorImpl<Loop *> &V) { 1581 // Collect inner loops and outer loops without irreducible control flow. For 1582 // now, only collect outer loops that have explicit vectorization hints. If we 1583 // are stress testing the VPlan H-CFG construction, we collect the outermost 1584 // loop of every loop nest. 1585 if (L.empty() || VPlanBuildStressTest || 1586 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1587 LoopBlocksRPO RPOT(&L); 1588 RPOT.perform(LI); 1589 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1590 V.push_back(&L); 1591 // TODO: Collect inner loops inside marked outer loops in case 1592 // vectorization fails for the outer loop. Do not invoke 1593 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1594 // already known to be reducible. We can use an inherited attribute for 1595 // that. 1596 return; 1597 } 1598 } 1599 for (Loop *InnerL : L) 1600 collectSupportedLoops(*InnerL, LI, ORE, V); 1601 } 1602 1603 namespace { 1604 1605 /// The LoopVectorize Pass. 1606 struct LoopVectorize : public FunctionPass { 1607 /// Pass identification, replacement for typeid 1608 static char ID; 1609 1610 LoopVectorizePass Impl; 1611 1612 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1613 bool VectorizeOnlyWhenForced = false) 1614 : FunctionPass(ID), 1615 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1616 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1617 } 1618 1619 bool runOnFunction(Function &F) override { 1620 if (skipFunction(F)) 1621 return false; 1622 1623 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1624 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1625 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1626 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1627 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1628 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1629 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1630 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1631 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1632 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1633 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1634 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1635 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1636 1637 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1638 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1639 1640 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1641 GetLAA, *ORE, PSI).MadeAnyChange; 1642 } 1643 1644 void getAnalysisUsage(AnalysisUsage &AU) const override { 1645 AU.addRequired<AssumptionCacheTracker>(); 1646 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1647 AU.addRequired<DominatorTreeWrapperPass>(); 1648 AU.addRequired<LoopInfoWrapperPass>(); 1649 AU.addRequired<ScalarEvolutionWrapperPass>(); 1650 AU.addRequired<TargetTransformInfoWrapperPass>(); 1651 AU.addRequired<AAResultsWrapperPass>(); 1652 AU.addRequired<LoopAccessLegacyAnalysis>(); 1653 AU.addRequired<DemandedBitsWrapperPass>(); 1654 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1655 AU.addRequired<InjectTLIMappingsLegacy>(); 1656 1657 // We currently do not preserve loopinfo/dominator analyses with outer loop 1658 // vectorization. Until this is addressed, mark these analyses as preserved 1659 // only for non-VPlan-native path. 1660 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1661 if (!EnableVPlanNativePath) { 1662 AU.addPreserved<LoopInfoWrapperPass>(); 1663 AU.addPreserved<DominatorTreeWrapperPass>(); 1664 } 1665 1666 AU.addPreserved<BasicAAWrapperPass>(); 1667 AU.addPreserved<GlobalsAAWrapperPass>(); 1668 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1669 } 1670 }; 1671 1672 } // end anonymous namespace 1673 1674 //===----------------------------------------------------------------------===// 1675 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1676 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1677 //===----------------------------------------------------------------------===// 1678 1679 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1680 // We need to place the broadcast of invariant variables outside the loop, 1681 // but only if it's proven safe to do so. Else, broadcast will be inside 1682 // vector loop body. 1683 Instruction *Instr = dyn_cast<Instruction>(V); 1684 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1685 (!Instr || 1686 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1687 // Place the code for broadcasting invariant variables in the new preheader. 1688 IRBuilder<>::InsertPointGuard Guard(Builder); 1689 if (SafeToHoist) 1690 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1691 1692 // Broadcast the scalar into all locations in the vector. 1693 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1694 1695 return Shuf; 1696 } 1697 1698 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1699 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1700 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1701 "Expected either an induction phi-node or a truncate of it!"); 1702 Value *Start = II.getStartValue(); 1703 1704 // Construct the initial value of the vector IV in the vector loop preheader 1705 auto CurrIP = Builder.saveIP(); 1706 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1707 if (isa<TruncInst>(EntryVal)) { 1708 assert(Start->getType()->isIntegerTy() && 1709 "Truncation requires an integer type"); 1710 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1711 Step = Builder.CreateTrunc(Step, TruncType); 1712 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1713 } 1714 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1715 Value *SteppedStart = 1716 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1717 1718 // We create vector phi nodes for both integer and floating-point induction 1719 // variables. Here, we determine the kind of arithmetic we will perform. 1720 Instruction::BinaryOps AddOp; 1721 Instruction::BinaryOps MulOp; 1722 if (Step->getType()->isIntegerTy()) { 1723 AddOp = Instruction::Add; 1724 MulOp = Instruction::Mul; 1725 } else { 1726 AddOp = II.getInductionOpcode(); 1727 MulOp = Instruction::FMul; 1728 } 1729 1730 // Multiply the vectorization factor by the step using integer or 1731 // floating-point arithmetic as appropriate. 1732 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1733 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1734 1735 // Create a vector splat to use in the induction update. 1736 // 1737 // FIXME: If the step is non-constant, we create the vector splat with 1738 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1739 // handle a constant vector splat. 1740 Value *SplatVF = 1741 isa<Constant>(Mul) 1742 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1743 : Builder.CreateVectorSplat(VF, Mul); 1744 Builder.restoreIP(CurrIP); 1745 1746 // We may need to add the step a number of times, depending on the unroll 1747 // factor. The last of those goes into the PHI. 1748 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1749 &*LoopVectorBody->getFirstInsertionPt()); 1750 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1751 Instruction *LastInduction = VecInd; 1752 for (unsigned Part = 0; Part < UF; ++Part) { 1753 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1754 1755 if (isa<TruncInst>(EntryVal)) 1756 addMetadata(LastInduction, EntryVal); 1757 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1758 1759 LastInduction = cast<Instruction>(addFastMathFlag( 1760 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1761 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1762 } 1763 1764 // Move the last step to the end of the latch block. This ensures consistent 1765 // placement of all induction updates. 1766 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1767 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1768 auto *ICmp = cast<Instruction>(Br->getCondition()); 1769 LastInduction->moveBefore(ICmp); 1770 LastInduction->setName("vec.ind.next"); 1771 1772 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1773 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1774 } 1775 1776 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1777 return Cost->isScalarAfterVectorization(I, VF) || 1778 Cost->isProfitableToScalarize(I, VF); 1779 } 1780 1781 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1782 if (shouldScalarizeInstruction(IV)) 1783 return true; 1784 auto isScalarInst = [&](User *U) -> bool { 1785 auto *I = cast<Instruction>(U); 1786 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1787 }; 1788 return llvm::any_of(IV->users(), isScalarInst); 1789 } 1790 1791 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1792 const InductionDescriptor &ID, const Instruction *EntryVal, 1793 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1794 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1795 "Expected either an induction phi-node or a truncate of it!"); 1796 1797 // This induction variable is not the phi from the original loop but the 1798 // newly-created IV based on the proof that casted Phi is equal to the 1799 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1800 // re-uses the same InductionDescriptor that original IV uses but we don't 1801 // have to do any recording in this case - that is done when original IV is 1802 // processed. 1803 if (isa<TruncInst>(EntryVal)) 1804 return; 1805 1806 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1807 if (Casts.empty()) 1808 return; 1809 // Only the first Cast instruction in the Casts vector is of interest. 1810 // The rest of the Casts (if exist) have no uses outside the 1811 // induction update chain itself. 1812 Instruction *CastInst = *Casts.begin(); 1813 if (Lane < UINT_MAX) 1814 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1815 else 1816 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1817 } 1818 1819 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1820 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1821 "Primary induction variable must have an integer type"); 1822 1823 auto II = Legal->getInductionVars().find(IV); 1824 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1825 1826 auto ID = II->second; 1827 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1828 1829 // The value from the original loop to which we are mapping the new induction 1830 // variable. 1831 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1832 1833 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1834 1835 // Generate code for the induction step. Note that induction steps are 1836 // required to be loop-invariant 1837 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1838 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1839 "Induction step should be loop invariant"); 1840 if (PSE.getSE()->isSCEVable(IV->getType())) { 1841 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1842 return Exp.expandCodeFor(Step, Step->getType(), 1843 LoopVectorPreHeader->getTerminator()); 1844 } 1845 return cast<SCEVUnknown>(Step)->getValue(); 1846 }; 1847 1848 // The scalar value to broadcast. This is derived from the canonical 1849 // induction variable. If a truncation type is given, truncate the canonical 1850 // induction variable and step. Otherwise, derive these values from the 1851 // induction descriptor. 1852 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1853 Value *ScalarIV = Induction; 1854 if (IV != OldInduction) { 1855 ScalarIV = IV->getType()->isIntegerTy() 1856 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1857 : Builder.CreateCast(Instruction::SIToFP, Induction, 1858 IV->getType()); 1859 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1860 ScalarIV->setName("offset.idx"); 1861 } 1862 if (Trunc) { 1863 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1864 assert(Step->getType()->isIntegerTy() && 1865 "Truncation requires an integer step"); 1866 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1867 Step = Builder.CreateTrunc(Step, TruncType); 1868 } 1869 return ScalarIV; 1870 }; 1871 1872 // Create the vector values from the scalar IV, in the absence of creating a 1873 // vector IV. 1874 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1875 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1876 for (unsigned Part = 0; Part < UF; ++Part) { 1877 Value *EntryPart = 1878 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1879 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1880 if (Trunc) 1881 addMetadata(EntryPart, Trunc); 1882 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1883 } 1884 }; 1885 1886 // Now do the actual transformations, and start with creating the step value. 1887 Value *Step = CreateStepValue(ID.getStep()); 1888 if (VF <= 1) { 1889 Value *ScalarIV = CreateScalarIV(Step); 1890 CreateSplatIV(ScalarIV, Step); 1891 return; 1892 } 1893 1894 // Determine if we want a scalar version of the induction variable. This is 1895 // true if the induction variable itself is not widened, or if it has at 1896 // least one user in the loop that is not widened. 1897 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1898 if (!NeedsScalarIV) { 1899 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1900 return; 1901 } 1902 1903 // Try to create a new independent vector induction variable. If we can't 1904 // create the phi node, we will splat the scalar induction variable in each 1905 // loop iteration. 1906 if (!shouldScalarizeInstruction(EntryVal)) { 1907 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1908 Value *ScalarIV = CreateScalarIV(Step); 1909 // Create scalar steps that can be used by instructions we will later 1910 // scalarize. Note that the addition of the scalar steps will not increase 1911 // the number of instructions in the loop in the common case prior to 1912 // InstCombine. We will be trading one vector extract for each scalar step. 1913 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1914 return; 1915 } 1916 1917 // All IV users are scalar instructions, so only emit a scalar IV, not a 1918 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 1919 // predicate used by the masked loads/stores. 1920 Value *ScalarIV = CreateScalarIV(Step); 1921 if (!Cost->isScalarEpilogueAllowed()) 1922 CreateSplatIV(ScalarIV, Step); 1923 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1924 } 1925 1926 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1927 Instruction::BinaryOps BinOp) { 1928 // Create and check the types. 1929 auto *ValVTy = cast<VectorType>(Val->getType()); 1930 int VLen = ValVTy->getNumElements(); 1931 1932 Type *STy = Val->getType()->getScalarType(); 1933 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1934 "Induction Step must be an integer or FP"); 1935 assert(Step->getType() == STy && "Step has wrong type"); 1936 1937 SmallVector<Constant *, 8> Indices; 1938 1939 if (STy->isIntegerTy()) { 1940 // Create a vector of consecutive numbers from zero to VF. 1941 for (int i = 0; i < VLen; ++i) 1942 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1943 1944 // Add the consecutive indices to the vector value. 1945 Constant *Cv = ConstantVector::get(Indices); 1946 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1947 Step = Builder.CreateVectorSplat(VLen, Step); 1948 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1949 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1950 // which can be found from the original scalar operations. 1951 Step = Builder.CreateMul(Cv, Step); 1952 return Builder.CreateAdd(Val, Step, "induction"); 1953 } 1954 1955 // Floating point induction. 1956 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1957 "Binary Opcode should be specified for FP induction"); 1958 // Create a vector of consecutive numbers from zero to VF. 1959 for (int i = 0; i < VLen; ++i) 1960 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1961 1962 // Add the consecutive indices to the vector value. 1963 Constant *Cv = ConstantVector::get(Indices); 1964 1965 Step = Builder.CreateVectorSplat(VLen, Step); 1966 1967 // Floating point operations had to be 'fast' to enable the induction. 1968 FastMathFlags Flags; 1969 Flags.setFast(); 1970 1971 Value *MulOp = Builder.CreateFMul(Cv, Step); 1972 if (isa<Instruction>(MulOp)) 1973 // Have to check, MulOp may be a constant 1974 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1975 1976 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1977 if (isa<Instruction>(BOp)) 1978 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1979 return BOp; 1980 } 1981 1982 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1983 Instruction *EntryVal, 1984 const InductionDescriptor &ID) { 1985 // We shouldn't have to build scalar steps if we aren't vectorizing. 1986 assert(VF > 1 && "VF should be greater than one"); 1987 1988 // Get the value type and ensure it and the step have the same integer type. 1989 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1990 assert(ScalarIVTy == Step->getType() && 1991 "Val and Step should have the same type"); 1992 1993 // We build scalar steps for both integer and floating-point induction 1994 // variables. Here, we determine the kind of arithmetic we will perform. 1995 Instruction::BinaryOps AddOp; 1996 Instruction::BinaryOps MulOp; 1997 if (ScalarIVTy->isIntegerTy()) { 1998 AddOp = Instruction::Add; 1999 MulOp = Instruction::Mul; 2000 } else { 2001 AddOp = ID.getInductionOpcode(); 2002 MulOp = Instruction::FMul; 2003 } 2004 2005 // Determine the number of scalars we need to generate for each unroll 2006 // iteration. If EntryVal is uniform, we only need to generate the first 2007 // lane. Otherwise, we generate all VF values. 2008 unsigned Lanes = 2009 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2010 : VF; 2011 // Compute the scalar steps and save the results in VectorLoopValueMap. 2012 for (unsigned Part = 0; Part < UF; ++Part) { 2013 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2014 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2015 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2016 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2017 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2018 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2019 } 2020 } 2021 } 2022 2023 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2024 assert(V != Induction && "The new induction variable should not be used."); 2025 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2026 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2027 2028 // If we have a stride that is replaced by one, do it here. Defer this for 2029 // the VPlan-native path until we start running Legal checks in that path. 2030 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2031 V = ConstantInt::get(V->getType(), 1); 2032 2033 // If we have a vector mapped to this value, return it. 2034 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2035 return VectorLoopValueMap.getVectorValue(V, Part); 2036 2037 // If the value has not been vectorized, check if it has been scalarized 2038 // instead. If it has been scalarized, and we actually need the value in 2039 // vector form, we will construct the vector values on demand. 2040 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2041 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2042 2043 // If we've scalarized a value, that value should be an instruction. 2044 auto *I = cast<Instruction>(V); 2045 2046 // If we aren't vectorizing, we can just copy the scalar map values over to 2047 // the vector map. 2048 if (VF == 1) { 2049 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2050 return ScalarValue; 2051 } 2052 2053 // Get the last scalar instruction we generated for V and Part. If the value 2054 // is known to be uniform after vectorization, this corresponds to lane zero 2055 // of the Part unroll iteration. Otherwise, the last instruction is the one 2056 // we created for the last vector lane of the Part unroll iteration. 2057 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2058 auto *LastInst = cast<Instruction>( 2059 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2060 2061 // Set the insert point after the last scalarized instruction. This ensures 2062 // the insertelement sequence will directly follow the scalar definitions. 2063 auto OldIP = Builder.saveIP(); 2064 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2065 Builder.SetInsertPoint(&*NewIP); 2066 2067 // However, if we are vectorizing, we need to construct the vector values. 2068 // If the value is known to be uniform after vectorization, we can just 2069 // broadcast the scalar value corresponding to lane zero for each unroll 2070 // iteration. Otherwise, we construct the vector values using insertelement 2071 // instructions. Since the resulting vectors are stored in 2072 // VectorLoopValueMap, we will only generate the insertelements once. 2073 Value *VectorValue = nullptr; 2074 if (Cost->isUniformAfterVectorization(I, VF)) { 2075 VectorValue = getBroadcastInstrs(ScalarValue); 2076 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2077 } else { 2078 // Initialize packing with insertelements to start from undef. 2079 Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF)); 2080 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2081 for (unsigned Lane = 0; Lane < VF; ++Lane) 2082 packScalarIntoVectorValue(V, {Part, Lane}); 2083 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2084 } 2085 Builder.restoreIP(OldIP); 2086 return VectorValue; 2087 } 2088 2089 // If this scalar is unknown, assume that it is a constant or that it is 2090 // loop invariant. Broadcast V and save the value for future uses. 2091 Value *B = getBroadcastInstrs(V); 2092 VectorLoopValueMap.setVectorValue(V, Part, B); 2093 return B; 2094 } 2095 2096 Value * 2097 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2098 const VPIteration &Instance) { 2099 // If the value is not an instruction contained in the loop, it should 2100 // already be scalar. 2101 if (OrigLoop->isLoopInvariant(V)) 2102 return V; 2103 2104 assert(Instance.Lane > 0 2105 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2106 : true && "Uniform values only have lane zero"); 2107 2108 // If the value from the original loop has not been vectorized, it is 2109 // represented by UF x VF scalar values in the new loop. Return the requested 2110 // scalar value. 2111 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2112 return VectorLoopValueMap.getScalarValue(V, Instance); 2113 2114 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2115 // for the given unroll part. If this entry is not a vector type (i.e., the 2116 // vectorization factor is one), there is no need to generate an 2117 // extractelement instruction. 2118 auto *U = getOrCreateVectorValue(V, Instance.Part); 2119 if (!U->getType()->isVectorTy()) { 2120 assert(VF == 1 && "Value not scalarized has non-vector type"); 2121 return U; 2122 } 2123 2124 // Otherwise, the value from the original loop has been vectorized and is 2125 // represented by UF vector values. Extract and return the requested scalar 2126 // value from the appropriate vector lane. 2127 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2128 } 2129 2130 void InnerLoopVectorizer::packScalarIntoVectorValue( 2131 Value *V, const VPIteration &Instance) { 2132 assert(V != Induction && "The new induction variable should not be used."); 2133 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2134 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2135 2136 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2137 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2138 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2139 Builder.getInt32(Instance.Lane)); 2140 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2141 } 2142 2143 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2144 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2145 SmallVector<int, 8> ShuffleMask; 2146 for (unsigned i = 0; i < VF; ++i) 2147 ShuffleMask.push_back(VF - i - 1); 2148 2149 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2150 ShuffleMask, "reverse"); 2151 } 2152 2153 // Return whether we allow using masked interleave-groups (for dealing with 2154 // strided loads/stores that reside in predicated blocks, or for dealing 2155 // with gaps). 2156 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2157 // If an override option has been passed in for interleaved accesses, use it. 2158 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2159 return EnableMaskedInterleavedMemAccesses; 2160 2161 return TTI.enableMaskedInterleavedAccessVectorization(); 2162 } 2163 2164 // Try to vectorize the interleave group that \p Instr belongs to. 2165 // 2166 // E.g. Translate following interleaved load group (factor = 3): 2167 // for (i = 0; i < N; i+=3) { 2168 // R = Pic[i]; // Member of index 0 2169 // G = Pic[i+1]; // Member of index 1 2170 // B = Pic[i+2]; // Member of index 2 2171 // ... // do something to R, G, B 2172 // } 2173 // To: 2174 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2175 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2176 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2177 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2178 // 2179 // Or translate following interleaved store group (factor = 3): 2180 // for (i = 0; i < N; i+=3) { 2181 // ... do something to R, G, B 2182 // Pic[i] = R; // Member of index 0 2183 // Pic[i+1] = G; // Member of index 1 2184 // Pic[i+2] = B; // Member of index 2 2185 // } 2186 // To: 2187 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2188 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2189 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2190 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2191 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2192 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2193 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2194 VPValue *Addr, VPValue *BlockInMask) { 2195 Instruction *Instr = Group->getInsertPos(); 2196 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2197 2198 // Prepare for the vector type of the interleaved load/store. 2199 Type *ScalarTy = getMemInstValueType(Instr); 2200 unsigned InterleaveFactor = Group->getFactor(); 2201 auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF); 2202 2203 // Prepare for the new pointers. 2204 SmallVector<Value *, 2> AddrParts; 2205 unsigned Index = Group->getIndex(Instr); 2206 2207 // TODO: extend the masked interleaved-group support to reversed access. 2208 assert((!BlockInMask || !Group->isReverse()) && 2209 "Reversed masked interleave-group not supported."); 2210 2211 // If the group is reverse, adjust the index to refer to the last vector lane 2212 // instead of the first. We adjust the index from the first vector lane, 2213 // rather than directly getting the pointer for lane VF - 1, because the 2214 // pointer operand of the interleaved access is supposed to be uniform. For 2215 // uniform instructions, we're only required to generate a value for the 2216 // first vector lane in each unroll iteration. 2217 if (Group->isReverse()) 2218 Index += (VF - 1) * Group->getFactor(); 2219 2220 for (unsigned Part = 0; Part < UF; Part++) { 2221 Value *AddrPart = State.get(Addr, {Part, 0}); 2222 setDebugLocFromInst(Builder, AddrPart); 2223 2224 // Notice current instruction could be any index. Need to adjust the address 2225 // to the member of index 0. 2226 // 2227 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2228 // b = A[i]; // Member of index 0 2229 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2230 // 2231 // E.g. A[i+1] = a; // Member of index 1 2232 // A[i] = b; // Member of index 0 2233 // A[i+2] = c; // Member of index 2 (Current instruction) 2234 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2235 2236 bool InBounds = false; 2237 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2238 InBounds = gep->isInBounds(); 2239 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2240 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2241 2242 // Cast to the vector pointer type. 2243 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2244 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2245 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2246 } 2247 2248 setDebugLocFromInst(Builder, Instr); 2249 Value *UndefVec = UndefValue::get(VecTy); 2250 2251 Value *MaskForGaps = nullptr; 2252 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2253 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2254 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2255 } 2256 2257 // Vectorize the interleaved load group. 2258 if (isa<LoadInst>(Instr)) { 2259 // For each unroll part, create a wide load for the group. 2260 SmallVector<Value *, 2> NewLoads; 2261 for (unsigned Part = 0; Part < UF; Part++) { 2262 Instruction *NewLoad; 2263 if (BlockInMask || MaskForGaps) { 2264 assert(useMaskedInterleavedAccesses(*TTI) && 2265 "masked interleaved groups are not allowed."); 2266 Value *GroupMask = MaskForGaps; 2267 if (BlockInMask) { 2268 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2269 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2270 Value *ShuffledMask = Builder.CreateShuffleVector( 2271 BlockInMaskPart, Undefs, 2272 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2273 GroupMask = MaskForGaps 2274 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2275 MaskForGaps) 2276 : ShuffledMask; 2277 } 2278 NewLoad = 2279 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2280 GroupMask, UndefVec, "wide.masked.vec"); 2281 } 2282 else 2283 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2284 Group->getAlign(), "wide.vec"); 2285 Group->addMetadata(NewLoad); 2286 NewLoads.push_back(NewLoad); 2287 } 2288 2289 // For each member in the group, shuffle out the appropriate data from the 2290 // wide loads. 2291 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2292 Instruction *Member = Group->getMember(I); 2293 2294 // Skip the gaps in the group. 2295 if (!Member) 2296 continue; 2297 2298 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2299 for (unsigned Part = 0; Part < UF; Part++) { 2300 Value *StridedVec = Builder.CreateShuffleVector( 2301 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2302 2303 // If this member has different type, cast the result type. 2304 if (Member->getType() != ScalarTy) { 2305 VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF); 2306 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2307 } 2308 2309 if (Group->isReverse()) 2310 StridedVec = reverseVector(StridedVec); 2311 2312 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2313 } 2314 } 2315 return; 2316 } 2317 2318 // The sub vector type for current instruction. 2319 auto *SubVT = FixedVectorType::get(ScalarTy, VF); 2320 2321 // Vectorize the interleaved store group. 2322 for (unsigned Part = 0; Part < UF; Part++) { 2323 // Collect the stored vector from each member. 2324 SmallVector<Value *, 4> StoredVecs; 2325 for (unsigned i = 0; i < InterleaveFactor; i++) { 2326 // Interleaved store group doesn't allow a gap, so each index has a member 2327 Instruction *Member = Group->getMember(i); 2328 assert(Member && "Fail to get a member from an interleaved store group"); 2329 2330 Value *StoredVec = getOrCreateVectorValue( 2331 cast<StoreInst>(Member)->getValueOperand(), Part); 2332 if (Group->isReverse()) 2333 StoredVec = reverseVector(StoredVec); 2334 2335 // If this member has different type, cast it to a unified type. 2336 2337 if (StoredVec->getType() != SubVT) 2338 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2339 2340 StoredVecs.push_back(StoredVec); 2341 } 2342 2343 // Concatenate all vectors into a wide vector. 2344 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2345 2346 // Interleave the elements in the wide vector. 