1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpander.h"
95 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
96 #include "llvm/Analysis/TargetLibraryInfo.h"
97 #include "llvm/Analysis/TargetTransformInfo.h"
98 #include "llvm/Analysis/VectorUtils.h"
99 #include "llvm/IR/Attributes.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/CFG.h"
102 #include "llvm/IR/Constant.h"
103 #include "llvm/IR/Constants.h"
104 #include "llvm/IR/DataLayout.h"
105 #include "llvm/IR/DebugInfoMetadata.h"
106 #include "llvm/IR/DebugLoc.h"
107 #include "llvm/IR/DerivedTypes.h"
108 #include "llvm/IR/DiagnosticInfo.h"
109 #include "llvm/IR/Dominators.h"
110 #include "llvm/IR/Function.h"
111 #include "llvm/IR/IRBuilder.h"
112 #include "llvm/IR/InstrTypes.h"
113 #include "llvm/IR/Instruction.h"
114 #include "llvm/IR/Instructions.h"
115 #include "llvm/IR/IntrinsicInst.h"
116 #include "llvm/IR/Intrinsics.h"
117 #include "llvm/IR/LLVMContext.h"
118 #include "llvm/IR/Metadata.h"
119 #include "llvm/IR/Module.h"
120 #include "llvm/IR/Operator.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Indicates that an epilogue is undesired, predication is preferred.
182 // This means that the vectorizer will try to fold the loop-tail (epilogue)
183 // into the loop and predicate the loop body accordingly.
184 static cl::opt<bool> PreferPredicateOverEpilog(
185     "prefer-predicate-over-epilog", cl::init(false), cl::Hidden,
186     cl::desc("Indicate that an epilogue is undesired, predication should be "
187              "used instead."));
188 
189 static cl::opt<bool> MaximizeBandwidth(
190     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
191     cl::desc("Maximize bandwidth when selecting vectorization factor which "
192              "will be determined by the smallest type in loop."));
193 
194 static cl::opt<bool> EnableInterleavedMemAccesses(
195     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
196     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
197 
198 /// An interleave-group may need masking if it resides in a block that needs
199 /// predication, or in order to mask away gaps.
200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
201     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
202     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
203 
204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
205     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
206     cl::desc("We don't interleave loops with a estimated constant trip count "
207              "below this number"));
208 
209 static cl::opt<unsigned> ForceTargetNumScalarRegs(
210     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
211     cl::desc("A flag that overrides the target's number of scalar registers."));
212 
213 static cl::opt<unsigned> ForceTargetNumVectorRegs(
214     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
215     cl::desc("A flag that overrides the target's number of vector registers."));
216 
217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
218     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
219     cl::desc("A flag that overrides the target's max interleave factor for "
220              "scalar loops."));
221 
222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
223     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
224     cl::desc("A flag that overrides the target's max interleave factor for "
225              "vectorized loops."));
226 
227 static cl::opt<unsigned> ForceTargetInstructionCost(
228     "force-target-instruction-cost", cl::init(0), cl::Hidden,
229     cl::desc("A flag that overrides the target's expected cost for "
230              "an instruction to a single constant value. Mostly "
231              "useful for getting consistent testing."));
232 
233 static cl::opt<unsigned> SmallLoopCost(
234     "small-loop-cost", cl::init(20), cl::Hidden,
235     cl::desc(
236         "The cost of a loop that is considered 'small' by the interleaver."));
237 
238 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
239     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
240     cl::desc("Enable the use of the block frequency analysis to access PGO "
241              "heuristics minimizing code growth in cold regions and being more "
242              "aggressive in hot regions."));
243 
244 // Runtime interleave loops for load/store throughput.
245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
246     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
247     cl::desc(
248         "Enable runtime interleaving until load/store ports are saturated"));
249 
250 /// The number of stores in a loop that are allowed to need predication.
251 static cl::opt<unsigned> NumberOfStoresToPredicate(
252     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
253     cl::desc("Max number of stores to be predicated behind an if."));
254 
255 static cl::opt<bool> EnableIndVarRegisterHeur(
256     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
257     cl::desc("Count the induction variable only once when interleaving"));
258 
259 static cl::opt<bool> EnableCondStoresVectorization(
260     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
261     cl::desc("Enable if predication of stores during vectorization."));
262 
263 static cl::opt<unsigned> MaxNestedScalarReductionIC(
264     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
265     cl::desc("The maximum interleave count to use when interleaving a scalar "
266              "reduction in a nested loop."));
267 
268 cl::opt<bool> EnableVPlanNativePath(
269     "enable-vplan-native-path", cl::init(false), cl::Hidden,
270     cl::desc("Enable VPlan-native vectorization path with "
271              "support for outer loop vectorization."));
272 
273 // FIXME: Remove this switch once we have divergence analysis. Currently we
274 // assume divergent non-backedge branches when this switch is true.
275 cl::opt<bool> EnableVPlanPredication(
276     "enable-vplan-predication", cl::init(false), cl::Hidden,
277     cl::desc("Enable VPlan-native vectorization path predicator with "
278              "support for outer loop vectorization."));
279 
280 // This flag enables the stress testing of the VPlan H-CFG construction in the
281 // VPlan-native vectorization path. It must be used in conjuction with
282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
283 // verification of the H-CFGs built.
284 static cl::opt<bool> VPlanBuildStressTest(
285     "vplan-build-stress-test", cl::init(false), cl::Hidden,
286     cl::desc(
287         "Build VPlan for every supported loop nest in the function and bail "
288         "out right after the build (stress test the VPlan H-CFG construction "
289         "in the VPlan-native vectorization path)."));
290 
291 cl::opt<bool> llvm::EnableLoopInterleaving(
292     "interleave-loops", cl::init(true), cl::Hidden,
293     cl::desc("Enable loop interleaving in Loop vectorization passes"));
294 cl::opt<bool> llvm::EnableLoopVectorization(
295     "vectorize-loops", cl::init(true), cl::Hidden,
296     cl::desc("Run the Loop vectorization passes"));
297 
298 /// A helper function that returns the type of loaded or stored value.
299 static Type *getMemInstValueType(Value *I) {
300   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
301          "Expected Load or Store instruction");
302   if (auto *LI = dyn_cast<LoadInst>(I))
303     return LI->getType();
304   return cast<StoreInst>(I)->getValueOperand()->getType();
305 }
306 
307 /// A helper function that returns true if the given type is irregular. The
308 /// type is irregular if its allocated size doesn't equal the store size of an
309 /// element of the corresponding vector type at the given vectorization factor.
310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
311   // Determine if an array of VF elements of type Ty is "bitcast compatible"
312   // with a <VF x Ty> vector.
313   if (VF > 1) {
314     auto *VectorTy = VectorType::get(Ty, VF);
315     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
316   }
317 
318   // If the vectorization factor is one, we just check if an array of type Ty
319   // requires padding between elements.
320   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
321 }
322 
323 /// A helper function that returns the reciprocal of the block probability of
324 /// predicated blocks. If we return X, we are assuming the predicated block
325 /// will execute once for every X iterations of the loop header.
326 ///
327 /// TODO: We should use actual block probability here, if available. Currently,
328 ///       we always assume predicated blocks have a 50% chance of executing.
329 static unsigned getReciprocalPredBlockProb() { return 2; }
330 
331 /// A helper function that adds a 'fast' flag to floating-point operations.
332 static Value *addFastMathFlag(Value *V) {
333   if (isa<FPMathOperator>(V))
334     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
335   return V;
336 }
337 
338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
339   if (isa<FPMathOperator>(V))
340     cast<Instruction>(V)->setFastMathFlags(FMF);
341   return V;
342 }
343 
344 /// A helper function that returns an integer or floating-point constant with
345 /// value C.
346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
347   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
348                            : ConstantFP::get(Ty, C);
349 }
350 
351 /// Returns "best known" trip count for the specified loop \p L as defined by
352 /// the following procedure:
353 ///   1) Returns exact trip count if it is known.
354 ///   2) Returns expected trip count according to profile data if any.
355 ///   3) Returns upper bound estimate if it is known.
356 ///   4) Returns None if all of the above failed.
357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
358   // Check if exact trip count is known.
359   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
360     return ExpectedTC;
361 
362   // Check if there is an expected trip count available from profile data.
363   if (LoopVectorizeWithBlockFrequency)
364     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
365       return EstimatedTC;
366 
367   // Check if upper bound estimate is known.
368   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
369     return ExpectedTC;
370 
371   return None;
372 }
373 
374 namespace llvm {
375 
376 /// InnerLoopVectorizer vectorizes loops which contain only one basic
377 /// block to a specified vectorization factor (VF).
378 /// This class performs the widening of scalars into vectors, or multiple
379 /// scalars. This class also implements the following features:
380 /// * It inserts an epilogue loop for handling loops that don't have iteration
381 ///   counts that are known to be a multiple of the vectorization factor.
382 /// * It handles the code generation for reduction variables.
383 /// * Scalarization (implementation using scalars) of un-vectorizable
384 ///   instructions.
385 /// InnerLoopVectorizer does not perform any vectorization-legality
386 /// checks, and relies on the caller to check for the different legality
387 /// aspects. The InnerLoopVectorizer relies on the
388 /// LoopVectorizationLegality class to provide information about the induction
389 /// and reduction variables that were found to a given vectorization factor.
390 class InnerLoopVectorizer {
391 public:
392   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
393                       LoopInfo *LI, DominatorTree *DT,
394                       const TargetLibraryInfo *TLI,
395                       const TargetTransformInfo *TTI, AssumptionCache *AC,
396                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
397                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
398                       LoopVectorizationCostModel *CM)
399       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
400         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
401         Builder(PSE.getSE()->getContext()),
402         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
403   virtual ~InnerLoopVectorizer() = default;
404 
405   /// Create a new empty loop. Unlink the old loop and connect the new one.
406   /// Return the pre-header block of the new loop.
407   BasicBlock *createVectorizedLoopSkeleton();
408 
409   /// Widen a single instruction within the innermost loop.
410   void widenInstruction(Instruction &I, VPUser &Operands,
411                         VPTransformState &State);
412 
413   /// Widen a single call instruction within the innermost loop.
414   void widenCallInstruction(CallInst &I, VPUser &ArgOperands,
415                             VPTransformState &State);
416 
417   /// Widen a single select instruction within the innermost loop.
418   void widenSelectInstruction(SelectInst &I, bool InvariantCond);
419 
420   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
421   void fixVectorizedLoop();
422 
423   // Return true if any runtime check is added.
424   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
425 
426   /// A type for vectorized values in the new loop. Each value from the
427   /// original loop, when vectorized, is represented by UF vector values in the
428   /// new unrolled loop, where UF is the unroll factor.
429   using VectorParts = SmallVector<Value *, 2>;
430 
431   /// Vectorize a single GetElementPtrInst based on information gathered and
432   /// decisions taken during planning.
433   void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF,
434                 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant);
435 
436   /// Vectorize a single PHINode in a block. This method handles the induction
437   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
438   /// arbitrary length vectors.
439   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
440 
441   /// A helper function to scalarize a single Instruction in the innermost loop.
442   /// Generates a sequence of scalar instances for each lane between \p MinLane
443   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
444   /// inclusive..
445   void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
446                             bool IfPredicateInstr);
447 
448   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
449   /// is provided, the integer induction variable will first be truncated to
450   /// the corresponding type.
451   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
452 
453   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
454   /// vector or scalar value on-demand if one is not yet available. When
455   /// vectorizing a loop, we visit the definition of an instruction before its
456   /// uses. When visiting the definition, we either vectorize or scalarize the
457   /// instruction, creating an entry for it in the corresponding map. (In some
458   /// cases, such as induction variables, we will create both vector and scalar
459   /// entries.) Then, as we encounter uses of the definition, we derive values
460   /// for each scalar or vector use unless such a value is already available.
461   /// For example, if we scalarize a definition and one of its uses is vector,
462   /// we build the required vector on-demand with an insertelement sequence
463   /// when visiting the use. Otherwise, if the use is scalar, we can use the
464   /// existing scalar definition.
465   ///
466   /// Return a value in the new loop corresponding to \p V from the original
467   /// loop at unroll index \p Part. If the value has already been vectorized,
468   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
469   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
470   /// a new vector value on-demand by inserting the scalar values into a vector
471   /// with an insertelement sequence. If the value has been neither vectorized
472   /// nor scalarized, it must be loop invariant, so we simply broadcast the
473   /// value into a vector.
474   Value *getOrCreateVectorValue(Value *V, unsigned Part);
475 
476   /// Return a value in the new loop corresponding to \p V from the original
477   /// loop at unroll and vector indices \p Instance. If the value has been
478   /// vectorized but not scalarized, the necessary extractelement instruction
479   /// will be generated.
480   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
481 
482   /// Construct the vector value of a scalarized value \p V one lane at a time.
483   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
484 
485   /// Try to vectorize interleaved access group \p Group with the base address
486   /// given in \p Addr, optionally masking the vector operations if \p
487   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
488   /// values in the vectorized loop.
489   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
490                                 VPTransformState &State, VPValue *Addr,
491                                 VPValue *BlockInMask = nullptr);
492 
493   /// Vectorize Load and Store instructions with the base address given in \p
494   /// Addr, optionally masking the vector operations if \p BlockInMask is
495   /// non-null. Use \p State to translate given VPValues to IR values in the
496   /// vectorized loop.
497   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
498                                   VPValue *Addr, VPValue *StoredValue,
499                                   VPValue *BlockInMask);
500 
501   /// Set the debug location in the builder using the debug location in
502   /// the instruction.
503   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
504 
505   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
506   void fixNonInductionPHIs(void);
507 
508 protected:
509   friend class LoopVectorizationPlanner;
510 
511   /// A small list of PHINodes.
512   using PhiVector = SmallVector<PHINode *, 4>;
513 
514   /// A type for scalarized values in the new loop. Each value from the
515   /// original loop, when scalarized, is represented by UF x VF scalar values
516   /// in the new unrolled loop, where UF is the unroll factor and VF is the
517   /// vectorization factor.
518   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
519 
520   /// Set up the values of the IVs correctly when exiting the vector loop.
521   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
522                     Value *CountRoundDown, Value *EndValue,
523                     BasicBlock *MiddleBlock);
524 
525   /// Create a new induction variable inside L.
526   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
527                                    Value *Step, Instruction *DL);
528 
529   /// Handle all cross-iteration phis in the header.
530   void fixCrossIterationPHIs();
531 
532   /// Fix a first-order recurrence. This is the second phase of vectorizing
533   /// this phi node.
534   void fixFirstOrderRecurrence(PHINode *Phi);
535 
536   /// Fix a reduction cross-iteration phi. This is the second phase of
537   /// vectorizing this phi node.
538   void fixReduction(PHINode *Phi);
539 
540   /// Clear NSW/NUW flags from reduction instructions if necessary.
541   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
542 
543   /// The Loop exit block may have single value PHI nodes with some
544   /// incoming value. While vectorizing we only handled real values
545   /// that were defined inside the loop and we should have one value for
546   /// each predecessor of its parent basic block. See PR14725.
547   void fixLCSSAPHIs();
548 
549   /// Iteratively sink the scalarized operands of a predicated instruction into
550   /// the block that was created for it.
551   void sinkScalarOperands(Instruction *PredInst);
552 
553   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
554   /// represented as.
555   void truncateToMinimalBitwidths();
556 
557   /// Create a broadcast instruction. This method generates a broadcast
558   /// instruction (shuffle) for loop invariant values and for the induction
559   /// value. If this is the induction variable then we extend it to N, N+1, ...
560   /// this is needed because each iteration in the loop corresponds to a SIMD
561   /// element.
562   virtual Value *getBroadcastInstrs(Value *V);
563 
564   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
565   /// to each vector element of Val. The sequence starts at StartIndex.
566   /// \p Opcode is relevant for FP induction variable.
567   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
568                                Instruction::BinaryOps Opcode =
569                                Instruction::BinaryOpsEnd);
570 
571   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
572   /// variable on which to base the steps, \p Step is the size of the step, and
573   /// \p EntryVal is the value from the original loop that maps to the steps.
574   /// Note that \p EntryVal doesn't have to be an induction variable - it
575   /// can also be a truncate instruction.
576   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
577                         const InductionDescriptor &ID);
578 
579   /// Create a vector induction phi node based on an existing scalar one. \p
580   /// EntryVal is the value from the original loop that maps to the vector phi
581   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
582   /// truncate instruction, instead of widening the original IV, we widen a
583   /// version of the IV truncated to \p EntryVal's type.
584   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
585                                        Value *Step, Instruction *EntryVal);
586 
587   /// Returns true if an instruction \p I should be scalarized instead of
588   /// vectorized for the chosen vectorization factor.
589   bool shouldScalarizeInstruction(Instruction *I) const;
590 
591   /// Returns true if we should generate a scalar version of \p IV.
592   bool needsScalarInduction(Instruction *IV) const;
593 
594   /// If there is a cast involved in the induction variable \p ID, which should
595   /// be ignored in the vectorized loop body, this function records the
596   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
597   /// cast. We had already proved that the casted Phi is equal to the uncasted
598   /// Phi in the vectorized loop (under a runtime guard), and therefore
599   /// there is no need to vectorize the cast - the same value can be used in the
600   /// vector loop for both the Phi and the cast.
601   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
602   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
603   ///
604   /// \p EntryVal is the value from the original loop that maps to the vector
605   /// phi node and is used to distinguish what is the IV currently being
606   /// processed - original one (if \p EntryVal is a phi corresponding to the
607   /// original IV) or the "newly-created" one based on the proof mentioned above
608   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
609   /// latter case \p EntryVal is a TruncInst and we must not record anything for
610   /// that IV, but it's error-prone to expect callers of this routine to care
611   /// about that, hence this explicit parameter.
612   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
613                                              const Instruction *EntryVal,
614                                              Value *VectorLoopValue,
615                                              unsigned Part,
616                                              unsigned Lane = UINT_MAX);
617 
618   /// Generate a shuffle sequence that will reverse the vector Vec.
619   virtual Value *reverseVector(Value *Vec);
620 
621   /// Returns (and creates if needed) the original loop trip count.
622   Value *getOrCreateTripCount(Loop *NewLoop);
623 
624   /// Returns (and creates if needed) the trip count of the widened loop.
625   Value *getOrCreateVectorTripCount(Loop *NewLoop);
626 
627   /// Returns a bitcasted value to the requested vector type.
628   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
629   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
630                                 const DataLayout &DL);
631 
632   /// Emit a bypass check to see if the vector trip count is zero, including if
633   /// it overflows.
634   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
635 
636   /// Emit a bypass check to see if all of the SCEV assumptions we've
637   /// had to make are correct.
638   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
639 
640   /// Emit bypass checks to check any memory assumptions we may have made.
641   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
642 
643   /// Compute the transformed value of Index at offset StartValue using step
644   /// StepValue.
645   /// For integer induction, returns StartValue + Index * StepValue.
646   /// For pointer induction, returns StartValue[Index * StepValue].
647   /// FIXME: The newly created binary instructions should contain nsw/nuw
648   /// flags, which can be found from the original scalar operations.
649   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
650                               const DataLayout &DL,
651                               const InductionDescriptor &ID) const;
652 
653   /// Add additional metadata to \p To that was not present on \p Orig.
654   ///
655   /// Currently this is used to add the noalias annotations based on the
656   /// inserted memchecks.  Use this for instructions that are *cloned* into the
657   /// vector loop.
658   void addNewMetadata(Instruction *To, const Instruction *Orig);
659 
660   /// Add metadata from one instruction to another.
661   ///
662   /// This includes both the original MDs from \p From and additional ones (\see
663   /// addNewMetadata).  Use this for *newly created* instructions in the vector
664   /// loop.
665   void addMetadata(Instruction *To, Instruction *From);
666 
667   /// Similar to the previous function but it adds the metadata to a
668   /// vector of instructions.
669   void addMetadata(ArrayRef<Value *> To, Instruction *From);
670 
671   /// The original loop.
672   Loop *OrigLoop;
673 
674   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
675   /// dynamic knowledge to simplify SCEV expressions and converts them to a
676   /// more usable form.
677   PredicatedScalarEvolution &PSE;
678 
679   /// Loop Info.
680   LoopInfo *LI;
681 
682   /// Dominator Tree.
683   DominatorTree *DT;
684 
685   /// Alias Analysis.
686   AliasAnalysis *AA;
687 
688   /// Target Library Info.
689   const TargetLibraryInfo *TLI;
690 
691   /// Target Transform Info.
692   const TargetTransformInfo *TTI;
693 
694   /// Assumption Cache.
695   AssumptionCache *AC;
696 
697   /// Interface to emit optimization remarks.
698   OptimizationRemarkEmitter *ORE;
699 
700   /// LoopVersioning.  It's only set up (non-null) if memchecks were
701   /// used.
702   ///
703   /// This is currently only used to add no-alias metadata based on the
704   /// memchecks.  The actually versioning is performed manually.
705   std::unique_ptr<LoopVersioning> LVer;
706 
707   /// The vectorization SIMD factor to use. Each vector will have this many
708   /// vector elements.
709   unsigned VF;
710 
711   /// The vectorization unroll factor to use. Each scalar is vectorized to this
712   /// many different vector instructions.
713   unsigned UF;
714 
715   /// The builder that we use
716   IRBuilder<> Builder;
717 
718   // --- Vectorization state ---
719 
720   /// The vector-loop preheader.
721   BasicBlock *LoopVectorPreHeader;
722 
723   /// The scalar-loop preheader.
724   BasicBlock *LoopScalarPreHeader;
725 
726   /// Middle Block between the vector and the scalar.
727   BasicBlock *LoopMiddleBlock;
728 
729   /// The ExitBlock of the scalar loop.
730   BasicBlock *LoopExitBlock;
731 
732   /// The vector loop body.
733   BasicBlock *LoopVectorBody;
734 
735   /// The scalar loop body.
736   BasicBlock *LoopScalarBody;
737 
738   /// A list of all bypass blocks. The first block is the entry of the loop.
739   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
740 
741   /// The new Induction variable which was added to the new block.
742   PHINode *Induction = nullptr;
743 
744   /// The induction variable of the old basic block.
745   PHINode *OldInduction = nullptr;
746 
747   /// Maps values from the original loop to their corresponding values in the
748   /// vectorized loop. A key value can map to either vector values, scalar
749   /// values or both kinds of values, depending on whether the key was
750   /// vectorized and scalarized.
751   VectorizerValueMap VectorLoopValueMap;
752 
753   /// Store instructions that were predicated.
754   SmallVector<Instruction *, 4> PredicatedInstructions;
755 
756   /// Trip count of the original loop.
757   Value *TripCount = nullptr;
758 
759   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
760   Value *VectorTripCount = nullptr;
761 
762   /// The legality analysis.
763   LoopVectorizationLegality *Legal;
764 
765   /// The profitablity analysis.
766   LoopVectorizationCostModel *Cost;
767 
768   // Record whether runtime checks are added.
769   bool AddedSafetyChecks = false;
770 
771   // Holds the end values for each induction variable. We save the end values
772   // so we can later fix-up the external users of the induction variables.
773   DenseMap<PHINode *, Value *> IVEndValues;
774 
775   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
776   // fixed up at the end of vector code generation.
777   SmallVector<PHINode *, 8> OrigPHIsToFix;
778 };
779 
780 class InnerLoopUnroller : public InnerLoopVectorizer {
781 public:
782   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
783                     LoopInfo *LI, DominatorTree *DT,
784                     const TargetLibraryInfo *TLI,
785                     const TargetTransformInfo *TTI, AssumptionCache *AC,
786                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
787                     LoopVectorizationLegality *LVL,
788                     LoopVectorizationCostModel *CM)
789       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
790                             UnrollFactor, LVL, CM) {}
791 
792 private:
793   Value *getBroadcastInstrs(Value *V) override;
794   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
795                        Instruction::BinaryOps Opcode =
796                        Instruction::BinaryOpsEnd) override;
797   Value *reverseVector(Value *Vec) override;
798 };
799 
800 } // end namespace llvm
801 
802 /// Look for a meaningful debug location on the instruction or it's
803 /// operands.
804 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
805   if (!I)
806     return I;
807 
808   DebugLoc Empty;
809   if (I->getDebugLoc() != Empty)
810     return I;
811 
812   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
813     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
814       if (OpInst->getDebugLoc() != Empty)
815         return OpInst;
816   }
817 
818   return I;
819 }
820 
821 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
822   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
823     const DILocation *DIL = Inst->getDebugLoc();
824     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
825         !isa<DbgInfoIntrinsic>(Inst)) {
826       auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
827       if (NewDIL)
828         B.SetCurrentDebugLocation(NewDIL.getValue());
829       else
830         LLVM_DEBUG(dbgs()
831                    << "Failed to create new discriminator: "
832                    << DIL->getFilename() << " Line: " << DIL->getLine());
833     }
834     else
835       B.SetCurrentDebugLocation(DIL);
836   } else
837     B.SetCurrentDebugLocation(DebugLoc());
838 }
839 
840 /// Write a record \p DebugMsg about vectorization failure to the debug
841 /// output stream. If \p I is passed, it is an instruction that prevents
842 /// vectorization.
843 #ifndef NDEBUG
844 static void debugVectorizationFailure(const StringRef DebugMsg,
845     Instruction *I) {
846   dbgs() << "LV: Not vectorizing: " << DebugMsg;
847   if (I != nullptr)
848     dbgs() << " " << *I;
849   else
850     dbgs() << '.';
851   dbgs() << '\n';
852 }
853 #endif
854 
855 /// Create an analysis remark that explains why vectorization failed
856 ///
857 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
858 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
859 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
860 /// the location of the remark.  \return the remark object that can be
861 /// streamed to.
862 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
863     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
864   Value *CodeRegion = TheLoop->getHeader();
865   DebugLoc DL = TheLoop->getStartLoc();
866 
867   if (I) {
868     CodeRegion = I->getParent();
869     // If there is no debug location attached to the instruction, revert back to
870     // using the loop's.
871     if (I->getDebugLoc())
872       DL = I->getDebugLoc();
873   }
874 
875   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
876   R << "loop not vectorized: ";
877   return R;
878 }
879 
880 namespace llvm {
881 
882 void reportVectorizationFailure(const StringRef DebugMsg,
883     const StringRef OREMsg, const StringRef ORETag,
884     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
885   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
886   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
887   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
888                 ORETag, TheLoop, I) << OREMsg);
889 }
890 
891 } // end namespace llvm
892 
893 #ifndef NDEBUG
894 /// \return string containing a file name and a line # for the given loop.
895 static std::string getDebugLocString(const Loop *L) {
896   std::string Result;
897   if (L) {
898     raw_string_ostream OS(Result);
899     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
900       LoopDbgLoc.print(OS);
901     else
902       // Just print the module name.
903       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
904     OS.flush();
905   }
906   return Result;
907 }
908 #endif
909 
910 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
911                                          const Instruction *Orig) {
912   // If the loop was versioned with memchecks, add the corresponding no-alias
913   // metadata.
914   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
915     LVer->annotateInstWithNoAlias(To, Orig);
916 }
917 
918 void InnerLoopVectorizer::addMetadata(Instruction *To,
919                                       Instruction *From) {
920   propagateMetadata(To, From);
921   addNewMetadata(To, From);
922 }
923 
924 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
925                                       Instruction *From) {
926   for (Value *V : To) {
927     if (Instruction *I = dyn_cast<Instruction>(V))
928       addMetadata(I, From);
929   }
930 }
931 
932 namespace llvm {
933 
934 // Loop vectorization cost-model hints how the scalar epilogue loop should be
935 // lowered.
936 enum ScalarEpilogueLowering {
937 
938   // The default: allowing scalar epilogues.
939   CM_ScalarEpilogueAllowed,
940 
941   // Vectorization with OptForSize: don't allow epilogues.
942   CM_ScalarEpilogueNotAllowedOptSize,
943 
944   // A special case of vectorisation with OptForSize: loops with a very small
945   // trip count are considered for vectorization under OptForSize, thereby
946   // making sure the cost of their loop body is dominant, free of runtime
947   // guards and scalar iteration overheads.
948   CM_ScalarEpilogueNotAllowedLowTripLoop,
949 
950   // Loop hint predicate indicating an epilogue is undesired.
951   CM_ScalarEpilogueNotNeededUsePredicate
952 };
953 
954 /// LoopVectorizationCostModel - estimates the expected speedups due to
955 /// vectorization.
956 /// In many cases vectorization is not profitable. This can happen because of
957 /// a number of reasons. In this class we mainly attempt to predict the
958 /// expected speedup/slowdowns due to the supported instruction set. We use the
959 /// TargetTransformInfo to query the different backends for the cost of
960 /// different operations.
961 class LoopVectorizationCostModel {
962 public:
963   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
964                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
965                              LoopVectorizationLegality *Legal,
966                              const TargetTransformInfo &TTI,
967                              const TargetLibraryInfo *TLI, DemandedBits *DB,
968                              AssumptionCache *AC,
969                              OptimizationRemarkEmitter *ORE, const Function *F,
970                              const LoopVectorizeHints *Hints,
971                              InterleavedAccessInfo &IAI)
972       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
973         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
974         Hints(Hints), InterleaveInfo(IAI) {}
975 
976   /// \return An upper bound for the vectorization factor, or None if
977   /// vectorization and interleaving should be avoided up front.
978   Optional<unsigned> computeMaxVF();
979 
980   /// \return True if runtime checks are required for vectorization, and false
981   /// otherwise.
982   bool runtimeChecksRequired();
983 
984   /// \return The most profitable vectorization factor and the cost of that VF.
985   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
986   /// then this vectorization factor will be selected if vectorization is
987   /// possible.
988   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
989 
990   /// Setup cost-based decisions for user vectorization factor.
991   void selectUserVectorizationFactor(unsigned UserVF) {
992     collectUniformsAndScalars(UserVF);
993     collectInstsToScalarize(UserVF);
994   }
995 
996   /// \return The size (in bits) of the smallest and widest types in the code
997   /// that needs to be vectorized. We ignore values that remain scalar such as
998   /// 64 bit loop indices.
999   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1000 
1001   /// \return The desired interleave count.
1002   /// If interleave count has been specified by metadata it will be returned.
1003   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1004   /// are the selected vectorization factor and the cost of the selected VF.
1005   unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost);
1006 
1007   /// Memory access instruction may be vectorized in more than one way.
1008   /// Form of instruction after vectorization depends on cost.
1009   /// This function takes cost-based decisions for Load/Store instructions
1010   /// and collects them in a map. This decisions map is used for building
1011   /// the lists of loop-uniform and loop-scalar instructions.
1012   /// The calculated cost is saved with widening decision in order to
1013   /// avoid redundant calculations.
1014   void setCostBasedWideningDecision(unsigned VF);
1015 
1016   /// A struct that represents some properties of the register usage
1017   /// of a loop.
1018   struct RegisterUsage {
1019     /// Holds the number of loop invariant values that are used in the loop.
1020     /// The key is ClassID of target-provided register class.
1021     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1022     /// Holds the maximum number of concurrent live intervals in the loop.
1023     /// The key is ClassID of target-provided register class.
1024     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1025   };
1026 
1027   /// \return Returns information about the register usages of the loop for the
1028   /// given vectorization factors.
1029   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1030 
1031   /// Collect values we want to ignore in the cost model.
1032   void collectValuesToIgnore();
1033 
1034   /// \returns The smallest bitwidth each instruction can be represented with.
1035   /// The vector equivalents of these instructions should be truncated to this
1036   /// type.
1037   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1038     return MinBWs;
1039   }
1040 
1041   /// \returns True if it is more profitable to scalarize instruction \p I for
1042   /// vectorization factor \p VF.
1043   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1044     assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1045 
1046     // Cost model is not run in the VPlan-native path - return conservative
1047     // result until this changes.
1048     if (EnableVPlanNativePath)
1049       return false;
1050 
1051     auto Scalars = InstsToScalarize.find(VF);
1052     assert(Scalars != InstsToScalarize.end() &&
1053            "VF not yet analyzed for scalarization profitability");
1054     return Scalars->second.find(I) != Scalars->second.end();
1055   }
1056 
1057   /// Returns true if \p I is known to be uniform after vectorization.
1058   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1059     if (VF == 1)
1060       return true;
1061 
1062     // Cost model is not run in the VPlan-native path - return conservative
1063     // result until this changes.
1064     if (EnableVPlanNativePath)
1065       return false;
1066 
1067     auto UniformsPerVF = Uniforms.find(VF);
1068     assert(UniformsPerVF != Uniforms.end() &&
1069            "VF not yet analyzed for uniformity");
1070     return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
1071   }
1072 
1073   /// Returns true if \p I is known to be scalar after vectorization.
1074   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1075     if (VF == 1)
1076       return true;
1077 
1078     // Cost model is not run in the VPlan-native path - return conservative
1079     // result until this changes.
1080     if (EnableVPlanNativePath)
1081       return false;
1082 
1083     auto ScalarsPerVF = Scalars.find(VF);
1084     assert(ScalarsPerVF != Scalars.end() &&
1085            "Scalar values are not calculated for VF");
1086     return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
1087   }
1088 
1089   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1090   /// for vectorization factor \p VF.
1091   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1092     return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
1093            !isProfitableToScalarize(I, VF) &&
1094            !isScalarAfterVectorization(I, VF);
1095   }
1096 
1097   /// Decision that was taken during cost calculation for memory instruction.
1098   enum InstWidening {
1099     CM_Unknown,
1100     CM_Widen,         // For consecutive accesses with stride +1.
1101     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1102     CM_Interleave,
1103     CM_GatherScatter,
1104     CM_Scalarize
1105   };
1106 
1107   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1108   /// instruction \p I and vector width \p VF.
1109   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1110                            unsigned Cost) {
1111     assert(VF >= 2 && "Expected VF >=2");
1112     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1113   }
1114 
1115   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1116   /// interleaving group \p Grp and vector width \p VF.
1117   void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
1118                            InstWidening W, unsigned Cost) {
1119     assert(VF >= 2 && "Expected VF >=2");
1120     /// Broadcast this decicion to all instructions inside the group.
1121     /// But the cost will be assigned to one instruction only.
