1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask);
548 
549   /// Set the debug location in the builder \p Ptr using the debug location in
550   /// \p V. If \p Ptr is None then it uses the class member's Builder.
551   void setDebugLocFromInst(const Value *V,
552                            Optional<IRBuilder<> *> CustomBuilder = None);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Create the exit value of first order recurrences in the middle block and
593   /// update their users.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Create code for the loop exit value of the reduction.
597   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
598 
599   /// Clear NSW/NUW flags from reduction instructions if necessary.
600   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
601                                VPTransformState &State);
602 
603   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
604   /// means we need to add the appropriate incoming value from the middle
605   /// block as exiting edges from the scalar epilogue loop (if present) are
606   /// already in place, and we exit the vector loop exclusively to the middle
607   /// block.
608   void fixLCSSAPHIs(VPTransformState &State);
609 
610   /// Iteratively sink the scalarized operands of a predicated instruction into
611   /// the block that was created for it.
612   void sinkScalarOperands(Instruction *PredInst);
613 
614   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
615   /// represented as.
616   void truncateToMinimalBitwidths(VPTransformState &State);
617 
618   /// This function adds
619   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
620   /// to each vector element of Val. The sequence starts at StartIndex.
621   /// \p Opcode is relevant for FP induction variable.
622   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
623                                Instruction::BinaryOps Opcode =
624                                Instruction::BinaryOpsEnd);
625 
626   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
627   /// variable on which to base the steps, \p Step is the size of the step, and
628   /// \p EntryVal is the value from the original loop that maps to the steps.
629   /// Note that \p EntryVal doesn't have to be an induction variable - it
630   /// can also be a truncate instruction.
631   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
632                         const InductionDescriptor &ID, VPValue *Def,
633                         VPValue *CastDef, VPTransformState &State);
634 
635   /// Create a vector induction phi node based on an existing scalar one. \p
636   /// EntryVal is the value from the original loop that maps to the vector phi
637   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
638   /// truncate instruction, instead of widening the original IV, we widen a
639   /// version of the IV truncated to \p EntryVal's type.
640   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
641                                        Value *Step, Value *Start,
642                                        Instruction *EntryVal, VPValue *Def,
643                                        VPValue *CastDef,
644                                        VPTransformState &State);
645 
646   /// Returns true if an instruction \p I should be scalarized instead of
647   /// vectorized for the chosen vectorization factor.
648   bool shouldScalarizeInstruction(Instruction *I) const;
649 
650   /// Returns true if we should generate a scalar version of \p IV.
651   bool needsScalarInduction(Instruction *IV) const;
652 
653   /// If there is a cast involved in the induction variable \p ID, which should
654   /// be ignored in the vectorized loop body, this function records the
655   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
656   /// cast. We had already proved that the casted Phi is equal to the uncasted
657   /// Phi in the vectorized loop (under a runtime guard), and therefore
658   /// there is no need to vectorize the cast - the same value can be used in the
659   /// vector loop for both the Phi and the cast.
660   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
661   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
662   ///
663   /// \p EntryVal is the value from the original loop that maps to the vector
664   /// phi node and is used to distinguish what is the IV currently being
665   /// processed - original one (if \p EntryVal is a phi corresponding to the
666   /// original IV) or the "newly-created" one based on the proof mentioned above
667   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
668   /// latter case \p EntryVal is a TruncInst and we must not record anything for
669   /// that IV, but it's error-prone to expect callers of this routine to care
670   /// about that, hence this explicit parameter.
671   void recordVectorLoopValueForInductionCast(
672       const InductionDescriptor &ID, const Instruction *EntryVal,
673       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
674       unsigned Part, unsigned Lane = UINT_MAX);
675 
676   /// Generate a shuffle sequence that will reverse the vector Vec.
677   virtual Value *reverseVector(Value *Vec);
678 
679   /// Returns (and creates if needed) the original loop trip count.
680   Value *getOrCreateTripCount(Loop *NewLoop);
681 
682   /// Returns (and creates if needed) the trip count of the widened loop.
683   Value *getOrCreateVectorTripCount(Loop *NewLoop);
684 
685   /// Returns a bitcasted value to the requested vector type.
686   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
687   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
688                                 const DataLayout &DL);
689 
690   /// Emit a bypass check to see if the vector trip count is zero, including if
691   /// it overflows.
692   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit a bypass check to see if all of the SCEV assumptions we've
695   /// had to make are correct. Returns the block containing the checks or
696   /// nullptr if no checks have been added.
697   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit bypass checks to check any memory assumptions we may have made.
700   /// Returns the block containing the checks or nullptr if no checks have been
701   /// added.
702   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Compute the transformed value of Index at offset StartValue using step
705   /// StepValue.
706   /// For integer induction, returns StartValue + Index * StepValue.
707   /// For pointer induction, returns StartValue[Index * StepValue].
708   /// FIXME: The newly created binary instructions should contain nsw/nuw
709   /// flags, which can be found from the original scalar operations.
710   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
711                               const DataLayout &DL,
712                               const InductionDescriptor &ID) const;
713 
714   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
715   /// vector loop preheader, middle block and scalar preheader. Also
716   /// allocate a loop object for the new vector loop and return it.
717   Loop *createVectorLoopSkeleton(StringRef Prefix);
718 
719   /// Create new phi nodes for the induction variables to resume iteration count
720   /// in the scalar epilogue, from where the vectorized loop left off (given by
721   /// \p VectorTripCount).
722   /// In cases where the loop skeleton is more complicated (eg. epilogue
723   /// vectorization) and the resume values can come from an additional bypass
724   /// block, the \p AdditionalBypass pair provides information about the bypass
725   /// block and the end value on the edge from bypass to this loop.
726   void createInductionResumeValues(
727       Loop *L, Value *VectorTripCount,
728       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
729 
730   /// Complete the loop skeleton by adding debug MDs, creating appropriate
731   /// conditional branches in the middle block, preparing the builder and
732   /// running the verifier. Take in the vector loop \p L as argument, and return
733   /// the preheader of the completed vector loop.
734   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
735 
736   /// Add additional metadata to \p To that was not present on \p Orig.
737   ///
738   /// Currently this is used to add the noalias annotations based on the
739   /// inserted memchecks.  Use this for instructions that are *cloned* into the
740   /// vector loop.
741   void addNewMetadata(Instruction *To, const Instruction *Orig);
742 
743   /// Add metadata from one instruction to another.
744   ///
745   /// This includes both the original MDs from \p From and additional ones (\see
746   /// addNewMetadata).  Use this for *newly created* instructions in the vector
747   /// loop.
748   void addMetadata(Instruction *To, Instruction *From);
749 
750   /// Similar to the previous function but it adds the metadata to a
751   /// vector of instructions.
752   void addMetadata(ArrayRef<Value *> To, Instruction *From);
753 
754   /// Allow subclasses to override and print debug traces before/after vplan
755   /// execution, when trace information is requested.
756   virtual void printDebugTracesAtStart(){};
757   virtual void printDebugTracesAtEnd(){};
758 
759   /// The original loop.
760   Loop *OrigLoop;
761 
762   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
763   /// dynamic knowledge to simplify SCEV expressions and converts them to a
764   /// more usable form.
765   PredicatedScalarEvolution &PSE;
766 
767   /// Loop Info.
768   LoopInfo *LI;
769 
770   /// Dominator Tree.
771   DominatorTree *DT;
772 
773   /// Alias Analysis.
774   AAResults *AA;
775 
776   /// Target Library Info.
777   const TargetLibraryInfo *TLI;
778 
779   /// Target Transform Info.
780   const TargetTransformInfo *TTI;
781 
782   /// Assumption Cache.
783   AssumptionCache *AC;
784 
785   /// Interface to emit optimization remarks.
786   OptimizationRemarkEmitter *ORE;
787 
788   /// LoopVersioning.  It's only set up (non-null) if memchecks were
789   /// used.
790   ///
791   /// This is currently only used to add no-alias metadata based on the
792   /// memchecks.  The actually versioning is performed manually.
793   std::unique_ptr<LoopVersioning> LVer;
794 
795   /// The vectorization SIMD factor to use. Each vector will have this many
796   /// vector elements.
797   ElementCount VF;
798 
799   /// The vectorization unroll factor to use. Each scalar is vectorized to this
800   /// many different vector instructions.
801   unsigned UF;
802 
803   /// The builder that we use
804   IRBuilder<> Builder;
805 
806   // --- Vectorization state ---
807 
808   /// The vector-loop preheader.
809   BasicBlock *LoopVectorPreHeader;
810 
811   /// The scalar-loop preheader.
812   BasicBlock *LoopScalarPreHeader;
813 
814   /// Middle Block between the vector and the scalar.
815   BasicBlock *LoopMiddleBlock;
816 
817   /// The unique ExitBlock of the scalar loop if one exists.  Note that
818   /// there can be multiple exiting edges reaching this block.
819   BasicBlock *LoopExitBlock;
820 
821   /// The vector loop body.
822   BasicBlock *LoopVectorBody;
823 
824   /// The scalar loop body.
825   BasicBlock *LoopScalarBody;
826 
827   /// A list of all bypass blocks. The first block is the entry of the loop.
828   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
829 
830   /// The new Induction variable which was added to the new block.
831   PHINode *Induction = nullptr;
832 
833   /// The induction variable of the old basic block.
834   PHINode *OldInduction = nullptr;
835 
836   /// Store instructions that were predicated.
837   SmallVector<Instruction *, 4> PredicatedInstructions;
838 
839   /// Trip count of the original loop.
840   Value *TripCount = nullptr;
841 
842   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
843   Value *VectorTripCount = nullptr;
844 
845   /// The legality analysis.
846   LoopVectorizationLegality *Legal;
847 
848   /// The profitablity analysis.
849   LoopVectorizationCostModel *Cost;
850 
851   // Record whether runtime checks are added.
852   bool AddedSafetyChecks = false;
853 
854   // Holds the end values for each induction variable. We save the end values
855   // so we can later fix-up the external users of the induction variables.
856   DenseMap<PHINode *, Value *> IVEndValues;
857 
858   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
859   // fixed up at the end of vector code generation.
860   SmallVector<PHINode *, 8> OrigPHIsToFix;
861 
862   /// BFI and PSI are used to check for profile guided size optimizations.
863   BlockFrequencyInfo *BFI;
864   ProfileSummaryInfo *PSI;
865 
866   // Whether this loop should be optimized for size based on profile guided size
867   // optimizatios.
868   bool OptForSizeBasedOnProfile;
869 
870   /// Structure to hold information about generated runtime checks, responsible
871   /// for cleaning the checks, if vectorization turns out unprofitable.
872   GeneratedRTChecks &RTChecks;
873 };
874 
875 class InnerLoopUnroller : public InnerLoopVectorizer {
876 public:
877   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
878                     LoopInfo *LI, DominatorTree *DT,
879                     const TargetLibraryInfo *TLI,
880                     const TargetTransformInfo *TTI, AssumptionCache *AC,
881                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
882                     LoopVectorizationLegality *LVL,
883                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
884                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
885       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
886                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
887                             BFI, PSI, Check) {}
888 
889 private:
890   Value *getBroadcastInstrs(Value *V) override;
891   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
892                        Instruction::BinaryOps Opcode =
893                        Instruction::BinaryOpsEnd) override;
894   Value *reverseVector(Value *Vec) override;
895 };
896 
897 /// Encapsulate information regarding vectorization of a loop and its epilogue.
898 /// This information is meant to be updated and used across two stages of
899 /// epilogue vectorization.
900 struct EpilogueLoopVectorizationInfo {
901   ElementCount MainLoopVF = ElementCount::getFixed(0);
902   unsigned MainLoopUF = 0;
903   ElementCount EpilogueVF = ElementCount::getFixed(0);
904   unsigned EpilogueUF = 0;
905   BasicBlock *MainLoopIterationCountCheck = nullptr;
906   BasicBlock *EpilogueIterationCountCheck = nullptr;
907   BasicBlock *SCEVSafetyCheck = nullptr;
908   BasicBlock *MemSafetyCheck = nullptr;
909   Value *TripCount = nullptr;
910   Value *VectorTripCount = nullptr;
911 
912   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
913                                 ElementCount EVF, unsigned EUF)
914       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
915     assert(EUF == 1 &&
916            "A high UF for the epilogue loop is likely not beneficial.");
917   }
918 };
919 
920 /// An extension of the inner loop vectorizer that creates a skeleton for a
921 /// vectorized loop that has its epilogue (residual) also vectorized.
922 /// The idea is to run the vplan on a given loop twice, firstly to setup the
923 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
924 /// from the first step and vectorize the epilogue.  This is achieved by
925 /// deriving two concrete strategy classes from this base class and invoking
926 /// them in succession from the loop vectorizer planner.
927 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
928 public:
929   InnerLoopAndEpilogueVectorizer(
930       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
931       DominatorTree *DT, const TargetLibraryInfo *TLI,
932       const TargetTransformInfo *TTI, AssumptionCache *AC,
933       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
934       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
935       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
936       GeneratedRTChecks &Checks)
937       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
938                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
939                             Checks),
940         EPI(EPI) {}
941 
942   // Override this function to handle the more complex control flow around the
943   // three loops.
944   BasicBlock *createVectorizedLoopSkeleton() final override {
945     return createEpilogueVectorizedLoopSkeleton();
946   }
947 
948   /// The interface for creating a vectorized skeleton using one of two
949   /// different strategies, each corresponding to one execution of the vplan
950   /// as described above.
951   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
952 
953   /// Holds and updates state information required to vectorize the main loop
954   /// and its epilogue in two separate passes. This setup helps us avoid
955   /// regenerating and recomputing runtime safety checks. It also helps us to
956   /// shorten the iteration-count-check path length for the cases where the
957   /// iteration count of the loop is so small that the main vector loop is
958   /// completely skipped.
959   EpilogueLoopVectorizationInfo &EPI;
960 };
961 
962 /// A specialized derived class of inner loop vectorizer that performs
963 /// vectorization of *main* loops in the process of vectorizing loops and their
964 /// epilogues.
965 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
966 public:
967   EpilogueVectorizerMainLoop(
968       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
969       DominatorTree *DT, const TargetLibraryInfo *TLI,
970       const TargetTransformInfo *TTI, AssumptionCache *AC,
971       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
972       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
973       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
974       GeneratedRTChecks &Check)
975       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
976                                        EPI, LVL, CM, BFI, PSI, Check) {}
977   /// Implements the interface for creating a vectorized skeleton using the
978   /// *main loop* strategy (ie the first pass of vplan execution).
979   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
980 
981 protected:
982   /// Emits an iteration count bypass check once for the main loop (when \p
983   /// ForEpilogue is false) and once for the epilogue loop (when \p
984   /// ForEpilogue is true).
985   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
986                                              bool ForEpilogue);
987   void printDebugTracesAtStart() override;
988   void printDebugTracesAtEnd() override;
989 };
990 
991 // A specialized derived class of inner loop vectorizer that performs
992 // vectorization of *epilogue* loops in the process of vectorizing loops and
993 // their epilogues.
994 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
995 public:
996   EpilogueVectorizerEpilogueLoop(
997       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
998       DominatorTree *DT, const TargetLibraryInfo *TLI,
999       const TargetTransformInfo *TTI, AssumptionCache *AC,
1000       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1001       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1002       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1003       GeneratedRTChecks &Checks)
1004       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1005                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1006   /// Implements the interface for creating a vectorized skeleton using the
1007   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1008   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1009 
1010 protected:
1011   /// Emits an iteration count bypass check after the main vector loop has
1012   /// finished to see if there are any iterations left to execute by either
1013   /// the vector epilogue or the scalar epilogue.
1014   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1015                                                       BasicBlock *Bypass,
1016                                                       BasicBlock *Insert);
1017   void printDebugTracesAtStart() override;
1018   void printDebugTracesAtEnd() override;
1019 };
1020 } // end namespace llvm
1021 
1022 /// Look for a meaningful debug location on the instruction or it's
1023 /// operands.
1024 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1025   if (!I)
1026     return I;
1027 
1028   DebugLoc Empty;
1029   if (I->getDebugLoc() != Empty)
1030     return I;
1031 
1032   for (Use &Op : I->operands()) {
1033     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1034       if (OpInst->getDebugLoc() != Empty)
1035         return OpInst;
1036   }
1037 
1038   return I;
1039 }
1040 
1041 void InnerLoopVectorizer::setDebugLocFromInst(
1042     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1043   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1044   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1045     const DILocation *DIL = Inst->getDebugLoc();
1046 
1047     // When a FSDiscriminator is enabled, we don't need to add the multiply
1048     // factors to the discriminators.
1049     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1050         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1051       // FIXME: For scalable vectors, assume vscale=1.
1052       auto NewDIL =
1053           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1054       if (NewDIL)
1055         B->SetCurrentDebugLocation(NewDIL.getValue());
1056       else
1057         LLVM_DEBUG(dbgs()
1058                    << "Failed to create new discriminator: "
1059                    << DIL->getFilename() << " Line: " << DIL->getLine());
1060     } else
1061       B->SetCurrentDebugLocation(DIL);
1062   } else
1063     B->SetCurrentDebugLocation(DebugLoc());
1064 }
1065 
1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1067 /// is passed, the message relates to that particular instruction.
1068 #ifndef NDEBUG
1069 static void debugVectorizationMessage(const StringRef Prefix,
1070                                       const StringRef DebugMsg,
1071                                       Instruction *I) {
1072   dbgs() << "LV: " << Prefix << DebugMsg;
1073   if (I != nullptr)
1074     dbgs() << " " << *I;
1075   else
1076     dbgs() << '.';
1077   dbgs() << '\n';
1078 }
1079 #endif
1080 
1081 /// Create an analysis remark that explains why vectorization failed
1082 ///
1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1084 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1085 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1086 /// the location of the remark.  \return the remark object that can be
1087 /// streamed to.
1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1089     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1090   Value *CodeRegion = TheLoop->getHeader();
1091   DebugLoc DL = TheLoop->getStartLoc();
1092 
1093   if (I) {
1094     CodeRegion = I->getParent();
1095     // If there is no debug location attached to the instruction, revert back to
1096     // using the loop's.
1097     if (I->getDebugLoc())
1098       DL = I->getDebugLoc();
1099   }
1100 
1101   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1102 }
1103 
1104 /// Return a value for Step multiplied by VF.
1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1106   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1107   Constant *StepVal = ConstantInt::get(
1108       Step->getType(),
1109       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1110   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1111 }
1112 
1113 namespace llvm {
1114 
1115 /// Return the runtime value for VF.
1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1117   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1118   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1119 }
1120 
1121 void reportVectorizationFailure(const StringRef DebugMsg,
1122                                 const StringRef OREMsg, const StringRef ORETag,
1123                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1124                                 Instruction *I) {
1125   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1126   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1127   ORE->emit(
1128       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1129       << "loop not vectorized: " << OREMsg);
1130 }
1131 
1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1133                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1134                              Instruction *I) {
1135   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1136   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1137   ORE->emit(
1138       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1139       << Msg);
1140 }
1141 
1142 } // end namespace llvm
1143 
1144 #ifndef NDEBUG
1145 /// \return string containing a file name and a line # for the given loop.
1146 static std::string getDebugLocString(const Loop *L) {
1147   std::string Result;
1148   if (L) {
1149     raw_string_ostream OS(Result);
1150     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1151       LoopDbgLoc.print(OS);
1152     else
1153       // Just print the module name.
1154       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1155     OS.flush();
1156   }
1157   return Result;
1158 }
1159 #endif
1160 
1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1162                                          const Instruction *Orig) {
1163   // If the loop was versioned with memchecks, add the corresponding no-alias
1164   // metadata.
1165   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1166     LVer->annotateInstWithNoAlias(To, Orig);
1167 }
1168 
1169 void InnerLoopVectorizer::addMetadata(Instruction *To,
1170                                       Instruction *From) {
1171   propagateMetadata(To, From);
1172   addNewMetadata(To, From);
1173 }
1174 
1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1176                                       Instruction *From) {
1177   for (Value *V : To) {
1178     if (Instruction *I = dyn_cast<Instruction>(V))
1179       addMetadata(I, From);
1180   }
1181 }
1182 
1183 namespace llvm {
1184 
1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1186 // lowered.
1187 enum ScalarEpilogueLowering {
1188 
1189   // The default: allowing scalar epilogues.
1190   CM_ScalarEpilogueAllowed,
1191 
1192   // Vectorization with OptForSize: don't allow epilogues.
1193   CM_ScalarEpilogueNotAllowedOptSize,
1194 
1195   // A special case of vectorisation with OptForSize: loops with a very small
1196   // trip count are considered for vectorization under OptForSize, thereby
1197   // making sure the cost of their loop body is dominant, free of runtime
1198   // guards and scalar iteration overheads.
1199   CM_ScalarEpilogueNotAllowedLowTripLoop,
1200 
1201   // Loop hint predicate indicating an epilogue is undesired.
1202   CM_ScalarEpilogueNotNeededUsePredicate,
1203 
1204   // Directive indicating we must either tail fold or not vectorize
1205   CM_ScalarEpilogueNotAllowedUsePredicate
1206 };
1207 
1208 /// ElementCountComparator creates a total ordering for ElementCount
1209 /// for the purposes of using it in a set structure.
1210 struct ElementCountComparator {
1211   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1212     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1213            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1214   }
1215 };
1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1217 
1218 /// LoopVectorizationCostModel - estimates the expected speedups due to
1219 /// vectorization.
1220 /// In many cases vectorization is not profitable. This can happen because of
1221 /// a number of reasons. In this class we mainly attempt to predict the
1222 /// expected speedup/slowdowns due to the supported instruction set. We use the
1223 /// TargetTransformInfo to query the different backends for the cost of
1224 /// different operations.
1225 class LoopVectorizationCostModel {
1226 public:
1227   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1228                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1229                              LoopVectorizationLegality *Legal,
1230                              const TargetTransformInfo &TTI,
1231                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1232                              AssumptionCache *AC,
1233                              OptimizationRemarkEmitter *ORE, const Function *F,
1234                              const LoopVectorizeHints *Hints,
1235                              InterleavedAccessInfo &IAI)
1236       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1237         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1238         Hints(Hints), InterleaveInfo(IAI) {}
1239 
1240   /// \return An upper bound for the vectorization factors (both fixed and
1241   /// scalable). If the factors are 0, vectorization and interleaving should be
1242   /// avoided up front.
1243   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1244 
1245   /// \return True if runtime checks are required for vectorization, and false
1246   /// otherwise.
1247   bool runtimeChecksRequired();
1248 
1249   /// \return The most profitable vectorization factor and the cost of that VF.
1250   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1251   /// then this vectorization factor will be selected if vectorization is
1252   /// possible.
1253   VectorizationFactor
1254   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1255 
1256   VectorizationFactor
1257   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1258                                     const LoopVectorizationPlanner &LVP);
1259 
1260   /// Setup cost-based decisions for user vectorization factor.
1261   /// \return true if the UserVF is a feasible VF to be chosen.
1262   bool selectUserVectorizationFactor(ElementCount UserVF) {
1263     collectUniformsAndScalars(UserVF);
1264     collectInstsToScalarize(UserVF);
1265     return expectedCost(UserVF).first.isValid();
1266   }
1267 
1268   /// \return The size (in bits) of the smallest and widest types in the code
1269   /// that needs to be vectorized. We ignore values that remain scalar such as
1270   /// 64 bit loop indices.
1271   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1272 
1273   /// \return The desired interleave count.
1274   /// If interleave count has been specified by metadata it will be returned.
1275   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1276   /// are the selected vectorization factor and the cost of the selected VF.
1277   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1278 
1279   /// Memory access instruction may be vectorized in more than one way.
1280   /// Form of instruction after vectorization depends on cost.
1281   /// This function takes cost-based decisions for Load/Store instructions
1282   /// and collects them in a map. This decisions map is used for building
1283   /// the lists of loop-uniform and loop-scalar instructions.
1284   /// The calculated cost is saved with widening decision in order to
1285   /// avoid redundant calculations.
1286   void setCostBasedWideningDecision(ElementCount VF);
1287 
1288   /// A struct that represents some properties of the register usage
1289   /// of a loop.
1290   struct RegisterUsage {
1291     /// Holds the number of loop invariant values that are used in the loop.
1292     /// The key is ClassID of target-provided register class.
1293     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1294     /// Holds the maximum number of concurrent live intervals in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1297   };
1298 
1299   /// \return Returns information about the register usages of the loop for the
1300   /// given vectorization factors.
1301   SmallVector<RegisterUsage, 8>
1302   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1303 
1304   /// Collect values we want to ignore in the cost model.
1305   void collectValuesToIgnore();
1306 
1307   /// Collect all element types in the loop for which widening is needed.
1308   void collectElementTypesForWidening();
1309 
1310   /// Split reductions into those that happen in the loop, and those that happen
1311   /// outside. In loop reductions are collected into InLoopReductionChains.
1312   void collectInLoopReductions();
1313 
1314   /// Returns true if we should use strict in-order reductions for the given
1315   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1316   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1317   /// of FP operations.
1318   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1319     return !Hints->allowReordering() && RdxDesc.isOrdered();
1320   }
1321 
1322   /// \returns The smallest bitwidth each instruction can be represented with.
1323   /// The vector equivalents of these instructions should be truncated to this
1324   /// type.
1325   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1326     return MinBWs;
1327   }
1328 
1329   /// \returns True if it is more profitable to scalarize instruction \p I for
1330   /// vectorization factor \p VF.
1331   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1332     assert(VF.isVector() &&
1333            "Profitable to scalarize relevant only for VF > 1.");
1334 
1335     // Cost model is not run in the VPlan-native path - return conservative
1336     // result until this changes.
1337     if (EnableVPlanNativePath)
1338       return false;
1339 
1340     auto Scalars = InstsToScalarize.find(VF);
1341     assert(Scalars != InstsToScalarize.end() &&
1342            "VF not yet analyzed for scalarization profitability");
1343     return Scalars->second.find(I) != Scalars->second.end();
1344   }
1345 
1346   /// Returns true if \p I is known to be uniform after vectorization.
1347   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1348     if (VF.isScalar())
1349       return true;
1350 
1351     // Cost model is not run in the VPlan-native path - return conservative
1352     // result until this changes.
1353     if (EnableVPlanNativePath)
1354       return false;
1355 
1356     auto UniformsPerVF = Uniforms.find(VF);
1357     assert(UniformsPerVF != Uniforms.end() &&
1358            "VF not yet analyzed for uniformity");
1359     return UniformsPerVF->second.count(I);
1360   }
1361 
1362   /// Returns true if \p I is known to be scalar after vectorization.
1363   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1364     if (VF.isScalar())
1365       return true;
1366 
1367     // Cost model is not run in the VPlan-native path - return conservative
1368     // result until this changes.
1369     if (EnableVPlanNativePath)
1370       return false;
1371 
1372     auto ScalarsPerVF = Scalars.find(VF);
1373     assert(ScalarsPerVF != Scalars.end() &&
1374            "Scalar values are not calculated for VF");
1375     return ScalarsPerVF->second.count(I);
1376   }
1377 
1378   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1379   /// for vectorization factor \p VF.
1380   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1381     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1382            !isProfitableToScalarize(I, VF) &&
1383            !isScalarAfterVectorization(I, VF);
1384   }
1385 
1386   /// Decision that was taken during cost calculation for memory instruction.
1387   enum InstWidening {
1388     CM_Unknown,
1389     CM_Widen,         // For consecutive accesses with stride +1.
1390     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1391     CM_Interleave,
1392     CM_GatherScatter,
1393     CM_Scalarize
1394   };
1395 
1396   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1397   /// instruction \p I and vector width \p VF.
1398   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1399                            InstructionCost Cost) {
1400     assert(VF.isVector() && "Expected VF >=2");
1401     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1402   }
1403 
1404   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1405   /// interleaving group \p Grp and vector width \p VF.
1406   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1407                            ElementCount VF, InstWidening W,
1408                            InstructionCost Cost) {
1409     assert(VF.isVector() && "Expected VF >=2");
1410     /// Broadcast this decicion to all instructions inside the group.
1411     /// But the cost will be assigned to one instruction only.
1412     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1413       if (auto *I = Grp->getMember(i)) {
1414         if (Grp->getInsertPos() == I)
1415           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1416         else
1417           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1418       }
1419     }
1420   }
1421 
1422   /// Return the cost model decision for the given instruction \p I and vector
1423   /// width \p VF. Return CM_Unknown if this instruction did not pass
1424   /// through the cost modeling.
1425   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1426     assert(VF.isVector() && "Expected VF to be a vector VF");
1427     // Cost model is not run in the VPlan-native path - return conservative
1428     // result until this changes.
1429     if (EnableVPlanNativePath)
1430       return CM_GatherScatter;
1431 
1432     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1433     auto Itr = WideningDecisions.find(InstOnVF);
1434     if (Itr == WideningDecisions.end())
1435       return CM_Unknown;
1436     return Itr->second.first;
1437   }
1438 
1439   /// Return the vectorization cost for the given instruction \p I and vector
1440   /// width \p VF.
1441   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1442     assert(VF.isVector() && "Expected VF >=2");
1443     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1444     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1445            "The cost is not calculated");
1446     return WideningDecisions[InstOnVF].second;
1447   }
1448 
1449   /// Return True if instruction \p I is an optimizable truncate whose operand
1450   /// is an induction variable. Such a truncate will be removed by adding a new
1451   /// induction variable with the destination type.
1452   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1453     // If the instruction is not a truncate, return false.
1454     auto *Trunc = dyn_cast<TruncInst>(I);
1455     if (!Trunc)
1456       return false;
1457 
1458     // Get the source and destination types of the truncate.
1459     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1460     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1461 
1462     // If the truncate is free for the given types, return false. Replacing a
1463     // free truncate with an induction variable would add an induction variable
1464     // update instruction to each iteration of the loop. We exclude from this
1465     // check the primary induction variable since it will need an update
1466     // instruction regardless.
1467     Value *Op = Trunc->getOperand(0);
1468     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1469       return false;
1470 
1471     // If the truncated value is not an induction variable, return false.