2347 Value *IVec = Builder.CreateShuffleVector( 2348 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2349 "interleaved.vec"); 2350 2351 Instruction *NewStoreInstr; 2352 if (BlockInMask) { 2353 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2354 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2355 Value *ShuffledMask = Builder.CreateShuffleVector( 2356 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2357 "interleaved.mask"); 2358 NewStoreInstr = Builder.CreateMaskedStore( 2359 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2360 } 2361 else 2362 NewStoreInstr = 2363 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2364 2365 Group->addMetadata(NewStoreInstr); 2366 } 2367 } 2368 2369 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2370 VPTransformState &State, 2371 VPValue *Addr, 2372 VPValue *StoredValue, 2373 VPValue *BlockInMask) { 2374 // Attempt to issue a wide load. 2375 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2376 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2377 2378 assert((LI || SI) && "Invalid Load/Store instruction"); 2379 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2380 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2381 2382 LoopVectorizationCostModel::InstWidening Decision = 2383 Cost->getWideningDecision(Instr, VF); 2384 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2385 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2386 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2387 "CM decision is not to widen the memory instruction"); 2388 2389 Type *ScalarDataTy = getMemInstValueType(Instr); 2390 auto *DataTy = FixedVectorType::get(ScalarDataTy, VF); 2391 const Align Alignment = getLoadStoreAlignment(Instr); 2392 2393 // Determine if the pointer operand of the access is either consecutive or 2394 // reverse consecutive. 2395 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2396 bool ConsecutiveStride = 2397 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2398 bool CreateGatherScatter = 2399 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2400 2401 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2402 // gather/scatter. Otherwise Decision should have been to Scalarize. 2403 assert((ConsecutiveStride || CreateGatherScatter) && 2404 "The instruction should be scalarized"); 2405 (void)ConsecutiveStride; 2406 2407 VectorParts BlockInMaskParts(UF); 2408 bool isMaskRequired = BlockInMask; 2409 if (isMaskRequired) 2410 for (unsigned Part = 0; Part < UF; ++Part) 2411 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2412 2413 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2414 // Calculate the pointer for the specific unroll-part. 2415 GetElementPtrInst *PartPtr = nullptr; 2416 2417 bool InBounds = false; 2418 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2419 InBounds = gep->isInBounds(); 2420 2421 if (Reverse) { 2422 // If the address is consecutive but reversed, then the 2423 // wide store needs to start at the last vector element. 2424 PartPtr = cast<GetElementPtrInst>( 2425 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2426 PartPtr->setIsInBounds(InBounds); 2427 PartPtr = cast<GetElementPtrInst>( 2428 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2429 PartPtr->setIsInBounds(InBounds); 2430 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2431 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2432 } else { 2433 PartPtr = cast<GetElementPtrInst>( 2434 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2435 PartPtr->setIsInBounds(InBounds); 2436 } 2437 2438 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2439 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2440 }; 2441 2442 // Handle Stores: 2443 if (SI) { 2444 setDebugLocFromInst(Builder, SI); 2445 2446 for (unsigned Part = 0; Part < UF; ++Part) { 2447 Instruction *NewSI = nullptr; 2448 Value *StoredVal = State.get(StoredValue, Part); 2449 if (CreateGatherScatter) { 2450 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2451 Value *VectorGep = State.get(Addr, Part); 2452 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2453 MaskPart); 2454 } else { 2455 if (Reverse) { 2456 // If we store to reverse consecutive memory locations, then we need 2457 // to reverse the order of elements in the stored value. 2458 StoredVal = reverseVector(StoredVal); 2459 // We don't want to update the value in the map as it might be used in 2460 // another expression. So don't call resetVectorValue(StoredVal). 2461 } 2462 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2463 if (isMaskRequired) 2464 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2465 BlockInMaskParts[Part]); 2466 else 2467 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2468 } 2469 addMetadata(NewSI, SI); 2470 } 2471 return; 2472 } 2473 2474 // Handle loads. 2475 assert(LI && "Must have a load instruction"); 2476 setDebugLocFromInst(Builder, LI); 2477 for (unsigned Part = 0; Part < UF; ++Part) { 2478 Value *NewLI; 2479 if (CreateGatherScatter) { 2480 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2481 Value *VectorGep = State.get(Addr, Part); 2482 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2483 nullptr, "wide.masked.gather"); 2484 addMetadata(NewLI, LI); 2485 } else { 2486 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2487 if (isMaskRequired) 2488 NewLI = Builder.CreateMaskedLoad( 2489 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2490 "wide.masked.load"); 2491 else 2492 NewLI = 2493 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2494 2495 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2496 addMetadata(NewLI, LI); 2497 if (Reverse) 2498 NewLI = reverseVector(NewLI); 2499 } 2500 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2501 } 2502 } 2503 2504 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2505 const VPIteration &Instance, 2506 bool IfPredicateInstr, 2507 VPTransformState &State) { 2508 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2509 2510 setDebugLocFromInst(Builder, Instr); 2511 2512 // Does this instruction return a value ? 2513 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2514 2515 Instruction *Cloned = Instr->clone(); 2516 if (!IsVoidRetTy) 2517 Cloned->setName(Instr->getName() + ".cloned"); 2518 2519 // Replace the operands of the cloned instructions with their scalar 2520 // equivalents in the new loop. 2521 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2522 auto *NewOp = State.get(User.getOperand(op), Instance); 2523 Cloned->setOperand(op, NewOp); 2524 } 2525 addNewMetadata(Cloned, Instr); 2526 2527 // Place the cloned scalar in the new loop. 2528 Builder.Insert(Cloned); 2529 2530 // Add the cloned scalar to the scalar map entry. 2531 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2532 2533 // If we just cloned a new assumption, add it the assumption cache. 2534 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2535 if (II->getIntrinsicID() == Intrinsic::assume) 2536 AC->registerAssumption(II); 2537 2538 // End if-block. 2539 if (IfPredicateInstr) 2540 PredicatedInstructions.push_back(Cloned); 2541 } 2542 2543 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2544 Value *End, Value *Step, 2545 Instruction *DL) { 2546 BasicBlock *Header = L->getHeader(); 2547 BasicBlock *Latch = L->getLoopLatch(); 2548 // As we're just creating this loop, it's possible no latch exists 2549 // yet. If so, use the header as this will be a single block loop. 2550 if (!Latch) 2551 Latch = Header; 2552 2553 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2554 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2555 setDebugLocFromInst(Builder, OldInst); 2556 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2557 2558 Builder.SetInsertPoint(Latch->getTerminator()); 2559 setDebugLocFromInst(Builder, OldInst); 2560 2561 // Create i+1 and fill the PHINode. 2562 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2563 Induction->addIncoming(Start, L->getLoopPreheader()); 2564 Induction->addIncoming(Next, Latch); 2565 // Create the compare. 2566 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2567 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2568 2569 // Now we have two terminators. Remove the old one from the block. 2570 Latch->getTerminator()->eraseFromParent(); 2571 2572 return Induction; 2573 } 2574 2575 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2576 if (TripCount) 2577 return TripCount; 2578 2579 assert(L && "Create Trip Count for null loop."); 2580 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2581 // Find the loop boundaries. 2582 ScalarEvolution *SE = PSE.getSE(); 2583 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2584 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2585 "Invalid loop count"); 2586 2587 Type *IdxTy = Legal->getWidestInductionType(); 2588 assert(IdxTy && "No type for induction"); 2589 2590 // The exit count might have the type of i64 while the phi is i32. This can 2591 // happen if we have an induction variable that is sign extended before the 2592 // compare. The only way that we get a backedge taken count is that the 2593 // induction variable was signed and as such will not overflow. In such a case 2594 // truncation is legal. 2595 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2596 IdxTy->getPrimitiveSizeInBits()) 2597 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2598 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2599 2600 // Get the total trip count from the count by adding 1. 2601 const SCEV *ExitCount = SE->getAddExpr( 2602 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2603 2604 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2605 2606 // Expand the trip count and place the new instructions in the preheader. 2607 // Notice that the pre-header does not change, only the loop body. 2608 SCEVExpander Exp(*SE, DL, "induction"); 2609 2610 // Count holds the overall loop count (N). 2611 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2612 L->getLoopPreheader()->getTerminator()); 2613 2614 if (TripCount->getType()->isPointerTy()) 2615 TripCount = 2616 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2617 L->getLoopPreheader()->getTerminator()); 2618 2619 return TripCount; 2620 } 2621 2622 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2623 if (VectorTripCount) 2624 return VectorTripCount; 2625 2626 Value *TC = getOrCreateTripCount(L); 2627 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2628 2629 Type *Ty = TC->getType(); 2630 Constant *Step = ConstantInt::get(Ty, VF * UF); 2631 2632 // If the tail is to be folded by masking, round the number of iterations N 2633 // up to a multiple of Step instead of rounding down. This is done by first 2634 // adding Step-1 and then rounding down. Note that it's ok if this addition 2635 // overflows: the vector induction variable will eventually wrap to zero given 2636 // that it starts at zero and its Step is a power of two; the loop will then 2637 // exit, with the last early-exit vector comparison also producing all-true. 2638 if (Cost->foldTailByMasking()) { 2639 assert(isPowerOf2_32(VF * UF) && 2640 "VF*UF must be a power of 2 when folding tail by masking"); 2641 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2642 } 2643 2644 // Now we need to generate the expression for the part of the loop that the 2645 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2646 // iterations are not required for correctness, or N - Step, otherwise. Step 2647 // is equal to the vectorization factor (number of SIMD elements) times the 2648 // unroll factor (number of SIMD instructions). 2649 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2650 2651 // If there is a non-reversed interleaved group that may speculatively access 2652 // memory out-of-bounds, we need to ensure that there will be at least one 2653 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2654 // the trip count, we set the remainder to be equal to the step. If the step 2655 // does not evenly divide the trip count, no adjustment is necessary since 2656 // there will already be scalar iterations. Note that the minimum iterations 2657 // check ensures that N >= Step. 2658 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2659 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2660 R = Builder.CreateSelect(IsZero, Step, R); 2661 } 2662 2663 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2664 2665 return VectorTripCount; 2666 } 2667 2668 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2669 const DataLayout &DL) { 2670 // Verify that V is a vector type with same number of elements as DstVTy. 2671 unsigned VF = DstVTy->getNumElements(); 2672 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2673 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2674 Type *SrcElemTy = SrcVecTy->getElementType(); 2675 Type *DstElemTy = DstVTy->getElementType(); 2676 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2677 "Vector elements must have same size"); 2678 2679 // Do a direct cast if element types are castable. 2680 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2681 return Builder.CreateBitOrPointerCast(V, DstVTy); 2682 } 2683 // V cannot be directly casted to desired vector type. 2684 // May happen when V is a floating point vector but DstVTy is a vector of 2685 // pointers or vice-versa. Handle this using a two-step bitcast using an 2686 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2687 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2688 "Only one type should be a pointer type"); 2689 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2690 "Only one type should be a floating point type"); 2691 Type *IntTy = 2692 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2693 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2694 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2695 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2696 } 2697 2698 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2699 BasicBlock *Bypass) { 2700 Value *Count = getOrCreateTripCount(L); 2701 // Reuse existing vector loop preheader for TC checks. 2702 // Note that new preheader block is generated for vector loop. 2703 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2704 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2705 2706 // Generate code to check if the loop's trip count is less than VF * UF, or 2707 // equal to it in case a scalar epilogue is required; this implies that the 2708 // vector trip count is zero. This check also covers the case where adding one 2709 // to the backedge-taken count overflowed leading to an incorrect trip count 2710 // of zero. In this case we will also jump to the scalar loop. 2711 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2712 : ICmpInst::ICMP_ULT; 2713 2714 // If tail is to be folded, vector loop takes care of all iterations. 2715 Value *CheckMinIters = Builder.getFalse(); 2716 if (!Cost->foldTailByMasking()) 2717 CheckMinIters = Builder.CreateICmp( 2718 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2719 "min.iters.check"); 2720 2721 // Create new preheader for vector loop. 2722 LoopVectorPreHeader = 2723 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2724 "vector.ph"); 2725 2726 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2727 DT->getNode(Bypass)->getIDom()) && 2728 "TC check is expected to dominate Bypass"); 2729 2730 // Update dominator for Bypass & LoopExit. 2731 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2732 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2733 2734 ReplaceInstWithInst( 2735 TCCheckBlock->getTerminator(), 2736 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2737 LoopBypassBlocks.push_back(TCCheckBlock); 2738 } 2739 2740 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2741 // Reuse existing vector loop preheader for SCEV checks. 2742 // Note that new preheader block is generated for vector loop. 2743 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2744 2745 // Generate the code to check that the SCEV assumptions that we made. 2746 // We want the new basic block to start at the first instruction in a 2747 // sequence of instructions that form a check. 2748 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2749 "scev.check"); 2750 Value *SCEVCheck = Exp.expandCodeForPredicate( 2751 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2752 2753 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2754 if (C->isZero()) 2755 return; 2756 2757 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2758 "Cannot SCEV check stride or overflow when optimizing for size"); 2759 2760 SCEVCheckBlock->setName("vector.scevcheck"); 2761 // Create new preheader for vector loop. 2762 LoopVectorPreHeader = 2763 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2764 nullptr, "vector.ph"); 2765 2766 // Update dominator only if this is first RT check. 2767 if (LoopBypassBlocks.empty()) { 2768 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2769 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2770 } 2771 2772 ReplaceInstWithInst( 2773 SCEVCheckBlock->getTerminator(), 2774 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2775 LoopBypassBlocks.push_back(SCEVCheckBlock); 2776 AddedSafetyChecks = true; 2777 } 2778 2779 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2780 // VPlan-native path does not do any analysis for runtime checks currently. 2781 if (EnableVPlanNativePath) 2782 return; 2783 2784 // Reuse existing vector loop preheader for runtime memory checks. 2785 // Note that new preheader block is generated for vector loop. 2786 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2787 2788 // Generate the code that checks in runtime if arrays overlap. We put the 2789 // checks into a separate block to make the more common case of few elements 2790 // faster. 2791 auto *LAI = Legal->getLAI(); 2792 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2793 if (!RtPtrChecking.Need) 2794 return; 2795 Instruction *FirstCheckInst; 2796 Instruction *MemRuntimeCheck; 2797 std::tie(FirstCheckInst, MemRuntimeCheck) = 2798 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2799 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2800 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2801 "claimed checks are required"); 2802 2803 if (MemCheckBlock->getParent()->hasOptSize()) { 2804 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2805 "Cannot emit memory checks when optimizing for size, unless forced " 2806 "to vectorize."); 2807 ORE->emit([&]() { 2808 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2809 L->getStartLoc(), L->getHeader()) 2810 << "Code-size may be reduced by not forcing " 2811 "vectorization, or by source-code modifications " 2812 "eliminating the need for runtime checks " 2813 "(e.g., adding 'restrict')."; 2814 }); 2815 } 2816 2817 MemCheckBlock->setName("vector.memcheck"); 2818 // Create new preheader for vector loop. 2819 LoopVectorPreHeader = 2820 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2821 "vector.ph"); 2822 2823 // Update dominator only if this is first RT check. 2824 if (LoopBypassBlocks.empty()) { 2825 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2826 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2827 } 2828 2829 ReplaceInstWithInst( 2830 MemCheckBlock->getTerminator(), 2831 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2832 LoopBypassBlocks.push_back(MemCheckBlock); 2833 AddedSafetyChecks = true; 2834 2835 // We currently don't use LoopVersioning for the actual loop cloning but we 2836 // still use it to add the noalias metadata. 2837 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2838 PSE.getSE()); 2839 LVer->prepareNoAliasMetadata(); 2840 } 2841 2842 Value *InnerLoopVectorizer::emitTransformedIndex( 2843 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2844 const InductionDescriptor &ID) const { 2845 2846 SCEVExpander Exp(*SE, DL, "induction"); 2847 auto Step = ID.getStep(); 2848 auto StartValue = ID.getStartValue(); 2849 assert(Index->getType() == Step->getType() && 2850 "Index type does not match StepValue type"); 2851 2852 // Note: the IR at this point is broken. We cannot use SE to create any new 2853 // SCEV and then expand it, hoping that SCEV's simplification will give us 2854 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2855 // lead to various SCEV crashes. So all we can do is to use builder and rely 2856 // on InstCombine for future simplifications. Here we handle some trivial 2857 // cases only. 2858 auto CreateAdd = [&B](Value *X, Value *Y) { 2859 assert(X->getType() == Y->getType() && "Types don't match!"); 2860 if (auto *CX = dyn_cast<ConstantInt>(X)) 2861 if (CX->isZero()) 2862 return Y; 2863 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2864 if (CY->isZero()) 2865 return X; 2866 return B.CreateAdd(X, Y); 2867 }; 2868 2869 auto CreateMul = [&B](Value *X, Value *Y) { 2870 assert(X->getType() == Y->getType() && "Types don't match!"); 2871 if (auto *CX = dyn_cast<ConstantInt>(X)) 2872 if (CX->isOne()) 2873 return Y; 2874 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2875 if (CY->isOne()) 2876 return X; 2877 return B.CreateMul(X, Y); 2878 }; 2879 2880 switch (ID.getKind()) { 2881 case InductionDescriptor::IK_IntInduction: { 2882 assert(Index->getType() == StartValue->getType() && 2883 "Index type does not match StartValue type"); 2884 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2885 return B.CreateSub(StartValue, Index); 2886 auto *Offset = CreateMul( 2887 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2888 return CreateAdd(StartValue, Offset); 2889 } 2890 case InductionDescriptor::IK_PtrInduction: { 2891 assert(isa<SCEVConstant>(Step) && 2892 "Expected constant step for pointer induction"); 2893 return B.CreateGEP( 2894 StartValue->getType()->getPointerElementType(), StartValue, 2895 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2896 &*B.GetInsertPoint()))); 2897 } 2898 case InductionDescriptor::IK_FpInduction: { 2899 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2900 auto InductionBinOp = ID.getInductionBinOp(); 2901 assert(InductionBinOp && 2902 (InductionBinOp->getOpcode() == Instruction::FAdd || 2903 InductionBinOp->getOpcode() == Instruction::FSub) && 2904 "Original bin op should be defined for FP induction"); 2905 2906 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2907 2908 // Floating point operations had to be 'fast' to enable the induction. 2909 FastMathFlags Flags; 2910 Flags.setFast(); 2911 2912 Value *MulExp = B.CreateFMul(StepValue, Index); 2913 if (isa<Instruction>(MulExp)) 2914 // We have to check, the MulExp may be a constant. 2915 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2916 2917 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2918 "induction"); 2919 if (isa<Instruction>(BOp)) 2920 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2921 2922 return BOp; 2923 } 2924 case InductionDescriptor::IK_NoInduction: 2925 return nullptr; 2926 } 2927 llvm_unreachable("invalid enum"); 2928 } 2929 2930 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2931 /* 2932 In this function we generate a new loop. The new loop will contain 2933 the vectorized instructions while the old loop will continue to run the 2934 scalar remainder. 2935 2936 [ ] <-- loop iteration number check. 2937 / | 2938 / v 2939 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2940 | / | 2941 | / v 2942 || [ ] <-- vector pre header. 2943 |/ | 2944 | v 2945 | [ ] \ 2946 | [ ]_| <-- vector loop. 2947 | | 2948 | v 2949 | -[ ] <--- middle-block. 2950 | / | 2951 | / v 2952 -|- >[ ] <--- new preheader. 2953 | | 2954 | v 2955 | [ ] \ 2956 | [ ]_| <-- old scalar loop to handle remainder. 2957 \ | 2958 \ v 2959 >[ ] <-- exit block. 2960 ... 2961 */ 2962 2963 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2964 2965 // Some loops have a single integer induction variable, while other loops 2966 // don't. One example is c++ iterators that often have multiple pointer 2967 // induction variables. In the code below we also support a case where we 2968 // don't have a single induction variable. 2969 // 2970 // We try to obtain an induction variable from the original loop as hard 2971 // as possible. However if we don't find one that: 2972 // - is an integer 2973 // - counts from zero, stepping by one 2974 // - is the size of the widest induction variable type 2975 // then we create a new one. 2976 OldInduction = Legal->getPrimaryInduction(); 2977 Type *IdxTy = Legal->getWidestInductionType(); 2978 2979 // Split the single block loop into the two loop structure described above. 2980 LoopScalarBody = OrigLoop->getHeader(); 2981 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2982 LoopExitBlock = OrigLoop->getExitBlock(); 2983 assert(LoopExitBlock && "Must have an exit block"); 2984 assert(LoopVectorPreHeader && "Invalid loop structure"); 2985 2986 LoopMiddleBlock = 2987 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2988 LI, nullptr, "middle.block"); 2989 LoopScalarPreHeader = 2990 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2991 nullptr, "scalar.ph"); 2992 // We intentionally don't let SplitBlock to update LoopInfo since 2993 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 2994 // LoopVectorBody is explicitly added to the correct place few lines later. 2995 LoopVectorBody = 2996 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2997 nullptr, nullptr, "vector.body"); 2998 2999 // Update dominator for loop exit. 3000 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3001 3002 // Create and register the new vector loop. 3003 Loop *Lp = LI->AllocateLoop(); 3004 Loop *ParentLoop = OrigLoop->getParentLoop(); 3005 3006 // Insert the new loop into the loop nest and register the new basic blocks 3007 // before calling any utilities such as SCEV that require valid LoopInfo. 3008 if (ParentLoop) { 3009 ParentLoop->addChildLoop(Lp); 3010 } else { 3011 LI->addTopLevelLoop(Lp); 3012 } 3013 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3014 3015 // Find the loop boundaries. 3016 Value *Count = getOrCreateTripCount(Lp); 3017 3018 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3019 3020 // Now, compare the new count to zero. If it is zero skip the vector loop and 3021 // jump to the scalar loop. This check also covers the case where the 3022 // backedge-taken count is uint##_max: adding one to it will overflow leading 3023 // to an incorrect trip count of zero. In this (rare) case we will also jump 3024 // to the scalar loop. 3025 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3026 3027 // Generate the code to check any assumptions that we've made for SCEV 3028 // expressions. 3029 emitSCEVChecks(Lp, LoopScalarPreHeader); 3030 3031 // Generate the code that checks in runtime if arrays overlap. We put the 3032 // checks into a separate block to make the more common case of few elements 3033 // faster. 3034 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3035 3036 // Generate the induction variable. 3037 // The loop step is equal to the vectorization factor (num of SIMD elements) 3038 // times the unroll factor (num of SIMD instructions). 3039 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3040 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3041 Induction = 3042 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3043 getDebugLocFromInstOrOperands(OldInduction)); 3044 3045 // We are going to resume the execution of the scalar loop. 3046 // Go over all of the induction variables that we found and fix the 3047 // PHIs that are left in the scalar version of the loop. 3048 // The starting values of PHI nodes depend on the counter of the last 3049 // iteration in the vectorized loop. 3050 // If we come from a bypass edge then we need to start from the original 3051 // start value. 3052 3053 // This variable saves the new starting index for the scalar loop. It is used 3054 // to test if there are any tail iterations left once the vector loop has 3055 // completed. 3056 for (auto &InductionEntry : Legal->getInductionVars()) { 3057 PHINode *OrigPhi = InductionEntry.first; 3058 InductionDescriptor II = InductionEntry.second; 3059 3060 // Create phi nodes to merge from the backedge-taken check block. 3061 PHINode *BCResumeVal = 3062 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3063 LoopScalarPreHeader->getTerminator()); 3064 // Copy original phi DL over to the new one. 3065 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3066 Value *&EndValue = IVEndValues[OrigPhi]; 3067 if (OrigPhi == OldInduction) { 3068 // We know what the end value is. 3069 EndValue = CountRoundDown; 3070 } else { 3071 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3072 Type *StepType = II.getStep()->getType(); 3073 Instruction::CastOps CastOp = 3074 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3075 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3076 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3077 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3078 EndValue->setName("ind.end"); 3079 } 3080 3081 // The new PHI merges the original incoming value, in case of a bypass, 3082 // or the value at the end of the vectorized loop. 3083 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3084 3085 // Fix the scalar body counter (PHI node). 3086 // The old induction's phi node in the scalar body needs the truncated 3087 // value. 3088 for (BasicBlock *BB : LoopBypassBlocks) 3089 BCResumeVal->addIncoming(II.getStartValue(), BB); 3090 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3091 } 3092 3093 // We need the OrigLoop (scalar loop part) latch terminator to help 3094 // produce correct debug info for the middle block BB instructions. 3095 // The legality check stage guarantees that the loop will have a single 3096 // latch. 3097 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3098 "Scalar loop latch terminator isn't a branch"); 3099 BranchInst *ScalarLatchBr = 3100 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3101 3102 // Add a check in the middle block to see if we have completed 3103 // all of the iterations in the first vector loop. 3104 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3105 // If tail is to be folded, we know we don't need to run the remainder. 3106 Value *CmpN = Builder.getTrue(); 3107 if (!Cost->foldTailByMasking()) { 3108 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3109 CountRoundDown, "cmp.n", 3110 LoopMiddleBlock->getTerminator()); 3111 3112 // Here we use the same DebugLoc as the scalar loop latch branch instead 3113 // of the corresponding compare because they may have ended up with 3114 // different line numbers and we want to avoid awkward line stepping while 3115 // debugging. Eg. if the compare has got a line number inside the loop. 3116 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3117 } 3118 3119 BranchInst *BrInst = 3120 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3121 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3122 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3123 3124 // Get ready to start creating new instructions into the vectorized body. 3125 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3126 "Inconsistent vector loop preheader"); 3127 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3128 3129 Optional<MDNode *> VectorizedLoopID = 3130 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3131 LLVMLoopVectorizeFollowupVectorized}); 3132 if (VectorizedLoopID.hasValue()) { 3133 Lp->setLoopID(VectorizedLoopID.getValue()); 3134 3135 // Do not setAlreadyVectorized if loop attributes have been defined 3136 // explicitly. 3137 return LoopVectorPreHeader; 3138 } 3139 3140 // Keep all loop hints from the original loop on the vector loop (we'll 3141 // replace the vectorizer-specific hints below). 3142 if (MDNode *LID = OrigLoop->getLoopID()) 3143 Lp->setLoopID(LID); 3144 3145 LoopVectorizeHints Hints(Lp, true, *ORE); 3146 Hints.setAlreadyVectorized(); 3147 3148 #ifdef EXPENSIVE_CHECKS 3149 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3150 LI->verify(*DT); 3151 #endif 3152 3153 return LoopVectorPreHeader; 3154 } 3155 3156 // Fix up external users of the induction variable. At this point, we are 3157 // in LCSSA form, with all external PHIs that use the IV having one input value, 3158 // coming from the remainder loop. We need those PHIs to also have a correct 3159 // value for the IV when arriving directly from the middle block. 3160 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3161 const InductionDescriptor &II, 3162 Value *CountRoundDown, Value *EndValue, 3163 BasicBlock *MiddleBlock) { 3164 // There are two kinds of external IV usages - those that use the value 3165 // computed in the last iteration (the PHI) and those that use the penultimate 3166 // value (the value that feeds into the phi from the loop latch). 3167 // We allow both, but they, obviously, have different values. 