1122     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1123       if (auto *I = Grp->getMember(i)) {
1124         if (Grp->getInsertPos() == I)
1125           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1126         else
1127           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1128       }
1129     }
1130   }
1131 
1132   /// Return the cost model decision for the given instruction \p I and vector
1133   /// width \p VF. Return CM_Unknown if this instruction did not pass
1134   /// through the cost modeling.
1135   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1136     assert(VF >= 2 && "Expected VF >=2");
1137 
1138     // Cost model is not run in the VPlan-native path - return conservative
1139     // result until this changes.
1140     if (EnableVPlanNativePath)
1141       return CM_GatherScatter;
1142 
1143     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1144     auto Itr = WideningDecisions.find(InstOnVF);
1145     if (Itr == WideningDecisions.end())
1146       return CM_Unknown;
1147     return Itr->second.first;
1148   }
1149 
1150   /// Return the vectorization cost for the given instruction \p I and vector
1151   /// width \p VF.
1152   unsigned getWideningCost(Instruction *I, unsigned VF) {
1153     assert(VF >= 2 && "Expected VF >=2");
1154     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1155     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1156            "The cost is not calculated");
1157     return WideningDecisions[InstOnVF].second;
1158   }
1159 
1160   /// Return True if instruction \p I is an optimizable truncate whose operand
1161   /// is an induction variable. Such a truncate will be removed by adding a new
1162   /// induction variable with the destination type.
1163   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1164     // If the instruction is not a truncate, return false.
1165     auto *Trunc = dyn_cast<TruncInst>(I);
1166     if (!Trunc)
1167       return false;
1168 
1169     // Get the source and destination types of the truncate.
1170     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1171     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1172 
1173     // If the truncate is free for the given types, return false. Replacing a
1174     // free truncate with an induction variable would add an induction variable
1175     // update instruction to each iteration of the loop. We exclude from this
1176     // check the primary induction variable since it will need an update
1177     // instruction regardless.
1178     Value *Op = Trunc->getOperand(0);
1179     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1180       return false;
1181 
1182     // If the truncated value is not an induction variable, return false.
1183     return Legal->isInductionPhi(Op);
1184   }
1185 
1186   /// Collects the instructions to scalarize for each predicated instruction in
1187   /// the loop.
1188   void collectInstsToScalarize(unsigned VF);
1189 
1190   /// Collect Uniform and Scalar values for the given \p VF.
1191   /// The sets depend on CM decision for Load/Store instructions
1192   /// that may be vectorized as interleave, gather-scatter or scalarized.
1193   void collectUniformsAndScalars(unsigned VF) {
1194     // Do the analysis once.
1195     if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
1196       return;
1197     setCostBasedWideningDecision(VF);
1198     collectLoopUniforms(VF);
1199     collectLoopScalars(VF);
1200   }
1201 
1202   /// Returns true if the target machine supports masked store operation
1203   /// for the given \p DataType and kind of access to \p Ptr.
1204   bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) {
1205     return Legal->isConsecutivePtr(Ptr) &&
1206            TTI.isLegalMaskedStore(DataType, Alignment);
1207   }
1208 
1209   /// Returns true if the target machine supports masked load operation
1210   /// for the given \p DataType and kind of access to \p Ptr.
1211   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) {
1212     return Legal->isConsecutivePtr(Ptr) &&
1213            TTI.isLegalMaskedLoad(DataType, Alignment);
1214   }
1215 
1216   /// Returns true if the target machine supports masked scatter operation
1217   /// for the given \p DataType.
1218   bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
1219     return TTI.isLegalMaskedScatter(DataType, Alignment);
1220   }
1221 
1222   /// Returns true if the target machine supports masked gather operation
1223   /// for the given \p DataType.
1224   bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) {
1225     return TTI.isLegalMaskedGather(DataType, Alignment);
1226   }
1227 
1228   /// Returns true if the target machine can represent \p V as a masked gather
1229   /// or scatter operation.
1230   bool isLegalGatherOrScatter(Value *V) {
1231     bool LI = isa<LoadInst>(V);
1232     bool SI = isa<StoreInst>(V);
1233     if (!LI && !SI)
1234       return false;
1235     auto *Ty = getMemInstValueType(V);
1236     MaybeAlign Align = getLoadStoreAlignment(V);
1237     return (LI && isLegalMaskedGather(Ty, Align)) ||
1238            (SI && isLegalMaskedScatter(Ty, Align));
1239   }
1240 
1241   /// Returns true if \p I is an instruction that will be scalarized with
1242   /// predication. Such instructions include conditional stores and
1243   /// instructions that may divide by zero.
1244   /// If a non-zero VF has been calculated, we check if I will be scalarized
1245   /// predication for that VF.
1246   bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
1247 
1248   // Returns true if \p I is an instruction that will be predicated either
1249   // through scalar predication or masked load/store or masked gather/scatter.
1250   // Superset of instructions that return true for isScalarWithPredication.
1251   bool isPredicatedInst(Instruction *I) {
1252     if (!blockNeedsPredication(I->getParent()))
1253       return false;
1254     // Loads and stores that need some form of masked operation are predicated
1255     // instructions.
1256     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1257       return Legal->isMaskRequired(I);
1258     return isScalarWithPredication(I);
1259   }
1260 
1261   /// Returns true if \p I is a memory instruction with consecutive memory
1262   /// access that can be widened.
1263   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1264 
1265   /// Returns true if \p I is a memory instruction in an interleaved-group
1266   /// of memory accesses that can be vectorized with wide vector loads/stores
1267   /// and shuffles.
1268   bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
1269 
1270   /// Check if \p Instr belongs to any interleaved access group.
1271   bool isAccessInterleaved(Instruction *Instr) {
1272     return InterleaveInfo.isInterleaved(Instr);
1273   }
1274 
1275   /// Get the interleaved access group that \p Instr belongs to.
1276   const InterleaveGroup<Instruction> *
1277   getInterleavedAccessGroup(Instruction *Instr) {
1278     return InterleaveInfo.getInterleaveGroup(Instr);
1279   }
1280 
1281   /// Returns true if an interleaved group requires a scalar iteration
1282   /// to handle accesses with gaps, and there is nothing preventing us from
1283   /// creating a scalar epilogue.
1284   bool requiresScalarEpilogue() const {
1285     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1286   }
1287 
1288   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1289   /// loop hint annotation.
1290   bool isScalarEpilogueAllowed() const {
1291     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1292   }
1293 
1294   /// Returns true if all loop blocks should be masked to fold tail loop.
1295   bool foldTailByMasking() const { return FoldTailByMasking; }
1296 
1297   bool blockNeedsPredication(BasicBlock *BB) {
1298     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1299   }
1300 
1301   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1302   /// with factor VF.  Return the cost of the instruction, including
1303   /// scalarization overhead if it's needed.
1304   unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF);
1305 
1306   /// Estimate cost of a call instruction CI if it were vectorized with factor
1307   /// VF. Return the cost of the instruction, including scalarization overhead
1308   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1309   /// scalarized -
1310   /// i.e. either vector version isn't available, or is too expensive.
1311   unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);
1312 
1313   /// Invalidates decisions already taken by the cost model.
1314   void invalidateCostModelingDecisions() {
1315     WideningDecisions.clear();
1316     Uniforms.clear();
1317     Scalars.clear();
1318   }
1319 
1320 private:
1321   unsigned NumPredStores = 0;
1322 
1323   /// \return An upper bound for the vectorization factor, larger than zero.
1324   /// One is returned if vectorization should best be avoided due to cost.
1325   unsigned computeFeasibleMaxVF(unsigned ConstTripCount);
1326 
1327   /// The vectorization cost is a combination of the cost itself and a boolean
1328   /// indicating whether any of the contributing operations will actually
1329   /// operate on
1330   /// vector values after type legalization in the backend. If this latter value
1331   /// is
1332   /// false, then all operations will be scalarized (i.e. no vectorization has
1333   /// actually taken place).
1334   using VectorizationCostTy = std::pair<unsigned, bool>;
1335 
1336   /// Returns the expected execution cost. The unit of the cost does
1337   /// not matter because we use the 'cost' units to compare different
1338   /// vector widths. The cost that is returned is *not* normalized by
1339   /// the factor width.
1340   VectorizationCostTy expectedCost(unsigned VF);
1341 
1342   /// Returns the execution time cost of an instruction for a given vector
1343   /// width. Vector width of one means scalar.
1344   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1345 
1346   /// The cost-computation logic from getInstructionCost which provides
1347   /// the vector type as an output parameter.
1348   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1349 
1350   /// Calculate vectorization cost of memory instruction \p I.
1351   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
1352 
1353   /// The cost computation for scalarized memory instruction.
1354   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
1355 
1356   /// The cost computation for interleaving group of memory instructions.
1357   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
1358 
1359   /// The cost computation for Gather/Scatter instruction.
1360   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
1361 
1362   /// The cost computation for widening instruction \p I with consecutive
1363   /// memory access.
1364   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
1365 
1366   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1367   /// Load: scalar load + broadcast.
1368   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1369   /// element)
1370   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
1371 
1372   /// Estimate the overhead of scalarizing an instruction. This is a
1373   /// convenience wrapper for the type-based getScalarizationOverhead API.
1374   unsigned getScalarizationOverhead(Instruction *I, unsigned VF);
1375 
1376   /// Returns whether the instruction is a load or store and will be a emitted
1377   /// as a vector operation.
1378   bool isConsecutiveLoadOrStore(Instruction *I);
1379 
1380   /// Returns true if an artificially high cost for emulated masked memrefs
1381   /// should be used.
1382   bool useEmulatedMaskMemRefHack(Instruction *I);
1383 
1384   /// Map of scalar integer values to the smallest bitwidth they can be legally
1385   /// represented as. The vector equivalents of these values should be truncated
1386   /// to this type.
1387   MapVector<Instruction *, uint64_t> MinBWs;
1388 
1389   /// A type representing the costs for instructions if they were to be
1390   /// scalarized rather than vectorized. The entries are Instruction-Cost
1391   /// pairs.
1392   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1393 
1394   /// A set containing all BasicBlocks that are known to present after
1395   /// vectorization as a predicated block.
1396   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1397 
1398   /// Records whether it is allowed to have the original scalar loop execute at
1399   /// least once. This may be needed as a fallback loop in case runtime
1400   /// aliasing/dependence checks fail, or to handle the tail/remainder
1401   /// iterations when the trip count is unknown or doesn't divide by the VF,
1402   /// or as a peel-loop to handle gaps in interleave-groups.
1403   /// Under optsize and when the trip count is very small we don't allow any
1404   /// iterations to execute in the scalar loop.
1405   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1406 
1407   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1408   bool FoldTailByMasking = false;
1409 
1410   /// A map holding scalar costs for different vectorization factors. The
1411   /// presence of a cost for an instruction in the mapping indicates that the
1412   /// instruction will be scalarized when vectorizing with the associated
1413   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1414   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
1415 
1416   /// Holds the instructions known to be uniform after vectorization.
1417   /// The data is collected per VF.
1418   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
1419 
1420   /// Holds the instructions known to be scalar after vectorization.
1421   /// The data is collected per VF.
1422   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
1423 
1424   /// Holds the instructions (address computations) that are forced to be
1425   /// scalarized.
1426   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1427 
1428   /// Returns the expected difference in cost from scalarizing the expression
1429   /// feeding a predicated instruction \p PredInst. The instructions to
1430   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1431   /// non-negative return value implies the expression will be scalarized.
1432   /// Currently, only single-use chains are considered for scalarization.
1433   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1434                               unsigned VF);
1435 
1436   /// Collect the instructions that are uniform after vectorization. An
1437   /// instruction is uniform if we represent it with a single scalar value in
1438   /// the vectorized loop corresponding to each vector iteration. Examples of
1439   /// uniform instructions include pointer operands of consecutive or
1440   /// interleaved memory accesses. Note that although uniformity implies an
1441   /// instruction will be scalar, the reverse is not true. In general, a
1442   /// scalarized instruction will be represented by VF scalar values in the
1443   /// vectorized loop, each corresponding to an iteration of the original
1444   /// scalar loop.
1445   void collectLoopUniforms(unsigned VF);
1446 
1447   /// Collect the instructions that are scalar after vectorization. An
1448   /// instruction is scalar if it is known to be uniform or will be scalarized
1449   /// during vectorization. Non-uniform scalarized instructions will be
1450   /// represented by VF values in the vectorized loop, each corresponding to an
1451   /// iteration of the original scalar loop.
1452   void collectLoopScalars(unsigned VF);
1453 
1454   /// Keeps cost model vectorization decision and cost for instructions.
1455   /// Right now it is used for memory instructions only.
1456   using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
1457                                 std::pair<InstWidening, unsigned>>;
1458 
1459   DecisionList WideningDecisions;
1460 
1461   /// Returns true if \p V is expected to be vectorized and it needs to be
1462   /// extracted.
1463   bool needsExtract(Value *V, unsigned VF) const {
1464     Instruction *I = dyn_cast<Instruction>(V);
1465     if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I))
1466       return false;
1467 
1468     // Assume we can vectorize V (and hence we need extraction) if the
1469     // scalars are not computed yet. This can happen, because it is called
1470     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1471     // the scalars are collected. That should be a safe assumption in most
1472     // cases, because we check if the operands have vectorizable types
1473     // beforehand in LoopVectorizationLegality.
1474     return Scalars.find(VF) == Scalars.end() ||
1475            !isScalarAfterVectorization(I, VF);
1476   };
1477 
1478   /// Returns a range containing only operands needing to be extracted.
1479   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1480                                                    unsigned VF) {
1481     return SmallVector<Value *, 4>(make_filter_range(
1482         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1483   }
1484 
1485 public:
1486   /// The loop that we evaluate.
1487   Loop *TheLoop;
1488 
1489   /// Predicated scalar evolution analysis.
1490   PredicatedScalarEvolution &PSE;
1491 
1492   /// Loop Info analysis.
1493   LoopInfo *LI;
1494 
1495   /// Vectorization legality.
1496   LoopVectorizationLegality *Legal;
1497 
1498   /// Vector target information.
1499   const TargetTransformInfo &TTI;
1500 
1501   /// Target Library Info.
1502   const TargetLibraryInfo *TLI;
1503 
1504   /// Demanded bits analysis.
1505   DemandedBits *DB;
1506 
1507   /// Assumption cache.
1508   AssumptionCache *AC;
1509 
1510   /// Interface to emit optimization remarks.
1511   OptimizationRemarkEmitter *ORE;
1512 
1513   const Function *TheFunction;
1514 
1515   /// Loop Vectorize Hint.
1516   const LoopVectorizeHints *Hints;
1517 
1518   /// The interleave access information contains groups of interleaved accesses
1519   /// with the same stride and close to each other.
1520   InterleavedAccessInfo &InterleaveInfo;
1521 
1522   /// Values to ignore in the cost model.
1523   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1524 
1525   /// Values to ignore in the cost model when VF > 1.
1526   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1527 };
1528 
1529 } // end namespace llvm
1530 
1531 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1532 // vectorization. The loop needs to be annotated with #pragma omp simd
1533 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1534 // vector length information is not provided, vectorization is not considered
1535 // explicit. Interleave hints are not allowed either. These limitations will be
1536 // relaxed in the future.
1537 // Please, note that we are currently forced to abuse the pragma 'clang
1538 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1539 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1540 // provides *explicit vectorization hints* (LV can bypass legal checks and
1541 // assume that vectorization is legal). However, both hints are implemented
1542 // using the same metadata (llvm.loop.vectorize, processed by
1543 // LoopVectorizeHints). This will be fixed in the future when the native IR
1544 // representation for pragma 'omp simd' is introduced.
1545 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1546                                    OptimizationRemarkEmitter *ORE) {
1547   assert(!OuterLp->empty() && "This is not an outer loop");
1548   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1549 
1550   // Only outer loops with an explicit vectorization hint are supported.
1551   // Unannotated outer loops are ignored.
1552   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1553     return false;
1554 
1555   Function *Fn = OuterLp->getHeader()->getParent();
1556   if (!Hints.allowVectorization(Fn, OuterLp,
1557                                 true /*VectorizeOnlyWhenForced*/)) {
1558     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1559     return false;
1560   }
1561 
1562   if (Hints.getInterleave() > 1) {
1563     // TODO: Interleave support is future work.
1564     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1565                          "outer loops.\n");
1566     Hints.emitRemarkWithHints();
1567     return false;
1568   }
1569 
1570   return true;
1571 }
1572 
1573 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1574                                   OptimizationRemarkEmitter *ORE,
1575                                   SmallVectorImpl<Loop *> &V) {
1576   // Collect inner loops and outer loops without irreducible control flow. For
1577   // now, only collect outer loops that have explicit vectorization hints. If we
1578   // are stress testing the VPlan H-CFG construction, we collect the outermost
1579   // loop of every loop nest.
1580   if (L.empty() || VPlanBuildStressTest ||
1581       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1582     LoopBlocksRPO RPOT(&L);
1583     RPOT.perform(LI);
1584     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1585       V.push_back(&L);
1586       // TODO: Collect inner loops inside marked outer loops in case
1587       // vectorization fails for the outer loop. Do not invoke
1588       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1589       // already known to be reducible. We can use an inherited attribute for
1590       // that.
1591       return;
1592     }
1593   }
1594   for (Loop *InnerL : L)
1595     collectSupportedLoops(*InnerL, LI, ORE, V);
1596 }
1597 
1598 namespace {
1599 
1600 /// The LoopVectorize Pass.
1601 struct LoopVectorize : public FunctionPass {
1602   /// Pass identification, replacement for typeid
1603   static char ID;
1604 
1605   LoopVectorizePass Impl;
1606 
1607   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1608                          bool VectorizeOnlyWhenForced = false)
1609       : FunctionPass(ID),
1610         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1611     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1612   }
1613 
1614   bool runOnFunction(Function &F) override {
1615     if (skipFunction(F))
1616       return false;
1617 
1618     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1619     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1620     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1621     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1622     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1623     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1624     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1625     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1626     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1627     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1628     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1629     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1630     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1631 
1632     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1633         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1634 
1635     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1636                         GetLAA, *ORE, PSI).MadeAnyChange;
1637   }
1638 
1639   void getAnalysisUsage(AnalysisUsage &AU) const override {
1640     AU.addRequired<AssumptionCacheTracker>();
1641     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1642     AU.addRequired<DominatorTreeWrapperPass>();
1643     AU.addRequired<LoopInfoWrapperPass>();
1644     AU.addRequired<ScalarEvolutionWrapperPass>();
1645     AU.addRequired<TargetTransformInfoWrapperPass>();
1646     AU.addRequired<AAResultsWrapperPass>();
1647     AU.addRequired<LoopAccessLegacyAnalysis>();
1648     AU.addRequired<DemandedBitsWrapperPass>();
1649     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1650     AU.addRequired<InjectTLIMappingsLegacy>();
1651 
1652     // We currently do not preserve loopinfo/dominator analyses with outer loop
1653     // vectorization. Until this is addressed, mark these analyses as preserved
1654     // only for non-VPlan-native path.
1655     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1656     if (!EnableVPlanNativePath) {
1657       AU.addPreserved<LoopInfoWrapperPass>();
1658       AU.addPreserved<DominatorTreeWrapperPass>();
1659     }
1660 
1661     AU.addPreserved<BasicAAWrapperPass>();
1662     AU.addPreserved<GlobalsAAWrapperPass>();
1663     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1664   }
1665 };
1666 
1667 } // end anonymous namespace
1668 
1669 //===----------------------------------------------------------------------===//
1670 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1671 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1672 //===----------------------------------------------------------------------===//
1673 
1674 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1675   // We need to place the broadcast of invariant variables outside the loop,
1676   // but only if it's proven safe to do so. Else, broadcast will be inside
1677   // vector loop body.
1678   Instruction *Instr = dyn_cast<Instruction>(V);
1679   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1680                      (!Instr ||
1681                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1682   // Place the code for broadcasting invariant variables in the new preheader.
1683   IRBuilder<>::InsertPointGuard Guard(Builder);
1684   if (SafeToHoist)
1685     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1686 
1687   // Broadcast the scalar into all locations in the vector.
1688   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1689 
1690   return Shuf;
1691 }
1692 
1693 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1694     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1695   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1696          "Expected either an induction phi-node or a truncate of it!");
1697   Value *Start = II.getStartValue();
1698 
1699   // Construct the initial value of the vector IV in the vector loop preheader
1700   auto CurrIP = Builder.saveIP();
1701   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1702   if (isa<TruncInst>(EntryVal)) {
1703     assert(Start->getType()->isIntegerTy() &&
1704            "Truncation requires an integer type");
1705     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1706     Step = Builder.CreateTrunc(Step, TruncType);
1707     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1708   }
1709   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1710   Value *SteppedStart =
1711       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1712 
1713   // We create vector phi nodes for both integer and floating-point induction
1714   // variables. Here, we determine the kind of arithmetic we will perform.
1715   Instruction::BinaryOps AddOp;
1716   Instruction::BinaryOps MulOp;
1717   if (Step->getType()->isIntegerTy()) {
1718     AddOp = Instruction::Add;
1719     MulOp = Instruction::Mul;
1720   } else {
1721     AddOp = II.getInductionOpcode();
1722     MulOp = Instruction::FMul;
1723   }
1724 
1725   // Multiply the vectorization factor by the step using integer or
1726   // floating-point arithmetic as appropriate.
1727   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
1728   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1729 
1730   // Create a vector splat to use in the induction update.
1731   //
1732   // FIXME: If the step is non-constant, we create the vector splat with
1733   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1734   //        handle a constant vector splat.
1735   Value *SplatVF =
1736       isa<Constant>(Mul)
1737           ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul))
1738           : Builder.CreateVectorSplat(VF, Mul);
1739   Builder.restoreIP(CurrIP);
1740 
1741   // We may need to add the step a number of times, depending on the unroll
1742   // factor. The last of those goes into the PHI.
1743   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1744                                     &*LoopVectorBody->getFirstInsertionPt());
1745   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1746   Instruction *LastInduction = VecInd;
1747   for (unsigned Part = 0; Part < UF; ++Part) {
1748     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1749 
1750     if (isa<TruncInst>(EntryVal))
1751       addMetadata(LastInduction, EntryVal);
1752     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1753 
1754     LastInduction = cast<Instruction>(addFastMathFlag(
1755         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1756     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1757   }
1758 
1759   // Move the last step to the end of the latch block. This ensures consistent
1760   // placement of all induction updates.
1761   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1762   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1763   auto *ICmp = cast<Instruction>(Br->getCondition());
1764   LastInduction->moveBefore(ICmp);
1765   LastInduction->setName("vec.ind.next");
1766 
1767   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1768   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1769 }
1770 
1771 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1772   return Cost->isScalarAfterVectorization(I, VF) ||
1773          Cost->isProfitableToScalarize(I, VF);
1774 }
1775 
1776 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1777   if (shouldScalarizeInstruction(IV))
1778     return true;
1779   auto isScalarInst = [&](User *U) -> bool {
1780     auto *I = cast<Instruction>(U);
1781     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1782   };
1783   return llvm::any_of(IV->users(), isScalarInst);
1784 }
1785 
1786 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1787     const InductionDescriptor &ID, const Instruction *EntryVal,
1788     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1789   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1790          "Expected either an induction phi-node or a truncate of it!");
1791 
1792   // This induction variable is not the phi from the original loop but the
1793   // newly-created IV based on the proof that casted Phi is equal to the
1794   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1795   // re-uses the same InductionDescriptor that original IV uses but we don't
1796   // have to do any recording in this case - that is done when original IV is
1797   // processed.
1798   if (isa<TruncInst>(EntryVal))
1799     return;
1800 
1801   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1802   if (Casts.empty())
1803     return;
1804   // Only the first Cast instruction in the Casts vector is of interest.
1805   // The rest of the Casts (if exist) have no uses outside the
1806   // induction update chain itself.
1807   Instruction *CastInst = *Casts.begin();
1808   if (Lane < UINT_MAX)
1809     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1810   else
1811     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1812 }
1813 
1814 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1815   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1816          "Primary induction variable must have an integer type");
1817 
1818   auto II = Legal->getInductionVars().find(IV);
1819   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1820 
1821   auto ID = II->second;
1822   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1823 
1824   // The value from the original loop to which we are mapping the new induction
1825   // variable.
1826   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1827 
1828   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1829 
1830   // Generate code for the induction step. Note that induction steps are
1831   // required to be loop-invariant
1832   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1833     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1834            "Induction step should be loop invariant");
1835     if (PSE.getSE()->isSCEVable(IV->getType())) {
1836       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1837       return Exp.expandCodeFor(Step, Step->getType(),
1838                                LoopVectorPreHeader->getTerminator());
1839     }
1840     return cast<SCEVUnknown>(Step)->getValue();
1841   };
1842 
1843   // The scalar value to broadcast. This is derived from the canonical
1844   // induction variable. If a truncation type is given, truncate the canonical
1845   // induction variable and step. Otherwise, derive these values from the
1846   // induction descriptor.
1847   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1848     Value *ScalarIV = Induction;
1849     if (IV != OldInduction) {
1850       ScalarIV = IV->getType()->isIntegerTy()
1851                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1852                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1853                                           IV->getType());
1854       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1855       ScalarIV->setName("offset.idx");
1856     }
1857     if (Trunc) {
1858       auto *TruncType = cast<IntegerType>(Trunc->getType());
1859       assert(Step->getType()->isIntegerTy() &&
1860              "Truncation requires an integer step");
1861       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1862       Step = Builder.CreateTrunc(Step, TruncType);
1863     }
1864     return ScalarIV;
1865   };
1866 
1867   // Create the vector values from the scalar IV, in the absence of creating a
1868   // vector IV.
1869   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1870     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1871     for (unsigned Part = 0; Part < UF; ++Part) {
1872       Value *EntryPart =
1873           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
1874       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
1875       if (Trunc)
1876         addMetadata(EntryPart, Trunc);
1877       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
1878     }
1879   };
1880 
1881   // Now do the actual transformations, and start with creating the step value.
1882   Value *Step = CreateStepValue(ID.getStep());
1883   if (VF <= 1) {
1884     Value *ScalarIV = CreateScalarIV(Step);
1885     CreateSplatIV(ScalarIV, Step);
1886     return;
1887   }
1888 
1889   // Determine if we want a scalar version of the induction variable. This is
1890   // true if the induction variable itself is not widened, or if it has at
1891   // least one user in the loop that is not widened.
1892   auto NeedsScalarIV = needsScalarInduction(EntryVal);
1893   if (!NeedsScalarIV) {
1894     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1895     return;
1896   }
1897 
1898   // Try to create a new independent vector induction variable. If we can't
1899   // create the phi node, we will splat the scalar induction variable in each
1900   // loop iteration.
1901   if (!shouldScalarizeInstruction(EntryVal)) {
1902     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1903     Value *ScalarIV = CreateScalarIV(Step);
1904     // Create scalar steps that can be used by instructions we will later
1905     // scalarize. Note that the addition of the scalar steps will not increase
1906     // the number of instructions in the loop in the common case prior to
1907     // InstCombine. We will be trading one vector extract for each scalar step.
1908     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1909     return;
1910   }
1911 
1912   // If we haven't yet vectorized the induction variable, splat the scalar
1913   // induction variable, and build the necessary step vectors.
1914   // TODO: Don't do it unless the vectorized IV is really required.
1915   Value *ScalarIV = CreateScalarIV(Step);
1916   CreateSplatIV(ScalarIV, Step);
1917   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1918 }
1919 
1920 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
1921                                           Instruction::BinaryOps BinOp) {
1922   // Create and check the types.
1923   auto *ValVTy = cast<VectorType>(Val->getType());
1924   int VLen = ValVTy->getNumElements();
1925 
1926   Type *STy = Val->getType()->getScalarType();
1927   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
1928          "Induction Step must be an integer or FP");
1929   assert(Step->getType() == STy && "Step has wrong type");
1930 
1931   SmallVector<Constant *, 8> Indices;
1932 
1933   if (STy->isIntegerTy()) {
1934     // Create a vector of consecutive numbers from zero to VF.
1935     for (int i = 0; i < VLen; ++i)
1936       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
1937 
1938     // Add the consecutive indices to the vector value.
1939     Constant *Cv = ConstantVector::get(Indices);
1940     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1941     Step = Builder.CreateVectorSplat(VLen, Step);
1942     assert(Step->getType() == Val->getType() && "Invalid step vec");
1943     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1944     // which can be found from the original scalar operations.
1945     Step = Builder.CreateMul(Cv, Step);
1946     return Builder.CreateAdd(Val, Step, "induction");
1947   }
1948 
1949   // Floating point induction.
1950   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
1951          "Binary Opcode should be specified for FP induction");
1952   // Create a vector of consecutive numbers from zero to VF.
1953   for (int i = 0; i < VLen; ++i)
1954     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
1955 
1956   // Add the consecutive indices to the vector value.
1957   Constant *Cv = ConstantVector::get(Indices);
1958 
1959   Step = Builder.CreateVectorSplat(VLen, Step);
1960 
1961   // Floating point operations had to be 'fast' to enable the induction.
1962   FastMathFlags Flags;
1963   Flags.setFast();
1964 
1965   Value *MulOp = Builder.CreateFMul(Cv, Step);
1966   if (isa<Instruction>(MulOp))
1967     // Have to check, MulOp may be a constant
1968     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
1969 
1970   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
1971   if (isa<Instruction>(BOp))
1972     cast<Instruction>(BOp)->setFastMathFlags(Flags);
1973   return BOp;
1974 }
1975 
1976 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
1977                                            Instruction *EntryVal,
1978                                            const InductionDescriptor &ID) {
1979   // We shouldn't have to build scalar steps if we aren't vectorizing.
1980   assert(VF > 1 && "VF should be greater than one");
1981 
1982   // Get the value type and ensure it and the step have the same integer type.
1983   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
1984   assert(ScalarIVTy == Step->getType() &&
1985          "Val and Step should have the same type");
1986 
1987   // We build scalar steps for both integer and floating-point induction
1988   // variables. Here, we determine the kind of arithmetic we will perform.
1989   Instruction::BinaryOps AddOp;
1990   Instruction::BinaryOps MulOp;
1991   if (ScalarIVTy->isIntegerTy()) {
1992     AddOp = Instruction::Add;
1993     MulOp = Instruction::Mul;
1994   } else {
1995     AddOp = ID.getInductionOpcode();
1996     MulOp = Instruction::FMul;
1997   }
1998 
1999   // Determine the number of scalars we need to generate for each unroll
2000   // iteration. If EntryVal is uniform, we only need to generate the first
2001   // lane. Otherwise, we generate all VF values.
2002   unsigned Lanes =
2003       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2004                                                                          : VF;
2005   // Compute the scalar steps and save the results in VectorLoopValueMap.
2006   for (unsigned Part = 0; Part < UF; ++Part) {
2007     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2008       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2009       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2010       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2011       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2012       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2013     }
2014   }
2015 }
2016 
2017 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2018   assert(V != Induction && "The new induction variable should not be used.");
2019   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2020   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2021 
2022   // If we have a stride that is replaced by one, do it here. Defer this for
2023   // the VPlan-native path until we start running Legal checks in that path.
2024   if (!EnableVPlanNativePath && Legal->hasStride(V))
2025     V = ConstantInt::get(V->getType(), 1);
2026 
2027   // If we have a vector mapped to this value, return it.
2028   if (VectorLoopValueMap.hasVectorValue(V, Part))
2029     return VectorLoopValueMap.getVectorValue(V, Part);
2030 
2031   // If the value has not been vectorized, check if it has been scalarized
2032   // instead. If it has been scalarized, and we actually need the value in
2033   // vector form, we will construct the vector values on demand.
2034   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2035     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2036 
2037     // If we've scalarized a value, that value should be an instruction.
2038     auto *I = cast<Instruction>(V);
2039 
2040     // If we aren't vectorizing, we can just copy the scalar map values over to
2041     // the vector map.
2042     if (VF == 1) {
2043       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2044       return ScalarValue;
2045     }
2046 
2047     // Get the last scalar instruction we generated for V and Part. If the value
2048     // is known to be uniform after vectorization, this corresponds to lane zero
2049     // of the Part unroll iteration. Otherwise, the last instruction is the one
2050     // we created for the last vector lane of the Part unroll iteration.
2051     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2052     auto *LastInst = cast<Instruction>(
2053         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2054 
2055     // Set the insert point after the last scalarized instruction. This ensures
2056     // the insertelement sequence will directly follow the scalar definitions.
2057     auto OldIP = Builder.saveIP();
2058     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2059     Builder.SetInsertPoint(&*NewIP);
2060 
2061     // However, if we are vectorizing, we need to construct the vector values.
2062     // If the value is known to be uniform after vectorization, we can just
2063     // broadcast the scalar value corresponding to lane zero for each unroll
2064     // iteration. Otherwise, we construct the vector values using insertelement
2065     // instructions. Since the resulting vectors are stored in
2066     // VectorLoopValueMap, we will only generate the insertelements once.
2067     Value *VectorValue = nullptr;
2068     if (Cost->isUniformAfterVectorization(I, VF)) {
2069       VectorValue = getBroadcastInstrs(ScalarValue);
2070       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2071     } else {
2072       // Initialize packing with insertelements to start from undef.
2073       Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2074       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2075       for (unsigned Lane = 0; Lane < VF; ++Lane)
2076         packScalarIntoVectorValue(V, {Part, Lane});
2077       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2078     }
2079     Builder.restoreIP(OldIP);
2080     return VectorValue;
2081   }
2082 
2083   // If this scalar is unknown, assume that it is a constant or that it is
2084   // loop invariant. Broadcast V and save the value for future uses.
2085   Value *B = getBroadcastInstrs(V);
2086   VectorLoopValueMap.setVectorValue(V, Part, B);
2087   return B;
2088 }
2089 
2090 Value *
2091 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2092                                             const VPIteration &Instance) {
2093   // If the value is not an instruction contained in the loop, it should
2094   // already be scalar.
2095   if (OrigLoop->isLoopInvariant(V))
2096     return V;
2097 
2098   assert(Instance.Lane > 0
2099              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2100              : true && "Uniform values only have lane zero");
2101 
2102   // If the value from the original loop has not been vectorized, it is
2103   // represented by UF x VF scalar values in the new loop. Return the requested
2104   // scalar value.