1472     return Legal->isInductionPhi(Op);
1473   }
1474 
1475   /// Collects the instructions to scalarize for each predicated instruction in
1476   /// the loop.
1477   void collectInstsToScalarize(ElementCount VF);
1478 
1479   /// Collect Uniform and Scalar values for the given \p VF.
1480   /// The sets depend on CM decision for Load/Store instructions
1481   /// that may be vectorized as interleave, gather-scatter or scalarized.
1482   void collectUniformsAndScalars(ElementCount VF) {
1483     // Do the analysis once.
1484     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1485       return;
1486     setCostBasedWideningDecision(VF);
1487     collectLoopUniforms(VF);
1488     collectLoopScalars(VF);
1489   }
1490 
1491   /// Returns true if the target machine supports masked store operation
1492   /// for the given \p DataType and kind of access to \p Ptr.
1493   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1494     return Legal->isConsecutivePtr(DataType, Ptr) &&
1495            TTI.isLegalMaskedStore(DataType, Alignment);
1496   }
1497 
1498   /// Returns true if the target machine supports masked load operation
1499   /// for the given \p DataType and kind of access to \p Ptr.
1500   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1501     return Legal->isConsecutivePtr(DataType, Ptr) &&
1502            TTI.isLegalMaskedLoad(DataType, Alignment);
1503   }
1504 
1505   /// Returns true if the target machine can represent \p V as a masked gather
1506   /// or scatter operation.
1507   bool isLegalGatherOrScatter(Value *V) {
1508     bool LI = isa<LoadInst>(V);
1509     bool SI = isa<StoreInst>(V);
1510     if (!LI && !SI)
1511       return false;
1512     auto *Ty = getLoadStoreType(V);
1513     Align Align = getLoadStoreAlignment(V);
1514     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1515            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1516   }
1517 
1518   /// Returns true if the target machine supports all of the reduction
1519   /// variables found for the given VF.
1520   bool canVectorizeReductions(ElementCount VF) const {
1521     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1522       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1523       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1524     }));
1525   }
1526 
1527   /// Returns true if \p I is an instruction that will be scalarized with
1528   /// predication. Such instructions include conditional stores and
1529   /// instructions that may divide by zero.
1530   /// If a non-zero VF has been calculated, we check if I will be scalarized
1531   /// predication for that VF.
1532   bool isScalarWithPredication(Instruction *I) const;
1533 
1534   // Returns true if \p I is an instruction that will be predicated either
1535   // through scalar predication or masked load/store or masked gather/scatter.
1536   // Superset of instructions that return true for isScalarWithPredication.
1537   bool isPredicatedInst(Instruction *I) {
1538     if (!blockNeedsPredication(I->getParent()))
1539       return false;
1540     // Loads and stores that need some form of masked operation are predicated
1541     // instructions.
1542     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1543       return Legal->isMaskRequired(I);
1544     return isScalarWithPredication(I);
1545   }
1546 
1547   /// Returns true if \p I is a memory instruction with consecutive memory
1548   /// access that can be widened.
1549   bool
1550   memoryInstructionCanBeWidened(Instruction *I,
1551                                 ElementCount VF = ElementCount::getFixed(1));
1552 
1553   /// Returns true if \p I is a memory instruction in an interleaved-group
1554   /// of memory accesses that can be vectorized with wide vector loads/stores
1555   /// and shuffles.
1556   bool
1557   interleavedAccessCanBeWidened(Instruction *I,
1558                                 ElementCount VF = ElementCount::getFixed(1));
1559 
1560   /// Check if \p Instr belongs to any interleaved access group.
1561   bool isAccessInterleaved(Instruction *Instr) {
1562     return InterleaveInfo.isInterleaved(Instr);
1563   }
1564 
1565   /// Get the interleaved access group that \p Instr belongs to.
1566   const InterleaveGroup<Instruction> *
1567   getInterleavedAccessGroup(Instruction *Instr) {
1568     return InterleaveInfo.getInterleaveGroup(Instr);
1569   }
1570 
1571   /// Returns true if we're required to use a scalar epilogue for at least
1572   /// the final iteration of the original loop.
1573   bool requiresScalarEpilogue(ElementCount VF) const {
1574     if (!isScalarEpilogueAllowed())
1575       return false;
1576     // If we might exit from anywhere but the latch, must run the exiting
1577     // iteration in scalar form.
1578     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1579       return true;
1580     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1581   }
1582 
1583   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1584   /// loop hint annotation.
1585   bool isScalarEpilogueAllowed() const {
1586     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1587   }
1588 
1589   /// Returns true if all loop blocks should be masked to fold tail loop.
1590   bool foldTailByMasking() const { return FoldTailByMasking; }
1591 
1592   bool blockNeedsPredication(BasicBlock *BB) const {
1593     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1594   }
1595 
1596   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1597   /// nodes to the chain of instructions representing the reductions. Uses a
1598   /// MapVector to ensure deterministic iteration order.
1599   using ReductionChainMap =
1600       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1601 
1602   /// Return the chain of instructions representing an inloop reduction.
1603   const ReductionChainMap &getInLoopReductionChains() const {
1604     return InLoopReductionChains;
1605   }
1606 
1607   /// Returns true if the Phi is part of an inloop reduction.
1608   bool isInLoopReduction(PHINode *Phi) const {
1609     return InLoopReductionChains.count(Phi);
1610   }
1611 
1612   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1613   /// with factor VF.  Return the cost of the instruction, including
1614   /// scalarization overhead if it's needed.
1615   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1616 
1617   /// Estimate cost of a call instruction CI if it were vectorized with factor
1618   /// VF. Return the cost of the instruction, including scalarization overhead
1619   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1620   /// scalarized -
1621   /// i.e. either vector version isn't available, or is too expensive.
1622   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1623                                     bool &NeedToScalarize) const;
1624 
1625   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1626   /// that of B.
1627   bool isMoreProfitable(const VectorizationFactor &A,
1628                         const VectorizationFactor &B) const;
1629 
1630   /// Invalidates decisions already taken by the cost model.
1631   void invalidateCostModelingDecisions() {
1632     WideningDecisions.clear();
1633     Uniforms.clear();
1634     Scalars.clear();
1635   }
1636 
1637 private:
1638   unsigned NumPredStores = 0;
1639 
1640   /// \return An upper bound for the vectorization factors for both
1641   /// fixed and scalable vectorization, where the minimum-known number of
1642   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1643   /// disabled or unsupported, then the scalable part will be equal to
1644   /// ElementCount::getScalable(0).
1645   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1646                                            ElementCount UserVF);
1647 
1648   /// \return the maximized element count based on the targets vector
1649   /// registers and the loop trip-count, but limited to a maximum safe VF.
1650   /// This is a helper function of computeFeasibleMaxVF.
1651   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1652   /// issue that occurred on one of the buildbots which cannot be reproduced
1653   /// without having access to the properietary compiler (see comments on
1654   /// D98509). The issue is currently under investigation and this workaround
1655   /// will be removed as soon as possible.
1656   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1657                                        unsigned SmallestType,
1658                                        unsigned WidestType,
1659                                        const ElementCount &MaxSafeVF);
1660 
1661   /// \return the maximum legal scalable VF, based on the safe max number
1662   /// of elements.
1663   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1664 
1665   /// The vectorization cost is a combination of the cost itself and a boolean
1666   /// indicating whether any of the contributing operations will actually
1667   /// operate on vector values after type legalization in the backend. If this
1668   /// latter value is false, then all operations will be scalarized (i.e. no
1669   /// vectorization has actually taken place).
1670   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1671 
1672   /// Returns the expected execution cost. The unit of the cost does
1673   /// not matter because we use the 'cost' units to compare different
1674   /// vector widths. The cost that is returned is *not* normalized by
1675   /// the factor width. If \p Invalid is not nullptr, this function
1676   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1677   /// each instruction that has an Invalid cost for the given VF.
1678   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1679   VectorizationCostTy
1680   expectedCost(ElementCount VF,
1681                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1682 
1683   /// Returns the execution time cost of an instruction for a given vector
1684   /// width. Vector width of one means scalar.
1685   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1686 
1687   /// The cost-computation logic from getInstructionCost which provides
1688   /// the vector type as an output parameter.
1689   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1690                                      Type *&VectorTy);
1691 
1692   /// Return the cost of instructions in an inloop reduction pattern, if I is
1693   /// part of that pattern.
1694   Optional<InstructionCost>
1695   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1696                           TTI::TargetCostKind CostKind);
1697 
1698   /// Calculate vectorization cost of memory instruction \p I.
1699   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for scalarized memory instruction.
1702   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1703 
1704   /// The cost computation for interleaving group of memory instructions.
1705   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1706 
1707   /// The cost computation for Gather/Scatter instruction.
1708   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1709 
1710   /// The cost computation for widening instruction \p I with consecutive
1711   /// memory access.
1712   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1715   /// Load: scalar load + broadcast.
1716   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1717   /// element)
1718   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1719 
1720   /// Estimate the overhead of scalarizing an instruction. This is a
1721   /// convenience wrapper for the type-based getScalarizationOverhead API.
1722   InstructionCost getScalarizationOverhead(Instruction *I,
1723                                            ElementCount VF) const;
1724 
1725   /// Returns whether the instruction is a load or store and will be a emitted
1726   /// as a vector operation.
1727   bool isConsecutiveLoadOrStore(Instruction *I);
1728 
1729   /// Returns true if an artificially high cost for emulated masked memrefs
1730   /// should be used.
1731   bool useEmulatedMaskMemRefHack(Instruction *I);
1732 
1733   /// Map of scalar integer values to the smallest bitwidth they can be legally
1734   /// represented as. The vector equivalents of these values should be truncated
1735   /// to this type.
1736   MapVector<Instruction *, uint64_t> MinBWs;
1737 
1738   /// A type representing the costs for instructions if they were to be
1739   /// scalarized rather than vectorized. The entries are Instruction-Cost
1740   /// pairs.
1741   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1742 
1743   /// A set containing all BasicBlocks that are known to present after
1744   /// vectorization as a predicated block.
1745   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1746 
1747   /// Records whether it is allowed to have the original scalar loop execute at
1748   /// least once. This may be needed as a fallback loop in case runtime
1749   /// aliasing/dependence checks fail, or to handle the tail/remainder
1750   /// iterations when the trip count is unknown or doesn't divide by the VF,
1751   /// or as a peel-loop to handle gaps in interleave-groups.
1752   /// Under optsize and when the trip count is very small we don't allow any
1753   /// iterations to execute in the scalar loop.
1754   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1755 
1756   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1757   bool FoldTailByMasking = false;
1758 
1759   /// A map holding scalar costs for different vectorization factors. The
1760   /// presence of a cost for an instruction in the mapping indicates that the
1761   /// instruction will be scalarized when vectorizing with the associated
1762   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1763   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1764 
1765   /// Holds the instructions known to be uniform after vectorization.
1766   /// The data is collected per VF.
1767   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1768 
1769   /// Holds the instructions known to be scalar after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1772 
1773   /// Holds the instructions (address computations) that are forced to be
1774   /// scalarized.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1776 
1777   /// PHINodes of the reductions that should be expanded in-loop along with
1778   /// their associated chains of reduction operations, in program order from top
1779   /// (PHI) to bottom
1780   ReductionChainMap InLoopReductionChains;
1781 
1782   /// A Map of inloop reduction operations and their immediate chain operand.
1783   /// FIXME: This can be removed once reductions can be costed correctly in
1784   /// vplan. This was added to allow quick lookup to the inloop operations,
1785   /// without having to loop through InLoopReductionChains.
1786   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1787 
1788   /// Returns the expected difference in cost from scalarizing the expression
1789   /// feeding a predicated instruction \p PredInst. The instructions to
1790   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1791   /// non-negative return value implies the expression will be scalarized.
1792   /// Currently, only single-use chains are considered for scalarization.
1793   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1794                               ElementCount VF);
1795 
1796   /// Collect the instructions that are uniform after vectorization. An
1797   /// instruction is uniform if we represent it with a single scalar value in
1798   /// the vectorized loop corresponding to each vector iteration. Examples of
1799   /// uniform instructions include pointer operands of consecutive or
1800   /// interleaved memory accesses. Note that although uniformity implies an
1801   /// instruction will be scalar, the reverse is not true. In general, a
1802   /// scalarized instruction will be represented by VF scalar values in the
1803   /// vectorized loop, each corresponding to an iteration of the original
1804   /// scalar loop.
1805   void collectLoopUniforms(ElementCount VF);
1806 
1807   /// Collect the instructions that are scalar after vectorization. An
1808   /// instruction is scalar if it is known to be uniform or will be scalarized
1809   /// during vectorization. Non-uniform scalarized instructions will be
1810   /// represented by VF values in the vectorized loop, each corresponding to an
1811   /// iteration of the original scalar loop.
1812   void collectLoopScalars(ElementCount VF);
1813 
1814   /// Keeps cost model vectorization decision and cost for instructions.
1815   /// Right now it is used for memory instructions only.
1816   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1817                                 std::pair<InstWidening, InstructionCost>>;
1818 
1819   DecisionList WideningDecisions;
1820 
1821   /// Returns true if \p V is expected to be vectorized and it needs to be
1822   /// extracted.
1823   bool needsExtract(Value *V, ElementCount VF) const {
1824     Instruction *I = dyn_cast<Instruction>(V);
1825     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1826         TheLoop->isLoopInvariant(I))
1827       return false;
1828 
1829     // Assume we can vectorize V (and hence we need extraction) if the
1830     // scalars are not computed yet. This can happen, because it is called
1831     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1832     // the scalars are collected. That should be a safe assumption in most
1833     // cases, because we check if the operands have vectorizable types
1834     // beforehand in LoopVectorizationLegality.
1835     return Scalars.find(VF) == Scalars.end() ||
1836            !isScalarAfterVectorization(I, VF);
1837   };
1838 
1839   /// Returns a range containing only operands needing to be extracted.
1840   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1841                                                    ElementCount VF) const {
1842     return SmallVector<Value *, 4>(make_filter_range(
1843         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1844   }
1845 
1846   /// Determines if we have the infrastructure to vectorize loop \p L and its
1847   /// epilogue, assuming the main loop is vectorized by \p VF.
1848   bool isCandidateForEpilogueVectorization(const Loop &L,
1849                                            const ElementCount VF) const;
1850 
1851   /// Returns true if epilogue vectorization is considered profitable, and
1852   /// false otherwise.
1853   /// \p VF is the vectorization factor chosen for the original loop.
1854   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1855 
1856 public:
1857   /// The loop that we evaluate.
1858   Loop *TheLoop;
1859 
1860   /// Predicated scalar evolution analysis.
1861   PredicatedScalarEvolution &PSE;
1862 
1863   /// Loop Info analysis.
1864   LoopInfo *LI;
1865 
1866   /// Vectorization legality.
1867   LoopVectorizationLegality *Legal;
1868 
1869   /// Vector target information.
1870   const TargetTransformInfo &TTI;
1871 
1872   /// Target Library Info.
1873   const TargetLibraryInfo *TLI;
1874 
1875   /// Demanded bits analysis.
1876   DemandedBits *DB;
1877 
1878   /// Assumption cache.
1879   AssumptionCache *AC;
1880 
1881   /// Interface to emit optimization remarks.
1882   OptimizationRemarkEmitter *ORE;
1883 
1884   const Function *TheFunction;
1885 
1886   /// Loop Vectorize Hint.
1887   const LoopVectorizeHints *Hints;
1888 
1889   /// The interleave access information contains groups of interleaved accesses
1890   /// with the same stride and close to each other.
1891   InterleavedAccessInfo &InterleaveInfo;
1892 
1893   /// Values to ignore in the cost model.
1894   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1895 
1896   /// Values to ignore in the cost model when VF > 1.
1897   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1898 
1899   /// All element types found in the loop.
1900   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1901 
1902   /// Profitable vector factors.
1903   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1904 };
1905 } // end namespace llvm
1906 
1907 /// Helper struct to manage generating runtime checks for vectorization.
1908 ///
1909 /// The runtime checks are created up-front in temporary blocks to allow better
1910 /// estimating the cost and un-linked from the existing IR. After deciding to
1911 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1912 /// temporary blocks are completely removed.
1913 class GeneratedRTChecks {
1914   /// Basic block which contains the generated SCEV checks, if any.
1915   BasicBlock *SCEVCheckBlock = nullptr;
1916 
1917   /// The value representing the result of the generated SCEV checks. If it is
1918   /// nullptr, either no SCEV checks have been generated or they have been used.
1919   Value *SCEVCheckCond = nullptr;
1920 
1921   /// Basic block which contains the generated memory runtime checks, if any.
1922   BasicBlock *MemCheckBlock = nullptr;
1923 
1924   /// The value representing the result of the generated memory runtime checks.
1925   /// If it is nullptr, either no memory runtime checks have been generated or
1926   /// they have been used.
1927   Instruction *MemRuntimeCheckCond = nullptr;
1928 
1929   DominatorTree *DT;
1930   LoopInfo *LI;
1931 
1932   SCEVExpander SCEVExp;
1933   SCEVExpander MemCheckExp;
1934 
1935 public:
1936   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1937                     const DataLayout &DL)
1938       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1939         MemCheckExp(SE, DL, "scev.check") {}
1940 
1941   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1942   /// accurately estimate the cost of the runtime checks. The blocks are
1943   /// un-linked from the IR and is added back during vector code generation. If
1944   /// there is no vector code generation, the check blocks are removed
1945   /// completely.
1946   void Create(Loop *L, const LoopAccessInfo &LAI,
1947               const SCEVUnionPredicate &UnionPred) {
1948 
1949     BasicBlock *LoopHeader = L->getHeader();
1950     BasicBlock *Preheader = L->getLoopPreheader();
1951 
1952     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1953     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1954     // may be used by SCEVExpander. The blocks will be un-linked from their
1955     // predecessors and removed from LI & DT at the end of the function.
1956     if (!UnionPred.isAlwaysTrue()) {
1957       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1958                                   nullptr, "vector.scevcheck");
1959 
1960       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1961           &UnionPred, SCEVCheckBlock->getTerminator());
1962     }
1963 
1964     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1965     if (RtPtrChecking.Need) {
1966       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1967       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1968                                  "vector.memcheck");
1969 
1970       std::tie(std::ignore, MemRuntimeCheckCond) =
1971           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1972                            RtPtrChecking.getChecks(), MemCheckExp);
1973       assert(MemRuntimeCheckCond &&
1974              "no RT checks generated although RtPtrChecking "
1975              "claimed checks are required");
1976     }
1977 
1978     if (!MemCheckBlock && !SCEVCheckBlock)
1979       return;
1980 
1981     // Unhook the temporary block with the checks, update various places
1982     // accordingly.
1983     if (SCEVCheckBlock)
1984       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1985     if (MemCheckBlock)
1986       MemCheckBlock->replaceAllUsesWith(Preheader);
1987 
1988     if (SCEVCheckBlock) {
1989       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1990       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1991       Preheader->getTerminator()->eraseFromParent();
1992     }
1993     if (MemCheckBlock) {
1994       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1995       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1996       Preheader->getTerminator()->eraseFromParent();
1997     }
1998 
1999     DT->changeImmediateDominator(LoopHeader, Preheader);
2000     if (MemCheckBlock) {
2001       DT->eraseNode(MemCheckBlock);
2002       LI->removeBlock(MemCheckBlock);
2003     }
2004     if (SCEVCheckBlock) {
2005       DT->eraseNode(SCEVCheckBlock);
2006       LI->removeBlock(SCEVCheckBlock);
2007     }
2008   }
2009 
2010   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2011   /// unused.
2012   ~GeneratedRTChecks() {
2013     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2014     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2015     if (!SCEVCheckCond)
2016       SCEVCleaner.markResultUsed();
2017 
2018     if (!MemRuntimeCheckCond)
2019       MemCheckCleaner.markResultUsed();
2020 
2021     if (MemRuntimeCheckCond) {
2022       auto &SE = *MemCheckExp.getSE();
2023       // Memory runtime check generation creates compares that use expanded
2024       // values. Remove them before running the SCEVExpanderCleaners.
2025       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2026         if (MemCheckExp.isInsertedInstruction(&I))
2027           continue;
2028         SE.forgetValue(&I);
2029         SE.eraseValueFromMap(&I);
2030         I.eraseFromParent();
2031       }
2032     }
2033     MemCheckCleaner.cleanup();
2034     SCEVCleaner.cleanup();
2035 
2036     if (SCEVCheckCond)
2037       SCEVCheckBlock->eraseFromParent();
2038     if (MemRuntimeCheckCond)
2039       MemCheckBlock->eraseFromParent();
2040   }
2041 
2042   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2043   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2044   /// depending on the generated condition.
2045   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2046                              BasicBlock *LoopVectorPreHeader,
2047                              BasicBlock *LoopExitBlock) {
2048     if (!SCEVCheckCond)
2049       return nullptr;
2050     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2051       if (C->isZero())
2052         return nullptr;
2053 
2054     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2055 
2056     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2057     // Create new preheader for vector loop.
2058     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2059       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2060 
2061     SCEVCheckBlock->getTerminator()->eraseFromParent();
2062     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2063     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2064                                                 SCEVCheckBlock);
2065 
2066     DT->addNewBlock(SCEVCheckBlock, Pred);
2067     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2068 
2069     ReplaceInstWithInst(
2070         SCEVCheckBlock->getTerminator(),
2071         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2072     // Mark the check as used, to prevent it from being removed during cleanup.
2073     SCEVCheckCond = nullptr;
2074     return SCEVCheckBlock;
2075   }
2076 
2077   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2078   /// the branches to branch to the vector preheader or \p Bypass, depending on
2079   /// the generated condition.
2080   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2081                                    BasicBlock *LoopVectorPreHeader) {
2082     // Check if we generated code that checks in runtime if arrays overlap.
2083     if (!MemRuntimeCheckCond)
2084       return nullptr;
2085 
2086     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2087     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2088                                                 MemCheckBlock);
2089 
2090     DT->addNewBlock(MemCheckBlock, Pred);
2091     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2092     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2093 
2094     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2095       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2096 
2097     ReplaceInstWithInst(
2098         MemCheckBlock->getTerminator(),
2099         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2100     MemCheckBlock->getTerminator()->setDebugLoc(
2101         Pred->getTerminator()->getDebugLoc());
2102 
2103     // Mark the check as used, to prevent it from being removed during cleanup.
2104     MemRuntimeCheckCond = nullptr;
2105     return MemCheckBlock;
2106   }
2107 };
2108 
2109 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2110 // vectorization. The loop needs to be annotated with #pragma omp simd
2111 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2112 // vector length information is not provided, vectorization is not considered
2113 // explicit. Interleave hints are not allowed either. These limitations will be
2114 // relaxed in the future.
2115 // Please, note that we are currently forced to abuse the pragma 'clang
2116 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2117 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2118 // provides *explicit vectorization hints* (LV can bypass legal checks and
2119 // assume that vectorization is legal). However, both hints are implemented
2120 // using the same metadata (llvm.loop.vectorize, processed by
2121 // LoopVectorizeHints). This will be fixed in the future when the native IR
2122 // representation for pragma 'omp simd' is introduced.
2123 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2124                                    OptimizationRemarkEmitter *ORE) {
2125   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2126   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2127 
2128   // Only outer loops with an explicit vectorization hint are supported.
2129   // Unannotated outer loops are ignored.
2130   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2131     return false;
2132 
2133   Function *Fn = OuterLp->getHeader()->getParent();
2134   if (!Hints.allowVectorization(Fn, OuterLp,
2135                                 true /*VectorizeOnlyWhenForced*/)) {
2136     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2137     return false;
2138   }
2139 
2140   if (Hints.getInterleave() > 1) {
2141     // TODO: Interleave support is future work.
2142     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2143                          "outer loops.\n");
2144     Hints.emitRemarkWithHints();
2145     return false;
2146   }
2147 
2148   return true;
2149 }
2150 
2151 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2152                                   OptimizationRemarkEmitter *ORE,
2153                                   SmallVectorImpl<Loop *> &V) {
2154   // Collect inner loops and outer loops without irreducible control flow. For
2155   // now, only collect outer loops that have explicit vectorization hints. If we
2156   // are stress testing the VPlan H-CFG construction, we collect the outermost
2157   // loop of every loop nest.
2158   if (L.isInnermost() || VPlanBuildStressTest ||
2159       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2160     LoopBlocksRPO RPOT(&L);
2161     RPOT.perform(LI);
2162     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2163       V.push_back(&L);
2164       // TODO: Collect inner loops inside marked outer loops in case
2165       // vectorization fails for the outer loop. Do not invoke
2166       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2167       // already known to be reducible. We can use an inherited attribute for
2168       // that.
2169       return;
2170     }
2171   }
2172   for (Loop *InnerL : L)
2173     collectSupportedLoops(*InnerL, LI, ORE, V);
2174 }
2175 
2176 namespace {
2177 
2178 /// The LoopVectorize Pass.
2179 struct LoopVectorize : public FunctionPass {
2180   /// Pass identification, replacement for typeid
2181   static char ID;
2182 
2183   LoopVectorizePass Impl;
2184 
2185   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2186                          bool VectorizeOnlyWhenForced = false)
2187       : FunctionPass(ID),
2188         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2189     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2190   }
2191 
2192   bool runOnFunction(Function &F) override {
2193     if (skipFunction(F))
2194       return false;
2195 
2196     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2197     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2198     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2199     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2200     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2201     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2202     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2203     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2204     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2205     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2206     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2207     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2208     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2209 
2210     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2211         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2212 
2213     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2214                         GetLAA, *ORE, PSI).MadeAnyChange;
2215   }
2216 
2217   void getAnalysisUsage(AnalysisUsage &AU) const override {
2218     AU.addRequired<AssumptionCacheTracker>();
2219     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2220     AU.addRequired<DominatorTreeWrapperPass>();
2221     AU.addRequired<LoopInfoWrapperPass>();
2222     AU.addRequired<ScalarEvolutionWrapperPass>();
2223     AU.addRequired<TargetTransformInfoWrapperPass>();
2224     AU.addRequired<AAResultsWrapperPass>();
2225     AU.addRequired<LoopAccessLegacyAnalysis>();
2226     AU.addRequired<DemandedBitsWrapperPass>();
2227     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2228     AU.addRequired<InjectTLIMappingsLegacy>();
2229 
2230     // We currently do not preserve loopinfo/dominator analyses with outer loop
2231     // vectorization. Until this is addressed, mark these analyses as preserved
2232     // only for non-VPlan-native path.
2233     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2234     if (!EnableVPlanNativePath) {
2235       AU.addPreserved<LoopInfoWrapperPass>();
2236       AU.addPreserved<DominatorTreeWrapperPass>();
2237     }
2238 
2239     AU.addPreserved<BasicAAWrapperPass>();
2240     AU.addPreserved<GlobalsAAWrapperPass>();
2241     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2242   }
2243 };
2244 
2245 } // end anonymous namespace
2246 
2247 //===----------------------------------------------------------------------===//
2248 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2249 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2250 //===----------------------------------------------------------------------===//
2251 
2252 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2253   // We need to place the broadcast of invariant variables outside the loop,
2254   // but only if it's proven safe to do so. Else, broadcast will be inside
2255   // vector loop body.
2256   Instruction *Instr = dyn_cast<Instruction>(V);
2257   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2258                      (!Instr ||
2259                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2260   // Place the code for broadcasting invariant variables in the new preheader.
2261   IRBuilder<>::InsertPointGuard Guard(Builder);
2262   if (SafeToHoist)
2263     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2264 
2265   // Broadcast the scalar into all locations in the vector.
2266   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2267 
2268   return Shuf;
2269 }
2270 
2271 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2272     const InductionDescriptor &II, Value *Step, Value *Start,
2273     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2274     VPTransformState &State) {
2275   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2276          "Expected either an induction phi-node or a truncate of it!");
2277 
2278   // Construct the initial value of the vector IV in the vector loop preheader
2279   auto CurrIP = Builder.saveIP();
2280   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2281   if (isa<TruncInst>(EntryVal)) {
2282     assert(Start->getType()->isIntegerTy() &&
2283            "Truncation requires an integer type");
2284     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2285     Step = Builder.CreateTrunc(Step, TruncType);
2286     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2287   }
2288   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2289   Value *SteppedStart =
2290       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2291 
2292   // We create vector phi nodes for both integer and floating-point induction
2293   // variables. Here, we determine the kind of arithmetic we will perform.
2294   Instruction::BinaryOps AddOp;
2295   Instruction::BinaryOps MulOp;
2296   if (Step->getType()->isIntegerTy()) {
2297     AddOp = Instruction::Add;
2298     MulOp = Instruction::Mul;
2299   } else {
2300     AddOp = II.getInductionOpcode();
2301     MulOp = Instruction::FMul;
2302   }
2303 
2304   // Multiply the vectorization factor by the step using integer or
2305   // floating-point arithmetic as appropriate.
2306   Type *StepType = Step->getType();
2307   if (Step->getType()->isFloatingPointTy())
2308     StepType = IntegerType::get(StepType->getContext(),
2309                                 StepType->getScalarSizeInBits());
2310   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2311   if (Step->getType()->isFloatingPointTy())
2312     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2313   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2314 
2315   // Create a vector splat to use in the induction update.
2316   //
2317   // FIXME: If the step is non-constant, we create the vector splat with
2318   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2319   //        handle a constant vector splat.
2320   Value *SplatVF = isa<Constant>(Mul)
2321                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2322                        : Builder.CreateVectorSplat(VF, Mul);
2323   Builder.restoreIP(CurrIP);
2324 
2325   // We may need to add the step a number of times, depending on the unroll
2326   // factor. The last of those goes into the PHI.
2327   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2328                                     &*LoopVectorBody->getFirstInsertionPt());
2329   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2330   Instruction *LastInduction = VecInd;
2331   for (unsigned Part = 0; Part < UF; ++Part) {
2332     State.set(Def, LastInduction, Part);
2333 
2334     if (isa<TruncInst>(EntryVal))
2335       addMetadata(LastInduction, EntryVal);
2336     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2337                                           State, Part);
2338 
2339     LastInduction = cast<Instruction>(
2340         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2341     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2342   }
2343 
2344   // Move the last step to the end of the latch block. This ensures consistent
2345   // placement of all induction updates.