3168 3169 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3170 3171 DenseMap<Value *, Value *> MissingVals; 3172 3173 // An external user of the last iteration's value should see the value that 3174 // the remainder loop uses to initialize its own IV. 3175 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3176 for (User *U : PostInc->users()) { 3177 Instruction *UI = cast<Instruction>(U); 3178 if (!OrigLoop->contains(UI)) { 3179 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3180 MissingVals[UI] = EndValue; 3181 } 3182 } 3183 3184 // An external user of the penultimate value need to see EndValue - Step. 3185 // The simplest way to get this is to recompute it from the constituent SCEVs, 3186 // that is Start + (Step * (CRD - 1)). 3187 for (User *U : OrigPhi->users()) { 3188 auto *UI = cast<Instruction>(U); 3189 if (!OrigLoop->contains(UI)) { 3190 const DataLayout &DL = 3191 OrigLoop->getHeader()->getModule()->getDataLayout(); 3192 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3193 3194 IRBuilder<> B(MiddleBlock->getTerminator()); 3195 Value *CountMinusOne = B.CreateSub( 3196 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3197 Value *CMO = 3198 !II.getStep()->getType()->isIntegerTy() 3199 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3200 II.getStep()->getType()) 3201 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3202 CMO->setName("cast.cmo"); 3203 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3204 Escape->setName("ind.escape"); 3205 MissingVals[UI] = Escape; 3206 } 3207 } 3208 3209 for (auto &I : MissingVals) { 3210 PHINode *PHI = cast<PHINode>(I.first); 3211 // One corner case we have to handle is two IVs "chasing" each-other, 3212 // that is %IV2 = phi [...], [ %IV1, %latch ] 3213 // In this case, if IV1 has an external use, we need to avoid adding both 3214 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3215 // don't already have an incoming value for the middle block. 3216 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3217 PHI->addIncoming(I.second, MiddleBlock); 3218 } 3219 } 3220 3221 namespace { 3222 3223 struct CSEDenseMapInfo { 3224 static bool canHandle(const Instruction *I) { 3225 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3226 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3227 } 3228 3229 static inline Instruction *getEmptyKey() { 3230 return DenseMapInfo<Instruction *>::getEmptyKey(); 3231 } 3232 3233 static inline Instruction *getTombstoneKey() { 3234 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3235 } 3236 3237 static unsigned getHashValue(const Instruction *I) { 3238 assert(canHandle(I) && "Unknown instruction!"); 3239 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3240 I->value_op_end())); 3241 } 3242 3243 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3244 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3245 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3246 return LHS == RHS; 3247 return LHS->isIdenticalTo(RHS); 3248 } 3249 }; 3250 3251 } // end anonymous namespace 3252 3253 ///Perform cse of induction variable instructions. 3254 static void cse(BasicBlock *BB) { 3255 // Perform simple cse. 3256 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3257 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3258 Instruction *In = &*I++; 3259 3260 if (!CSEDenseMapInfo::canHandle(In)) 3261 continue; 3262 3263 // Check if we can replace this instruction with any of the 3264 // visited instructions. 3265 if (Instruction *V = CSEMap.lookup(In)) { 3266 In->replaceAllUsesWith(V); 3267 In->eraseFromParent(); 3268 continue; 3269 } 3270 3271 CSEMap[In] = In; 3272 } 3273 } 3274 3275 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3276 unsigned VF, 3277 bool &NeedToScalarize) { 3278 Function *F = CI->getCalledFunction(); 3279 Type *ScalarRetTy = CI->getType(); 3280 SmallVector<Type *, 4> Tys, ScalarTys; 3281 for (auto &ArgOp : CI->arg_operands()) 3282 ScalarTys.push_back(ArgOp->getType()); 3283 3284 // Estimate cost of scalarized vector call. The source operands are assumed 3285 // to be vectors, so we need to extract individual elements from there, 3286 // execute VF scalar calls, and then gather the result into the vector return 3287 // value. 3288 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3289 TTI::TCK_RecipThroughput); 3290 if (VF == 1) 3291 return ScalarCallCost; 3292 3293 // Compute corresponding vector type for return value and arguments. 3294 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3295 for (Type *ScalarTy : ScalarTys) 3296 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3297 3298 // Compute costs of unpacking argument values for the scalar calls and 3299 // packing the return values to a vector. 3300 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3301 3302 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3303 3304 // If we can't emit a vector call for this function, then the currently found 3305 // cost is the cost we need to return. 3306 NeedToScalarize = true; 3307 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3308 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3309 3310 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3311 return Cost; 3312 3313 // If the corresponding vector cost is cheaper, return its cost. 3314 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3315 TTI::TCK_RecipThroughput); 3316 if (VectorCallCost < Cost) { 3317 NeedToScalarize = false; 3318 return VectorCallCost; 3319 } 3320 return Cost; 3321 } 3322 3323 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3324 unsigned VF) { 3325 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3326 assert(ID && "Expected intrinsic call!"); 3327 3328 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3329 return TTI.getIntrinsicInstrCost(CostAttrs, 3330 TargetTransformInfo::TCK_RecipThroughput); 3331 } 3332 3333 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3334 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3335 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3336 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3337 } 3338 3339 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3340 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3341 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3342 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3343 } 3344 3345 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3346 // For every instruction `I` in MinBWs, truncate the operands, create a 3347 // truncated version of `I` and reextend its result. InstCombine runs 3348 // later and will remove any ext/trunc pairs. 3349 SmallPtrSet<Value *, 4> Erased; 3350 for (const auto &KV : Cost->getMinimalBitwidths()) { 3351 // If the value wasn't vectorized, we must maintain the original scalar 3352 // type. The absence of the value from VectorLoopValueMap indicates that it 3353 // wasn't vectorized. 3354 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3355 continue; 3356 for (unsigned Part = 0; Part < UF; ++Part) { 3357 Value *I = getOrCreateVectorValue(KV.first, Part); 3358 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3359 continue; 3360 Type *OriginalTy = I->getType(); 3361 Type *ScalarTruncatedTy = 3362 IntegerType::get(OriginalTy->getContext(), KV.second); 3363 auto *TruncatedTy = FixedVectorType::get( 3364 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3365 if (TruncatedTy == OriginalTy) 3366 continue; 3367 3368 IRBuilder<> B(cast<Instruction>(I)); 3369 auto ShrinkOperand = [&](Value *V) -> Value * { 3370 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3371 if (ZI->getSrcTy() == TruncatedTy) 3372 return ZI->getOperand(0); 3373 return B.CreateZExtOrTrunc(V, TruncatedTy); 3374 }; 3375 3376 // The actual instruction modification depends on the instruction type, 3377 // unfortunately. 3378 Value *NewI = nullptr; 3379 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3380 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3381 ShrinkOperand(BO->getOperand(1))); 3382 3383 // Any wrapping introduced by shrinking this operation shouldn't be 3384 // considered undefined behavior. So, we can't unconditionally copy 3385 // arithmetic wrapping flags to NewI. 3386 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3387 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3388 NewI = 3389 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3390 ShrinkOperand(CI->getOperand(1))); 3391 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3392 NewI = B.CreateSelect(SI->getCondition(), 3393 ShrinkOperand(SI->getTrueValue()), 3394 ShrinkOperand(SI->getFalseValue())); 3395 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3396 switch (CI->getOpcode()) { 3397 default: 3398 llvm_unreachable("Unhandled cast!"); 3399 case Instruction::Trunc: 3400 NewI = ShrinkOperand(CI->getOperand(0)); 3401 break; 3402 case Instruction::SExt: 3403 NewI = B.CreateSExtOrTrunc( 3404 CI->getOperand(0), 3405 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3406 break; 3407 case Instruction::ZExt: 3408 NewI = B.CreateZExtOrTrunc( 3409 CI->getOperand(0), 3410 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3411 break; 3412 } 3413 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3414 auto Elements0 = 3415 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3416 auto *O0 = B.CreateZExtOrTrunc( 3417 SI->getOperand(0), 3418 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3419 auto Elements1 = 3420 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3421 auto *O1 = B.CreateZExtOrTrunc( 3422 SI->getOperand(1), 3423 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3424 3425 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3426 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3427 // Don't do anything with the operands, just extend the result. 3428 continue; 3429 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3430 auto Elements = 3431 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3432 auto *O0 = B.CreateZExtOrTrunc( 3433 IE->getOperand(0), 3434 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3435 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3436 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3437 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3438 auto Elements = 3439 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3440 auto *O0 = B.CreateZExtOrTrunc( 3441 EE->getOperand(0), 3442 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3443 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3444 } else { 3445 // If we don't know what to do, be conservative and don't do anything. 3446 continue; 3447 } 3448 3449 // Lastly, extend the result. 3450 NewI->takeName(cast<Instruction>(I)); 3451 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3452 I->replaceAllUsesWith(Res); 3453 cast<Instruction>(I)->eraseFromParent(); 3454 Erased.insert(I); 3455 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3456 } 3457 } 3458 3459 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3460 for (const auto &KV : Cost->getMinimalBitwidths()) { 3461 // If the value wasn't vectorized, we must maintain the original scalar 3462 // type. The absence of the value from VectorLoopValueMap indicates that it 3463 // wasn't vectorized. 3464 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3465 continue; 3466 for (unsigned Part = 0; Part < UF; ++Part) { 3467 Value *I = getOrCreateVectorValue(KV.first, Part); 3468 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3469 if (Inst && Inst->use_empty()) { 3470 Value *NewI = Inst->getOperand(0); 3471 Inst->eraseFromParent(); 3472 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3473 } 3474 } 3475 } 3476 } 3477 3478 void InnerLoopVectorizer::fixVectorizedLoop() { 3479 // Insert truncates and extends for any truncated instructions as hints to 3480 // InstCombine. 3481 if (VF > 1) 3482 truncateToMinimalBitwidths(); 3483 3484 // Fix widened non-induction PHIs by setting up the PHI operands. 3485 if (OrigPHIsToFix.size()) { 3486 assert(EnableVPlanNativePath && 3487 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3488 fixNonInductionPHIs(); 3489 } 3490 3491 // At this point every instruction in the original loop is widened to a 3492 // vector form. Now we need to fix the recurrences in the loop. These PHI 3493 // nodes are currently empty because we did not want to introduce cycles. 3494 // This is the second stage of vectorizing recurrences. 3495 fixCrossIterationPHIs(); 3496 3497 // Forget the original basic block. 3498 PSE.getSE()->forgetLoop(OrigLoop); 3499 3500 // Fix-up external users of the induction variables. 3501 for (auto &Entry : Legal->getInductionVars()) 3502 fixupIVUsers(Entry.first, Entry.second, 3503 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3504 IVEndValues[Entry.first], LoopMiddleBlock); 3505 3506 fixLCSSAPHIs(); 3507 for (Instruction *PI : PredicatedInstructions) 3508 sinkScalarOperands(&*PI); 3509 3510 // Remove redundant induction instructions. 3511 cse(LoopVectorBody); 3512 3513 // Set/update profile weights for the vector and remainder loops as original 3514 // loop iterations are now distributed among them. Note that original loop 3515 // represented by LoopScalarBody becomes remainder loop after vectorization. 3516 // 3517 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3518 // end up getting slightly roughened result but that should be OK since 3519 // profile is not inherently precise anyway. Note also possible bypass of 3520 // vector code caused by legality checks is ignored, assigning all the weight 3521 // to the vector loop, optimistically. 3522 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3523 LI->getLoopFor(LoopVectorBody), 3524 LI->getLoopFor(LoopScalarBody), VF * UF); 3525 } 3526 3527 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3528 // In order to support recurrences we need to be able to vectorize Phi nodes. 3529 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3530 // stage #2: We now need to fix the recurrences by adding incoming edges to 3531 // the currently empty PHI nodes. At this point every instruction in the 3532 // original loop is widened to a vector form so we can use them to construct 3533 // the incoming edges. 3534 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3535 // Handle first-order recurrences and reductions that need to be fixed. 3536 if (Legal->isFirstOrderRecurrence(&Phi)) 3537 fixFirstOrderRecurrence(&Phi); 3538 else if (Legal->isReductionVariable(&Phi)) 3539 fixReduction(&Phi); 3540 } 3541 } 3542 3543 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3544 // This is the second phase of vectorizing first-order recurrences. An 3545 // overview of the transformation is described below. Suppose we have the 3546 // following loop. 3547 // 3548 // for (int i = 0; i < n; ++i) 3549 // b[i] = a[i] - a[i - 1]; 3550 // 3551 // There is a first-order recurrence on "a". For this loop, the shorthand 3552 // scalar IR looks like: 3553 // 3554 // scalar.ph: 3555 // s_init = a[-1] 3556 // br scalar.body 3557 // 3558 // scalar.body: 3559 // i = phi [0, scalar.ph], [i+1, scalar.body] 3560 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3561 // s2 = a[i] 3562 // b[i] = s2 - s1 3563 // br cond, scalar.body, ... 3564 // 3565 // In this example, s1 is a recurrence because it's value depends on the 3566 // previous iteration. In the first phase of vectorization, we created a 3567 // temporary value for s1. We now complete the vectorization and produce the 3568 // shorthand vector IR shown below (for VF = 4, UF = 1). 3569 // 3570 // vector.ph: 3571 // v_init = vector(..., ..., ..., a[-1]) 3572 // br vector.body 3573 // 3574 // vector.body 3575 // i = phi [0, vector.ph], [i+4, vector.body] 3576 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3577 // v2 = a[i, i+1, i+2, i+3]; 3578 // v3 = vector(v1(3), v2(0, 1, 2)) 3579 // b[i, i+1, i+2, i+3] = v2 - v3 3580 // br cond, vector.body, middle.block 3581 // 3582 // middle.block: 3583 // x = v2(3) 3584 // br scalar.ph 3585 // 3586 // scalar.ph: 3587 // s_init = phi [x, middle.block], [a[-1], otherwise] 3588 // br scalar.body 3589 // 3590 // After execution completes the vector loop, we extract the next value of 3591 // the recurrence (x) to use as the initial value in the scalar loop. 3592 3593 // Get the original loop preheader and single loop latch. 3594 auto *Preheader = OrigLoop->getLoopPreheader(); 3595 auto *Latch = OrigLoop->getLoopLatch(); 3596 3597 // Get the initial and previous values of the scalar recurrence. 3598 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3599 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3600 3601 // Create a vector from the initial value. 3602 auto *VectorInit = ScalarInit; 3603 if (VF > 1) { 3604 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3605 VectorInit = Builder.CreateInsertElement( 3606 UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)), 3607 VectorInit, Builder.getInt32(VF - 1), "vector.recur.init"); 3608 } 3609 3610 // We constructed a temporary phi node in the first phase of vectorization. 3611 // This phi node will eventually be deleted. 3612 Builder.SetInsertPoint( 3613 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3614 3615 // Create a phi node for the new recurrence. The current value will either be 3616 // the initial value inserted into a vector or loop-varying vector value. 3617 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3618 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3619 3620 // Get the vectorized previous value of the last part UF - 1. It appears last 3621 // among all unrolled iterations, due to the order of their construction. 3622 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3623 3624 // Find and set the insertion point after the previous value if it is an 3625 // instruction. 3626 BasicBlock::iterator InsertPt; 3627 // Note that the previous value may have been constant-folded so it is not 3628 // guaranteed to be an instruction in the vector loop. 3629 // FIXME: Loop invariant values do not form recurrences. We should deal with 3630 // them earlier. 3631 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3632 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3633 else { 3634 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3635 if (isa<PHINode>(PreviousLastPart)) 3636 // If the previous value is a phi node, we should insert after all the phi 3637 // nodes in the block containing the PHI to avoid breaking basic block 3638 // verification. Note that the basic block may be different to 3639 // LoopVectorBody, in case we predicate the loop. 3640 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3641 else 3642 InsertPt = ++PreviousInst->getIterator(); 3643 } 3644 Builder.SetInsertPoint(&*InsertPt); 3645 3646 // We will construct a vector for the recurrence by combining the values for 3647 // the current and previous iterations. This is the required shuffle mask. 3648 SmallVector<int, 8> ShuffleMask(VF); 3649 ShuffleMask[0] = VF - 1; 3650 for (unsigned I = 1; I < VF; ++I) 3651 ShuffleMask[I] = I + VF - 1; 3652 3653 // The vector from which to take the initial value for the current iteration 3654 // (actual or unrolled). Initially, this is the vector phi node. 3655 Value *Incoming = VecPhi; 3656 3657 // Shuffle the current and previous vector and update the vector parts. 3658 for (unsigned Part = 0; Part < UF; ++Part) { 3659 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3660 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3661 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3662 ShuffleMask) 3663 : Incoming; 3664 PhiPart->replaceAllUsesWith(Shuffle); 3665 cast<Instruction>(PhiPart)->eraseFromParent(); 3666 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3667 Incoming = PreviousPart; 3668 } 3669 3670 // Fix the latch value of the new recurrence in the vector loop. 3671 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3672 3673 // Extract the last vector element in the middle block. This will be the 3674 // initial value for the recurrence when jumping to the scalar loop. 3675 auto *ExtractForScalar = Incoming; 3676 if (VF > 1) { 3677 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3678 ExtractForScalar = Builder.CreateExtractElement( 3679 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3680 } 3681 // Extract the second last element in the middle block if the 3682 // Phi is used outside the loop. We need to extract the phi itself 3683 // and not the last element (the phi update in the current iteration). This 3684 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3685 // when the scalar loop is not run at all. 3686 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3687 if (VF > 1) 3688 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3689 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3690 // When loop is unrolled without vectorizing, initialize 3691 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3692 // `Incoming`. This is analogous to the vectorized case above: extracting the 3693 // second last element when VF > 1. 3694 else if (UF > 1) 3695 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3696 3697 // Fix the initial value of the original recurrence in the scalar loop. 3698 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3699 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3700 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3701 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3702 Start->addIncoming(Incoming, BB); 3703 } 3704 3705 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3706 Phi->setName("scalar.recur"); 3707 3708 // Finally, fix users of the recurrence outside the loop. The users will need 3709 // either the last value of the scalar recurrence or the last value of the 3710 // vector recurrence we extracted in the middle block. Since the loop is in 3711 // LCSSA form, we just need to find all the phi nodes for the original scalar 3712 // recurrence in the exit block, and then add an edge for the middle block. 3713 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3714 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3715 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3716 } 3717 } 3718 } 3719 3720 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3721 Constant *Zero = Builder.getInt32(0); 3722 3723 // Get it's reduction variable descriptor. 3724 assert(Legal->isReductionVariable(Phi) && 3725 "Unable to find the reduction variable"); 3726 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3727 3728 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3729 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3730 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3731 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3732 RdxDesc.getMinMaxRecurrenceKind(); 3733 setDebugLocFromInst(Builder, ReductionStartValue); 3734 3735 // We need to generate a reduction vector from the incoming scalar. 3736 // To do so, we need to generate the 'identity' vector and override 3737 // one of the elements with the incoming scalar reduction. We need 3738 // to do it in the vector-loop preheader. 3739 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3740 3741 // This is the vector-clone of the value that leaves the loop. 3742 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3743 3744 // Find the reduction identity variable. Zero for addition, or, xor, 3745 // one for multiplication, -1 for And. 3746 Value *Identity; 3747 Value *VectorStart; 3748 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3749 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3750 // MinMax reduction have the start value as their identify. 3751 if (VF == 1) { 3752 VectorStart = Identity = ReductionStartValue; 3753 } else { 3754 VectorStart = Identity = 3755 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3756 } 3757 } else { 3758 // Handle other reduction kinds: 3759 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3760 RK, VecTy->getScalarType()); 3761 if (VF == 1) { 3762 Identity = Iden; 3763 // This vector is the Identity vector where the first element is the 3764 // incoming scalar reduction. 3765 VectorStart = ReductionStartValue; 3766 } else { 3767 Identity = ConstantVector::getSplat({VF, false}, Iden); 3768 3769 // This vector is the Identity vector where the first element is the 3770 // incoming scalar reduction. 3771 VectorStart = 3772 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3773 } 3774 } 3775 3776 // Wrap flags are in general invalid after vectorization, clear them. 3777 clearReductionWrapFlags(RdxDesc); 3778 3779 // Fix the vector-loop phi. 3780 3781 // Reductions do not have to start at zero. They can start with 3782 // any loop invariant values. 3783 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3784 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3785 3786 for (unsigned Part = 0; Part < UF; ++Part) { 3787 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3788 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3789 // Make sure to add the reduction start value only to the 3790 // first unroll part. 3791 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3792 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3793 cast<PHINode>(VecRdxPhi) 3794 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3795 } 3796 3797 // Before each round, move the insertion point right between 3798 // the PHIs and the values we are going to write. 3799 // This allows us to write both PHINodes and the extractelement 3800 // instructions. 3801 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3802 3803 setDebugLocFromInst(Builder, LoopExitInst); 3804 3805 // If tail is folded by masking, the vector value to leave the loop should be 3806 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3807 // instead of the former. 3808 if (Cost->foldTailByMasking()) { 3809 for (unsigned Part = 0; Part < UF; ++Part) { 3810 Value *VecLoopExitInst = 3811 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3812 Value *Sel = nullptr; 3813 for (User *U : VecLoopExitInst->users()) { 3814 if (isa<SelectInst>(U)) { 3815 assert(!Sel && "Reduction exit feeding two selects"); 3816 Sel = U; 3817 } else 3818 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3819 } 3820 assert(Sel && "Reduction exit feeds no select"); 3821 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3822 } 3823 } 3824 3825 // If the vector reduction can be performed in a smaller type, we truncate 3826 // then extend the loop exit value to enable InstCombine to evaluate the 3827 // entire expression in the smaller type. 3828 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3829 Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF); 3830 Builder.SetInsertPoint( 3831 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3832 VectorParts RdxParts(UF); 3833 for (unsigned Part = 0; Part < UF; ++Part) { 3834 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3835 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3836 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3837 : Builder.CreateZExt(Trunc, VecTy); 3838 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3839 UI != RdxParts[Part]->user_end();) 3840 if (*UI != Trunc) { 3841 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3842 RdxParts[Part] = Extnd; 3843 } else { 3844 ++UI; 3845 } 3846 } 3847 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3848 for (unsigned Part = 0; Part < UF; ++Part) { 3849 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3850 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3851 } 3852 } 3853 3854 // Reduce all of the unrolled parts into a single vector. 3855 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3856 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3857 3858 // The middle block terminator has already been assigned a DebugLoc here (the 3859 // OrigLoop's single latch terminator). We want the whole middle block to 3860 // appear to execute on this line because: (a) it is all compiler generated, 3861 // (b) these instructions are always executed after evaluating the latch 3862 // conditional branch, and (c) other passes may add new predecessors which 3863 // terminate on this line. This is the easiest way to ensure we don't 3864 // accidentally cause an extra step back into the loop while debugging. 3865 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3866 for (unsigned Part = 1; Part < UF; ++Part) { 3867 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3868 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3869 // Floating point operations had to be 'fast' to enable the reduction. 3870 ReducedPartRdx = addFastMathFlag( 3871 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3872 ReducedPartRdx, "bin.rdx"), 3873 RdxDesc.getFastMathFlags()); 3874 else 3875 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3876 RdxPart); 3877 } 3878 3879 if (VF > 1) { 3880 bool NoNaN = Legal->hasFunNoNaNAttr(); 3881 ReducedPartRdx = 3882 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3883 // If the reduction can be performed in a smaller type, we need to extend 3884 // the reduction to the wider type before we branch to the original loop. 3885 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3886 ReducedPartRdx = 3887 RdxDesc.isSigned() 3888 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3889 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3890 } 3891 3892 // Create a phi node that merges control-flow from the backedge-taken check 3893 // block and the middle block. 3894 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3895 LoopScalarPreHeader->getTerminator()); 3896 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3897 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3898 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3899 3900 // Now, we need to fix the users of the reduction variable 3901 // inside and outside of the scalar remainder loop. 3902 // We know that the loop is in LCSSA form. We need to update the 3903 // PHI nodes in the exit blocks. 3904 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3905 // All PHINodes need to have a single entry edge, or two if 3906 // we already fixed them. 3907 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3908 3909 // We found a reduction value exit-PHI. Update it with the 3910 // incoming bypass edge. 3911 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3912 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3913 } // end of the LCSSA phi scan. 3914 3915 // Fix the scalar loop reduction variable with the incoming reduction sum 3916 // from the vector body and from the backedge value. 3917 int IncomingEdgeBlockIdx = 3918 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3919 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3920 // Pick the other block. 3921 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3922 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3923 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3924 } 3925 3926 void InnerLoopVectorizer::clearReductionWrapFlags( 3927 RecurrenceDescriptor &RdxDesc) { 3928 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3929 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3930 RK != RecurrenceDescriptor::RK_IntegerMult) 3931 return; 3932 3933 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3934 assert(LoopExitInstr && "null loop exit instruction"); 3935 SmallVector<Instruction *, 8> Worklist; 3936 SmallPtrSet<Instruction *, 8> Visited; 3937 Worklist.push_back(LoopExitInstr); 3938 Visited.insert(LoopExitInstr); 3939 3940 while (!Worklist.empty()) { 3941 Instruction *Cur = Worklist.pop_back_val(); 3942 if (isa<OverflowingBinaryOperator>(Cur)) 3943 for (unsigned Part = 0; Part < UF; ++Part) { 3944 Value *V = getOrCreateVectorValue(Cur, Part); 3945 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3946 } 3947 3948 for (User *U : Cur->users()) { 3949 Instruction *UI = cast<Instruction>(U); 3950 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3951 Visited.insert(UI).second) 3952 Worklist.push_back(UI); 3953 } 3954 } 3955 } 3956 3957 void InnerLoopVectorizer::fixLCSSAPHIs() { 3958 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3959 if (LCSSAPhi.getNumIncomingValues() == 1) { 3960 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3961 // Non-instruction incoming values will have only one value. 3962 unsigned LastLane = 0; 3963 if (isa<Instruction>(IncomingValue)) 3964 LastLane = Cost->isUniformAfterVectorization( 3965 cast<Instruction>(IncomingValue), VF) 3966 ? 0 3967 : VF - 1; 3968 // Can be a loop invariant incoming value or the last scalar value to be 3969 // extracted from the vectorized loop. 3970 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3971 Value *lastIncomingValue = 3972 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3973 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3974 } 3975 } 3976 } 3977 3978 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3979 // The basic block and loop containing the predicated instruction. 