2105   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2106     return VectorLoopValueMap.getScalarValue(V, Instance);
2107 
2108   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2109   // for the given unroll part. If this entry is not a vector type (i.e., the
2110   // vectorization factor is one), there is no need to generate an
2111   // extractelement instruction.
2112   auto *U = getOrCreateVectorValue(V, Instance.Part);
2113   if (!U->getType()->isVectorTy()) {
2114     assert(VF == 1 && "Value not scalarized has non-vector type");
2115     return U;
2116   }
2117 
2118   // Otherwise, the value from the original loop has been vectorized and is
2119   // represented by UF vector values. Extract and return the requested scalar
2120   // value from the appropriate vector lane.
2121   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2122 }
2123 
2124 void InnerLoopVectorizer::packScalarIntoVectorValue(
2125     Value *V, const VPIteration &Instance) {
2126   assert(V != Induction && "The new induction variable should not be used.");
2127   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2128   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2129 
2130   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2131   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2132   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2133                                             Builder.getInt32(Instance.Lane));
2134   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2135 }
2136 
2137 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2138   assert(Vec->getType()->isVectorTy() && "Invalid type");
2139   SmallVector<int, 8> ShuffleMask;
2140   for (unsigned i = 0; i < VF; ++i)
2141     ShuffleMask.push_back(VF - i - 1);
2142 
2143   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2144                                      ShuffleMask, "reverse");
2145 }
2146 
2147 // Return whether we allow using masked interleave-groups (for dealing with
2148 // strided loads/stores that reside in predicated blocks, or for dealing
2149 // with gaps).
2150 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2151   // If an override option has been passed in for interleaved accesses, use it.
2152   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2153     return EnableMaskedInterleavedMemAccesses;
2154 
2155   return TTI.enableMaskedInterleavedAccessVectorization();
2156 }
2157 
2158 // Try to vectorize the interleave group that \p Instr belongs to.
2159 //
2160 // E.g. Translate following interleaved load group (factor = 3):
2161 //   for (i = 0; i < N; i+=3) {
2162 //     R = Pic[i];             // Member of index 0
2163 //     G = Pic[i+1];           // Member of index 1
2164 //     B = Pic[i+2];           // Member of index 2
2165 //     ... // do something to R, G, B
2166 //   }
2167 // To:
2168 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2169 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2170 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2171 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2172 //
2173 // Or translate following interleaved store group (factor = 3):
2174 //   for (i = 0; i < N; i+=3) {
2175 //     ... do something to R, G, B
2176 //     Pic[i]   = R;           // Member of index 0
2177 //     Pic[i+1] = G;           // Member of index 1
2178 //     Pic[i+2] = B;           // Member of index 2
2179 //   }
2180 // To:
2181 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2182 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2183 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2184 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2185 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2186 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2187     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2188     VPValue *Addr, VPValue *BlockInMask) {
2189   Instruction *Instr = Group->getInsertPos();
2190   const DataLayout &DL = Instr->getModule()->getDataLayout();
2191 
2192   // Prepare for the vector type of the interleaved load/store.
2193   Type *ScalarTy = getMemInstValueType(Instr);
2194   unsigned InterleaveFactor = Group->getFactor();
2195   Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2196 
2197   // Prepare for the new pointers.
2198   SmallVector<Value *, 2> AddrParts;
2199   unsigned Index = Group->getIndex(Instr);
2200 
2201   // TODO: extend the masked interleaved-group support to reversed access.
2202   assert((!BlockInMask || !Group->isReverse()) &&
2203          "Reversed masked interleave-group not supported.");
2204 
2205   // If the group is reverse, adjust the index to refer to the last vector lane
2206   // instead of the first. We adjust the index from the first vector lane,
2207   // rather than directly getting the pointer for lane VF - 1, because the
2208   // pointer operand of the interleaved access is supposed to be uniform. For
2209   // uniform instructions, we're only required to generate a value for the
2210   // first vector lane in each unroll iteration.
2211   if (Group->isReverse())
2212     Index += (VF - 1) * Group->getFactor();
2213 
2214   for (unsigned Part = 0; Part < UF; Part++) {
2215     Value *AddrPart = State.get(Addr, {Part, 0});
2216     setDebugLocFromInst(Builder, AddrPart);
2217 
2218     // Notice current instruction could be any index. Need to adjust the address
2219     // to the member of index 0.
2220     //
2221     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2222     //       b = A[i];       // Member of index 0
2223     // Current pointer is pointed to A[i+1], adjust it to A[i].
2224     //
2225     // E.g.  A[i+1] = a;     // Member of index 1
2226     //       A[i]   = b;     // Member of index 0
2227     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2228     // Current pointer is pointed to A[i+2], adjust it to A[i].
2229 
2230     bool InBounds = false;
2231     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2232       InBounds = gep->isInBounds();
2233     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2234     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2235 
2236     // Cast to the vector pointer type.
2237     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2238     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2239     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2240   }
2241 
2242   setDebugLocFromInst(Builder, Instr);
2243   Value *UndefVec = UndefValue::get(VecTy);
2244 
2245   Value *MaskForGaps = nullptr;
2246   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2247     MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
2248     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2249   }
2250 
2251   // Vectorize the interleaved load group.
2252   if (isa<LoadInst>(Instr)) {
2253     // For each unroll part, create a wide load for the group.
2254     SmallVector<Value *, 2> NewLoads;
2255     for (unsigned Part = 0; Part < UF; Part++) {
2256       Instruction *NewLoad;
2257       if (BlockInMask || MaskForGaps) {
2258         assert(useMaskedInterleavedAccesses(*TTI) &&
2259                "masked interleaved groups are not allowed.");
2260         Value *GroupMask = MaskForGaps;
2261         if (BlockInMask) {
2262           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2263           auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2264           Value *ShuffledMask = Builder.CreateShuffleVector(
2265               BlockInMaskPart, Undefs,
2266               createReplicatedMask(InterleaveFactor, VF), "interleaved.mask");
2267           GroupMask = MaskForGaps
2268                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2269                                                 MaskForGaps)
2270                           : ShuffledMask;
2271         }
2272         NewLoad =
2273             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2274                                      GroupMask, UndefVec, "wide.masked.vec");
2275       }
2276       else
2277         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2278                                             Group->getAlign(), "wide.vec");
2279       Group->addMetadata(NewLoad);
2280       NewLoads.push_back(NewLoad);
2281     }
2282 
2283     // For each member in the group, shuffle out the appropriate data from the
2284     // wide loads.
2285     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2286       Instruction *Member = Group->getMember(I);
2287 
2288       // Skip the gaps in the group.
2289       if (!Member)
2290         continue;
2291 
2292       auto StrideMask = createStrideMask(I, InterleaveFactor, VF);
2293       for (unsigned Part = 0; Part < UF; Part++) {
2294         Value *StridedVec = Builder.CreateShuffleVector(
2295             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2296 
2297         // If this member has different type, cast the result type.
2298         if (Member->getType() != ScalarTy) {
2299           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2300           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2301         }
2302 
2303         if (Group->isReverse())
2304           StridedVec = reverseVector(StridedVec);
2305 
2306         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2307       }
2308     }
2309     return;
2310   }
2311 
2312   // The sub vector type for current instruction.
2313   VectorType *SubVT = VectorType::get(ScalarTy, VF);
2314 
2315   // Vectorize the interleaved store group.
2316   for (unsigned Part = 0; Part < UF; Part++) {
2317     // Collect the stored vector from each member.
2318     SmallVector<Value *, 4> StoredVecs;
2319     for (unsigned i = 0; i < InterleaveFactor; i++) {
2320       // Interleaved store group doesn't allow a gap, so each index has a member
2321       Instruction *Member = Group->getMember(i);
2322       assert(Member && "Fail to get a member from an interleaved store group");
2323 
2324       Value *StoredVec = getOrCreateVectorValue(
2325           cast<StoreInst>(Member)->getValueOperand(), Part);
2326       if (Group->isReverse())
2327         StoredVec = reverseVector(StoredVec);
2328 
2329       // If this member has different type, cast it to a unified type.
2330 
2331       if (StoredVec->getType() != SubVT)
2332         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2333 
2334       StoredVecs.push_back(StoredVec);
2335     }
2336 
2337     // Concatenate all vectors into a wide vector.
2338     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2339 
2340     // Interleave the elements in the wide vector.
2341     Value *IVec = Builder.CreateShuffleVector(
2342         WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor),
2343         "interleaved.vec");
2344 
2345     Instruction *NewStoreInstr;
2346     if (BlockInMask) {
2347       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2348       auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2349       Value *ShuffledMask = Builder.CreateShuffleVector(
2350           BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF),
2351           "interleaved.mask");
2352       NewStoreInstr = Builder.CreateMaskedStore(
2353           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2354     }
2355     else
2356       NewStoreInstr =
2357           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2358 
2359     Group->addMetadata(NewStoreInstr);
2360   }
2361 }
2362 
2363 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2364                                                      VPTransformState &State,
2365                                                      VPValue *Addr,
2366                                                      VPValue *StoredValue,
2367                                                      VPValue *BlockInMask) {
2368   // Attempt to issue a wide load.
2369   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2370   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2371 
2372   assert((LI || SI) && "Invalid Load/Store instruction");
2373   assert((!SI || StoredValue) && "No stored value provided for widened store");
2374   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2375 
2376   LoopVectorizationCostModel::InstWidening Decision =
2377       Cost->getWideningDecision(Instr, VF);
2378   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2379           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2380           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2381          "CM decision is not to widen the memory instruction");
2382 
2383   Type *ScalarDataTy = getMemInstValueType(Instr);
2384   Type *DataTy = VectorType::get(ScalarDataTy, VF);
2385   // An alignment of 0 means target abi alignment. We need to use the scalar's
2386   // target abi alignment in such a case.
2387   const DataLayout &DL = Instr->getModule()->getDataLayout();
2388   const Align Alignment =
2389       DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy);
2390 
2391   // Determine if the pointer operand of the access is either consecutive or
2392   // reverse consecutive.
2393   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2394   bool ConsecutiveStride =
2395       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2396   bool CreateGatherScatter =
2397       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2398 
2399   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2400   // gather/scatter. Otherwise Decision should have been to Scalarize.
2401   assert((ConsecutiveStride || CreateGatherScatter) &&
2402          "The instruction should be scalarized");
2403   (void)ConsecutiveStride;
2404 
2405   VectorParts BlockInMaskParts(UF);
2406   bool isMaskRequired = BlockInMask;
2407   if (isMaskRequired)
2408     for (unsigned Part = 0; Part < UF; ++Part)
2409       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2410 
2411   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2412     // Calculate the pointer for the specific unroll-part.
2413     GetElementPtrInst *PartPtr = nullptr;
2414 
2415     bool InBounds = false;
2416     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2417       InBounds = gep->isInBounds();
2418 
2419     if (Reverse) {
2420       // If the address is consecutive but reversed, then the
2421       // wide store needs to start at the last vector element.
2422       PartPtr = cast<GetElementPtrInst>(
2423           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
2424       PartPtr->setIsInBounds(InBounds);
2425       PartPtr = cast<GetElementPtrInst>(
2426           Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
2427       PartPtr->setIsInBounds(InBounds);
2428       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2429         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2430     } else {
2431       PartPtr = cast<GetElementPtrInst>(
2432           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
2433       PartPtr->setIsInBounds(InBounds);
2434     }
2435 
2436     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2437     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2438   };
2439 
2440   // Handle Stores:
2441   if (SI) {
2442     setDebugLocFromInst(Builder, SI);
2443 
2444     for (unsigned Part = 0; Part < UF; ++Part) {
2445       Instruction *NewSI = nullptr;
2446       Value *StoredVal = State.get(StoredValue, Part);
2447       if (CreateGatherScatter) {
2448         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2449         Value *VectorGep = State.get(Addr, Part);
2450         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2451                                             MaskPart);
2452       } else {
2453         if (Reverse) {
2454           // If we store to reverse consecutive memory locations, then we need
2455           // to reverse the order of elements in the stored value.
2456           StoredVal = reverseVector(StoredVal);
2457           // We don't want to update the value in the map as it might be used in
2458           // another expression. So don't call resetVectorValue(StoredVal).
2459         }
2460         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2461         if (isMaskRequired)
2462           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2463                                             BlockInMaskParts[Part]);
2464         else
2465           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2466       }
2467       addMetadata(NewSI, SI);
2468     }
2469     return;
2470   }
2471 
2472   // Handle loads.
2473   assert(LI && "Must have a load instruction");
2474   setDebugLocFromInst(Builder, LI);
2475   for (unsigned Part = 0; Part < UF; ++Part) {
2476     Value *NewLI;
2477     if (CreateGatherScatter) {
2478       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2479       Value *VectorGep = State.get(Addr, Part);
2480       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2481                                          nullptr, "wide.masked.gather");
2482       addMetadata(NewLI, LI);
2483     } else {
2484       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2485       if (isMaskRequired)
2486         NewLI = Builder.CreateMaskedLoad(
2487             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2488             "wide.masked.load");
2489       else
2490         NewLI =
2491             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2492 
2493       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2494       addMetadata(NewLI, LI);
2495       if (Reverse)
2496         NewLI = reverseVector(NewLI);
2497     }
2498     VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
2499   }
2500 }
2501 
2502 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2503                                                const VPIteration &Instance,
2504                                                bool IfPredicateInstr) {
2505   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2506 
2507   setDebugLocFromInst(Builder, Instr);
2508 
2509   // Does this instruction return a value ?
2510   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2511 
2512   Instruction *Cloned = Instr->clone();
2513   if (!IsVoidRetTy)
2514     Cloned->setName(Instr->getName() + ".cloned");
2515 
2516   // Replace the operands of the cloned instructions with their scalar
2517   // equivalents in the new loop.
2518   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2519     auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
2520     Cloned->setOperand(op, NewOp);
2521   }
2522   addNewMetadata(Cloned, Instr);
2523 
2524   // Place the cloned scalar in the new loop.
2525   Builder.Insert(Cloned);
2526 
2527   // Add the cloned scalar to the scalar map entry.
2528   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2529 
2530   // If we just cloned a new assumption, add it the assumption cache.
2531   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2532     if (II->getIntrinsicID() == Intrinsic::assume)
2533       AC->registerAssumption(II);
2534 
2535   // End if-block.
2536   if (IfPredicateInstr)
2537     PredicatedInstructions.push_back(Cloned);
2538 }
2539 
2540 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2541                                                       Value *End, Value *Step,
2542                                                       Instruction *DL) {
2543   BasicBlock *Header = L->getHeader();
2544   BasicBlock *Latch = L->getLoopLatch();
2545   // As we're just creating this loop, it's possible no latch exists
2546   // yet. If so, use the header as this will be a single block loop.
2547   if (!Latch)
2548     Latch = Header;
2549 
2550   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2551   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2552   setDebugLocFromInst(Builder, OldInst);
2553   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2554 
2555   Builder.SetInsertPoint(Latch->getTerminator());
2556   setDebugLocFromInst(Builder, OldInst);
2557 
2558   // Create i+1 and fill the PHINode.
2559   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2560   Induction->addIncoming(Start, L->getLoopPreheader());
2561   Induction->addIncoming(Next, Latch);
2562   // Create the compare.
2563   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2564   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2565 
2566   // Now we have two terminators. Remove the old one from the block.
2567   Latch->getTerminator()->eraseFromParent();
2568 
2569   return Induction;
2570 }
2571 
2572 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2573   if (TripCount)
2574     return TripCount;
2575 
2576   assert(L && "Create Trip Count for null loop.");
2577   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2578   // Find the loop boundaries.
2579   ScalarEvolution *SE = PSE.getSE();
2580   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2581   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2582          "Invalid loop count");
2583 
2584   Type *IdxTy = Legal->getWidestInductionType();
2585   assert(IdxTy && "No type for induction");
2586 
2587   // The exit count might have the type of i64 while the phi is i32. This can
2588   // happen if we have an induction variable that is sign extended before the
2589   // compare. The only way that we get a backedge taken count is that the
2590   // induction variable was signed and as such will not overflow. In such a case
2591   // truncation is legal.
2592   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2593       IdxTy->getPrimitiveSizeInBits())
2594     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2595   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2596 
2597   // Get the total trip count from the count by adding 1.
2598   const SCEV *ExitCount = SE->getAddExpr(
2599       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2600 
2601   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2602 
2603   // Expand the trip count and place the new instructions in the preheader.
2604   // Notice that the pre-header does not change, only the loop body.
2605   SCEVExpander Exp(*SE, DL, "induction");
2606 
2607   // Count holds the overall loop count (N).
2608   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2609                                 L->getLoopPreheader()->getTerminator());
2610 
2611   if (TripCount->getType()->isPointerTy())
2612     TripCount =
2613         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2614                                     L->getLoopPreheader()->getTerminator());
2615 
2616   return TripCount;
2617 }
2618 
2619 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2620   if (VectorTripCount)
2621     return VectorTripCount;
2622 
2623   Value *TC = getOrCreateTripCount(L);
2624   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2625 
2626   Type *Ty = TC->getType();
2627   Constant *Step = ConstantInt::get(Ty, VF * UF);
2628 
2629   // If the tail is to be folded by masking, round the number of iterations N
2630   // up to a multiple of Step instead of rounding down. This is done by first
2631   // adding Step-1 and then rounding down. Note that it's ok if this addition
2632   // overflows: the vector induction variable will eventually wrap to zero given
2633   // that it starts at zero and its Step is a power of two; the loop will then
2634   // exit, with the last early-exit vector comparison also producing all-true.
2635   if (Cost->foldTailByMasking()) {
2636     assert(isPowerOf2_32(VF * UF) &&
2637            "VF*UF must be a power of 2 when folding tail by masking");
2638     TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
2639   }
2640 
2641   // Now we need to generate the expression for the part of the loop that the
2642   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2643   // iterations are not required for correctness, or N - Step, otherwise. Step
2644   // is equal to the vectorization factor (number of SIMD elements) times the
2645   // unroll factor (number of SIMD instructions).
2646   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2647 
2648   // If there is a non-reversed interleaved group that may speculatively access
2649   // memory out-of-bounds, we need to ensure that there will be at least one
2650   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2651   // the trip count, we set the remainder to be equal to the step. If the step
2652   // does not evenly divide the trip count, no adjustment is necessary since
2653   // there will already be scalar iterations. Note that the minimum iterations
2654   // check ensures that N >= Step.
2655   if (VF > 1 && Cost->requiresScalarEpilogue()) {
2656     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2657     R = Builder.CreateSelect(IsZero, Step, R);
2658   }
2659 
2660   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2661 
2662   return VectorTripCount;
2663 }
2664 
2665 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2666                                                    const DataLayout &DL) {
2667   // Verify that V is a vector type with same number of elements as DstVTy.
2668   unsigned VF = DstVTy->getNumElements();
2669   VectorType *SrcVecTy = cast<VectorType>(V->getType());
2670   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2671   Type *SrcElemTy = SrcVecTy->getElementType();
2672   Type *DstElemTy = DstVTy->getElementType();
2673   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2674          "Vector elements must have same size");
2675 
2676   // Do a direct cast if element types are castable.
2677   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2678     return Builder.CreateBitOrPointerCast(V, DstVTy);
2679   }
2680   // V cannot be directly casted to desired vector type.
2681   // May happen when V is a floating point vector but DstVTy is a vector of
2682   // pointers or vice-versa. Handle this using a two-step bitcast using an
2683   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2684   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2685          "Only one type should be a pointer type");
2686   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2687          "Only one type should be a floating point type");
2688   Type *IntTy =
2689       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2690   VectorType *VecIntTy = VectorType::get(IntTy, VF);
2691   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2692   return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
2693 }
2694 
2695 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2696                                                          BasicBlock *Bypass) {
2697   Value *Count = getOrCreateTripCount(L);
2698   // Reuse existing vector loop preheader for TC checks.
2699   // Note that new preheader block is generated for vector loop.
2700   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2701   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2702 
2703   // Generate code to check if the loop's trip count is less than VF * UF, or
2704   // equal to it in case a scalar epilogue is required; this implies that the
2705   // vector trip count is zero. This check also covers the case where adding one
2706   // to the backedge-taken count overflowed leading to an incorrect trip count
2707   // of zero. In this case we will also jump to the scalar loop.
2708   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2709                                           : ICmpInst::ICMP_ULT;
2710 
2711   // If tail is to be folded, vector loop takes care of all iterations.
2712   Value *CheckMinIters = Builder.getFalse();
2713   if (!Cost->foldTailByMasking())
2714     CheckMinIters = Builder.CreateICmp(
2715         P, Count, ConstantInt::get(Count->getType(), VF * UF),
2716         "min.iters.check");
2717 
2718   // Create new preheader for vector loop.
2719   LoopVectorPreHeader =
2720       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2721                  "vector.ph");
2722 
2723   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2724                                DT->getNode(Bypass)->getIDom()) &&
2725          "TC check is expected to dominate Bypass");
2726 
2727   // Update dominator for Bypass & LoopExit.
2728   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2729   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2730 
2731   ReplaceInstWithInst(
2732       TCCheckBlock->getTerminator(),
2733       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2734   LoopBypassBlocks.push_back(TCCheckBlock);
2735 }
2736 
2737 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2738   // Reuse existing vector loop preheader for SCEV checks.
2739   // Note that new preheader block is generated for vector loop.
2740   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2741 
2742   // Generate the code to check that the SCEV assumptions that we made.
2743   // We want the new basic block to start at the first instruction in a
2744   // sequence of instructions that form a check.
2745   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2746                    "scev.check");
2747   Value *SCEVCheck = Exp.expandCodeForPredicate(
2748       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2749 
2750   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2751     if (C->isZero())
2752       return;
2753 
2754   assert(!SCEVCheckBlock->getParent()->hasOptSize() &&
2755          "Cannot SCEV check stride or overflow when optimizing for size");
2756 
2757   SCEVCheckBlock->setName("vector.scevcheck");
2758   // Create new preheader for vector loop.
2759   LoopVectorPreHeader =
2760       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2761                  nullptr, "vector.ph");
2762 
2763   // Update dominator only if this is first RT check.
2764   if (LoopBypassBlocks.empty()) {
2765     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2766     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2767   }
2768 
2769   ReplaceInstWithInst(
2770       SCEVCheckBlock->getTerminator(),
2771       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2772   LoopBypassBlocks.push_back(SCEVCheckBlock);
2773   AddedSafetyChecks = true;
2774 }
2775 
2776 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2777   // VPlan-native path does not do any analysis for runtime checks currently.
2778   if (EnableVPlanNativePath)
2779     return;
2780 
2781   // Reuse existing vector loop preheader for runtime memory checks.
2782   // Note that new preheader block is generated for vector loop.
2783   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2784 
2785   // Generate the code that checks in runtime if arrays overlap. We put the
2786   // checks into a separate block to make the more common case of few elements
2787   // faster.
2788   auto *LAI = Legal->getLAI();
2789   const auto &RtPtrChecking = *LAI->getRuntimePointerChecking();
2790   if (!RtPtrChecking.Need)
2791     return;
2792   Instruction *FirstCheckInst;
2793   Instruction *MemRuntimeCheck;
2794   std::tie(FirstCheckInst, MemRuntimeCheck) =
2795       addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop,
2796                        RtPtrChecking.getChecks(), RtPtrChecking.getSE());
2797   if (!MemRuntimeCheck)
2798     return;
2799 
2800   if (MemCheckBlock->getParent()->hasOptSize()) {
2801     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2802            "Cannot emit memory checks when optimizing for size, unless forced "
2803            "to vectorize.");
2804     ORE->emit([&]() {
2805       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2806                                         L->getStartLoc(), L->getHeader())
2807              << "Code-size may be reduced by not forcing "
2808                 "vectorization, or by source-code modifications "
2809                 "eliminating the need for runtime checks "
2810                 "(e.g., adding 'restrict').";
2811     });
2812   }
2813 
2814   MemCheckBlock->setName("vector.memcheck");
2815   // Create new preheader for vector loop.
2816   LoopVectorPreHeader =
2817       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2818                  "vector.ph");
2819 
2820   // Update dominator only if this is first RT check.
2821   if (LoopBypassBlocks.empty()) {
2822     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2823     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2824   }
2825 
2826   ReplaceInstWithInst(
2827       MemCheckBlock->getTerminator(),
2828       BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck));
2829   LoopBypassBlocks.push_back(MemCheckBlock);
2830   AddedSafetyChecks = true;
2831 
2832   // We currently don't use LoopVersioning for the actual loop cloning but we
2833   // still use it to add the noalias metadata.
2834   LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2835                                           PSE.getSE());
2836   LVer->prepareNoAliasMetadata();
2837 }
2838 
2839 Value *InnerLoopVectorizer::emitTransformedIndex(
2840     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
2841     const InductionDescriptor &ID) const {
2842 
2843   SCEVExpander Exp(*SE, DL, "induction");
2844   auto Step = ID.getStep();
2845   auto StartValue = ID.getStartValue();
2846   assert(Index->getType() == Step->getType() &&
2847          "Index type does not match StepValue type");
2848 
2849   // Note: the IR at this point is broken. We cannot use SE to create any new
2850   // SCEV and then expand it, hoping that SCEV's simplification will give us
2851   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2852   // lead to various SCEV crashes. So all we can do is to use builder and rely
2853   // on InstCombine for future simplifications. Here we handle some trivial
2854   // cases only.
2855   auto CreateAdd = [&B](Value *X, Value *Y) {
2856     assert(X->getType() == Y->getType() && "Types don't match!");
2857     if (auto *CX = dyn_cast<ConstantInt>(X))
2858       if (CX->isZero())
2859         return Y;
2860     if (auto *CY = dyn_cast<ConstantInt>(Y))
2861       if (CY->isZero())
2862         return X;
2863     return B.CreateAdd(X, Y);
2864   };
2865 
2866   auto CreateMul = [&B](Value *X, Value *Y) {
2867     assert(X->getType() == Y->getType() && "Types don't match!");
2868     if (auto *CX = dyn_cast<ConstantInt>(X))
2869       if (CX->isOne())
2870         return Y;
2871     if (auto *CY = dyn_cast<ConstantInt>(Y))
2872       if (CY->isOne())
2873         return X;
2874     return B.CreateMul(X, Y);
2875   };
2876 
2877   switch (ID.getKind()) {
2878   case InductionDescriptor::IK_IntInduction: {
2879     assert(Index->getType() == StartValue->getType() &&
2880            "Index type does not match StartValue type");
2881     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
2882       return B.CreateSub(StartValue, Index);
2883     auto *Offset = CreateMul(
2884         Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
2885     return CreateAdd(StartValue, Offset);
2886   }
2887   case InductionDescriptor::IK_PtrInduction: {
2888     assert(isa<SCEVConstant>(Step) &&
2889            "Expected constant step for pointer induction");
2890     return B.CreateGEP(
2891         StartValue->getType()->getPointerElementType(), StartValue,
2892         CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
2893                                            &*B.GetInsertPoint())));
2894   }
2895   case InductionDescriptor::IK_FpInduction: {
2896     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2897     auto InductionBinOp = ID.getInductionBinOp();
2898     assert(InductionBinOp &&
2899            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2900             InductionBinOp->getOpcode() == Instruction::FSub) &&
2901            "Original bin op should be defined for FP induction");
2902 
2903     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
2904 
2905     // Floating point operations had to be 'fast' to enable the induction.
2906     FastMathFlags Flags;
2907     Flags.setFast();
2908 
2909     Value *MulExp = B.CreateFMul(StepValue, Index);
2910     if (isa<Instruction>(MulExp))
2911       // We have to check, the MulExp may be a constant.
2912       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
2913 
2914     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2915                                "induction");
2916     if (isa<Instruction>(BOp))
2917       cast<Instruction>(BOp)->setFastMathFlags(Flags);
2918 
2919     return BOp;
2920   }
2921   case InductionDescriptor::IK_NoInduction:
2922     return nullptr;
2923   }
2924   llvm_unreachable("invalid enum");
2925 }
2926 
2927 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
2928   /*
2929    In this function we generate a new loop. The new loop will contain
2930    the vectorized instructions while the old loop will continue to run the
2931    scalar remainder.
2932 
2933        [ ] <-- loop iteration number check.
2934     /   |
2935    /    v
2936   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2937   |  /  |
2938   | /   v
2939   ||   [ ]     <-- vector pre header.
2940   |/    |
2941   |     v
2942   |    [  ] \
2943   |    [  ]_|   <-- vector loop.
2944   |     |
2945   |     v
2946   |   -[ ]   <--- middle-block.
2947   |  /  |
2948   | /   v
2949   -|- >[ ]     <--- new preheader.
2950    |    |
2951    |    v
2952    |   [ ] \
2953    |   [ ]_|   <-- old scalar loop to handle remainder.
2954     \   |
2955      \  v
2956       >[ ]     <-- exit block.
2957    ...
2958    */
2959 
2960   MDNode *OrigLoopID = OrigLoop->getLoopID();
2961 
2962   // Some loops have a single integer induction variable, while other loops
2963   // don't. One example is c++ iterators that often have multiple pointer
2964   // induction variables. In the code below we also support a case where we
2965   // don't have a single induction variable.
2966   //
2967   // We try to obtain an induction variable from the original loop as hard
2968   // as possible. However if we don't find one that:
2969   //   - is an integer
2970   //   - counts from zero, stepping by one
2971   //   - is the size of the widest induction variable type
2972   // then we create a new one.
2973   OldInduction = Legal->getPrimaryInduction();
2974   Type *IdxTy = Legal->getWidestInductionType();
2975 
2976   // Split the single block loop into the two loop structure described above.
2977   LoopScalarBody = OrigLoop->getHeader();
2978   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
2979   LoopExitBlock = OrigLoop->getExitBlock();
2980   assert(LoopExitBlock && "Must have an exit block");
2981   assert(LoopVectorPreHeader && "Invalid loop structure");
2982 
2983   LoopMiddleBlock =
2984       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2985                  LI, nullptr, "middle.block");
2986   LoopScalarPreHeader =
2987       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
2988                  nullptr, "scalar.ph");
2989   // We intentionally don't let SplitBlock to update LoopInfo since
2990   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
2991   // LoopVectorBody is explicitly added to the correct place few lines later.
2992   LoopVectorBody =
2993       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2994                  nullptr, nullptr, "vector.body");
2995 
2996   // Update dominator for loop exit.
2997   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2998 
2999   // Create and register the new vector loop.
3000   Loop *Lp = LI->AllocateLoop();
3001   Loop *ParentLoop = OrigLoop->getParentLoop();
3002 
3003   // Insert the new loop into the loop nest and register the new basic blocks
3004   // before calling any utilities such as SCEV that require valid LoopInfo.
3005   if (ParentLoop) {
3006     ParentLoop->addChildLoop(Lp);
3007   } else {
3008     LI->addTopLevelLoop(Lp);
3009   }
3010   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3011 
3012   // Find the loop boundaries.
3013   Value *Count = getOrCreateTripCount(Lp);
3014 
3015   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3016 
3017   // Now, compare the new count to zero. If it is zero skip the vector loop and
3018   // jump to the scalar loop. This check also covers the case where the
3019   // backedge-taken count is uint##_max: adding one to it will overflow leading
3020   // to an incorrect trip count of zero. In this (rare) case we will also jump
3021   // to the scalar loop.
3022   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3023 
3024   // Generate the code to check any assumptions that we've made for SCEV
3025   // expressions.
3026   emitSCEVChecks(Lp, LoopScalarPreHeader);
3027 
3028   // Generate the code that checks in runtime if arrays overlap. We put the
3029   // checks into a separate block to make the more common case of few elements
3030   // faster.
3031   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3032 
3033   // Generate the induction variable.
3034   // The loop step is equal to the vectorization factor (num of SIMD elements)
3035   // times the unroll factor (num of SIMD instructions).
3036   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3037   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3038   Induction =
3039       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3040                               getDebugLocFromInstOrOperands(OldInduction));
3041 
3042   // We are going to resume the execution of the scalar loop.
3043   // Go over all of the induction variables that we found and fix the
3044   // PHIs that are left in the scalar version of the loop.
3045   // The starting values of PHI nodes depend on the counter of the last
3046   // iteration in the vectorized loop.
3047   // If we come from a bypass edge then we need to start from the original
3048   // start value.
3049 
3050   // This variable saves the new starting index for the scalar loop. It is used
3051   // to test if there are any tail iterations left once the vector loop has
3052   // completed.
3053   for (auto &InductionEntry : Legal->getInductionVars()) {
3054     PHINode *OrigPhi = InductionEntry.first;
3055     InductionDescriptor II = InductionEntry.second;
3056 
3057     // Create phi nodes to merge from the  backedge-taken check block.
3058     PHINode *BCResumeVal =
3059         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3060                         LoopScalarPreHeader->getTerminator());
3061     // Copy original phi DL over to the new one.
3062     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3063     Value *&EndValue = IVEndValues[OrigPhi];
3064     if (OrigPhi == OldInduction) {
3065       // We know what the end value is.
3066       EndValue = CountRoundDown;
3067     } else {
3068       IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3069       Type *StepType = II.getStep()->getType();
3070       Instruction::CastOps CastOp =
3071           CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3072       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3073       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3074       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3075       EndValue->setName("ind.end");
3076     }
3077 
3078     // The new PHI merges the original incoming value, in case of a bypass,
3079     // or the value at the end of the vectorized loop.
3080     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3081 
3082     // Fix the scalar body counter (PHI node).
3083     // The old induction's phi node in the scalar body needs the truncated
3084     // value.
3085     for (BasicBlock *BB : LoopBypassBlocks)
3086       BCResumeVal->addIncoming(II.getStartValue(), BB);
3087     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3088   }
3089 
3090   // We need the OrigLoop (scalar loop part) latch terminator to help
3091   // produce correct debug info for the middle block BB instructions.
3092   // The legality check stage guarantees that the loop will have a single
3093   // latch.
3094   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3095          "Scalar loop latch terminator isn't a branch");
3096   BranchInst *ScalarLatchBr =
3097       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3098 
3099   // Add a check in the middle block to see if we have completed
3100   // all of the iterations in the first vector loop.
3101   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3102   // If tail is to be folded, we know we don't need to run the remainder.