2346   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2347   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2348   auto *ICmp = cast<Instruction>(Br->getCondition());
2349   LastInduction->moveBefore(ICmp);
2350   LastInduction->setName("vec.ind.next");
2351 
2352   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2353   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2354 }
2355 
2356 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2357   return Cost->isScalarAfterVectorization(I, VF) ||
2358          Cost->isProfitableToScalarize(I, VF);
2359 }
2360 
2361 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2362   if (shouldScalarizeInstruction(IV))
2363     return true;
2364   auto isScalarInst = [&](User *U) -> bool {
2365     auto *I = cast<Instruction>(U);
2366     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2367   };
2368   return llvm::any_of(IV->users(), isScalarInst);
2369 }
2370 
2371 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2372     const InductionDescriptor &ID, const Instruction *EntryVal,
2373     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2374     unsigned Part, unsigned Lane) {
2375   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2376          "Expected either an induction phi-node or a truncate of it!");
2377 
2378   // This induction variable is not the phi from the original loop but the
2379   // newly-created IV based on the proof that casted Phi is equal to the
2380   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2381   // re-uses the same InductionDescriptor that original IV uses but we don't
2382   // have to do any recording in this case - that is done when original IV is
2383   // processed.
2384   if (isa<TruncInst>(EntryVal))
2385     return;
2386 
2387   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2388   if (Casts.empty())
2389     return;
2390   // Only the first Cast instruction in the Casts vector is of interest.
2391   // The rest of the Casts (if exist) have no uses outside the
2392   // induction update chain itself.
2393   if (Lane < UINT_MAX)
2394     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2395   else
2396     State.set(CastDef, VectorLoopVal, Part);
2397 }
2398 
2399 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2400                                                 TruncInst *Trunc, VPValue *Def,
2401                                                 VPValue *CastDef,
2402                                                 VPTransformState &State) {
2403   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2404          "Primary induction variable must have an integer type");
2405 
2406   auto II = Legal->getInductionVars().find(IV);
2407   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2408 
2409   auto ID = II->second;
2410   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2411 
2412   // The value from the original loop to which we are mapping the new induction
2413   // variable.
2414   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2415 
2416   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2417 
2418   // Generate code for the induction step. Note that induction steps are
2419   // required to be loop-invariant
2420   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2421     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2422            "Induction step should be loop invariant");
2423     if (PSE.getSE()->isSCEVable(IV->getType())) {
2424       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2425       return Exp.expandCodeFor(Step, Step->getType(),
2426                                LoopVectorPreHeader->getTerminator());
2427     }
2428     return cast<SCEVUnknown>(Step)->getValue();
2429   };
2430 
2431   // The scalar value to broadcast. This is derived from the canonical
2432   // induction variable. If a truncation type is given, truncate the canonical
2433   // induction variable and step. Otherwise, derive these values from the
2434   // induction descriptor.
2435   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2436     Value *ScalarIV = Induction;
2437     if (IV != OldInduction) {
2438       ScalarIV = IV->getType()->isIntegerTy()
2439                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2440                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2441                                           IV->getType());
2442       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2443       ScalarIV->setName("offset.idx");
2444     }
2445     if (Trunc) {
2446       auto *TruncType = cast<IntegerType>(Trunc->getType());
2447       assert(Step->getType()->isIntegerTy() &&
2448              "Truncation requires an integer step");
2449       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2450       Step = Builder.CreateTrunc(Step, TruncType);
2451     }
2452     return ScalarIV;
2453   };
2454 
2455   // Create the vector values from the scalar IV, in the absence of creating a
2456   // vector IV.
2457   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2458     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2459     for (unsigned Part = 0; Part < UF; ++Part) {
2460       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2461       Value *EntryPart =
2462           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2463                         ID.getInductionOpcode());
2464       State.set(Def, EntryPart, Part);
2465       if (Trunc)
2466         addMetadata(EntryPart, Trunc);
2467       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2468                                             State, Part);
2469     }
2470   };
2471 
2472   // Fast-math-flags propagate from the original induction instruction.
2473   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2474   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2475     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2476 
2477   // Now do the actual transformations, and start with creating the step value.
2478   Value *Step = CreateStepValue(ID.getStep());
2479   if (VF.isZero() || VF.isScalar()) {
2480     Value *ScalarIV = CreateScalarIV(Step);
2481     CreateSplatIV(ScalarIV, Step);
2482     return;
2483   }
2484 
2485   // Determine if we want a scalar version of the induction variable. This is
2486   // true if the induction variable itself is not widened, or if it has at
2487   // least one user in the loop that is not widened.
2488   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2489   if (!NeedsScalarIV) {
2490     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2491                                     State);
2492     return;
2493   }
2494 
2495   // Try to create a new independent vector induction variable. If we can't
2496   // create the phi node, we will splat the scalar induction variable in each
2497   // loop iteration.
2498   if (!shouldScalarizeInstruction(EntryVal)) {
2499     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2500                                     State);
2501     Value *ScalarIV = CreateScalarIV(Step);
2502     // Create scalar steps that can be used by instructions we will later
2503     // scalarize. Note that the addition of the scalar steps will not increase
2504     // the number of instructions in the loop in the common case prior to
2505     // InstCombine. We will be trading one vector extract for each scalar step.
2506     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2507     return;
2508   }
2509 
2510   // All IV users are scalar instructions, so only emit a scalar IV, not a
2511   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2512   // predicate used by the masked loads/stores.
2513   Value *ScalarIV = CreateScalarIV(Step);
2514   if (!Cost->isScalarEpilogueAllowed())
2515     CreateSplatIV(ScalarIV, Step);
2516   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2517 }
2518 
2519 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2520                                           Instruction::BinaryOps BinOp) {
2521   // Create and check the types.
2522   auto *ValVTy = cast<VectorType>(Val->getType());
2523   ElementCount VLen = ValVTy->getElementCount();
2524 
2525   Type *STy = Val->getType()->getScalarType();
2526   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2527          "Induction Step must be an integer or FP");
2528   assert(Step->getType() == STy && "Step has wrong type");
2529 
2530   SmallVector<Constant *, 8> Indices;
2531 
2532   // Create a vector of consecutive numbers from zero to VF.
2533   VectorType *InitVecValVTy = ValVTy;
2534   Type *InitVecValSTy = STy;
2535   if (STy->isFloatingPointTy()) {
2536     InitVecValSTy =
2537         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2538     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2539   }
2540   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2541 
2542   // Add on StartIdx
2543   Value *StartIdxSplat = Builder.CreateVectorSplat(
2544       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2545   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2546 
2547   if (STy->isIntegerTy()) {
2548     Step = Builder.CreateVectorSplat(VLen, Step);
2549     assert(Step->getType() == Val->getType() && "Invalid step vec");
2550     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2551     // which can be found from the original scalar operations.
2552     Step = Builder.CreateMul(InitVec, Step);
2553     return Builder.CreateAdd(Val, Step, "induction");
2554   }
2555 
2556   // Floating point induction.
2557   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2558          "Binary Opcode should be specified for FP induction");
2559   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2560   Step = Builder.CreateVectorSplat(VLen, Step);
2561   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2562   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2563 }
2564 
2565 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2566                                            Instruction *EntryVal,
2567                                            const InductionDescriptor &ID,
2568                                            VPValue *Def, VPValue *CastDef,
2569                                            VPTransformState &State) {
2570   // We shouldn't have to build scalar steps if we aren't vectorizing.
2571   assert(VF.isVector() && "VF should be greater than one");
2572   // Get the value type and ensure it and the step have the same integer type.
2573   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2574   assert(ScalarIVTy == Step->getType() &&
2575          "Val and Step should have the same type");
2576 
2577   // We build scalar steps for both integer and floating-point induction
2578   // variables. Here, we determine the kind of arithmetic we will perform.
2579   Instruction::BinaryOps AddOp;
2580   Instruction::BinaryOps MulOp;
2581   if (ScalarIVTy->isIntegerTy()) {
2582     AddOp = Instruction::Add;
2583     MulOp = Instruction::Mul;
2584   } else {
2585     AddOp = ID.getInductionOpcode();
2586     MulOp = Instruction::FMul;
2587   }
2588 
2589   // Determine the number of scalars we need to generate for each unroll
2590   // iteration. If EntryVal is uniform, we only need to generate the first
2591   // lane. Otherwise, we generate all VF values.
2592   bool IsUniform =
2593       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2594   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2595   // Compute the scalar steps and save the results in State.
2596   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2597                                      ScalarIVTy->getScalarSizeInBits());
2598   Type *VecIVTy = nullptr;
2599   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2600   if (!IsUniform && VF.isScalable()) {
2601     VecIVTy = VectorType::get(ScalarIVTy, VF);
2602     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2603     SplatStep = Builder.CreateVectorSplat(VF, Step);
2604     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2605   }
2606 
2607   for (unsigned Part = 0; Part < UF; ++Part) {
2608     Value *StartIdx0 =
2609         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2610 
2611     if (!IsUniform && VF.isScalable()) {
2612       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2613       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2614       if (ScalarIVTy->isFloatingPointTy())
2615         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2616       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2617       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2618       State.set(Def, Add, Part);
2619       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2620                                             Part);
2621       // It's useful to record the lane values too for the known minimum number
2622       // of elements so we do those below. This improves the code quality when
2623       // trying to extract the first element, for example.
2624     }
2625 
2626     if (ScalarIVTy->isFloatingPointTy())
2627       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2628 
2629     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2630       Value *StartIdx = Builder.CreateBinOp(
2631           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2632       // The step returned by `createStepForVF` is a runtime-evaluated value
2633       // when VF is scalable. Otherwise, it should be folded into a Constant.
2634       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2635              "Expected StartIdx to be folded to a constant when VF is not "
2636              "scalable");
2637       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2638       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2639       State.set(Def, Add, VPIteration(Part, Lane));
2640       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2641                                             Part, Lane);
2642     }
2643   }
2644 }
2645 
2646 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2647                                                     const VPIteration &Instance,
2648                                                     VPTransformState &State) {
2649   Value *ScalarInst = State.get(Def, Instance);
2650   Value *VectorValue = State.get(Def, Instance.Part);
2651   VectorValue = Builder.CreateInsertElement(
2652       VectorValue, ScalarInst,
2653       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2654   State.set(Def, VectorValue, Instance.Part);
2655 }
2656 
2657 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2658   assert(Vec->getType()->isVectorTy() && "Invalid type");
2659   return Builder.CreateVectorReverse(Vec, "reverse");
2660 }
2661 
2662 // Return whether we allow using masked interleave-groups (for dealing with
2663 // strided loads/stores that reside in predicated blocks, or for dealing
2664 // with gaps).
2665 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2666   // If an override option has been passed in for interleaved accesses, use it.
2667   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2668     return EnableMaskedInterleavedMemAccesses;
2669 
2670   return TTI.enableMaskedInterleavedAccessVectorization();
2671 }
2672 
2673 // Try to vectorize the interleave group that \p Instr belongs to.
2674 //
2675 // E.g. Translate following interleaved load group (factor = 3):
2676 //   for (i = 0; i < N; i+=3) {
2677 //     R = Pic[i];             // Member of index 0
2678 //     G = Pic[i+1];           // Member of index 1
2679 //     B = Pic[i+2];           // Member of index 2
2680 //     ... // do something to R, G, B
2681 //   }
2682 // To:
2683 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2684 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2685 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2686 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2687 //
2688 // Or translate following interleaved store group (factor = 3):
2689 //   for (i = 0; i < N; i+=3) {
2690 //     ... do something to R, G, B
2691 //     Pic[i]   = R;           // Member of index 0
2692 //     Pic[i+1] = G;           // Member of index 1
2693 //     Pic[i+2] = B;           // Member of index 2
2694 //   }
2695 // To:
2696 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2697 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2698 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2699 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2700 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2701 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2702     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2703     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2704     VPValue *BlockInMask) {
2705   Instruction *Instr = Group->getInsertPos();
2706   const DataLayout &DL = Instr->getModule()->getDataLayout();
2707 
2708   // Prepare for the vector type of the interleaved load/store.
2709   Type *ScalarTy = getLoadStoreType(Instr);
2710   unsigned InterleaveFactor = Group->getFactor();
2711   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2712   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2713 
2714   // Prepare for the new pointers.
2715   SmallVector<Value *, 2> AddrParts;
2716   unsigned Index = Group->getIndex(Instr);
2717 
2718   // TODO: extend the masked interleaved-group support to reversed access.
2719   assert((!BlockInMask || !Group->isReverse()) &&
2720          "Reversed masked interleave-group not supported.");
2721 
2722   // If the group is reverse, adjust the index to refer to the last vector lane
2723   // instead of the first. We adjust the index from the first vector lane,
2724   // rather than directly getting the pointer for lane VF - 1, because the
2725   // pointer operand of the interleaved access is supposed to be uniform. For
2726   // uniform instructions, we're only required to generate a value for the
2727   // first vector lane in each unroll iteration.
2728   if (Group->isReverse())
2729     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2730 
2731   for (unsigned Part = 0; Part < UF; Part++) {
2732     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2733     setDebugLocFromInst(AddrPart);
2734 
2735     // Notice current instruction could be any index. Need to adjust the address
2736     // to the member of index 0.
2737     //
2738     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2739     //       b = A[i];       // Member of index 0
2740     // Current pointer is pointed to A[i+1], adjust it to A[i].
2741     //
2742     // E.g.  A[i+1] = a;     // Member of index 1
2743     //       A[i]   = b;     // Member of index 0
2744     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2745     // Current pointer is pointed to A[i+2], adjust it to A[i].
2746 
2747     bool InBounds = false;
2748     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2749       InBounds = gep->isInBounds();
2750     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2751     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2752 
2753     // Cast to the vector pointer type.
2754     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2755     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2756     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2757   }
2758 
2759   setDebugLocFromInst(Instr);
2760   Value *PoisonVec = PoisonValue::get(VecTy);
2761 
2762   Value *MaskForGaps = nullptr;
2763   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2764     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2765     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2766   }
2767 
2768   // Vectorize the interleaved load group.
2769   if (isa<LoadInst>(Instr)) {
2770     // For each unroll part, create a wide load for the group.
2771     SmallVector<Value *, 2> NewLoads;
2772     for (unsigned Part = 0; Part < UF; Part++) {
2773       Instruction *NewLoad;
2774       if (BlockInMask || MaskForGaps) {
2775         assert(useMaskedInterleavedAccesses(*TTI) &&
2776                "masked interleaved groups are not allowed.");
2777         Value *GroupMask = MaskForGaps;
2778         if (BlockInMask) {
2779           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2780           Value *ShuffledMask = Builder.CreateShuffleVector(
2781               BlockInMaskPart,
2782               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2783               "interleaved.mask");
2784           GroupMask = MaskForGaps
2785                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2786                                                 MaskForGaps)
2787                           : ShuffledMask;
2788         }
2789         NewLoad =
2790             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2791                                      GroupMask, PoisonVec, "wide.masked.vec");
2792       }
2793       else
2794         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2795                                             Group->getAlign(), "wide.vec");
2796       Group->addMetadata(NewLoad);
2797       NewLoads.push_back(NewLoad);
2798     }
2799 
2800     // For each member in the group, shuffle out the appropriate data from the
2801     // wide loads.
2802     unsigned J = 0;
2803     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2804       Instruction *Member = Group->getMember(I);
2805 
2806       // Skip the gaps in the group.
2807       if (!Member)
2808         continue;
2809 
2810       auto StrideMask =
2811           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2812       for (unsigned Part = 0; Part < UF; Part++) {
2813         Value *StridedVec = Builder.CreateShuffleVector(
2814             NewLoads[Part], StrideMask, "strided.vec");
2815 
2816         // If this member has different type, cast the result type.
2817         if (Member->getType() != ScalarTy) {
2818           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2819           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2820           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2821         }
2822 
2823         if (Group->isReverse())
2824           StridedVec = reverseVector(StridedVec);
2825 
2826         State.set(VPDefs[J], StridedVec, Part);
2827       }
2828       ++J;
2829     }
2830     return;
2831   }
2832 
2833   // The sub vector type for current instruction.
2834   auto *SubVT = VectorType::get(ScalarTy, VF);
2835 
2836   // Vectorize the interleaved store group.
2837   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2838   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2839          "masked interleaved groups are not allowed.");
2840   assert((!MaskForGaps || !VF.isScalable()) &&
2841          "masking gaps for scalable vectors is not yet supported.");
2842   for (unsigned Part = 0; Part < UF; Part++) {
2843     // Collect the stored vector from each member.
2844     SmallVector<Value *, 4> StoredVecs;
2845     for (unsigned i = 0; i < InterleaveFactor; i++) {
2846       assert((Group->getMember(i) || MaskForGaps) &&
2847              "Fail to get a member from an interleaved store group");
2848       Instruction *Member = Group->getMember(i);
2849 
2850       // Skip the gaps in the group.
2851       if (!Member) {
2852         Value *Undef = PoisonValue::get(SubVT);
2853         StoredVecs.push_back(Undef);
2854         continue;
2855       }
2856 
2857       Value *StoredVec = State.get(StoredValues[i], Part);
2858 
2859       if (Group->isReverse())
2860         StoredVec = reverseVector(StoredVec);
2861 
2862       // If this member has different type, cast it to a unified type.
2863 
2864       if (StoredVec->getType() != SubVT)
2865         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2866 
2867       StoredVecs.push_back(StoredVec);
2868     }
2869 
2870     // Concatenate all vectors into a wide vector.
2871     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2872 
2873     // Interleave the elements in the wide vector.
2874     Value *IVec = Builder.CreateShuffleVector(
2875         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2876         "interleaved.vec");
2877 
2878     Instruction *NewStoreInstr;
2879     if (BlockInMask || MaskForGaps) {
2880       Value *GroupMask = MaskForGaps;
2881       if (BlockInMask) {
2882         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2883         Value *ShuffledMask = Builder.CreateShuffleVector(
2884             BlockInMaskPart,
2885             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2886             "interleaved.mask");
2887         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2888                                                       ShuffledMask, MaskForGaps)
2889                                 : ShuffledMask;
2890       }
2891       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2892                                                 Group->getAlign(), GroupMask);
2893     } else
2894       NewStoreInstr =
2895           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2896 
2897     Group->addMetadata(NewStoreInstr);
2898   }
2899 }
2900 
2901 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2902     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2903     VPValue *StoredValue, VPValue *BlockInMask) {
2904   // Attempt to issue a wide load.
2905   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2906   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2907 
2908   assert((LI || SI) && "Invalid Load/Store instruction");
2909   assert((!SI || StoredValue) && "No stored value provided for widened store");
2910   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2911 
2912   LoopVectorizationCostModel::InstWidening Decision =
2913       Cost->getWideningDecision(Instr, VF);
2914   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2915           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2916           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2917          "CM decision is not to widen the memory instruction");
2918 
2919   Type *ScalarDataTy = getLoadStoreType(Instr);
2920 
2921   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2922   const Align Alignment = getLoadStoreAlignment(Instr);
2923 
2924   // Determine if the pointer operand of the access is either consecutive or
2925   // reverse consecutive.
2926   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2927   bool ConsecutiveStride =
2928       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2929   bool CreateGatherScatter =
2930       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2931 
2932   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2933   // gather/scatter. Otherwise Decision should have been to Scalarize.
2934   assert((ConsecutiveStride || CreateGatherScatter) &&
2935          "The instruction should be scalarized");
2936   (void)ConsecutiveStride;
2937 
2938   VectorParts BlockInMaskParts(UF);
2939   bool isMaskRequired = BlockInMask;
2940   if (isMaskRequired)
2941     for (unsigned Part = 0; Part < UF; ++Part)
2942       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2943 
2944   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2945     // Calculate the pointer for the specific unroll-part.
2946     GetElementPtrInst *PartPtr = nullptr;
2947 
2948     bool InBounds = false;
2949     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2950       InBounds = gep->isInBounds();
2951     if (Reverse) {
2952       // If the address is consecutive but reversed, then the
2953       // wide store needs to start at the last vector element.
2954       // RunTimeVF =  VScale * VF.getKnownMinValue()
2955       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2956       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2957       // NumElt = -Part * RunTimeVF
2958       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2959       // LastLane = 1 - RunTimeVF
2960       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2961       PartPtr =
2962           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2963       PartPtr->setIsInBounds(InBounds);
2964       PartPtr = cast<GetElementPtrInst>(
2965           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2966       PartPtr->setIsInBounds(InBounds);
2967       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2968         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2969     } else {
2970       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2971       PartPtr = cast<GetElementPtrInst>(
2972           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2973       PartPtr->setIsInBounds(InBounds);
2974     }
2975 
2976     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2977     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2978   };
2979 
2980   // Handle Stores:
2981   if (SI) {
2982     setDebugLocFromInst(SI);
2983 
2984     for (unsigned Part = 0; Part < UF; ++Part) {
2985       Instruction *NewSI = nullptr;
2986       Value *StoredVal = State.get(StoredValue, Part);
2987       if (CreateGatherScatter) {
2988         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2989         Value *VectorGep = State.get(Addr, Part);
2990         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2991                                             MaskPart);
2992       } else {
2993         if (Reverse) {
2994           // If we store to reverse consecutive memory locations, then we need
2995           // to reverse the order of elements in the stored value.
2996           StoredVal = reverseVector(StoredVal);
2997           // We don't want to update the value in the map as it might be used in
2998           // another expression. So don't call resetVectorValue(StoredVal).
2999         }
3000         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3001         if (isMaskRequired)
3002           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3003                                             BlockInMaskParts[Part]);
3004         else
3005           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3006       }
3007       addMetadata(NewSI, SI);
3008     }
3009     return;
3010   }
3011 
3012   // Handle loads.
3013   assert(LI && "Must have a load instruction");
3014   setDebugLocFromInst(LI);
3015   for (unsigned Part = 0; Part < UF; ++Part) {
3016     Value *NewLI;
3017     if (CreateGatherScatter) {
3018       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3019       Value *VectorGep = State.get(Addr, Part);
3020       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3021                                          nullptr, "wide.masked.gather");
3022       addMetadata(NewLI, LI);
3023     } else {
3024       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3025       if (isMaskRequired)
3026         NewLI = Builder.CreateMaskedLoad(
3027             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3028             PoisonValue::get(DataTy), "wide.masked.load");
3029       else
3030         NewLI =
3031             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3032 
3033       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3034       addMetadata(NewLI, LI);
3035       if (Reverse)
3036         NewLI = reverseVector(NewLI);
3037     }
3038 
3039     State.set(Def, NewLI, Part);
3040   }
3041 }
3042 
3043 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3044                                                VPUser &User,
3045                                                const VPIteration &Instance,
3046                                                bool IfPredicateInstr,
3047                                                VPTransformState &State) {
3048   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3049 
3050   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3051   // the first lane and part.
3052   if (isa<NoAliasScopeDeclInst>(Instr))
3053     if (!Instance.isFirstIteration())
3054       return;
3055 
3056   setDebugLocFromInst(Instr);
3057 
3058   // Does this instruction return a value ?
3059   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3060 
3061   Instruction *Cloned = Instr->clone();
3062   if (!IsVoidRetTy)
3063     Cloned->setName(Instr->getName() + ".cloned");
3064 
3065   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3066                                Builder.GetInsertPoint());
3067   // Replace the operands of the cloned instructions with their scalar
3068   // equivalents in the new loop.
3069   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3070     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3071     auto InputInstance = Instance;
3072     if (!Operand || !OrigLoop->contains(Operand) ||
3073         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3074       InputInstance.Lane = VPLane::getFirstLane();
3075     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3076     Cloned->setOperand(op, NewOp);
3077   }
3078   addNewMetadata(Cloned, Instr);
3079 
3080   // Place the cloned scalar in the new loop.
3081   Builder.Insert(Cloned);
3082 
3083   State.set(Def, Cloned, Instance);
3084 
3085   // If we just cloned a new assumption, add it the assumption cache.
3086   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3087     AC->registerAssumption(II);
3088 
3089   // End if-block.
3090   if (IfPredicateInstr)
3091     PredicatedInstructions.push_back(Cloned);
3092 }
3093 
3094 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3095                                                       Value *End, Value *Step,
3096                                                       Instruction *DL) {
3097   BasicBlock *Header = L->getHeader();
3098   BasicBlock *Latch = L->getLoopLatch();
3099   // As we're just creating this loop, it's possible no latch exists
3100   // yet. If so, use the header as this will be a single block loop.
3101   if (!Latch)
3102     Latch = Header;
3103 
3104   IRBuilder<> B(&*Header->getFirstInsertionPt());
3105   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3106   setDebugLocFromInst(OldInst, &B);
3107   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3108 
3109   B.SetInsertPoint(Latch->getTerminator());
3110   setDebugLocFromInst(OldInst, &B);
3111 
3112   // Create i+1 and fill the PHINode.
3113   //
3114   // If the tail is not folded, we know that End - Start >= Step (either
3115   // statically or through the minimum iteration checks). We also know that both
3116   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3117   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3118   // overflows and we can mark the induction increment as NUW.
3119   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3120                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3121   Induction->addIncoming(Start, L->getLoopPreheader());
3122   Induction->addIncoming(Next, Latch);
3123   // Create the compare.
3124   Value *ICmp = B.CreateICmpEQ(Next, End);
3125   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3126 
3127   // Now we have two terminators. Remove the old one from the block.
3128   Latch->getTerminator()->eraseFromParent();
3129 
3130   return Induction;
3131 }
3132 
3133 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3134   if (TripCount)
3135     return TripCount;
3136 
3137   assert(L && "Create Trip Count for null loop.");
3138   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3139   // Find the loop boundaries.
3140   ScalarEvolution *SE = PSE.getSE();
3141   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3142   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3143          "Invalid loop count");
3144 
3145   Type *IdxTy = Legal->getWidestInductionType();
3146   assert(IdxTy && "No type for induction");
3147 
3148   // The exit count might have the type of i64 while the phi is i32. This can
3149   // happen if we have an induction variable that is sign extended before the
3150   // compare. The only way that we get a backedge taken count is that the
3151   // induction variable was signed and as such will not overflow. In such a case
3152   // truncation is legal.
3153   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3154       IdxTy->getPrimitiveSizeInBits())
3155     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3156   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3157 
3158   // Get the total trip count from the count by adding 1.
3159   const SCEV *ExitCount = SE->getAddExpr(
3160       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3161 
3162   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3163 
3164   // Expand the trip count and place the new instructions in the preheader.
3165   // Notice that the pre-header does not change, only the loop body.
3166   SCEVExpander Exp(*SE, DL, "induction");
3167 
3168   // Count holds the overall loop count (N).
3169   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3170                                 L->getLoopPreheader()->getTerminator());
3171 
3172   if (TripCount->getType()->isPointerTy())
3173     TripCount =
3174         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3175                                     L->getLoopPreheader()->getTerminator());
3176 
3177   return TripCount;
3178 }
3179 
3180 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3181   if (VectorTripCount)
3182     return VectorTripCount;
3183 
3184   Value *TC = getOrCreateTripCount(L);
3185   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3186 
3187   Type *Ty = TC->getType();
3188   // This is where we can make the step a runtime constant.
3189   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3190 
3191   // If the tail is to be folded by masking, round the number of iterations N
3192   // up to a multiple of Step instead of rounding down. This is done by first
3193   // adding Step-1 and then rounding down. Note that it's ok if this addition
3194   // overflows: the vector induction variable will eventually wrap to zero given
3195   // that it starts at zero and its Step is a power of two; the loop will then
3196   // exit, with the last early-exit vector comparison also producing all-true.
3197   if (Cost->foldTailByMasking()) {
3198     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3199            "VF*UF must be a power of 2 when folding tail by masking");
3200     assert(!VF.isScalable() &&
3201            "Tail folding not yet supported for scalable vectors");
3202     TC = Builder.CreateAdd(
3203         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3204   }
3205 
3206   // Now we need to generate the expression for the part of the loop that the
3207   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3208   // iterations are not required for correctness, or N - Step, otherwise. Step
3209   // is equal to the vectorization factor (number of SIMD elements) times the
3210   // unroll factor (number of SIMD instructions).
3211   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3212 
3213   // There are cases where we *must* run at least one iteration in the remainder
3214   // loop.  See the cost model for when this can happen.  If the step evenly
3215   // divides the trip count, we set the remainder to be equal to the step. If
3216   // the step does not evenly divide the trip count, no adjustment is necessary
3217   // since there will already be scalar iterations. Note that the minimum
3218   // iterations check ensures that N >= Step.
3219   if (Cost->requiresScalarEpilogue(VF)) {
3220     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3221     R = Builder.CreateSelect(IsZero, Step, R);
3222   }
3223 
3224   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3225 
3226   return VectorTripCount;
3227 }
3228 
3229 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3230                                                    const DataLayout &DL) {
3231   // Verify that V is a vector type with same number of elements as DstVTy.
3232   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3233   unsigned VF = DstFVTy->getNumElements();
3234   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3235   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3236   Type *SrcElemTy = SrcVecTy->getElementType();
3237   Type *DstElemTy = DstFVTy->getElementType();
3238   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3239          "Vector elements must have same size");
3240 
3241   // Do a direct cast if element types are castable.
3242   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3243     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3244   }
3245   // V cannot be directly casted to desired vector type.
3246   // May happen when V is a floating point vector but DstVTy is a vector of
3247   // pointers or vice-versa. Handle this using a two-step bitcast using an
3248   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3249   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3250          "Only one type should be a pointer type");
3251   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3252          "Only one type should be a floating point type");
3253   Type *IntTy =
3254       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3255   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3256   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3257   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3258 }
3259 
3260 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3261                                                          BasicBlock *Bypass) {
3262   Value *Count = getOrCreateTripCount(L);
3263   // Reuse existing vector loop preheader for TC checks.
3264   // Note that new preheader block is generated for vector loop.
3265   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3266   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3267 
3268   // Generate code to check if the loop's trip count is less than VF * UF, or
3269   // equal to it in case a scalar epilogue is required; this implies that the
3270   // vector trip count is zero. This check also covers the case where adding one
3271   // to the backedge-taken count overflowed leading to an incorrect trip count
3272   // of zero. In this case we will also jump to the scalar loop.