3980 auto *PredBB = PredInst->getParent(); 3981 auto *VectorLoop = LI->getLoopFor(PredBB); 3982 3983 // Initialize a worklist with the operands of the predicated instruction. 3984 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3985 3986 // Holds instructions that we need to analyze again. An instruction may be 3987 // reanalyzed if we don't yet know if we can sink it or not. 3988 SmallVector<Instruction *, 8> InstsToReanalyze; 3989 3990 // Returns true if a given use occurs in the predicated block. Phi nodes use 3991 // their operands in their corresponding predecessor blocks. 3992 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3993 auto *I = cast<Instruction>(U.getUser()); 3994 BasicBlock *BB = I->getParent(); 3995 if (auto *Phi = dyn_cast<PHINode>(I)) 3996 BB = Phi->getIncomingBlock( 3997 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3998 return BB == PredBB; 3999 }; 4000 4001 // Iteratively sink the scalarized operands of the predicated instruction 4002 // into the block we created for it. When an instruction is sunk, it's 4003 // operands are then added to the worklist. The algorithm ends after one pass 4004 // through the worklist doesn't sink a single instruction. 4005 bool Changed; 4006 do { 4007 // Add the instructions that need to be reanalyzed to the worklist, and 4008 // reset the changed indicator. 4009 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4010 InstsToReanalyze.clear(); 4011 Changed = false; 4012 4013 while (!Worklist.empty()) { 4014 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4015 4016 // We can't sink an instruction if it is a phi node, is already in the 4017 // predicated block, is not in the loop, or may have side effects. 4018 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4019 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4020 continue; 4021 4022 // It's legal to sink the instruction if all its uses occur in the 4023 // predicated block. Otherwise, there's nothing to do yet, and we may 4024 // need to reanalyze the instruction. 4025 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4026 InstsToReanalyze.push_back(I); 4027 continue; 4028 } 4029 4030 // Move the instruction to the beginning of the predicated block, and add 4031 // it's operands to the worklist. 4032 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4033 Worklist.insert(I->op_begin(), I->op_end()); 4034 4035 // The sinking may have enabled other instructions to be sunk, so we will 4036 // need to iterate. 4037 Changed = true; 4038 } 4039 } while (Changed); 4040 } 4041 4042 void InnerLoopVectorizer::fixNonInductionPHIs() { 4043 for (PHINode *OrigPhi : OrigPHIsToFix) { 4044 PHINode *NewPhi = 4045 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4046 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4047 4048 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4049 predecessors(OrigPhi->getParent())); 4050 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4051 predecessors(NewPhi->getParent())); 4052 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4053 "Scalar and Vector BB should have the same number of predecessors"); 4054 4055 // The insertion point in Builder may be invalidated by the time we get 4056 // here. Force the Builder insertion point to something valid so that we do 4057 // not run into issues during insertion point restore in 4058 // getOrCreateVectorValue calls below. 4059 Builder.SetInsertPoint(NewPhi); 4060 4061 // The predecessor order is preserved and we can rely on mapping between 4062 // scalar and vector block predecessors. 4063 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4064 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4065 4066 // When looking up the new scalar/vector values to fix up, use incoming 4067 // values from original phi. 4068 Value *ScIncV = 4069 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4070 4071 // Scalar incoming value may need a broadcast 4072 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4073 NewPhi->addIncoming(NewIncV, NewPredBB); 4074 } 4075 } 4076 } 4077 4078 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4079 unsigned UF, unsigned VF, 4080 bool IsPtrLoopInvariant, 4081 SmallBitVector &IsIndexLoopInvariant, 4082 VPTransformState &State) { 4083 // Construct a vector GEP by widening the operands of the scalar GEP as 4084 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4085 // results in a vector of pointers when at least one operand of the GEP 4086 // is vector-typed. Thus, to keep the representation compact, we only use 4087 // vector-typed operands for loop-varying values. 4088 4089 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4090 // If we are vectorizing, but the GEP has only loop-invariant operands, 4091 // the GEP we build (by only using vector-typed operands for 4092 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4093 // produce a vector of pointers, we need to either arbitrarily pick an 4094 // operand to broadcast, or broadcast a clone of the original GEP. 4095 // Here, we broadcast a clone of the original. 4096 // 4097 // TODO: If at some point we decide to scalarize instructions having 4098 // loop-invariant operands, this special case will no longer be 4099 // required. We would add the scalarization decision to 4100 // collectLoopScalars() and teach getVectorValue() to broadcast 4101 // the lane-zero scalar value. 4102 auto *Clone = Builder.Insert(GEP->clone()); 4103 for (unsigned Part = 0; Part < UF; ++Part) { 4104 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4105 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4106 addMetadata(EntryPart, GEP); 4107 } 4108 } else { 4109 // If the GEP has at least one loop-varying operand, we are sure to 4110 // produce a vector of pointers. But if we are only unrolling, we want 4111 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4112 // produce with the code below will be scalar (if VF == 1) or vector 4113 // (otherwise). Note that for the unroll-only case, we still maintain 4114 // values in the vector mapping with initVector, as we do for other 4115 // instructions. 4116 for (unsigned Part = 0; Part < UF; ++Part) { 4117 // The pointer operand of the new GEP. If it's loop-invariant, we 4118 // won't broadcast it. 4119 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4120 : State.get(Operands.getOperand(0), Part); 4121 4122 // Collect all the indices for the new GEP. If any index is 4123 // loop-invariant, we won't broadcast it. 4124 SmallVector<Value *, 4> Indices; 4125 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4126 VPValue *Operand = Operands.getOperand(I); 4127 if (IsIndexLoopInvariant[I - 1]) 4128 Indices.push_back(State.get(Operand, {0, 0})); 4129 else 4130 Indices.push_back(State.get(Operand, Part)); 4131 } 4132 4133 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4134 // but it should be a vector, otherwise. 4135 auto *NewGEP = 4136 GEP->isInBounds() 4137 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4138 Indices) 4139 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4140 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4141 "NewGEP is not a pointer vector"); 4142 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4143 addMetadata(NewGEP, GEP); 4144 } 4145 } 4146 } 4147 4148 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4149 unsigned VF) { 4150 PHINode *P = cast<PHINode>(PN); 4151 if (EnableVPlanNativePath) { 4152 // Currently we enter here in the VPlan-native path for non-induction 4153 // PHIs where all control flow is uniform. We simply widen these PHIs. 4154 // Create a vector phi with no operands - the vector phi operands will be 4155 // set at the end of vector code generation. 4156 Type *VecTy = 4157 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4158 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4159 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4160 OrigPHIsToFix.push_back(P); 4161 4162 return; 4163 } 4164 4165 assert(PN->getParent() == OrigLoop->getHeader() && 4166 "Non-header phis should have been handled elsewhere"); 4167 4168 // In order to support recurrences we need to be able to vectorize Phi nodes. 4169 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4170 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4171 // this value when we vectorize all of the instructions that use the PHI. 4172 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4173 for (unsigned Part = 0; Part < UF; ++Part) { 4174 // This is phase one of vectorizing PHIs. 4175 Type *VecTy = 4176 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4177 Value *EntryPart = PHINode::Create( 4178 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4179 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4180 } 4181 return; 4182 } 4183 4184 setDebugLocFromInst(Builder, P); 4185 4186 // This PHINode must be an induction variable. 4187 // Make sure that we know about it. 4188 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4189 4190 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4191 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4192 4193 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4194 // which can be found from the original scalar operations. 4195 switch (II.getKind()) { 4196 case InductionDescriptor::IK_NoInduction: 4197 llvm_unreachable("Unknown induction"); 4198 case InductionDescriptor::IK_IntInduction: 4199 case InductionDescriptor::IK_FpInduction: 4200 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4201 case InductionDescriptor::IK_PtrInduction: { 4202 // Handle the pointer induction variable case. 4203 assert(P->getType()->isPointerTy() && "Unexpected type."); 4204 // This is the normalized GEP that starts counting at zero. 4205 Value *PtrInd = Induction; 4206 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4207 // Determine the number of scalars we need to generate for each unroll 4208 // iteration. If the instruction is uniform, we only need to generate the 4209 // first lane. Otherwise, we generate all VF values. 4210 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4211 // These are the scalar results. Notice that we don't generate vector GEPs 4212 // because scalar GEPs result in better code. 4213 for (unsigned Part = 0; Part < UF; ++Part) { 4214 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4215 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4216 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4217 Value *SclrGep = 4218 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4219 SclrGep->setName("next.gep"); 4220 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4221 } 4222 } 4223 return; 4224 } 4225 } 4226 } 4227 4228 /// A helper function for checking whether an integer division-related 4229 /// instruction may divide by zero (in which case it must be predicated if 4230 /// executed conditionally in the scalar code). 4231 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4232 /// Non-zero divisors that are non compile-time constants will not be 4233 /// converted into multiplication, so we will still end up scalarizing 4234 /// the division, but can do so w/o predication. 4235 static bool mayDivideByZero(Instruction &I) { 4236 assert((I.getOpcode() == Instruction::UDiv || 4237 I.getOpcode() == Instruction::SDiv || 4238 I.getOpcode() == Instruction::URem || 4239 I.getOpcode() == Instruction::SRem) && 4240 "Unexpected instruction"); 4241 Value *Divisor = I.getOperand(1); 4242 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4243 return !CInt || CInt->isZero(); 4244 } 4245 4246 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4247 VPTransformState &State) { 4248 switch (I.getOpcode()) { 4249 case Instruction::Call: 4250 case Instruction::Br: 4251 case Instruction::PHI: 4252 case Instruction::GetElementPtr: 4253 case Instruction::Select: 4254 llvm_unreachable("This instruction is handled by a different recipe."); 4255 case Instruction::UDiv: 4256 case Instruction::SDiv: 4257 case Instruction::SRem: 4258 case Instruction::URem: 4259 case Instruction::Add: 4260 case Instruction::FAdd: 4261 case Instruction::Sub: 4262 case Instruction::FSub: 4263 case Instruction::FNeg: 4264 case Instruction::Mul: 4265 case Instruction::FMul: 4266 case Instruction::FDiv: 4267 case Instruction::FRem: 4268 case Instruction::Shl: 4269 case Instruction::LShr: 4270 case Instruction::AShr: 4271 case Instruction::And: 4272 case Instruction::Or: 4273 case Instruction::Xor: { 4274 // Just widen unops and binops. 4275 setDebugLocFromInst(Builder, &I); 4276 4277 for (unsigned Part = 0; Part < UF; ++Part) { 4278 SmallVector<Value *, 2> Ops; 4279 for (VPValue *VPOp : User.operands()) 4280 Ops.push_back(State.get(VPOp, Part)); 4281 4282 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4283 4284 if (auto *VecOp = dyn_cast<Instruction>(V)) 4285 VecOp->copyIRFlags(&I); 4286 4287 // Use this vector value for all users of the original instruction. 4288 VectorLoopValueMap.setVectorValue(&I, Part, V); 4289 addMetadata(V, &I); 4290 } 4291 4292 break; 4293 } 4294 case Instruction::ICmp: 4295 case Instruction::FCmp: { 4296 // Widen compares. Generate vector compares. 4297 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4298 auto *Cmp = cast<CmpInst>(&I); 4299 setDebugLocFromInst(Builder, Cmp); 4300 for (unsigned Part = 0; Part < UF; ++Part) { 4301 Value *A = State.get(User.getOperand(0), Part); 4302 Value *B = State.get(User.getOperand(1), Part); 4303 Value *C = nullptr; 4304 if (FCmp) { 4305 // Propagate fast math flags. 4306 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4307 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4308 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4309 } else { 4310 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4311 } 4312 VectorLoopValueMap.setVectorValue(&I, Part, C); 4313 addMetadata(C, &I); 4314 } 4315 4316 break; 4317 } 4318 4319 case Instruction::ZExt: 4320 case Instruction::SExt: 4321 case Instruction::FPToUI: 4322 case Instruction::FPToSI: 4323 case Instruction::FPExt: 4324 case Instruction::PtrToInt: 4325 case Instruction::IntToPtr: 4326 case Instruction::SIToFP: 4327 case Instruction::UIToFP: 4328 case Instruction::Trunc: 4329 case Instruction::FPTrunc: 4330 case Instruction::BitCast: { 4331 auto *CI = cast<CastInst>(&I); 4332 setDebugLocFromInst(Builder, CI); 4333 4334 /// Vectorize casts. 4335 Type *DestTy = 4336 (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF); 4337 4338 for (unsigned Part = 0; Part < UF; ++Part) { 4339 Value *A = State.get(User.getOperand(0), Part); 4340 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4341 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4342 addMetadata(Cast, &I); 4343 } 4344 break; 4345 } 4346 default: 4347 // This instruction is not vectorized by simple widening. 4348 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4349 llvm_unreachable("Unhandled instruction!"); 4350 } // end of switch. 4351 } 4352 4353 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4354 VPTransformState &State) { 4355 assert(!isa<DbgInfoIntrinsic>(I) && 4356 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4357 setDebugLocFromInst(Builder, &I); 4358 4359 Module *M = I.getParent()->getParent()->getParent(); 4360 auto *CI = cast<CallInst>(&I); 4361 4362 SmallVector<Type *, 4> Tys; 4363 for (Value *ArgOperand : CI->arg_operands()) 4364 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4365 4366 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4367 4368 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4369 // version of the instruction. 4370 // Is it beneficial to perform intrinsic call compared to lib call? 4371 bool NeedToScalarize = false; 4372 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4373 bool UseVectorIntrinsic = 4374 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4375 assert((UseVectorIntrinsic || !NeedToScalarize) && 4376 "Instruction should be scalarized elsewhere."); 4377 4378 for (unsigned Part = 0; Part < UF; ++Part) { 4379 SmallVector<Value *, 4> Args; 4380 for (auto &I : enumerate(ArgOperands.operands())) { 4381 // Some intrinsics have a scalar argument - don't replace it with a 4382 // vector. 4383 Value *Arg; 4384 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4385 Arg = State.get(I.value(), Part); 4386 else 4387 Arg = State.get(I.value(), {0, 0}); 4388 Args.push_back(Arg); 4389 } 4390 4391 Function *VectorF; 4392 if (UseVectorIntrinsic) { 4393 // Use vector version of the intrinsic. 4394 Type *TysForDecl[] = {CI->getType()}; 4395 if (VF > 1) 4396 TysForDecl[0] = 4397 FixedVectorType::get(CI->getType()->getScalarType(), VF); 4398 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4399 assert(VectorF && "Can't retrieve vector intrinsic."); 4400 } else { 4401 // Use vector version of the function call. 4402 const VFShape Shape = 4403 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4404 #ifndef NDEBUG 4405 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4406 "Can't create vector function."); 4407 #endif 4408 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4409 } 4410 SmallVector<OperandBundleDef, 1> OpBundles; 4411 CI->getOperandBundlesAsDefs(OpBundles); 4412 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4413 4414 if (isa<FPMathOperator>(V)) 4415 V->copyFastMathFlags(CI); 4416 4417 VectorLoopValueMap.setVectorValue(&I, Part, V); 4418 addMetadata(V, &I); 4419 } 4420 } 4421 4422 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4423 VPUser &Operands, 4424 bool InvariantCond, 4425 VPTransformState &State) { 4426 setDebugLocFromInst(Builder, &I); 4427 4428 // The condition can be loop invariant but still defined inside the 4429 // loop. This means that we can't just use the original 'cond' value. 4430 // We have to take the 'vectorized' value and pick the first lane. 4431 // Instcombine will make this a no-op. 4432 auto *InvarCond = 4433 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4434 4435 for (unsigned Part = 0; Part < UF; ++Part) { 4436 Value *Cond = 4437 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4438 Value *Op0 = State.get(Operands.getOperand(1), Part); 4439 Value *Op1 = State.get(Operands.getOperand(2), Part); 4440 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4441 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4442 addMetadata(Sel, &I); 4443 } 4444 } 4445 4446 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4447 // We should not collect Scalars more than once per VF. Right now, this 4448 // function is called from collectUniformsAndScalars(), which already does 4449 // this check. Collecting Scalars for VF=1 does not make any sense. 4450 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4451 "This function should not be visited twice for the same VF"); 4452 4453 SmallSetVector<Instruction *, 8> Worklist; 4454 4455 // These sets are used to seed the analysis with pointers used by memory 4456 // accesses that will remain scalar. 4457 SmallSetVector<Instruction *, 8> ScalarPtrs; 4458 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4459 4460 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4461 // The pointer operands of loads and stores will be scalar as long as the 4462 // memory access is not a gather or scatter operation. The value operand of a 4463 // store will remain scalar if the store is scalarized. 4464 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4465 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4466 assert(WideningDecision != CM_Unknown && 4467 "Widening decision should be ready at this moment"); 4468 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4469 if (Ptr == Store->getValueOperand()) 4470 return WideningDecision == CM_Scalarize; 4471 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4472 "Ptr is neither a value or pointer operand"); 4473 return WideningDecision != CM_GatherScatter; 4474 }; 4475 4476 // A helper that returns true if the given value is a bitcast or 4477 // getelementptr instruction contained in the loop. 4478 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4479 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4480 isa<GetElementPtrInst>(V)) && 4481 !TheLoop->isLoopInvariant(V); 4482 }; 4483 4484 // A helper that evaluates a memory access's use of a pointer. If the use 4485 // will be a scalar use, and the pointer is only used by memory accesses, we 4486 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4487 // PossibleNonScalarPtrs. 4488 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4489 // We only care about bitcast and getelementptr instructions contained in 4490 // the loop. 4491 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4492 return; 4493 4494 // If the pointer has already been identified as scalar (e.g., if it was 4495 // also identified as uniform), there's nothing to do. 4496 auto *I = cast<Instruction>(Ptr); 4497 if (Worklist.count(I)) 4498 return; 4499 4500 // If the use of the pointer will be a scalar use, and all users of the 4501 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4502 // place the pointer in PossibleNonScalarPtrs. 4503 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4504 return isa<LoadInst>(U) || isa<StoreInst>(U); 4505 })) 4506 ScalarPtrs.insert(I); 4507 else 4508 PossibleNonScalarPtrs.insert(I); 4509 }; 4510 4511 // We seed the scalars analysis with three classes of instructions: (1) 4512 // instructions marked uniform-after-vectorization, (2) bitcast and 4513 // getelementptr instructions used by memory accesses requiring a scalar use, 4514 // and (3) pointer induction variables and their update instructions (we 4515 // currently only scalarize these). 4516 // 4517 // (1) Add to the worklist all instructions that have been identified as 4518 // uniform-after-vectorization. 4519 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4520 4521 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4522 // memory accesses requiring a scalar use. The pointer operands of loads and 4523 // stores will be scalar as long as the memory accesses is not a gather or 4524 // scatter operation. The value operand of a store will remain scalar if the 4525 // store is scalarized. 4526 for (auto *BB : TheLoop->blocks()) 4527 for (auto &I : *BB) { 4528 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4529 evaluatePtrUse(Load, Load->getPointerOperand()); 4530 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4531 evaluatePtrUse(Store, Store->getPointerOperand()); 4532 evaluatePtrUse(Store, Store->getValueOperand()); 4533 } 4534 } 4535 for (auto *I : ScalarPtrs) 4536 if (!PossibleNonScalarPtrs.count(I)) { 4537 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4538 Worklist.insert(I); 4539 } 4540 4541 // (3) Add to the worklist all pointer induction variables and their update 4542 // instructions. 4543 // 4544 // TODO: Once we are able to vectorize pointer induction variables we should 4545 // no longer insert them into the worklist here. 4546 auto *Latch = TheLoop->getLoopLatch(); 4547 for (auto &Induction : Legal->getInductionVars()) { 4548 auto *Ind = Induction.first; 4549 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4550 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4551 continue; 4552 Worklist.insert(Ind); 4553 Worklist.insert(IndUpdate); 4554 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4555 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4556 << "\n"); 4557 } 4558 4559 // Insert the forced scalars. 4560 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4561 // induction variable when the PHI user is scalarized. 4562 auto ForcedScalar = ForcedScalars.find(VF); 4563 if (ForcedScalar != ForcedScalars.end()) 4564 for (auto *I : ForcedScalar->second) 4565 Worklist.insert(I); 4566 4567 // Expand the worklist by looking through any bitcasts and getelementptr 4568 // instructions we've already identified as scalar. This is similar to the 4569 // expansion step in collectLoopUniforms(); however, here we're only 4570 // expanding to include additional bitcasts and getelementptr instructions. 4571 unsigned Idx = 0; 4572 while (Idx != Worklist.size()) { 4573 Instruction *Dst = Worklist[Idx++]; 4574 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4575 continue; 4576 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4577 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4578 auto *J = cast<Instruction>(U); 4579 return !TheLoop->contains(J) || Worklist.count(J) || 4580 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4581 isScalarUse(J, Src)); 4582 })) { 4583 Worklist.insert(Src); 4584 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4585 } 4586 } 4587 4588 // An induction variable will remain scalar if all users of the induction 4589 // variable and induction variable update remain scalar. 4590 for (auto &Induction : Legal->getInductionVars()) { 4591 auto *Ind = Induction.first; 4592 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4593 4594 // We already considered pointer induction variables, so there's no reason 4595 // to look at their users again. 4596 // 4597 // TODO: Once we are able to vectorize pointer induction variables we 4598 // should no longer skip over them here. 4599 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4600 continue; 4601 4602 // If tail-folding is applied, the primary induction variable will be used 4603 // to feed a vector compare. 4604 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4605 continue; 4606 4607 // Determine if all users of the induction variable are scalar after 4608 // vectorization. 4609 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4610 auto *I = cast<Instruction>(U); 4611 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4612 }); 4613 if (!ScalarInd) 4614 continue; 4615 4616 // Determine if all users of the induction variable update instruction are 4617 // scalar after vectorization. 4618 auto ScalarIndUpdate = 4619 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4620 auto *I = cast<Instruction>(U); 4621 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4622 }); 4623 if (!ScalarIndUpdate) 4624 continue; 4625 4626 // The induction variable and its update instruction will remain scalar. 4627 Worklist.insert(Ind); 4628 Worklist.insert(IndUpdate); 4629 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4630 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4631 << "\n"); 4632 } 4633 4634 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4635 } 4636 4637 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4638 if (!blockNeedsPredication(I->getParent())) 4639 return false; 4640 switch(I->getOpcode()) { 4641 default: 4642 break; 4643 case Instruction::Load: 4644 case Instruction::Store: { 4645 if (!Legal->isMaskRequired(I)) 4646 return false; 4647 auto *Ptr = getLoadStorePointerOperand(I); 4648 auto *Ty = getMemInstValueType(I); 4649 // We have already decided how to vectorize this instruction, get that 4650 // result. 4651 if (VF > 1) { 4652 InstWidening WideningDecision = getWideningDecision(I, VF); 4653 assert(WideningDecision != CM_Unknown && 4654 "Widening decision should be ready at this moment"); 4655 return WideningDecision == CM_Scalarize; 4656 } 4657 const Align Alignment = getLoadStoreAlignment(I); 4658 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4659 isLegalMaskedGather(Ty, Alignment)) 4660 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4661 isLegalMaskedScatter(Ty, Alignment)); 4662 } 4663 case Instruction::UDiv: 4664 case Instruction::SDiv: 4665 case Instruction::SRem: 4666 case Instruction::URem: 4667 return mayDivideByZero(*I); 4668 } 4669 return false; 4670 } 4671 4672 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4673 unsigned VF) { 4674 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4675 assert(getWideningDecision(I, VF) == CM_Unknown && 4676 "Decision should not be set yet."); 4677 auto *Group = getInterleavedAccessGroup(I); 4678 assert(Group && "Must have a group."); 4679 4680 // If the instruction's allocated size doesn't equal it's type size, it 4681 // requires padding and will be scalarized. 4682 auto &DL = I->getModule()->getDataLayout(); 4683 auto *ScalarTy = getMemInstValueType(I); 4684 if (hasIrregularType(ScalarTy, DL, VF)) 4685 return false; 4686 4687 // Check if masking is required. 4688 // A Group may need masking for one of two reasons: it resides in a block that 4689 // needs predication, or it was decided to use masking to deal with gaps. 4690 bool PredicatedAccessRequiresMasking = 4691 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4692 bool AccessWithGapsRequiresMasking = 4693 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4694 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4695 return true; 4696 4697 // If masked interleaving is required, we expect that the user/target had 4698 // enabled it, because otherwise it either wouldn't have been created or 4699 // it should have been invalidated by the CostModel. 4700 assert(useMaskedInterleavedAccesses(TTI) && 4701 "Masked interleave-groups for predicated accesses are not enabled."); 4702 4703 auto *Ty = getMemInstValueType(I); 4704 const Align Alignment = getLoadStoreAlignment(I); 4705 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4706 : TTI.isLegalMaskedStore(Ty, Alignment); 4707 } 4708 4709 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4710 unsigned VF) { 4711 // Get and ensure we have a valid memory instruction. 4712 LoadInst *LI = dyn_cast<LoadInst>(I); 4713 StoreInst *SI = dyn_cast<StoreInst>(I); 4714 assert((LI || SI) && "Invalid memory instruction"); 4715 4716 auto *Ptr = getLoadStorePointerOperand(I); 4717 4718 // In order to be widened, the pointer should be consecutive, first of all. 4719 if (!Legal->isConsecutivePtr(Ptr)) 4720 return false; 4721 4722 // If the instruction is a store located in a predicated block, it will be 4723 // scalarized. 4724 if (isScalarWithPredication(I)) 4725 return false; 4726 4727 // If the instruction's allocated size doesn't equal it's type size, it 4728 // requires padding and will be scalarized. 4729 auto &DL = I->getModule()->getDataLayout(); 4730 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4731 if (hasIrregularType(ScalarTy, DL, VF)) 4732 return false; 4733 4734 return true; 4735 } 4736 4737 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4738 // We should not collect Uniforms more than once per VF. Right now, 4739 // this function is called from collectUniformsAndScalars(), which 4740 // already does this check. Collecting Uniforms for VF=1 does not make any 4741 // sense. 4742 4743 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4744 "This function should not be visited twice for the same VF"); 4745 4746 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4747 // not analyze again. Uniforms.count(VF) will return 1. 4748 Uniforms[VF].clear(); 4749 4750 // We now know that the loop is vectorizable! 4751 // Collect instructions inside the loop that will remain uniform after 4752 // vectorization. 4753 4754 // Global values, params and instructions outside of current loop are out of 4755 // scope. 4756 auto isOutOfScope = [&](Value *V) -> bool { 4757 Instruction *I = dyn_cast<Instruction>(V); 4758 return (!I || !TheLoop->contains(I)); 4759 }; 4760 4761 SetVector<Instruction *> Worklist; 4762 BasicBlock *Latch = TheLoop->getLoopLatch(); 4763 4764 // Instructions that are scalar with predication must not be considered 4765 // uniform after vectorization, because that would create an erroneous 4766 // replicating region where only a single instance out of VF should be formed. 4767 // TODO: optimize such seldom cases if found important, see PR40816. 4768 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4769 if (isScalarWithPredication(I, VF)) { 4770 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4771 << *I << "\n"); 4772 return; 4773 } 4774 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4775 Worklist.insert(I); 4776 }; 4777 4778 // Start with the conditional branch. If the branch condition is an 4779 // instruction contained in the loop that is only used by the branch, it is 4780 // uniform. 4781 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4782 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4783 addToWorklistIfAllowed(Cmp); 4784 4785 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4786 // are pointers that are treated like consecutive pointers during 4787 // vectorization. The pointer operands of interleaved accesses are an 4788 // example. 