3103   Value *CmpN = Builder.getTrue();
3104   if (!Cost->foldTailByMasking()) {
3105     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3106                            CountRoundDown, "cmp.n",
3107                            LoopMiddleBlock->getTerminator());
3108 
3109     // Here we use the same DebugLoc as the scalar loop latch branch instead
3110     // of the corresponding compare because they may have ended up with
3111     // different line numbers and we want to avoid awkward line stepping while
3112     // debugging. Eg. if the compare has got a line number inside the loop.
3113     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3114   }
3115 
3116   BranchInst *BrInst =
3117       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3118   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3119   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3120 
3121   // Get ready to start creating new instructions into the vectorized body.
3122   assert(LoopVectorPreHeader == Lp->getLoopPreheader() &&
3123          "Inconsistent vector loop preheader");
3124   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3125 
3126   Optional<MDNode *> VectorizedLoopID =
3127       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3128                                       LLVMLoopVectorizeFollowupVectorized});
3129   if (VectorizedLoopID.hasValue()) {
3130     Lp->setLoopID(VectorizedLoopID.getValue());
3131 
3132     // Do not setAlreadyVectorized if loop attributes have been defined
3133     // explicitly.
3134     return LoopVectorPreHeader;
3135   }
3136 
3137   // Keep all loop hints from the original loop on the vector loop (we'll
3138   // replace the vectorizer-specific hints below).
3139   if (MDNode *LID = OrigLoop->getLoopID())
3140     Lp->setLoopID(LID);
3141 
3142   LoopVectorizeHints Hints(Lp, true, *ORE);
3143   Hints.setAlreadyVectorized();
3144 
3145 #ifdef EXPENSIVE_CHECKS
3146   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3147   LI->verify(*DT);
3148 #endif
3149 
3150   return LoopVectorPreHeader;
3151 }
3152 
3153 // Fix up external users of the induction variable. At this point, we are
3154 // in LCSSA form, with all external PHIs that use the IV having one input value,
3155 // coming from the remainder loop. We need those PHIs to also have a correct
3156 // value for the IV when arriving directly from the middle block.
3157 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3158                                        const InductionDescriptor &II,
3159                                        Value *CountRoundDown, Value *EndValue,
3160                                        BasicBlock *MiddleBlock) {
3161   // There are two kinds of external IV usages - those that use the value
3162   // computed in the last iteration (the PHI) and those that use the penultimate
3163   // value (the value that feeds into the phi from the loop latch).
3164   // We allow both, but they, obviously, have different values.
3165 
3166   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3167 
3168   DenseMap<Value *, Value *> MissingVals;
3169 
3170   // An external user of the last iteration's value should see the value that
3171   // the remainder loop uses to initialize its own IV.
3172   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3173   for (User *U : PostInc->users()) {
3174     Instruction *UI = cast<Instruction>(U);
3175     if (!OrigLoop->contains(UI)) {
3176       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3177       MissingVals[UI] = EndValue;
3178     }
3179   }
3180 
3181   // An external user of the penultimate value need to see EndValue - Step.
3182   // The simplest way to get this is to recompute it from the constituent SCEVs,
3183   // that is Start + (Step * (CRD - 1)).
3184   for (User *U : OrigPhi->users()) {
3185     auto *UI = cast<Instruction>(U);
3186     if (!OrigLoop->contains(UI)) {
3187       const DataLayout &DL =
3188           OrigLoop->getHeader()->getModule()->getDataLayout();
3189       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3190 
3191       IRBuilder<> B(MiddleBlock->getTerminator());
3192       Value *CountMinusOne = B.CreateSub(
3193           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3194       Value *CMO =
3195           !II.getStep()->getType()->isIntegerTy()
3196               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3197                              II.getStep()->getType())
3198               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3199       CMO->setName("cast.cmo");
3200       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3201       Escape->setName("ind.escape");
3202       MissingVals[UI] = Escape;
3203     }
3204   }
3205 
3206   for (auto &I : MissingVals) {
3207     PHINode *PHI = cast<PHINode>(I.first);
3208     // One corner case we have to handle is two IVs "chasing" each-other,
3209     // that is %IV2 = phi [...], [ %IV1, %latch ]
3210     // In this case, if IV1 has an external use, we need to avoid adding both
3211     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3212     // don't already have an incoming value for the middle block.
3213     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3214       PHI->addIncoming(I.second, MiddleBlock);
3215   }
3216 }
3217 
3218 namespace {
3219 
3220 struct CSEDenseMapInfo {
3221   static bool canHandle(const Instruction *I) {
3222     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3223            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3224   }
3225 
3226   static inline Instruction *getEmptyKey() {
3227     return DenseMapInfo<Instruction *>::getEmptyKey();
3228   }
3229 
3230   static inline Instruction *getTombstoneKey() {
3231     return DenseMapInfo<Instruction *>::getTombstoneKey();
3232   }
3233 
3234   static unsigned getHashValue(const Instruction *I) {
3235     assert(canHandle(I) && "Unknown instruction!");
3236     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3237                                                            I->value_op_end()));
3238   }
3239 
3240   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3241     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3242         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3243       return LHS == RHS;
3244     return LHS->isIdenticalTo(RHS);
3245   }
3246 };
3247 
3248 } // end anonymous namespace
3249 
3250 ///Perform cse of induction variable instructions.
3251 static void cse(BasicBlock *BB) {
3252   // Perform simple cse.
3253   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3254   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3255     Instruction *In = &*I++;
3256 
3257     if (!CSEDenseMapInfo::canHandle(In))
3258       continue;
3259 
3260     // Check if we can replace this instruction with any of the
3261     // visited instructions.
3262     if (Instruction *V = CSEMap.lookup(In)) {
3263       In->replaceAllUsesWith(V);
3264       In->eraseFromParent();
3265       continue;
3266     }
3267 
3268     CSEMap[In] = In;
3269   }
3270 }
3271 
3272 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3273                                                        unsigned VF,
3274                                                        bool &NeedToScalarize) {
3275   Function *F = CI->getCalledFunction();
3276   Type *ScalarRetTy = CI->getType();
3277   SmallVector<Type *, 4> Tys, ScalarTys;
3278   for (auto &ArgOp : CI->arg_operands())
3279     ScalarTys.push_back(ArgOp->getType());
3280 
3281   // Estimate cost of scalarized vector call. The source operands are assumed
3282   // to be vectors, so we need to extract individual elements from there,
3283   // execute VF scalar calls, and then gather the result into the vector return
3284   // value.
3285   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys,
3286                                                  TTI::TCK_RecipThroughput);
3287   if (VF == 1)
3288     return ScalarCallCost;
3289 
3290   // Compute corresponding vector type for return value and arguments.
3291   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3292   for (Type *ScalarTy : ScalarTys)
3293     Tys.push_back(ToVectorTy(ScalarTy, VF));
3294 
3295   // Compute costs of unpacking argument values for the scalar calls and
3296   // packing the return values to a vector.
3297   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3298 
3299   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3300 
3301   // If we can't emit a vector call for this function, then the currently found
3302   // cost is the cost we need to return.
3303   NeedToScalarize = true;
3304   VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/);
3305   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3306 
3307   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3308     return Cost;
3309 
3310   // If the corresponding vector cost is cheaper, return its cost.
3311   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys,
3312                                                  TTI::TCK_RecipThroughput);
3313   if (VectorCallCost < Cost) {
3314     NeedToScalarize = false;
3315     return VectorCallCost;
3316   }
3317   return Cost;
3318 }
3319 
3320 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3321                                                             unsigned VF) {
3322   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3323   assert(ID && "Expected intrinsic call!");
3324 
3325   FastMathFlags FMF;
3326   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3327     FMF = FPMO->getFastMathFlags();
3328 
3329   SmallVector<Value *, 4> Operands(CI->arg_operands());
3330   return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF,
3331                                    TargetTransformInfo::TCK_RecipThroughput,
3332                                    CI);
3333 }
3334 
3335 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3336   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3337   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3338   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3339 }
3340 
3341 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3342   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3343   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3344   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3345 }
3346 
3347 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3348   // For every instruction `I` in MinBWs, truncate the operands, create a
3349   // truncated version of `I` and reextend its result. InstCombine runs
3350   // later and will remove any ext/trunc pairs.
3351   SmallPtrSet<Value *, 4> Erased;
3352   for (const auto &KV : Cost->getMinimalBitwidths()) {
3353     // If the value wasn't vectorized, we must maintain the original scalar
3354     // type. The absence of the value from VectorLoopValueMap indicates that it
3355     // wasn't vectorized.
3356     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3357       continue;
3358     for (unsigned Part = 0; Part < UF; ++Part) {
3359       Value *I = getOrCreateVectorValue(KV.first, Part);
3360       if (Erased.find(I) != Erased.end() || I->use_empty() ||
3361           !isa<Instruction>(I))
3362         continue;
3363       Type *OriginalTy = I->getType();
3364       Type *ScalarTruncatedTy =
3365           IntegerType::get(OriginalTy->getContext(), KV.second);
3366       Type *TruncatedTy = VectorType::get(
3367           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements());
3368       if (TruncatedTy == OriginalTy)
3369         continue;
3370 
3371       IRBuilder<> B(cast<Instruction>(I));
3372       auto ShrinkOperand = [&](Value *V) -> Value * {
3373         if (auto *ZI = dyn_cast<ZExtInst>(V))
3374           if (ZI->getSrcTy() == TruncatedTy)
3375             return ZI->getOperand(0);
3376         return B.CreateZExtOrTrunc(V, TruncatedTy);
3377       };
3378 
3379       // The actual instruction modification depends on the instruction type,
3380       // unfortunately.
3381       Value *NewI = nullptr;
3382       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3383         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3384                              ShrinkOperand(BO->getOperand(1)));
3385 
3386         // Any wrapping introduced by shrinking this operation shouldn't be
3387         // considered undefined behavior. So, we can't unconditionally copy
3388         // arithmetic wrapping flags to NewI.
3389         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3390       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3391         NewI =
3392             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3393                          ShrinkOperand(CI->getOperand(1)));
3394       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3395         NewI = B.CreateSelect(SI->getCondition(),
3396                               ShrinkOperand(SI->getTrueValue()),
3397                               ShrinkOperand(SI->getFalseValue()));
3398       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3399         switch (CI->getOpcode()) {
3400         default:
3401           llvm_unreachable("Unhandled cast!");
3402         case Instruction::Trunc:
3403           NewI = ShrinkOperand(CI->getOperand(0));
3404           break;
3405         case Instruction::SExt:
3406           NewI = B.CreateSExtOrTrunc(
3407               CI->getOperand(0),
3408               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3409           break;
3410         case Instruction::ZExt:
3411           NewI = B.CreateZExtOrTrunc(
3412               CI->getOperand(0),
3413               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3414           break;
3415         }
3416       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3417         auto Elements0 =
3418             cast<VectorType>(SI->getOperand(0)->getType())->getNumElements();
3419         auto *O0 = B.CreateZExtOrTrunc(
3420             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3421         auto Elements1 =
3422             cast<VectorType>(SI->getOperand(1)->getType())->getNumElements();
3423         auto *O1 = B.CreateZExtOrTrunc(
3424             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3425 
3426         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3427       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3428         // Don't do anything with the operands, just extend the result.
3429         continue;
3430       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3431         auto Elements =
3432             cast<VectorType>(IE->getOperand(0)->getType())->getNumElements();
3433         auto *O0 = B.CreateZExtOrTrunc(
3434             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3435         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3436         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3437       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3438         auto Elements =
3439             cast<VectorType>(EE->getOperand(0)->getType())->getNumElements();
3440         auto *O0 = B.CreateZExtOrTrunc(
3441             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3442         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3443       } else {
3444         // If we don't know what to do, be conservative and don't do anything.
3445         continue;
3446       }
3447 
3448       // Lastly, extend the result.
3449       NewI->takeName(cast<Instruction>(I));
3450       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3451       I->replaceAllUsesWith(Res);
3452       cast<Instruction>(I)->eraseFromParent();
3453       Erased.insert(I);
3454       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3455     }
3456   }
3457 
3458   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3459   for (const auto &KV : Cost->getMinimalBitwidths()) {
3460     // If the value wasn't vectorized, we must maintain the original scalar
3461     // type. The absence of the value from VectorLoopValueMap indicates that it
3462     // wasn't vectorized.
3463     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3464       continue;
3465     for (unsigned Part = 0; Part < UF; ++Part) {
3466       Value *I = getOrCreateVectorValue(KV.first, Part);
3467       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3468       if (Inst && Inst->use_empty()) {
3469         Value *NewI = Inst->getOperand(0);
3470         Inst->eraseFromParent();
3471         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3472       }
3473     }
3474   }
3475 }
3476 
3477 void InnerLoopVectorizer::fixVectorizedLoop() {
3478   // Insert truncates and extends for any truncated instructions as hints to
3479   // InstCombine.
3480   if (VF > 1)
3481     truncateToMinimalBitwidths();
3482 
3483   // Fix widened non-induction PHIs by setting up the PHI operands.
3484   if (OrigPHIsToFix.size()) {
3485     assert(EnableVPlanNativePath &&
3486            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3487     fixNonInductionPHIs();
3488   }
3489 
3490   // At this point every instruction in the original loop is widened to a
3491   // vector form. Now we need to fix the recurrences in the loop. These PHI
3492   // nodes are currently empty because we did not want to introduce cycles.
3493   // This is the second stage of vectorizing recurrences.
3494   fixCrossIterationPHIs();
3495 
3496   // Forget the original basic block.
3497   PSE.getSE()->forgetLoop(OrigLoop);
3498 
3499   // Fix-up external users of the induction variables.
3500   for (auto &Entry : Legal->getInductionVars())
3501     fixupIVUsers(Entry.first, Entry.second,
3502                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3503                  IVEndValues[Entry.first], LoopMiddleBlock);
3504 
3505   fixLCSSAPHIs();
3506   for (Instruction *PI : PredicatedInstructions)
3507     sinkScalarOperands(&*PI);
3508 
3509   // Remove redundant induction instructions.
3510   cse(LoopVectorBody);
3511 
3512   // Set/update profile weights for the vector and remainder loops as original
3513   // loop iterations are now distributed among them. Note that original loop
3514   // represented by LoopScalarBody becomes remainder loop after vectorization.
3515   //
3516   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3517   // end up getting slightly roughened result but that should be OK since
3518   // profile is not inherently precise anyway. Note also possible bypass of
3519   // vector code caused by legality checks is ignored, assigning all the weight
3520   // to the vector loop, optimistically.
3521   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody),
3522                                LI->getLoopFor(LoopVectorBody),
3523                                LI->getLoopFor(LoopScalarBody), VF * UF);
3524 }
3525 
3526 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3527   // In order to support recurrences we need to be able to vectorize Phi nodes.
3528   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3529   // stage #2: We now need to fix the recurrences by adding incoming edges to
3530   // the currently empty PHI nodes. At this point every instruction in the
3531   // original loop is widened to a vector form so we can use them to construct
3532   // the incoming edges.
3533   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3534     // Handle first-order recurrences and reductions that need to be fixed.
3535     if (Legal->isFirstOrderRecurrence(&Phi))
3536       fixFirstOrderRecurrence(&Phi);
3537     else if (Legal->isReductionVariable(&Phi))
3538       fixReduction(&Phi);
3539   }
3540 }
3541 
3542 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3543   // This is the second phase of vectorizing first-order recurrences. An
3544   // overview of the transformation is described below. Suppose we have the
3545   // following loop.
3546   //
3547   //   for (int i = 0; i < n; ++i)
3548   //     b[i] = a[i] - a[i - 1];
3549   //
3550   // There is a first-order recurrence on "a". For this loop, the shorthand
3551   // scalar IR looks like:
3552   //
3553   //   scalar.ph:
3554   //     s_init = a[-1]
3555   //     br scalar.body
3556   //
3557   //   scalar.body:
3558   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3559   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3560   //     s2 = a[i]
3561   //     b[i] = s2 - s1
3562   //     br cond, scalar.body, ...
3563   //
3564   // In this example, s1 is a recurrence because it's value depends on the
3565   // previous iteration. In the first phase of vectorization, we created a
3566   // temporary value for s1. We now complete the vectorization and produce the
3567   // shorthand vector IR shown below (for VF = 4, UF = 1).
3568   //
3569   //   vector.ph:
3570   //     v_init = vector(..., ..., ..., a[-1])
3571   //     br vector.body
3572   //
3573   //   vector.body
3574   //     i = phi [0, vector.ph], [i+4, vector.body]
3575   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3576   //     v2 = a[i, i+1, i+2, i+3];
3577   //     v3 = vector(v1(3), v2(0, 1, 2))
3578   //     b[i, i+1, i+2, i+3] = v2 - v3
3579   //     br cond, vector.body, middle.block
3580   //
3581   //   middle.block:
3582   //     x = v2(3)
3583   //     br scalar.ph
3584   //
3585   //   scalar.ph:
3586   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3587   //     br scalar.body
3588   //
3589   // After execution completes the vector loop, we extract the next value of
3590   // the recurrence (x) to use as the initial value in the scalar loop.
3591 
3592   // Get the original loop preheader and single loop latch.
3593   auto *Preheader = OrigLoop->getLoopPreheader();
3594   auto *Latch = OrigLoop->getLoopLatch();
3595 
3596   // Get the initial and previous values of the scalar recurrence.
3597   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3598   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3599 
3600   // Create a vector from the initial value.
3601   auto *VectorInit = ScalarInit;
3602   if (VF > 1) {
3603     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3604     VectorInit = Builder.CreateInsertElement(
3605         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3606         Builder.getInt32(VF - 1), "vector.recur.init");
3607   }
3608 
3609   // We constructed a temporary phi node in the first phase of vectorization.
3610   // This phi node will eventually be deleted.
3611   Builder.SetInsertPoint(
3612       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3613 
3614   // Create a phi node for the new recurrence. The current value will either be
3615   // the initial value inserted into a vector or loop-varying vector value.
3616   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3617   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3618 
3619   // Get the vectorized previous value of the last part UF - 1. It appears last
3620   // among all unrolled iterations, due to the order of their construction.
3621   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3622 
3623   // Find and set the insertion point after the previous value if it is an
3624   // instruction.
3625   BasicBlock::iterator InsertPt;
3626   // Note that the previous value may have been constant-folded so it is not
3627   // guaranteed to be an instruction in the vector loop.
3628   // FIXME: Loop invariant values do not form recurrences. We should deal with
3629   //        them earlier.
3630   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3631     InsertPt = LoopVectorBody->getFirstInsertionPt();
3632   else {
3633     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3634     if (isa<PHINode>(PreviousLastPart))
3635       // If the previous value is a phi node, we should insert after all the phi
3636       // nodes in the block containing the PHI to avoid breaking basic block
3637       // verification. Note that the basic block may be different to
3638       // LoopVectorBody, in case we predicate the loop.
3639       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3640     else
3641       InsertPt = ++PreviousInst->getIterator();
3642   }
3643   Builder.SetInsertPoint(&*InsertPt);
3644 
3645   // We will construct a vector for the recurrence by combining the values for
3646   // the current and previous iterations. This is the required shuffle mask.
3647   SmallVector<int, 8> ShuffleMask(VF);
3648   ShuffleMask[0] = VF - 1;
3649   for (unsigned I = 1; I < VF; ++I)
3650     ShuffleMask[I] = I + VF - 1;
3651 
3652   // The vector from which to take the initial value for the current iteration
3653   // (actual or unrolled). Initially, this is the vector phi node.
3654   Value *Incoming = VecPhi;
3655 
3656   // Shuffle the current and previous vector and update the vector parts.
3657   for (unsigned Part = 0; Part < UF; ++Part) {
3658     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3659     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3660     auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
3661                                                          ShuffleMask)
3662                            : Incoming;
3663     PhiPart->replaceAllUsesWith(Shuffle);
3664     cast<Instruction>(PhiPart)->eraseFromParent();
3665     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3666     Incoming = PreviousPart;
3667   }
3668 
3669   // Fix the latch value of the new recurrence in the vector loop.
3670   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3671 
3672   // Extract the last vector element in the middle block. This will be the
3673   // initial value for the recurrence when jumping to the scalar loop.
3674   auto *ExtractForScalar = Incoming;
3675   if (VF > 1) {
3676     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3677     ExtractForScalar = Builder.CreateExtractElement(
3678         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
3679   }
3680   // Extract the second last element in the middle block if the
3681   // Phi is used outside the loop. We need to extract the phi itself
3682   // and not the last element (the phi update in the current iteration). This
3683   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3684   // when the scalar loop is not run at all.
3685   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3686   if (VF > 1)
3687     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3688         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
3689   // When loop is unrolled without vectorizing, initialize
3690   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3691   // `Incoming`. This is analogous to the vectorized case above: extracting the
3692   // second last element when VF > 1.
3693   else if (UF > 1)
3694     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3695 
3696   // Fix the initial value of the original recurrence in the scalar loop.
3697   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3698   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3699   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3700     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3701     Start->addIncoming(Incoming, BB);
3702   }
3703 
3704   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3705   Phi->setName("scalar.recur");
3706 
3707   // Finally, fix users of the recurrence outside the loop. The users will need
3708   // either the last value of the scalar recurrence or the last value of the
3709   // vector recurrence we extracted in the middle block. Since the loop is in
3710   // LCSSA form, we just need to find all the phi nodes for the original scalar
3711   // recurrence in the exit block, and then add an edge for the middle block.
3712   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3713     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3714       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3715     }
3716   }
3717 }
3718 
3719 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3720   Constant *Zero = Builder.getInt32(0);
3721 
3722   // Get it's reduction variable descriptor.
3723   assert(Legal->isReductionVariable(Phi) &&
3724          "Unable to find the reduction variable");
3725   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3726 
3727   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3728   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3729   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3730   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3731     RdxDesc.getMinMaxRecurrenceKind();
3732   setDebugLocFromInst(Builder, ReductionStartValue);
3733 
3734   // We need to generate a reduction vector from the incoming scalar.
3735   // To do so, we need to generate the 'identity' vector and override
3736   // one of the elements with the incoming scalar reduction. We need
3737   // to do it in the vector-loop preheader.
3738   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3739 
3740   // This is the vector-clone of the value that leaves the loop.
3741   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3742 
3743   // Find the reduction identity variable. Zero for addition, or, xor,
3744   // one for multiplication, -1 for And.
3745   Value *Identity;
3746   Value *VectorStart;
3747   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3748       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3749     // MinMax reduction have the start value as their identify.
3750     if (VF == 1) {
3751       VectorStart = Identity = ReductionStartValue;
3752     } else {
3753       VectorStart = Identity =
3754         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3755     }
3756   } else {
3757     // Handle other reduction kinds:
3758     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3759         RK, VecTy->getScalarType());
3760     if (VF == 1) {
3761       Identity = Iden;
3762       // This vector is the Identity vector where the first element is the
3763       // incoming scalar reduction.
3764       VectorStart = ReductionStartValue;
3765     } else {
3766       Identity = ConstantVector::getSplat({VF, false}, Iden);
3767 
3768       // This vector is the Identity vector where the first element is the
3769       // incoming scalar reduction.
3770       VectorStart =
3771         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3772     }
3773   }
3774 
3775   // Wrap flags are in general invalid after vectorization, clear them.
3776   clearReductionWrapFlags(RdxDesc);
3777 
3778   // Fix the vector-loop phi.
3779 
3780   // Reductions do not have to start at zero. They can start with
3781   // any loop invariant values.
3782   BasicBlock *Latch = OrigLoop->getLoopLatch();
3783   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3784 
3785   for (unsigned Part = 0; Part < UF; ++Part) {
3786     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3787     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3788     // Make sure to add the reduction start value only to the
3789     // first unroll part.
3790     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3791     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3792     cast<PHINode>(VecRdxPhi)
3793       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3794   }
3795 
3796   // Before each round, move the insertion point right between
3797   // the PHIs and the values we are going to write.
3798   // This allows us to write both PHINodes and the extractelement
3799   // instructions.
3800   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3801 
3802   setDebugLocFromInst(Builder, LoopExitInst);
3803 
3804   // If tail is folded by masking, the vector value to leave the loop should be
3805   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3806   // instead of the former.
3807   if (Cost->foldTailByMasking()) {
3808     for (unsigned Part = 0; Part < UF; ++Part) {
3809       Value *VecLoopExitInst =
3810           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3811       Value *Sel = nullptr;
3812       for (User *U : VecLoopExitInst->users()) {
3813         if (isa<SelectInst>(U)) {
3814           assert(!Sel && "Reduction exit feeding two selects");
3815           Sel = U;
3816         } else
3817           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3818       }
3819       assert(Sel && "Reduction exit feeds no select");
3820       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
3821     }
3822   }
3823 
3824   // If the vector reduction can be performed in a smaller type, we truncate
3825   // then extend the loop exit value to enable InstCombine to evaluate the
3826   // entire expression in the smaller type.
3827   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3828     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3829     Builder.SetInsertPoint(
3830         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
3831     VectorParts RdxParts(UF);
3832     for (unsigned Part = 0; Part < UF; ++Part) {
3833       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3834       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3835       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3836                                         : Builder.CreateZExt(Trunc, VecTy);
3837       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
3838            UI != RdxParts[Part]->user_end();)
3839         if (*UI != Trunc) {
3840           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
3841           RdxParts[Part] = Extnd;
3842         } else {
3843           ++UI;
3844         }
3845     }
3846     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3847     for (unsigned Part = 0; Part < UF; ++Part) {
3848       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3849       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
3850     }
3851   }
3852 
3853   // Reduce all of the unrolled parts into a single vector.
3854   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
3855   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3856 
3857   // The middle block terminator has already been assigned a DebugLoc here (the
3858   // OrigLoop's single latch terminator). We want the whole middle block to
3859   // appear to execute on this line because: (a) it is all compiler generated,
3860   // (b) these instructions are always executed after evaluating the latch
3861   // conditional branch, and (c) other passes may add new predecessors which
3862   // terminate on this line. This is the easiest way to ensure we don't
3863   // accidentally cause an extra step back into the loop while debugging.
3864   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
3865   for (unsigned Part = 1; Part < UF; ++Part) {
3866     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3867     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3868       // Floating point operations had to be 'fast' to enable the reduction.
3869       ReducedPartRdx = addFastMathFlag(
3870           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
3871                               ReducedPartRdx, "bin.rdx"),
3872           RdxDesc.getFastMathFlags());
3873     else
3874       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
3875                                       RdxPart);
3876   }
3877 
3878   if (VF > 1) {
3879     bool NoNaN = Legal->hasFunNoNaNAttr();
3880     ReducedPartRdx =
3881         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
3882     // If the reduction can be performed in a smaller type, we need to extend
3883     // the reduction to the wider type before we branch to the original loop.
3884     if (Phi->getType() != RdxDesc.getRecurrenceType())
3885       ReducedPartRdx =
3886         RdxDesc.isSigned()
3887         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3888         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3889   }
3890 
3891   // Create a phi node that merges control-flow from the backedge-taken check
3892   // block and the middle block.
3893   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3894                                         LoopScalarPreHeader->getTerminator());
3895   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3896     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3897   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3898 
3899   // Now, we need to fix the users of the reduction variable
3900   // inside and outside of the scalar remainder loop.
3901   // We know that the loop is in LCSSA form. We need to update the
3902   // PHI nodes in the exit blocks.
3903   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3904     // All PHINodes need to have a single entry edge, or two if
3905     // we already fixed them.
3906     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3907 
3908     // We found a reduction value exit-PHI. Update it with the
3909     // incoming bypass edge.
3910     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
3911       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
3912   } // end of the LCSSA phi scan.
3913 
3914     // Fix the scalar loop reduction variable with the incoming reduction sum
3915     // from the vector body and from the backedge value.
3916   int IncomingEdgeBlockIdx =
3917     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3918   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3919   // Pick the other block.
3920   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3921   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3922   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3923 }
3924 
3925 void InnerLoopVectorizer::clearReductionWrapFlags(
3926     RecurrenceDescriptor &RdxDesc) {
3927   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3928   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
3929       RK != RecurrenceDescriptor::RK_IntegerMult)
3930     return;
3931 
3932   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
3933   assert(LoopExitInstr && "null loop exit instruction");
3934   SmallVector<Instruction *, 8> Worklist;
3935   SmallPtrSet<Instruction *, 8> Visited;
3936   Worklist.push_back(LoopExitInstr);
3937   Visited.insert(LoopExitInstr);
3938 
3939   while (!Worklist.empty()) {
3940     Instruction *Cur = Worklist.pop_back_val();
3941     if (isa<OverflowingBinaryOperator>(Cur))
3942       for (unsigned Part = 0; Part < UF; ++Part) {
3943         Value *V = getOrCreateVectorValue(Cur, Part);
3944         cast<Instruction>(V)->dropPoisonGeneratingFlags();
3945       }
3946 
3947     for (User *U : Cur->users()) {
3948       Instruction *UI = cast<Instruction>(U);
3949       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
3950           Visited.insert(UI).second)
3951         Worklist.push_back(UI);
3952     }
3953   }
3954 }
3955 
3956 void InnerLoopVectorizer::fixLCSSAPHIs() {
3957   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3958     if (LCSSAPhi.getNumIncomingValues() == 1) {
3959       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
3960       // Non-instruction incoming values will have only one value.
3961       unsigned LastLane = 0;
3962       if (isa<Instruction>(IncomingValue))
3963           LastLane = Cost->isUniformAfterVectorization(
3964                          cast<Instruction>(IncomingValue), VF)
3965                          ? 0
3966                          : VF - 1;
3967       // Can be a loop invariant incoming value or the last scalar value to be
3968       // extracted from the vectorized loop.
3969       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3970       Value *lastIncomingValue =
3971           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
3972       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
3973     }
3974   }
3975 }
3976 
3977 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
3978   // The basic block and loop containing the predicated instruction.
3979   auto *PredBB = PredInst->getParent();
3980   auto *VectorLoop = LI->getLoopFor(PredBB);
3981 
3982   // Initialize a worklist with the operands of the predicated instruction.
3983   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3984 
3985   // Holds instructions that we need to analyze again. An instruction may be
3986   // reanalyzed if we don't yet know if we can sink it or not.
3987   SmallVector<Instruction *, 8> InstsToReanalyze;
3988 
3989   // Returns true if a given use occurs in the predicated block. Phi nodes use
3990   // their operands in their corresponding predecessor blocks.
3991   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
3992     auto *I = cast<Instruction>(U.getUser());
3993     BasicBlock *BB = I->getParent();
3994     if (auto *Phi = dyn_cast<PHINode>(I))
3995       BB = Phi->getIncomingBlock(
3996           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3997     return BB == PredBB;
3998   };
3999 
4000   // Iteratively sink the scalarized operands of the predicated instruction
4001   // into the block we created for it. When an instruction is sunk, it's
4002   // operands are then added to the worklist. The algorithm ends after one pass
4003   // through the worklist doesn't sink a single instruction.
4004   bool Changed;
4005   do {
4006     // Add the instructions that need to be reanalyzed to the worklist, and
4007     // reset the changed indicator.
4008     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4009     InstsToReanalyze.clear();
4010     Changed = false;
4011 
4012     while (!Worklist.empty()) {
4013       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4014 
4015       // We can't sink an instruction if it is a phi node, is already in the
4016       // predicated block, is not in the loop, or may have side effects.
4017       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4018           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4019         continue;
4020 
4021       // It's legal to sink the instruction if all its uses occur in the
4022       // predicated block. Otherwise, there's nothing to do yet, and we may
4023       // need to reanalyze the instruction.
4024       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4025         InstsToReanalyze.push_back(I);
4026         continue;
4027       }
4028 
4029       // Move the instruction to the beginning of the predicated block, and add
4030       // it's operands to the worklist.
4031       I->moveBefore(&*PredBB->getFirstInsertionPt());
4032       Worklist.insert(I->op_begin(), I->op_end());
4033 
4034       // The sinking may have enabled other instructions to be sunk, so we will
4035       // need to iterate.
4036       Changed = true;
4037     }
4038   } while (Changed);
4039 }
4040 
4041 void InnerLoopVectorizer::fixNonInductionPHIs() {
4042   for (PHINode *OrigPhi : OrigPHIsToFix) {
4043     PHINode *NewPhi =
4044         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4045     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4046 
4047     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4048         predecessors(OrigPhi->getParent()));
4049     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4050         predecessors(NewPhi->getParent()));
4051     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4052            "Scalar and Vector BB should have the same number of predecessors");
4053 
4054     // The insertion point in Builder may be invalidated by the time we get
4055     // here. Force the Builder insertion point to something valid so that we do
4056     // not run into issues during insertion point restore in
4057     // getOrCreateVectorValue calls below.
4058     Builder.SetInsertPoint(NewPhi);
4059 
4060     // The predecessor order is preserved and we can rely on mapping between
4061     // scalar and vector block predecessors.
4062     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4063       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4064 
4065       // When looking up the new scalar/vector values to fix up, use incoming
4066       // values from original phi.
4067       Value *ScIncV =
4068           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4069 
4070       // Scalar incoming value may need a broadcast
4071       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4072       NewPhi->addIncoming(NewIncV, NewPredBB);
4073     }
4074   }
4075 }
4076 
4077 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF,
4078                                    unsigned VF, bool IsPtrLoopInvariant,
4079                                    SmallBitVector &IsIndexLoopInvariant) {
4080   // Construct a vector GEP by widening the operands of the scalar GEP as
4081   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4082   // results in a vector of pointers when at least one operand of the GEP
4083   // is vector-typed. Thus, to keep the representation compact, we only use
4084   // vector-typed operands for loop-varying values.
4085 
4086   if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4087     // If we are vectorizing, but the GEP has only loop-invariant operands,
4088     // the GEP we build (by only using vector-typed operands for
4089     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4090     // produce a vector of pointers, we need to either arbitrarily pick an
4091     // operand to broadcast, or broadcast a clone of the original GEP.
4092     // Here, we broadcast a clone of the original.
4093     //
4094     // TODO: If at some point we decide to scalarize instructions having
4095     //       loop-invariant operands, this special case will no longer be
4096     //       required. We would add the scalarization decision to
4097     //       collectLoopScalars() and teach getVectorValue() to broadcast
4098     //       the lane-zero scalar value.