3273   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3274                                             : ICmpInst::ICMP_ULT;
3275 
3276   // If tail is to be folded, vector loop takes care of all iterations.
3277   Value *CheckMinIters = Builder.getFalse();
3278   if (!Cost->foldTailByMasking()) {
3279     Value *Step =
3280         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3281     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3282   }
3283   // Create new preheader for vector loop.
3284   LoopVectorPreHeader =
3285       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3286                  "vector.ph");
3287 
3288   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3289                                DT->getNode(Bypass)->getIDom()) &&
3290          "TC check is expected to dominate Bypass");
3291 
3292   // Update dominator for Bypass & LoopExit (if needed).
3293   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3294   if (!Cost->requiresScalarEpilogue(VF))
3295     // If there is an epilogue which must run, there's no edge from the
3296     // middle block to exit blocks  and thus no need to update the immediate
3297     // dominator of the exit blocks.
3298     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3299 
3300   ReplaceInstWithInst(
3301       TCCheckBlock->getTerminator(),
3302       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3303   LoopBypassBlocks.push_back(TCCheckBlock);
3304 }
3305 
3306 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3307 
3308   BasicBlock *const SCEVCheckBlock =
3309       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3310   if (!SCEVCheckBlock)
3311     return nullptr;
3312 
3313   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3314            (OptForSizeBasedOnProfile &&
3315             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3316          "Cannot SCEV check stride or overflow when optimizing for size");
3317 
3318 
3319   // Update dominator only if this is first RT check.
3320   if (LoopBypassBlocks.empty()) {
3321     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3322     if (!Cost->requiresScalarEpilogue(VF))
3323       // If there is an epilogue which must run, there's no edge from the
3324       // middle block to exit blocks  and thus no need to update the immediate
3325       // dominator of the exit blocks.
3326       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3327   }
3328 
3329   LoopBypassBlocks.push_back(SCEVCheckBlock);
3330   AddedSafetyChecks = true;
3331   return SCEVCheckBlock;
3332 }
3333 
3334 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3335                                                       BasicBlock *Bypass) {
3336   // VPlan-native path does not do any analysis for runtime checks currently.
3337   if (EnableVPlanNativePath)
3338     return nullptr;
3339 
3340   BasicBlock *const MemCheckBlock =
3341       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3342 
3343   // Check if we generated code that checks in runtime if arrays overlap. We put
3344   // the checks into a separate block to make the more common case of few
3345   // elements faster.
3346   if (!MemCheckBlock)
3347     return nullptr;
3348 
3349   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3350     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3351            "Cannot emit memory checks when optimizing for size, unless forced "
3352            "to vectorize.");
3353     ORE->emit([&]() {
3354       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3355                                         L->getStartLoc(), L->getHeader())
3356              << "Code-size may be reduced by not forcing "
3357                 "vectorization, or by source-code modifications "
3358                 "eliminating the need for runtime checks "
3359                 "(e.g., adding 'restrict').";
3360     });
3361   }
3362 
3363   LoopBypassBlocks.push_back(MemCheckBlock);
3364 
3365   AddedSafetyChecks = true;
3366 
3367   // We currently don't use LoopVersioning for the actual loop cloning but we
3368   // still use it to add the noalias metadata.
3369   LVer = std::make_unique<LoopVersioning>(
3370       *Legal->getLAI(),
3371       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3372       DT, PSE.getSE());
3373   LVer->prepareNoAliasMetadata();
3374   return MemCheckBlock;
3375 }
3376 
3377 Value *InnerLoopVectorizer::emitTransformedIndex(
3378     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3379     const InductionDescriptor &ID) const {
3380 
3381   SCEVExpander Exp(*SE, DL, "induction");
3382   auto Step = ID.getStep();
3383   auto StartValue = ID.getStartValue();
3384   assert(Index->getType()->getScalarType() == Step->getType() &&
3385          "Index scalar type does not match StepValue type");
3386 
3387   // Note: the IR at this point is broken. We cannot use SE to create any new
3388   // SCEV and then expand it, hoping that SCEV's simplification will give us
3389   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3390   // lead to various SCEV crashes. So all we can do is to use builder and rely
3391   // on InstCombine for future simplifications. Here we handle some trivial
3392   // cases only.
3393   auto CreateAdd = [&B](Value *X, Value *Y) {
3394     assert(X->getType() == Y->getType() && "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isZero())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isZero())
3400         return X;
3401     return B.CreateAdd(X, Y);
3402   };
3403 
3404   // We allow X to be a vector type, in which case Y will potentially be
3405   // splatted into a vector with the same element count.
3406   auto CreateMul = [&B](Value *X, Value *Y) {
3407     assert(X->getType()->getScalarType() == Y->getType() &&
3408            "Types don't match!");
3409     if (auto *CX = dyn_cast<ConstantInt>(X))
3410       if (CX->isOne())
3411         return Y;
3412     if (auto *CY = dyn_cast<ConstantInt>(Y))
3413       if (CY->isOne())
3414         return X;
3415     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3416     if (XVTy && !isa<VectorType>(Y->getType()))
3417       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3418     return B.CreateMul(X, Y);
3419   };
3420 
3421   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3422   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3423   // the DomTree is not kept up-to-date for additional blocks generated in the
3424   // vector loop. By using the header as insertion point, we guarantee that the
3425   // expanded instructions dominate all their uses.
3426   auto GetInsertPoint = [this, &B]() {
3427     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3428     if (InsertBB != LoopVectorBody &&
3429         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3430       return LoopVectorBody->getTerminator();
3431     return &*B.GetInsertPoint();
3432   };
3433 
3434   switch (ID.getKind()) {
3435   case InductionDescriptor::IK_IntInduction: {
3436     assert(!isa<VectorType>(Index->getType()) &&
3437            "Vector indices not supported for integer inductions yet");
3438     assert(Index->getType() == StartValue->getType() &&
3439            "Index type does not match StartValue type");
3440     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3441       return B.CreateSub(StartValue, Index);
3442     auto *Offset = CreateMul(
3443         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3444     return CreateAdd(StartValue, Offset);
3445   }
3446   case InductionDescriptor::IK_PtrInduction: {
3447     assert(isa<SCEVConstant>(Step) &&
3448            "Expected constant step for pointer induction");
3449     return B.CreateGEP(
3450         ID.getElementType(), StartValue,
3451         CreateMul(Index,
3452                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3453                                     GetInsertPoint())));
3454   }
3455   case InductionDescriptor::IK_FpInduction: {
3456     assert(!isa<VectorType>(Index->getType()) &&
3457            "Vector indices not supported for FP inductions yet");
3458     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3459     auto InductionBinOp = ID.getInductionBinOp();
3460     assert(InductionBinOp &&
3461            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3462             InductionBinOp->getOpcode() == Instruction::FSub) &&
3463            "Original bin op should be defined for FP induction");
3464 
3465     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3466     Value *MulExp = B.CreateFMul(StepValue, Index);
3467     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3468                          "induction");
3469   }
3470   case InductionDescriptor::IK_NoInduction:
3471     return nullptr;
3472   }
3473   llvm_unreachable("invalid enum");
3474 }
3475 
3476 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3477   LoopScalarBody = OrigLoop->getHeader();
3478   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3479   assert(LoopVectorPreHeader && "Invalid loop structure");
3480   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3481   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3482          "multiple exit loop without required epilogue?");
3483 
3484   LoopMiddleBlock =
3485       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3486                  LI, nullptr, Twine(Prefix) + "middle.block");
3487   LoopScalarPreHeader =
3488       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3489                  nullptr, Twine(Prefix) + "scalar.ph");
3490 
3491   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3492 
3493   // Set up the middle block terminator.  Two cases:
3494   // 1) If we know that we must execute the scalar epilogue, emit an
3495   //    unconditional branch.
3496   // 2) Otherwise, we must have a single unique exit block (due to how we
3497   //    implement the multiple exit case).  In this case, set up a conditonal
3498   //    branch from the middle block to the loop scalar preheader, and the
3499   //    exit block.  completeLoopSkeleton will update the condition to use an
3500   //    iteration check, if required to decide whether to execute the remainder.
3501   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3502     BranchInst::Create(LoopScalarPreHeader) :
3503     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3504                        Builder.getTrue());
3505   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3506   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3507 
3508   // We intentionally don't let SplitBlock to update LoopInfo since
3509   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3510   // LoopVectorBody is explicitly added to the correct place few lines later.
3511   LoopVectorBody =
3512       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3513                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3514 
3515   // Update dominator for loop exit.
3516   if (!Cost->requiresScalarEpilogue(VF))
3517     // If there is an epilogue which must run, there's no edge from the
3518     // middle block to exit blocks  and thus no need to update the immediate
3519     // dominator of the exit blocks.
3520     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3521 
3522   // Create and register the new vector loop.
3523   Loop *Lp = LI->AllocateLoop();
3524   Loop *ParentLoop = OrigLoop->getParentLoop();
3525 
3526   // Insert the new loop into the loop nest and register the new basic blocks
3527   // before calling any utilities such as SCEV that require valid LoopInfo.
3528   if (ParentLoop) {
3529     ParentLoop->addChildLoop(Lp);
3530   } else {
3531     LI->addTopLevelLoop(Lp);
3532   }
3533   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3534   return Lp;
3535 }
3536 
3537 void InnerLoopVectorizer::createInductionResumeValues(
3538     Loop *L, Value *VectorTripCount,
3539     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3540   assert(VectorTripCount && L && "Expected valid arguments");
3541   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3542           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3543          "Inconsistent information about additional bypass.");
3544   // We are going to resume the execution of the scalar loop.
3545   // Go over all of the induction variables that we found and fix the
3546   // PHIs that are left in the scalar version of the loop.
3547   // The starting values of PHI nodes depend on the counter of the last
3548   // iteration in the vectorized loop.
3549   // If we come from a bypass edge then we need to start from the original
3550   // start value.
3551   for (auto &InductionEntry : Legal->getInductionVars()) {
3552     PHINode *OrigPhi = InductionEntry.first;
3553     InductionDescriptor II = InductionEntry.second;
3554 
3555     // Create phi nodes to merge from the  backedge-taken check block.
3556     PHINode *BCResumeVal =
3557         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3558                         LoopScalarPreHeader->getTerminator());
3559     // Copy original phi DL over to the new one.
3560     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3561     Value *&EndValue = IVEndValues[OrigPhi];
3562     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3563     if (OrigPhi == OldInduction) {
3564       // We know what the end value is.
3565       EndValue = VectorTripCount;
3566     } else {
3567       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3568 
3569       // Fast-math-flags propagate from the original induction instruction.
3570       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3571         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3572 
3573       Type *StepType = II.getStep()->getType();
3574       Instruction::CastOps CastOp =
3575           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3576       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3577       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3578       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3579       EndValue->setName("ind.end");
3580 
3581       // Compute the end value for the additional bypass (if applicable).
3582       if (AdditionalBypass.first) {
3583         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3584         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3585                                          StepType, true);
3586         CRD =
3587             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3588         EndValueFromAdditionalBypass =
3589             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3590         EndValueFromAdditionalBypass->setName("ind.end");
3591       }
3592     }
3593     // The new PHI merges the original incoming value, in case of a bypass,
3594     // or the value at the end of the vectorized loop.
3595     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3596 
3597     // Fix the scalar body counter (PHI node).
3598     // The old induction's phi node in the scalar body needs the truncated
3599     // value.
3600     for (BasicBlock *BB : LoopBypassBlocks)
3601       BCResumeVal->addIncoming(II.getStartValue(), BB);
3602 
3603     if (AdditionalBypass.first)
3604       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3605                                             EndValueFromAdditionalBypass);
3606 
3607     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3608   }
3609 }
3610 
3611 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3612                                                       MDNode *OrigLoopID) {
3613   assert(L && "Expected valid loop.");
3614 
3615   // The trip counts should be cached by now.
3616   Value *Count = getOrCreateTripCount(L);
3617   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3618 
3619   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3620 
3621   // Add a check in the middle block to see if we have completed
3622   // all of the iterations in the first vector loop.  Three cases:
3623   // 1) If we require a scalar epilogue, there is no conditional branch as
3624   //    we unconditionally branch to the scalar preheader.  Do nothing.
3625   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3626   //    Thus if tail is to be folded, we know we don't need to run the
3627   //    remainder and we can use the previous value for the condition (true).
3628   // 3) Otherwise, construct a runtime check.
3629   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3630     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3631                                         Count, VectorTripCount, "cmp.n",
3632                                         LoopMiddleBlock->getTerminator());
3633 
3634     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3635     // of the corresponding compare because they may have ended up with
3636     // different line numbers and we want to avoid awkward line stepping while
3637     // debugging. Eg. if the compare has got a line number inside the loop.
3638     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3639     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3640   }
3641 
3642   // Get ready to start creating new instructions into the vectorized body.
3643   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3644          "Inconsistent vector loop preheader");
3645   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3646 
3647   Optional<MDNode *> VectorizedLoopID =
3648       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3649                                       LLVMLoopVectorizeFollowupVectorized});
3650   if (VectorizedLoopID.hasValue()) {
3651     L->setLoopID(VectorizedLoopID.getValue());
3652 
3653     // Do not setAlreadyVectorized if loop attributes have been defined
3654     // explicitly.
3655     return LoopVectorPreHeader;
3656   }
3657 
3658   // Keep all loop hints from the original loop on the vector loop (we'll
3659   // replace the vectorizer-specific hints below).
3660   if (MDNode *LID = OrigLoop->getLoopID())
3661     L->setLoopID(LID);
3662 
3663   LoopVectorizeHints Hints(L, true, *ORE);
3664   Hints.setAlreadyVectorized();
3665 
3666 #ifdef EXPENSIVE_CHECKS
3667   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3668   LI->verify(*DT);
3669 #endif
3670 
3671   return LoopVectorPreHeader;
3672 }
3673 
3674 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3675   /*
3676    In this function we generate a new loop. The new loop will contain
3677    the vectorized instructions while the old loop will continue to run the
3678    scalar remainder.
3679 
3680        [ ] <-- loop iteration number check.
3681     /   |
3682    /    v
3683   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3684   |  /  |
3685   | /   v
3686   ||   [ ]     <-- vector pre header.
3687   |/    |
3688   |     v
3689   |    [  ] \
3690   |    [  ]_|   <-- vector loop.
3691   |     |
3692   |     v
3693   \   -[ ]   <--- middle-block.
3694    \/   |
3695    /\   v
3696    | ->[ ]     <--- new preheader.
3697    |    |
3698  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3699    |   [ ] \
3700    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3701     \   |
3702      \  v
3703       >[ ]     <-- exit block(s).
3704    ...
3705    */
3706 
3707   // Get the metadata of the original loop before it gets modified.
3708   MDNode *OrigLoopID = OrigLoop->getLoopID();
3709 
3710   // Workaround!  Compute the trip count of the original loop and cache it
3711   // before we start modifying the CFG.  This code has a systemic problem
3712   // wherein it tries to run analysis over partially constructed IR; this is
3713   // wrong, and not simply for SCEV.  The trip count of the original loop
3714   // simply happens to be prone to hitting this in practice.  In theory, we
3715   // can hit the same issue for any SCEV, or ValueTracking query done during
3716   // mutation.  See PR49900.
3717   getOrCreateTripCount(OrigLoop);
3718 
3719   // Create an empty vector loop, and prepare basic blocks for the runtime
3720   // checks.
3721   Loop *Lp = createVectorLoopSkeleton("");
3722 
3723   // Now, compare the new count to zero. If it is zero skip the vector loop and
3724   // jump to the scalar loop. This check also covers the case where the
3725   // backedge-taken count is uint##_max: adding one to it will overflow leading
3726   // to an incorrect trip count of zero. In this (rare) case we will also jump
3727   // to the scalar loop.
3728   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3729 
3730   // Generate the code to check any assumptions that we've made for SCEV
3731   // expressions.
3732   emitSCEVChecks(Lp, LoopScalarPreHeader);
3733 
3734   // Generate the code that checks in runtime if arrays overlap. We put the
3735   // checks into a separate block to make the more common case of few elements
3736   // faster.
3737   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3738 
3739   // Some loops have a single integer induction variable, while other loops
3740   // don't. One example is c++ iterators that often have multiple pointer
3741   // induction variables. In the code below we also support a case where we
3742   // don't have a single induction variable.
3743   //
3744   // We try to obtain an induction variable from the original loop as hard
3745   // as possible. However if we don't find one that:
3746   //   - is an integer
3747   //   - counts from zero, stepping by one
3748   //   - is the size of the widest induction variable type
3749   // then we create a new one.
3750   OldInduction = Legal->getPrimaryInduction();
3751   Type *IdxTy = Legal->getWidestInductionType();
3752   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3753   // The loop step is equal to the vectorization factor (num of SIMD elements)
3754   // times the unroll factor (num of SIMD instructions).
3755   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3756   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3757   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3758   Induction =
3759       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3760                               getDebugLocFromInstOrOperands(OldInduction));
3761 
3762   // Emit phis for the new starting index of the scalar loop.
3763   createInductionResumeValues(Lp, CountRoundDown);
3764 
3765   return completeLoopSkeleton(Lp, OrigLoopID);
3766 }
3767 
3768 // Fix up external users of the induction variable. At this point, we are
3769 // in LCSSA form, with all external PHIs that use the IV having one input value,
3770 // coming from the remainder loop. We need those PHIs to also have a correct
3771 // value for the IV when arriving directly from the middle block.
3772 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3773                                        const InductionDescriptor &II,
3774                                        Value *CountRoundDown, Value *EndValue,
3775                                        BasicBlock *MiddleBlock) {
3776   // There are two kinds of external IV usages - those that use the value
3777   // computed in the last iteration (the PHI) and those that use the penultimate
3778   // value (the value that feeds into the phi from the loop latch).
3779   // We allow both, but they, obviously, have different values.
3780 
3781   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3782 
3783   DenseMap<Value *, Value *> MissingVals;
3784 
3785   // An external user of the last iteration's value should see the value that
3786   // the remainder loop uses to initialize its own IV.
3787   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3788   for (User *U : PostInc->users()) {
3789     Instruction *UI = cast<Instruction>(U);
3790     if (!OrigLoop->contains(UI)) {
3791       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3792       MissingVals[UI] = EndValue;
3793     }
3794   }
3795 
3796   // An external user of the penultimate value need to see EndValue - Step.
3797   // The simplest way to get this is to recompute it from the constituent SCEVs,
3798   // that is Start + (Step * (CRD - 1)).
3799   for (User *U : OrigPhi->users()) {
3800     auto *UI = cast<Instruction>(U);
3801     if (!OrigLoop->contains(UI)) {
3802       const DataLayout &DL =
3803           OrigLoop->getHeader()->getModule()->getDataLayout();
3804       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3805 
3806       IRBuilder<> B(MiddleBlock->getTerminator());
3807 
3808       // Fast-math-flags propagate from the original induction instruction.
3809       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3810         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3811 
3812       Value *CountMinusOne = B.CreateSub(
3813           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3814       Value *CMO =
3815           !II.getStep()->getType()->isIntegerTy()
3816               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3817                              II.getStep()->getType())
3818               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3819       CMO->setName("cast.cmo");
3820       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3821       Escape->setName("ind.escape");
3822       MissingVals[UI] = Escape;
3823     }
3824   }
3825 
3826   for (auto &I : MissingVals) {
3827     PHINode *PHI = cast<PHINode>(I.first);
3828     // One corner case we have to handle is two IVs "chasing" each-other,
3829     // that is %IV2 = phi [...], [ %IV1, %latch ]
3830     // In this case, if IV1 has an external use, we need to avoid adding both
3831     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3832     // don't already have an incoming value for the middle block.
3833     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3834       PHI->addIncoming(I.second, MiddleBlock);
3835   }
3836 }
3837 
3838 namespace {
3839 
3840 struct CSEDenseMapInfo {
3841   static bool canHandle(const Instruction *I) {
3842     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3843            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3844   }
3845 
3846   static inline Instruction *getEmptyKey() {
3847     return DenseMapInfo<Instruction *>::getEmptyKey();
3848   }
3849 
3850   static inline Instruction *getTombstoneKey() {
3851     return DenseMapInfo<Instruction *>::getTombstoneKey();
3852   }
3853 
3854   static unsigned getHashValue(const Instruction *I) {
3855     assert(canHandle(I) && "Unknown instruction!");
3856     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3857                                                            I->value_op_end()));
3858   }
3859 
3860   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3861     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3862         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3863       return LHS == RHS;
3864     return LHS->isIdenticalTo(RHS);
3865   }
3866 };
3867 
3868 } // end anonymous namespace
3869 
3870 ///Perform cse of induction variable instructions.
3871 static void cse(BasicBlock *BB) {
3872   // Perform simple cse.
3873   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3874   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3875     if (!CSEDenseMapInfo::canHandle(&In))
3876       continue;
3877 
3878     // Check if we can replace this instruction with any of the
3879     // visited instructions.
3880     if (Instruction *V = CSEMap.lookup(&In)) {
3881       In.replaceAllUsesWith(V);
3882       In.eraseFromParent();
3883       continue;
3884     }
3885 
3886     CSEMap[&In] = &In;
3887   }
3888 }
3889 
3890 InstructionCost
3891 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3892                                               bool &NeedToScalarize) const {
3893   Function *F = CI->getCalledFunction();
3894   Type *ScalarRetTy = CI->getType();
3895   SmallVector<Type *, 4> Tys, ScalarTys;
3896   for (auto &ArgOp : CI->args())
3897     ScalarTys.push_back(ArgOp->getType());
3898 
3899   // Estimate cost of scalarized vector call. The source operands are assumed
3900   // to be vectors, so we need to extract individual elements from there,
3901   // execute VF scalar calls, and then gather the result into the vector return
3902   // value.
3903   InstructionCost ScalarCallCost =
3904       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3905   if (VF.isScalar())
3906     return ScalarCallCost;
3907 
3908   // Compute corresponding vector type for return value and arguments.
3909   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3910   for (Type *ScalarTy : ScalarTys)
3911     Tys.push_back(ToVectorTy(ScalarTy, VF));
3912 
3913   // Compute costs of unpacking argument values for the scalar calls and
3914   // packing the return values to a vector.
3915   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3916 
3917   InstructionCost Cost =
3918       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3919 
3920   // If we can't emit a vector call for this function, then the currently found
3921   // cost is the cost we need to return.
3922   NeedToScalarize = true;
3923   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3924   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3925 
3926   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3927     return Cost;
3928 
3929   // If the corresponding vector cost is cheaper, return its cost.
3930   InstructionCost VectorCallCost =
3931       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3932   if (VectorCallCost < Cost) {
3933     NeedToScalarize = false;
3934     Cost = VectorCallCost;
3935   }
3936   return Cost;
3937 }
3938 
3939 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3940   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3941     return Elt;
3942   return VectorType::get(Elt, VF);
3943 }
3944 
3945 InstructionCost
3946 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3947                                                    ElementCount VF) const {
3948   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3949   assert(ID && "Expected intrinsic call!");
3950   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3951   FastMathFlags FMF;
3952   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3953     FMF = FPMO->getFastMathFlags();
3954 
3955   SmallVector<const Value *> Arguments(CI->args());
3956   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3957   SmallVector<Type *> ParamTys;
3958   std::transform(FTy->param_begin(), FTy->param_end(),
3959                  std::back_inserter(ParamTys),
3960                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3961 
3962   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3963                                     dyn_cast<IntrinsicInst>(CI));
3964   return TTI.getIntrinsicInstrCost(CostAttrs,
3965                                    TargetTransformInfo::TCK_RecipThroughput);
3966 }
3967 
3968 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3969   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3970   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3971   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3972 }
3973 
3974 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3975   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3976   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3977   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3978 }
3979 
3980 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3981   // For every instruction `I` in MinBWs, truncate the operands, create a
3982   // truncated version of `I` and reextend its result. InstCombine runs
3983   // later and will remove any ext/trunc pairs.
3984   SmallPtrSet<Value *, 4> Erased;
3985   for (const auto &KV : Cost->getMinimalBitwidths()) {
3986     // If the value wasn't vectorized, we must maintain the original scalar
3987     // type. The absence of the value from State indicates that it
3988     // wasn't vectorized.
3989     // FIXME: Should not rely on getVPValue at this point.
3990     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3991     if (!State.hasAnyVectorValue(Def))
3992       continue;
3993     for (unsigned Part = 0; Part < UF; ++Part) {
3994       Value *I = State.get(Def, Part);
3995       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3996         continue;
3997       Type *OriginalTy = I->getType();
3998       Type *ScalarTruncatedTy =
3999           IntegerType::get(OriginalTy->getContext(), KV.second);
4000       auto *TruncatedTy = VectorType::get(
4001           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4002       if (TruncatedTy == OriginalTy)
4003         continue;
4004 
4005       IRBuilder<> B(cast<Instruction>(I));
4006       auto ShrinkOperand = [&](Value *V) -> Value * {
4007         if (auto *ZI = dyn_cast<ZExtInst>(V))
4008           if (ZI->getSrcTy() == TruncatedTy)
4009             return ZI->getOperand(0);
4010         return B.CreateZExtOrTrunc(V, TruncatedTy);
4011       };
4012 
4013       // The actual instruction modification depends on the instruction type,
4014       // unfortunately.
4015       Value *NewI = nullptr;
4016       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4017         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4018                              ShrinkOperand(BO->getOperand(1)));
4019 
4020         // Any wrapping introduced by shrinking this operation shouldn't be
4021         // considered undefined behavior. So, we can't unconditionally copy
4022         // arithmetic wrapping flags to NewI.
4023         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4024       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4025         NewI =
4026             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4027                          ShrinkOperand(CI->getOperand(1)));
4028       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4029         NewI = B.CreateSelect(SI->getCondition(),
4030                               ShrinkOperand(SI->getTrueValue()),
4031                               ShrinkOperand(SI->getFalseValue()));
4032       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4033         switch (CI->getOpcode()) {
4034         default:
4035           llvm_unreachable("Unhandled cast!");
4036         case Instruction::Trunc:
4037           NewI = ShrinkOperand(CI->getOperand(0));
4038           break;
4039         case Instruction::SExt:
4040           NewI = B.CreateSExtOrTrunc(
4041               CI->getOperand(0),
4042               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4043           break;
4044         case Instruction::ZExt:
4045           NewI = B.CreateZExtOrTrunc(
4046               CI->getOperand(0),
4047               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4048           break;
4049         }
4050       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4051         auto Elements0 =
4052             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4053         auto *O0 = B.CreateZExtOrTrunc(
4054             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4055         auto Elements1 =
4056             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4057         auto *O1 = B.CreateZExtOrTrunc(
4058             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4059 
4060         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4061       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4062         // Don't do anything with the operands, just extend the result.
4063         continue;
4064       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4065         auto Elements =
4066             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4067         auto *O0 = B.CreateZExtOrTrunc(
4068             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4069         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4070         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4071       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4072         auto Elements =
4073             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4074         auto *O0 = B.CreateZExtOrTrunc(
4075             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4076         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4077       } else {
4078         // If we don't know what to do, be conservative and don't do anything.
4079         continue;
4080       }
4081 
4082       // Lastly, extend the result.
4083       NewI->takeName(cast<Instruction>(I));
4084       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4085       I->replaceAllUsesWith(Res);
4086       cast<Instruction>(I)->eraseFromParent();
4087       Erased.insert(I);
4088       State.reset(Def, Res, Part);
4089     }
4090   }
4091 
4092   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4093   for (const auto &KV : Cost->getMinimalBitwidths()) {
4094     // If the value wasn't vectorized, we must maintain the original scalar
4095     // type. The absence of the value from State indicates that it
4096     // wasn't vectorized.
4097     // FIXME: Should not rely on getVPValue at this point.
4098     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4099     if (!State.hasAnyVectorValue(Def))
4100       continue;
4101     for (unsigned Part = 0; Part < UF; ++Part) {
4102       Value *I = State.get(Def, Part);
4103       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4104       if (Inst && Inst->use_empty()) {
4105         Value *NewI = Inst->getOperand(0);
4106         Inst->eraseFromParent();
4107         State.reset(Def, NewI, Part);
4108       }
4109     }
4110   }
4111 }
4112 
4113 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4114   // Insert truncates and extends for any truncated instructions as hints to
4115   // InstCombine.
4116   if (VF.isVector())
4117     truncateToMinimalBitwidths(State);
4118 
4119   // Fix widened non-induction PHIs by setting up the PHI operands.
4120   if (OrigPHIsToFix.size()) {
4121     assert(EnableVPlanNativePath &&
4122            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4123     fixNonInductionPHIs(State);
4124   }
4125 
4126   // At this point every instruction in the original loop is widened to a
4127   // vector form. Now we need to fix the recurrences in the loop. These PHI
4128   // nodes are currently empty because we did not want to introduce cycles.
4129   // This is the second stage of vectorizing recurrences.
4130   fixCrossIterationPHIs(State);
4131 
4132   // Forget the original basic block.
4133   PSE.getSE()->forgetLoop(OrigLoop);
4134 
4135   // If we inserted an edge from the middle block to the unique exit block,
4136   // update uses outside the loop (phis) to account for the newly inserted
4137   // edge.
4138   if (!Cost->requiresScalarEpilogue(VF)) {
4139     // Fix-up external users of the induction variables.
4140     for (auto &Entry : Legal->getInductionVars())
4141       fixupIVUsers(Entry.first, Entry.second,
4142                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4143                    IVEndValues[Entry.first], LoopMiddleBlock);
4144 
4145     fixLCSSAPHIs(State);
4146   }
4147 
4148   for (Instruction *PI : PredicatedInstructions)
4149     sinkScalarOperands(&*PI);
4150 
4151   // Remove redundant induction instructions.
4152   cse(LoopVectorBody);
4153 
4154   // Set/update profile weights for the vector and remainder loops as original
4155   // loop iterations are now distributed among them. Note that original loop
4156   // represented by LoopScalarBody becomes remainder loop after vectorization.