4789 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4790 4791 // Holds pointer operands of instructions that are possibly non-uniform. 4792 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4793 4794 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4795 InstWidening WideningDecision = getWideningDecision(I, VF); 4796 assert(WideningDecision != CM_Unknown && 4797 "Widening decision should be ready at this moment"); 4798 4799 return (WideningDecision == CM_Widen || 4800 WideningDecision == CM_Widen_Reverse || 4801 WideningDecision == CM_Interleave); 4802 }; 4803 // Iterate over the instructions in the loop, and collect all 4804 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4805 // that a consecutive-like pointer operand will be scalarized, we collect it 4806 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4807 // getelementptr instruction can be used by both vectorized and scalarized 4808 // memory instructions. For example, if a loop loads and stores from the same 4809 // location, but the store is conditional, the store will be scalarized, and 4810 // the getelementptr won't remain uniform. 4811 for (auto *BB : TheLoop->blocks()) 4812 for (auto &I : *BB) { 4813 // If there's no pointer operand, there's nothing to do. 4814 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4815 if (!Ptr) 4816 continue; 4817 4818 // True if all users of Ptr are memory accesses that have Ptr as their 4819 // pointer operand. 4820 auto UsersAreMemAccesses = 4821 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4822 return getLoadStorePointerOperand(U) == Ptr; 4823 }); 4824 4825 // Ensure the memory instruction will not be scalarized or used by 4826 // gather/scatter, making its pointer operand non-uniform. If the pointer 4827 // operand is used by any instruction other than a memory access, we 4828 // conservatively assume the pointer operand may be non-uniform. 4829 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4830 PossibleNonUniformPtrs.insert(Ptr); 4831 4832 // If the memory instruction will be vectorized and its pointer operand 4833 // is consecutive-like, or interleaving - the pointer operand should 4834 // remain uniform. 4835 else 4836 ConsecutiveLikePtrs.insert(Ptr); 4837 } 4838 4839 // Add to the Worklist all consecutive and consecutive-like pointers that 4840 // aren't also identified as possibly non-uniform. 4841 for (auto *V : ConsecutiveLikePtrs) 4842 if (!PossibleNonUniformPtrs.count(V)) 4843 addToWorklistIfAllowed(V); 4844 4845 // Expand Worklist in topological order: whenever a new instruction 4846 // is added , its users should be already inside Worklist. It ensures 4847 // a uniform instruction will only be used by uniform instructions. 4848 unsigned idx = 0; 4849 while (idx != Worklist.size()) { 4850 Instruction *I = Worklist[idx++]; 4851 4852 for (auto OV : I->operand_values()) { 4853 // isOutOfScope operands cannot be uniform instructions. 4854 if (isOutOfScope(OV)) 4855 continue; 4856 // First order recurrence Phi's should typically be considered 4857 // non-uniform. 4858 auto *OP = dyn_cast<PHINode>(OV); 4859 if (OP && Legal->isFirstOrderRecurrence(OP)) 4860 continue; 4861 // If all the users of the operand are uniform, then add the 4862 // operand into the uniform worklist. 4863 auto *OI = cast<Instruction>(OV); 4864 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4865 auto *J = cast<Instruction>(U); 4866 return Worklist.count(J) || 4867 (OI == getLoadStorePointerOperand(J) && 4868 isUniformDecision(J, VF)); 4869 })) 4870 addToWorklistIfAllowed(OI); 4871 } 4872 } 4873 4874 // Returns true if Ptr is the pointer operand of a memory access instruction 4875 // I, and I is known to not require scalarization. 4876 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4877 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4878 }; 4879 4880 // For an instruction to be added into Worklist above, all its users inside 4881 // the loop should also be in Worklist. However, this condition cannot be 4882 // true for phi nodes that form a cyclic dependence. We must process phi 4883 // nodes separately. An induction variable will remain uniform if all users 4884 // of the induction variable and induction variable update remain uniform. 4885 // The code below handles both pointer and non-pointer induction variables. 4886 for (auto &Induction : Legal->getInductionVars()) { 4887 auto *Ind = Induction.first; 4888 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4889 4890 // Determine if all users of the induction variable are uniform after 4891 // vectorization. 4892 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4893 auto *I = cast<Instruction>(U); 4894 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4895 isVectorizedMemAccessUse(I, Ind); 4896 }); 4897 if (!UniformInd) 4898 continue; 4899 4900 // Determine if all users of the induction variable update instruction are 4901 // uniform after vectorization. 4902 auto UniformIndUpdate = 4903 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4904 auto *I = cast<Instruction>(U); 4905 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4906 isVectorizedMemAccessUse(I, IndUpdate); 4907 }); 4908 if (!UniformIndUpdate) 4909 continue; 4910 4911 // The induction variable and its update instruction will remain uniform. 4912 addToWorklistIfAllowed(Ind); 4913 addToWorklistIfAllowed(IndUpdate); 4914 } 4915 4916 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4917 } 4918 4919 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4920 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4921 4922 if (Legal->getRuntimePointerChecking()->Need) { 4923 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4924 "runtime pointer checks needed. Enable vectorization of this " 4925 "loop with '#pragma clang loop vectorize(enable)' when " 4926 "compiling with -Os/-Oz", 4927 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4928 return true; 4929 } 4930 4931 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4932 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4933 "runtime SCEV checks needed. Enable vectorization of this " 4934 "loop with '#pragma clang loop vectorize(enable)' when " 4935 "compiling with -Os/-Oz", 4936 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4937 return true; 4938 } 4939 4940 assert(Legal->getLAI()->getSymbolicStrides().empty() && 4941 "Specializing for stride == 1 under -Os/-Oz"); 4942 4943 return false; 4944 } 4945 4946 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 4947 unsigned UserIC) { 4948 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4949 // TODO: It may by useful to do since it's still likely to be dynamically 4950 // uniform if the target can skip. 4951 reportVectorizationFailure( 4952 "Not inserting runtime ptr check for divergent target", 4953 "runtime pointer checks needed. Not enabled for divergent target", 4954 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4955 return None; 4956 } 4957 4958 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4959 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4960 if (TC == 1) { 4961 reportVectorizationFailure("Single iteration (non) loop", 4962 "loop trip count is one, irrelevant for vectorization", 4963 "SingleIterationLoop", ORE, TheLoop); 4964 return None; 4965 } 4966 4967 switch (ScalarEpilogueStatus) { 4968 case CM_ScalarEpilogueAllowed: 4969 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 4970 case CM_ScalarEpilogueNotNeededUsePredicate: 4971 LLVM_DEBUG( 4972 dbgs() << "LV: vector predicate hint/switch found.\n" 4973 << "LV: Not allowing scalar epilogue, creating predicated " 4974 << "vector loop.\n"); 4975 break; 4976 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4977 // fallthrough as a special case of OptForSize 4978 case CM_ScalarEpilogueNotAllowedOptSize: 4979 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4980 LLVM_DEBUG( 4981 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4982 else 4983 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4984 << "count.\n"); 4985 4986 // Bail if runtime checks are required, which are not good when optimising 4987 // for size. 4988 if (runtimeChecksRequired()) 4989 return None; 4990 break; 4991 } 4992 4993 // Now try the tail folding 4994 4995 // Invalidate interleave groups that require an epilogue if we can't mask 4996 // the interleave-group. 4997 if (!useMaskedInterleavedAccesses(TTI)) { 4998 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 4999 "No decisions should have been taken at this point"); 5000 // Note: There is no need to invalidate any cost modeling decisions here, as 5001 // non where taken so far. 5002 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5003 } 5004 5005 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5006 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5007 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5008 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5009 // Accept MaxVF if we do not have a tail. 5010 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5011 return MaxVF; 5012 } 5013 5014 // If we don't know the precise trip count, or if the trip count that we 5015 // found modulo the vectorization factor is not zero, try to fold the tail 5016 // by masking. 5017 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5018 if (Legal->prepareToFoldTailByMasking()) { 5019 FoldTailByMasking = true; 5020 return MaxVF; 5021 } 5022 5023 if (TC == 0) { 5024 reportVectorizationFailure( 5025 "Unable to calculate the loop count due to complex control flow", 5026 "unable to calculate the loop count due to complex control flow", 5027 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5028 return None; 5029 } 5030 5031 reportVectorizationFailure( 5032 "Cannot optimize for size and vectorize at the same time.", 5033 "cannot optimize for size and vectorize at the same time. " 5034 "Enable vectorization of this loop with '#pragma clang loop " 5035 "vectorize(enable)' when compiling with -Os/-Oz", 5036 "NoTailLoopWithOptForSize", ORE, TheLoop); 5037 return None; 5038 } 5039 5040 unsigned 5041 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5042 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5043 unsigned SmallestType, WidestType; 5044 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5045 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5046 5047 // Get the maximum safe dependence distance in bits computed by LAA. 5048 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5049 // the memory accesses that is most restrictive (involved in the smallest 5050 // dependence distance). 5051 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5052 5053 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5054 5055 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5056 // Note that both WidestRegister and WidestType may not be a powers of 2. 5057 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5058 5059 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5060 << " / " << WidestType << " bits.\n"); 5061 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5062 << WidestRegister << " bits.\n"); 5063 5064 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5065 " into one vector!"); 5066 if (MaxVectorSize == 0) { 5067 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5068 MaxVectorSize = 1; 5069 return MaxVectorSize; 5070 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5071 isPowerOf2_32(ConstTripCount)) { 5072 // We need to clamp the VF to be the ConstTripCount. There is no point in 5073 // choosing a higher viable VF as done in the loop below. 5074 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5075 << ConstTripCount << "\n"); 5076 MaxVectorSize = ConstTripCount; 5077 return MaxVectorSize; 5078 } 5079 5080 unsigned MaxVF = MaxVectorSize; 5081 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5082 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5083 // Collect all viable vectorization factors larger than the default MaxVF 5084 // (i.e. MaxVectorSize). 5085 SmallVector<unsigned, 8> VFs; 5086 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5087 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5088 VFs.push_back(VS); 5089 5090 // For each VF calculate its register usage. 5091 auto RUs = calculateRegisterUsage(VFs); 5092 5093 // Select the largest VF which doesn't require more registers than existing 5094 // ones. 5095 for (int i = RUs.size() - 1; i >= 0; --i) { 5096 bool Selected = true; 5097 for (auto& pair : RUs[i].MaxLocalUsers) { 5098 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5099 if (pair.second > TargetNumRegisters) 5100 Selected = false; 5101 } 5102 if (Selected) { 5103 MaxVF = VFs[i]; 5104 break; 5105 } 5106 } 5107 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5108 if (MaxVF < MinVF) { 5109 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5110 << ") with target's minimum: " << MinVF << '\n'); 5111 MaxVF = MinVF; 5112 } 5113 } 5114 } 5115 return MaxVF; 5116 } 5117 5118 VectorizationFactor 5119 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5120 float Cost = expectedCost(1).first; 5121 const float ScalarCost = Cost; 5122 unsigned Width = 1; 5123 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5124 5125 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5126 if (ForceVectorization && MaxVF > 1) { 5127 // Ignore scalar width, because the user explicitly wants vectorization. 5128 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5129 // evaluation. 5130 Cost = std::numeric_limits<float>::max(); 5131 } 5132 5133 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5134 // Notice that the vector loop needs to be executed less times, so 5135 // we need to divide the cost of the vector loops by the width of 5136 // the vector elements. 5137 VectorizationCostTy C = expectedCost(i); 5138 float VectorCost = C.first / (float)i; 5139 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5140 << " costs: " << (int)VectorCost << ".\n"); 5141 if (!C.second && !ForceVectorization) { 5142 LLVM_DEBUG( 5143 dbgs() << "LV: Not considering vector loop of width " << i 5144 << " because it will not generate any vector instructions.\n"); 5145 continue; 5146 } 5147 if (VectorCost < Cost) { 5148 Cost = VectorCost; 5149 Width = i; 5150 } 5151 } 5152 5153 if (!EnableCondStoresVectorization && NumPredStores) { 5154 reportVectorizationFailure("There are conditional stores.", 5155 "store that is conditionally executed prevents vectorization", 5156 "ConditionalStore", ORE, TheLoop); 5157 Width = 1; 5158 Cost = ScalarCost; 5159 } 5160 5161 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5162 << "LV: Vectorization seems to be not beneficial, " 5163 << "but was forced by a user.\n"); 5164 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5165 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5166 return Factor; 5167 } 5168 5169 std::pair<unsigned, unsigned> 5170 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5171 unsigned MinWidth = -1U; 5172 unsigned MaxWidth = 8; 5173 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5174 5175 // For each block. 5176 for (BasicBlock *BB : TheLoop->blocks()) { 5177 // For each instruction in the loop. 5178 for (Instruction &I : BB->instructionsWithoutDebug()) { 5179 Type *T = I.getType(); 5180 5181 // Skip ignored values. 5182 if (ValuesToIgnore.count(&I)) 5183 continue; 5184 5185 // Only examine Loads, Stores and PHINodes. 5186 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5187 continue; 5188 5189 // Examine PHI nodes that are reduction variables. Update the type to 5190 // account for the recurrence type. 5191 if (auto *PN = dyn_cast<PHINode>(&I)) { 5192 if (!Legal->isReductionVariable(PN)) 5193 continue; 5194 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5195 T = RdxDesc.getRecurrenceType(); 5196 } 5197 5198 // Examine the stored values. 5199 if (auto *ST = dyn_cast<StoreInst>(&I)) 5200 T = ST->getValueOperand()->getType(); 5201 5202 // Ignore loaded pointer types and stored pointer types that are not 5203 // vectorizable. 5204 // 5205 // FIXME: The check here attempts to predict whether a load or store will 5206 // be vectorized. We only know this for certain after a VF has 5207 // been selected. Here, we assume that if an access can be 5208 // vectorized, it will be. We should also look at extending this 5209 // optimization to non-pointer types. 5210 // 5211 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5212 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5213 continue; 5214 5215 MinWidth = std::min(MinWidth, 5216 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5217 MaxWidth = std::max(MaxWidth, 5218 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5219 } 5220 } 5221 5222 return {MinWidth, MaxWidth}; 5223 } 5224 5225 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5226 unsigned LoopCost) { 5227 // -- The interleave heuristics -- 5228 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5229 // There are many micro-architectural considerations that we can't predict 5230 // at this level. For example, frontend pressure (on decode or fetch) due to 5231 // code size, or the number and capabilities of the execution ports. 5232 // 5233 // We use the following heuristics to select the interleave count: 5234 // 1. If the code has reductions, then we interleave to break the cross 5235 // iteration dependency. 5236 // 2. If the loop is really small, then we interleave to reduce the loop 5237 // overhead. 5238 // 3. We don't interleave if we think that we will spill registers to memory 5239 // due to the increased register pressure. 5240 5241 if (!isScalarEpilogueAllowed()) 5242 return 1; 5243 5244 // We used the distance for the interleave count. 5245 if (Legal->getMaxSafeDepDistBytes() != -1U) 5246 return 1; 5247 5248 // Do not interleave loops with a relatively small known or estimated trip 5249 // count. 5250 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5251 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5252 return 1; 5253 5254 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5255 // We divide by these constants so assume that we have at least one 5256 // instruction that uses at least one register. 5257 for (auto& pair : R.MaxLocalUsers) { 5258 pair.second = std::max(pair.second, 1U); 5259 } 5260 5261 // We calculate the interleave count using the following formula. 5262 // Subtract the number of loop invariants from the number of available 5263 // registers. These registers are used by all of the interleaved instances. 5264 // Next, divide the remaining registers by the number of registers that is 5265 // required by the loop, in order to estimate how many parallel instances 5266 // fit without causing spills. All of this is rounded down if necessary to be 5267 // a power of two. We want power of two interleave count to simplify any 5268 // addressing operations or alignment considerations. 5269 // We also want power of two interleave counts to ensure that the induction 5270 // variable of the vector loop wraps to zero, when tail is folded by masking; 5271 // this currently happens when OptForSize, in which case IC is set to 1 above. 5272 unsigned IC = UINT_MAX; 5273 5274 for (auto& pair : R.MaxLocalUsers) { 5275 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5276 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5277 << " registers of " 5278 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5279 if (VF == 1) { 5280 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5281 TargetNumRegisters = ForceTargetNumScalarRegs; 5282 } else { 5283 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5284 TargetNumRegisters = ForceTargetNumVectorRegs; 5285 } 5286 unsigned MaxLocalUsers = pair.second; 5287 unsigned LoopInvariantRegs = 0; 5288 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5289 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5290 5291 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5292 // Don't count the induction variable as interleaved. 5293 if (EnableIndVarRegisterHeur) { 5294 TmpIC = 5295 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5296 std::max(1U, (MaxLocalUsers - 1))); 5297 } 5298 5299 IC = std::min(IC, TmpIC); 5300 } 5301 5302 // Clamp the interleave ranges to reasonable counts. 5303 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5304 5305 // Check if the user has overridden the max. 5306 if (VF == 1) { 5307 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5308 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5309 } else { 5310 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5311 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5312 } 5313 5314 // If trip count is known or estimated compile time constant, limit the 5315 // interleave count to be less than the trip count divided by VF. 5316 if (BestKnownTC) { 5317 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5318 } 5319 5320 // If we did not calculate the cost for VF (because the user selected the VF) 5321 // then we calculate the cost of VF here. 5322 if (LoopCost == 0) 5323 LoopCost = expectedCost(VF).first; 5324 5325 assert(LoopCost && "Non-zero loop cost expected"); 5326 5327 // Clamp the calculated IC to be between the 1 and the max interleave count 5328 // that the target and trip count allows. 5329 if (IC > MaxInterleaveCount) 5330 IC = MaxInterleaveCount; 5331 else if (IC < 1) 5332 IC = 1; 5333 5334 // Interleave if we vectorized this loop and there is a reduction that could 5335 // benefit from interleaving. 5336 if (VF > 1 && !Legal->getReductionVars().empty()) { 5337 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5338 return IC; 5339 } 5340 5341 // Note that if we've already vectorized the loop we will have done the 5342 // runtime check and so interleaving won't require further checks. 5343 bool InterleavingRequiresRuntimePointerCheck = 5344 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5345 5346 // We want to interleave small loops in order to reduce the loop overhead and 5347 // potentially expose ILP opportunities. 5348 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5349 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5350 // We assume that the cost overhead is 1 and we use the cost model 5351 // to estimate the cost of the loop and interleave until the cost of the 5352 // loop overhead is about 5% of the cost of the loop. 5353 unsigned SmallIC = 5354 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5355 5356 // Interleave until store/load ports (estimated by max interleave count) are 5357 // saturated. 5358 unsigned NumStores = Legal->getNumStores(); 5359 unsigned NumLoads = Legal->getNumLoads(); 5360 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5361 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5362 5363 // If we have a scalar reduction (vector reductions are already dealt with 5364 // by this point), we can increase the critical path length if the loop 5365 // we're interleaving is inside another loop. Limit, by default to 2, so the 5366 // critical path only gets increased by one reduction operation. 5367 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5368 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5369 SmallIC = std::min(SmallIC, F); 5370 StoresIC = std::min(StoresIC, F); 5371 LoadsIC = std::min(LoadsIC, F); 5372 } 5373 5374 if (EnableLoadStoreRuntimeInterleave && 5375 std::max(StoresIC, LoadsIC) > SmallIC) { 5376 LLVM_DEBUG( 5377 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5378 return std::max(StoresIC, LoadsIC); 5379 } 5380 5381 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5382 return SmallIC; 5383 } 5384 5385 // Interleave if this is a large loop (small loops are already dealt with by 5386 // this point) that could benefit from interleaving. 5387 bool HasReductions = !Legal->getReductionVars().empty(); 5388 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5389 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5390 return IC; 5391 } 5392 5393 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5394 return 1; 5395 } 5396 5397 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5398 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5399 // This function calculates the register usage by measuring the highest number 5400 // of values that are alive at a single location. Obviously, this is a very 5401 // rough estimation. We scan the loop in a topological order in order and 5402 // assign a number to each instruction. We use RPO to ensure that defs are 5403 // met before their users. We assume that each instruction that has in-loop 5404 // users starts an interval. We record every time that an in-loop value is 5405 // used, so we have a list of the first and last occurrences of each 5406 // instruction. Next, we transpose this data structure into a multi map that 5407 // holds the list of intervals that *end* at a specific location. This multi 5408 // map allows us to perform a linear search. We scan the instructions linearly 5409 // and record each time that a new interval starts, by placing it in a set. 5410 // If we find this value in the multi-map then we remove it from the set. 5411 // The max register usage is the maximum size of the set. 5412 // We also search for instructions that are defined outside the loop, but are 5413 // used inside the loop. We need this number separately from the max-interval 5414 // usage number because when we unroll, loop-invariant values do not take 5415 // more register. 5416 LoopBlocksDFS DFS(TheLoop); 5417 DFS.perform(LI); 5418 5419 RegisterUsage RU; 5420 5421 // Each 'key' in the map opens a new interval. The values 5422 // of the map are the index of the 'last seen' usage of the 5423 // instruction that is the key. 5424 using IntervalMap = DenseMap<Instruction *, unsigned>; 5425 5426 // Maps instruction to its index. 5427 SmallVector<Instruction *, 64> IdxToInstr; 5428 // Marks the end of each interval. 5429 IntervalMap EndPoint; 5430 // Saves the list of instruction indices that are used in the loop. 5431 SmallPtrSet<Instruction *, 8> Ends; 5432 // Saves the list of values that are used in the loop but are 5433 // defined outside the loop, such as arguments and constants. 5434 SmallPtrSet<Value *, 8> LoopInvariants; 5435 5436 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5437 for (Instruction &I : BB->instructionsWithoutDebug()) { 5438 IdxToInstr.push_back(&I); 5439 5440 // Save the end location of each USE. 5441 for (Value *U : I.operands()) { 5442 auto *Instr = dyn_cast<Instruction>(U); 5443 5444 // Ignore non-instruction values such as arguments, constants, etc. 5445 if (!Instr) 5446 continue; 5447 5448 // If this instruction is outside the loop then record it and continue. 5449 if (!TheLoop->contains(Instr)) { 5450 LoopInvariants.insert(Instr); 5451 continue; 5452 } 5453 5454 // Overwrite previous end points. 5455 EndPoint[Instr] = IdxToInstr.size(); 5456 Ends.insert(Instr); 5457 } 5458 } 5459 } 5460 5461 // Saves the list of intervals that end with the index in 'key'. 5462 using InstrList = SmallVector<Instruction *, 2>; 5463 DenseMap<unsigned, InstrList> TransposeEnds; 5464 5465 // Transpose the EndPoints to a list of values that end at each index. 5466 for (auto &Interval : EndPoint) 5467 TransposeEnds[Interval.second].push_back(Interval.first); 5468 5469 SmallPtrSet<Instruction *, 8> OpenIntervals; 5470 5471 // Get the size of the widest register. 5472 unsigned MaxSafeDepDist = -1U; 5473 if (Legal->getMaxSafeDepDistBytes() != -1U) 5474 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5475 unsigned WidestRegister = 5476 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5477 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5478 5479 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5480 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5481 5482 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5483 5484 // A lambda that gets the register usage for the given type and VF. 5485 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5486 if (Ty->isTokenTy()) 5487 return 0U; 5488 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5489 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5490 }; 5491 5492 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5493 Instruction *I = IdxToInstr[i]; 5494 5495 // Remove all of the instructions that end at this location. 5496 InstrList &List = TransposeEnds[i]; 5497 for (Instruction *ToRemove : List) 5498 OpenIntervals.erase(ToRemove); 5499 5500 // Ignore instructions that are never used within the loop. 5501 if (!Ends.count(I)) 5502 continue; 5503 5504 // Skip ignored values. 5505 if (ValuesToIgnore.count(I)) 5506 continue; 5507 5508 // For each VF find the maximum usage of registers. 5509 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5510 // Count the number of live intervals. 5511 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5512 5513 if (VFs[j] == 1) { 5514 for (auto Inst : OpenIntervals) { 5515 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5516 if (RegUsage.find(ClassID) == RegUsage.end()) 5517 RegUsage[ClassID] = 1; 5518 else 5519 RegUsage[ClassID] += 1; 5520 } 5521 } else { 5522 collectUniformsAndScalars(VFs[j]); 5523 for (auto Inst : OpenIntervals) { 5524 // Skip ignored values for VF > 1. 5525 if (VecValuesToIgnore.count(Inst)) 5526 continue; 5527 if (isScalarAfterVectorization(Inst, VFs[j])) { 5528 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5529 if (RegUsage.find(ClassID) == RegUsage.end()) 5530 RegUsage[ClassID] = 1; 5531 else 5532 RegUsage[ClassID] += 1; 5533 } else { 5534 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5535 if (RegUsage.find(ClassID) == RegUsage.end()) 5536 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5537 else 5538 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5539 } 5540 } 5541 } 5542 5543 for (auto& pair : RegUsage) { 5544 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5545 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5546 else 5547 MaxUsages[j][pair.first] = pair.second; 5548 } 5549 } 5550 5551 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5552 << OpenIntervals.size() << '\n'); 5553 5554 // Add the current instruction to the list of open intervals. 5555 OpenIntervals.insert(I); 5556 } 5557 5558 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5559 SmallMapVector<unsigned, unsigned, 4> Invariant; 5560 5561 for (auto Inst : LoopInvariants) { 5562 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5563 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5564 if (Invariant.find(ClassID) == Invariant.end()) 5565 Invariant[ClassID] = Usage; 5566 else 5567 Invariant[ClassID] += Usage; 5568 } 5569 5570 LLVM_DEBUG({ 5571 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5572 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5573 << " item\n"; 5574 for (const auto &pair : MaxUsages[i]) { 5575 dbgs() << "LV(REG): RegisterClass: " 5576 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5577 << " registers\n"; 5578 } 5579 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5580 << " item\n"; 5581 for (const auto &pair : Invariant) { 5582 dbgs() << "LV(REG): RegisterClass: " 5583 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5584 << " registers\n"; 5585 } 5586 }); 5587 5588 RU.LoopInvariantRegs = Invariant; 5589 RU.MaxLocalUsers = MaxUsages[i]; 5590 RUs[i] = RU; 5591 } 5592 5593 return RUs; 5594 } 5595 5596 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5597 // TODO: Cost model for emulated masked load/store is completely 5598 // broken. This hack guides the cost model to use an artificially 5599 // high enough value to practically disable vectorization with such 5600 // operations, except where previously deployed legality hack allowed 5601 // using very low cost values. This is to avoid regressions coming simply 5602 // from moving "masked load/store" check from legality to cost model. 5603 // Masked Load/Gather emulation was previously never allowed. 5604 // Limited number of Masked Store/Scatter emulation was allowed. 5605 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5606 return isa<LoadInst>(I) || 5607 (isa<StoreInst>(I) && 5608 NumPredStores > NumberOfStoresToPredicate); 5609 } 5610 5611 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5612 // If we aren't vectorizing the loop, or if we've already collected the 5613 // instructions to scalarize, there's nothing to do. Collection may already 5614 // have occurred if we have a user-selected VF and are now computing the 5615 // expected cost for interleaving. 