4099     auto *Clone = Builder.Insert(GEP->clone());
4100     for (unsigned Part = 0; Part < UF; ++Part) {
4101       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4102       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4103       addMetadata(EntryPart, GEP);
4104     }
4105   } else {
4106     // If the GEP has at least one loop-varying operand, we are sure to
4107     // produce a vector of pointers. But if we are only unrolling, we want
4108     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4109     // produce with the code below will be scalar (if VF == 1) or vector
4110     // (otherwise). Note that for the unroll-only case, we still maintain
4111     // values in the vector mapping with initVector, as we do for other
4112     // instructions.
4113     for (unsigned Part = 0; Part < UF; ++Part) {
4114       // The pointer operand of the new GEP. If it's loop-invariant, we
4115       // won't broadcast it.
4116       auto *Ptr = IsPtrLoopInvariant
4117                       ? GEP->getPointerOperand()
4118                       : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
4119 
4120       // Collect all the indices for the new GEP. If any index is
4121       // loop-invariant, we won't broadcast it.
4122       SmallVector<Value *, 4> Indices;
4123       for (auto Index : enumerate(GEP->indices())) {
4124         Value *User = Index.value().get();
4125         if (IsIndexLoopInvariant[Index.index()])
4126           Indices.push_back(User);
4127         else
4128           Indices.push_back(getOrCreateVectorValue(User, Part));
4129       }
4130 
4131       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4132       // but it should be a vector, otherwise.
4133       auto *NewGEP =
4134           GEP->isInBounds()
4135               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4136                                           Indices)
4137               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4138       assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4139              "NewGEP is not a pointer vector");
4140       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4141       addMetadata(NewGEP, GEP);
4142     }
4143   }
4144 }
4145 
4146 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4147                                               unsigned VF) {
4148   PHINode *P = cast<PHINode>(PN);
4149   if (EnableVPlanNativePath) {
4150     // Currently we enter here in the VPlan-native path for non-induction
4151     // PHIs where all control flow is uniform. We simply widen these PHIs.
4152     // Create a vector phi with no operands - the vector phi operands will be
4153     // set at the end of vector code generation.
4154     Type *VecTy =
4155         (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4156     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4157     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4158     OrigPHIsToFix.push_back(P);
4159 
4160     return;
4161   }
4162 
4163   assert(PN->getParent() == OrigLoop->getHeader() &&
4164          "Non-header phis should have been handled elsewhere");
4165 
4166   // In order to support recurrences we need to be able to vectorize Phi nodes.
4167   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4168   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4169   // this value when we vectorize all of the instructions that use the PHI.
4170   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4171     for (unsigned Part = 0; Part < UF; ++Part) {
4172       // This is phase one of vectorizing PHIs.
4173       Type *VecTy =
4174           (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4175       Value *EntryPart = PHINode::Create(
4176           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4177       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4178     }
4179     return;
4180   }
4181 
4182   setDebugLocFromInst(Builder, P);
4183 
4184   // This PHINode must be an induction variable.
4185   // Make sure that we know about it.
4186   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4187 
4188   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4189   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4190 
4191   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4192   // which can be found from the original scalar operations.
4193   switch (II.getKind()) {
4194   case InductionDescriptor::IK_NoInduction:
4195     llvm_unreachable("Unknown induction");
4196   case InductionDescriptor::IK_IntInduction:
4197   case InductionDescriptor::IK_FpInduction:
4198     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4199   case InductionDescriptor::IK_PtrInduction: {
4200     // Handle the pointer induction variable case.
4201     assert(P->getType()->isPointerTy() && "Unexpected type.");
4202     // This is the normalized GEP that starts counting at zero.
4203     Value *PtrInd = Induction;
4204     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4205     // Determine the number of scalars we need to generate for each unroll
4206     // iteration. If the instruction is uniform, we only need to generate the
4207     // first lane. Otherwise, we generate all VF values.
4208     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4209     // These are the scalar results. Notice that we don't generate vector GEPs
4210     // because scalar GEPs result in better code.
4211     for (unsigned Part = 0; Part < UF; ++Part) {
4212       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4213         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4214         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4215         Value *SclrGep =
4216             emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4217         SclrGep->setName("next.gep");
4218         VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4219       }
4220     }
4221     return;
4222   }
4223   }
4224 }
4225 
4226 /// A helper function for checking whether an integer division-related
4227 /// instruction may divide by zero (in which case it must be predicated if
4228 /// executed conditionally in the scalar code).
4229 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4230 /// Non-zero divisors that are non compile-time constants will not be
4231 /// converted into multiplication, so we will still end up scalarizing
4232 /// the division, but can do so w/o predication.
4233 static bool mayDivideByZero(Instruction &I) {
4234   assert((I.getOpcode() == Instruction::UDiv ||
4235           I.getOpcode() == Instruction::SDiv ||
4236           I.getOpcode() == Instruction::URem ||
4237           I.getOpcode() == Instruction::SRem) &&
4238          "Unexpected instruction");
4239   Value *Divisor = I.getOperand(1);
4240   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4241   return !CInt || CInt->isZero();
4242 }
4243 
4244 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User,
4245                                            VPTransformState &State) {
4246   switch (I.getOpcode()) {
4247   case Instruction::Call:
4248   case Instruction::Br:
4249   case Instruction::PHI:
4250   case Instruction::GetElementPtr:
4251   case Instruction::Select:
4252     llvm_unreachable("This instruction is handled by a different recipe.");
4253   case Instruction::UDiv:
4254   case Instruction::SDiv:
4255   case Instruction::SRem:
4256   case Instruction::URem:
4257   case Instruction::Add:
4258   case Instruction::FAdd:
4259   case Instruction::Sub:
4260   case Instruction::FSub:
4261   case Instruction::FNeg:
4262   case Instruction::Mul:
4263   case Instruction::FMul:
4264   case Instruction::FDiv:
4265   case Instruction::FRem:
4266   case Instruction::Shl:
4267   case Instruction::LShr:
4268   case Instruction::AShr:
4269   case Instruction::And:
4270   case Instruction::Or:
4271   case Instruction::Xor: {
4272     // Just widen unops and binops.
4273     setDebugLocFromInst(Builder, &I);
4274 
4275     for (unsigned Part = 0; Part < UF; ++Part) {
4276       SmallVector<Value *, 2> Ops;
4277       for (VPValue *VPOp : User.operands())
4278         Ops.push_back(State.get(VPOp, Part));
4279 
4280       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4281 
4282       if (auto *VecOp = dyn_cast<Instruction>(V))
4283         VecOp->copyIRFlags(&I);
4284 
4285       // Use this vector value for all users of the original instruction.
4286       VectorLoopValueMap.setVectorValue(&I, Part, V);
4287       addMetadata(V, &I);
4288     }
4289 
4290     break;
4291   }
4292   case Instruction::ICmp:
4293   case Instruction::FCmp: {
4294     // Widen compares. Generate vector compares.
4295     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4296     auto *Cmp = cast<CmpInst>(&I);
4297     setDebugLocFromInst(Builder, Cmp);
4298     for (unsigned Part = 0; Part < UF; ++Part) {
4299       Value *A = State.get(User.getOperand(0), Part);
4300       Value *B = State.get(User.getOperand(1), Part);
4301       Value *C = nullptr;
4302       if (FCmp) {
4303         // Propagate fast math flags.
4304         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4305         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4306         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4307       } else {
4308         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4309       }
4310       VectorLoopValueMap.setVectorValue(&I, Part, C);
4311       addMetadata(C, &I);
4312     }
4313 
4314     break;
4315   }
4316 
4317   case Instruction::ZExt:
4318   case Instruction::SExt:
4319   case Instruction::FPToUI:
4320   case Instruction::FPToSI:
4321   case Instruction::FPExt:
4322   case Instruction::PtrToInt:
4323   case Instruction::IntToPtr:
4324   case Instruction::SIToFP:
4325   case Instruction::UIToFP:
4326   case Instruction::Trunc:
4327   case Instruction::FPTrunc:
4328   case Instruction::BitCast: {
4329     auto *CI = cast<CastInst>(&I);
4330     setDebugLocFromInst(Builder, CI);
4331 
4332     /// Vectorize casts.
4333     Type *DestTy =
4334         (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4335 
4336     for (unsigned Part = 0; Part < UF; ++Part) {
4337       Value *A = State.get(User.getOperand(0), Part);
4338       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4339       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4340       addMetadata(Cast, &I);
4341     }
4342     break;
4343   }
4344   default:
4345     // This instruction is not vectorized by simple widening.
4346     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4347     llvm_unreachable("Unhandled instruction!");
4348   } // end of switch.
4349 }
4350 
4351 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands,
4352                                                VPTransformState &State) {
4353   assert(!isa<DbgInfoIntrinsic>(I) &&
4354          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4355   setDebugLocFromInst(Builder, &I);
4356 
4357   Module *M = I.getParent()->getParent()->getParent();
4358   auto *CI = cast<CallInst>(&I);
4359 
4360   SmallVector<Type *, 4> Tys;
4361   for (Value *ArgOperand : CI->arg_operands())
4362     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4363 
4364   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4365 
4366   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4367   // version of the instruction.
4368   // Is it beneficial to perform intrinsic call compared to lib call?
4369   bool NeedToScalarize = false;
4370   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4371   bool UseVectorIntrinsic =
4372       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4373   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4374          "Instruction should be scalarized elsewhere.");
4375 
4376   for (unsigned Part = 0; Part < UF; ++Part) {
4377     SmallVector<Value *, 4> Args;
4378     for (auto &I : enumerate(ArgOperands.operands())) {
4379       // Some intrinsics have a scalar argument - don't replace it with a
4380       // vector.
4381       Value *Arg;
4382       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4383         Arg = State.get(I.value(), Part);
4384       else
4385         Arg = State.get(I.value(), {0, 0});
4386       Args.push_back(Arg);
4387     }
4388 
4389     Function *VectorF;
4390     if (UseVectorIntrinsic) {
4391       // Use vector version of the intrinsic.
4392       Type *TysForDecl[] = {CI->getType()};
4393       if (VF > 1)
4394         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4395       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4396       assert(VectorF && "Can't retrieve vector intrinsic.");
4397     } else {
4398       // Use vector version of the function call.
4399       const VFShape Shape =
4400           VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/);
4401 #ifndef NDEBUG
4402       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4403              "Can't create vector function.");
4404 #endif
4405         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4406     }
4407       SmallVector<OperandBundleDef, 1> OpBundles;
4408       CI->getOperandBundlesAsDefs(OpBundles);
4409       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4410 
4411       if (isa<FPMathOperator>(V))
4412         V->copyFastMathFlags(CI);
4413 
4414       VectorLoopValueMap.setVectorValue(&I, Part, V);
4415       addMetadata(V, &I);
4416   }
4417 }
4418 
4419 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I,
4420                                                  bool InvariantCond) {
4421   setDebugLocFromInst(Builder, &I);
4422 
4423   // The condition can be loop invariant  but still defined inside the
4424   // loop. This means that we can't just use the original 'cond' value.
4425   // We have to take the 'vectorized' value and pick the first lane.
4426   // Instcombine will make this a no-op.
4427 
4428   auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
4429 
4430   for (unsigned Part = 0; Part < UF; ++Part) {
4431     Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
4432     Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
4433     Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
4434     Value *Sel =
4435         Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
4436     VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4437     addMetadata(Sel, &I);
4438   }
4439 }
4440 
4441 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
4442   // We should not collect Scalars more than once per VF. Right now, this
4443   // function is called from collectUniformsAndScalars(), which already does
4444   // this check. Collecting Scalars for VF=1 does not make any sense.
4445   assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
4446          "This function should not be visited twice for the same VF");
4447 
4448   SmallSetVector<Instruction *, 8> Worklist;
4449 
4450   // These sets are used to seed the analysis with pointers used by memory
4451   // accesses that will remain scalar.
4452   SmallSetVector<Instruction *, 8> ScalarPtrs;
4453   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4454 
4455   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4456   // The pointer operands of loads and stores will be scalar as long as the
4457   // memory access is not a gather or scatter operation. The value operand of a
4458   // store will remain scalar if the store is scalarized.
4459   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4460     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4461     assert(WideningDecision != CM_Unknown &&
4462            "Widening decision should be ready at this moment");
4463     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4464       if (Ptr == Store->getValueOperand())
4465         return WideningDecision == CM_Scalarize;
4466     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4467            "Ptr is neither a value or pointer operand");
4468     return WideningDecision != CM_GatherScatter;
4469   };
4470 
4471   // A helper that returns true if the given value is a bitcast or
4472   // getelementptr instruction contained in the loop.
4473   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4474     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4475             isa<GetElementPtrInst>(V)) &&
4476            !TheLoop->isLoopInvariant(V);
4477   };
4478 
4479   // A helper that evaluates a memory access's use of a pointer. If the use
4480   // will be a scalar use, and the pointer is only used by memory accesses, we
4481   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4482   // PossibleNonScalarPtrs.
4483   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4484     // We only care about bitcast and getelementptr instructions contained in
4485     // the loop.
4486     if (!isLoopVaryingBitCastOrGEP(Ptr))
4487       return;
4488 
4489     // If the pointer has already been identified as scalar (e.g., if it was
4490     // also identified as uniform), there's nothing to do.
4491     auto *I = cast<Instruction>(Ptr);
4492     if (Worklist.count(I))
4493       return;
4494 
4495     // If the use of the pointer will be a scalar use, and all users of the
4496     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4497     // place the pointer in PossibleNonScalarPtrs.
4498     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4499           return isa<LoadInst>(U) || isa<StoreInst>(U);
4500         }))
4501       ScalarPtrs.insert(I);
4502     else
4503       PossibleNonScalarPtrs.insert(I);
4504   };
4505 
4506   // We seed the scalars analysis with three classes of instructions: (1)
4507   // instructions marked uniform-after-vectorization, (2) bitcast and
4508   // getelementptr instructions used by memory accesses requiring a scalar use,
4509   // and (3) pointer induction variables and their update instructions (we
4510   // currently only scalarize these).
4511   //
4512   // (1) Add to the worklist all instructions that have been identified as
4513   // uniform-after-vectorization.
4514   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4515 
4516   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4517   // memory accesses requiring a scalar use. The pointer operands of loads and
4518   // stores will be scalar as long as the memory accesses is not a gather or
4519   // scatter operation. The value operand of a store will remain scalar if the
4520   // store is scalarized.
4521   for (auto *BB : TheLoop->blocks())
4522     for (auto &I : *BB) {
4523       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4524         evaluatePtrUse(Load, Load->getPointerOperand());
4525       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4526         evaluatePtrUse(Store, Store->getPointerOperand());
4527         evaluatePtrUse(Store, Store->getValueOperand());
4528       }
4529     }
4530   for (auto *I : ScalarPtrs)
4531     if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
4532       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4533       Worklist.insert(I);
4534     }
4535 
4536   // (3) Add to the worklist all pointer induction variables and their update
4537   // instructions.
4538   //
4539   // TODO: Once we are able to vectorize pointer induction variables we should
4540   //       no longer insert them into the worklist here.
4541   auto *Latch = TheLoop->getLoopLatch();
4542   for (auto &Induction : Legal->getInductionVars()) {
4543     auto *Ind = Induction.first;
4544     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4545     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
4546       continue;
4547     Worklist.insert(Ind);
4548     Worklist.insert(IndUpdate);
4549     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4550     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4551                       << "\n");
4552   }
4553 
4554   // Insert the forced scalars.
4555   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4556   // induction variable when the PHI user is scalarized.
4557   auto ForcedScalar = ForcedScalars.find(VF);
4558   if (ForcedScalar != ForcedScalars.end())
4559     for (auto *I : ForcedScalar->second)
4560       Worklist.insert(I);
4561 
4562   // Expand the worklist by looking through any bitcasts and getelementptr
4563   // instructions we've already identified as scalar. This is similar to the
4564   // expansion step in collectLoopUniforms(); however, here we're only
4565   // expanding to include additional bitcasts and getelementptr instructions.
4566   unsigned Idx = 0;
4567   while (Idx != Worklist.size()) {
4568     Instruction *Dst = Worklist[Idx++];
4569     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4570       continue;
4571     auto *Src = cast<Instruction>(Dst->getOperand(0));
4572     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4573           auto *J = cast<Instruction>(U);
4574           return !TheLoop->contains(J) || Worklist.count(J) ||
4575                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4576                   isScalarUse(J, Src));
4577         })) {
4578       Worklist.insert(Src);
4579       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4580     }
4581   }
4582 
4583   // An induction variable will remain scalar if all users of the induction
4584   // variable and induction variable update remain scalar.
4585   for (auto &Induction : Legal->getInductionVars()) {
4586     auto *Ind = Induction.first;
4587     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4588 
4589     // We already considered pointer induction variables, so there's no reason
4590     // to look at their users again.
4591     //
4592     // TODO: Once we are able to vectorize pointer induction variables we
4593     //       should no longer skip over them here.
4594     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
4595       continue;
4596 
4597     // Determine if all users of the induction variable are scalar after
4598     // vectorization.
4599     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4600       auto *I = cast<Instruction>(U);
4601       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4602     });
4603     if (!ScalarInd)
4604       continue;
4605 
4606     // Determine if all users of the induction variable update instruction are
4607     // scalar after vectorization.
4608     auto ScalarIndUpdate =
4609         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4610           auto *I = cast<Instruction>(U);
4611           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4612         });
4613     if (!ScalarIndUpdate)
4614       continue;
4615 
4616     // The induction variable and its update instruction will remain scalar.
4617     Worklist.insert(Ind);
4618     Worklist.insert(IndUpdate);
4619     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4620     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4621                       << "\n");
4622   }
4623 
4624   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4625 }
4626 
4627 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
4628   if (!blockNeedsPredication(I->getParent()))
4629     return false;
4630   switch(I->getOpcode()) {
4631   default:
4632     break;
4633   case Instruction::Load:
4634   case Instruction::Store: {
4635     if (!Legal->isMaskRequired(I))
4636       return false;
4637     auto *Ptr = getLoadStorePointerOperand(I);
4638     auto *Ty = getMemInstValueType(I);
4639     // We have already decided how to vectorize this instruction, get that
4640     // result.
4641     if (VF > 1) {
4642       InstWidening WideningDecision = getWideningDecision(I, VF);
4643       assert(WideningDecision != CM_Unknown &&
4644              "Widening decision should be ready at this moment");
4645       return WideningDecision == CM_Scalarize;
4646     }
4647     const MaybeAlign Alignment = getLoadStoreAlignment(I);
4648     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4649                                 isLegalMaskedGather(Ty, Alignment))
4650                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4651                                 isLegalMaskedScatter(Ty, Alignment));
4652   }
4653   case Instruction::UDiv:
4654   case Instruction::SDiv:
4655   case Instruction::SRem:
4656   case Instruction::URem:
4657     return mayDivideByZero(*I);
4658   }
4659   return false;
4660 }
4661 
4662 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
4663                                                                unsigned VF) {
4664   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4665   assert(getWideningDecision(I, VF) == CM_Unknown &&
4666          "Decision should not be set yet.");
4667   auto *Group = getInterleavedAccessGroup(I);
4668   assert(Group && "Must have a group.");
4669 
4670   // If the instruction's allocated size doesn't equal it's type size, it
4671   // requires padding and will be scalarized.
4672   auto &DL = I->getModule()->getDataLayout();
4673   auto *ScalarTy = getMemInstValueType(I);
4674   if (hasIrregularType(ScalarTy, DL, VF))
4675     return false;
4676 
4677   // Check if masking is required.
4678   // A Group may need masking for one of two reasons: it resides in a block that
4679   // needs predication, or it was decided to use masking to deal with gaps.
4680   bool PredicatedAccessRequiresMasking =
4681       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4682   bool AccessWithGapsRequiresMasking =
4683       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4684   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4685     return true;
4686 
4687   // If masked interleaving is required, we expect that the user/target had
4688   // enabled it, because otherwise it either wouldn't have been created or
4689   // it should have been invalidated by the CostModel.
4690   assert(useMaskedInterleavedAccesses(TTI) &&
4691          "Masked interleave-groups for predicated accesses are not enabled.");
4692 
4693   auto *Ty = getMemInstValueType(I);
4694   const MaybeAlign Alignment = getLoadStoreAlignment(I);
4695   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4696                           : TTI.isLegalMaskedStore(Ty, Alignment);
4697 }
4698 
4699 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
4700                                                                unsigned VF) {
4701   // Get and ensure we have a valid memory instruction.
4702   LoadInst *LI = dyn_cast<LoadInst>(I);
4703   StoreInst *SI = dyn_cast<StoreInst>(I);
4704   assert((LI || SI) && "Invalid memory instruction");
4705 
4706   auto *Ptr = getLoadStorePointerOperand(I);
4707 
4708   // In order to be widened, the pointer should be consecutive, first of all.
4709   if (!Legal->isConsecutivePtr(Ptr))
4710     return false;
4711 
4712   // If the instruction is a store located in a predicated block, it will be
4713   // scalarized.
4714   if (isScalarWithPredication(I))
4715     return false;
4716 
4717   // If the instruction's allocated size doesn't equal it's type size, it
4718   // requires padding and will be scalarized.
4719   auto &DL = I->getModule()->getDataLayout();
4720   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4721   if (hasIrregularType(ScalarTy, DL, VF))
4722     return false;
4723 
4724   return true;
4725 }
4726 
4727 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
4728   // We should not collect Uniforms more than once per VF. Right now,
4729   // this function is called from collectUniformsAndScalars(), which
4730   // already does this check. Collecting Uniforms for VF=1 does not make any
4731   // sense.
4732 
4733   assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
4734          "This function should not be visited twice for the same VF");
4735 
4736   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4737   // not analyze again.  Uniforms.count(VF) will return 1.
4738   Uniforms[VF].clear();
4739 
4740   // We now know that the loop is vectorizable!
4741   // Collect instructions inside the loop that will remain uniform after
4742   // vectorization.
4743 
4744   // Global values, params and instructions outside of current loop are out of
4745   // scope.
4746   auto isOutOfScope = [&](Value *V) -> bool {
4747     Instruction *I = dyn_cast<Instruction>(V);
4748     return (!I || !TheLoop->contains(I));
4749   };
4750 
4751   SetVector<Instruction *> Worklist;
4752   BasicBlock *Latch = TheLoop->getLoopLatch();
4753 
4754   // Instructions that are scalar with predication must not be considered
4755   // uniform after vectorization, because that would create an erroneous
4756   // replicating region where only a single instance out of VF should be formed.
4757   // TODO: optimize such seldom cases if found important, see PR40816.
4758   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4759     if (isScalarWithPredication(I, VF)) {
4760       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4761                         << *I << "\n");
4762       return;
4763     }
4764     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4765     Worklist.insert(I);
4766   };
4767 
4768   // Start with the conditional branch. If the branch condition is an
4769   // instruction contained in the loop that is only used by the branch, it is
4770   // uniform.
4771   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4772   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4773     addToWorklistIfAllowed(Cmp);
4774 
4775   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
4776   // are pointers that are treated like consecutive pointers during
4777   // vectorization. The pointer operands of interleaved accesses are an
4778   // example.
4779   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
4780 
4781   // Holds pointer operands of instructions that are possibly non-uniform.
4782   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
4783 
4784   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
4785     InstWidening WideningDecision = getWideningDecision(I, VF);
4786     assert(WideningDecision != CM_Unknown &&
4787            "Widening decision should be ready at this moment");
4788 
4789     return (WideningDecision == CM_Widen ||
4790             WideningDecision == CM_Widen_Reverse ||
4791             WideningDecision == CM_Interleave);
4792   };
4793   // Iterate over the instructions in the loop, and collect all
4794   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
4795   // that a consecutive-like pointer operand will be scalarized, we collect it
4796   // in PossibleNonUniformPtrs instead. We use two sets here because a single
4797   // getelementptr instruction can be used by both vectorized and scalarized
4798   // memory instructions. For example, if a loop loads and stores from the same
4799   // location, but the store is conditional, the store will be scalarized, and
4800   // the getelementptr won't remain uniform.
4801   for (auto *BB : TheLoop->blocks())
4802     for (auto &I : *BB) {
4803       // If there's no pointer operand, there's nothing to do.
4804       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
4805       if (!Ptr)
4806         continue;
4807 
4808       // True if all users of Ptr are memory accesses that have Ptr as their
4809       // pointer operand.
4810       auto UsersAreMemAccesses =
4811           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
4812             return getLoadStorePointerOperand(U) == Ptr;
4813           });
4814 
4815       // Ensure the memory instruction will not be scalarized or used by
4816       // gather/scatter, making its pointer operand non-uniform. If the pointer
4817       // operand is used by any instruction other than a memory access, we
4818       // conservatively assume the pointer operand may be non-uniform.
4819       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
4820         PossibleNonUniformPtrs.insert(Ptr);
4821 
4822       // If the memory instruction will be vectorized and its pointer operand
4823       // is consecutive-like, or interleaving - the pointer operand should
4824       // remain uniform.
4825       else
4826         ConsecutiveLikePtrs.insert(Ptr);
4827     }
4828 
4829   // Add to the Worklist all consecutive and consecutive-like pointers that
4830   // aren't also identified as possibly non-uniform.
4831   for (auto *V : ConsecutiveLikePtrs)
4832     if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end())
4833       addToWorklistIfAllowed(V);
4834 
4835   // Expand Worklist in topological order: whenever a new instruction
4836   // is added , its users should be already inside Worklist.  It ensures
4837   // a uniform instruction will only be used by uniform instructions.
4838   unsigned idx = 0;
4839   while (idx != Worklist.size()) {
4840     Instruction *I = Worklist[idx++];
4841 
4842     for (auto OV : I->operand_values()) {
4843       // isOutOfScope operands cannot be uniform instructions.
4844       if (isOutOfScope(OV))
4845         continue;
4846       // First order recurrence Phi's should typically be considered
4847       // non-uniform.
4848       auto *OP = dyn_cast<PHINode>(OV);
4849       if (OP && Legal->isFirstOrderRecurrence(OP))
4850         continue;
4851       // If all the users of the operand are uniform, then add the
4852       // operand into the uniform worklist.
4853       auto *OI = cast<Instruction>(OV);
4854       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4855             auto *J = cast<Instruction>(U);
4856             return Worklist.count(J) ||
4857                    (OI == getLoadStorePointerOperand(J) &&
4858                     isUniformDecision(J, VF));
4859           }))
4860         addToWorklistIfAllowed(OI);
4861     }
4862   }
4863 
4864   // Returns true if Ptr is the pointer operand of a memory access instruction
4865   // I, and I is known to not require scalarization.
4866   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4867     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4868   };
4869 
4870   // For an instruction to be added into Worklist above, all its users inside
4871   // the loop should also be in Worklist. However, this condition cannot be
4872   // true for phi nodes that form a cyclic dependence. We must process phi
4873   // nodes separately. An induction variable will remain uniform if all users
4874   // of the induction variable and induction variable update remain uniform.
4875   // The code below handles both pointer and non-pointer induction variables.
4876   for (auto &Induction : Legal->getInductionVars()) {
4877     auto *Ind = Induction.first;
4878     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4879 
4880     // Determine if all users of the induction variable are uniform after
4881     // vectorization.
4882     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4883       auto *I = cast<Instruction>(U);
4884       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4885              isVectorizedMemAccessUse(I, Ind);
4886     });
4887     if (!UniformInd)
4888       continue;
4889 
4890     // Determine if all users of the induction variable update instruction are
4891     // uniform after vectorization.
4892     auto UniformIndUpdate =
4893         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4894           auto *I = cast<Instruction>(U);
4895           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4896                  isVectorizedMemAccessUse(I, IndUpdate);
4897         });
4898     if (!UniformIndUpdate)
4899       continue;
4900 
4901     // The induction variable and its update instruction will remain uniform.
4902     addToWorklistIfAllowed(Ind);
4903     addToWorklistIfAllowed(IndUpdate);
4904   }
4905 
4906   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4907 }
4908 
4909 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4910   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4911 
4912   if (Legal->getRuntimePointerChecking()->Need) {
4913     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4914         "runtime pointer checks needed. Enable vectorization of this "
4915         "loop with '#pragma clang loop vectorize(enable)' when "
4916         "compiling with -Os/-Oz",
4917         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4918     return true;
4919   }
4920 
4921   if (!PSE.getUnionPredicate().getPredicates().empty()) {
4922     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4923         "runtime SCEV checks needed. Enable vectorization of this "
4924         "loop with '#pragma clang loop vectorize(enable)' when "
4925         "compiling with -Os/-Oz",
4926         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4927     return true;
4928   }
4929 
4930   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4931   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4932     reportVectorizationFailure("Runtime stride check is required with -Os/-Oz",
4933         "runtime stride == 1 checks needed. Enable vectorization of "
4934         "this loop with '#pragma clang loop vectorize(enable)' when "
4935         "compiling with -Os/-Oz",
4936         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4937     return true;
4938   }
4939 
4940   return false;
4941 }
4942 
4943 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() {
4944   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4945     // TODO: It may by useful to do since it's still likely to be dynamically
4946     // uniform if the target can skip.
4947     reportVectorizationFailure(
4948         "Not inserting runtime ptr check for divergent target",
4949         "runtime pointer checks needed. Not enabled for divergent target",
4950         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
4951     return None;
4952   }
4953 
4954   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4955   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4956   if (TC == 1) {
4957     reportVectorizationFailure("Single iteration (non) loop",
4958         "loop trip count is one, irrelevant for vectorization",
4959         "SingleIterationLoop", ORE, TheLoop);
4960     return None;
4961   }
4962 
4963   switch (ScalarEpilogueStatus) {
4964   case CM_ScalarEpilogueAllowed:
4965     return computeFeasibleMaxVF(TC);
4966   case CM_ScalarEpilogueNotNeededUsePredicate:
4967     LLVM_DEBUG(
4968         dbgs() << "LV: vector predicate hint/switch found.\n"
4969                << "LV: Not allowing scalar epilogue, creating predicated "
4970                << "vector loop.\n");
4971     break;
4972   case CM_ScalarEpilogueNotAllowedLowTripLoop:
4973     // fallthrough as a special case of OptForSize
4974   case CM_ScalarEpilogueNotAllowedOptSize:
4975     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
4976       LLVM_DEBUG(
4977           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4978     else
4979       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
4980                         << "count.\n");
4981 
4982     // Bail if runtime checks are required, which are not good when optimising
4983     // for size.
4984     if (runtimeChecksRequired())
4985       return None;
4986     break;
4987   }
4988 
4989   // Now try the tail folding
4990 
4991   // Invalidate interleave groups that require an epilogue if we can't mask
4992   // the interleave-group.
4993   if (!useMaskedInterleavedAccesses(TTI)) {
4994     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
4995            "No decisions should have been taken at this point");
4996     // Note: There is no need to invalidate any cost modeling decisions here, as
4997     // non where taken so far.
4998     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
4999   }
5000 
5001   unsigned MaxVF = computeFeasibleMaxVF(TC);
5002   if (TC > 0 && TC % MaxVF == 0) {
5003     // Accept MaxVF if we do not have a tail.
5004     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5005     return MaxVF;
5006   }
5007 
5008   // If we don't know the precise trip count, or if the trip count that we
5009   // found modulo the vectorization factor is not zero, try to fold the tail
5010   // by masking.
5011   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5012   if (Legal->prepareToFoldTailByMasking()) {
5013     FoldTailByMasking = true;
5014     return MaxVF;
5015   }
5016 
5017   if (TC == 0) {
5018     reportVectorizationFailure(
5019         "Unable to calculate the loop count due to complex control flow",
5020         "unable to calculate the loop count due to complex control flow",
5021         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5022     return None;
5023   }
5024 
5025   reportVectorizationFailure(
5026       "Cannot optimize for size and vectorize at the same time.",
5027       "cannot optimize for size and vectorize at the same time. "
5028       "Enable vectorization of this loop with '#pragma clang loop "
5029       "vectorize(enable)' when compiling with -Os/-Oz",
5030       "NoTailLoopWithOptForSize", ORE, TheLoop);
5031   return None;
5032 }
5033 
5034 unsigned
5035 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5036   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5037   unsigned SmallestType, WidestType;
5038   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5039   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5040 
5041   // Get the maximum safe dependence distance in bits computed by LAA.
5042   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5043   // the memory accesses that is most restrictive (involved in the smallest
5044   // dependence distance).
5045   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5046 
5047   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5048 
5049   unsigned MaxVectorSize = WidestRegister / WidestType;
5050 
5051   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5052                     << " / " << WidestType << " bits.\n");
5053   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5054                     << WidestRegister << " bits.\n");
5055 
5056   assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
5057                                  " into one vector!");
5058   if (MaxVectorSize == 0) {
5059     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5060     MaxVectorSize = 1;
5061     return MaxVectorSize;
5062   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5063              isPowerOf2_32(ConstTripCount)) {
5064     // We need to clamp the VF to be the ConstTripCount. There is no point in
5065     // choosing a higher viable VF as done in the loop below.
5066     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5067                       << ConstTripCount << "\n");
5068     MaxVectorSize = ConstTripCount;
5069     return MaxVectorSize;
5070   }
5071 
5072   unsigned MaxVF = MaxVectorSize;
5073   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5074       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5075     // Collect all viable vectorization factors larger than the default MaxVF
5076     // (i.e. MaxVectorSize).
5077     SmallVector<unsigned, 8> VFs;
5078     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5079     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5080       VFs.push_back(VS);
5081 
5082     // For each VF calculate its register usage.
5083     auto RUs = calculateRegisterUsage(VFs);
5084 
5085     // Select the largest VF which doesn't require more registers than existing
5086     // ones.
5087     for (int i = RUs.size() - 1; i >= 0; --i) {
5088       bool Selected = true;
5089       for (auto& pair : RUs[i].MaxLocalUsers) {
5090         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5091         if (pair.second > TargetNumRegisters)
5092           Selected = false;
5093       }
5094       if (Selected) {
5095         MaxVF = VFs[i];
5096         break;
5097       }
5098     }
5099     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5100       if (MaxVF < MinVF) {
5101         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5102                           << ") with target's minimum: " << MinVF << '\n');
5103         MaxVF = MinVF;
5104       }
5105     }
5106   }
5107   return MaxVF;
5108 }
5109 
5110 VectorizationFactor
5111 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
5112   float Cost = expectedCost(1).first;
5113   const float ScalarCost = Cost;
5114   unsigned Width = 1;
5115   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5116 
5117   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5118   if (ForceVectorization && MaxVF > 1) {
5119     // Ignore scalar width, because the user explicitly wants vectorization.