4157   //
4158   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4159   // end up getting slightly roughened result but that should be OK since
4160   // profile is not inherently precise anyway. Note also possible bypass of
4161   // vector code caused by legality checks is ignored, assigning all the weight
4162   // to the vector loop, optimistically.
4163   //
4164   // For scalable vectorization we can't know at compile time how many iterations
4165   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4166   // vscale of '1'.
4167   setProfileInfoAfterUnrolling(
4168       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4169       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4170 }
4171 
4172 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4173   // In order to support recurrences we need to be able to vectorize Phi nodes.
4174   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4175   // stage #2: We now need to fix the recurrences by adding incoming edges to
4176   // the currently empty PHI nodes. At this point every instruction in the
4177   // original loop is widened to a vector form so we can use them to construct
4178   // the incoming edges.
4179   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4180   for (VPRecipeBase &R : Header->phis()) {
4181     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4182       fixReduction(ReductionPhi, State);
4183     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4184       fixFirstOrderRecurrence(FOR, State);
4185   }
4186 }
4187 
4188 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4189                                                   VPTransformState &State) {
4190   // This is the second phase of vectorizing first-order recurrences. An
4191   // overview of the transformation is described below. Suppose we have the
4192   // following loop.
4193   //
4194   //   for (int i = 0; i < n; ++i)
4195   //     b[i] = a[i] - a[i - 1];
4196   //
4197   // There is a first-order recurrence on "a". For this loop, the shorthand
4198   // scalar IR looks like:
4199   //
4200   //   scalar.ph:
4201   //     s_init = a[-1]
4202   //     br scalar.body
4203   //
4204   //   scalar.body:
4205   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4206   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4207   //     s2 = a[i]
4208   //     b[i] = s2 - s1
4209   //     br cond, scalar.body, ...
4210   //
4211   // In this example, s1 is a recurrence because it's value depends on the
4212   // previous iteration. In the first phase of vectorization, we created a
4213   // vector phi v1 for s1. We now complete the vectorization and produce the
4214   // shorthand vector IR shown below (for VF = 4, UF = 1).
4215   //
4216   //   vector.ph:
4217   //     v_init = vector(..., ..., ..., a[-1])
4218   //     br vector.body
4219   //
4220   //   vector.body
4221   //     i = phi [0, vector.ph], [i+4, vector.body]
4222   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4223   //     v2 = a[i, i+1, i+2, i+3];
4224   //     v3 = vector(v1(3), v2(0, 1, 2))
4225   //     b[i, i+1, i+2, i+3] = v2 - v3
4226   //     br cond, vector.body, middle.block
4227   //
4228   //   middle.block:
4229   //     x = v2(3)
4230   //     br scalar.ph
4231   //
4232   //   scalar.ph:
4233   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4234   //     br scalar.body
4235   //
4236   // After execution completes the vector loop, we extract the next value of
4237   // the recurrence (x) to use as the initial value in the scalar loop.
4238 
4239   // Extract the last vector element in the middle block. This will be the
4240   // initial value for the recurrence when jumping to the scalar loop.
4241   VPValue *PreviousDef = PhiR->getBackedgeValue();
4242   Value *Incoming = State.get(PreviousDef, UF - 1);
4243   auto *ExtractForScalar = Incoming;
4244   auto *IdxTy = Builder.getInt32Ty();
4245   if (VF.isVector()) {
4246     auto *One = ConstantInt::get(IdxTy, 1);
4247     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4248     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4249     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4250     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4251                                                     "vector.recur.extract");
4252   }
4253   // Extract the second last element in the middle block if the
4254   // Phi is used outside the loop. We need to extract the phi itself
4255   // and not the last element (the phi update in the current iteration). This
4256   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4257   // when the scalar loop is not run at all.
4258   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4259   if (VF.isVector()) {
4260     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4261     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4262     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4263         Incoming, Idx, "vector.recur.extract.for.phi");
4264   } else if (UF > 1)
4265     // When loop is unrolled without vectorizing, initialize
4266     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4267     // of `Incoming`. This is analogous to the vectorized case above: extracting
4268     // the second last element when VF > 1.
4269     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4270 
4271   // Fix the initial value of the original recurrence in the scalar loop.
4272   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4273   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4274   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4275   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4276   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4277     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4278     Start->addIncoming(Incoming, BB);
4279   }
4280 
4281   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4282   Phi->setName("scalar.recur");
4283 
4284   // Finally, fix users of the recurrence outside the loop. The users will need
4285   // either the last value of the scalar recurrence or the last value of the
4286   // vector recurrence we extracted in the middle block. Since the loop is in
4287   // LCSSA form, we just need to find all the phi nodes for the original scalar
4288   // recurrence in the exit block, and then add an edge for the middle block.
4289   // Note that LCSSA does not imply single entry when the original scalar loop
4290   // had multiple exiting edges (as we always run the last iteration in the
4291   // scalar epilogue); in that case, there is no edge from middle to exit and
4292   // and thus no phis which needed updated.
4293   if (!Cost->requiresScalarEpilogue(VF))
4294     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4295       if (any_of(LCSSAPhi.incoming_values(),
4296                  [Phi](Value *V) { return V == Phi; }))
4297         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4298 }
4299 
4300 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4301                                        VPTransformState &State) {
4302   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4303   // Get it's reduction variable descriptor.
4304   assert(Legal->isReductionVariable(OrigPhi) &&
4305          "Unable to find the reduction variable");
4306   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4307 
4308   RecurKind RK = RdxDesc.getRecurrenceKind();
4309   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4310   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4311   setDebugLocFromInst(ReductionStartValue);
4312 
4313   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4314   // This is the vector-clone of the value that leaves the loop.
4315   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4316 
4317   // Wrap flags are in general invalid after vectorization, clear them.
4318   clearReductionWrapFlags(RdxDesc, State);
4319 
4320   // Before each round, move the insertion point right between
4321   // the PHIs and the values we are going to write.
4322   // This allows us to write both PHINodes and the extractelement
4323   // instructions.
4324   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4325 
4326   setDebugLocFromInst(LoopExitInst);
4327 
4328   Type *PhiTy = OrigPhi->getType();
4329   // If tail is folded by masking, the vector value to leave the loop should be
4330   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4331   // instead of the former. For an inloop reduction the reduction will already
4332   // be predicated, and does not need to be handled here.
4333   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4334     for (unsigned Part = 0; Part < UF; ++Part) {
4335       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4336       Value *Sel = nullptr;
4337       for (User *U : VecLoopExitInst->users()) {
4338         if (isa<SelectInst>(U)) {
4339           assert(!Sel && "Reduction exit feeding two selects");
4340           Sel = U;
4341         } else
4342           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4343       }
4344       assert(Sel && "Reduction exit feeds no select");
4345       State.reset(LoopExitInstDef, Sel, Part);
4346 
4347       // If the target can create a predicated operator for the reduction at no
4348       // extra cost in the loop (for example a predicated vadd), it can be
4349       // cheaper for the select to remain in the loop than be sunk out of it,
4350       // and so use the select value for the phi instead of the old
4351       // LoopExitValue.
4352       if (PreferPredicatedReductionSelect ||
4353           TTI->preferPredicatedReductionSelect(
4354               RdxDesc.getOpcode(), PhiTy,
4355               TargetTransformInfo::ReductionFlags())) {
4356         auto *VecRdxPhi =
4357             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4358         VecRdxPhi->setIncomingValueForBlock(
4359             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4360       }
4361     }
4362   }
4363 
4364   // If the vector reduction can be performed in a smaller type, we truncate
4365   // then extend the loop exit value to enable InstCombine to evaluate the
4366   // entire expression in the smaller type.
4367   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4368     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4369     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4370     Builder.SetInsertPoint(
4371         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4372     VectorParts RdxParts(UF);
4373     for (unsigned Part = 0; Part < UF; ++Part) {
4374       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4375       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4376       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4377                                         : Builder.CreateZExt(Trunc, VecTy);
4378       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4379            UI != RdxParts[Part]->user_end();)
4380         if (*UI != Trunc) {
4381           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4382           RdxParts[Part] = Extnd;
4383         } else {
4384           ++UI;
4385         }
4386     }
4387     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4388     for (unsigned Part = 0; Part < UF; ++Part) {
4389       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4390       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4391     }
4392   }
4393 
4394   // Reduce all of the unrolled parts into a single vector.
4395   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4396   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4397 
4398   // The middle block terminator has already been assigned a DebugLoc here (the
4399   // OrigLoop's single latch terminator). We want the whole middle block to
4400   // appear to execute on this line because: (a) it is all compiler generated,
4401   // (b) these instructions are always executed after evaluating the latch
4402   // conditional branch, and (c) other passes may add new predecessors which
4403   // terminate on this line. This is the easiest way to ensure we don't
4404   // accidentally cause an extra step back into the loop while debugging.
4405   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4406   if (PhiR->isOrdered())
4407     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4408   else {
4409     // Floating-point operations should have some FMF to enable the reduction.
4410     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4411     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4412     for (unsigned Part = 1; Part < UF; ++Part) {
4413       Value *RdxPart = State.get(LoopExitInstDef, Part);
4414       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4415         ReducedPartRdx = Builder.CreateBinOp(
4416             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4417       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4418         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4419                                            ReducedPartRdx, RdxPart);
4420       else
4421         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4422     }
4423   }
4424 
4425   // Create the reduction after the loop. Note that inloop reductions create the
4426   // target reduction in the loop using a Reduction recipe.
4427   if (VF.isVector() && !PhiR->isInLoop()) {
4428     ReducedPartRdx =
4429         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4430     // If the reduction can be performed in a smaller type, we need to extend
4431     // the reduction to the wider type before we branch to the original loop.
4432     if (PhiTy != RdxDesc.getRecurrenceType())
4433       ReducedPartRdx = RdxDesc.isSigned()
4434                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4435                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4436   }
4437 
4438   // Create a phi node that merges control-flow from the backedge-taken check
4439   // block and the middle block.
4440   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4441                                         LoopScalarPreHeader->getTerminator());
4442   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4443     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4444   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4445 
4446   // Now, we need to fix the users of the reduction variable
4447   // inside and outside of the scalar remainder loop.
4448 
4449   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4450   // in the exit blocks.  See comment on analogous loop in
4451   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4452   if (!Cost->requiresScalarEpilogue(VF))
4453     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4454       if (any_of(LCSSAPhi.incoming_values(),
4455                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4456         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4457 
4458   // Fix the scalar loop reduction variable with the incoming reduction sum
4459   // from the vector body and from the backedge value.
4460   int IncomingEdgeBlockIdx =
4461       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4462   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4463   // Pick the other block.
4464   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4465   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4466   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4467 }
4468 
4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4470                                                   VPTransformState &State) {
4471   RecurKind RK = RdxDesc.getRecurrenceKind();
4472   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4473     return;
4474 
4475   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4476   assert(LoopExitInstr && "null loop exit instruction");
4477   SmallVector<Instruction *, 8> Worklist;
4478   SmallPtrSet<Instruction *, 8> Visited;
4479   Worklist.push_back(LoopExitInstr);
4480   Visited.insert(LoopExitInstr);
4481 
4482   while (!Worklist.empty()) {
4483     Instruction *Cur = Worklist.pop_back_val();
4484     if (isa<OverflowingBinaryOperator>(Cur))
4485       for (unsigned Part = 0; Part < UF; ++Part) {
4486         // FIXME: Should not rely on getVPValue at this point.
4487         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4488         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4489       }
4490 
4491     for (User *U : Cur->users()) {
4492       Instruction *UI = cast<Instruction>(U);
4493       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4494           Visited.insert(UI).second)
4495         Worklist.push_back(UI);
4496     }
4497   }
4498 }
4499 
4500 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4501   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4502     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4503       // Some phis were already hand updated by the reduction and recurrence
4504       // code above, leave them alone.
4505       continue;
4506 
4507     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4508     // Non-instruction incoming values will have only one value.
4509 
4510     VPLane Lane = VPLane::getFirstLane();
4511     if (isa<Instruction>(IncomingValue) &&
4512         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4513                                            VF))
4514       Lane = VPLane::getLastLaneForVF(VF);
4515 
4516     // Can be a loop invariant incoming value or the last scalar value to be
4517     // extracted from the vectorized loop.
4518     // FIXME: Should not rely on getVPValue at this point.
4519     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4520     Value *lastIncomingValue =
4521         OrigLoop->isLoopInvariant(IncomingValue)
4522             ? IncomingValue
4523             : State.get(State.Plan->getVPValue(IncomingValue, true),
4524                         VPIteration(UF - 1, Lane));
4525     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4526   }
4527 }
4528 
4529 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4530   // The basic block and loop containing the predicated instruction.
4531   auto *PredBB = PredInst->getParent();
4532   auto *VectorLoop = LI->getLoopFor(PredBB);
4533 
4534   // Initialize a worklist with the operands of the predicated instruction.
4535   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4536 
4537   // Holds instructions that we need to analyze again. An instruction may be
4538   // reanalyzed if we don't yet know if we can sink it or not.
4539   SmallVector<Instruction *, 8> InstsToReanalyze;
4540 
4541   // Returns true if a given use occurs in the predicated block. Phi nodes use
4542   // their operands in their corresponding predecessor blocks.
4543   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4544     auto *I = cast<Instruction>(U.getUser());
4545     BasicBlock *BB = I->getParent();
4546     if (auto *Phi = dyn_cast<PHINode>(I))
4547       BB = Phi->getIncomingBlock(
4548           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4549     return BB == PredBB;
4550   };
4551 
4552   // Iteratively sink the scalarized operands of the predicated instruction
4553   // into the block we created for it. When an instruction is sunk, it's
4554   // operands are then added to the worklist. The algorithm ends after one pass
4555   // through the worklist doesn't sink a single instruction.
4556   bool Changed;
4557   do {
4558     // Add the instructions that need to be reanalyzed to the worklist, and
4559     // reset the changed indicator.
4560     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4561     InstsToReanalyze.clear();
4562     Changed = false;
4563 
4564     while (!Worklist.empty()) {
4565       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4566 
4567       // We can't sink an instruction if it is a phi node, is not in the loop,
4568       // or may have side effects.
4569       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4570           I->mayHaveSideEffects())
4571         continue;
4572 
4573       // If the instruction is already in PredBB, check if we can sink its
4574       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4575       // sinking the scalar instruction I, hence it appears in PredBB; but it
4576       // may have failed to sink I's operands (recursively), which we try
4577       // (again) here.
4578       if (I->getParent() == PredBB) {
4579         Worklist.insert(I->op_begin(), I->op_end());
4580         continue;
4581       }
4582 
4583       // It's legal to sink the instruction if all its uses occur in the
4584       // predicated block. Otherwise, there's nothing to do yet, and we may
4585       // need to reanalyze the instruction.
4586       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4587         InstsToReanalyze.push_back(I);
4588         continue;
4589       }
4590 
4591       // Move the instruction to the beginning of the predicated block, and add
4592       // it's operands to the worklist.
4593       I->moveBefore(&*PredBB->getFirstInsertionPt());
4594       Worklist.insert(I->op_begin(), I->op_end());
4595 
4596       // The sinking may have enabled other instructions to be sunk, so we will
4597       // need to iterate.
4598       Changed = true;
4599     }
4600   } while (Changed);
4601 }
4602 
4603 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4604   for (PHINode *OrigPhi : OrigPHIsToFix) {
4605     VPWidenPHIRecipe *VPPhi =
4606         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4607     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4608     // Make sure the builder has a valid insert point.
4609     Builder.SetInsertPoint(NewPhi);
4610     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4611       VPValue *Inc = VPPhi->getIncomingValue(i);
4612       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4613       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4614     }
4615   }
4616 }
4617 
4618 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4619   return Cost->useOrderedReductions(RdxDesc);
4620 }
4621 
4622 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4623                                    VPUser &Operands, unsigned UF,
4624                                    ElementCount VF, bool IsPtrLoopInvariant,
4625                                    SmallBitVector &IsIndexLoopInvariant,
4626                                    VPTransformState &State) {
4627   // Construct a vector GEP by widening the operands of the scalar GEP as
4628   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4629   // results in a vector of pointers when at least one operand of the GEP
4630   // is vector-typed. Thus, to keep the representation compact, we only use
4631   // vector-typed operands for loop-varying values.
4632 
4633   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4634     // If we are vectorizing, but the GEP has only loop-invariant operands,
4635     // the GEP we build (by only using vector-typed operands for
4636     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4637     // produce a vector of pointers, we need to either arbitrarily pick an
4638     // operand to broadcast, or broadcast a clone of the original GEP.
4639     // Here, we broadcast a clone of the original.
4640     //
4641     // TODO: If at some point we decide to scalarize instructions having
4642     //       loop-invariant operands, this special case will no longer be
4643     //       required. We would add the scalarization decision to
4644     //       collectLoopScalars() and teach getVectorValue() to broadcast
4645     //       the lane-zero scalar value.
4646     auto *Clone = Builder.Insert(GEP->clone());
4647     for (unsigned Part = 0; Part < UF; ++Part) {
4648       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4649       State.set(VPDef, EntryPart, Part);
4650       addMetadata(EntryPart, GEP);
4651     }
4652   } else {
4653     // If the GEP has at least one loop-varying operand, we are sure to
4654     // produce a vector of pointers. But if we are only unrolling, we want
4655     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4656     // produce with the code below will be scalar (if VF == 1) or vector
4657     // (otherwise). Note that for the unroll-only case, we still maintain
4658     // values in the vector mapping with initVector, as we do for other
4659     // instructions.
4660     for (unsigned Part = 0; Part < UF; ++Part) {
4661       // The pointer operand of the new GEP. If it's loop-invariant, we
4662       // won't broadcast it.
4663       auto *Ptr = IsPtrLoopInvariant
4664                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4665                       : State.get(Operands.getOperand(0), Part);
4666 
4667       // Collect all the indices for the new GEP. If any index is
4668       // loop-invariant, we won't broadcast it.
4669       SmallVector<Value *, 4> Indices;
4670       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4671         VPValue *Operand = Operands.getOperand(I);
4672         if (IsIndexLoopInvariant[I - 1])
4673           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4674         else
4675           Indices.push_back(State.get(Operand, Part));
4676       }
4677 
4678       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4679       // but it should be a vector, otherwise.
4680       auto *NewGEP =
4681           GEP->isInBounds()
4682               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4683                                           Indices)
4684               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4685       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4686              "NewGEP is not a pointer vector");
4687       State.set(VPDef, NewGEP, Part);
4688       addMetadata(NewGEP, GEP);
4689     }
4690   }
4691 }
4692 
4693 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4694                                               VPWidenPHIRecipe *PhiR,
4695                                               VPTransformState &State) {
4696   PHINode *P = cast<PHINode>(PN);
4697   if (EnableVPlanNativePath) {
4698     // Currently we enter here in the VPlan-native path for non-induction
4699     // PHIs where all control flow is uniform. We simply widen these PHIs.
4700     // Create a vector phi with no operands - the vector phi operands will be
4701     // set at the end of vector code generation.
4702     Type *VecTy = (State.VF.isScalar())
4703                       ? PN->getType()
4704                       : VectorType::get(PN->getType(), State.VF);
4705     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4706     State.set(PhiR, VecPhi, 0);
4707     OrigPHIsToFix.push_back(P);
4708 
4709     return;
4710   }
4711 
4712   assert(PN->getParent() == OrigLoop->getHeader() &&
4713          "Non-header phis should have been handled elsewhere");
4714 
4715   // In order to support recurrences we need to be able to vectorize Phi nodes.
4716   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4717   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4718   // this value when we vectorize all of the instructions that use the PHI.
4719 
4720   assert(!Legal->isReductionVariable(P) &&
4721          "reductions should be handled elsewhere");
4722 
4723   setDebugLocFromInst(P);
4724 
4725   // This PHINode must be an induction variable.
4726   // Make sure that we know about it.
4727   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4728 
4729   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4730   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4731 
4732   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4733   // which can be found from the original scalar operations.
4734   switch (II.getKind()) {
4735   case InductionDescriptor::IK_NoInduction:
4736     llvm_unreachable("Unknown induction");
4737   case InductionDescriptor::IK_IntInduction:
4738   case InductionDescriptor::IK_FpInduction:
4739     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4740   case InductionDescriptor::IK_PtrInduction: {
4741     // Handle the pointer induction variable case.
4742     assert(P->getType()->isPointerTy() && "Unexpected type.");
4743 
4744     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4745       // This is the normalized GEP that starts counting at zero.
4746       Value *PtrInd =
4747           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4748       // Determine the number of scalars we need to generate for each unroll
4749       // iteration. If the instruction is uniform, we only need to generate the
4750       // first lane. Otherwise, we generate all VF values.
4751       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4752       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4753 
4754       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4755       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4756       if (NeedsVectorIndex) {
4757         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4758         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4759         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4760       }
4761 
4762       for (unsigned Part = 0; Part < UF; ++Part) {
4763         Value *PartStart = createStepForVF(
4764             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4765 
4766         if (NeedsVectorIndex) {
4767           // Here we cache the whole vector, which means we can support the
4768           // extraction of any lane. However, in some cases the extractelement
4769           // instruction that is generated for scalar uses of this vector (e.g.
4770           // a load instruction) is not folded away. Therefore we still
4771           // calculate values for the first n lanes to avoid redundant moves
4772           // (when extracting the 0th element) and to produce scalar code (i.e.
4773           // additional add/gep instructions instead of expensive extractelement
4774           // instructions) when extracting higher-order elements.
4775           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4776           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4777           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4778           Value *SclrGep =
4779               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4780           SclrGep->setName("next.gep");
4781           State.set(PhiR, SclrGep, Part);
4782         }
4783 
4784         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4785           Value *Idx = Builder.CreateAdd(
4786               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4787           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4788           Value *SclrGep =
4789               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4790           SclrGep->setName("next.gep");
4791           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4792         }
4793       }
4794       return;
4795     }
4796     assert(isa<SCEVConstant>(II.getStep()) &&
4797            "Induction step not a SCEV constant!");
4798     Type *PhiType = II.getStep()->getType();
4799 
4800     // Build a pointer phi
4801     Value *ScalarStartValue = II.getStartValue();
4802     Type *ScStValueType = ScalarStartValue->getType();
4803     PHINode *NewPointerPhi =
4804         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4805     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4806 
4807     // A pointer induction, performed by using a gep
4808     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4809     Instruction *InductionLoc = LoopLatch->getTerminator();
4810     const SCEV *ScalarStep = II.getStep();
4811     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4812     Value *ScalarStepValue =
4813         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4814     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4815     Value *NumUnrolledElems =
4816         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4817     Value *InductionGEP = GetElementPtrInst::Create(
4818         II.getElementType(), NewPointerPhi,
4819         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4820         InductionLoc);
4821     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4822 
4823     // Create UF many actual address geps that use the pointer
4824     // phi as base and a vectorized version of the step value
4825     // (<step*0, ..., step*N>) as offset.
4826     for (unsigned Part = 0; Part < State.UF; ++Part) {
4827       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4828       Value *StartOffsetScalar =
4829           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4830       Value *StartOffset =
4831           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4832       // Create a vector of consecutive numbers from zero to VF.
4833       StartOffset =
4834           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4835 
4836       Value *GEP = Builder.CreateGEP(
4837           II.getElementType(), NewPointerPhi,
4838           Builder.CreateMul(
4839               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4840               "vector.gep"));
4841       State.set(PhiR, GEP, Part);
4842     }
4843   }
4844   }
4845 }
4846 
4847 /// A helper function for checking whether an integer division-related
4848 /// instruction may divide by zero (in which case it must be predicated if
4849 /// executed conditionally in the scalar code).
4850 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4851 /// Non-zero divisors that are non compile-time constants will not be
4852 /// converted into multiplication, so we will still end up scalarizing
4853 /// the division, but can do so w/o predication.
4854 static bool mayDivideByZero(Instruction &I) {
4855   assert((I.getOpcode() == Instruction::UDiv ||
4856           I.getOpcode() == Instruction::SDiv ||
4857           I.getOpcode() == Instruction::URem ||
4858           I.getOpcode() == Instruction::SRem) &&
4859          "Unexpected instruction");
4860   Value *Divisor = I.getOperand(1);
4861   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4862   return !CInt || CInt->isZero();
4863 }
4864 
4865 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4866                                            VPUser &User,
4867                                            VPTransformState &State) {
4868   switch (I.getOpcode()) {
4869   case Instruction::Call:
4870   case Instruction::Br:
4871   case Instruction::PHI:
4872   case Instruction::GetElementPtr:
4873   case Instruction::Select:
4874     llvm_unreachable("This instruction is handled by a different recipe.");
4875   case Instruction::UDiv:
4876   case Instruction::SDiv:
4877   case Instruction::SRem:
4878   case Instruction::URem:
4879   case Instruction::Add:
4880   case Instruction::FAdd:
4881   case Instruction::Sub:
4882   case Instruction::FSub:
4883   case Instruction::FNeg:
4884   case Instruction::Mul:
4885   case Instruction::FMul:
4886   case Instruction::FDiv:
4887   case Instruction::FRem:
4888   case Instruction::Shl:
4889   case Instruction::LShr:
4890   case Instruction::AShr:
4891   case Instruction::And:
4892   case Instruction::Or:
4893   case Instruction::Xor: {
4894     // Just widen unops and binops.
4895     setDebugLocFromInst(&I);
4896 
4897     for (unsigned Part = 0; Part < UF; ++Part) {
4898       SmallVector<Value *, 2> Ops;
4899       for (VPValue *VPOp : User.operands())
4900         Ops.push_back(State.get(VPOp, Part));
4901 
4902       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4903 
4904       if (auto *VecOp = dyn_cast<Instruction>(V))
4905         VecOp->copyIRFlags(&I);
4906 
4907       // Use this vector value for all users of the original instruction.
4908       State.set(Def, V, Part);
4909       addMetadata(V, &I);
4910     }
4911 
4912     break;
4913   }
4914   case Instruction::ICmp:
4915   case Instruction::FCmp: {
4916     // Widen compares. Generate vector compares.
4917     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4918     auto *Cmp = cast<CmpInst>(&I);
4919     setDebugLocFromInst(Cmp);
4920     for (unsigned Part = 0; Part < UF; ++Part) {
4921       Value *A = State.get(User.getOperand(0), Part);
4922       Value *B = State.get(User.getOperand(1), Part);
4923       Value *C = nullptr;
4924       if (FCmp) {
4925         // Propagate fast math flags.
4926         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4927         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4928         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4929       } else {
4930         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4931       }
4932       State.set(Def, C, Part);
4933       addMetadata(C, &I);
4934     }
4935 
4936     break;
4937   }
4938 
4939   case Instruction::ZExt:
4940   case Instruction::SExt:
4941   case Instruction::FPToUI:
4942   case Instruction::FPToSI:
4943   case Instruction::FPExt:
4944   case Instruction::PtrToInt:
4945   case Instruction::IntToPtr:
4946   case Instruction::SIToFP:
4947   case Instruction::UIToFP:
4948   case Instruction::Trunc:
4949   case Instruction::FPTrunc:
4950   case Instruction::BitCast: {
4951     auto *CI = cast<CastInst>(&I);
4952     setDebugLocFromInst(CI);
4953 
4954     /// Vectorize casts.
4955     Type *DestTy =
4956         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4957 
4958     for (unsigned Part = 0; Part < UF; ++Part) {
4959       Value *A = State.get(User.getOperand(0), Part);
4960       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4961       State.set(Def, Cast, Part);
4962       addMetadata(Cast, &I);
4963     }
4964     break;
4965   }
4966   default:
4967     // This instruction is not vectorized by simple widening.
4968     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4969     llvm_unreachable("Unhandled instruction!");
4970   } // end of switch.
4971 }
4972 
4973 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4974                                                VPUser &ArgOperands,
4975                                                VPTransformState &State) {
4976   assert(!isa<DbgInfoIntrinsic>(I) &&
4977          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4978   setDebugLocFromInst(&I);
4979 
4980   Module *M = I.getParent()->getParent()->getParent();
4981   auto *CI = cast<CallInst>(&I);
4982 
4983   SmallVector<Type *, 4> Tys;
4984   for (Value *ArgOperand : CI->args())
4985     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4986 
4987   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4988 
4989   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4990   // version of the instruction.
4991   // Is it beneficial to perform intrinsic call compared to lib call?
4992   bool NeedToScalarize = false;
4993   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4994   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4995   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4996   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4997          "Instruction should be scalarized elsewhere.");
4998   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4999          "Either the intrinsic cost or vector call cost must be valid");
5000 
5001   for (unsigned Part = 0; Part < UF; ++Part) {
5002     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5003     SmallVector<Value *, 4> Args;
5004     for (auto &I : enumerate(ArgOperands.operands())) {
5005       // Some intrinsics have a scalar argument - don't replace it with a
5006       // vector.
5007       Value *Arg;
5008       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5009         Arg = State.get(I.value(), Part);
5010       else {
5011         Arg = State.get(I.value(), VPIteration(0, 0));
5012         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5013           TysForDecl.push_back(Arg->getType());
5014       }
5015       Args.push_back(Arg);
5016     }
5017 
5018     Function *VectorF;
5019     if (UseVectorIntrinsic) {
5020       // Use vector version of the intrinsic.
5021       if (VF.isVector())
5022         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5023       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5024       assert(VectorF && "Can't retrieve vector intrinsic.");
5025     } else {
5026       // Use vector version of the function call.
5027       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5028 #ifndef NDEBUG
5029       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5030              "Can't create vector function.");
5031 #endif
5032         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5033     }
5034       SmallVector<OperandBundleDef, 1> OpBundles;
5035       CI->getOperandBundlesAsDefs(OpBundles);
5036       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5037 
5038       if (isa<FPMathOperator>(V))
5039         V->copyFastMathFlags(CI);
5040 
5041       State.set(Def, V, Part);
5042       addMetadata(V, &I);
5043   }
5044 }
5045 
5046 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5047                                                  VPUser &Operands,
5048                                                  bool InvariantCond,
5049                                                  VPTransformState &State) {
5050   setDebugLocFromInst(&I);
5051 
5052   // The condition can be loop invariant  but still defined inside the
5053   // loop. This means that we can't just use the original 'cond' value.