5616 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5617 return; 5618 5619 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5620 // not profitable to scalarize any instructions, the presence of VF in the 5621 // map will indicate that we've analyzed it already. 5622 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5623 5624 // Find all the instructions that are scalar with predication in the loop and 5625 // determine if it would be better to not if-convert the blocks they are in. 5626 // If so, we also record the instructions to scalarize. 5627 for (BasicBlock *BB : TheLoop->blocks()) { 5628 if (!blockNeedsPredication(BB)) 5629 continue; 5630 for (Instruction &I : *BB) 5631 if (isScalarWithPredication(&I)) { 5632 ScalarCostsTy ScalarCosts; 5633 // Do not apply discount logic if hacked cost is needed 5634 // for emulated masked memrefs. 5635 if (!useEmulatedMaskMemRefHack(&I) && 5636 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5637 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5638 // Remember that BB will remain after vectorization. 5639 PredicatedBBsAfterVectorization.insert(BB); 5640 } 5641 } 5642 } 5643 5644 int LoopVectorizationCostModel::computePredInstDiscount( 5645 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5646 unsigned VF) { 5647 assert(!isUniformAfterVectorization(PredInst, VF) && 5648 "Instruction marked uniform-after-vectorization will be predicated"); 5649 5650 // Initialize the discount to zero, meaning that the scalar version and the 5651 // vector version cost the same. 5652 int Discount = 0; 5653 5654 // Holds instructions to analyze. The instructions we visit are mapped in 5655 // ScalarCosts. Those instructions are the ones that would be scalarized if 5656 // we find that the scalar version costs less. 5657 SmallVector<Instruction *, 8> Worklist; 5658 5659 // Returns true if the given instruction can be scalarized. 5660 auto canBeScalarized = [&](Instruction *I) -> bool { 5661 // We only attempt to scalarize instructions forming a single-use chain 5662 // from the original predicated block that would otherwise be vectorized. 5663 // Although not strictly necessary, we give up on instructions we know will 5664 // already be scalar to avoid traversing chains that are unlikely to be 5665 // beneficial. 5666 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5667 isScalarAfterVectorization(I, VF)) 5668 return false; 5669 5670 // If the instruction is scalar with predication, it will be analyzed 5671 // separately. We ignore it within the context of PredInst. 5672 if (isScalarWithPredication(I)) 5673 return false; 5674 5675 // If any of the instruction's operands are uniform after vectorization, 5676 // the instruction cannot be scalarized. This prevents, for example, a 5677 // masked load from being scalarized. 5678 // 5679 // We assume we will only emit a value for lane zero of an instruction 5680 // marked uniform after vectorization, rather than VF identical values. 5681 // Thus, if we scalarize an instruction that uses a uniform, we would 5682 // create uses of values corresponding to the lanes we aren't emitting code 5683 // for. This behavior can be changed by allowing getScalarValue to clone 5684 // the lane zero values for uniforms rather than asserting. 5685 for (Use &U : I->operands()) 5686 if (auto *J = dyn_cast<Instruction>(U.get())) 5687 if (isUniformAfterVectorization(J, VF)) 5688 return false; 5689 5690 // Otherwise, we can scalarize the instruction. 5691 return true; 5692 }; 5693 5694 // Compute the expected cost discount from scalarizing the entire expression 5695 // feeding the predicated instruction. We currently only consider expressions 5696 // that are single-use instruction chains. 5697 Worklist.push_back(PredInst); 5698 while (!Worklist.empty()) { 5699 Instruction *I = Worklist.pop_back_val(); 5700 5701 // If we've already analyzed the instruction, there's nothing to do. 5702 if (ScalarCosts.find(I) != ScalarCosts.end()) 5703 continue; 5704 5705 // Compute the cost of the vector instruction. Note that this cost already 5706 // includes the scalarization overhead of the predicated instruction. 5707 unsigned VectorCost = getInstructionCost(I, VF).first; 5708 5709 // Compute the cost of the scalarized instruction. This cost is the cost of 5710 // the instruction as if it wasn't if-converted and instead remained in the 5711 // predicated block. We will scale this cost by block probability after 5712 // computing the scalarization overhead. 5713 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5714 5715 // Compute the scalarization overhead of needed insertelement instructions 5716 // and phi nodes. 5717 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5718 ScalarCost += TTI.getScalarizationOverhead( 5719 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5720 APInt::getAllOnesValue(VF), true, false); 5721 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI, 5722 TTI::TCK_RecipThroughput); 5723 } 5724 5725 // Compute the scalarization overhead of needed extractelement 5726 // instructions. For each of the instruction's operands, if the operand can 5727 // be scalarized, add it to the worklist; otherwise, account for the 5728 // overhead. 5729 for (Use &U : I->operands()) 5730 if (auto *J = dyn_cast<Instruction>(U.get())) { 5731 assert(VectorType::isValidElementType(J->getType()) && 5732 "Instruction has non-scalar type"); 5733 if (canBeScalarized(J)) 5734 Worklist.push_back(J); 5735 else if (needsExtract(J, VF)) 5736 ScalarCost += TTI.getScalarizationOverhead( 5737 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5738 APInt::getAllOnesValue(VF), false, true); 5739 } 5740 5741 // Scale the total scalar cost by block probability. 5742 ScalarCost /= getReciprocalPredBlockProb(); 5743 5744 // Compute the discount. A non-negative discount means the vector version 5745 // of the instruction costs more, and scalarizing would be beneficial. 5746 Discount += VectorCost - ScalarCost; 5747 ScalarCosts[I] = ScalarCost; 5748 } 5749 5750 return Discount; 5751 } 5752 5753 LoopVectorizationCostModel::VectorizationCostTy 5754 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5755 VectorizationCostTy Cost; 5756 5757 // For each block. 5758 for (BasicBlock *BB : TheLoop->blocks()) { 5759 VectorizationCostTy BlockCost; 5760 5761 // For each instruction in the old loop. 5762 for (Instruction &I : BB->instructionsWithoutDebug()) { 5763 // Skip ignored values. 5764 if (ValuesToIgnore.count(&I) || (VF > 1 && VecValuesToIgnore.count(&I))) 5765 continue; 5766 5767 VectorizationCostTy C = getInstructionCost(&I, VF); 5768 5769 // Check if we should override the cost. 5770 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5771 C.first = ForceTargetInstructionCost; 5772 5773 BlockCost.first += C.first; 5774 BlockCost.second |= C.second; 5775 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5776 << " for VF " << VF << " For instruction: " << I 5777 << '\n'); 5778 } 5779 5780 // If we are vectorizing a predicated block, it will have been 5781 // if-converted. This means that the block's instructions (aside from 5782 // stores and instructions that may divide by zero) will now be 5783 // unconditionally executed. For the scalar case, we may not always execute 5784 // the predicated block. Thus, scale the block's cost by the probability of 5785 // executing it. 5786 if (VF == 1 && blockNeedsPredication(BB)) 5787 BlockCost.first /= getReciprocalPredBlockProb(); 5788 5789 Cost.first += BlockCost.first; 5790 Cost.second |= BlockCost.second; 5791 } 5792 5793 return Cost; 5794 } 5795 5796 /// Gets Address Access SCEV after verifying that the access pattern 5797 /// is loop invariant except the induction variable dependence. 5798 /// 5799 /// This SCEV can be sent to the Target in order to estimate the address 5800 /// calculation cost. 5801 static const SCEV *getAddressAccessSCEV( 5802 Value *Ptr, 5803 LoopVectorizationLegality *Legal, 5804 PredicatedScalarEvolution &PSE, 5805 const Loop *TheLoop) { 5806 5807 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5808 if (!Gep) 5809 return nullptr; 5810 5811 // We are looking for a gep with all loop invariant indices except for one 5812 // which should be an induction variable. 5813 auto SE = PSE.getSE(); 5814 unsigned NumOperands = Gep->getNumOperands(); 5815 for (unsigned i = 1; i < NumOperands; ++i) { 5816 Value *Opd = Gep->getOperand(i); 5817 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5818 !Legal->isInductionVariable(Opd)) 5819 return nullptr; 5820 } 5821 5822 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5823 return PSE.getSCEV(Ptr); 5824 } 5825 5826 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5827 return Legal->hasStride(I->getOperand(0)) || 5828 Legal->hasStride(I->getOperand(1)); 5829 } 5830 5831 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5832 unsigned VF) { 5833 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5834 Type *ValTy = getMemInstValueType(I); 5835 auto SE = PSE.getSE(); 5836 5837 unsigned AS = getLoadStoreAddressSpace(I); 5838 Value *Ptr = getLoadStorePointerOperand(I); 5839 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5840 5841 // Figure out whether the access is strided and get the stride value 5842 // if it's known in compile time 5843 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5844 5845 // Get the cost of the scalar memory instruction and address computation. 5846 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5847 5848 // Don't pass *I here, since it is scalar but will actually be part of a 5849 // vectorized loop where the user of it is a vectorized instruction. 5850 const Align Alignment = getLoadStoreAlignment(I); 5851 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5852 Alignment, AS, 5853 TTI::TCK_RecipThroughput); 5854 5855 // Get the overhead of the extractelement and insertelement instructions 5856 // we might create due to scalarization. 5857 Cost += getScalarizationOverhead(I, VF); 5858 5859 // If we have a predicated store, it may not be executed for each vector 5860 // lane. Scale the cost by the probability of executing the predicated 5861 // block. 5862 if (isPredicatedInst(I)) { 5863 Cost /= getReciprocalPredBlockProb(); 5864 5865 if (useEmulatedMaskMemRefHack(I)) 5866 // Artificially setting to a high enough value to practically disable 5867 // vectorization with such operations. 5868 Cost = 3000000; 5869 } 5870 5871 return Cost; 5872 } 5873 5874 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5875 unsigned VF) { 5876 Type *ValTy = getMemInstValueType(I); 5877 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5878 Value *Ptr = getLoadStorePointerOperand(I); 5879 unsigned AS = getLoadStoreAddressSpace(I); 5880 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5881 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5882 5883 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5884 "Stride should be 1 or -1 for consecutive memory access"); 5885 const Align Alignment = getLoadStoreAlignment(I); 5886 unsigned Cost = 0; 5887 if (Legal->isMaskRequired(I)) 5888 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5889 CostKind); 5890 else 5891 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5892 CostKind, I); 5893 5894 bool Reverse = ConsecutiveStride < 0; 5895 if (Reverse) 5896 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5897 return Cost; 5898 } 5899 5900 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5901 unsigned VF) { 5902 Type *ValTy = getMemInstValueType(I); 5903 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5904 const Align Alignment = getLoadStoreAlignment(I); 5905 unsigned AS = getLoadStoreAddressSpace(I); 5906 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5907 if (isa<LoadInst>(I)) { 5908 return TTI.getAddressComputationCost(ValTy) + 5909 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5910 CostKind) + 5911 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5912 } 5913 StoreInst *SI = cast<StoreInst>(I); 5914 5915 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5916 return TTI.getAddressComputationCost(ValTy) + 5917 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5918 CostKind) + 5919 (isLoopInvariantStoreValue 5920 ? 0 5921 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5922 VF - 1)); 5923 } 5924 5925 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5926 unsigned VF) { 5927 Type *ValTy = getMemInstValueType(I); 5928 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5929 const Align Alignment = getLoadStoreAlignment(I); 5930 const Value *Ptr = getLoadStorePointerOperand(I); 5931 5932 return TTI.getAddressComputationCost(VectorTy) + 5933 TTI.getGatherScatterOpCost( 5934 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 5935 TargetTransformInfo::TCK_RecipThroughput, I); 5936 } 5937 5938 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5939 unsigned VF) { 5940 Type *ValTy = getMemInstValueType(I); 5941 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5942 unsigned AS = getLoadStoreAddressSpace(I); 5943 5944 auto Group = getInterleavedAccessGroup(I); 5945 assert(Group && "Fail to get an interleaved access group."); 5946 5947 unsigned InterleaveFactor = Group->getFactor(); 5948 auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor); 5949 5950 // Holds the indices of existing members in an interleaved load group. 5951 // An interleaved store group doesn't need this as it doesn't allow gaps. 5952 SmallVector<unsigned, 4> Indices; 5953 if (isa<LoadInst>(I)) { 5954 for (unsigned i = 0; i < InterleaveFactor; i++) 5955 if (Group->getMember(i)) 5956 Indices.push_back(i); 5957 } 5958 5959 // Calculate the cost of the whole interleaved group. 5960 bool UseMaskForGaps = 5961 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5962 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5963 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 5964 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 5965 5966 if (Group->isReverse()) { 5967 // TODO: Add support for reversed masked interleaved access. 5968 assert(!Legal->isMaskRequired(I) && 5969 "Reverse masked interleaved access not supported."); 5970 Cost += Group->getNumMembers() * 5971 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5972 } 5973 return Cost; 5974 } 5975 5976 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5977 unsigned VF) { 5978 // Calculate scalar cost only. Vectorization cost should be ready at this 5979 // moment. 5980 if (VF == 1) { 5981 Type *ValTy = getMemInstValueType(I); 5982 const Align Alignment = getLoadStoreAlignment(I); 5983 unsigned AS = getLoadStoreAddressSpace(I); 5984 5985 return TTI.getAddressComputationCost(ValTy) + 5986 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 5987 TTI::TCK_RecipThroughput, I); 5988 } 5989 return getWideningCost(I, VF); 5990 } 5991 5992 LoopVectorizationCostModel::VectorizationCostTy 5993 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5994 // If we know that this instruction will remain uniform, check the cost of 5995 // the scalar version. 5996 if (isUniformAfterVectorization(I, VF)) 5997 VF = 1; 5998 5999 if (VF > 1 && isProfitableToScalarize(I, VF)) 6000 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6001 6002 // Forced scalars do not have any scalarization overhead. 6003 auto ForcedScalar = ForcedScalars.find(VF); 6004 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 6005 auto InstSet = ForcedScalar->second; 6006 if (InstSet.count(I)) 6007 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6008 } 6009 6010 Type *VectorTy; 6011 unsigned C = getInstructionCost(I, VF, VectorTy); 6012 6013 bool TypeNotScalarized = 6014 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6015 return VectorizationCostTy(C, TypeNotScalarized); 6016 } 6017 6018 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6019 unsigned VF) { 6020 6021 if (VF == 1) 6022 return 0; 6023 6024 unsigned Cost = 0; 6025 Type *RetTy = ToVectorTy(I->getType(), VF); 6026 if (!RetTy->isVoidTy() && 6027 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6028 Cost += TTI.getScalarizationOverhead( 6029 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6030 6031 // Some targets keep addresses scalar. 6032 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6033 return Cost; 6034 6035 // Some targets support efficient element stores. 6036 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6037 return Cost; 6038 6039 // Collect operands to consider. 6040 CallInst *CI = dyn_cast<CallInst>(I); 6041 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6042 6043 // Skip operands that do not require extraction/scalarization and do not incur 6044 // any overhead. 6045 return Cost + TTI.getOperandsScalarizationOverhead( 6046 filterExtractingOperands(Ops, VF), VF); 6047 } 6048 6049 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6050 if (VF == 1) 6051 return; 6052 NumPredStores = 0; 6053 for (BasicBlock *BB : TheLoop->blocks()) { 6054 // For each instruction in the old loop. 6055 for (Instruction &I : *BB) { 6056 Value *Ptr = getLoadStorePointerOperand(&I); 6057 if (!Ptr) 6058 continue; 6059 6060 // TODO: We should generate better code and update the cost model for 6061 // predicated uniform stores. Today they are treated as any other 6062 // predicated store (see added test cases in 6063 // invariant-store-vectorization.ll). 6064 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6065 NumPredStores++; 6066 6067 if (Legal->isUniform(Ptr) && 6068 // Conditional loads and stores should be scalarized and predicated. 6069 // isScalarWithPredication cannot be used here since masked 6070 // gather/scatters are not considered scalar with predication. 6071 !Legal->blockNeedsPredication(I.getParent())) { 6072 // TODO: Avoid replicating loads and stores instead of 6073 // relying on instcombine to remove them. 6074 // Load: Scalar load + broadcast 6075 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6076 unsigned Cost = getUniformMemOpCost(&I, VF); 6077 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6078 continue; 6079 } 6080 6081 // We assume that widening is the best solution when possible. 6082 if (memoryInstructionCanBeWidened(&I, VF)) { 6083 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6084 int ConsecutiveStride = 6085 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6086 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6087 "Expected consecutive stride."); 6088 InstWidening Decision = 6089 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6090 setWideningDecision(&I, VF, Decision, Cost); 6091 continue; 6092 } 6093 6094 // Choose between Interleaving, Gather/Scatter or Scalarization. 6095 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6096 unsigned NumAccesses = 1; 6097 if (isAccessInterleaved(&I)) { 6098 auto Group = getInterleavedAccessGroup(&I); 6099 assert(Group && "Fail to get an interleaved access group."); 6100 6101 // Make one decision for the whole group. 6102 if (getWideningDecision(&I, VF) != CM_Unknown) 6103 continue; 6104 6105 NumAccesses = Group->getNumMembers(); 6106 if (interleavedAccessCanBeWidened(&I, VF)) 6107 InterleaveCost = getInterleaveGroupCost(&I, VF); 6108 } 6109 6110 unsigned GatherScatterCost = 6111 isLegalGatherOrScatter(&I) 6112 ? getGatherScatterCost(&I, VF) * NumAccesses 6113 : std::numeric_limits<unsigned>::max(); 6114 6115 unsigned ScalarizationCost = 6116 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6117 6118 // Choose better solution for the current VF, 6119 // write down this decision and use it during vectorization. 6120 unsigned Cost; 6121 InstWidening Decision; 6122 if (InterleaveCost <= GatherScatterCost && 6123 InterleaveCost < ScalarizationCost) { 6124 Decision = CM_Interleave; 6125 Cost = InterleaveCost; 6126 } else if (GatherScatterCost < ScalarizationCost) { 6127 Decision = CM_GatherScatter; 6128 Cost = GatherScatterCost; 6129 } else { 6130 Decision = CM_Scalarize; 6131 Cost = ScalarizationCost; 6132 } 6133 // If the instructions belongs to an interleave group, the whole group 6134 // receives the same decision. The whole group receives the cost, but 6135 // the cost will actually be assigned to one instruction. 6136 if (auto Group = getInterleavedAccessGroup(&I)) 6137 setWideningDecision(Group, VF, Decision, Cost); 6138 else 6139 setWideningDecision(&I, VF, Decision, Cost); 6140 } 6141 } 6142 6143 // Make sure that any load of address and any other address computation 6144 // remains scalar unless there is gather/scatter support. This avoids 6145 // inevitable extracts into address registers, and also has the benefit of 6146 // activating LSR more, since that pass can't optimize vectorized 6147 // addresses. 6148 if (TTI.prefersVectorizedAddressing()) 6149 return; 6150 6151 // Start with all scalar pointer uses. 6152 SmallPtrSet<Instruction *, 8> AddrDefs; 6153 for (BasicBlock *BB : TheLoop->blocks()) 6154 for (Instruction &I : *BB) { 6155 Instruction *PtrDef = 6156 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6157 if (PtrDef && TheLoop->contains(PtrDef) && 6158 getWideningDecision(&I, VF) != CM_GatherScatter) 6159 AddrDefs.insert(PtrDef); 6160 } 6161 6162 // Add all instructions used to generate the addresses. 6163 SmallVector<Instruction *, 4> Worklist; 6164 for (auto *I : AddrDefs) 6165 Worklist.push_back(I); 6166 while (!Worklist.empty()) { 6167 Instruction *I = Worklist.pop_back_val(); 6168 for (auto &Op : I->operands()) 6169 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6170 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6171 AddrDefs.insert(InstOp).second) 6172 Worklist.push_back(InstOp); 6173 } 6174 6175 for (auto *I : AddrDefs) { 6176 if (isa<LoadInst>(I)) { 6177 // Setting the desired widening decision should ideally be handled in 6178 // by cost functions, but since this involves the task of finding out 6179 // if the loaded register is involved in an address computation, it is 6180 // instead changed here when we know this is the case. 6181 InstWidening Decision = getWideningDecision(I, VF); 6182 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6183 // Scalarize a widened load of address. 6184 setWideningDecision(I, VF, CM_Scalarize, 6185 (VF * getMemoryInstructionCost(I, 1))); 6186 else if (auto Group = getInterleavedAccessGroup(I)) { 6187 // Scalarize an interleave group of address loads. 6188 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6189 if (Instruction *Member = Group->getMember(I)) 6190 setWideningDecision(Member, VF, CM_Scalarize, 6191 (VF * getMemoryInstructionCost(Member, 1))); 6192 } 6193 } 6194 } else 6195 // Make sure I gets scalarized and a cost estimate without 6196 // scalarization overhead. 6197 ForcedScalars[VF].insert(I); 6198 } 6199 } 6200 6201 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6202 unsigned VF, 6203 Type *&VectorTy) { 6204 Type *RetTy = I->getType(); 6205 if (canTruncateToMinimalBitwidth(I, VF)) 6206 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6207 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6208 auto SE = PSE.getSE(); 6209 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6210 6211 // TODO: We need to estimate the cost of intrinsic calls. 6212 switch (I->getOpcode()) { 6213 case Instruction::GetElementPtr: 6214 // We mark this instruction as zero-cost because the cost of GEPs in 6215 // vectorized code depends on whether the corresponding memory instruction 6216 // is scalarized or not. Therefore, we handle GEPs with the memory 6217 // instruction cost. 6218 return 0; 6219 case Instruction::Br: { 6220 // In cases of scalarized and predicated instructions, there will be VF 6221 // predicated blocks in the vectorized loop. Each branch around these 6222 // blocks requires also an extract of its vector compare i1 element. 6223 bool ScalarPredicatedBB = false; 6224 BranchInst *BI = cast<BranchInst>(I); 6225 if (VF > 1 && BI->isConditional() && 6226 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6227 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6228 ScalarPredicatedBB = true; 6229 6230 if (ScalarPredicatedBB) { 6231 // Return cost for branches around scalarized and predicated blocks. 6232 auto *Vec_i1Ty = 6233 FixedVectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6234 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6235 false, true) + 6236 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF)); 6237 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6238 // The back-edge branch will remain, as will all scalar branches. 6239 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6240 else 6241 // This branch will be eliminated by if-conversion. 6242 return 0; 6243 // Note: We currently assume zero cost for an unconditional branch inside 6244 // a predicated block since it will become a fall-through, although we 6245 // may decide in the future to call TTI for all branches. 6246 } 6247 case Instruction::PHI: { 6248 auto *Phi = cast<PHINode>(I); 6249 6250 // First-order recurrences are replaced by vector shuffles inside the loop. 6251 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6252 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6253 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6254 cast<VectorType>(VectorTy), VF - 1, 6255 FixedVectorType::get(RetTy, 1)); 6256 6257 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6258 // converted into select instructions. We require N - 1 selects per phi 6259 // node, where N is the number of incoming values. 6260 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6261 return (Phi->getNumIncomingValues() - 1) * 6262 TTI.getCmpSelInstrCost( 6263 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6264 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6265 CostKind); 6266 6267 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6268 } 6269 case Instruction::UDiv: 6270 case Instruction::SDiv: 6271 case Instruction::URem: 6272 case Instruction::SRem: 6273 // If we have a predicated instruction, it may not be executed for each 6274 // vector lane. Get the scalarization cost and scale this amount by the 6275 // probability of executing the predicated block. If the instruction is not 6276 // predicated, we fall through to the next case. 6277 if (VF > 1 && isScalarWithPredication(I)) { 6278 unsigned Cost = 0; 6279 6280 // These instructions have a non-void type, so account for the phi nodes 6281 // that we will create. This cost is likely to be zero. The phi node 6282 // cost, if any, should be scaled by the block probability because it 6283 // models a copy at the end of each predicated block. 6284 Cost += VF * TTI.getCFInstrCost(Instruction::PHI, CostKind); 6285 6286 // The cost of the non-predicated instruction. 6287 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6288 6289 // The cost of insertelement and extractelement instructions needed for 6290 // scalarization. 6291 Cost += getScalarizationOverhead(I, VF); 6292 6293 // Scale the cost by the probability of executing the predicated blocks. 6294 // This assumes the predicated block for each vector lane is equally 6295 // likely. 6296 return Cost / getReciprocalPredBlockProb(); 6297 } 6298 LLVM_FALLTHROUGH; 6299 case Instruction::Add: 6300 case Instruction::FAdd: 6301 case Instruction::Sub: 6302 case Instruction::FSub: 6303 case Instruction::Mul: 6304 case Instruction::FMul: 6305 case Instruction::FDiv: 6306 case Instruction::FRem: 6307 case Instruction::Shl: 6308 case Instruction::LShr: 6309 case Instruction::AShr: 6310 case Instruction::And: 6311 case Instruction::Or: 6312 case Instruction::Xor: { 6313 // Since we will replace the stride by 1 the multiplication should go away. 6314 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6315 return 0; 6316 // Certain instructions can be cheaper to vectorize if they have a constant 6317 // second vector operand. One example of this are shifts on x86. 6318 Value *Op2 = I->getOperand(1); 6319 TargetTransformInfo::OperandValueProperties Op2VP; 6320 TargetTransformInfo::OperandValueKind Op2VK = 6321 TTI.getOperandInfo(Op2, Op2VP); 6322 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6323 Op2VK = TargetTransformInfo::OK_UniformValue; 6324 6325 SmallVector<const Value *, 4> Operands(I->operand_values()); 6326 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6327 return N * TTI.getArithmeticInstrCost( 6328 I->getOpcode(), VectorTy, CostKind, 6329 TargetTransformInfo::OK_AnyValue, 6330 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6331 } 6332 case Instruction::FNeg: { 6333 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6334 return N * TTI.getArithmeticInstrCost( 6335 I->getOpcode(), VectorTy, CostKind, 6336 TargetTransformInfo::OK_AnyValue, 6337 TargetTransformInfo::OK_AnyValue, 6338 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6339 I->getOperand(0), I); 6340 } 6341 case Instruction::Select: { 6342 SelectInst *SI = cast<SelectInst>(I); 6343 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6344 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6345 Type *CondTy = SI->getCondition()->getType(); 6346 if (!ScalarCond) 6347 CondTy = FixedVectorType::get(CondTy, VF); 6348 6349 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6350 CostKind, I); 6351 } 6352 case Instruction::ICmp: 6353 case Instruction::FCmp: { 6354 Type *ValTy = I->getOperand(0)->getType(); 6355 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6356 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6357 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6358 VectorTy = ToVectorTy(ValTy, VF); 6359 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6360 I); 6361 } 6362 case Instruction::Store: 6363 case Instruction::Load: { 6364 unsigned Width = VF; 6365 if (Width > 1) { 6366 InstWidening Decision = getWideningDecision(I, Width); 6367 assert(Decision != CM_Unknown && 6368 "CM decision should be taken at this point"); 6369 if (Decision == CM_Scalarize) 6370 Width = 1; 6371 } 6372 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6373 return getMemoryInstructionCost(I, VF); 6374 } 6375 case Instruction::ZExt: 6376 case Instruction::SExt: 6377 case Instruction::FPToUI: 6378 case Instruction::FPToSI: 6379 case Instruction::FPExt: 6380 case Instruction::PtrToInt: 6381 case Instruction::IntToPtr: 6382 case Instruction::SIToFP: 6383 case Instruction::UIToFP: 6384 case Instruction::Trunc: 6385 case Instruction::FPTrunc: 6386 case Instruction::BitCast: { 6387 // We optimize the truncation of induction variables having constant 6388 // integer steps. The cost of these truncations is the same as the scalar 6389 // operation. 6390 if (isOptimizableIVTruncate(I, VF)) { 6391 auto *Trunc = cast<TruncInst>(I); 6392 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6393 Trunc->getSrcTy(), CostKind, Trunc); 6394 } 6395 6396 Type *SrcScalarTy = I->getOperand(0)->getType(); 6397 Type *SrcVecTy = 6398 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6399 if (canTruncateToMinimalBitwidth(I, VF)) { 6400 // This cast is going to be shrunk. This may remove the cast or it might 6401 // turn it into slightly different cast. For example, if MinBW == 16, 6402 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6403 // 6404 // Calculate the modified src and dest types. 6405 Type *MinVecTy = VectorTy; 6406 if (I->getOpcode() == Instruction::Trunc) { 6407 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6408 VectorTy = 6409 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6410 } else if (I->getOpcode() == Instruction::ZExt || 6411 I->getOpcode() == Instruction::SExt) { 6412 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6413 VectorTy = 6414 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6415 } 6416 } 6417 6418 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6419 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6420 CostKind, I); 6421 } 6422 case Instruction::Call: { 6423 bool NeedToScalarize; 6424 CallInst *CI = cast<CallInst>(I); 6425 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6426 if (getVectorIntrinsicIDForCall(CI, TLI)) 6427 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6428 return CallCost; 6429 } 6430 default: 6431 // The cost of executing VF copies of the scalar instruction. This opcode 6432 // is unknown. Assume that it is the same as 'mul'. 