5120     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5121     // evaluation.
5122     Cost = std::numeric_limits<float>::max();
5123   }
5124 
5125   for (unsigned i = 2; i <= MaxVF; i *= 2) {
5126     // Notice that the vector loop needs to be executed less times, so
5127     // we need to divide the cost of the vector loops by the width of
5128     // the vector elements.
5129     VectorizationCostTy C = expectedCost(i);
5130     float VectorCost = C.first / (float)i;
5131     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5132                       << " costs: " << (int)VectorCost << ".\n");
5133     if (!C.second && !ForceVectorization) {
5134       LLVM_DEBUG(
5135           dbgs() << "LV: Not considering vector loop of width " << i
5136                  << " because it will not generate any vector instructions.\n");
5137       continue;
5138     }
5139     if (VectorCost < Cost) {
5140       Cost = VectorCost;
5141       Width = i;
5142     }
5143   }
5144 
5145   if (!EnableCondStoresVectorization && NumPredStores) {
5146     reportVectorizationFailure("There are conditional stores.",
5147         "store that is conditionally executed prevents vectorization",
5148         "ConditionalStore", ORE, TheLoop);
5149     Width = 1;
5150     Cost = ScalarCost;
5151   }
5152 
5153   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5154              << "LV: Vectorization seems to be not beneficial, "
5155              << "but was forced by a user.\n");
5156   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5157   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
5158   return Factor;
5159 }
5160 
5161 std::pair<unsigned, unsigned>
5162 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5163   unsigned MinWidth = -1U;
5164   unsigned MaxWidth = 8;
5165   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5166 
5167   // For each block.
5168   for (BasicBlock *BB : TheLoop->blocks()) {
5169     // For each instruction in the loop.
5170     for (Instruction &I : BB->instructionsWithoutDebug()) {
5171       Type *T = I.getType();
5172 
5173       // Skip ignored values.
5174       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
5175         continue;
5176 
5177       // Only examine Loads, Stores and PHINodes.
5178       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5179         continue;
5180 
5181       // Examine PHI nodes that are reduction variables. Update the type to
5182       // account for the recurrence type.
5183       if (auto *PN = dyn_cast<PHINode>(&I)) {
5184         if (!Legal->isReductionVariable(PN))
5185           continue;
5186         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5187         T = RdxDesc.getRecurrenceType();
5188       }
5189 
5190       // Examine the stored values.
5191       if (auto *ST = dyn_cast<StoreInst>(&I))
5192         T = ST->getValueOperand()->getType();
5193 
5194       // Ignore loaded pointer types and stored pointer types that are not
5195       // vectorizable.
5196       //
5197       // FIXME: The check here attempts to predict whether a load or store will
5198       //        be vectorized. We only know this for certain after a VF has
5199       //        been selected. Here, we assume that if an access can be
5200       //        vectorized, it will be. We should also look at extending this
5201       //        optimization to non-pointer types.
5202       //
5203       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5204           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5205         continue;
5206 
5207       MinWidth = std::min(MinWidth,
5208                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5209       MaxWidth = std::max(MaxWidth,
5210                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5211     }
5212   }
5213 
5214   return {MinWidth, MaxWidth};
5215 }
5216 
5217 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF,
5218                                                            unsigned LoopCost) {
5219   // -- The interleave heuristics --
5220   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5221   // There are many micro-architectural considerations that we can't predict
5222   // at this level. For example, frontend pressure (on decode or fetch) due to
5223   // code size, or the number and capabilities of the execution ports.
5224   //
5225   // We use the following heuristics to select the interleave count:
5226   // 1. If the code has reductions, then we interleave to break the cross
5227   // iteration dependency.
5228   // 2. If the loop is really small, then we interleave to reduce the loop
5229   // overhead.
5230   // 3. We don't interleave if we think that we will spill registers to memory
5231   // due to the increased register pressure.
5232 
5233   if (!isScalarEpilogueAllowed())
5234     return 1;
5235 
5236   // We used the distance for the interleave count.
5237   if (Legal->getMaxSafeDepDistBytes() != -1U)
5238     return 1;
5239 
5240   // Do not interleave loops with a relatively small known or estimated trip
5241   // count.
5242   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5243   if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold)
5244     return 1;
5245 
5246   RegisterUsage R = calculateRegisterUsage({VF})[0];
5247   // We divide by these constants so assume that we have at least one
5248   // instruction that uses at least one register.
5249   for (auto& pair : R.MaxLocalUsers) {
5250     pair.second = std::max(pair.second, 1U);
5251   }
5252 
5253   // We calculate the interleave count using the following formula.
5254   // Subtract the number of loop invariants from the number of available
5255   // registers. These registers are used by all of the interleaved instances.
5256   // Next, divide the remaining registers by the number of registers that is
5257   // required by the loop, in order to estimate how many parallel instances
5258   // fit without causing spills. All of this is rounded down if necessary to be
5259   // a power of two. We want power of two interleave count to simplify any
5260   // addressing operations or alignment considerations.
5261   // We also want power of two interleave counts to ensure that the induction
5262   // variable of the vector loop wraps to zero, when tail is folded by masking;
5263   // this currently happens when OptForSize, in which case IC is set to 1 above.
5264   unsigned IC = UINT_MAX;
5265 
5266   for (auto& pair : R.MaxLocalUsers) {
5267     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5268     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5269                       << " registers of "
5270                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5271     if (VF == 1) {
5272       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5273         TargetNumRegisters = ForceTargetNumScalarRegs;
5274     } else {
5275       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5276         TargetNumRegisters = ForceTargetNumVectorRegs;
5277     }
5278     unsigned MaxLocalUsers = pair.second;
5279     unsigned LoopInvariantRegs = 0;
5280     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5281       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5282 
5283     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5284     // Don't count the induction variable as interleaved.
5285     if (EnableIndVarRegisterHeur) {
5286       TmpIC =
5287           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5288                         std::max(1U, (MaxLocalUsers - 1)));
5289     }
5290 
5291     IC = std::min(IC, TmpIC);
5292   }
5293 
5294   // Clamp the interleave ranges to reasonable counts.
5295   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5296 
5297   // Check if the user has overridden the max.
5298   if (VF == 1) {
5299     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5300       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5301   } else {
5302     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5303       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5304   }
5305 
5306   // If trip count is known or estimated compile time constant, limit the
5307   // interleave count to be less than the trip count divided by VF.
5308   if (BestKnownTC) {
5309     MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount);
5310   }
5311 
5312   // If we did not calculate the cost for VF (because the user selected the VF)
5313   // then we calculate the cost of VF here.
5314   if (LoopCost == 0)
5315     LoopCost = expectedCost(VF).first;
5316 
5317   assert(LoopCost && "Non-zero loop cost expected");
5318 
5319   // Clamp the calculated IC to be between the 1 and the max interleave count
5320   // that the target and trip count allows.
5321   if (IC > MaxInterleaveCount)
5322     IC = MaxInterleaveCount;
5323   else if (IC < 1)
5324     IC = 1;
5325 
5326   // Interleave if we vectorized this loop and there is a reduction that could
5327   // benefit from interleaving.
5328   if (VF > 1 && !Legal->getReductionVars().empty()) {
5329     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5330     return IC;
5331   }
5332 
5333   // Note that if we've already vectorized the loop we will have done the
5334   // runtime check and so interleaving won't require further checks.
5335   bool InterleavingRequiresRuntimePointerCheck =
5336       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5337 
5338   // We want to interleave small loops in order to reduce the loop overhead and
5339   // potentially expose ILP opportunities.
5340   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5341   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5342     // We assume that the cost overhead is 1 and we use the cost model
5343     // to estimate the cost of the loop and interleave until the cost of the
5344     // loop overhead is about 5% of the cost of the loop.
5345     unsigned SmallIC =
5346         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5347 
5348     // Interleave until store/load ports (estimated by max interleave count) are
5349     // saturated.
5350     unsigned NumStores = Legal->getNumStores();
5351     unsigned NumLoads = Legal->getNumLoads();
5352     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5353     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5354 
5355     // If we have a scalar reduction (vector reductions are already dealt with
5356     // by this point), we can increase the critical path length if the loop
5357     // we're interleaving is inside another loop. Limit, by default to 2, so the
5358     // critical path only gets increased by one reduction operation.
5359     if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) {
5360       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5361       SmallIC = std::min(SmallIC, F);
5362       StoresIC = std::min(StoresIC, F);
5363       LoadsIC = std::min(LoadsIC, F);
5364     }
5365 
5366     if (EnableLoadStoreRuntimeInterleave &&
5367         std::max(StoresIC, LoadsIC) > SmallIC) {
5368       LLVM_DEBUG(
5369           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5370       return std::max(StoresIC, LoadsIC);
5371     }
5372 
5373     LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5374     return SmallIC;
5375   }
5376 
5377   // Interleave if this is a large loop (small loops are already dealt with by
5378   // this point) that could benefit from interleaving.
5379   bool HasReductions = !Legal->getReductionVars().empty();
5380   if (TTI.enableAggressiveInterleaving(HasReductions)) {
5381     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5382     return IC;
5383   }
5384 
5385   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5386   return 1;
5387 }
5388 
5389 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5390 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5391   // This function calculates the register usage by measuring the highest number
5392   // of values that are alive at a single location. Obviously, this is a very
5393   // rough estimation. We scan the loop in a topological order in order and
5394   // assign a number to each instruction. We use RPO to ensure that defs are
5395   // met before their users. We assume that each instruction that has in-loop
5396   // users starts an interval. We record every time that an in-loop value is
5397   // used, so we have a list of the first and last occurrences of each
5398   // instruction. Next, we transpose this data structure into a multi map that
5399   // holds the list of intervals that *end* at a specific location. This multi
5400   // map allows us to perform a linear search. We scan the instructions linearly
5401   // and record each time that a new interval starts, by placing it in a set.
5402   // If we find this value in the multi-map then we remove it from the set.
5403   // The max register usage is the maximum size of the set.
5404   // We also search for instructions that are defined outside the loop, but are
5405   // used inside the loop. We need this number separately from the max-interval
5406   // usage number because when we unroll, loop-invariant values do not take
5407   // more register.
5408   LoopBlocksDFS DFS(TheLoop);
5409   DFS.perform(LI);
5410 
5411   RegisterUsage RU;
5412 
5413   // Each 'key' in the map opens a new interval. The values
5414   // of the map are the index of the 'last seen' usage of the
5415   // instruction that is the key.
5416   using IntervalMap = DenseMap<Instruction *, unsigned>;
5417 
5418   // Maps instruction to its index.
5419   SmallVector<Instruction *, 64> IdxToInstr;
5420   // Marks the end of each interval.
5421   IntervalMap EndPoint;
5422   // Saves the list of instruction indices that are used in the loop.
5423   SmallPtrSet<Instruction *, 8> Ends;
5424   // Saves the list of values that are used in the loop but are
5425   // defined outside the loop, such as arguments and constants.
5426   SmallPtrSet<Value *, 8> LoopInvariants;
5427 
5428   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5429     for (Instruction &I : BB->instructionsWithoutDebug()) {
5430       IdxToInstr.push_back(&I);
5431 
5432       // Save the end location of each USE.
5433       for (Value *U : I.operands()) {
5434         auto *Instr = dyn_cast<Instruction>(U);
5435 
5436         // Ignore non-instruction values such as arguments, constants, etc.
5437         if (!Instr)
5438           continue;
5439 
5440         // If this instruction is outside the loop then record it and continue.
5441         if (!TheLoop->contains(Instr)) {
5442           LoopInvariants.insert(Instr);
5443           continue;
5444         }
5445 
5446         // Overwrite previous end points.
5447         EndPoint[Instr] = IdxToInstr.size();
5448         Ends.insert(Instr);
5449       }
5450     }
5451   }
5452 
5453   // Saves the list of intervals that end with the index in 'key'.
5454   using InstrList = SmallVector<Instruction *, 2>;
5455   DenseMap<unsigned, InstrList> TransposeEnds;
5456 
5457   // Transpose the EndPoints to a list of values that end at each index.
5458   for (auto &Interval : EndPoint)
5459     TransposeEnds[Interval.second].push_back(Interval.first);
5460 
5461   SmallPtrSet<Instruction *, 8> OpenIntervals;
5462 
5463   // Get the size of the widest register.
5464   unsigned MaxSafeDepDist = -1U;
5465   if (Legal->getMaxSafeDepDistBytes() != -1U)
5466     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5467   unsigned WidestRegister =
5468       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5469   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5470 
5471   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5472   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5473 
5474   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5475 
5476   // A lambda that gets the register usage for the given type and VF.
5477   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5478     if (Ty->isTokenTy())
5479       return 0U;
5480     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5481     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5482   };
5483 
5484   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5485     Instruction *I = IdxToInstr[i];
5486 
5487     // Remove all of the instructions that end at this location.
5488     InstrList &List = TransposeEnds[i];
5489     for (Instruction *ToRemove : List)
5490       OpenIntervals.erase(ToRemove);
5491 
5492     // Ignore instructions that are never used within the loop.
5493     if (Ends.find(I) == Ends.end())
5494       continue;
5495 
5496     // Skip ignored values.
5497     if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
5498       continue;
5499 
5500     // For each VF find the maximum usage of registers.
5501     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5502       // Count the number of live intervals.
5503       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5504 
5505       if (VFs[j] == 1) {
5506         for (auto Inst : OpenIntervals) {
5507           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5508           if (RegUsage.find(ClassID) == RegUsage.end())
5509             RegUsage[ClassID] = 1;
5510           else
5511             RegUsage[ClassID] += 1;
5512         }
5513       } else {
5514         collectUniformsAndScalars(VFs[j]);
5515         for (auto Inst : OpenIntervals) {
5516           // Skip ignored values for VF > 1.
5517           if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end())
5518             continue;
5519           if (isScalarAfterVectorization(Inst, VFs[j])) {
5520             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5521             if (RegUsage.find(ClassID) == RegUsage.end())
5522               RegUsage[ClassID] = 1;
5523             else
5524               RegUsage[ClassID] += 1;
5525           } else {
5526             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5527             if (RegUsage.find(ClassID) == RegUsage.end())
5528               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5529             else
5530               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5531           }
5532         }
5533       }
5534 
5535       for (auto& pair : RegUsage) {
5536         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5537           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5538         else
5539           MaxUsages[j][pair.first] = pair.second;
5540       }
5541     }
5542 
5543     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5544                       << OpenIntervals.size() << '\n');
5545 
5546     // Add the current instruction to the list of open intervals.
5547     OpenIntervals.insert(I);
5548   }
5549 
5550   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5551     SmallMapVector<unsigned, unsigned, 4> Invariant;
5552 
5553     for (auto Inst : LoopInvariants) {
5554       unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5555       unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType());
5556       if (Invariant.find(ClassID) == Invariant.end())
5557         Invariant[ClassID] = Usage;
5558       else
5559         Invariant[ClassID] += Usage;
5560     }
5561 
5562     LLVM_DEBUG({
5563       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5564       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5565              << " item\n";
5566       for (const auto &pair : MaxUsages[i]) {
5567         dbgs() << "LV(REG): RegisterClass: "
5568                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5569                << " registers\n";
5570       }
5571       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5572              << " item\n";
5573       for (const auto &pair : Invariant) {
5574         dbgs() << "LV(REG): RegisterClass: "
5575                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5576                << " registers\n";
5577       }
5578     });
5579 
5580     RU.LoopInvariantRegs = Invariant;
5581     RU.MaxLocalUsers = MaxUsages[i];
5582     RUs[i] = RU;
5583   }
5584 
5585   return RUs;
5586 }
5587 
5588 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5589   // TODO: Cost model for emulated masked load/store is completely
5590   // broken. This hack guides the cost model to use an artificially
5591   // high enough value to practically disable vectorization with such
5592   // operations, except where previously deployed legality hack allowed
5593   // using very low cost values. This is to avoid regressions coming simply
5594   // from moving "masked load/store" check from legality to cost model.
5595   // Masked Load/Gather emulation was previously never allowed.
5596   // Limited number of Masked Store/Scatter emulation was allowed.
5597   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5598   return isa<LoadInst>(I) ||
5599          (isa<StoreInst>(I) &&
5600           NumPredStores > NumberOfStoresToPredicate);
5601 }
5602 
5603 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
5604   // If we aren't vectorizing the loop, or if we've already collected the
5605   // instructions to scalarize, there's nothing to do. Collection may already
5606   // have occurred if we have a user-selected VF and are now computing the
5607   // expected cost for interleaving.
5608   if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
5609     return;
5610 
5611   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5612   // not profitable to scalarize any instructions, the presence of VF in the
5613   // map will indicate that we've analyzed it already.
5614   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5615 
5616   // Find all the instructions that are scalar with predication in the loop and
5617   // determine if it would be better to not if-convert the blocks they are in.
5618   // If so, we also record the instructions to scalarize.
5619   for (BasicBlock *BB : TheLoop->blocks()) {
5620     if (!blockNeedsPredication(BB))
5621       continue;
5622     for (Instruction &I : *BB)
5623       if (isScalarWithPredication(&I)) {
5624         ScalarCostsTy ScalarCosts;
5625         // Do not apply discount logic if hacked cost is needed
5626         // for emulated masked memrefs.
5627         if (!useEmulatedMaskMemRefHack(&I) &&
5628             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5629           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5630         // Remember that BB will remain after vectorization.
5631         PredicatedBBsAfterVectorization.insert(BB);
5632       }
5633   }
5634 }
5635 
5636 int LoopVectorizationCostModel::computePredInstDiscount(
5637     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5638     unsigned VF) {
5639   assert(!isUniformAfterVectorization(PredInst, VF) &&
5640          "Instruction marked uniform-after-vectorization will be predicated");
5641 
5642   // Initialize the discount to zero, meaning that the scalar version and the
5643   // vector version cost the same.
5644   int Discount = 0;
5645 
5646   // Holds instructions to analyze. The instructions we visit are mapped in
5647   // ScalarCosts. Those instructions are the ones that would be scalarized if
5648   // we find that the scalar version costs less.
5649   SmallVector<Instruction *, 8> Worklist;
5650 
5651   // Returns true if the given instruction can be scalarized.
5652   auto canBeScalarized = [&](Instruction *I) -> bool {
5653     // We only attempt to scalarize instructions forming a single-use chain
5654     // from the original predicated block that would otherwise be vectorized.
5655     // Although not strictly necessary, we give up on instructions we know will
5656     // already be scalar to avoid traversing chains that are unlikely to be
5657     // beneficial.
5658     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5659         isScalarAfterVectorization(I, VF))
5660       return false;
5661 
5662     // If the instruction is scalar with predication, it will be analyzed
5663     // separately. We ignore it within the context of PredInst.
5664     if (isScalarWithPredication(I))
5665       return false;
5666 
5667     // If any of the instruction's operands are uniform after vectorization,
5668     // the instruction cannot be scalarized. This prevents, for example, a
5669     // masked load from being scalarized.
5670     //
5671     // We assume we will only emit a value for lane zero of an instruction
5672     // marked uniform after vectorization, rather than VF identical values.
5673     // Thus, if we scalarize an instruction that uses a uniform, we would
5674     // create uses of values corresponding to the lanes we aren't emitting code
5675     // for. This behavior can be changed by allowing getScalarValue to clone
5676     // the lane zero values for uniforms rather than asserting.
5677     for (Use &U : I->operands())
5678       if (auto *J = dyn_cast<Instruction>(U.get()))
5679         if (isUniformAfterVectorization(J, VF))
5680           return false;
5681 
5682     // Otherwise, we can scalarize the instruction.
5683     return true;
5684   };
5685 
5686   // Compute the expected cost discount from scalarizing the entire expression
5687   // feeding the predicated instruction. We currently only consider expressions
5688   // that are single-use instruction chains.
5689   Worklist.push_back(PredInst);
5690   while (!Worklist.empty()) {
5691     Instruction *I = Worklist.pop_back_val();
5692 
5693     // If we've already analyzed the instruction, there's nothing to do.
5694     if (ScalarCosts.find(I) != ScalarCosts.end())
5695       continue;
5696 
5697     // Compute the cost of the vector instruction. Note that this cost already
5698     // includes the scalarization overhead of the predicated instruction.
5699     unsigned VectorCost = getInstructionCost(I, VF).first;
5700 
5701     // Compute the cost of the scalarized instruction. This cost is the cost of
5702     // the instruction as if it wasn't if-converted and instead remained in the
5703     // predicated block. We will scale this cost by block probability after
5704     // computing the scalarization overhead.
5705     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
5706 
5707     // Compute the scalarization overhead of needed insertelement instructions
5708     // and phi nodes.
5709     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
5710       ScalarCost += TTI.getScalarizationOverhead(
5711           cast<VectorType>(ToVectorTy(I->getType(), VF)),
5712           APInt::getAllOnesValue(VF), true, false);
5713       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
5714     }
5715 
5716     // Compute the scalarization overhead of needed extractelement
5717     // instructions. For each of the instruction's operands, if the operand can
5718     // be scalarized, add it to the worklist; otherwise, account for the
5719     // overhead.
5720     for (Use &U : I->operands())
5721       if (auto *J = dyn_cast<Instruction>(U.get())) {
5722         assert(VectorType::isValidElementType(J->getType()) &&
5723                "Instruction has non-scalar type");
5724         if (canBeScalarized(J))
5725           Worklist.push_back(J);
5726         else if (needsExtract(J, VF))
5727           ScalarCost += TTI.getScalarizationOverhead(
5728               cast<VectorType>(ToVectorTy(J->getType(), VF)),
5729               APInt::getAllOnesValue(VF), false, true);
5730       }
5731 
5732     // Scale the total scalar cost by block probability.
5733     ScalarCost /= getReciprocalPredBlockProb();
5734 
5735     // Compute the discount. A non-negative discount means the vector version
5736     // of the instruction costs more, and scalarizing would be beneficial.
5737     Discount += VectorCost - ScalarCost;
5738     ScalarCosts[I] = ScalarCost;
5739   }
5740 
5741   return Discount;
5742 }
5743 
5744 LoopVectorizationCostModel::VectorizationCostTy
5745 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5746   VectorizationCostTy Cost;
5747 
5748   // For each block.
5749   for (BasicBlock *BB : TheLoop->blocks()) {
5750     VectorizationCostTy BlockCost;
5751 
5752     // For each instruction in the old loop.
5753     for (Instruction &I : BB->instructionsWithoutDebug()) {
5754       // Skip ignored values.
5755       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
5756           (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
5757         continue;
5758 
5759       VectorizationCostTy C = getInstructionCost(&I, VF);
5760 
5761       // Check if we should override the cost.
5762       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5763         C.first = ForceTargetInstructionCost;
5764 
5765       BlockCost.first += C.first;
5766       BlockCost.second |= C.second;
5767       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
5768                         << " for VF " << VF << " For instruction: " << I
5769                         << '\n');
5770     }
5771 
5772     // If we are vectorizing a predicated block, it will have been
5773     // if-converted. This means that the block's instructions (aside from
5774     // stores and instructions that may divide by zero) will now be
5775     // unconditionally executed. For the scalar case, we may not always execute
5776     // the predicated block. Thus, scale the block's cost by the probability of
5777     // executing it.
5778     if (VF == 1 && blockNeedsPredication(BB))
5779       BlockCost.first /= getReciprocalPredBlockProb();
5780 
5781     Cost.first += BlockCost.first;
5782     Cost.second |= BlockCost.second;
5783   }
5784 
5785   return Cost;
5786 }
5787 
5788 /// Gets Address Access SCEV after verifying that the access pattern
5789 /// is loop invariant except the induction variable dependence.
5790 ///
5791 /// This SCEV can be sent to the Target in order to estimate the address
5792 /// calculation cost.
5793 static const SCEV *getAddressAccessSCEV(
5794               Value *Ptr,
5795               LoopVectorizationLegality *Legal,
5796               PredicatedScalarEvolution &PSE,
5797               const Loop *TheLoop) {
5798 
5799   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5800   if (!Gep)
5801     return nullptr;
5802 
5803   // We are looking for a gep with all loop invariant indices except for one
5804   // which should be an induction variable.
5805   auto SE = PSE.getSE();
5806   unsigned NumOperands = Gep->getNumOperands();
5807   for (unsigned i = 1; i < NumOperands; ++i) {
5808     Value *Opd = Gep->getOperand(i);
5809     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5810         !Legal->isInductionVariable(Opd))
5811       return nullptr;
5812   }
5813 
5814   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5815   return PSE.getSCEV(Ptr);
5816 }
5817 
5818 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5819   return Legal->hasStride(I->getOperand(0)) ||
5820          Legal->hasStride(I->getOperand(1));
5821 }
5822 
5823 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5824                                                                  unsigned VF) {
5825   assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
5826   Type *ValTy = getMemInstValueType(I);
5827   auto SE = PSE.getSE();
5828 
5829   unsigned AS = getLoadStoreAddressSpace(I);
5830   Value *Ptr = getLoadStorePointerOperand(I);
5831   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5832 
5833   // Figure out whether the access is strided and get the stride value
5834   // if it's known in compile time
5835   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5836 
5837   // Get the cost of the scalar memory instruction and address computation.
5838   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5839 
5840   // Don't pass *I here, since it is scalar but will actually be part of a
5841   // vectorized loop where the user of it is a vectorized instruction.
5842   const MaybeAlign Alignment = getLoadStoreAlignment(I);
5843   Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5844                                    Alignment, AS,
5845                                    TTI::TCK_RecipThroughput);
5846 
5847   // Get the overhead of the extractelement and insertelement instructions
5848   // we might create due to scalarization.
5849   Cost += getScalarizationOverhead(I, VF);
5850 
5851   // If we have a predicated store, it may not be executed for each vector
5852   // lane. Scale the cost by the probability of executing the predicated
5853   // block.
5854   if (isPredicatedInst(I)) {
5855     Cost /= getReciprocalPredBlockProb();
5856 
5857     if (useEmulatedMaskMemRefHack(I))
5858       // Artificially setting to a high enough value to practically disable
5859       // vectorization with such operations.
5860       Cost = 3000000;
5861   }
5862 
5863   return Cost;
5864 }
5865 
5866 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5867                                                              unsigned VF) {
5868   Type *ValTy = getMemInstValueType(I);
5869   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5870   Value *Ptr = getLoadStorePointerOperand(I);
5871   unsigned AS = getLoadStoreAddressSpace(I);
5872   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5873   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5874 
5875   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5876          "Stride should be 1 or -1 for consecutive memory access");
5877   const MaybeAlign Alignment = getLoadStoreAlignment(I);
5878   unsigned Cost = 0;
5879   if (Legal->isMaskRequired(I))
5880     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy,
5881                                       Alignment ? Alignment->value() : 0, AS,
5882                                       CostKind);
5883   else
5884     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5885                                 CostKind, I);
5886 
5887   bool Reverse = ConsecutiveStride < 0;
5888   if (Reverse)
5889     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5890   return Cost;
5891 }
5892 
5893 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5894                                                          unsigned VF) {
5895   Type *ValTy = getMemInstValueType(I);
5896   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5897   const MaybeAlign Alignment = getLoadStoreAlignment(I);
5898   unsigned AS = getLoadStoreAddressSpace(I);
5899   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5900   if (isa<LoadInst>(I)) {
5901     return TTI.getAddressComputationCost(ValTy) +
5902            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5903                                CostKind) +
5904            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
5905   }
5906   StoreInst *SI = cast<StoreInst>(I);
5907 
5908   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
5909   return TTI.getAddressComputationCost(ValTy) +
5910          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
5911                              CostKind) +
5912          (isLoopInvariantStoreValue
5913               ? 0
5914               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
5915                                        VF - 1));
5916 }
5917 
5918 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5919                                                           unsigned VF) {
5920   Type *ValTy = getMemInstValueType(I);
5921   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5922   const MaybeAlign Alignment = getLoadStoreAlignment(I);
5923   Value *Ptr = getLoadStorePointerOperand(I);
5924 
5925   return TTI.getAddressComputationCost(VectorTy) +
5926          TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5927                                     Legal->isMaskRequired(I),
5928                                     Alignment ? Alignment->value() : 0,
5929                                     TargetTransformInfo::TCK_RecipThroughput,
5930                                     I);
5931 }
5932 
5933 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5934                                                             unsigned VF) {
5935   Type *ValTy = getMemInstValueType(I);
5936   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5937   unsigned AS = getLoadStoreAddressSpace(I);
5938 
5939   auto Group = getInterleavedAccessGroup(I);
5940   assert(Group && "Fail to get an interleaved access group.");
5941 
5942   unsigned InterleaveFactor = Group->getFactor();
5943   VectorType *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5944 
5945   // Holds the indices of existing members in an interleaved load group.
5946   // An interleaved store group doesn't need this as it doesn't allow gaps.
5947   SmallVector<unsigned, 4> Indices;
5948   if (isa<LoadInst>(I)) {
5949     for (unsigned i = 0; i < InterleaveFactor; i++)
5950       if (Group->getMember(i))
5951         Indices.push_back(i);
5952   }
5953 
5954   // Calculate the cost of the whole interleaved group.
5955   bool UseMaskForGaps =
5956       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5957   unsigned Cost = TTI.getInterleavedMemoryOpCost(
5958       I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5959       Group->getAlign().value(), AS, TTI::TCK_RecipThroughput,
5960       Legal->isMaskRequired(I), UseMaskForGaps);
5961 
5962   if (Group->isReverse()) {
5963     // TODO: Add support for reversed masked interleaved access.
5964     assert(!Legal->isMaskRequired(I) &&
5965            "Reverse masked interleaved access not supported.");
5966     Cost += Group->getNumMembers() *
5967             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5968   }
5969   return Cost;
5970 }
5971 
5972 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5973                                                               unsigned VF) {
5974   // Calculate scalar cost only. Vectorization cost should be ready at this
5975   // moment.
5976   if (VF == 1) {
5977     Type *ValTy = getMemInstValueType(I);
5978     const MaybeAlign Alignment = getLoadStoreAlignment(I);
5979     unsigned AS = getLoadStoreAddressSpace(I);
5980 
5981     return TTI.getAddressComputationCost(ValTy) +
5982            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
5983                                TTI::TCK_RecipThroughput, I);
5984   }
5985   return getWideningCost(I, VF);
5986 }
5987 
5988 LoopVectorizationCostModel::VectorizationCostTy
5989 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5990   // If we know that this instruction will remain uniform, check the cost of
5991   // the scalar version.
5992   if (isUniformAfterVectorization(I, VF))
5993     VF = 1;
5994 
5995   if (VF > 1 && isProfitableToScalarize(I, VF))
5996     return VectorizationCostTy(InstsToScalarize[VF][I], false);
5997 
5998   // Forced scalars do not have any scalarization overhead.
5999   auto ForcedScalar = ForcedScalars.find(VF);
6000   if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
6001     auto InstSet = ForcedScalar->second;
6002     if (InstSet.find(I) != InstSet.end())
6003       return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
6004   }
6005 
6006   Type *VectorTy;
6007   unsigned C = getInstructionCost(I, VF, VectorTy);
6008 
6009   bool TypeNotScalarized =
6010       VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
6011   return VectorizationCostTy(C, TypeNotScalarized);
6012 }
6013 
6014 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6015                                                               unsigned VF) {
6016 
6017   if (VF == 1)
6018     return 0;
6019 
6020   unsigned Cost = 0;
6021   Type *RetTy = ToVectorTy(I->getType(), VF);
6022   if (!RetTy->isVoidTy() &&
6023       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6024     Cost += TTI.getScalarizationOverhead(
6025         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false);
6026 
6027   // Some targets keep addresses scalar.
6028   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6029     return Cost;
6030 
6031   // Some targets support efficient element stores.
6032   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6033     return Cost;
6034 
6035   // Collect operands to consider.
6036   CallInst *CI = dyn_cast<CallInst>(I);
6037   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6038 
6039   // Skip operands that do not require extraction/scalarization and do not incur
6040   // any overhead.
6041   return Cost + TTI.getOperandsScalarizationOverhead(
6042                     filterExtractingOperands(Ops, VF), VF);
6043 }
6044 
6045 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6046   if (VF == 1)
6047     return;
6048   NumPredStores = 0;
6049   for (BasicBlock *BB : TheLoop->blocks()) {
6050     // For each instruction in the old loop.
6051     for (Instruction &I : *BB) {
6052       Value *Ptr =  getLoadStorePointerOperand(&I);
6053       if (!Ptr)
6054         continue;
6055 
6056       // TODO: We should generate better code and update the cost model for
6057       // predicated uniform stores. Today they are treated as any other
6058       // predicated store (see added test cases in
6059       // invariant-store-vectorization.ll).
6060       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6061         NumPredStores++;
6062 
6063       if (Legal->isUniform(Ptr) &&
6064           // Conditional loads and stores should be scalarized and predicated.
6065           // isScalarWithPredication cannot be used here since masked
6066           // gather/scatters are not considered scalar with predication.
6067           !Legal->blockNeedsPredication(I.getParent())) {
6068         // TODO: Avoid replicating loads and stores instead of
6069         // relying on instcombine to remove them.
6070         // Load: Scalar load + broadcast
6071         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6072         unsigned Cost = getUniformMemOpCost(&I, VF);
6073         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6074         continue;
6075       }
6076 
6077       // We assume that widening is the best solution when possible.
6078       if (memoryInstructionCanBeWidened(&I, VF)) {
6079         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6080         int ConsecutiveStride =
6081                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6082         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6083                "Expected consecutive stride.");
6084         InstWidening Decision =
6085             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6086         setWideningDecision(&I, VF, Decision, Cost);
6087         continue;
6088       }
6089 
6090       // Choose between Interleaving, Gather/Scatter or Scalarization.
6091       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6092       unsigned NumAccesses = 1;
6093       if (isAccessInterleaved(&I)) {
6094         auto Group = getInterleavedAccessGroup(&I);
6095         assert(Group && "Fail to get an interleaved access group.");
6096 
6097         // Make one decision for the whole group.