5054   // We have to take the 'vectorized' value and pick the first lane.
5055   // Instcombine will make this a no-op.
5056   auto *InvarCond = InvariantCond
5057                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5058                         : nullptr;
5059 
5060   for (unsigned Part = 0; Part < UF; ++Part) {
5061     Value *Cond =
5062         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5063     Value *Op0 = State.get(Operands.getOperand(1), Part);
5064     Value *Op1 = State.get(Operands.getOperand(2), Part);
5065     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5066     State.set(VPDef, Sel, Part);
5067     addMetadata(Sel, &I);
5068   }
5069 }
5070 
5071 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5072   // We should not collect Scalars more than once per VF. Right now, this
5073   // function is called from collectUniformsAndScalars(), which already does
5074   // this check. Collecting Scalars for VF=1 does not make any sense.
5075   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5076          "This function should not be visited twice for the same VF");
5077 
5078   SmallSetVector<Instruction *, 8> Worklist;
5079 
5080   // These sets are used to seed the analysis with pointers used by memory
5081   // accesses that will remain scalar.
5082   SmallSetVector<Instruction *, 8> ScalarPtrs;
5083   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5084   auto *Latch = TheLoop->getLoopLatch();
5085 
5086   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5087   // The pointer operands of loads and stores will be scalar as long as the
5088   // memory access is not a gather or scatter operation. The value operand of a
5089   // store will remain scalar if the store is scalarized.
5090   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5091     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5092     assert(WideningDecision != CM_Unknown &&
5093            "Widening decision should be ready at this moment");
5094     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5095       if (Ptr == Store->getValueOperand())
5096         return WideningDecision == CM_Scalarize;
5097     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5098            "Ptr is neither a value or pointer operand");
5099     return WideningDecision != CM_GatherScatter;
5100   };
5101 
5102   // A helper that returns true if the given value is a bitcast or
5103   // getelementptr instruction contained in the loop.
5104   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5105     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5106             isa<GetElementPtrInst>(V)) &&
5107            !TheLoop->isLoopInvariant(V);
5108   };
5109 
5110   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5111     if (!isa<PHINode>(Ptr) ||
5112         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5113       return false;
5114     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5115     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5116       return false;
5117     return isScalarUse(MemAccess, Ptr);
5118   };
5119 
5120   // A helper that evaluates a memory access's use of a pointer. If the
5121   // pointer is actually the pointer induction of a loop, it is being
5122   // inserted into Worklist. If the use will be a scalar use, and the
5123   // pointer is only used by memory accesses, we place the pointer in
5124   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5125   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5126     if (isScalarPtrInduction(MemAccess, Ptr)) {
5127       Worklist.insert(cast<Instruction>(Ptr));
5128       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5129                         << "\n");
5130 
5131       Instruction *Update = cast<Instruction>(
5132           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5133 
5134       // If there is more than one user of Update (Ptr), we shouldn't assume it
5135       // will be scalar after vectorisation as other users of the instruction
5136       // may require widening. Otherwise, add it to ScalarPtrs.
5137       if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) {
5138         ScalarPtrs.insert(Update);
5139         return;
5140       }
5141     }
5142     // We only care about bitcast and getelementptr instructions contained in
5143     // the loop.
5144     if (!isLoopVaryingBitCastOrGEP(Ptr))
5145       return;
5146 
5147     // If the pointer has already been identified as scalar (e.g., if it was
5148     // also identified as uniform), there's nothing to do.
5149     auto *I = cast<Instruction>(Ptr);
5150     if (Worklist.count(I))
5151       return;
5152 
5153     // If the use of the pointer will be a scalar use, and all users of the
5154     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5155     // place the pointer in PossibleNonScalarPtrs.
5156     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5157           return isa<LoadInst>(U) || isa<StoreInst>(U);
5158         }))
5159       ScalarPtrs.insert(I);
5160     else
5161       PossibleNonScalarPtrs.insert(I);
5162   };
5163 
5164   // We seed the scalars analysis with three classes of instructions: (1)
5165   // instructions marked uniform-after-vectorization and (2) bitcast,
5166   // getelementptr and (pointer) phi instructions used by memory accesses
5167   // requiring a scalar use.
5168   //
5169   // (1) Add to the worklist all instructions that have been identified as
5170   // uniform-after-vectorization.
5171   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5172 
5173   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5174   // memory accesses requiring a scalar use. The pointer operands of loads and
5175   // stores will be scalar as long as the memory accesses is not a gather or
5176   // scatter operation. The value operand of a store will remain scalar if the
5177   // store is scalarized.
5178   for (auto *BB : TheLoop->blocks())
5179     for (auto &I : *BB) {
5180       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5181         evaluatePtrUse(Load, Load->getPointerOperand());
5182       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5183         evaluatePtrUse(Store, Store->getPointerOperand());
5184         evaluatePtrUse(Store, Store->getValueOperand());
5185       }
5186     }
5187   for (auto *I : ScalarPtrs)
5188     if (!PossibleNonScalarPtrs.count(I)) {
5189       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5190       Worklist.insert(I);
5191     }
5192 
5193   // Insert the forced scalars.
5194   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5195   // induction variable when the PHI user is scalarized.
5196   auto ForcedScalar = ForcedScalars.find(VF);
5197   if (ForcedScalar != ForcedScalars.end())
5198     for (auto *I : ForcedScalar->second)
5199       Worklist.insert(I);
5200 
5201   // Expand the worklist by looking through any bitcasts and getelementptr
5202   // instructions we've already identified as scalar. This is similar to the
5203   // expansion step in collectLoopUniforms(); however, here we're only
5204   // expanding to include additional bitcasts and getelementptr instructions.
5205   unsigned Idx = 0;
5206   while (Idx != Worklist.size()) {
5207     Instruction *Dst = Worklist[Idx++];
5208     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5209       continue;
5210     auto *Src = cast<Instruction>(Dst->getOperand(0));
5211     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5212           auto *J = cast<Instruction>(U);
5213           return !TheLoop->contains(J) || Worklist.count(J) ||
5214                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5215                   isScalarUse(J, Src));
5216         })) {
5217       Worklist.insert(Src);
5218       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5219     }
5220   }
5221 
5222   // An induction variable will remain scalar if all users of the induction
5223   // variable and induction variable update remain scalar.
5224   for (auto &Induction : Legal->getInductionVars()) {
5225     auto *Ind = Induction.first;
5226     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5227 
5228     // If tail-folding is applied, the primary induction variable will be used
5229     // to feed a vector compare.
5230     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5231       continue;
5232 
5233     // Determine if all users of the induction variable are scalar after
5234     // vectorization.
5235     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5236       auto *I = cast<Instruction>(U);
5237       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5238     });
5239     if (!ScalarInd)
5240       continue;
5241 
5242     // Determine if all users of the induction variable update instruction are
5243     // scalar after vectorization.
5244     auto ScalarIndUpdate =
5245         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5246           auto *I = cast<Instruction>(U);
5247           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5248         });
5249     if (!ScalarIndUpdate)
5250       continue;
5251 
5252     // The induction variable and its update instruction will remain scalar.
5253     Worklist.insert(Ind);
5254     Worklist.insert(IndUpdate);
5255     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5256     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5257                       << "\n");
5258   }
5259 
5260   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5261 }
5262 
5263 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5264   if (!blockNeedsPredication(I->getParent()))
5265     return false;
5266   switch(I->getOpcode()) {
5267   default:
5268     break;
5269   case Instruction::Load:
5270   case Instruction::Store: {
5271     if (!Legal->isMaskRequired(I))
5272       return false;
5273     auto *Ptr = getLoadStorePointerOperand(I);
5274     auto *Ty = getLoadStoreType(I);
5275     const Align Alignment = getLoadStoreAlignment(I);
5276     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5277                                 TTI.isLegalMaskedGather(Ty, Alignment))
5278                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5279                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5280   }
5281   case Instruction::UDiv:
5282   case Instruction::SDiv:
5283   case Instruction::SRem:
5284   case Instruction::URem:
5285     return mayDivideByZero(*I);
5286   }
5287   return false;
5288 }
5289 
5290 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5291     Instruction *I, ElementCount VF) {
5292   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5293   assert(getWideningDecision(I, VF) == CM_Unknown &&
5294          "Decision should not be set yet.");
5295   auto *Group = getInterleavedAccessGroup(I);
5296   assert(Group && "Must have a group.");
5297 
5298   // If the instruction's allocated size doesn't equal it's type size, it
5299   // requires padding and will be scalarized.
5300   auto &DL = I->getModule()->getDataLayout();
5301   auto *ScalarTy = getLoadStoreType(I);
5302   if (hasIrregularType(ScalarTy, DL))
5303     return false;
5304 
5305   // Check if masking is required.
5306   // A Group may need masking for one of two reasons: it resides in a block that
5307   // needs predication, or it was decided to use masking to deal with gaps
5308   // (either a gap at the end of a load-access that may result in a speculative
5309   // load, or any gaps in a store-access).
5310   bool PredicatedAccessRequiresMasking =
5311       blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5312   bool LoadAccessWithGapsRequiresEpilogMasking =
5313       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5314       !isScalarEpilogueAllowed();
5315   bool StoreAccessWithGapsRequiresMasking =
5316       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5317   if (!PredicatedAccessRequiresMasking &&
5318       !LoadAccessWithGapsRequiresEpilogMasking &&
5319       !StoreAccessWithGapsRequiresMasking)
5320     return true;
5321 
5322   // If masked interleaving is required, we expect that the user/target had
5323   // enabled it, because otherwise it either wouldn't have been created or
5324   // it should have been invalidated by the CostModel.
5325   assert(useMaskedInterleavedAccesses(TTI) &&
5326          "Masked interleave-groups for predicated accesses are not enabled.");
5327 
5328   auto *Ty = getLoadStoreType(I);
5329   const Align Alignment = getLoadStoreAlignment(I);
5330   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5331                           : TTI.isLegalMaskedStore(Ty, Alignment);
5332 }
5333 
5334 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5335     Instruction *I, ElementCount VF) {
5336   // Get and ensure we have a valid memory instruction.
5337   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5338 
5339   auto *Ptr = getLoadStorePointerOperand(I);
5340   auto *ScalarTy = getLoadStoreType(I);
5341 
5342   // In order to be widened, the pointer should be consecutive, first of all.
5343   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5344     return false;
5345 
5346   // If the instruction is a store located in a predicated block, it will be
5347   // scalarized.
5348   if (isScalarWithPredication(I))
5349     return false;
5350 
5351   // If the instruction's allocated size doesn't equal it's type size, it
5352   // requires padding and will be scalarized.
5353   auto &DL = I->getModule()->getDataLayout();
5354   if (hasIrregularType(ScalarTy, DL))
5355     return false;
5356 
5357   return true;
5358 }
5359 
5360 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5361   // We should not collect Uniforms more than once per VF. Right now,
5362   // this function is called from collectUniformsAndScalars(), which
5363   // already does this check. Collecting Uniforms for VF=1 does not make any
5364   // sense.
5365 
5366   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5367          "This function should not be visited twice for the same VF");
5368 
5369   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5370   // not analyze again.  Uniforms.count(VF) will return 1.
5371   Uniforms[VF].clear();
5372 
5373   // We now know that the loop is vectorizable!
5374   // Collect instructions inside the loop that will remain uniform after
5375   // vectorization.
5376 
5377   // Global values, params and instructions outside of current loop are out of
5378   // scope.
5379   auto isOutOfScope = [&](Value *V) -> bool {
5380     Instruction *I = dyn_cast<Instruction>(V);
5381     return (!I || !TheLoop->contains(I));
5382   };
5383 
5384   SetVector<Instruction *> Worklist;
5385   BasicBlock *Latch = TheLoop->getLoopLatch();
5386 
5387   // Instructions that are scalar with predication must not be considered
5388   // uniform after vectorization, because that would create an erroneous
5389   // replicating region where only a single instance out of VF should be formed.
5390   // TODO: optimize such seldom cases if found important, see PR40816.
5391   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5392     if (isOutOfScope(I)) {
5393       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5394                         << *I << "\n");
5395       return;
5396     }
5397     if (isScalarWithPredication(I)) {
5398       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5399                         << *I << "\n");
5400       return;
5401     }
5402     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5403     Worklist.insert(I);
5404   };
5405 
5406   // Start with the conditional branch. If the branch condition is an
5407   // instruction contained in the loop that is only used by the branch, it is
5408   // uniform.
5409   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5410   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5411     addToWorklistIfAllowed(Cmp);
5412 
5413   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5414     InstWidening WideningDecision = getWideningDecision(I, VF);
5415     assert(WideningDecision != CM_Unknown &&
5416            "Widening decision should be ready at this moment");
5417 
5418     // A uniform memory op is itself uniform.  We exclude uniform stores
5419     // here as they demand the last lane, not the first one.
5420     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5421       assert(WideningDecision == CM_Scalarize);
5422       return true;
5423     }
5424 
5425     return (WideningDecision == CM_Widen ||
5426             WideningDecision == CM_Widen_Reverse ||
5427             WideningDecision == CM_Interleave);
5428   };
5429 
5430 
5431   // Returns true if Ptr is the pointer operand of a memory access instruction
5432   // I, and I is known to not require scalarization.
5433   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5434     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5435   };
5436 
5437   // Holds a list of values which are known to have at least one uniform use.
5438   // Note that there may be other uses which aren't uniform.  A "uniform use"
5439   // here is something which only demands lane 0 of the unrolled iterations;
5440   // it does not imply that all lanes produce the same value (e.g. this is not
5441   // the usual meaning of uniform)
5442   SetVector<Value *> HasUniformUse;
5443 
5444   // Scan the loop for instructions which are either a) known to have only
5445   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5446   for (auto *BB : TheLoop->blocks())
5447     for (auto &I : *BB) {
5448       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5449         switch (II->getIntrinsicID()) {
5450         case Intrinsic::sideeffect:
5451         case Intrinsic::experimental_noalias_scope_decl:
5452         case Intrinsic::assume:
5453         case Intrinsic::lifetime_start:
5454         case Intrinsic::lifetime_end:
5455           if (TheLoop->hasLoopInvariantOperands(&I))
5456             addToWorklistIfAllowed(&I);
5457           break;
5458         default:
5459           break;
5460         }
5461       }
5462 
5463       // ExtractValue instructions must be uniform, because the operands are
5464       // known to be loop-invariant.
5465       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5466         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5467                "Expected aggregate value to be loop invariant");
5468         addToWorklistIfAllowed(EVI);
5469         continue;
5470       }
5471 
5472       // If there's no pointer operand, there's nothing to do.
5473       auto *Ptr = getLoadStorePointerOperand(&I);
5474       if (!Ptr)
5475         continue;
5476 
5477       // A uniform memory op is itself uniform.  We exclude uniform stores
5478       // here as they demand the last lane, not the first one.
5479       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5480         addToWorklistIfAllowed(&I);
5481 
5482       if (isUniformDecision(&I, VF)) {
5483         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5484         HasUniformUse.insert(Ptr);
5485       }
5486     }
5487 
5488   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5489   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5490   // disallows uses outside the loop as well.
5491   for (auto *V : HasUniformUse) {
5492     if (isOutOfScope(V))
5493       continue;
5494     auto *I = cast<Instruction>(V);
5495     auto UsersAreMemAccesses =
5496       llvm::all_of(I->users(), [&](User *U) -> bool {
5497         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5498       });
5499     if (UsersAreMemAccesses)
5500       addToWorklistIfAllowed(I);
5501   }
5502 
5503   // Expand Worklist in topological order: whenever a new instruction
5504   // is added , its users should be already inside Worklist.  It ensures
5505   // a uniform instruction will only be used by uniform instructions.
5506   unsigned idx = 0;
5507   while (idx != Worklist.size()) {
5508     Instruction *I = Worklist[idx++];
5509 
5510     for (auto OV : I->operand_values()) {
5511       // isOutOfScope operands cannot be uniform instructions.
5512       if (isOutOfScope(OV))
5513         continue;
5514       // First order recurrence Phi's should typically be considered
5515       // non-uniform.
5516       auto *OP = dyn_cast<PHINode>(OV);
5517       if (OP && Legal->isFirstOrderRecurrence(OP))
5518         continue;
5519       // If all the users of the operand are uniform, then add the
5520       // operand into the uniform worklist.
5521       auto *OI = cast<Instruction>(OV);
5522       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5523             auto *J = cast<Instruction>(U);
5524             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5525           }))
5526         addToWorklistIfAllowed(OI);
5527     }
5528   }
5529 
5530   // For an instruction to be added into Worklist above, all its users inside
5531   // the loop should also be in Worklist. However, this condition cannot be
5532   // true for phi nodes that form a cyclic dependence. We must process phi
5533   // nodes separately. An induction variable will remain uniform if all users
5534   // of the induction variable and induction variable update remain uniform.
5535   // The code below handles both pointer and non-pointer induction variables.
5536   for (auto &Induction : Legal->getInductionVars()) {
5537     auto *Ind = Induction.first;
5538     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5539 
5540     // Determine if all users of the induction variable are uniform after
5541     // vectorization.
5542     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5543       auto *I = cast<Instruction>(U);
5544       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5545              isVectorizedMemAccessUse(I, Ind);
5546     });
5547     if (!UniformInd)
5548       continue;
5549 
5550     // Determine if all users of the induction variable update instruction are
5551     // uniform after vectorization.
5552     auto UniformIndUpdate =
5553         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5554           auto *I = cast<Instruction>(U);
5555           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5556                  isVectorizedMemAccessUse(I, IndUpdate);
5557         });
5558     if (!UniformIndUpdate)
5559       continue;
5560 
5561     // The induction variable and its update instruction will remain uniform.
5562     addToWorklistIfAllowed(Ind);
5563     addToWorklistIfAllowed(IndUpdate);
5564   }
5565 
5566   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5567 }
5568 
5569 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5570   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5571 
5572   if (Legal->getRuntimePointerChecking()->Need) {
5573     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5574         "runtime pointer checks needed. Enable vectorization of this "
5575         "loop with '#pragma clang loop vectorize(enable)' when "
5576         "compiling with -Os/-Oz",
5577         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5578     return true;
5579   }
5580 
5581   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5582     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5583         "runtime SCEV checks needed. Enable vectorization of this "
5584         "loop with '#pragma clang loop vectorize(enable)' when "
5585         "compiling with -Os/-Oz",
5586         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5587     return true;
5588   }
5589 
5590   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5591   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5592     reportVectorizationFailure("Runtime stride check for small trip count",
5593         "runtime stride == 1 checks needed. Enable vectorization of "
5594         "this loop without such check by compiling with -Os/-Oz",
5595         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5596     return true;
5597   }
5598 
5599   return false;
5600 }
5601 
5602 ElementCount
5603 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5604   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5605     return ElementCount::getScalable(0);
5606 
5607   if (Hints->isScalableVectorizationDisabled()) {
5608     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5609                             "ScalableVectorizationDisabled", ORE, TheLoop);
5610     return ElementCount::getScalable(0);
5611   }
5612 
5613   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5614 
5615   auto MaxScalableVF = ElementCount::getScalable(
5616       std::numeric_limits<ElementCount::ScalarTy>::max());
5617 
5618   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5619   // FIXME: While for scalable vectors this is currently sufficient, this should
5620   // be replaced by a more detailed mechanism that filters out specific VFs,
5621   // instead of invalidating vectorization for a whole set of VFs based on the
5622   // MaxVF.
5623 
5624   // Disable scalable vectorization if the loop contains unsupported reductions.
5625   if (!canVectorizeReductions(MaxScalableVF)) {
5626     reportVectorizationInfo(
5627         "Scalable vectorization not supported for the reduction "
5628         "operations found in this loop.",
5629         "ScalableVFUnfeasible", ORE, TheLoop);
5630     return ElementCount::getScalable(0);
5631   }
5632 
5633   // Disable scalable vectorization if the loop contains any instructions
5634   // with element types not supported for scalable vectors.
5635   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5636         return !Ty->isVoidTy() &&
5637                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5638       })) {
5639     reportVectorizationInfo("Scalable vectorization is not supported "
5640                             "for all element types found in this loop.",
5641                             "ScalableVFUnfeasible", ORE, TheLoop);
5642     return ElementCount::getScalable(0);
5643   }
5644 
5645   if (Legal->isSafeForAnyVectorWidth())
5646     return MaxScalableVF;
5647 
5648   // Limit MaxScalableVF by the maximum safe dependence distance.
5649   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5650   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5651     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5652                              .getVScaleRangeArgs()
5653                              .second;
5654     if (VScaleMax > 0)
5655       MaxVScale = VScaleMax;
5656   }
5657   MaxScalableVF = ElementCount::getScalable(
5658       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5659   if (!MaxScalableVF)
5660     reportVectorizationInfo(
5661         "Max legal vector width too small, scalable vectorization "
5662         "unfeasible.",
5663         "ScalableVFUnfeasible", ORE, TheLoop);
5664 
5665   return MaxScalableVF;
5666 }
5667 
5668 FixedScalableVFPair
5669 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5670                                                  ElementCount UserVF) {
5671   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5672   unsigned SmallestType, WidestType;
5673   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5674 
5675   // Get the maximum safe dependence distance in bits computed by LAA.
5676   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5677   // the memory accesses that is most restrictive (involved in the smallest
5678   // dependence distance).
5679   unsigned MaxSafeElements =
5680       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5681 
5682   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5683   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5684 
5685   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5686                     << ".\n");
5687   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5688                     << ".\n");
5689 
5690   // First analyze the UserVF, fall back if the UserVF should be ignored.
5691   if (UserVF) {
5692     auto MaxSafeUserVF =
5693         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5694 
5695     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5696       // If `VF=vscale x N` is safe, then so is `VF=N`
5697       if (UserVF.isScalable())
5698         return FixedScalableVFPair(
5699             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5700       else
5701         return UserVF;
5702     }
5703 
5704     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5705 
5706     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5707     // is better to ignore the hint and let the compiler choose a suitable VF.
5708     if (!UserVF.isScalable()) {
5709       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5710                         << " is unsafe, clamping to max safe VF="
5711                         << MaxSafeFixedVF << ".\n");
5712       ORE->emit([&]() {
5713         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5714                                           TheLoop->getStartLoc(),
5715                                           TheLoop->getHeader())
5716                << "User-specified vectorization factor "
5717                << ore::NV("UserVectorizationFactor", UserVF)
5718                << " is unsafe, clamping to maximum safe vectorization factor "
5719                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5720       });
5721       return MaxSafeFixedVF;
5722     }
5723 
5724     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5725       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5726                         << " is ignored because scalable vectors are not "
5727                            "available.\n");
5728       ORE->emit([&]() {
5729         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5730                                           TheLoop->getStartLoc(),
5731                                           TheLoop->getHeader())
5732                << "User-specified vectorization factor "
5733                << ore::NV("UserVectorizationFactor", UserVF)
5734                << " is ignored because the target does not support scalable "
5735                   "vectors. The compiler will pick a more suitable value.";
5736       });
5737     } else {
5738       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5739                         << " is unsafe. Ignoring scalable UserVF.\n");
5740       ORE->emit([&]() {
5741         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5742                                           TheLoop->getStartLoc(),
5743                                           TheLoop->getHeader())
5744                << "User-specified vectorization factor "
5745                << ore::NV("UserVectorizationFactor", UserVF)
5746                << " is unsafe. Ignoring the hint to let the compiler pick a "
5747                   "more suitable value.";
5748       });
5749     }
5750   }
5751 
5752   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5753                     << " / " << WidestType << " bits.\n");
5754 
5755   FixedScalableVFPair Result(ElementCount::getFixed(1),
5756                              ElementCount::getScalable(0));
5757   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5758                                            WidestType, MaxSafeFixedVF))
5759     Result.FixedVF = MaxVF;
5760 
5761   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5762                                            WidestType, MaxSafeScalableVF))
5763     if (MaxVF.isScalable()) {
5764       Result.ScalableVF = MaxVF;
5765       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5766                         << "\n");
5767     }
5768 
5769   return Result;
5770 }
5771 
5772 FixedScalableVFPair
5773 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5774   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5775     // TODO: It may by useful to do since it's still likely to be dynamically
5776     // uniform if the target can skip.
5777     reportVectorizationFailure(
5778         "Not inserting runtime ptr check for divergent target",
5779         "runtime pointer checks needed. Not enabled for divergent target",
5780         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5781     return FixedScalableVFPair::getNone();
5782   }
5783 
5784   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5785   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5786   if (TC == 1) {
5787     reportVectorizationFailure("Single iteration (non) loop",
5788         "loop trip count is one, irrelevant for vectorization",
5789         "SingleIterationLoop", ORE, TheLoop);
5790     return FixedScalableVFPair::getNone();
5791   }
5792 
5793   switch (ScalarEpilogueStatus) {
5794   case CM_ScalarEpilogueAllowed:
5795     return computeFeasibleMaxVF(TC, UserVF);
5796   case CM_ScalarEpilogueNotAllowedUsePredicate:
5797     LLVM_FALLTHROUGH;
5798   case CM_ScalarEpilogueNotNeededUsePredicate:
5799     LLVM_DEBUG(
5800         dbgs() << "LV: vector predicate hint/switch found.\n"
5801                << "LV: Not allowing scalar epilogue, creating predicated "
5802                << "vector loop.\n");
5803     break;
5804   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5805     // fallthrough as a special case of OptForSize
5806   case CM_ScalarEpilogueNotAllowedOptSize:
5807     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5808       LLVM_DEBUG(
5809           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5810     else
5811       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5812                         << "count.\n");
5813 
5814     // Bail if runtime checks are required, which are not good when optimising
5815     // for size.
5816     if (runtimeChecksRequired())
5817       return FixedScalableVFPair::getNone();
5818 
5819     break;
5820   }
5821 
5822   // The only loops we can vectorize without a scalar epilogue, are loops with
5823   // a bottom-test and a single exiting block. We'd have to handle the fact
5824   // that not every instruction executes on the last iteration.  This will
5825   // require a lane mask which varies through the vector loop body.  (TODO)
5826   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5827     // If there was a tail-folding hint/switch, but we can't fold the tail by
5828     // masking, fallback to a vectorization with a scalar epilogue.
5829     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5830       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5831                            "scalar epilogue instead.\n");
5832       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5833       return computeFeasibleMaxVF(TC, UserVF);
5834     }
5835     return FixedScalableVFPair::getNone();
5836   }
5837 
5838   // Now try the tail folding
5839 
5840   // Invalidate interleave groups that require an epilogue if we can't mask
5841   // the interleave-group.
5842   if (!useMaskedInterleavedAccesses(TTI)) {
5843     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5844            "No decisions should have been taken at this point");
5845     // Note: There is no need to invalidate any cost modeling decisions here, as
5846     // non where taken so far.
5847     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5848   }
5849 
5850   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5851   // Avoid tail folding if the trip count is known to be a multiple of any VF
5852   // we chose.
5853   // FIXME: The condition below pessimises the case for fixed-width vectors,
5854   // when scalable VFs are also candidates for vectorization.
5855   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5856     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5857     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5858            "MaxFixedVF must be a power of 2");
5859     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5860                                    : MaxFixedVF.getFixedValue();
5861     ScalarEvolution *SE = PSE.getSE();
5862     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5863     const SCEV *ExitCount = SE->getAddExpr(
5864         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5865     const SCEV *Rem = SE->getURemExpr(
5866         SE->applyLoopGuards(ExitCount, TheLoop),
5867         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5868     if (Rem->isZero()) {
5869       // Accept MaxFixedVF if we do not have a tail.
5870       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5871       return MaxFactors;
5872     }
5873   }
5874 
5875   // For scalable vectors, don't use tail folding as this is currently not yet
5876   // supported. The code is likely to have ended up here if the tripcount is
5877   // low, in which case it makes sense not to use scalable vectors.
5878   if (MaxFactors.ScalableVF.isVector())
5879     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5880 
5881   // If we don't know the precise trip count, or if the trip count that we
5882   // found modulo the vectorization factor is not zero, try to fold the tail
5883   // by masking.
5884   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5885   if (Legal->prepareToFoldTailByMasking()) {
5886     FoldTailByMasking = true;
5887     return MaxFactors;
5888   }
5889 
5890   // If there was a tail-folding hint/switch, but we can't fold the tail by
5891   // masking, fallback to a vectorization with a scalar epilogue.
5892   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5893     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5894                          "scalar epilogue instead.\n");
5895     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5896     return MaxFactors;
5897   }
5898 
5899   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5900     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5901     return FixedScalableVFPair::getNone();
5902   }
5903 
5904   if (TC == 0) {
5905     reportVectorizationFailure(
5906         "Unable to calculate the loop count due to complex control flow",
5907         "unable to calculate the loop count due to complex control flow",
5908         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5909     return FixedScalableVFPair::getNone();
5910   }
5911 
5912   reportVectorizationFailure(
5913       "Cannot optimize for size and vectorize at the same time.",
5914       "cannot optimize for size and vectorize at the same time. "
5915       "Enable vectorization of this loop with '#pragma clang loop "
5916       "vectorize(enable)' when compiling with -Os/-Oz",
5917       "NoTailLoopWithOptForSize", ORE, TheLoop);
5918   return FixedScalableVFPair::getNone();
5919 }
5920 
5921 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5922     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5923     const ElementCount &MaxSafeVF) {
5924   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5925   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5926       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5927                            : TargetTransformInfo::RGK_FixedWidthVector);
5928 
5929   // Convenience function to return the minimum of two ElementCounts.
5930   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5931     assert((LHS.isScalable() == RHS.isScalable()) &&
5932            "Scalable flags must match");
5933     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5934   };
5935 
5936   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5937   // Note that both WidestRegister and WidestType may not be a powers of 2.
5938   auto MaxVectorElementCount = ElementCount::get(
5939       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5940       ComputeScalableMaxVF);
5941   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5942   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5943                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5944 
5945   if (!MaxVectorElementCount) {
5946     LLVM_DEBUG(dbgs() << "LV: The target has no "
5947                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5948                       << " vector registers.\n");
5949     return ElementCount::getFixed(1);
5950   }
5951 
5952   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5953   if (ConstTripCount &&
5954       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5955       isPowerOf2_32(ConstTripCount)) {
5956     // We need to clamp the VF to be the ConstTripCount. There is no point in
5957     // choosing a higher viable VF as done in the loop below. If
5958     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5959     // the TC is less than or equal to the known number of lanes.