6433 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6434 CostKind) + 6435 getScalarizationOverhead(I, VF); 6436 } // end of switch. 6437 } 6438 6439 char LoopVectorize::ID = 0; 6440 6441 static const char lv_name[] = "Loop Vectorization"; 6442 6443 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6444 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6445 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6446 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6447 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6448 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6449 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6450 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6451 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6452 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6453 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6454 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6455 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6456 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6457 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6458 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6459 6460 namespace llvm { 6461 6462 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6463 6464 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6465 bool VectorizeOnlyWhenForced) { 6466 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6467 } 6468 6469 } // end namespace llvm 6470 6471 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6472 // Check if the pointer operand of a load or store instruction is 6473 // consecutive. 6474 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6475 return Legal->isConsecutivePtr(Ptr); 6476 return false; 6477 } 6478 6479 void LoopVectorizationCostModel::collectValuesToIgnore() { 6480 // Ignore ephemeral values. 6481 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6482 6483 // Ignore type-promoting instructions we identified during reduction 6484 // detection. 6485 for (auto &Reduction : Legal->getReductionVars()) { 6486 RecurrenceDescriptor &RedDes = Reduction.second; 6487 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6488 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6489 } 6490 // Ignore type-casting instructions we identified during induction 6491 // detection. 6492 for (auto &Induction : Legal->getInductionVars()) { 6493 InductionDescriptor &IndDes = Induction.second; 6494 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6495 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6496 } 6497 } 6498 6499 // TODO: we could return a pair of values that specify the max VF and 6500 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6501 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6502 // doesn't have a cost model that can choose which plan to execute if 6503 // more than one is generated. 6504 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6505 LoopVectorizationCostModel &CM) { 6506 unsigned WidestType; 6507 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6508 return WidestVectorRegBits / WidestType; 6509 } 6510 6511 VectorizationFactor 6512 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6513 unsigned VF = UserVF; 6514 // Outer loop handling: They may require CFG and instruction level 6515 // transformations before even evaluating whether vectorization is profitable. 6516 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6517 // the vectorization pipeline. 6518 if (!OrigLoop->empty()) { 6519 // If the user doesn't provide a vectorization factor, determine a 6520 // reasonable one. 6521 if (!UserVF) { 6522 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6523 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6524 6525 // Make sure we have a VF > 1 for stress testing. 6526 if (VPlanBuildStressTest && VF < 2) { 6527 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6528 << "overriding computed VF.\n"); 6529 VF = 4; 6530 } 6531 } 6532 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6533 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6534 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6535 << " to build VPlans.\n"); 6536 buildVPlans(VF, VF); 6537 6538 // For VPlan build stress testing, we bail out after VPlan construction. 6539 if (VPlanBuildStressTest) 6540 return VectorizationFactor::Disabled(); 6541 6542 return {VF, 0}; 6543 } 6544 6545 LLVM_DEBUG( 6546 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6547 "VPlan-native path.\n"); 6548 return VectorizationFactor::Disabled(); 6549 } 6550 6551 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF, 6552 unsigned UserIC) { 6553 assert(OrigLoop->empty() && "Inner loop expected."); 6554 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 6555 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6556 return None; 6557 6558 // Invalidate interleave groups if all blocks of loop will be predicated. 6559 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6560 !useMaskedInterleavedAccesses(*TTI)) { 6561 LLVM_DEBUG( 6562 dbgs() 6563 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6564 "which requires masked-interleaved support.\n"); 6565 if (CM.InterleaveInfo.invalidateGroups()) 6566 // Invalidating interleave groups also requires invalidating all decisions 6567 // based on them, which includes widening decisions and uniform and scalar 6568 // values. 6569 CM.invalidateCostModelingDecisions(); 6570 } 6571 6572 if (UserVF) { 6573 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6574 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6575 // Collect the instructions (and their associated costs) that will be more 6576 // profitable to scalarize. 6577 CM.selectUserVectorizationFactor(UserVF); 6578 buildVPlansWithVPRecipes(UserVF, UserVF); 6579 LLVM_DEBUG(printPlans(dbgs())); 6580 return {{UserVF, 0}}; 6581 } 6582 6583 unsigned MaxVF = MaybeMaxVF.getValue(); 6584 assert(MaxVF != 0 && "MaxVF is zero."); 6585 6586 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6587 // Collect Uniform and Scalar instructions after vectorization with VF. 6588 CM.collectUniformsAndScalars(VF); 6589 6590 // Collect the instructions (and their associated costs) that will be more 6591 // profitable to scalarize. 6592 if (VF > 1) 6593 CM.collectInstsToScalarize(VF); 6594 } 6595 6596 buildVPlansWithVPRecipes(1, MaxVF); 6597 LLVM_DEBUG(printPlans(dbgs())); 6598 if (MaxVF == 1) 6599 return VectorizationFactor::Disabled(); 6600 6601 // Select the optimal vectorization factor. 6602 return CM.selectVectorizationFactor(MaxVF); 6603 } 6604 6605 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6606 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6607 << '\n'); 6608 BestVF = VF; 6609 BestUF = UF; 6610 6611 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6612 return !Plan->hasVF(VF); 6613 }); 6614 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6615 } 6616 6617 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6618 DominatorTree *DT) { 6619 // Perform the actual loop transformation. 6620 6621 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6622 VPCallbackILV CallbackILV(ILV); 6623 6624 VPTransformState State{BestVF, BestUF, LI, 6625 DT, ILV.Builder, ILV.VectorLoopValueMap, 6626 &ILV, CallbackILV}; 6627 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6628 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6629 State.CanonicalIV = ILV.Induction; 6630 6631 //===------------------------------------------------===// 6632 // 6633 // Notice: any optimization or new instruction that go 6634 // into the code below should also be implemented in 6635 // the cost-model. 6636 // 6637 //===------------------------------------------------===// 6638 6639 // 2. Copy and widen instructions from the old loop into the new loop. 6640 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6641 VPlans.front()->execute(&State); 6642 6643 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6644 // predication, updating analyses. 6645 ILV.fixVectorizedLoop(); 6646 } 6647 6648 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6649 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6650 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6651 6652 // We create new control-flow for the vectorized loop, so the original 6653 // condition will be dead after vectorization if it's only used by the 6654 // branch. 6655 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6656 if (Cmp && Cmp->hasOneUse()) 6657 DeadInstructions.insert(Cmp); 6658 6659 // We create new "steps" for induction variable updates to which the original 6660 // induction variables map. An original update instruction will be dead if 6661 // all its users except the induction variable are dead. 6662 for (auto &Induction : Legal->getInductionVars()) { 6663 PHINode *Ind = Induction.first; 6664 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6665 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6666 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6667 })) 6668 DeadInstructions.insert(IndUpdate); 6669 6670 // We record as "Dead" also the type-casting instructions we had identified 6671 // during induction analysis. We don't need any handling for them in the 6672 // vectorized loop because we have proven that, under a proper runtime 6673 // test guarding the vectorized loop, the value of the phi, and the casted 6674 // value of the phi, are the same. The last instruction in this casting chain 6675 // will get its scalar/vector/widened def from the scalar/vector/widened def 6676 // of the respective phi node. Any other casts in the induction def-use chain 6677 // have no other uses outside the phi update chain, and will be ignored. 6678 InductionDescriptor &IndDes = Induction.second; 6679 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6680 DeadInstructions.insert(Casts.begin(), Casts.end()); 6681 } 6682 } 6683 6684 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6685 6686 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6687 6688 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6689 Instruction::BinaryOps BinOp) { 6690 // When unrolling and the VF is 1, we only need to add a simple scalar. 6691 Type *Ty = Val->getType(); 6692 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6693 6694 if (Ty->isFloatingPointTy()) { 6695 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6696 6697 // Floating point operations had to be 'fast' to enable the unrolling. 6698 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6699 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6700 } 6701 Constant *C = ConstantInt::get(Ty, StartIdx); 6702 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6703 } 6704 6705 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6706 SmallVector<Metadata *, 4> MDs; 6707 // Reserve first location for self reference to the LoopID metadata node. 6708 MDs.push_back(nullptr); 6709 bool IsUnrollMetadata = false; 6710 MDNode *LoopID = L->getLoopID(); 6711 if (LoopID) { 6712 // First find existing loop unrolling disable metadata. 6713 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6714 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6715 if (MD) { 6716 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6717 IsUnrollMetadata = 6718 S && S->getString().startswith("llvm.loop.unroll.disable"); 6719 } 6720 MDs.push_back(LoopID->getOperand(i)); 6721 } 6722 } 6723 6724 if (!IsUnrollMetadata) { 6725 // Add runtime unroll disable metadata. 6726 LLVMContext &Context = L->getHeader()->getContext(); 6727 SmallVector<Metadata *, 1> DisableOperands; 6728 DisableOperands.push_back( 6729 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6730 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6731 MDs.push_back(DisableNode); 6732 MDNode *NewLoopID = MDNode::get(Context, MDs); 6733 // Set operand 0 to refer to the loop id itself. 6734 NewLoopID->replaceOperandWith(0, NewLoopID); 6735 L->setLoopID(NewLoopID); 6736 } 6737 } 6738 6739 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6740 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6741 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6742 bool PredicateAtRangeStart = Predicate(Range.Start); 6743 6744 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6745 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6746 Range.End = TmpVF; 6747 break; 6748 } 6749 6750 return PredicateAtRangeStart; 6751 } 6752 6753 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6754 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6755 /// of VF's starting at a given VF and extending it as much as possible. Each 6756 /// vectorization decision can potentially shorten this sub-range during 6757 /// buildVPlan(). 6758 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6759 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6760 VFRange SubRange = {VF, MaxVF + 1}; 6761 VPlans.push_back(buildVPlan(SubRange)); 6762 VF = SubRange.End; 6763 } 6764 } 6765 6766 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6767 VPlanPtr &Plan) { 6768 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6769 6770 // Look for cached value. 6771 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6772 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6773 if (ECEntryIt != EdgeMaskCache.end()) 6774 return ECEntryIt->second; 6775 6776 VPValue *SrcMask = createBlockInMask(Src, Plan); 6777 6778 // The terminator has to be a branch inst! 6779 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6780 assert(BI && "Unexpected terminator found"); 6781 6782 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6783 return EdgeMaskCache[Edge] = SrcMask; 6784 6785 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6786 assert(EdgeMask && "No Edge Mask found for condition"); 6787 6788 if (BI->getSuccessor(0) != Dst) 6789 EdgeMask = Builder.createNot(EdgeMask); 6790 6791 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6792 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6793 6794 return EdgeMaskCache[Edge] = EdgeMask; 6795 } 6796 6797 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6798 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6799 6800 // Look for cached value. 6801 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6802 if (BCEntryIt != BlockMaskCache.end()) 6803 return BCEntryIt->second; 6804 6805 // All-one mask is modelled as no-mask following the convention for masked 6806 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6807 VPValue *BlockMask = nullptr; 6808 6809 if (OrigLoop->getHeader() == BB) { 6810 if (!CM.blockNeedsPredication(BB)) 6811 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6812 6813 // Introduce the early-exit compare IV <= BTC to form header block mask. 6814 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6815 // Start by constructing the desired canonical IV. 6816 VPValue *IV = nullptr; 6817 if (Legal->getPrimaryInduction()) 6818 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6819 else { 6820 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6821 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6822 IV = IVRecipe->getVPValue(); 6823 } 6824 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6825 bool TailFolded = !CM.isScalarEpilogueAllowed(); 6826 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) 6827 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, BTC}); 6828 else 6829 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6830 return BlockMaskCache[BB] = BlockMask; 6831 } 6832 6833 // This is the block mask. We OR all incoming edges. 6834 for (auto *Predecessor : predecessors(BB)) { 6835 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6836 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6837 return BlockMaskCache[BB] = EdgeMask; 6838 6839 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6840 BlockMask = EdgeMask; 6841 continue; 6842 } 6843 6844 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6845 } 6846 6847 return BlockMaskCache[BB] = BlockMask; 6848 } 6849 6850 VPWidenMemoryInstructionRecipe * 6851 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6852 VPlanPtr &Plan) { 6853 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6854 "Must be called with either a load or store"); 6855 6856 auto willWiden = [&](unsigned VF) -> bool { 6857 if (VF == 1) 6858 return false; 6859 LoopVectorizationCostModel::InstWidening Decision = 6860 CM.getWideningDecision(I, VF); 6861 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6862 "CM decision should be taken at this point."); 6863 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6864 return true; 6865 if (CM.isScalarAfterVectorization(I, VF) || 6866 CM.isProfitableToScalarize(I, VF)) 6867 return false; 6868 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6869 }; 6870 6871 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6872 return nullptr; 6873 6874 VPValue *Mask = nullptr; 6875 if (Legal->isMaskRequired(I)) 6876 Mask = createBlockInMask(I->getParent(), Plan); 6877 6878 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6879 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6880 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6881 6882 StoreInst *Store = cast<StoreInst>(I); 6883 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6884 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6885 } 6886 6887 VPWidenIntOrFpInductionRecipe * 6888 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6889 // Check if this is an integer or fp induction. If so, build the recipe that 6890 // produces its scalar and vector values. 6891 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6892 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6893 II.getKind() == InductionDescriptor::IK_FpInduction) 6894 return new VPWidenIntOrFpInductionRecipe(Phi); 6895 6896 return nullptr; 6897 } 6898 6899 VPWidenIntOrFpInductionRecipe * 6900 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6901 VFRange &Range) const { 6902 // Optimize the special case where the source is a constant integer 6903 // induction variable. Notice that we can only optimize the 'trunc' case 6904 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6905 // (c) other casts depend on pointer size. 6906 6907 // Determine whether \p K is a truncation based on an induction variable that 6908 // can be optimized. 6909 auto isOptimizableIVTruncate = 6910 [&](Instruction *K) -> std::function<bool(unsigned)> { 6911 return 6912 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6913 }; 6914 6915 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6916 isOptimizableIVTruncate(I), Range)) 6917 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6918 I); 6919 return nullptr; 6920 } 6921 6922 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6923 // We know that all PHIs in non-header blocks are converted into selects, so 6924 // we don't have to worry about the insertion order and we can just use the 6925 // builder. At this point we generate the predication tree. There may be 6926 // duplications since this is a simple recursive scan, but future 6927 // optimizations will clean it up. 6928 6929 SmallVector<VPValue *, 2> Operands; 6930 unsigned NumIncoming = Phi->getNumIncomingValues(); 6931 for (unsigned In = 0; In < NumIncoming; In++) { 6932 VPValue *EdgeMask = 6933 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6934 assert((EdgeMask || NumIncoming == 1) && 6935 "Multiple predecessors with one having a full mask"); 6936 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 6937 if (EdgeMask) 6938 Operands.push_back(EdgeMask); 6939 } 6940 return new VPBlendRecipe(Phi, Operands); 6941 } 6942 6943 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 6944 VPlan &Plan) const { 6945 6946 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6947 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 6948 Range); 6949 6950 if (IsPredicated) 6951 return nullptr; 6952 6953 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6954 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6955 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6956 return nullptr; 6957 6958 auto willWiden = [&](unsigned VF) -> bool { 6959 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6960 // The following case may be scalarized depending on the VF. 6961 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6962 // version of the instruction. 6963 // Is it beneficial to perform intrinsic call compared to lib call? 6964 bool NeedToScalarize = false; 6965 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6966 bool UseVectorIntrinsic = 6967 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6968 return UseVectorIntrinsic || !NeedToScalarize; 6969 }; 6970 6971 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6972 return nullptr; 6973 6974 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 6975 } 6976 6977 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 6978 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 6979 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 6980 // Instruction should be widened, unless it is scalar after vectorization, 6981 // scalarization is profitable or it is predicated. 6982 auto WillScalarize = [this, I](unsigned VF) -> bool { 6983 return CM.isScalarAfterVectorization(I, VF) || 6984 CM.isProfitableToScalarize(I, VF) || 6985 CM.isScalarWithPredication(I, VF); 6986 }; 6987 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 6988 Range); 6989 } 6990 6991 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 6992 auto IsVectorizableOpcode = [](unsigned Opcode) { 6993 switch (Opcode) { 6994 case Instruction::Add: 6995 case Instruction::And: 6996 case Instruction::AShr: 6997 case Instruction::BitCast: 6998 case Instruction::FAdd: 6999 case Instruction::FCmp: 7000 case Instruction::FDiv: 7001 case Instruction::FMul: 7002 case Instruction::FNeg: 7003 case Instruction::FPExt: 7004 case Instruction::FPToSI: 7005 case Instruction::FPToUI: 7006 case Instruction::FPTrunc: 7007 case Instruction::FRem: 7008 case Instruction::FSub: 7009 case Instruction::ICmp: 7010 case Instruction::IntToPtr: 7011 case Instruction::LShr: 7012 case Instruction::Mul: 7013 case Instruction::Or: 7014 case Instruction::PtrToInt: 7015 case Instruction::SDiv: 7016 case Instruction::Select: 7017 case Instruction::SExt: 7018 case Instruction::Shl: 7019 case Instruction::SIToFP: 7020 case Instruction::SRem: 7021 case Instruction::Sub: 7022 case Instruction::Trunc: 7023 case Instruction::UDiv: 7024 case Instruction::UIToFP: 7025 case Instruction::URem: 7026 case Instruction::Xor: 7027 case Instruction::ZExt: 7028 return true; 7029 } 7030 return false; 7031 }; 7032 7033 if (!IsVectorizableOpcode(I->getOpcode())) 7034 return nullptr; 7035 7036 // Success: widen this instruction. 7037 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7038 } 7039 7040 VPBasicBlock *VPRecipeBuilder::handleReplication( 7041 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7042 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7043 VPlanPtr &Plan) { 7044 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7045 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7046 Range); 7047 7048 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7049 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7050 7051 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7052 IsUniform, IsPredicated); 7053 setRecipe(I, Recipe); 7054 7055 // Find if I uses a predicated instruction. If so, it will use its scalar 7056 // value. Avoid hoisting the insert-element which packs the scalar value into 7057 // a vector value, as that happens iff all users use the vector value. 7058 for (auto &Op : I->operands()) 7059 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7060 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7061 PredInst2Recipe[PredInst]->setAlsoPack(false); 7062 7063 // Finalize the recipe for Instr, first if it is not predicated. 7064 if (!IsPredicated) { 7065 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7066 VPBB->appendRecipe(Recipe); 7067 return VPBB; 7068 } 7069 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7070 assert(VPBB->getSuccessors().empty() && 7071 "VPBB has successors when handling predicated replication."); 7072 // Record predicated instructions for above packing optimizations. 7073 PredInst2Recipe[I] = Recipe; 7074 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7075 VPBlockUtils::insertBlockAfter(Region, VPBB); 7076 auto *RegSucc = new VPBasicBlock(); 7077 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7078 return RegSucc; 7079 } 7080 7081 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7082 VPRecipeBase *PredRecipe, 7083 VPlanPtr &Plan) { 7084 // Instructions marked for predication are replicated and placed under an 7085 // if-then construct to prevent side-effects. 7086 7087 // Generate recipes to compute the block mask for this region. 7088 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7089 7090 // Build the triangular if-then region. 7091 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7092 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7093 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7094 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7095 auto *PHIRecipe = 7096 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7097 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7098 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7099 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7100 7101 // Note: first set Entry as region entry and then connect successors starting 7102 // from it in order, to propagate the "parent" of each VPBasicBlock. 7103 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7104 VPBlockUtils::connectBlocks(Pred, Exit); 7105 7106 return Region; 7107 } 7108 7109 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7110 VFRange &Range, 7111 VPlanPtr &Plan) { 7112 // First, check for specific widening recipes that deal with calls, memory 7113 // operations, inductions and Phi nodes. 7114 if (auto *CI = dyn_cast<CallInst>(Instr)) 7115 return tryToWidenCall(CI, Range, *Plan); 7116 7117 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7118 return tryToWidenMemory(Instr, Range, Plan); 7119 7120 VPRecipeBase *Recipe; 7121 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7122 if (Phi->getParent() != OrigLoop->getHeader()) 7123 return tryToBlend(Phi, Plan); 7124 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7125 return Recipe; 7126 return new VPWidenPHIRecipe(Phi); 7127 } 7128 7129 if (isa<TruncInst>(Instr) && 7130 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7131 return Recipe; 7132 7133 if (!shouldWiden(Instr, Range)) 7134 return nullptr; 7135 7136 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7137 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7138 OrigLoop); 7139 7140 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7141 bool InvariantCond = 7142 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7143 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7144 InvariantCond); 7145 } 7146 7147 return tryToWiden(Instr, *Plan); 7148 } 7149 7150 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7151 unsigned MaxVF) { 7152 assert(OrigLoop->empty() && "Inner loop expected."); 7153 7154 // Collect conditions feeding internal conditional branches; they need to be 7155 // represented in VPlan for it to model masking. 7156 SmallPtrSet<Value *, 1> NeedDef; 7157 7158 auto *Latch = OrigLoop->getLoopLatch(); 7159 for (BasicBlock *BB : OrigLoop->blocks()) { 7160 if (BB == Latch) 7161 continue; 7162 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7163 if (Branch && Branch->isConditional()) 7164 NeedDef.insert(Branch->getCondition()); 7165 } 7166 7167 // If the tail is to be folded by masking, the primary induction variable, if 7168 // exists needs to be represented in VPlan for it to model early-exit masking. 7169 // Also, both the Phi and the live-out instruction of each reduction are 7170 // required in order to introduce a select between them in VPlan. 7171 if (CM.foldTailByMasking()) { 7172 if (Legal->getPrimaryInduction()) 7173 NeedDef.insert(Legal->getPrimaryInduction()); 7174 for (auto &Reduction : Legal->getReductionVars()) { 7175 NeedDef.insert(Reduction.first); 7176 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7177 } 7178 } 7179 7180 // Collect instructions from the original loop that will become trivially dead 7181 // in the vectorized loop. We don't need to vectorize these instructions. For 7182 // example, original induction update instructions can become dead because we 7183 // separately emit induction "steps" when generating code for the new loop. 7184 // Similarly, we create a new latch condition when setting up the structure 7185 // of the new loop, so the old one can become dead. 7186 SmallPtrSet<Instruction *, 4> DeadInstructions; 7187 collectTriviallyDeadInstructions(DeadInstructions); 7188 7189 // Add assume instructions we need to drop to DeadInstructions, to prevent 7190 // them from being added to the VPlan. 7191 // TODO: We only need to drop assumes in blocks that get flattend. If the 7192 // control flow is preserved, we should keep them. 7193 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7194 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7195 7196 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7197 // Dead instructions do not need sinking. Remove them from SinkAfter. 7198 for (Instruction *I : DeadInstructions) 7199 SinkAfter.erase(I); 7200 7201 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7202 VFRange SubRange = {VF, MaxVF + 1}; 7203 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7204 DeadInstructions, SinkAfter)); 7205 VF = SubRange.End; 7206 } 7207 } 7208 7209 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7210 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7211 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7212 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7213 7214 // Hold a mapping from predicated instructions to their recipes, in order to 7215 // fix their AlsoPack behavior if a user is determined to replicate and use a 7216 // scalar instead of vector value. 7217 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7218 7219 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7220 7221 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7222 7223 // --------------------------------------------------------------------------- 7224 // Pre-construction: record ingredients whose recipes we'll need to further 7225 // process after constructing the initial VPlan. 7226 // --------------------------------------------------------------------------- 7227 7228 // Mark instructions we'll need to sink later and their targets as 7229 // ingredients whose recipe we'll need to record. 7230 for (auto &Entry : SinkAfter) { 7231 RecipeBuilder.recordRecipeOf(Entry.first); 7232 RecipeBuilder.recordRecipeOf(Entry.second); 7233 } 7234 7235 // For each interleave group which is relevant for this (possibly trimmed) 7236 // Range, add it to the set of groups to be later applied to the VPlan and add 7237 // placeholders for its members' Recipes which we'll be replacing with a 7238 // single VPInterleaveRecipe. 7239 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7240 auto applyIG = [IG, this](unsigned VF) -> bool { 7241 return (VF >= 2 && // Query is illegal for VF == 1 7242 CM.getWideningDecision(IG->getInsertPos(), VF) == 7243 LoopVectorizationCostModel::CM_Interleave); 7244 }; 7245 if (!getDecisionAndClampRange(applyIG, Range)) 7246 continue; 7247 InterleaveGroups.insert(IG); 7248 for (unsigned i = 0; i < IG->getFactor(); i++) 7249 if (Instruction *Member = IG->getMember(i)) 7250 RecipeBuilder.recordRecipeOf(Member); 7251 }; 7252 7253 // --------------------------------------------------------------------------- 7254 // Build initial VPlan: Scan the body of the loop in a topological order to 7255 // visit each basic block after having visited its predecessor basic blocks. 7256 // --------------------------------------------------------------------------- 7257 7258 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7259 auto Plan = std::make_unique<VPlan>(); 7260 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7261 Plan->setEntry(VPBB); 7262 7263 // Represent values that will have defs inside VPlan. 7264 for (Value *V : NeedDef) 7265 Plan->addVPValue(V); 7266 7267 // Scan the body of the loop in a topological order to visit each basic block 7268 // after having visited its predecessor basic blocks. 