6098         if (getWideningDecision(&I, VF) != CM_Unknown)
6099           continue;
6100 
6101         NumAccesses = Group->getNumMembers();
6102         if (interleavedAccessCanBeWidened(&I, VF))
6103           InterleaveCost = getInterleaveGroupCost(&I, VF);
6104       }
6105 
6106       unsigned GatherScatterCost =
6107           isLegalGatherOrScatter(&I)
6108               ? getGatherScatterCost(&I, VF) * NumAccesses
6109               : std::numeric_limits<unsigned>::max();
6110 
6111       unsigned ScalarizationCost =
6112           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6113 
6114       // Choose better solution for the current VF,
6115       // write down this decision and use it during vectorization.
6116       unsigned Cost;
6117       InstWidening Decision;
6118       if (InterleaveCost <= GatherScatterCost &&
6119           InterleaveCost < ScalarizationCost) {
6120         Decision = CM_Interleave;
6121         Cost = InterleaveCost;
6122       } else if (GatherScatterCost < ScalarizationCost) {
6123         Decision = CM_GatherScatter;
6124         Cost = GatherScatterCost;
6125       } else {
6126         Decision = CM_Scalarize;
6127         Cost = ScalarizationCost;
6128       }
6129       // If the instructions belongs to an interleave group, the whole group
6130       // receives the same decision. The whole group receives the cost, but
6131       // the cost will actually be assigned to one instruction.
6132       if (auto Group = getInterleavedAccessGroup(&I))
6133         setWideningDecision(Group, VF, Decision, Cost);
6134       else
6135         setWideningDecision(&I, VF, Decision, Cost);
6136     }
6137   }
6138 
6139   // Make sure that any load of address and any other address computation
6140   // remains scalar unless there is gather/scatter support. This avoids
6141   // inevitable extracts into address registers, and also has the benefit of
6142   // activating LSR more, since that pass can't optimize vectorized
6143   // addresses.
6144   if (TTI.prefersVectorizedAddressing())
6145     return;
6146 
6147   // Start with all scalar pointer uses.
6148   SmallPtrSet<Instruction *, 8> AddrDefs;
6149   for (BasicBlock *BB : TheLoop->blocks())
6150     for (Instruction &I : *BB) {
6151       Instruction *PtrDef =
6152         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6153       if (PtrDef && TheLoop->contains(PtrDef) &&
6154           getWideningDecision(&I, VF) != CM_GatherScatter)
6155         AddrDefs.insert(PtrDef);
6156     }
6157 
6158   // Add all instructions used to generate the addresses.
6159   SmallVector<Instruction *, 4> Worklist;
6160   for (auto *I : AddrDefs)
6161     Worklist.push_back(I);
6162   while (!Worklist.empty()) {
6163     Instruction *I = Worklist.pop_back_val();
6164     for (auto &Op : I->operands())
6165       if (auto *InstOp = dyn_cast<Instruction>(Op))
6166         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6167             AddrDefs.insert(InstOp).second)
6168           Worklist.push_back(InstOp);
6169   }
6170 
6171   for (auto *I : AddrDefs) {
6172     if (isa<LoadInst>(I)) {
6173       // Setting the desired widening decision should ideally be handled in
6174       // by cost functions, but since this involves the task of finding out
6175       // if the loaded register is involved in an address computation, it is
6176       // instead changed here when we know this is the case.
6177       InstWidening Decision = getWideningDecision(I, VF);
6178       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6179         // Scalarize a widened load of address.
6180         setWideningDecision(I, VF, CM_Scalarize,
6181                             (VF * getMemoryInstructionCost(I, 1)));
6182       else if (auto Group = getInterleavedAccessGroup(I)) {
6183         // Scalarize an interleave group of address loads.
6184         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6185           if (Instruction *Member = Group->getMember(I))
6186             setWideningDecision(Member, VF, CM_Scalarize,
6187                                 (VF * getMemoryInstructionCost(Member, 1)));
6188         }
6189       }
6190     } else
6191       // Make sure I gets scalarized and a cost estimate without
6192       // scalarization overhead.
6193       ForcedScalars[VF].insert(I);
6194   }
6195 }
6196 
6197 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6198                                                         unsigned VF,
6199                                                         Type *&VectorTy) {
6200   Type *RetTy = I->getType();
6201   if (canTruncateToMinimalBitwidth(I, VF))
6202     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6203   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6204   auto SE = PSE.getSE();
6205   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6206 
6207   // TODO: We need to estimate the cost of intrinsic calls.
6208   switch (I->getOpcode()) {
6209   case Instruction::GetElementPtr:
6210     // We mark this instruction as zero-cost because the cost of GEPs in
6211     // vectorized code depends on whether the corresponding memory instruction
6212     // is scalarized or not. Therefore, we handle GEPs with the memory
6213     // instruction cost.
6214     return 0;
6215   case Instruction::Br: {
6216     // In cases of scalarized and predicated instructions, there will be VF
6217     // predicated blocks in the vectorized loop. Each branch around these
6218     // blocks requires also an extract of its vector compare i1 element.
6219     bool ScalarPredicatedBB = false;
6220     BranchInst *BI = cast<BranchInst>(I);
6221     if (VF > 1 && BI->isConditional() &&
6222         (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
6223              PredicatedBBsAfterVectorization.end() ||
6224          PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
6225              PredicatedBBsAfterVectorization.end()))
6226       ScalarPredicatedBB = true;
6227 
6228     if (ScalarPredicatedBB) {
6229       // Return cost for branches around scalarized and predicated blocks.
6230       VectorType *Vec_i1Ty =
6231           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6232       return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF),
6233                                            false, true) +
6234               (TTI.getCFInstrCost(Instruction::Br) * VF));
6235     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
6236       // The back-edge branch will remain, as will all scalar branches.
6237       return TTI.getCFInstrCost(Instruction::Br);
6238     else
6239       // This branch will be eliminated by if-conversion.
6240       return 0;
6241     // Note: We currently assume zero cost for an unconditional branch inside
6242     // a predicated block since it will become a fall-through, although we
6243     // may decide in the future to call TTI for all branches.
6244   }
6245   case Instruction::PHI: {
6246     auto *Phi = cast<PHINode>(I);
6247 
6248     // First-order recurrences are replaced by vector shuffles inside the loop.
6249     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6250     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
6251       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6252                                 cast<VectorType>(VectorTy), VF - 1,
6253                                 VectorType::get(RetTy, 1));
6254 
6255     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6256     // converted into select instructions. We require N - 1 selects per phi
6257     // node, where N is the number of incoming values.
6258     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
6259       return (Phi->getNumIncomingValues() - 1) *
6260              TTI.getCmpSelInstrCost(
6261                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6262                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6263                  CostKind);
6264 
6265     return TTI.getCFInstrCost(Instruction::PHI);
6266   }
6267   case Instruction::UDiv:
6268   case Instruction::SDiv:
6269   case Instruction::URem:
6270   case Instruction::SRem:
6271     // If we have a predicated instruction, it may not be executed for each
6272     // vector lane. Get the scalarization cost and scale this amount by the
6273     // probability of executing the predicated block. If the instruction is not
6274     // predicated, we fall through to the next case.
6275     if (VF > 1 && isScalarWithPredication(I)) {
6276       unsigned Cost = 0;
6277 
6278       // These instructions have a non-void type, so account for the phi nodes
6279       // that we will create. This cost is likely to be zero. The phi node
6280       // cost, if any, should be scaled by the block probability because it
6281       // models a copy at the end of each predicated block.
6282       Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
6283 
6284       // The cost of the non-predicated instruction.
6285       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
6286 
6287       // The cost of insertelement and extractelement instructions needed for
6288       // scalarization.
6289       Cost += getScalarizationOverhead(I, VF);
6290 
6291       // Scale the cost by the probability of executing the predicated blocks.
6292       // This assumes the predicated block for each vector lane is equally
6293       // likely.
6294       return Cost / getReciprocalPredBlockProb();
6295     }
6296     LLVM_FALLTHROUGH;
6297   case Instruction::Add:
6298   case Instruction::FAdd:
6299   case Instruction::Sub:
6300   case Instruction::FSub:
6301   case Instruction::Mul:
6302   case Instruction::FMul:
6303   case Instruction::FDiv:
6304   case Instruction::FRem:
6305   case Instruction::Shl:
6306   case Instruction::LShr:
6307   case Instruction::AShr:
6308   case Instruction::And:
6309   case Instruction::Or:
6310   case Instruction::Xor: {
6311     // Since we will replace the stride by 1 the multiplication should go away.
6312     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6313       return 0;
6314     // Certain instructions can be cheaper to vectorize if they have a constant
6315     // second vector operand. One example of this are shifts on x86.
6316     Value *Op2 = I->getOperand(1);
6317     TargetTransformInfo::OperandValueProperties Op2VP;
6318     TargetTransformInfo::OperandValueKind Op2VK =
6319         TTI.getOperandInfo(Op2, Op2VP);
6320     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6321       Op2VK = TargetTransformInfo::OK_UniformValue;
6322 
6323     SmallVector<const Value *, 4> Operands(I->operand_values());
6324     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6325     return N * TTI.getArithmeticInstrCost(
6326                    I->getOpcode(), VectorTy, CostKind,
6327                    TargetTransformInfo::OK_AnyValue,
6328                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6329   }
6330   case Instruction::FNeg: {
6331     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6332     return N * TTI.getArithmeticInstrCost(
6333                    I->getOpcode(), VectorTy, CostKind,
6334                    TargetTransformInfo::OK_AnyValue,
6335                    TargetTransformInfo::OK_AnyValue,
6336                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6337                    I->getOperand(0), I);
6338   }
6339   case Instruction::Select: {
6340     SelectInst *SI = cast<SelectInst>(I);
6341     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6342     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6343     Type *CondTy = SI->getCondition()->getType();
6344     if (!ScalarCond)
6345       CondTy = VectorType::get(CondTy, VF);
6346 
6347     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
6348                                   CostKind, I);
6349   }
6350   case Instruction::ICmp:
6351   case Instruction::FCmp: {
6352     Type *ValTy = I->getOperand(0)->getType();
6353     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6354     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6355       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6356     VectorTy = ToVectorTy(ValTy, VF);
6357     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind,
6358                                   I);
6359   }
6360   case Instruction::Store:
6361   case Instruction::Load: {
6362     unsigned Width = VF;
6363     if (Width > 1) {
6364       InstWidening Decision = getWideningDecision(I, Width);
6365       assert(Decision != CM_Unknown &&
6366              "CM decision should be taken at this point");
6367       if (Decision == CM_Scalarize)
6368         Width = 1;
6369     }
6370     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6371     return getMemoryInstructionCost(I, VF);
6372   }
6373   case Instruction::ZExt:
6374   case Instruction::SExt:
6375   case Instruction::FPToUI:
6376   case Instruction::FPToSI:
6377   case Instruction::FPExt:
6378   case Instruction::PtrToInt:
6379   case Instruction::IntToPtr:
6380   case Instruction::SIToFP:
6381   case Instruction::UIToFP:
6382   case Instruction::Trunc:
6383   case Instruction::FPTrunc:
6384   case Instruction::BitCast: {
6385     // We optimize the truncation of induction variables having constant
6386     // integer steps. The cost of these truncations is the same as the scalar
6387     // operation.
6388     if (isOptimizableIVTruncate(I, VF)) {
6389       auto *Trunc = cast<TruncInst>(I);
6390       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6391                                   Trunc->getSrcTy(), CostKind, Trunc);
6392     }
6393 
6394     Type *SrcScalarTy = I->getOperand(0)->getType();
6395     Type *SrcVecTy =
6396         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6397     if (canTruncateToMinimalBitwidth(I, VF)) {
6398       // This cast is going to be shrunk. This may remove the cast or it might
6399       // turn it into slightly different cast. For example, if MinBW == 16,
6400       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6401       //
6402       // Calculate the modified src and dest types.
6403       Type *MinVecTy = VectorTy;
6404       if (I->getOpcode() == Instruction::Trunc) {
6405         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6406         VectorTy =
6407             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6408       } else if (I->getOpcode() == Instruction::ZExt ||
6409                  I->getOpcode() == Instruction::SExt) {
6410         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6411         VectorTy =
6412             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6413       }
6414     }
6415 
6416     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6417     return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy,
6418                                     CostKind, I);
6419   }
6420   case Instruction::Call: {
6421     bool NeedToScalarize;
6422     CallInst *CI = cast<CallInst>(I);
6423     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6424     if (getVectorIntrinsicIDForCall(CI, TLI))
6425       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6426     return CallCost;
6427   }
6428   default:
6429     // The cost of executing VF copies of the scalar instruction. This opcode
6430     // is unknown. Assume that it is the same as 'mul'.
6431     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
6432                                            CostKind) +
6433            getScalarizationOverhead(I, VF);
6434   } // end of switch.
6435 }
6436 
6437 char LoopVectorize::ID = 0;
6438 
6439 static const char lv_name[] = "Loop Vectorization";
6440 
6441 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6442 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6443 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6444 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6445 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6446 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6447 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6448 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6449 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6450 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6451 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6452 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6453 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6454 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6455 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6456 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6457 
6458 namespace llvm {
6459 
6460 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6461 
6462 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6463                               bool VectorizeOnlyWhenForced) {
6464   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6465 }
6466 
6467 } // end namespace llvm
6468 
6469 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6470   // Check if the pointer operand of a load or store instruction is
6471   // consecutive.
6472   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6473     return Legal->isConsecutivePtr(Ptr);
6474   return false;
6475 }
6476 
6477 void LoopVectorizationCostModel::collectValuesToIgnore() {
6478   // Ignore ephemeral values.
6479   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6480 
6481   // Ignore type-promoting instructions we identified during reduction
6482   // detection.
6483   for (auto &Reduction : Legal->getReductionVars()) {
6484     RecurrenceDescriptor &RedDes = Reduction.second;
6485     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6486     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6487   }
6488   // Ignore type-casting instructions we identified during induction
6489   // detection.
6490   for (auto &Induction : Legal->getInductionVars()) {
6491     InductionDescriptor &IndDes = Induction.second;
6492     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6493     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6494   }
6495 }
6496 
6497 // TODO: we could return a pair of values that specify the max VF and
6498 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6499 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6500 // doesn't have a cost model that can choose which plan to execute if
6501 // more than one is generated.
6502 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6503                                  LoopVectorizationCostModel &CM) {
6504   unsigned WidestType;
6505   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6506   return WidestVectorRegBits / WidestType;
6507 }
6508 
6509 VectorizationFactor
6510 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) {
6511   unsigned VF = UserVF;
6512   // Outer loop handling: They may require CFG and instruction level
6513   // transformations before even evaluating whether vectorization is profitable.
6514   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6515   // the vectorization pipeline.
6516   if (!OrigLoop->empty()) {
6517     // If the user doesn't provide a vectorization factor, determine a
6518     // reasonable one.
6519     if (!UserVF) {
6520       VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
6521       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6522 
6523       // Make sure we have a VF > 1 for stress testing.
6524       if (VPlanBuildStressTest && VF < 2) {
6525         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6526                           << "overriding computed VF.\n");
6527         VF = 4;
6528       }
6529     }
6530     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6531     assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
6532     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
6533                       << " to build VPlans.\n");
6534     buildVPlans(VF, VF);
6535 
6536     // For VPlan build stress testing, we bail out after VPlan construction.
6537     if (VPlanBuildStressTest)
6538       return VectorizationFactor::Disabled();
6539 
6540     return {VF, 0};
6541   }
6542 
6543   LLVM_DEBUG(
6544       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6545                 "VPlan-native path.\n");
6546   return VectorizationFactor::Disabled();
6547 }
6548 
6549 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) {
6550   assert(OrigLoop->empty() && "Inner loop expected.");
6551   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF();
6552   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
6553     return None;
6554 
6555   // Invalidate interleave groups if all blocks of loop will be predicated.
6556   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
6557       !useMaskedInterleavedAccesses(*TTI)) {
6558     LLVM_DEBUG(
6559         dbgs()
6560         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6561            "which requires masked-interleaved support.\n");
6562     if (CM.InterleaveInfo.invalidateGroups())
6563       // Invalidating interleave groups also requires invalidating all decisions
6564       // based on them, which includes widening decisions and uniform and scalar
6565       // values.
6566       CM.invalidateCostModelingDecisions();
6567   }
6568 
6569   if (UserVF) {
6570     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6571     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6572     // Collect the instructions (and their associated costs) that will be more
6573     // profitable to scalarize.
6574     CM.selectUserVectorizationFactor(UserVF);
6575     buildVPlansWithVPRecipes(UserVF, UserVF);
6576     LLVM_DEBUG(printPlans(dbgs()));
6577     return {{UserVF, 0}};
6578   }
6579 
6580   unsigned MaxVF = MaybeMaxVF.getValue();
6581   assert(MaxVF != 0 && "MaxVF is zero.");
6582 
6583   for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
6584     // Collect Uniform and Scalar instructions after vectorization with VF.
6585     CM.collectUniformsAndScalars(VF);
6586 
6587     // Collect the instructions (and their associated costs) that will be more
6588     // profitable to scalarize.
6589     if (VF > 1)
6590       CM.collectInstsToScalarize(VF);
6591   }
6592 
6593   buildVPlansWithVPRecipes(1, MaxVF);
6594   LLVM_DEBUG(printPlans(dbgs()));
6595   if (MaxVF == 1)
6596     return VectorizationFactor::Disabled();
6597 
6598   // Select the optimal vectorization factor.
6599   return CM.selectVectorizationFactor(MaxVF);
6600 }
6601 
6602 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
6603   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
6604                     << '\n');
6605   BestVF = VF;
6606   BestUF = UF;
6607 
6608   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
6609     return !Plan->hasVF(VF);
6610   });
6611   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
6612 }
6613 
6614 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
6615                                            DominatorTree *DT) {
6616   // Perform the actual loop transformation.
6617 
6618   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
6619   VPCallbackILV CallbackILV(ILV);
6620 
6621   VPTransformState State{BestVF, BestUF,      LI,
6622                          DT,     ILV.Builder, ILV.VectorLoopValueMap,
6623                          &ILV,   CallbackILV};
6624   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
6625   State.TripCount = ILV.getOrCreateTripCount(nullptr);
6626   State.CanonicalIV = ILV.Induction;
6627 
6628   //===------------------------------------------------===//
6629   //
6630   // Notice: any optimization or new instruction that go
6631   // into the code below should also be implemented in
6632   // the cost-model.
6633   //
6634   //===------------------------------------------------===//
6635 
6636   // 2. Copy and widen instructions from the old loop into the new loop.
6637   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
6638   VPlans.front()->execute(&State);
6639 
6640   // 3. Fix the vectorized code: take care of header phi's, live-outs,
6641   //    predication, updating analyses.
6642   ILV.fixVectorizedLoop();
6643 }
6644 
6645 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
6646     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6647   BasicBlock *Latch = OrigLoop->getLoopLatch();
6648 
6649   // We create new control-flow for the vectorized loop, so the original
6650   // condition will be dead after vectorization if it's only used by the
6651   // branch.
6652   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
6653   if (Cmp && Cmp->hasOneUse())
6654     DeadInstructions.insert(Cmp);
6655 
6656   // We create new "steps" for induction variable updates to which the original
6657   // induction variables map. An original update instruction will be dead if
6658   // all its users except the induction variable are dead.
6659   for (auto &Induction : Legal->getInductionVars()) {
6660     PHINode *Ind = Induction.first;
6661     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
6662     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
6663           return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
6664                                  DeadInstructions.end();
6665         }))
6666       DeadInstructions.insert(IndUpdate);
6667 
6668     // We record as "Dead" also the type-casting instructions we had identified
6669     // during induction analysis. We don't need any handling for them in the
6670     // vectorized loop because we have proven that, under a proper runtime
6671     // test guarding the vectorized loop, the value of the phi, and the casted
6672     // value of the phi, are the same. The last instruction in this casting chain
6673     // will get its scalar/vector/widened def from the scalar/vector/widened def
6674     // of the respective phi node. Any other casts in the induction def-use chain
6675     // have no other uses outside the phi update chain, and will be ignored.
6676     InductionDescriptor &IndDes = Induction.second;
6677     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6678     DeadInstructions.insert(Casts.begin(), Casts.end());
6679   }
6680 }
6681 
6682 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6683 
6684 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6685 
6686 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
6687                                         Instruction::BinaryOps BinOp) {
6688   // When unrolling and the VF is 1, we only need to add a simple scalar.
6689   Type *Ty = Val->getType();
6690   assert(!Ty->isVectorTy() && "Val must be a scalar");
6691 
6692   if (Ty->isFloatingPointTy()) {
6693     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
6694 
6695     // Floating point operations had to be 'fast' to enable the unrolling.
6696     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
6697     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
6698   }
6699   Constant *C = ConstantInt::get(Ty, StartIdx);
6700   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6701 }
6702 
6703 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6704   SmallVector<Metadata *, 4> MDs;
6705   // Reserve first location for self reference to the LoopID metadata node.
6706   MDs.push_back(nullptr);
6707   bool IsUnrollMetadata = false;
6708   MDNode *LoopID = L->getLoopID();
6709   if (LoopID) {
6710     // First find existing loop unrolling disable metadata.
6711     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6712       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6713       if (MD) {
6714         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6715         IsUnrollMetadata =
6716             S && S->getString().startswith("llvm.loop.unroll.disable");
6717       }
6718       MDs.push_back(LoopID->getOperand(i));
6719     }
6720   }
6721 
6722   if (!IsUnrollMetadata) {
6723     // Add runtime unroll disable metadata.
6724     LLVMContext &Context = L->getHeader()->getContext();
6725     SmallVector<Metadata *, 1> DisableOperands;
6726     DisableOperands.push_back(
6727         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6728     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6729     MDs.push_back(DisableNode);
6730     MDNode *NewLoopID = MDNode::get(Context, MDs);
6731     // Set operand 0 to refer to the loop id itself.
6732     NewLoopID->replaceOperandWith(0, NewLoopID);
6733     L->setLoopID(NewLoopID);
6734   }
6735 }
6736 
6737 bool LoopVectorizationPlanner::getDecisionAndClampRange(
6738     const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
6739   assert(Range.End > Range.Start && "Trying to test an empty VF range.");
6740   bool PredicateAtRangeStart = Predicate(Range.Start);
6741 
6742   for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
6743     if (Predicate(TmpVF) != PredicateAtRangeStart) {
6744       Range.End = TmpVF;
6745       break;
6746     }
6747 
6748   return PredicateAtRangeStart;
6749 }
6750 
6751 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
6752 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
6753 /// of VF's starting at a given VF and extending it as much as possible. Each
6754 /// vectorization decision can potentially shorten this sub-range during
6755 /// buildVPlan().
6756 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
6757   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6758     VFRange SubRange = {VF, MaxVF + 1};
6759     VPlans.push_back(buildVPlan(SubRange));
6760     VF = SubRange.End;
6761   }
6762 }
6763 
6764 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
6765                                          VPlanPtr &Plan) {
6766   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
6767 
6768   // Look for cached value.
6769   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
6770   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
6771   if (ECEntryIt != EdgeMaskCache.end())
6772     return ECEntryIt->second;
6773 
6774   VPValue *SrcMask = createBlockInMask(Src, Plan);
6775 
6776   // The terminator has to be a branch inst!
6777   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
6778   assert(BI && "Unexpected terminator found");
6779 
6780   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
6781     return EdgeMaskCache[Edge] = SrcMask;
6782 
6783   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
6784   assert(EdgeMask && "No Edge Mask found for condition");
6785 
6786   if (BI->getSuccessor(0) != Dst)
6787     EdgeMask = Builder.createNot(EdgeMask);
6788 
6789   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
6790     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
6791 
6792   return EdgeMaskCache[Edge] = EdgeMask;
6793 }
6794 
6795 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
6796   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
6797 
6798   // Look for cached value.
6799   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
6800   if (BCEntryIt != BlockMaskCache.end())
6801     return BCEntryIt->second;
6802 
6803   // All-one mask is modelled as no-mask following the convention for masked
6804   // load/store/gather/scatter. Initialize BlockMask to no-mask.
6805   VPValue *BlockMask = nullptr;
6806 
6807   if (OrigLoop->getHeader() == BB) {
6808     if (!CM.blockNeedsPredication(BB))
6809       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
6810 
6811     // Introduce the early-exit compare IV <= BTC to form header block mask.
6812     // This is used instead of IV < TC because TC may wrap, unlike BTC.
6813     // Start by constructing the desired canonical IV.
6814     VPValue *IV = nullptr;
6815     if (Legal->getPrimaryInduction())
6816       IV = Plan->getVPValue(Legal->getPrimaryInduction());
6817     else {
6818       auto IVRecipe = new VPWidenCanonicalIVRecipe();
6819       Builder.getInsertBlock()->appendRecipe(IVRecipe);
6820       IV = IVRecipe->getVPValue();
6821     }
6822     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
6823     BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
6824     return BlockMaskCache[BB] = BlockMask;
6825   }
6826 
6827   // This is the block mask. We OR all incoming edges.
6828   for (auto *Predecessor : predecessors(BB)) {
6829     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
6830     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
6831       return BlockMaskCache[BB] = EdgeMask;
6832 
6833     if (!BlockMask) { // BlockMask has its initialized nullptr value.
6834       BlockMask = EdgeMask;
6835       continue;
6836     }
6837 
6838     BlockMask = Builder.createOr(BlockMask, EdgeMask);
6839   }
6840 
6841   return BlockMaskCache[BB] = BlockMask;
6842 }
6843 
6844 VPWidenMemoryInstructionRecipe *
6845 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
6846                                   VPlanPtr &Plan) {
6847   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6848          "Must be called with either a load or store");
6849 
6850   auto willWiden = [&](unsigned VF) -> bool {
6851     if (VF == 1)
6852       return false;
6853     LoopVectorizationCostModel::InstWidening Decision =
6854         CM.getWideningDecision(I, VF);
6855     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
6856            "CM decision should be taken at this point.");
6857     if (Decision == LoopVectorizationCostModel::CM_Interleave)
6858       return true;
6859     if (CM.isScalarAfterVectorization(I, VF) ||
6860         CM.isProfitableToScalarize(I, VF))
6861       return false;
6862     return Decision != LoopVectorizationCostModel::CM_Scalarize;
6863   };
6864 
6865   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6866     return nullptr;
6867 
6868   VPValue *Mask = nullptr;
6869   if (Legal->isMaskRequired(I))
6870     Mask = createBlockInMask(I->getParent(), Plan);
6871 
6872   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
6873   if (LoadInst *Load = dyn_cast<LoadInst>(I))
6874     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
6875 
6876   StoreInst *Store = cast<StoreInst>(I);
6877   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
6878   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
6879 }
6880 
6881 VPWidenIntOrFpInductionRecipe *
6882 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
6883   // Check if this is an integer or fp induction. If so, build the recipe that
6884   // produces its scalar and vector values.
6885   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
6886   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
6887       II.getKind() == InductionDescriptor::IK_FpInduction)
6888     return new VPWidenIntOrFpInductionRecipe(Phi);
6889 
6890   return nullptr;
6891 }
6892 
6893 VPWidenIntOrFpInductionRecipe *
6894 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
6895                                                 VFRange &Range) const {
6896   // Optimize the special case where the source is a constant integer
6897   // induction variable. Notice that we can only optimize the 'trunc' case
6898   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
6899   // (c) other casts depend on pointer size.
6900 
6901   // Determine whether \p K is a truncation based on an induction variable that
6902   // can be optimized.
6903   auto isOptimizableIVTruncate =
6904       [&](Instruction *K) -> std::function<bool(unsigned)> {
6905     return
6906         [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
6907   };
6908 
6909   if (LoopVectorizationPlanner::getDecisionAndClampRange(
6910           isOptimizableIVTruncate(I), Range))
6911     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
6912                                              I);
6913   return nullptr;
6914 }
6915 
6916 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
6917   // We know that all PHIs in non-header blocks are converted into selects, so
6918   // we don't have to worry about the insertion order and we can just use the
6919   // builder. At this point we generate the predication tree. There may be
6920   // duplications since this is a simple recursive scan, but future
6921   // optimizations will clean it up.
6922 
6923   SmallVector<VPValue *, 2> Operands;
6924   unsigned NumIncoming = Phi->getNumIncomingValues();
6925   for (unsigned In = 0; In < NumIncoming; In++) {
6926     VPValue *EdgeMask =
6927       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
6928     assert((EdgeMask || NumIncoming == 1) &&
6929            "Multiple predecessors with one having a full mask");
6930     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
6931     if (EdgeMask)
6932       Operands.push_back(EdgeMask);
6933   }
6934   return new VPBlendRecipe(Phi, Operands);
6935 }
6936 
6937 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
6938                                                    VPlan &Plan) const {
6939 
6940   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
6941       [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); },
6942       Range);
6943 
6944   if (IsPredicated)
6945     return nullptr;
6946 
6947   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6948   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
6949              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
6950     return nullptr;
6951 
6952   auto willWiden = [&](unsigned VF) -> bool {
6953     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6954     // The following case may be scalarized depending on the VF.
6955     // The flag shows whether we use Intrinsic or a usual Call for vectorized
6956     // version of the instruction.
6957     // Is it beneficial to perform intrinsic call compared to lib call?
6958     bool NeedToScalarize = false;
6959     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
6960     bool UseVectorIntrinsic =
6961         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
6962     return UseVectorIntrinsic || !NeedToScalarize;
6963   };
6964 
6965   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6966     return nullptr;
6967 
6968   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
6969 }
6970 
6971 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
6972   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
6973          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
6974   // Instruction should be widened, unless it is scalar after vectorization,
6975   // scalarization is profitable or it is predicated.
6976   auto WillScalarize = [this, I](unsigned VF) -> bool {
6977     return CM.isScalarAfterVectorization(I, VF) ||
6978            CM.isProfitableToScalarize(I, VF) ||
6979            CM.isScalarWithPredication(I, VF);
6980   };
6981   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
6982                                                              Range);
6983 }
6984 
6985 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
6986   auto IsVectorizableOpcode = [](unsigned Opcode) {
6987     switch (Opcode) {
6988     case Instruction::Add:
6989     case Instruction::And:
6990     case Instruction::AShr:
6991     case Instruction::BitCast:
6992     case Instruction::FAdd:
6993     case Instruction::FCmp:
6994     case Instruction::FDiv:
6995     case Instruction::FMul:
6996     case Instruction::FNeg:
6997     case Instruction::FPExt:
6998     case Instruction::FPToSI:
6999     case Instruction::FPToUI:
7000     case Instruction::FPTrunc:
7001     case Instruction::FRem:
7002     case Instruction::FSub:
7003     case Instruction::ICmp:
7004     case Instruction::IntToPtr:
7005     case Instruction::LShr:
7006     case Instruction::Mul:
7007     case Instruction::Or:
7008     case Instruction::PtrToInt:
7009     case Instruction::SDiv:
7010     case Instruction::Select:
7011     case Instruction::SExt:
7012     case Instruction::Shl:
7013     case Instruction::SIToFP:
7014     case Instruction::SRem:
7015     case Instruction::Sub:
7016     case Instruction::Trunc:
7017     case Instruction::UDiv:
7018     case Instruction::UIToFP:
7019     case Instruction::URem:
7020     case Instruction::Xor:
7021     case Instruction::ZExt:
7022       return true;
7023     }
7024     return false;
7025   };
7026 
7027   if (!IsVectorizableOpcode(I->getOpcode()))
7028     return nullptr;
7029 
7030   // Success: widen this instruction.
7031   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7032 }
7033 
7034 VPBasicBlock *VPRecipeBuilder::handleReplication(
7035     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7036     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7037     VPlanPtr &Plan) {
7038   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7039       [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7040       Range);
7041 
7042   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7043       [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
7044 
7045   auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
7046   setRecipe(I, Recipe);
7047 
7048   // Find if I uses a predicated instruction. If so, it will use its scalar
7049   // value. Avoid hoisting the insert-element which packs the scalar value into
7050   // a vector value, as that happens iff all users use the vector value.
7051   for (auto &Op : I->operands())
7052     if (auto *PredInst = dyn_cast<Instruction>(Op))
7053       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7054         PredInst2Recipe[PredInst]->setAlsoPack(false);
7055 
7056   // Finalize the recipe for Instr, first if it is not predicated.
7057   if (!IsPredicated) {
7058     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7059     VPBB->appendRecipe(Recipe);
7060     return VPBB;
7061   }
7062   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7063   assert(VPBB->getSuccessors().empty() &&
7064          "VPBB has successors when handling predicated replication.");
7065   // Record predicated instructions for above packing optimizations.
7066   PredInst2Recipe[I] = Recipe;
7067   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7068   VPBlockUtils::insertBlockAfter(Region, VPBB);
7069   auto *RegSucc = new VPBasicBlock();
7070   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7071   return RegSucc;
7072 }
7073 
7074 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7075                                                       VPRecipeBase *PredRecipe,
7076                                                       VPlanPtr &Plan) {
7077   // Instructions marked for predication are replicated and placed under an
7078   // if-then construct to prevent side-effects.
7079 
7080   // Generate recipes to compute the block mask for this region.
7081   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7082 
7083   // Build the triangular if-then region.
7084   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7085   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7086   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7087   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7088   auto *PHIRecipe =
7089       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7090   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7091   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7092   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7093 
7094   // Note: first set Entry as region entry and then connect successors starting
7095   // from it in order, to propagate the "parent" of each VPBasicBlock.
7096   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7097   VPBlockUtils::connectBlocks(Pred, Exit);
7098 
7099   return Region;
7100 }
7101 
7102 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7103                                                       VFRange &Range,
7104                                                       VPlanPtr &Plan) {
7105   // First, check for specific widening recipes that deal with calls, memory
7106   // operations, inductions and Phi nodes.