5960     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5961                       << ConstTripCount << "\n");
5962     return TripCountEC;
5963   }
5964 
5965   ElementCount MaxVF = MaxVectorElementCount;
5966   if (TTI.shouldMaximizeVectorBandwidth() ||
5967       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5968     auto MaxVectorElementCountMaxBW = ElementCount::get(
5969         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5970         ComputeScalableMaxVF);
5971     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5972 
5973     // Collect all viable vectorization factors larger than the default MaxVF
5974     // (i.e. MaxVectorElementCount).
5975     SmallVector<ElementCount, 8> VFs;
5976     for (ElementCount VS = MaxVectorElementCount * 2;
5977          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5978       VFs.push_back(VS);
5979 
5980     // For each VF calculate its register usage.
5981     auto RUs = calculateRegisterUsage(VFs);
5982 
5983     // Select the largest VF which doesn't require more registers than existing
5984     // ones.
5985     for (int i = RUs.size() - 1; i >= 0; --i) {
5986       bool Selected = true;
5987       for (auto &pair : RUs[i].MaxLocalUsers) {
5988         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5989         if (pair.second > TargetNumRegisters)
5990           Selected = false;
5991       }
5992       if (Selected) {
5993         MaxVF = VFs[i];
5994         break;
5995       }
5996     }
5997     if (ElementCount MinVF =
5998             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5999       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
6000         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
6001                           << ") with target's minimum: " << MinVF << '\n');
6002         MaxVF = MinVF;
6003       }
6004     }
6005   }
6006   return MaxVF;
6007 }
6008 
6009 bool LoopVectorizationCostModel::isMoreProfitable(
6010     const VectorizationFactor &A, const VectorizationFactor &B) const {
6011   InstructionCost CostA = A.Cost;
6012   InstructionCost CostB = B.Cost;
6013 
6014   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6015 
6016   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6017       MaxTripCount) {
6018     // If we are folding the tail and the trip count is a known (possibly small)
6019     // constant, the trip count will be rounded up to an integer number of
6020     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6021     // which we compare directly. When not folding the tail, the total cost will
6022     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6023     // approximated with the per-lane cost below instead of using the tripcount
6024     // as here.
6025     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6026     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6027     return RTCostA < RTCostB;
6028   }
6029 
6030   // When set to preferred, for now assume vscale may be larger than 1, so
6031   // that scalable vectorization is slightly favorable over fixed-width
6032   // vectorization.
6033   if (Hints->isScalableVectorizationPreferred())
6034     if (A.Width.isScalable() && !B.Width.isScalable())
6035       return (CostA * B.Width.getKnownMinValue()) <=
6036              (CostB * A.Width.getKnownMinValue());
6037 
6038   // To avoid the need for FP division:
6039   //      (CostA / A.Width) < (CostB / B.Width)
6040   // <=>  (CostA * B.Width) < (CostB * A.Width)
6041   return (CostA * B.Width.getKnownMinValue()) <
6042          (CostB * A.Width.getKnownMinValue());
6043 }
6044 
6045 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6046     const ElementCountSet &VFCandidates) {
6047   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6048   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6049   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6050   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6051          "Expected Scalar VF to be a candidate");
6052 
6053   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6054   VectorizationFactor ChosenFactor = ScalarCost;
6055 
6056   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6057   if (ForceVectorization && VFCandidates.size() > 1) {
6058     // Ignore scalar width, because the user explicitly wants vectorization.
6059     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6060     // evaluation.
6061     ChosenFactor.Cost = InstructionCost::getMax();
6062   }
6063 
6064   SmallVector<InstructionVFPair> InvalidCosts;
6065   for (const auto &i : VFCandidates) {
6066     // The cost for scalar VF=1 is already calculated, so ignore it.
6067     if (i.isScalar())
6068       continue;
6069 
6070     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6071     VectorizationFactor Candidate(i, C.first);
6072     LLVM_DEBUG(
6073         dbgs() << "LV: Vector loop of width " << i << " costs: "
6074                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6075                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6076                << ".\n");
6077 
6078     if (!C.second && !ForceVectorization) {
6079       LLVM_DEBUG(
6080           dbgs() << "LV: Not considering vector loop of width " << i
6081                  << " because it will not generate any vector instructions.\n");
6082       continue;
6083     }
6084 
6085     // If profitable add it to ProfitableVF list.
6086     if (isMoreProfitable(Candidate, ScalarCost))
6087       ProfitableVFs.push_back(Candidate);
6088 
6089     if (isMoreProfitable(Candidate, ChosenFactor))
6090       ChosenFactor = Candidate;
6091   }
6092 
6093   // Emit a report of VFs with invalid costs in the loop.
6094   if (!InvalidCosts.empty()) {
6095     // Group the remarks per instruction, keeping the instruction order from
6096     // InvalidCosts.
6097     std::map<Instruction *, unsigned> Numbering;
6098     unsigned I = 0;
6099     for (auto &Pair : InvalidCosts)
6100       if (!Numbering.count(Pair.first))
6101         Numbering[Pair.first] = I++;
6102 
6103     // Sort the list, first on instruction(number) then on VF.
6104     llvm::sort(InvalidCosts,
6105                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6106                  if (Numbering[A.first] != Numbering[B.first])
6107                    return Numbering[A.first] < Numbering[B.first];
6108                  ElementCountComparator ECC;
6109                  return ECC(A.second, B.second);
6110                });
6111 
6112     // For a list of ordered instruction-vf pairs:
6113     //   [(load, vf1), (load, vf2), (store, vf1)]
6114     // Group the instructions together to emit separate remarks for:
6115     //   load  (vf1, vf2)
6116     //   store (vf1)
6117     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6118     auto Subset = ArrayRef<InstructionVFPair>();
6119     do {
6120       if (Subset.empty())
6121         Subset = Tail.take_front(1);
6122 
6123       Instruction *I = Subset.front().first;
6124 
6125       // If the next instruction is different, or if there are no other pairs,
6126       // emit a remark for the collated subset. e.g.
6127       //   [(load, vf1), (load, vf2))]
6128       // to emit:
6129       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6130       if (Subset == Tail || Tail[Subset.size()].first != I) {
6131         std::string OutString;
6132         raw_string_ostream OS(OutString);
6133         assert(!Subset.empty() && "Unexpected empty range");
6134         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6135         for (auto &Pair : Subset)
6136           OS << (Pair.second == Subset.front().second ? "" : ", ")
6137              << Pair.second;
6138         OS << "):";
6139         if (auto *CI = dyn_cast<CallInst>(I))
6140           OS << " call to " << CI->getCalledFunction()->getName();
6141         else
6142           OS << " " << I->getOpcodeName();
6143         OS.flush();
6144         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6145         Tail = Tail.drop_front(Subset.size());
6146         Subset = {};
6147       } else
6148         // Grow the subset by one element
6149         Subset = Tail.take_front(Subset.size() + 1);
6150     } while (!Tail.empty());
6151   }
6152 
6153   if (!EnableCondStoresVectorization && NumPredStores) {
6154     reportVectorizationFailure("There are conditional stores.",
6155         "store that is conditionally executed prevents vectorization",
6156         "ConditionalStore", ORE, TheLoop);
6157     ChosenFactor = ScalarCost;
6158   }
6159 
6160   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6161                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6162              << "LV: Vectorization seems to be not beneficial, "
6163              << "but was forced by a user.\n");
6164   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6165   return ChosenFactor;
6166 }
6167 
6168 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6169     const Loop &L, ElementCount VF) const {
6170   // Cross iteration phis such as reductions need special handling and are
6171   // currently unsupported.
6172   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6173         return Legal->isFirstOrderRecurrence(&Phi) ||
6174                Legal->isReductionVariable(&Phi);
6175       }))
6176     return false;
6177 
6178   // Phis with uses outside of the loop require special handling and are
6179   // currently unsupported.
6180   for (auto &Entry : Legal->getInductionVars()) {
6181     // Look for uses of the value of the induction at the last iteration.
6182     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6183     for (User *U : PostInc->users())
6184       if (!L.contains(cast<Instruction>(U)))
6185         return false;
6186     // Look for uses of penultimate value of the induction.
6187     for (User *U : Entry.first->users())
6188       if (!L.contains(cast<Instruction>(U)))
6189         return false;
6190   }
6191 
6192   // Induction variables that are widened require special handling that is
6193   // currently not supported.
6194   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6195         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6196                  this->isProfitableToScalarize(Entry.first, VF));
6197       }))
6198     return false;
6199 
6200   // Epilogue vectorization code has not been auditted to ensure it handles
6201   // non-latch exits properly.  It may be fine, but it needs auditted and
6202   // tested.
6203   if (L.getExitingBlock() != L.getLoopLatch())
6204     return false;
6205 
6206   return true;
6207 }
6208 
6209 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6210     const ElementCount VF) const {
6211   // FIXME: We need a much better cost-model to take different parameters such
6212   // as register pressure, code size increase and cost of extra branches into
6213   // account. For now we apply a very crude heuristic and only consider loops
6214   // with vectorization factors larger than a certain value.
6215   // We also consider epilogue vectorization unprofitable for targets that don't
6216   // consider interleaving beneficial (eg. MVE).
6217   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6218     return false;
6219   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6220     return true;
6221   return false;
6222 }
6223 
6224 VectorizationFactor
6225 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6226     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6227   VectorizationFactor Result = VectorizationFactor::Disabled();
6228   if (!EnableEpilogueVectorization) {
6229     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6230     return Result;
6231   }
6232 
6233   if (!isScalarEpilogueAllowed()) {
6234     LLVM_DEBUG(
6235         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6236                   "allowed.\n";);
6237     return Result;
6238   }
6239 
6240   // FIXME: This can be fixed for scalable vectors later, because at this stage
6241   // the LoopVectorizer will only consider vectorizing a loop with scalable
6242   // vectors when the loop has a hint to enable vectorization for a given VF.
6243   if (MainLoopVF.isScalable()) {
6244     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6245                          "yet supported.\n");
6246     return Result;
6247   }
6248 
6249   // Not really a cost consideration, but check for unsupported cases here to
6250   // simplify the logic.
6251   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6252     LLVM_DEBUG(
6253         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6254                   "not a supported candidate.\n";);
6255     return Result;
6256   }
6257 
6258   if (EpilogueVectorizationForceVF > 1) {
6259     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6260     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
6261     if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC}))
6262       return {ForcedEC, 0};
6263     else {
6264       LLVM_DEBUG(
6265           dbgs()
6266               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6267       return Result;
6268     }
6269   }
6270 
6271   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6272       TheLoop->getHeader()->getParent()->hasMinSize()) {
6273     LLVM_DEBUG(
6274         dbgs()
6275             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6276     return Result;
6277   }
6278 
6279   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6280     return Result;
6281 
6282   for (auto &NextVF : ProfitableVFs)
6283     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6284         (Result.Width.getFixedValue() == 1 ||
6285          isMoreProfitable(NextVF, Result)) &&
6286         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6287       Result = NextVF;
6288 
6289   if (Result != VectorizationFactor::Disabled())
6290     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6291                       << Result.Width.getFixedValue() << "\n";);
6292   return Result;
6293 }
6294 
6295 std::pair<unsigned, unsigned>
6296 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6297   unsigned MinWidth = -1U;
6298   unsigned MaxWidth = 8;
6299   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6300   for (Type *T : ElementTypesInLoop) {
6301     MinWidth = std::min<unsigned>(
6302         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6303     MaxWidth = std::max<unsigned>(
6304         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6305   }
6306   return {MinWidth, MaxWidth};
6307 }
6308 
6309 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6310   ElementTypesInLoop.clear();
6311   // For each block.
6312   for (BasicBlock *BB : TheLoop->blocks()) {
6313     // For each instruction in the loop.
6314     for (Instruction &I : BB->instructionsWithoutDebug()) {
6315       Type *T = I.getType();
6316 
6317       // Skip ignored values.
6318       if (ValuesToIgnore.count(&I))
6319         continue;
6320 
6321       // Only examine Loads, Stores and PHINodes.
6322       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6323         continue;
6324 
6325       // Examine PHI nodes that are reduction variables. Update the type to
6326       // account for the recurrence type.
6327       if (auto *PN = dyn_cast<PHINode>(&I)) {
6328         if (!Legal->isReductionVariable(PN))
6329           continue;
6330         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6331         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6332             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6333                                       RdxDesc.getRecurrenceType(),
6334                                       TargetTransformInfo::ReductionFlags()))
6335           continue;
6336         T = RdxDesc.getRecurrenceType();
6337       }
6338 
6339       // Examine the stored values.
6340       if (auto *ST = dyn_cast<StoreInst>(&I))
6341         T = ST->getValueOperand()->getType();
6342 
6343       // Ignore loaded pointer types and stored pointer types that are not
6344       // vectorizable.
6345       //
6346       // FIXME: The check here attempts to predict whether a load or store will
6347       //        be vectorized. We only know this for certain after a VF has
6348       //        been selected. Here, we assume that if an access can be
6349       //        vectorized, it will be. We should also look at extending this
6350       //        optimization to non-pointer types.
6351       //
6352       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6353           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6354         continue;
6355 
6356       ElementTypesInLoop.insert(T);
6357     }
6358   }
6359 }
6360 
6361 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6362                                                            unsigned LoopCost) {
6363   // -- The interleave heuristics --
6364   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6365   // There are many micro-architectural considerations that we can't predict
6366   // at this level. For example, frontend pressure (on decode or fetch) due to
6367   // code size, or the number and capabilities of the execution ports.
6368   //
6369   // We use the following heuristics to select the interleave count:
6370   // 1. If the code has reductions, then we interleave to break the cross
6371   // iteration dependency.
6372   // 2. If the loop is really small, then we interleave to reduce the loop
6373   // overhead.
6374   // 3. We don't interleave if we think that we will spill registers to memory
6375   // due to the increased register pressure.
6376 
6377   if (!isScalarEpilogueAllowed())
6378     return 1;
6379 
6380   // We used the distance for the interleave count.
6381   if (Legal->getMaxSafeDepDistBytes() != -1U)
6382     return 1;
6383 
6384   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6385   const bool HasReductions = !Legal->getReductionVars().empty();
6386   // Do not interleave loops with a relatively small known or estimated trip
6387   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6388   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6389   // because with the above conditions interleaving can expose ILP and break
6390   // cross iteration dependences for reductions.
6391   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6392       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6393     return 1;
6394 
6395   RegisterUsage R = calculateRegisterUsage({VF})[0];
6396   // We divide by these constants so assume that we have at least one
6397   // instruction that uses at least one register.
6398   for (auto& pair : R.MaxLocalUsers) {
6399     pair.second = std::max(pair.second, 1U);
6400   }
6401 
6402   // We calculate the interleave count using the following formula.
6403   // Subtract the number of loop invariants from the number of available
6404   // registers. These registers are used by all of the interleaved instances.
6405   // Next, divide the remaining registers by the number of registers that is
6406   // required by the loop, in order to estimate how many parallel instances
6407   // fit without causing spills. All of this is rounded down if necessary to be
6408   // a power of two. We want power of two interleave count to simplify any
6409   // addressing operations or alignment considerations.
6410   // We also want power of two interleave counts to ensure that the induction
6411   // variable of the vector loop wraps to zero, when tail is folded by masking;
6412   // this currently happens when OptForSize, in which case IC is set to 1 above.
6413   unsigned IC = UINT_MAX;
6414 
6415   for (auto& pair : R.MaxLocalUsers) {
6416     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6417     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6418                       << " registers of "
6419                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6420     if (VF.isScalar()) {
6421       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6422         TargetNumRegisters = ForceTargetNumScalarRegs;
6423     } else {
6424       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6425         TargetNumRegisters = ForceTargetNumVectorRegs;
6426     }
6427     unsigned MaxLocalUsers = pair.second;
6428     unsigned LoopInvariantRegs = 0;
6429     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6430       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6431 
6432     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6433     // Don't count the induction variable as interleaved.
6434     if (EnableIndVarRegisterHeur) {
6435       TmpIC =
6436           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6437                         std::max(1U, (MaxLocalUsers - 1)));
6438     }
6439 
6440     IC = std::min(IC, TmpIC);
6441   }
6442 
6443   // Clamp the interleave ranges to reasonable counts.
6444   unsigned MaxInterleaveCount =
6445       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6446 
6447   // Check if the user has overridden the max.
6448   if (VF.isScalar()) {
6449     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6450       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6451   } else {
6452     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6453       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6454   }
6455 
6456   // If trip count is known or estimated compile time constant, limit the
6457   // interleave count to be less than the trip count divided by VF, provided it
6458   // is at least 1.
6459   //
6460   // For scalable vectors we can't know if interleaving is beneficial. It may
6461   // not be beneficial for small loops if none of the lanes in the second vector
6462   // iterations is enabled. However, for larger loops, there is likely to be a
6463   // similar benefit as for fixed-width vectors. For now, we choose to leave
6464   // the InterleaveCount as if vscale is '1', although if some information about
6465   // the vector is known (e.g. min vector size), we can make a better decision.
6466   if (BestKnownTC) {
6467     MaxInterleaveCount =
6468         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6469     // Make sure MaxInterleaveCount is greater than 0.
6470     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6471   }
6472 
6473   assert(MaxInterleaveCount > 0 &&
6474          "Maximum interleave count must be greater than 0");
6475 
6476   // Clamp the calculated IC to be between the 1 and the max interleave count
6477   // that the target and trip count allows.
6478   if (IC > MaxInterleaveCount)
6479     IC = MaxInterleaveCount;
6480   else
6481     // Make sure IC is greater than 0.
6482     IC = std::max(1u, IC);
6483 
6484   assert(IC > 0 && "Interleave count must be greater than 0.");
6485 
6486   // If we did not calculate the cost for VF (because the user selected the VF)
6487   // then we calculate the cost of VF here.
6488   if (LoopCost == 0) {
6489     InstructionCost C = expectedCost(VF).first;
6490     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6491     LoopCost = *C.getValue();
6492   }
6493 
6494   assert(LoopCost && "Non-zero loop cost expected");
6495 
6496   // Interleave if we vectorized this loop and there is a reduction that could
6497   // benefit from interleaving.
6498   if (VF.isVector() && HasReductions) {
6499     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6500     return IC;
6501   }
6502 
6503   // Note that if we've already vectorized the loop we will have done the
6504   // runtime check and so interleaving won't require further checks.
6505   bool InterleavingRequiresRuntimePointerCheck =
6506       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6507 
6508   // We want to interleave small loops in order to reduce the loop overhead and
6509   // potentially expose ILP opportunities.
6510   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6511                     << "LV: IC is " << IC << '\n'
6512                     << "LV: VF is " << VF << '\n');
6513   const bool AggressivelyInterleaveReductions =
6514       TTI.enableAggressiveInterleaving(HasReductions);
6515   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6516     // We assume that the cost overhead is 1 and we use the cost model
6517     // to estimate the cost of the loop and interleave until the cost of the
6518     // loop overhead is about 5% of the cost of the loop.
6519     unsigned SmallIC =
6520         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6521 
6522     // Interleave until store/load ports (estimated by max interleave count) are
6523     // saturated.
6524     unsigned NumStores = Legal->getNumStores();
6525     unsigned NumLoads = Legal->getNumLoads();
6526     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6527     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6528 
6529     // There is little point in interleaving for reductions containing selects
6530     // and compares when VF=1 since it may just create more overhead than it's
6531     // worth for loops with small trip counts. This is because we still have to
6532     // do the final reduction after the loop.
6533     bool HasSelectCmpReductions =
6534         HasReductions &&
6535         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6536           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6537           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6538               RdxDesc.getRecurrenceKind());
6539         });
6540     if (HasSelectCmpReductions) {
6541       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6542       return 1;
6543     }
6544 
6545     // If we have a scalar reduction (vector reductions are already dealt with
6546     // by this point), we can increase the critical path length if the loop
6547     // we're interleaving is inside another loop. For tree-wise reductions
6548     // set the limit to 2, and for ordered reductions it's best to disable
6549     // interleaving entirely.
6550     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6551       bool HasOrderedReductions =
6552           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6553             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6554             return RdxDesc.isOrdered();
6555           });
6556       if (HasOrderedReductions) {
6557         LLVM_DEBUG(
6558             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6559         return 1;
6560       }
6561 
6562       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6563       SmallIC = std::min(SmallIC, F);
6564       StoresIC = std::min(StoresIC, F);
6565       LoadsIC = std::min(LoadsIC, F);
6566     }
6567 
6568     if (EnableLoadStoreRuntimeInterleave &&
6569         std::max(StoresIC, LoadsIC) > SmallIC) {
6570       LLVM_DEBUG(
6571           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6572       return std::max(StoresIC, LoadsIC);
6573     }
6574 
6575     // If there are scalar reductions and TTI has enabled aggressive
6576     // interleaving for reductions, we will interleave to expose ILP.
6577     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6578         AggressivelyInterleaveReductions) {
6579       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6580       // Interleave no less than SmallIC but not as aggressive as the normal IC
6581       // to satisfy the rare situation when resources are too limited.
6582       return std::max(IC / 2, SmallIC);
6583     } else {
6584       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6585       return SmallIC;
6586     }
6587   }
6588 
6589   // Interleave if this is a large loop (small loops are already dealt with by
6590   // this point) that could benefit from interleaving.
6591   if (AggressivelyInterleaveReductions) {
6592     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6593     return IC;
6594   }
6595 
6596   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6597   return 1;
6598 }
6599 
6600 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6601 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6602   // This function calculates the register usage by measuring the highest number
6603   // of values that are alive at a single location. Obviously, this is a very
6604   // rough estimation. We scan the loop in a topological order in order and
6605   // assign a number to each instruction. We use RPO to ensure that defs are
6606   // met before their users. We assume that each instruction that has in-loop
6607   // users starts an interval. We record every time that an in-loop value is
6608   // used, so we have a list of the first and last occurrences of each
6609   // instruction. Next, we transpose this data structure into a multi map that
6610   // holds the list of intervals that *end* at a specific location. This multi
6611   // map allows us to perform a linear search. We scan the instructions linearly
6612   // and record each time that a new interval starts, by placing it in a set.
6613   // If we find this value in the multi-map then we remove it from the set.
6614   // The max register usage is the maximum size of the set.
6615   // We also search for instructions that are defined outside the loop, but are
6616   // used inside the loop. We need this number separately from the max-interval
6617   // usage number because when we unroll, loop-invariant values do not take
6618   // more register.
6619   LoopBlocksDFS DFS(TheLoop);
6620   DFS.perform(LI);
6621 
6622   RegisterUsage RU;
6623 
6624   // Each 'key' in the map opens a new interval. The values
6625   // of the map are the index of the 'last seen' usage of the
6626   // instruction that is the key.
6627   using IntervalMap = DenseMap<Instruction *, unsigned>;
6628 
6629   // Maps instruction to its index.
6630   SmallVector<Instruction *, 64> IdxToInstr;
6631   // Marks the end of each interval.
6632   IntervalMap EndPoint;
6633   // Saves the list of instruction indices that are used in the loop.
6634   SmallPtrSet<Instruction *, 8> Ends;
6635   // Saves the list of values that are used in the loop but are
6636   // defined outside the loop, such as arguments and constants.
6637   SmallPtrSet<Value *, 8> LoopInvariants;
6638 
6639   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6640     for (Instruction &I : BB->instructionsWithoutDebug()) {
6641       IdxToInstr.push_back(&I);
6642 
6643       // Save the end location of each USE.
6644       for (Value *U : I.operands()) {
6645         auto *Instr = dyn_cast<Instruction>(U);
6646 
6647         // Ignore non-instruction values such as arguments, constants, etc.
6648         if (!Instr)
6649           continue;
6650 
6651         // If this instruction is outside the loop then record it and continue.
6652         if (!TheLoop->contains(Instr)) {
6653           LoopInvariants.insert(Instr);
6654           continue;
6655         }
6656 
6657         // Overwrite previous end points.
6658         EndPoint[Instr] = IdxToInstr.size();
6659         Ends.insert(Instr);
6660       }
6661     }
6662   }
6663 
6664   // Saves the list of intervals that end with the index in 'key'.
6665   using InstrList = SmallVector<Instruction *, 2>;
6666   DenseMap<unsigned, InstrList> TransposeEnds;
6667 
6668   // Transpose the EndPoints to a list of values that end at each index.
6669   for (auto &Interval : EndPoint)
6670     TransposeEnds[Interval.second].push_back(Interval.first);
6671 
6672   SmallPtrSet<Instruction *, 8> OpenIntervals;
6673   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6674   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6675 
6676   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6677 
6678   // A lambda that gets the register usage for the given type and VF.
6679   const auto &TTICapture = TTI;
6680   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6681     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6682       return 0;
6683     InstructionCost::CostType RegUsage =
6684         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6685     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6686            "Nonsensical values for register usage.");
6687     return RegUsage;
6688   };
6689 
6690   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6691     Instruction *I = IdxToInstr[i];
6692 
6693     // Remove all of the instructions that end at this location.
6694     InstrList &List = TransposeEnds[i];
6695     for (Instruction *ToRemove : List)
6696       OpenIntervals.erase(ToRemove);
6697 
6698     // Ignore instructions that are never used within the loop.
6699     if (!Ends.count(I))
6700       continue;
6701 
6702     // Skip ignored values.
6703     if (ValuesToIgnore.count(I))
6704       continue;
6705 
6706     // For each VF find the maximum usage of registers.
6707     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6708       // Count the number of live intervals.
6709       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6710 
6711       if (VFs[j].isScalar()) {
6712         for (auto Inst : OpenIntervals) {
6713           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6714           if (RegUsage.find(ClassID) == RegUsage.end())
6715             RegUsage[ClassID] = 1;
6716           else
6717             RegUsage[ClassID] += 1;
6718         }
6719       } else {
6720         collectUniformsAndScalars(VFs[j]);
6721         for (auto Inst : OpenIntervals) {
6722           // Skip ignored values for VF > 1.
6723           if (VecValuesToIgnore.count(Inst))
6724             continue;
6725           if (isScalarAfterVectorization(Inst, VFs[j])) {
6726             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6727             if (RegUsage.find(ClassID) == RegUsage.end())
6728               RegUsage[ClassID] = 1;
6729             else
6730               RegUsage[ClassID] += 1;
6731           } else {
6732             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6733             if (RegUsage.find(ClassID) == RegUsage.end())
6734               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6735             else
6736               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6737           }
6738         }
6739       }
6740 
6741       for (auto& pair : RegUsage) {
6742         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6743           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6744         else
6745           MaxUsages[j][pair.first] = pair.second;
6746       }
6747     }
6748 
6749     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6750                       << OpenIntervals.size() << '\n');
6751 
6752     // Add the current instruction to the list of open intervals.
6753     OpenIntervals.insert(I);
6754   }
6755 
6756   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6757     SmallMapVector<unsigned, unsigned, 4> Invariant;
6758 
6759     for (auto Inst : LoopInvariants) {
6760       unsigned Usage =
6761           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6762       unsigned ClassID =
6763           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6764       if (Invariant.find(ClassID) == Invariant.end())
6765         Invariant[ClassID] = Usage;
6766       else
6767         Invariant[ClassID] += Usage;
6768     }
6769 
6770     LLVM_DEBUG({
6771       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6772       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6773              << " item\n";
6774       for (const auto &pair : MaxUsages[i]) {
6775         dbgs() << "LV(REG): RegisterClass: "
6776                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6777                << " registers\n";
6778       }
6779       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6780              << " item\n";
6781       for (const auto &pair : Invariant) {
6782         dbgs() << "LV(REG): RegisterClass: "
6783                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6784                << " registers\n";
6785       }
6786     });
6787 
6788     RU.LoopInvariantRegs = Invariant;
6789     RU.MaxLocalUsers = MaxUsages[i];
6790     RUs[i] = RU;
6791   }
6792 
6793   return RUs;
6794 }
6795 
6796 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6797   // TODO: Cost model for emulated masked load/store is completely
6798   // broken. This hack guides the cost model to use an artificially
6799   // high enough value to practically disable vectorization with such
6800   // operations, except where previously deployed legality hack allowed
6801   // using very low cost values. This is to avoid regressions coming simply
6802   // from moving "masked load/store" check from legality to cost model.
6803   // Masked Load/Gather emulation was previously never allowed.
6804   // Limited number of Masked Store/Scatter emulation was allowed.
6805   assert(isPredicatedInst(I) &&
6806          "Expecting a scalar emulated instruction");
6807   return isa<LoadInst>(I) ||
6808          (isa<StoreInst>(I) &&
6809           NumPredStores > NumberOfStoresToPredicate);
6810 }
6811 
6812 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6813   // If we aren't vectorizing the loop, or if we've already collected the
6814   // instructions to scalarize, there's nothing to do. Collection may already
6815   // have occurred if we have a user-selected VF and are now computing the
6816   // expected cost for interleaving.
6817   if (VF.isScalar() || VF.isZero() ||
6818       InstsToScalarize.find(VF) != InstsToScalarize.end())
6819     return;
6820 
6821   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6822   // not profitable to scalarize any instructions, the presence of VF in the
6823   // map will indicate that we've analyzed it already.
6824   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6825 
6826   // Find all the instructions that are scalar with predication in the loop and
6827   // determine if it would be better to not if-convert the blocks they are in.
6828   // If so, we also record the instructions to scalarize.
6829   for (BasicBlock *BB : TheLoop->blocks()) {
6830     if (!blockNeedsPredication(BB))
6831       continue;
6832     for (Instruction &I : *BB)
6833       if (isScalarWithPredication(&I)) {
6834         ScalarCostsTy ScalarCosts;
6835         // Do not apply discount if scalable, because that would lead to
6836         // invalid scalarization costs.
6837         // Do not apply discount logic if hacked cost is needed
6838         // for emulated masked memrefs.