7269 LoopBlocksDFS DFS(OrigLoop); 7270 DFS.perform(LI); 7271 7272 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7273 // Relevant instructions from basic block BB will be grouped into VPRecipe 7274 // ingredients and fill a new VPBasicBlock. 7275 unsigned VPBBsForBB = 0; 7276 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7277 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7278 VPBB = FirstVPBBForBB; 7279 Builder.setInsertPoint(VPBB); 7280 7281 // Introduce each ingredient into VPlan. 7282 // TODO: Model and preserve debug instrinsics in VPlan. 7283 for (Instruction &I : BB->instructionsWithoutDebug()) { 7284 Instruction *Instr = &I; 7285 7286 // First filter out irrelevant instructions, to ensure no recipes are 7287 // built for them. 7288 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7289 continue; 7290 7291 if (auto Recipe = 7292 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7293 RecipeBuilder.setRecipe(Instr, Recipe); 7294 VPBB->appendRecipe(Recipe); 7295 continue; 7296 } 7297 7298 // Otherwise, if all widening options failed, Instruction is to be 7299 // replicated. This may create a successor for VPBB. 7300 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7301 Instr, Range, VPBB, PredInst2Recipe, Plan); 7302 if (NextVPBB != VPBB) { 7303 VPBB = NextVPBB; 7304 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7305 : ""); 7306 } 7307 } 7308 } 7309 7310 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7311 // may also be empty, such as the last one VPBB, reflecting original 7312 // basic-blocks with no recipes. 7313 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7314 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7315 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7316 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7317 delete PreEntry; 7318 7319 // --------------------------------------------------------------------------- 7320 // Transform initial VPlan: Apply previously taken decisions, in order, to 7321 // bring the VPlan to its final state. 7322 // --------------------------------------------------------------------------- 7323 7324 // Apply Sink-After legal constraints. 7325 for (auto &Entry : SinkAfter) { 7326 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7327 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7328 Sink->moveAfter(Target); 7329 } 7330 7331 // Interleave memory: for each Interleave Group we marked earlier as relevant 7332 // for this VPlan, replace the Recipes widening its memory instructions with a 7333 // single VPInterleaveRecipe at its insertion point. 7334 for (auto IG : InterleaveGroups) { 7335 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7336 RecipeBuilder.getRecipe(IG->getInsertPos())); 7337 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7338 ->insertBefore(Recipe); 7339 7340 for (unsigned i = 0; i < IG->getFactor(); ++i) 7341 if (Instruction *Member = IG->getMember(i)) { 7342 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7343 } 7344 } 7345 7346 // Finally, if tail is folded by masking, introduce selects between the phi 7347 // and the live-out instruction of each reduction, at the end of the latch. 7348 if (CM.foldTailByMasking()) { 7349 Builder.setInsertPoint(VPBB); 7350 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7351 for (auto &Reduction : Legal->getReductionVars()) { 7352 VPValue *Phi = Plan->getVPValue(Reduction.first); 7353 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7354 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7355 } 7356 } 7357 7358 std::string PlanName; 7359 raw_string_ostream RSO(PlanName); 7360 unsigned VF = Range.Start; 7361 Plan->addVF(VF); 7362 RSO << "Initial VPlan for VF={" << VF; 7363 for (VF *= 2; VF < Range.End; VF *= 2) { 7364 Plan->addVF(VF); 7365 RSO << "," << VF; 7366 } 7367 RSO << "},UF>=1"; 7368 RSO.flush(); 7369 Plan->setName(PlanName); 7370 7371 return Plan; 7372 } 7373 7374 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7375 // Outer loop handling: They may require CFG and instruction level 7376 // transformations before even evaluating whether vectorization is profitable. 7377 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7378 // the vectorization pipeline. 7379 assert(!OrigLoop->empty()); 7380 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7381 7382 // Create new empty VPlan 7383 auto Plan = std::make_unique<VPlan>(); 7384 7385 // Build hierarchical CFG 7386 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7387 HCFGBuilder.buildHierarchicalCFG(); 7388 7389 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7390 Plan->addVF(VF); 7391 7392 if (EnableVPlanPredication) { 7393 VPlanPredicator VPP(*Plan); 7394 VPP.predicate(); 7395 7396 // Avoid running transformation to recipes until masked code generation in 7397 // VPlan-native path is in place. 7398 return Plan; 7399 } 7400 7401 SmallPtrSet<Instruction *, 1> DeadInstructions; 7402 VPlanTransforms::VPInstructionsToVPRecipes( 7403 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7404 return Plan; 7405 } 7406 7407 Value* LoopVectorizationPlanner::VPCallbackILV:: 7408 getOrCreateVectorValues(Value *V, unsigned Part) { 7409 return ILV.getOrCreateVectorValue(V, Part); 7410 } 7411 7412 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7413 Value *V, const VPIteration &Instance) { 7414 return ILV.getOrCreateScalarValue(V, Instance); 7415 } 7416 7417 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7418 VPSlotTracker &SlotTracker) const { 7419 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7420 IG->getInsertPos()->printAsOperand(O, false); 7421 O << ", "; 7422 getAddr()->printAsOperand(O, SlotTracker); 7423 VPValue *Mask = getMask(); 7424 if (Mask) { 7425 O << ", "; 7426 Mask->printAsOperand(O, SlotTracker); 7427 } 7428 for (unsigned i = 0; i < IG->getFactor(); ++i) 7429 if (Instruction *I = IG->getMember(i)) 7430 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7431 } 7432 7433 void VPWidenCallRecipe::execute(VPTransformState &State) { 7434 State.ILV->widenCallInstruction(Ingredient, User, State); 7435 } 7436 7437 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7438 State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State); 7439 } 7440 7441 void VPWidenRecipe::execute(VPTransformState &State) { 7442 State.ILV->widenInstruction(Ingredient, User, State); 7443 } 7444 7445 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7446 State.ILV->widenGEP(GEP, User, State.UF, State.VF, IsPtrLoopInvariant, 7447 IsIndexLoopInvariant, State); 7448 } 7449 7450 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7451 assert(!State.Instance && "Int or FP induction being replicated."); 7452 State.ILV->widenIntOrFpInduction(IV, Trunc); 7453 } 7454 7455 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7456 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7457 } 7458 7459 void VPBlendRecipe::execute(VPTransformState &State) { 7460 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7461 // We know that all PHIs in non-header blocks are converted into 7462 // selects, so we don't have to worry about the insertion order and we 7463 // can just use the builder. 7464 // At this point we generate the predication tree. There may be 7465 // duplications since this is a simple recursive scan, but future 7466 // optimizations will clean it up. 7467 7468 unsigned NumIncoming = getNumIncomingValues(); 7469 7470 // Generate a sequence of selects of the form: 7471 // SELECT(Mask3, In3, 7472 // SELECT(Mask2, In2, 7473 // SELECT(Mask1, In1, 7474 // In0))) 7475 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7476 // are essentially undef are taken from In0. 7477 InnerLoopVectorizer::VectorParts Entry(State.UF); 7478 for (unsigned In = 0; In < NumIncoming; ++In) { 7479 for (unsigned Part = 0; Part < State.UF; ++Part) { 7480 // We might have single edge PHIs (blocks) - use an identity 7481 // 'select' for the first PHI operand. 7482 Value *In0 = State.get(getIncomingValue(In), Part); 7483 if (In == 0) 7484 Entry[Part] = In0; // Initialize with the first incoming value. 7485 else { 7486 // Select between the current value and the previous incoming edge 7487 // based on the incoming mask. 7488 Value *Cond = State.get(getMask(In), Part); 7489 Entry[Part] = 7490 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7491 } 7492 } 7493 } 7494 for (unsigned Part = 0; Part < State.UF; ++Part) 7495 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7496 } 7497 7498 void VPInterleaveRecipe::execute(VPTransformState &State) { 7499 assert(!State.Instance && "Interleave group being replicated."); 7500 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7501 } 7502 7503 void VPReplicateRecipe::execute(VPTransformState &State) { 7504 if (State.Instance) { // Generate a single instance. 7505 State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance, 7506 IsPredicated, State); 7507 // Insert scalar instance packing it into a vector. 7508 if (AlsoPack && State.VF > 1) { 7509 // If we're constructing lane 0, initialize to start from undef. 7510 if (State.Instance->Lane == 0) { 7511 Value *Undef = UndefValue::get( 7512 FixedVectorType::get(Ingredient->getType(), State.VF)); 7513 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7514 } 7515 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7516 } 7517 return; 7518 } 7519 7520 // Generate scalar instances for all VF lanes of all UF parts, unless the 7521 // instruction is uniform inwhich case generate only the first lane for each 7522 // of the UF parts. 7523 unsigned EndLane = IsUniform ? 1 : State.VF; 7524 for (unsigned Part = 0; Part < State.UF; ++Part) 7525 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7526 State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane}, 7527 IsPredicated, State); 7528 } 7529 7530 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7531 assert(State.Instance && "Branch on Mask works only on single instance."); 7532 7533 unsigned Part = State.Instance->Part; 7534 unsigned Lane = State.Instance->Lane; 7535 7536 Value *ConditionBit = nullptr; 7537 VPValue *BlockInMask = getMask(); 7538 if (BlockInMask) { 7539 ConditionBit = State.get(BlockInMask, Part); 7540 if (ConditionBit->getType()->isVectorTy()) 7541 ConditionBit = State.Builder.CreateExtractElement( 7542 ConditionBit, State.Builder.getInt32(Lane)); 7543 } else // Block in mask is all-one. 7544 ConditionBit = State.Builder.getTrue(); 7545 7546 // Replace the temporary unreachable terminator with a new conditional branch, 7547 // whose two destinations will be set later when they are created. 7548 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7549 assert(isa<UnreachableInst>(CurrentTerminator) && 7550 "Expected to replace unreachable terminator with conditional branch."); 7551 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7552 CondBr->setSuccessor(0, nullptr); 7553 ReplaceInstWithInst(CurrentTerminator, CondBr); 7554 } 7555 7556 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7557 assert(State.Instance && "Predicated instruction PHI works per instance."); 7558 Instruction *ScalarPredInst = cast<Instruction>( 7559 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7560 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7561 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7562 assert(PredicatingBB && "Predicated block has no single predecessor."); 7563 7564 // By current pack/unpack logic we need to generate only a single phi node: if 7565 // a vector value for the predicated instruction exists at this point it means 7566 // the instruction has vector users only, and a phi for the vector value is 7567 // needed. In this case the recipe of the predicated instruction is marked to 7568 // also do that packing, thereby "hoisting" the insert-element sequence. 7569 // Otherwise, a phi node for the scalar value is needed. 7570 unsigned Part = State.Instance->Part; 7571 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7572 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7573 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7574 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7575 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7576 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7577 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7578 } else { 7579 Type *PredInstType = PredInst->getType(); 7580 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7581 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7582 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7583 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7584 } 7585 } 7586 7587 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7588 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7589 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7590 getMask()); 7591 } 7592 7593 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7594 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7595 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7596 // for predication. 7597 static ScalarEpilogueLowering getScalarEpilogueLowering( 7598 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7599 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7600 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7601 LoopVectorizationLegality &LVL) { 7602 bool OptSize = 7603 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7604 PGSOQueryType::IRPass); 7605 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7606 // don't look at hints or options, and don't request a scalar epilogue. 7607 if (OptSize) 7608 return CM_ScalarEpilogueNotAllowedOptSize; 7609 7610 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7611 !PreferPredicateOverEpilog; 7612 7613 // 2) Next, if disabling predication is requested on the command line, honour 7614 // this and request a scalar epilogue. 7615 if (PredicateOptDisabled) 7616 return CM_ScalarEpilogueAllowed; 7617 7618 // 3) and 4) look if enabling predication is requested on the command line, 7619 // with a loop hint, or if the TTI hook indicates this is profitable, request 7620 // predication . 7621 if (PreferPredicateOverEpilog || 7622 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7623 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7624 LVL.getLAI()) && 7625 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7626 return CM_ScalarEpilogueNotNeededUsePredicate; 7627 7628 return CM_ScalarEpilogueAllowed; 7629 } 7630 7631 // Process the loop in the VPlan-native vectorization path. This path builds 7632 // VPlan upfront in the vectorization pipeline, which allows to apply 7633 // VPlan-to-VPlan transformations from the very beginning without modifying the 7634 // input LLVM IR. 7635 static bool processLoopInVPlanNativePath( 7636 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7637 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7638 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7639 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7640 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7641 7642 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 7643 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 7644 return false; 7645 } 7646 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7647 Function *F = L->getHeader()->getParent(); 7648 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7649 7650 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7651 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7652 7653 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7654 &Hints, IAI); 7655 // Use the planner for outer loop vectorization. 7656 // TODO: CM is not used at this point inside the planner. Turn CM into an 7657 // optional argument if we don't need it in the future. 7658 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7659 7660 // Get user vectorization factor. 7661 const unsigned UserVF = Hints.getWidth(); 7662 7663 // Plan how to best vectorize, return the best VF and its cost. 7664 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7665 7666 // If we are stress testing VPlan builds, do not attempt to generate vector 7667 // code. Masked vector code generation support will follow soon. 7668 // Also, do not attempt to vectorize if no vector code will be produced. 7669 if (VPlanBuildStressTest || EnableVPlanPredication || 7670 VectorizationFactor::Disabled() == VF) 7671 return false; 7672 7673 LVP.setBestPlan(VF.Width, 1); 7674 7675 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7676 &CM); 7677 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7678 << L->getHeader()->getParent()->getName() << "\"\n"); 7679 LVP.executePlan(LB, DT); 7680 7681 // Mark the loop as already vectorized to avoid vectorizing again. 7682 Hints.setAlreadyVectorized(); 7683 7684 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 7685 return true; 7686 } 7687 7688 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7689 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7690 !EnableLoopInterleaving), 7691 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7692 !EnableLoopVectorization) {} 7693 7694 bool LoopVectorizePass::processLoop(Loop *L) { 7695 assert((EnableVPlanNativePath || L->empty()) && 7696 "VPlan-native path is not enabled. Only process inner loops."); 7697 7698 #ifndef NDEBUG 7699 const std::string DebugLocStr = getDebugLocString(L); 7700 #endif /* NDEBUG */ 7701 7702 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7703 << L->getHeader()->getParent()->getName() << "\" from " 7704 << DebugLocStr << "\n"); 7705 7706 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7707 7708 LLVM_DEBUG( 7709 dbgs() << "LV: Loop hints:" 7710 << " force=" 7711 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7712 ? "disabled" 7713 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7714 ? "enabled" 7715 : "?")) 7716 << " width=" << Hints.getWidth() 7717 << " unroll=" << Hints.getInterleave() << "\n"); 7718 7719 // Function containing loop 7720 Function *F = L->getHeader()->getParent(); 7721 7722 // Looking at the diagnostic output is the only way to determine if a loop 7723 // was vectorized (other than looking at the IR or machine code), so it 7724 // is important to generate an optimization remark for each loop. Most of 7725 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7726 // generated as OptimizationRemark and OptimizationRemarkMissed are 7727 // less verbose reporting vectorized loops and unvectorized loops that may 7728 // benefit from vectorization, respectively. 7729 7730 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7731 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7732 return false; 7733 } 7734 7735 PredicatedScalarEvolution PSE(*SE, *L); 7736 7737 // Check if it is legal to vectorize the loop. 7738 LoopVectorizationRequirements Requirements(*ORE); 7739 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7740 &Requirements, &Hints, DB, AC); 7741 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7742 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7743 Hints.emitRemarkWithHints(); 7744 return false; 7745 } 7746 7747 // Check the function attributes and profiles to find out if this function 7748 // should be optimized for size. 7749 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7750 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7751 7752 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7753 // here. They may require CFG and instruction level transformations before 7754 // even evaluating whether vectorization is profitable. Since we cannot modify 7755 // the incoming IR, we need to build VPlan upfront in the vectorization 7756 // pipeline. 7757 if (!L->empty()) 7758 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7759 ORE, BFI, PSI, Hints); 7760 7761 assert(L->empty() && "Inner loop expected."); 7762 7763 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7764 // count by optimizing for size, to minimize overheads. 7765 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7766 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7767 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7768 << "This loop is worth vectorizing only if no scalar " 7769 << "iteration overheads are incurred."); 7770 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7771 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7772 else { 7773 LLVM_DEBUG(dbgs() << "\n"); 7774 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7775 } 7776 } 7777 7778 // Check the function attributes to see if implicit floats are allowed. 7779 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7780 // an integer loop and the vector instructions selected are purely integer 7781 // vector instructions? 7782 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7783 reportVectorizationFailure( 7784 "Can't vectorize when the NoImplicitFloat attribute is used", 7785 "loop not vectorized due to NoImplicitFloat attribute", 7786 "NoImplicitFloat", ORE, L); 7787 Hints.emitRemarkWithHints(); 7788 return false; 7789 } 7790 7791 // Check if the target supports potentially unsafe FP vectorization. 7792 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7793 // for the target we're vectorizing for, to make sure none of the 7794 // additional fp-math flags can help. 7795 if (Hints.isPotentiallyUnsafe() && 7796 TTI->isFPVectorizationPotentiallyUnsafe()) { 7797 reportVectorizationFailure( 7798 "Potentially unsafe FP op prevents vectorization", 7799 "loop not vectorized due to unsafe FP support.", 7800 "UnsafeFP", ORE, L); 7801 Hints.emitRemarkWithHints(); 7802 return false; 7803 } 7804 7805 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7806 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7807 7808 // If an override option has been passed in for interleaved accesses, use it. 7809 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7810 UseInterleaved = EnableInterleavedMemAccesses; 7811 7812 // Analyze interleaved memory accesses. 7813 if (UseInterleaved) { 7814 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7815 } 7816 7817 // Use the cost model. 7818 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7819 F, &Hints, IAI); 7820 CM.collectValuesToIgnore(); 7821 7822 // Use the planner for vectorization. 7823 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7824 7825 // Get user vectorization factor and interleave count. 7826 unsigned UserVF = Hints.getWidth(); 7827 unsigned UserIC = Hints.getInterleave(); 7828 7829 // Plan how to best vectorize, return the best VF and its cost. 7830 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 7831 7832 VectorizationFactor VF = VectorizationFactor::Disabled(); 7833 unsigned IC = 1; 7834 7835 if (MaybeVF) { 7836 VF = *MaybeVF; 7837 // Select the interleave count. 7838 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7839 } 7840 7841 // Identify the diagnostic messages that should be produced. 7842 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7843 bool VectorizeLoop = true, InterleaveLoop = true; 7844 if (Requirements.doesNotMeet(F, L, Hints)) { 7845 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7846 "requirements.\n"); 7847 Hints.emitRemarkWithHints(); 7848 return false; 7849 } 7850 7851 if (VF.Width == 1) { 7852 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7853 VecDiagMsg = std::make_pair( 7854 "VectorizationNotBeneficial", 7855 "the cost-model indicates that vectorization is not beneficial"); 7856 VectorizeLoop = false; 7857 } 7858 7859 if (!MaybeVF && UserIC > 1) { 7860 // Tell the user interleaving was avoided up-front, despite being explicitly 7861 // requested. 7862 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7863 "interleaving should be avoided up front\n"); 7864 IntDiagMsg = std::make_pair( 7865 "InterleavingAvoided", 7866 "Ignoring UserIC, because interleaving was avoided up front"); 7867 InterleaveLoop = false; 7868 } else if (IC == 1 && UserIC <= 1) { 7869 // Tell the user interleaving is not beneficial. 7870 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7871 IntDiagMsg = std::make_pair( 7872 "InterleavingNotBeneficial", 7873 "the cost-model indicates that interleaving is not beneficial"); 7874 InterleaveLoop = false; 7875 if (UserIC == 1) { 7876 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7877 IntDiagMsg.second += 7878 " and is explicitly disabled or interleave count is set to 1"; 7879 } 7880 } else if (IC > 1 && UserIC == 1) { 7881 // Tell the user interleaving is beneficial, but it explicitly disabled. 7882 LLVM_DEBUG( 7883 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7884 IntDiagMsg = std::make_pair( 7885 "InterleavingBeneficialButDisabled", 7886 "the cost-model indicates that interleaving is beneficial " 7887 "but is explicitly disabled or interleave count is set to 1"); 7888 InterleaveLoop = false; 7889 } 7890 7891 // Override IC if user provided an interleave count. 7892 IC = UserIC > 0 ? UserIC : IC; 7893 7894 // Emit diagnostic messages, if any. 7895 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7896 if (!VectorizeLoop && !InterleaveLoop) { 7897 // Do not vectorize or interleaving the loop. 7898 ORE->emit([&]() { 7899 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7900 L->getStartLoc(), L->getHeader()) 7901 << VecDiagMsg.second; 7902 }); 7903 ORE->emit([&]() { 7904 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7905 L->getStartLoc(), L->getHeader()) 7906 << IntDiagMsg.second; 7907 }); 7908 return false; 7909 } else if (!VectorizeLoop && InterleaveLoop) { 7910 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7911 ORE->emit([&]() { 7912 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7913 L->getStartLoc(), L->getHeader()) 7914 << VecDiagMsg.second; 7915 }); 7916 } else if (VectorizeLoop && !InterleaveLoop) { 7917 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7918 << ") in " << DebugLocStr << '\n'); 7919 ORE->emit([&]() { 7920 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7921 L->getStartLoc(), L->getHeader()) 7922 << IntDiagMsg.second; 7923 }); 7924 } else if (VectorizeLoop && InterleaveLoop) { 7925 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7926 << ") in " << DebugLocStr << '\n'); 7927 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7928 } 7929 7930 LVP.setBestPlan(VF.Width, IC); 7931 7932 using namespace ore; 7933 bool DisableRuntimeUnroll = false; 7934 MDNode *OrigLoopID = L->getLoopID(); 7935 7936 if (!VectorizeLoop) { 7937 assert(IC > 1 && "interleave count should not be 1 or 0"); 7938 // If we decided that it is not legal to vectorize the loop, then 7939 // interleave it. 7940 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7941 &CM); 7942 LVP.executePlan(Unroller, DT); 7943 7944 ORE->emit([&]() { 7945 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7946 L->getHeader()) 7947 << "interleaved loop (interleaved count: " 7948 << NV("InterleaveCount", IC) << ")"; 7949 }); 7950 } else { 7951 // If we decided that it is *legal* to vectorize the loop, then do it. 7952 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7953 &LVL, &CM); 7954 LVP.executePlan(LB, DT); 7955 ++LoopsVectorized; 7956 7957 // Add metadata to disable runtime unrolling a scalar loop when there are 7958 // no runtime checks about strides and memory. A scalar loop that is 7959 // rarely used is not worth unrolling. 7960 if (!LB.areSafetyChecksAdded()) 7961 DisableRuntimeUnroll = true; 7962 7963 // Report the vectorization decision. 7964 ORE->emit([&]() { 7965 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7966 L->getHeader()) 7967 << "vectorized loop (vectorization width: " 7968 << NV("VectorizationFactor", VF.Width) 7969 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7970 }); 7971 } 7972 7973 Optional<MDNode *> RemainderLoopID = 7974 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7975 LLVMLoopVectorizeFollowupEpilogue}); 7976 if (RemainderLoopID.hasValue()) { 7977 L->setLoopID(RemainderLoopID.getValue()); 7978 } else { 7979 if (DisableRuntimeUnroll) 7980 AddRuntimeUnrollDisableMetaData(L); 7981 7982 // Mark the loop as already vectorized to avoid vectorizing again. 7983 Hints.setAlreadyVectorized(); 7984 } 7985 7986 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 7987 return true; 7988 } 7989 7990 LoopVectorizeResult LoopVectorizePass::runImpl( 7991 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7992 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7993 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 7994 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7995 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7996 SE = &SE_; 7997 LI = &LI_; 7998 TTI = &TTI_; 7999 DT = &DT_; 8000 BFI = &BFI_; 8001 TLI = TLI_; 8002 AA = &AA_; 8003 AC = &AC_; 8004 GetLAA = &GetLAA_; 8005 DB = &DB_; 8006 ORE = &ORE_; 8007 PSI = PSI_; 8008 8009 // Don't attempt if 8010 // 1. the target claims to have no vector registers, and 8011 // 2. interleaving won't help ILP. 8012 // 8013 // The second condition is necessary because, even if the target has no 8014 // vector registers, loop vectorization may still enable scalar 8015 // interleaving. 8016 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8017 TTI->getMaxInterleaveFactor(1) < 2) 8018 return LoopVectorizeResult(false, false); 8019 8020 bool Changed = false, CFGChanged = false; 8021 8022 // The vectorizer requires loops to be in simplified form. 8023 // Since simplification may add new inner loops, it has to run before the 8024 // legality and profitability checks. This means running the loop vectorizer 8025 // will simplify all loops, regardless of whether anything end up being 8026 // vectorized. 8027 for (auto &L : *LI) 8028 Changed |= CFGChanged |= 8029 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8030 8031 // Build up a worklist of inner-loops to vectorize. This is necessary as 8032 // the act of vectorizing or partially unrolling a loop creates new loops 8033 // and can invalidate iterators across the loops. 8034 SmallVector<Loop *, 8> Worklist; 8035 8036 for (Loop *L : *LI) 8037 collectSupportedLoops(*L, LI, ORE, Worklist); 8038 8039 LoopsAnalyzed += Worklist.size(); 8040 8041 // Now walk the identified inner loops. 8042 while (!Worklist.empty()) { 8043 Loop *L = Worklist.pop_back_val(); 8044 8045 // For the inner loops we actually process, form LCSSA to simplify the 8046 // transform. 8047 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8048 8049 Changed |= CFGChanged |= processLoop(L); 8050 } 8051 8052 // Process each loop nest in the function. 8053 return LoopVectorizeResult(Changed, CFGChanged); 8054 } 8055 8056 PreservedAnalyses LoopVectorizePass::run(Function &F, 8057 FunctionAnalysisManager &AM) { 8058 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8059 auto &LI = AM.getResult<LoopAnalysis>(F); 8060 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8061 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8062 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8063 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8064 auto &AA = AM.getResult<AAManager>(F); 8065 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8066 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8067 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8068 MemorySSA *MSSA = EnableMSSALoopDependency 8069 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8070 : nullptr; 8071 8072 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8073 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8074 [&](Loop &L) -> const LoopAccessInfo & { 8075 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8076 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8077 }; 8078 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8079 ProfileSummaryInfo *PSI = 8080 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8081 LoopVectorizeResult Result = 8082 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8083 if (!Result.MadeAnyChange) 8084 return PreservedAnalyses::all(); 8085 PreservedAnalyses PA; 8086 8087 // We currently do not preserve loopinfo/dominator analyses with outer loop 8088 // vectorization. Until this is addressed, mark these analyses as preserved 8089 // only for non-VPlan-native path. 8090 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8091 if (!EnableVPlanNativePath) { 8092 PA.preserve<LoopAnalysis>(); 8093 PA.preserve<DominatorTreeAnalysis>(); 8094 } 8095 PA.preserve<BasicAA>(); 8096 PA.preserve<GlobalsAA>(); 8097 if (!Result.MadeCFGChange) 8098 PA.preserveSet<CFGAnalyses>(); 8099 return PA; 8100 } 8101