7107   if (auto *CI = dyn_cast<CallInst>(Instr))
7108     return tryToWidenCall(CI, Range, *Plan);
7109 
7110   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7111     return tryToWidenMemory(Instr, Range, Plan);
7112 
7113   VPRecipeBase *Recipe;
7114   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7115     if (Phi->getParent() != OrigLoop->getHeader())
7116       return tryToBlend(Phi, Plan);
7117     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7118       return Recipe;
7119     return new VPWidenPHIRecipe(Phi);
7120     return new VPWidenPHIRecipe(Phi);
7121   }
7122 
7123   if (isa<TruncInst>(Instr) &&
7124       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7125     return Recipe;
7126 
7127   if (!shouldWiden(Instr, Range))
7128     return nullptr;
7129 
7130   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7131     return new VPWidenGEPRecipe(GEP, OrigLoop);
7132 
7133   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7134     bool InvariantCond =
7135         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7136     return new VPWidenSelectRecipe(*SI, InvariantCond);
7137   }
7138 
7139   return tryToWiden(Instr, *Plan);
7140 }
7141 
7142 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
7143                                                         unsigned MaxVF) {
7144   assert(OrigLoop->empty() && "Inner loop expected.");
7145 
7146   // Collect conditions feeding internal conditional branches; they need to be
7147   // represented in VPlan for it to model masking.
7148   SmallPtrSet<Value *, 1> NeedDef;
7149 
7150   auto *Latch = OrigLoop->getLoopLatch();
7151   for (BasicBlock *BB : OrigLoop->blocks()) {
7152     if (BB == Latch)
7153       continue;
7154     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7155     if (Branch && Branch->isConditional())
7156       NeedDef.insert(Branch->getCondition());
7157   }
7158 
7159   // If the tail is to be folded by masking, the primary induction variable, if
7160   // exists needs to be represented in VPlan for it to model early-exit masking.
7161   // Also, both the Phi and the live-out instruction of each reduction are
7162   // required in order to introduce a select between them in VPlan.
7163   if (CM.foldTailByMasking()) {
7164     if (Legal->getPrimaryInduction())
7165       NeedDef.insert(Legal->getPrimaryInduction());
7166     for (auto &Reduction : Legal->getReductionVars()) {
7167       NeedDef.insert(Reduction.first);
7168       NeedDef.insert(Reduction.second.getLoopExitInstr());
7169     }
7170   }
7171 
7172   // Collect instructions from the original loop that will become trivially dead
7173   // in the vectorized loop. We don't need to vectorize these instructions. For
7174   // example, original induction update instructions can become dead because we
7175   // separately emit induction "steps" when generating code for the new loop.
7176   // Similarly, we create a new latch condition when setting up the structure
7177   // of the new loop, so the old one can become dead.
7178   SmallPtrSet<Instruction *, 4> DeadInstructions;
7179   collectTriviallyDeadInstructions(DeadInstructions);
7180 
7181   // Add assume instructions we need to drop to DeadInstructions, to prevent
7182   // them from being added to the VPlan.
7183   // TODO: We only need to drop assumes in blocks that get flattend. If the
7184   // control flow is preserved, we should keep them.
7185   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7186   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7187 
7188   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7189   // Dead instructions do not need sinking. Remove them from SinkAfter.
7190   for (Instruction *I : DeadInstructions)
7191     SinkAfter.erase(I);
7192 
7193   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7194     VFRange SubRange = {VF, MaxVF + 1};
7195     VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7196                                              DeadInstructions, SinkAfter));
7197     VF = SubRange.End;
7198   }
7199 }
7200 
7201 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7202     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7203     SmallPtrSetImpl<Instruction *> &DeadInstructions,
7204     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7205 
7206   // Hold a mapping from predicated instructions to their recipes, in order to
7207   // fix their AlsoPack behavior if a user is determined to replicate and use a
7208   // scalar instead of vector value.
7209   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7210 
7211   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7212 
7213   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7214 
7215   // ---------------------------------------------------------------------------
7216   // Pre-construction: record ingredients whose recipes we'll need to further
7217   // process after constructing the initial VPlan.
7218   // ---------------------------------------------------------------------------
7219 
7220   // Mark instructions we'll need to sink later and their targets as
7221   // ingredients whose recipe we'll need to record.
7222   for (auto &Entry : SinkAfter) {
7223     RecipeBuilder.recordRecipeOf(Entry.first);
7224     RecipeBuilder.recordRecipeOf(Entry.second);
7225   }
7226 
7227   // For each interleave group which is relevant for this (possibly trimmed)
7228   // Range, add it to the set of groups to be later applied to the VPlan and add
7229   // placeholders for its members' Recipes which we'll be replacing with a
7230   // single VPInterleaveRecipe.
7231   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7232     auto applyIG = [IG, this](unsigned VF) -> bool {
7233       return (VF >= 2 && // Query is illegal for VF == 1
7234               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7235                   LoopVectorizationCostModel::CM_Interleave);
7236     };
7237     if (!getDecisionAndClampRange(applyIG, Range))
7238       continue;
7239     InterleaveGroups.insert(IG);
7240     for (unsigned i = 0; i < IG->getFactor(); i++)
7241       if (Instruction *Member = IG->getMember(i))
7242         RecipeBuilder.recordRecipeOf(Member);
7243   };
7244 
7245   // ---------------------------------------------------------------------------
7246   // Build initial VPlan: Scan the body of the loop in a topological order to
7247   // visit each basic block after having visited its predecessor basic blocks.
7248   // ---------------------------------------------------------------------------
7249 
7250   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7251   auto Plan = std::make_unique<VPlan>();
7252   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7253   Plan->setEntry(VPBB);
7254 
7255   // Represent values that will have defs inside VPlan.
7256   for (Value *V : NeedDef)
7257     Plan->addVPValue(V);
7258 
7259   // Scan the body of the loop in a topological order to visit each basic block
7260   // after having visited its predecessor basic blocks.
7261   LoopBlocksDFS DFS(OrigLoop);
7262   DFS.perform(LI);
7263 
7264   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7265     // Relevant instructions from basic block BB will be grouped into VPRecipe
7266     // ingredients and fill a new VPBasicBlock.
7267     unsigned VPBBsForBB = 0;
7268     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7269     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7270     VPBB = FirstVPBBForBB;
7271     Builder.setInsertPoint(VPBB);
7272 
7273     // Introduce each ingredient into VPlan.
7274     // TODO: Model and preserve debug instrinsics in VPlan.
7275     for (Instruction &I : BB->instructionsWithoutDebug()) {
7276       Instruction *Instr = &I;
7277 
7278       // First filter out irrelevant instructions, to ensure no recipes are
7279       // built for them.
7280       if (isa<BranchInst>(Instr) ||
7281           DeadInstructions.find(Instr) != DeadInstructions.end())
7282         continue;
7283 
7284       if (auto Recipe =
7285               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7286         RecipeBuilder.setRecipe(Instr, Recipe);
7287         VPBB->appendRecipe(Recipe);
7288         continue;
7289       }
7290 
7291       // Otherwise, if all widening options failed, Instruction is to be
7292       // replicated. This may create a successor for VPBB.
7293       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7294           Instr, Range, VPBB, PredInst2Recipe, Plan);
7295       if (NextVPBB != VPBB) {
7296         VPBB = NextVPBB;
7297         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7298                                     : "");
7299       }
7300     }
7301   }
7302 
7303   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7304   // may also be empty, such as the last one VPBB, reflecting original
7305   // basic-blocks with no recipes.
7306   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7307   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7308   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7309   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7310   delete PreEntry;
7311 
7312   // ---------------------------------------------------------------------------
7313   // Transform initial VPlan: Apply previously taken decisions, in order, to
7314   // bring the VPlan to its final state.
7315   // ---------------------------------------------------------------------------
7316 
7317   // Apply Sink-After legal constraints.
7318   for (auto &Entry : SinkAfter) {
7319     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7320     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7321     Sink->moveAfter(Target);
7322   }
7323 
7324   // Interleave memory: for each Interleave Group we marked earlier as relevant
7325   // for this VPlan, replace the Recipes widening its memory instructions with a
7326   // single VPInterleaveRecipe at its insertion point.
7327   for (auto IG : InterleaveGroups) {
7328     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7329         RecipeBuilder.getRecipe(IG->getInsertPos()));
7330     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7331         ->insertBefore(Recipe);
7332 
7333     for (unsigned i = 0; i < IG->getFactor(); ++i)
7334       if (Instruction *Member = IG->getMember(i)) {
7335         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7336       }
7337   }
7338 
7339   // Finally, if tail is folded by masking, introduce selects between the phi
7340   // and the live-out instruction of each reduction, at the end of the latch.
7341   if (CM.foldTailByMasking()) {
7342     Builder.setInsertPoint(VPBB);
7343     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7344     for (auto &Reduction : Legal->getReductionVars()) {
7345       VPValue *Phi = Plan->getVPValue(Reduction.first);
7346       VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr());
7347       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7348     }
7349   }
7350 
7351   std::string PlanName;
7352   raw_string_ostream RSO(PlanName);
7353   unsigned VF = Range.Start;
7354   Plan->addVF(VF);
7355   RSO << "Initial VPlan for VF={" << VF;
7356   for (VF *= 2; VF < Range.End; VF *= 2) {
7357     Plan->addVF(VF);
7358     RSO << "," << VF;
7359   }
7360   RSO << "},UF>=1";
7361   RSO.flush();
7362   Plan->setName(PlanName);
7363 
7364   return Plan;
7365 }
7366 
7367 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7368   // Outer loop handling: They may require CFG and instruction level
7369   // transformations before even evaluating whether vectorization is profitable.
7370   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7371   // the vectorization pipeline.
7372   assert(!OrigLoop->empty());
7373   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7374 
7375   // Create new empty VPlan
7376   auto Plan = std::make_unique<VPlan>();
7377 
7378   // Build hierarchical CFG
7379   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7380   HCFGBuilder.buildHierarchicalCFG();
7381 
7382   for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
7383     Plan->addVF(VF);
7384 
7385   if (EnableVPlanPredication) {
7386     VPlanPredicator VPP(*Plan);
7387     VPP.predicate();
7388 
7389     // Avoid running transformation to recipes until masked code generation in
7390     // VPlan-native path is in place.
7391     return Plan;
7392   }
7393 
7394   SmallPtrSet<Instruction *, 1> DeadInstructions;
7395   VPlanTransforms::VPInstructionsToVPRecipes(
7396       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7397   return Plan;
7398 }
7399 
7400 Value* LoopVectorizationPlanner::VPCallbackILV::
7401 getOrCreateVectorValues(Value *V, unsigned Part) {
7402       return ILV.getOrCreateVectorValue(V, Part);
7403 }
7404 
7405 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7406     Value *V, const VPIteration &Instance) {
7407   return ILV.getOrCreateScalarValue(V, Instance);
7408 }
7409 
7410 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
7411                                VPSlotTracker &SlotTracker) const {
7412   O << " +\n"
7413     << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7414   IG->getInsertPos()->printAsOperand(O, false);
7415   O << ", ";
7416   getAddr()->printAsOperand(O, SlotTracker);
7417   VPValue *Mask = getMask();
7418   if (Mask) {
7419     O << ", ";
7420     Mask->printAsOperand(O, SlotTracker);
7421   }
7422   O << "\\l\"";
7423   for (unsigned i = 0; i < IG->getFactor(); ++i)
7424     if (Instruction *I = IG->getMember(i))
7425       O << " +\n"
7426         << Indent << "\"  " << VPlanIngredient(I) << " " << i << "\\l\"";
7427 }
7428 
7429 void VPWidenCallRecipe::execute(VPTransformState &State) {
7430   State.ILV->widenCallInstruction(Ingredient, User, State);
7431 }
7432 
7433 void VPWidenSelectRecipe::execute(VPTransformState &State) {
7434   State.ILV->widenSelectInstruction(Ingredient, InvariantCond);
7435 }
7436 
7437 void VPWidenRecipe::execute(VPTransformState &State) {
7438   State.ILV->widenInstruction(Ingredient, User, State);
7439 }
7440 
7441 void VPWidenGEPRecipe::execute(VPTransformState &State) {
7442   State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant,
7443                       IsIndexLoopInvariant);
7444 }
7445 
7446 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
7447   assert(!State.Instance && "Int or FP induction being replicated.");
7448   State.ILV->widenIntOrFpInduction(IV, Trunc);
7449 }
7450 
7451 void VPWidenPHIRecipe::execute(VPTransformState &State) {
7452   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
7453 }
7454 
7455 void VPBlendRecipe::execute(VPTransformState &State) {
7456   State.ILV->setDebugLocFromInst(State.Builder, Phi);
7457   // We know that all PHIs in non-header blocks are converted into
7458   // selects, so we don't have to worry about the insertion order and we
7459   // can just use the builder.
7460   // At this point we generate the predication tree. There may be
7461   // duplications since this is a simple recursive scan, but future
7462   // optimizations will clean it up.
7463 
7464   unsigned NumIncoming = getNumIncomingValues();
7465 
7466   // Generate a sequence of selects of the form:
7467   // SELECT(Mask3, In3,
7468   //        SELECT(Mask2, In2,
7469   //               SELECT(Mask1, In1,
7470   //                      In0)))
7471   // Note that Mask0 is never used: lanes for which no path reaches this phi and
7472   // are essentially undef are taken from In0.
7473   InnerLoopVectorizer::VectorParts Entry(State.UF);
7474   for (unsigned In = 0; In < NumIncoming; ++In) {
7475     for (unsigned Part = 0; Part < State.UF; ++Part) {
7476       // We might have single edge PHIs (blocks) - use an identity
7477       // 'select' for the first PHI operand.
7478       Value *In0 = State.get(getIncomingValue(In), Part);
7479       if (In == 0)
7480         Entry[Part] = In0; // Initialize with the first incoming value.
7481       else {
7482         // Select between the current value and the previous incoming edge
7483         // based on the incoming mask.
7484         Value *Cond = State.get(getMask(In), Part);
7485         Entry[Part] =
7486             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
7487       }
7488     }
7489   }
7490   for (unsigned Part = 0; Part < State.UF; ++Part)
7491     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
7492 }
7493 
7494 void VPInterleaveRecipe::execute(VPTransformState &State) {
7495   assert(!State.Instance && "Interleave group being replicated.");
7496   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
7497 }
7498 
7499 void VPReplicateRecipe::execute(VPTransformState &State) {
7500   if (State.Instance) { // Generate a single instance.
7501     State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
7502     // Insert scalar instance packing it into a vector.
7503     if (AlsoPack && State.VF > 1) {
7504       // If we're constructing lane 0, initialize to start from undef.
7505       if (State.Instance->Lane == 0) {
7506         Value *Undef =
7507             UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
7508         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
7509       }
7510       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
7511     }
7512     return;
7513   }
7514 
7515   // Generate scalar instances for all VF lanes of all UF parts, unless the
7516   // instruction is uniform inwhich case generate only the first lane for each
7517   // of the UF parts.
7518   unsigned EndLane = IsUniform ? 1 : State.VF;
7519   for (unsigned Part = 0; Part < State.UF; ++Part)
7520     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
7521       State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
7522 }
7523 
7524 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
7525   assert(State.Instance && "Branch on Mask works only on single instance.");
7526 
7527   unsigned Part = State.Instance->Part;
7528   unsigned Lane = State.Instance->Lane;
7529 
7530   Value *ConditionBit = nullptr;
7531   if (!User) // Block in mask is all-one.
7532     ConditionBit = State.Builder.getTrue();
7533   else {
7534     VPValue *BlockInMask = User->getOperand(0);
7535     ConditionBit = State.get(BlockInMask, Part);
7536     if (ConditionBit->getType()->isVectorTy())
7537       ConditionBit = State.Builder.CreateExtractElement(
7538           ConditionBit, State.Builder.getInt32(Lane));
7539   }
7540 
7541   // Replace the temporary unreachable terminator with a new conditional branch,
7542   // whose two destinations will be set later when they are created.
7543   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
7544   assert(isa<UnreachableInst>(CurrentTerminator) &&
7545          "Expected to replace unreachable terminator with conditional branch.");
7546   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
7547   CondBr->setSuccessor(0, nullptr);
7548   ReplaceInstWithInst(CurrentTerminator, CondBr);
7549 }
7550 
7551 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
7552   assert(State.Instance && "Predicated instruction PHI works per instance.");
7553   Instruction *ScalarPredInst = cast<Instruction>(
7554       State.ValueMap.getScalarValue(PredInst, *State.Instance));
7555   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
7556   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
7557   assert(PredicatingBB && "Predicated block has no single predecessor.");
7558 
7559   // By current pack/unpack logic we need to generate only a single phi node: if
7560   // a vector value for the predicated instruction exists at this point it means
7561   // the instruction has vector users only, and a phi for the vector value is
7562   // needed. In this case the recipe of the predicated instruction is marked to
7563   // also do that packing, thereby "hoisting" the insert-element sequence.
7564   // Otherwise, a phi node for the scalar value is needed.
7565   unsigned Part = State.Instance->Part;
7566   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
7567     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
7568     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
7569     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
7570     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
7571     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
7572     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
7573   } else {
7574     Type *PredInstType = PredInst->getType();
7575     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
7576     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
7577     Phi->addIncoming(ScalarPredInst, PredicatedBB);
7578     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
7579   }
7580 }
7581 
7582 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
7583   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
7584   State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue,
7585                                         getMask());
7586 }
7587 
7588 // Determine how to lower the scalar epilogue, which depends on 1) optimising
7589 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
7590 // predication, and 4) a TTI hook that analyses whether the loop is suitable
7591 // for predication.
7592 static ScalarEpilogueLowering getScalarEpilogueLowering(
7593     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
7594     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
7595     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
7596     LoopVectorizationLegality &LVL) {
7597   bool OptSize =
7598       F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
7599                                                      PGSOQueryType::IRPass);
7600   // 1) OptSize takes precedence over all other options, i.e. if this is set,
7601   // don't look at hints or options, and don't request a scalar epilogue.
7602   if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled)
7603     return CM_ScalarEpilogueNotAllowedOptSize;
7604 
7605   bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() &&
7606                               !PreferPredicateOverEpilog;
7607 
7608   // 2) Next, if disabling predication is requested on the command line, honour
7609   // this and request a scalar epilogue.
7610   if (PredicateOptDisabled)
7611     return CM_ScalarEpilogueAllowed;
7612 
7613   // 3) and 4) look if enabling predication is requested on the command line,
7614   // with a loop hint, or if the TTI hook indicates this is profitable, request
7615   // predication .
7616   if (PreferPredicateOverEpilog ||
7617       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
7618       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
7619                                         LVL.getLAI()) &&
7620        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
7621     return CM_ScalarEpilogueNotNeededUsePredicate;
7622 
7623   return CM_ScalarEpilogueAllowed;
7624 }
7625 
7626 // Process the loop in the VPlan-native vectorization path. This path builds
7627 // VPlan upfront in the vectorization pipeline, which allows to apply
7628 // VPlan-to-VPlan transformations from the very beginning without modifying the
7629 // input LLVM IR.
7630 static bool processLoopInVPlanNativePath(
7631     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
7632     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
7633     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
7634     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
7635     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
7636 
7637   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
7638   Function *F = L->getHeader()->getParent();
7639   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
7640 
7641   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7642       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
7643 
7644   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
7645                                 &Hints, IAI);
7646   // Use the planner for outer loop vectorization.
7647   // TODO: CM is not used at this point inside the planner. Turn CM into an
7648   // optional argument if we don't need it in the future.
7649   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
7650 
7651   // Get user vectorization factor.
7652   const unsigned UserVF = Hints.getWidth();
7653 
7654   // Plan how to best vectorize, return the best VF and its cost.
7655   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
7656 
7657   // If we are stress testing VPlan builds, do not attempt to generate vector
7658   // code. Masked vector code generation support will follow soon.
7659   // Also, do not attempt to vectorize if no vector code will be produced.
7660   if (VPlanBuildStressTest || EnableVPlanPredication ||
7661       VectorizationFactor::Disabled() == VF)
7662     return false;
7663 
7664   LVP.setBestPlan(VF.Width, 1);
7665 
7666   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
7667                          &CM);
7668   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
7669                     << L->getHeader()->getParent()->getName() << "\"\n");
7670   LVP.executePlan(LB, DT);
7671 
7672   // Mark the loop as already vectorized to avoid vectorizing again.
7673   Hints.setAlreadyVectorized();
7674 
7675   LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
7676   return true;
7677 }
7678 
7679 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
7680     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
7681                                !EnableLoopInterleaving),
7682       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
7683                               !EnableLoopVectorization) {}
7684 
7685 bool LoopVectorizePass::processLoop(Loop *L) {
7686   assert((EnableVPlanNativePath || L->empty()) &&
7687          "VPlan-native path is not enabled. Only process inner loops.");
7688 
7689 #ifndef NDEBUG
7690   const std::string DebugLocStr = getDebugLocString(L);
7691 #endif /* NDEBUG */
7692 
7693   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
7694                     << L->getHeader()->getParent()->getName() << "\" from "
7695                     << DebugLocStr << "\n");
7696 
7697   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
7698 
7699   LLVM_DEBUG(
7700       dbgs() << "LV: Loop hints:"
7701              << " force="
7702              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7703                      ? "disabled"
7704                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7705                             ? "enabled"
7706                             : "?"))
7707              << " width=" << Hints.getWidth()
7708              << " unroll=" << Hints.getInterleave() << "\n");
7709 
7710   // Function containing loop
7711   Function *F = L->getHeader()->getParent();
7712 
7713   // Looking at the diagnostic output is the only way to determine if a loop
7714   // was vectorized (other than looking at the IR or machine code), so it
7715   // is important to generate an optimization remark for each loop. Most of
7716   // these messages are generated as OptimizationRemarkAnalysis. Remarks
7717   // generated as OptimizationRemark and OptimizationRemarkMissed are
7718   // less verbose reporting vectorized loops and unvectorized loops that may
7719   // benefit from vectorization, respectively.
7720 
7721   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
7722     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7723     return false;
7724   }
7725 
7726   PredicatedScalarEvolution PSE(*SE, *L);
7727 
7728   // Check if it is legal to vectorize the loop.
7729   LoopVectorizationRequirements Requirements(*ORE);
7730   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
7731                                 &Requirements, &Hints, DB, AC);
7732   if (!LVL.canVectorize(EnableVPlanNativePath)) {
7733     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7734     Hints.emitRemarkWithHints();
7735     return false;
7736   }
7737 
7738   // Check the function attributes and profiles to find out if this function
7739   // should be optimized for size.
7740   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7741       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
7742 
7743   // Entrance to the VPlan-native vectorization path. Outer loops are processed
7744   // here. They may require CFG and instruction level transformations before
7745   // even evaluating whether vectorization is profitable. Since we cannot modify
7746   // the incoming IR, we need to build VPlan upfront in the vectorization
7747   // pipeline.
7748   if (!L->empty())
7749     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
7750                                         ORE, BFI, PSI, Hints);
7751 
7752   assert(L->empty() && "Inner loop expected.");
7753 
7754   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
7755   // count by optimizing for size, to minimize overheads.
7756   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
7757   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
7758     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7759                       << "This loop is worth vectorizing only if no scalar "
7760                       << "iteration overheads are incurred.");
7761     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7762       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7763     else {
7764       LLVM_DEBUG(dbgs() << "\n");
7765       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
7766     }
7767   }
7768 
7769   // Check the function attributes to see if implicit floats are allowed.
7770   // FIXME: This check doesn't seem possibly correct -- what if the loop is
7771   // an integer loop and the vector instructions selected are purely integer
7772   // vector instructions?
7773   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7774     reportVectorizationFailure(
7775         "Can't vectorize when the NoImplicitFloat attribute is used",
7776         "loop not vectorized due to NoImplicitFloat attribute",
7777         "NoImplicitFloat", ORE, L);
7778     Hints.emitRemarkWithHints();
7779     return false;
7780   }
7781 
7782   // Check if the target supports potentially unsafe FP vectorization.
7783   // FIXME: Add a check for the type of safety issue (denormal, signaling)
7784   // for the target we're vectorizing for, to make sure none of the
7785   // additional fp-math flags can help.
7786   if (Hints.isPotentiallyUnsafe() &&
7787       TTI->isFPVectorizationPotentiallyUnsafe()) {
7788     reportVectorizationFailure(
7789         "Potentially unsafe FP op prevents vectorization",
7790         "loop not vectorized due to unsafe FP support.",
7791         "UnsafeFP", ORE, L);
7792     Hints.emitRemarkWithHints();
7793     return false;
7794   }
7795 
7796   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
7797   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
7798 
7799   // If an override option has been passed in for interleaved accesses, use it.
7800   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
7801     UseInterleaved = EnableInterleavedMemAccesses;
7802 
7803   // Analyze interleaved memory accesses.
7804   if (UseInterleaved) {
7805     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
7806   }
7807 
7808   // Use the cost model.
7809   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
7810                                 F, &Hints, IAI);
7811   CM.collectValuesToIgnore();
7812 
7813   // Use the planner for vectorization.
7814   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
7815 
7816   // Get user vectorization factor.
7817   unsigned UserVF = Hints.getWidth();
7818 
7819   // Plan how to best vectorize, return the best VF and its cost.
7820   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF);
7821 
7822   VectorizationFactor VF = VectorizationFactor::Disabled();
7823   unsigned IC = 1;
7824   unsigned UserIC = Hints.getInterleave();
7825 
7826   if (MaybeVF) {
7827     VF = *MaybeVF;
7828     // Select the interleave count.
7829     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
7830   }
7831 
7832   // Identify the diagnostic messages that should be produced.
7833   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7834   bool VectorizeLoop = true, InterleaveLoop = true;
7835   if (Requirements.doesNotMeet(F, L, Hints)) {
7836     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7837                          "requirements.\n");
7838     Hints.emitRemarkWithHints();
7839     return false;
7840   }
7841 
7842   if (VF.Width == 1) {
7843     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7844     VecDiagMsg = std::make_pair(
7845         "VectorizationNotBeneficial",
7846         "the cost-model indicates that vectorization is not beneficial");
7847     VectorizeLoop = false;
7848   }
7849 
7850   if (!MaybeVF && UserIC > 1) {
7851     // Tell the user interleaving was avoided up-front, despite being explicitly
7852     // requested.
7853     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
7854                          "interleaving should be avoided up front\n");
7855     IntDiagMsg = std::make_pair(
7856         "InterleavingAvoided",
7857         "Ignoring UserIC, because interleaving was avoided up front");
7858     InterleaveLoop = false;
7859   } else if (IC == 1 && UserIC <= 1) {
7860     // Tell the user interleaving is not beneficial.
7861     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7862     IntDiagMsg = std::make_pair(
7863         "InterleavingNotBeneficial",
7864         "the cost-model indicates that interleaving is not beneficial");
7865     InterleaveLoop = false;
7866     if (UserIC == 1) {
7867       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7868       IntDiagMsg.second +=
7869           " and is explicitly disabled or interleave count is set to 1";
7870     }
7871   } else if (IC > 1 && UserIC == 1) {
7872     // Tell the user interleaving is beneficial, but it explicitly disabled.
7873     LLVM_DEBUG(
7874         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
7875     IntDiagMsg = std::make_pair(
7876         "InterleavingBeneficialButDisabled",
7877         "the cost-model indicates that interleaving is beneficial "
7878         "but is explicitly disabled or interleave count is set to 1");
7879     InterleaveLoop = false;
7880   }
7881 
7882   // Override IC if user provided an interleave count.
7883   IC = UserIC > 0 ? UserIC : IC;
7884 
7885   // Emit diagnostic messages, if any.
7886   const char *VAPassName = Hints.vectorizeAnalysisPassName();
7887   if (!VectorizeLoop && !InterleaveLoop) {
7888     // Do not vectorize or interleaving the loop.
7889     ORE->emit([&]() {
7890       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7891                                       L->getStartLoc(), L->getHeader())
7892              << VecDiagMsg.second;
7893     });
7894     ORE->emit([&]() {
7895       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7896                                       L->getStartLoc(), L->getHeader())
7897              << IntDiagMsg.second;
7898     });
7899     return false;
7900   } else if (!VectorizeLoop && InterleaveLoop) {
7901     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7902     ORE->emit([&]() {
7903       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7904                                         L->getStartLoc(), L->getHeader())
7905              << VecDiagMsg.second;
7906     });
7907   } else if (VectorizeLoop && !InterleaveLoop) {
7908     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7909                       << ") in " << DebugLocStr << '\n');
7910     ORE->emit([&]() {
7911       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7912                                         L->getStartLoc(), L->getHeader())
7913              << IntDiagMsg.second;
7914     });
7915   } else if (VectorizeLoop && InterleaveLoop) {
7916     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7917                       << ") in " << DebugLocStr << '\n');
7918     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7919   }
7920 
7921   LVP.setBestPlan(VF.Width, IC);
7922 
7923   using namespace ore;
7924   bool DisableRuntimeUnroll = false;
7925   MDNode *OrigLoopID = L->getLoopID();
7926 
7927   if (!VectorizeLoop) {
7928     assert(IC > 1 && "interleave count should not be 1 or 0");
7929     // If we decided that it is not legal to vectorize the loop, then
7930     // interleave it.
7931     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7932                                &CM);
7933     LVP.executePlan(Unroller, DT);
7934 
7935     ORE->emit([&]() {
7936       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7937                                 L->getHeader())
7938              << "interleaved loop (interleaved count: "
7939              << NV("InterleaveCount", IC) << ")";
7940     });
7941   } else {
7942     // If we decided that it is *legal* to vectorize the loop, then do it.
7943     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7944                            &LVL, &CM);
7945     LVP.executePlan(LB, DT);
7946     ++LoopsVectorized;
7947 
7948     // Add metadata to disable runtime unrolling a scalar loop when there are
7949     // no runtime checks about strides and memory. A scalar loop that is
7950     // rarely used is not worth unrolling.
7951     if (!LB.areSafetyChecksAdded())
7952       DisableRuntimeUnroll = true;
7953 
7954     // Report the vectorization decision.
7955     ORE->emit([&]() {
7956       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7957                                 L->getHeader())
7958              << "vectorized loop (vectorization width: "
7959              << NV("VectorizationFactor", VF.Width)
7960              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
7961     });
7962   }
7963 
7964   Optional<MDNode *> RemainderLoopID =
7965       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7966                                       LLVMLoopVectorizeFollowupEpilogue});
7967   if (RemainderLoopID.hasValue()) {
7968     L->setLoopID(RemainderLoopID.getValue());
7969   } else {
7970     if (DisableRuntimeUnroll)
7971       AddRuntimeUnrollDisableMetaData(L);
7972 
7973     // Mark the loop as already vectorized to avoid vectorizing again.
7974     Hints.setAlreadyVectorized();
7975   }
7976 
7977   LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
7978   return true;
7979 }
7980 
7981 LoopVectorizeResult LoopVectorizePass::runImpl(
7982     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7983     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
7984     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
7985     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
7986     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
7987   SE = &SE_;
7988   LI = &LI_;
7989   TTI = &TTI_;
7990   DT = &DT_;
7991   BFI = &BFI_;
7992   TLI = TLI_;
7993   AA = &AA_;
7994   AC = &AC_;
7995   GetLAA = &GetLAA_;
7996   DB = &DB_;
7997   ORE = &ORE_;
7998   PSI = PSI_;
7999 
8000   // Don't attempt if
8001   // 1. the target claims to have no vector registers, and
8002   // 2. interleaving won't help ILP.
8003   //
8004   // The second condition is necessary because, even if the target has no
8005   // vector registers, loop vectorization may still enable scalar
8006   // interleaving.
8007   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
8008       TTI->getMaxInterleaveFactor(1) < 2)
8009     return LoopVectorizeResult(false, false);
8010 
8011   bool Changed = false, CFGChanged = false;
8012 
8013   // The vectorizer requires loops to be in simplified form.
8014   // Since simplification may add new inner loops, it has to run before the
8015   // legality and profitability checks. This means running the loop vectorizer
8016   // will simplify all loops, regardless of whether anything end up being
8017   // vectorized.
8018   for (auto &L : *LI)
8019     Changed |= CFGChanged |=
8020         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
8021 
8022   // Build up a worklist of inner-loops to vectorize. This is necessary as
8023   // the act of vectorizing or partially unrolling a loop creates new loops
8024   // and can invalidate iterators across the loops.
8025   SmallVector<Loop *, 8> Worklist;
8026 
8027   for (Loop *L : *LI)
8028     collectSupportedLoops(*L, LI, ORE, Worklist);
8029 
8030   LoopsAnalyzed += Worklist.size();
8031 
8032   // Now walk the identified inner loops.
8033   while (!Worklist.empty()) {
8034     Loop *L = Worklist.pop_back_val();
8035 
8036     // For the inner loops we actually process, form LCSSA to simplify the
8037     // transform.
8038     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8039 
8040     Changed |= CFGChanged |= processLoop(L);
8041   }
8042 
8043   // Process each loop nest in the function.
8044   return LoopVectorizeResult(Changed, CFGChanged);
8045 }
8046 
8047 PreservedAnalyses LoopVectorizePass::run(Function &F,
8048                                          FunctionAnalysisManager &AM) {
8049     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8050     auto &LI = AM.getResult<LoopAnalysis>(F);
8051     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8052     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8053     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8054     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8055     auto &AA = AM.getResult<AAManager>(F);
8056     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8057     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8058     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8059     MemorySSA *MSSA = EnableMSSALoopDependency
8060                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8061                           : nullptr;
8062 
8063     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8064     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8065         [&](Loop &L) -> const LoopAccessInfo & {
8066       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
8067       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8068     };
8069     const ModuleAnalysisManager &MAM =
8070         AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
8071     ProfileSummaryInfo *PSI =
8072         MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8073     LoopVectorizeResult Result =
8074         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8075     if (!Result.MadeAnyChange)
8076       return PreservedAnalyses::all();
8077     PreservedAnalyses PA;
8078 
8079     // We currently do not preserve loopinfo/dominator analyses with outer loop
8080     // vectorization. Until this is addressed, mark these analyses as preserved
8081     // only for non-VPlan-native path.
8082     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8083     if (!EnableVPlanNativePath) {
8084       PA.preserve<LoopAnalysis>();
8085       PA.preserve<DominatorTreeAnalysis>();
8086     }
8087     PA.preserve<BasicAA>();
8088     PA.preserve<GlobalsAA>();
8089     if (!Result.MadeCFGChange)
8090       PA.preserveSet<CFGAnalyses>();
8091     return PA;
8092 }
8093