6839         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6840             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6841           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6842         // Remember that BB will remain after vectorization.
6843         PredicatedBBsAfterVectorization.insert(BB);
6844       }
6845   }
6846 }
6847 
6848 int LoopVectorizationCostModel::computePredInstDiscount(
6849     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6850   assert(!isUniformAfterVectorization(PredInst, VF) &&
6851          "Instruction marked uniform-after-vectorization will be predicated");
6852 
6853   // Initialize the discount to zero, meaning that the scalar version and the
6854   // vector version cost the same.
6855   InstructionCost Discount = 0;
6856 
6857   // Holds instructions to analyze. The instructions we visit are mapped in
6858   // ScalarCosts. Those instructions are the ones that would be scalarized if
6859   // we find that the scalar version costs less.
6860   SmallVector<Instruction *, 8> Worklist;
6861 
6862   // Returns true if the given instruction can be scalarized.
6863   auto canBeScalarized = [&](Instruction *I) -> bool {
6864     // We only attempt to scalarize instructions forming a single-use chain
6865     // from the original predicated block that would otherwise be vectorized.
6866     // Although not strictly necessary, we give up on instructions we know will
6867     // already be scalar to avoid traversing chains that are unlikely to be
6868     // beneficial.
6869     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6870         isScalarAfterVectorization(I, VF))
6871       return false;
6872 
6873     // If the instruction is scalar with predication, it will be analyzed
6874     // separately. We ignore it within the context of PredInst.
6875     if (isScalarWithPredication(I))
6876       return false;
6877 
6878     // If any of the instruction's operands are uniform after vectorization,
6879     // the instruction cannot be scalarized. This prevents, for example, a
6880     // masked load from being scalarized.
6881     //
6882     // We assume we will only emit a value for lane zero of an instruction
6883     // marked uniform after vectorization, rather than VF identical values.
6884     // Thus, if we scalarize an instruction that uses a uniform, we would
6885     // create uses of values corresponding to the lanes we aren't emitting code
6886     // for. This behavior can be changed by allowing getScalarValue to clone
6887     // the lane zero values for uniforms rather than asserting.
6888     for (Use &U : I->operands())
6889       if (auto *J = dyn_cast<Instruction>(U.get()))
6890         if (isUniformAfterVectorization(J, VF))
6891           return false;
6892 
6893     // Otherwise, we can scalarize the instruction.
6894     return true;
6895   };
6896 
6897   // Compute the expected cost discount from scalarizing the entire expression
6898   // feeding the predicated instruction. We currently only consider expressions
6899   // that are single-use instruction chains.
6900   Worklist.push_back(PredInst);
6901   while (!Worklist.empty()) {
6902     Instruction *I = Worklist.pop_back_val();
6903 
6904     // If we've already analyzed the instruction, there's nothing to do.
6905     if (ScalarCosts.find(I) != ScalarCosts.end())
6906       continue;
6907 
6908     // Compute the cost of the vector instruction. Note that this cost already
6909     // includes the scalarization overhead of the predicated instruction.
6910     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6911 
6912     // Compute the cost of the scalarized instruction. This cost is the cost of
6913     // the instruction as if it wasn't if-converted and instead remained in the
6914     // predicated block. We will scale this cost by block probability after
6915     // computing the scalarization overhead.
6916     InstructionCost ScalarCost =
6917         VF.getFixedValue() *
6918         getInstructionCost(I, ElementCount::getFixed(1)).first;
6919 
6920     // Compute the scalarization overhead of needed insertelement instructions
6921     // and phi nodes.
6922     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6923       ScalarCost += TTI.getScalarizationOverhead(
6924           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6925           APInt::getAllOnes(VF.getFixedValue()), true, false);
6926       ScalarCost +=
6927           VF.getFixedValue() *
6928           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6929     }
6930 
6931     // Compute the scalarization overhead of needed extractelement
6932     // instructions. For each of the instruction's operands, if the operand can
6933     // be scalarized, add it to the worklist; otherwise, account for the
6934     // overhead.
6935     for (Use &U : I->operands())
6936       if (auto *J = dyn_cast<Instruction>(U.get())) {
6937         assert(VectorType::isValidElementType(J->getType()) &&
6938                "Instruction has non-scalar type");
6939         if (canBeScalarized(J))
6940           Worklist.push_back(J);
6941         else if (needsExtract(J, VF)) {
6942           ScalarCost += TTI.getScalarizationOverhead(
6943               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6944               APInt::getAllOnes(VF.getFixedValue()), false, true);
6945         }
6946       }
6947 
6948     // Scale the total scalar cost by block probability.
6949     ScalarCost /= getReciprocalPredBlockProb();
6950 
6951     // Compute the discount. A non-negative discount means the vector version
6952     // of the instruction costs more, and scalarizing would be beneficial.
6953     Discount += VectorCost - ScalarCost;
6954     ScalarCosts[I] = ScalarCost;
6955   }
6956 
6957   return *Discount.getValue();
6958 }
6959 
6960 LoopVectorizationCostModel::VectorizationCostTy
6961 LoopVectorizationCostModel::expectedCost(
6962     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6963   VectorizationCostTy Cost;
6964 
6965   // For each block.
6966   for (BasicBlock *BB : TheLoop->blocks()) {
6967     VectorizationCostTy BlockCost;
6968 
6969     // For each instruction in the old loop.
6970     for (Instruction &I : BB->instructionsWithoutDebug()) {
6971       // Skip ignored values.
6972       if (ValuesToIgnore.count(&I) ||
6973           (VF.isVector() && VecValuesToIgnore.count(&I)))
6974         continue;
6975 
6976       VectorizationCostTy C = getInstructionCost(&I, VF);
6977 
6978       // Check if we should override the cost.
6979       if (C.first.isValid() &&
6980           ForceTargetInstructionCost.getNumOccurrences() > 0)
6981         C.first = InstructionCost(ForceTargetInstructionCost);
6982 
6983       // Keep a list of instructions with invalid costs.
6984       if (Invalid && !C.first.isValid())
6985         Invalid->emplace_back(&I, VF);
6986 
6987       BlockCost.first += C.first;
6988       BlockCost.second |= C.second;
6989       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6990                         << " for VF " << VF << " For instruction: " << I
6991                         << '\n');
6992     }
6993 
6994     // If we are vectorizing a predicated block, it will have been
6995     // if-converted. This means that the block's instructions (aside from
6996     // stores and instructions that may divide by zero) will now be
6997     // unconditionally executed. For the scalar case, we may not always execute
6998     // the predicated block, if it is an if-else block. Thus, scale the block's
6999     // cost by the probability of executing it. blockNeedsPredication from
7000     // Legal is used so as to not include all blocks in tail folded loops.
7001     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
7002       BlockCost.first /= getReciprocalPredBlockProb();
7003 
7004     Cost.first += BlockCost.first;
7005     Cost.second |= BlockCost.second;
7006   }
7007 
7008   return Cost;
7009 }
7010 
7011 /// Gets Address Access SCEV after verifying that the access pattern
7012 /// is loop invariant except the induction variable dependence.
7013 ///
7014 /// This SCEV can be sent to the Target in order to estimate the address
7015 /// calculation cost.
7016 static const SCEV *getAddressAccessSCEV(
7017               Value *Ptr,
7018               LoopVectorizationLegality *Legal,
7019               PredicatedScalarEvolution &PSE,
7020               const Loop *TheLoop) {
7021 
7022   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7023   if (!Gep)
7024     return nullptr;
7025 
7026   // We are looking for a gep with all loop invariant indices except for one
7027   // which should be an induction variable.
7028   auto SE = PSE.getSE();
7029   unsigned NumOperands = Gep->getNumOperands();
7030   for (unsigned i = 1; i < NumOperands; ++i) {
7031     Value *Opd = Gep->getOperand(i);
7032     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7033         !Legal->isInductionVariable(Opd))
7034       return nullptr;
7035   }
7036 
7037   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7038   return PSE.getSCEV(Ptr);
7039 }
7040 
7041 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7042   return Legal->hasStride(I->getOperand(0)) ||
7043          Legal->hasStride(I->getOperand(1));
7044 }
7045 
7046 InstructionCost
7047 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7048                                                         ElementCount VF) {
7049   assert(VF.isVector() &&
7050          "Scalarization cost of instruction implies vectorization.");
7051   if (VF.isScalable())
7052     return InstructionCost::getInvalid();
7053 
7054   Type *ValTy = getLoadStoreType(I);
7055   auto SE = PSE.getSE();
7056 
7057   unsigned AS = getLoadStoreAddressSpace(I);
7058   Value *Ptr = getLoadStorePointerOperand(I);
7059   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7060 
7061   // Figure out whether the access is strided and get the stride value
7062   // if it's known in compile time
7063   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7064 
7065   // Get the cost of the scalar memory instruction and address computation.
7066   InstructionCost Cost =
7067       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7068 
7069   // Don't pass *I here, since it is scalar but will actually be part of a
7070   // vectorized loop where the user of it is a vectorized instruction.
7071   const Align Alignment = getLoadStoreAlignment(I);
7072   Cost += VF.getKnownMinValue() *
7073           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7074                               AS, TTI::TCK_RecipThroughput);
7075 
7076   // Get the overhead of the extractelement and insertelement instructions
7077   // we might create due to scalarization.
7078   Cost += getScalarizationOverhead(I, VF);
7079 
7080   // If we have a predicated load/store, it will need extra i1 extracts and
7081   // conditional branches, but may not be executed for each vector lane. Scale
7082   // the cost by the probability of executing the predicated block.
7083   if (isPredicatedInst(I)) {
7084     Cost /= getReciprocalPredBlockProb();
7085 
7086     // Add the cost of an i1 extract and a branch
7087     auto *Vec_i1Ty =
7088         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7089     Cost += TTI.getScalarizationOverhead(
7090         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7091         /*Insert=*/false, /*Extract=*/true);
7092     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7093 
7094     if (useEmulatedMaskMemRefHack(I))
7095       // Artificially setting to a high enough value to practically disable
7096       // vectorization with such operations.
7097       Cost = 3000000;
7098   }
7099 
7100   return Cost;
7101 }
7102 
7103 InstructionCost
7104 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7105                                                     ElementCount VF) {
7106   Type *ValTy = getLoadStoreType(I);
7107   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7108   Value *Ptr = getLoadStorePointerOperand(I);
7109   unsigned AS = getLoadStoreAddressSpace(I);
7110   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7111   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7112 
7113   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7114          "Stride should be 1 or -1 for consecutive memory access");
7115   const Align Alignment = getLoadStoreAlignment(I);
7116   InstructionCost Cost = 0;
7117   if (Legal->isMaskRequired(I))
7118     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7119                                       CostKind);
7120   else
7121     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7122                                 CostKind, I);
7123 
7124   bool Reverse = ConsecutiveStride < 0;
7125   if (Reverse)
7126     Cost +=
7127         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7128   return Cost;
7129 }
7130 
7131 InstructionCost
7132 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7133                                                 ElementCount VF) {
7134   assert(Legal->isUniformMemOp(*I));
7135 
7136   Type *ValTy = getLoadStoreType(I);
7137   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7138   const Align Alignment = getLoadStoreAlignment(I);
7139   unsigned AS = getLoadStoreAddressSpace(I);
7140   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7141   if (isa<LoadInst>(I)) {
7142     return TTI.getAddressComputationCost(ValTy) +
7143            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7144                                CostKind) +
7145            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7146   }
7147   StoreInst *SI = cast<StoreInst>(I);
7148 
7149   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7150   return TTI.getAddressComputationCost(ValTy) +
7151          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7152                              CostKind) +
7153          (isLoopInvariantStoreValue
7154               ? 0
7155               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7156                                        VF.getKnownMinValue() - 1));
7157 }
7158 
7159 InstructionCost
7160 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7161                                                  ElementCount VF) {
7162   Type *ValTy = getLoadStoreType(I);
7163   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7164   const Align Alignment = getLoadStoreAlignment(I);
7165   const Value *Ptr = getLoadStorePointerOperand(I);
7166 
7167   return TTI.getAddressComputationCost(VectorTy) +
7168          TTI.getGatherScatterOpCost(
7169              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7170              TargetTransformInfo::TCK_RecipThroughput, I);
7171 }
7172 
7173 InstructionCost
7174 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7175                                                    ElementCount VF) {
7176   // TODO: Once we have support for interleaving with scalable vectors
7177   // we can calculate the cost properly here.
7178   if (VF.isScalable())
7179     return InstructionCost::getInvalid();
7180 
7181   Type *ValTy = getLoadStoreType(I);
7182   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7183   unsigned AS = getLoadStoreAddressSpace(I);
7184 
7185   auto Group = getInterleavedAccessGroup(I);
7186   assert(Group && "Fail to get an interleaved access group.");
7187 
7188   unsigned InterleaveFactor = Group->getFactor();
7189   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7190 
7191   // Holds the indices of existing members in the interleaved group.
7192   SmallVector<unsigned, 4> Indices;
7193   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7194     if (Group->getMember(IF))
7195       Indices.push_back(IF);
7196 
7197   // Calculate the cost of the whole interleaved group.
7198   bool UseMaskForGaps =
7199       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7200       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7201   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7202       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7203       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7204 
7205   if (Group->isReverse()) {
7206     // TODO: Add support for reversed masked interleaved access.
7207     assert(!Legal->isMaskRequired(I) &&
7208            "Reverse masked interleaved access not supported.");
7209     Cost +=
7210         Group->getNumMembers() *
7211         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7212   }
7213   return Cost;
7214 }
7215 
7216 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7217     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7218   using namespace llvm::PatternMatch;
7219   // Early exit for no inloop reductions
7220   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7221     return None;
7222   auto *VectorTy = cast<VectorType>(Ty);
7223 
7224   // We are looking for a pattern of, and finding the minimal acceptable cost:
7225   //  reduce(mul(ext(A), ext(B))) or
7226   //  reduce(mul(A, B)) or
7227   //  reduce(ext(A)) or
7228   //  reduce(A).
7229   // The basic idea is that we walk down the tree to do that, finding the root
7230   // reduction instruction in InLoopReductionImmediateChains. From there we find
7231   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7232   // of the components. If the reduction cost is lower then we return it for the
7233   // reduction instruction and 0 for the other instructions in the pattern. If
7234   // it is not we return an invalid cost specifying the orignal cost method
7235   // should be used.
7236   Instruction *RetI = I;
7237   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7238     if (!RetI->hasOneUser())
7239       return None;
7240     RetI = RetI->user_back();
7241   }
7242   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7243       RetI->user_back()->getOpcode() == Instruction::Add) {
7244     if (!RetI->hasOneUser())
7245       return None;
7246     RetI = RetI->user_back();
7247   }
7248 
7249   // Test if the found instruction is a reduction, and if not return an invalid
7250   // cost specifying the parent to use the original cost modelling.
7251   if (!InLoopReductionImmediateChains.count(RetI))
7252     return None;
7253 
7254   // Find the reduction this chain is a part of and calculate the basic cost of
7255   // the reduction on its own.
7256   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7257   Instruction *ReductionPhi = LastChain;
7258   while (!isa<PHINode>(ReductionPhi))
7259     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7260 
7261   const RecurrenceDescriptor &RdxDesc =
7262       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7263 
7264   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7265       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7266 
7267   // If we're using ordered reductions then we can just return the base cost
7268   // here, since getArithmeticReductionCost calculates the full ordered
7269   // reduction cost when FP reassociation is not allowed.
7270   if (useOrderedReductions(RdxDesc))
7271     return BaseCost;
7272 
7273   // Get the operand that was not the reduction chain and match it to one of the
7274   // patterns, returning the better cost if it is found.
7275   Instruction *RedOp = RetI->getOperand(1) == LastChain
7276                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7277                            : dyn_cast<Instruction>(RetI->getOperand(1));
7278 
7279   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7280 
7281   Instruction *Op0, *Op1;
7282   if (RedOp &&
7283       match(RedOp,
7284             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7285       match(Op0, m_ZExtOrSExt(m_Value())) &&
7286       Op0->getOpcode() == Op1->getOpcode() &&
7287       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7288       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7289       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7290 
7291     // Matched reduce(ext(mul(ext(A), ext(B)))
7292     // Note that the extend opcodes need to all match, or if A==B they will have
7293     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7294     // which is equally fine.
7295     bool IsUnsigned = isa<ZExtInst>(Op0);
7296     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7297     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7298 
7299     InstructionCost ExtCost =
7300         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7301                              TTI::CastContextHint::None, CostKind, Op0);
7302     InstructionCost MulCost =
7303         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7304     InstructionCost Ext2Cost =
7305         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7306                              TTI::CastContextHint::None, CostKind, RedOp);
7307 
7308     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7309         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7310         CostKind);
7311 
7312     if (RedCost.isValid() &&
7313         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7314       return I == RetI ? RedCost : 0;
7315   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7316              !TheLoop->isLoopInvariant(RedOp)) {
7317     // Matched reduce(ext(A))
7318     bool IsUnsigned = isa<ZExtInst>(RedOp);
7319     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7320     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7321         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7322         CostKind);
7323 
7324     InstructionCost ExtCost =
7325         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7326                              TTI::CastContextHint::None, CostKind, RedOp);
7327     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7328       return I == RetI ? RedCost : 0;
7329   } else if (RedOp &&
7330              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7331     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7332         Op0->getOpcode() == Op1->getOpcode() &&
7333         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7334         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7335       bool IsUnsigned = isa<ZExtInst>(Op0);
7336       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7337       // Matched reduce(mul(ext, ext))
7338       InstructionCost ExtCost =
7339           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7340                                TTI::CastContextHint::None, CostKind, Op0);
7341       InstructionCost MulCost =
7342           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7343 
7344       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7345           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7346           CostKind);
7347 
7348       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7349         return I == RetI ? RedCost : 0;
7350     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7351       // Matched reduce(mul())
7352       InstructionCost MulCost =
7353           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7354 
7355       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7356           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7357           CostKind);
7358 
7359       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7360         return I == RetI ? RedCost : 0;
7361     }
7362   }
7363 
7364   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7365 }
7366 
7367 InstructionCost
7368 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7369                                                      ElementCount VF) {
7370   // Calculate scalar cost only. Vectorization cost should be ready at this
7371   // moment.
7372   if (VF.isScalar()) {
7373     Type *ValTy = getLoadStoreType(I);
7374     const Align Alignment = getLoadStoreAlignment(I);
7375     unsigned AS = getLoadStoreAddressSpace(I);
7376 
7377     return TTI.getAddressComputationCost(ValTy) +
7378            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7379                                TTI::TCK_RecipThroughput, I);
7380   }
7381   return getWideningCost(I, VF);
7382 }
7383 
7384 LoopVectorizationCostModel::VectorizationCostTy
7385 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7386                                                ElementCount VF) {
7387   // If we know that this instruction will remain uniform, check the cost of
7388   // the scalar version.
7389   if (isUniformAfterVectorization(I, VF))
7390     VF = ElementCount::getFixed(1);
7391 
7392   if (VF.isVector() && isProfitableToScalarize(I, VF))
7393     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7394 
7395   // Forced scalars do not have any scalarization overhead.
7396   auto ForcedScalar = ForcedScalars.find(VF);
7397   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7398     auto InstSet = ForcedScalar->second;
7399     if (InstSet.count(I))
7400       return VectorizationCostTy(
7401           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7402            VF.getKnownMinValue()),
7403           false);
7404   }
7405 
7406   Type *VectorTy;
7407   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7408 
7409   bool TypeNotScalarized =
7410       VF.isVector() && VectorTy->isVectorTy() &&
7411       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7412   return VectorizationCostTy(C, TypeNotScalarized);
7413 }
7414 
7415 InstructionCost
7416 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7417                                                      ElementCount VF) const {
7418 
7419   // There is no mechanism yet to create a scalable scalarization loop,
7420   // so this is currently Invalid.
7421   if (VF.isScalable())
7422     return InstructionCost::getInvalid();
7423 
7424   if (VF.isScalar())
7425     return 0;
7426 
7427   InstructionCost Cost = 0;
7428   Type *RetTy = ToVectorTy(I->getType(), VF);
7429   if (!RetTy->isVoidTy() &&
7430       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7431     Cost += TTI.getScalarizationOverhead(
7432         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7433         false);
7434 
7435   // Some targets keep addresses scalar.
7436   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7437     return Cost;
7438 
7439   // Some targets support efficient element stores.
7440   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7441     return Cost;
7442 
7443   // Collect operands to consider.
7444   CallInst *CI = dyn_cast<CallInst>(I);
7445   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7446 
7447   // Skip operands that do not require extraction/scalarization and do not incur
7448   // any overhead.
7449   SmallVector<Type *> Tys;
7450   for (auto *V : filterExtractingOperands(Ops, VF))
7451     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7452   return Cost + TTI.getOperandsScalarizationOverhead(
7453                     filterExtractingOperands(Ops, VF), Tys);
7454 }
7455 
7456 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7457   if (VF.isScalar())
7458     return;
7459   NumPredStores = 0;
7460   for (BasicBlock *BB : TheLoop->blocks()) {
7461     // For each instruction in the old loop.
7462     for (Instruction &I : *BB) {
7463       Value *Ptr =  getLoadStorePointerOperand(&I);
7464       if (!Ptr)
7465         continue;
7466 
7467       // TODO: We should generate better code and update the cost model for
7468       // predicated uniform stores. Today they are treated as any other
7469       // predicated store (see added test cases in
7470       // invariant-store-vectorization.ll).
7471       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7472         NumPredStores++;
7473 
7474       if (Legal->isUniformMemOp(I)) {
7475         // TODO: Avoid replicating loads and stores instead of
7476         // relying on instcombine to remove them.
7477         // Load: Scalar load + broadcast
7478         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7479         InstructionCost Cost;
7480         if (isa<StoreInst>(&I) && VF.isScalable() &&
7481             isLegalGatherOrScatter(&I)) {
7482           Cost = getGatherScatterCost(&I, VF);
7483           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7484         } else {
7485           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7486                  "Cannot yet scalarize uniform stores");
7487           Cost = getUniformMemOpCost(&I, VF);
7488           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7489         }
7490         continue;
7491       }
7492 
7493       // We assume that widening is the best solution when possible.
7494       if (memoryInstructionCanBeWidened(&I, VF)) {
7495         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7496         int ConsecutiveStride = Legal->isConsecutivePtr(
7497             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7498         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7499                "Expected consecutive stride.");
7500         InstWidening Decision =
7501             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7502         setWideningDecision(&I, VF, Decision, Cost);
7503         continue;
7504       }
7505 
7506       // Choose between Interleaving, Gather/Scatter or Scalarization.
7507       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7508       unsigned NumAccesses = 1;
7509       if (isAccessInterleaved(&I)) {
7510         auto Group = getInterleavedAccessGroup(&I);
7511         assert(Group && "Fail to get an interleaved access group.");
7512 
7513         // Make one decision for the whole group.
7514         if (getWideningDecision(&I, VF) != CM_Unknown)
7515           continue;
7516 
7517         NumAccesses = Group->getNumMembers();
7518         if (interleavedAccessCanBeWidened(&I, VF))
7519           InterleaveCost = getInterleaveGroupCost(&I, VF);
7520       }
7521 
7522       InstructionCost GatherScatterCost =
7523           isLegalGatherOrScatter(&I)
7524               ? getGatherScatterCost(&I, VF) * NumAccesses
7525               : InstructionCost::getInvalid();
7526 
7527       InstructionCost ScalarizationCost =
7528           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7529 
7530       // Choose better solution for the current VF,
7531       // write down this decision and use it during vectorization.
7532       InstructionCost Cost;
7533       InstWidening Decision;
7534       if (InterleaveCost <= GatherScatterCost &&
7535           InterleaveCost < ScalarizationCost) {
7536         Decision = CM_Interleave;
7537         Cost = InterleaveCost;
7538       } else if (GatherScatterCost < ScalarizationCost) {
7539         Decision = CM_GatherScatter;
7540         Cost = GatherScatterCost;
7541       } else {
7542         Decision = CM_Scalarize;
7543         Cost = ScalarizationCost;
7544       }
7545       // If the instructions belongs to an interleave group, the whole group
7546       // receives the same decision. The whole group receives the cost, but
7547       // the cost will actually be assigned to one instruction.
7548       if (auto Group = getInterleavedAccessGroup(&I))
7549         setWideningDecision(Group, VF, Decision, Cost);
7550       else
7551         setWideningDecision(&I, VF, Decision, Cost);
7552     }
7553   }
7554 
7555   // Make sure that any load of address and any other address computation
7556   // remains scalar unless there is gather/scatter support. This avoids
7557   // inevitable extracts into address registers, and also has the benefit of
7558   // activating LSR more, since that pass can't optimize vectorized
7559   // addresses.
7560   if (TTI.prefersVectorizedAddressing())
7561     return;
7562 
7563   // Start with all scalar pointer uses.
7564   SmallPtrSet<Instruction *, 8> AddrDefs;
7565   for (BasicBlock *BB : TheLoop->blocks())
7566     for (Instruction &I : *BB) {
7567       Instruction *PtrDef =
7568         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7569       if (PtrDef && TheLoop->contains(PtrDef) &&
7570           getWideningDecision(&I, VF) != CM_GatherScatter)
7571         AddrDefs.insert(PtrDef);
7572     }
7573 
7574   // Add all instructions used to generate the addresses.
7575   SmallVector<Instruction *, 4> Worklist;
7576   append_range(Worklist, AddrDefs);
7577   while (!Worklist.empty()) {
7578     Instruction *I = Worklist.pop_back_val();
7579     for (auto &Op : I->operands())
7580       if (auto *InstOp = dyn_cast<Instruction>(Op))
7581         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7582             AddrDefs.insert(InstOp).second)
7583           Worklist.push_back(InstOp);
7584   }
7585 
7586   for (auto *I : AddrDefs) {
7587     if (isa<LoadInst>(I)) {
7588       // Setting the desired widening decision should ideally be handled in
7589       // by cost functions, but since this involves the task of finding out
7590       // if the loaded register is involved in an address computation, it is
7591       // instead changed here when we know this is the case.
7592       InstWidening Decision = getWideningDecision(I, VF);
7593       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7594         // Scalarize a widened load of address.
7595         setWideningDecision(
7596             I, VF, CM_Scalarize,
7597             (VF.getKnownMinValue() *
7598              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7599       else if (auto Group = getInterleavedAccessGroup(I)) {
7600         // Scalarize an interleave group of address loads.
7601         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7602           if (Instruction *Member = Group->getMember(I))
7603             setWideningDecision(
7604                 Member, VF, CM_Scalarize,
7605                 (VF.getKnownMinValue() *
7606                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7607         }
7608       }
7609     } else
7610       // Make sure I gets scalarized and a cost estimate without
7611       // scalarization overhead.
7612       ForcedScalars[VF].insert(I);
7613   }
7614 }
7615 
7616 InstructionCost
7617 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7618                                                Type *&VectorTy) {
7619   Type *RetTy = I->getType();
7620   if (canTruncateToMinimalBitwidth(I, VF))
7621     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7622   auto SE = PSE.getSE();
7623   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7624 
7625   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7626                                                 ElementCount VF) -> bool {
7627     if (VF.isScalar())
7628       return true;
7629 
7630     auto Scalarized = InstsToScalarize.find(VF);
7631     assert(Scalarized != InstsToScalarize.end() &&
7632            "VF not yet analyzed for scalarization profitability");
7633     return !Scalarized->second.count(I) &&
7634            llvm::all_of(I->users(), [&](User *U) {
7635              auto *UI = cast<Instruction>(U);
7636              return !Scalarized->second.count(UI);
7637            });
7638   };
7639   (void) hasSingleCopyAfterVectorization;
7640 
7641   if (isScalarAfterVectorization(I, VF)) {
7642     // With the exception of GEPs and PHIs, after scalarization there should
7643     // only be one copy of the instruction generated in the loop. This is
7644     // because the VF is either 1, or any instructions that need scalarizing
7645     // have already been dealt with by the the time we get here. As a result,
7646     // it means we don't have to multiply the instruction cost by VF.
7647     assert(I->getOpcode() == Instruction::GetElementPtr ||
7648            I->getOpcode() == Instruction::PHI ||
7649            (I->getOpcode() == Instruction::BitCast &&
7650             I->getType()->isPointerTy()) ||
7651            hasSingleCopyAfterVectorization(I, VF));
7652     VectorTy = RetTy;
7653   } else
7654     VectorTy = ToVectorTy(RetTy, VF);
7655 
7656   // TODO: We need to estimate the cost of intrinsic calls.
7657   switch (I->getOpcode()) {
7658   case Instruction::GetElementPtr:
7659     // We mark this instruction as zero-cost because the cost of GEPs in
7660     // vectorized code depends on whether the corresponding memory instruction
7661     // is scalarized or not. Therefore, we handle GEPs with the memory
7662     // instruction cost.
7663     return 0;
7664   case Instruction::Br: {
7665     // In cases of scalarized and predicated instructions, there will be VF
7666     // predicated blocks in the vectorized loop. Each branch around these
7667     // blocks requires also an extract of its vector compare i1 element.
7668     bool ScalarPredicatedBB = false;
7669     BranchInst *BI = cast<BranchInst>(I);
7670     if (VF.isVector() && BI->isConditional() &&
7671         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7672          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7673       ScalarPredicatedBB = true;
7674 
7675     if (ScalarPredicatedBB) {
7676       // Not possible to scalarize scalable vector with predicated instructions.
7677       if (VF.isScalable())
7678         return InstructionCost::getInvalid();
7679       // Return cost for branches around scalarized and predicated blocks.
7680       auto *Vec_i1Ty =
7681           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7682       return (
7683           TTI.getScalarizationOverhead(
7684               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7685           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7686     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7687       // The back-edge branch will remain, as will all scalar branches.
7688       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7689     else
7690       // This branch will be eliminated by if-conversion.
7691       return 0;
7692     // Note: We currently assume zero cost for an unconditional branch inside
7693     // a predicated block since it will become a fall-through, although we
7694     // may decide in the future to call TTI for all branches.
7695   }
7696   case Instruction::PHI: {
7697     auto *Phi = cast<PHINode>(I);
7698 
7699     // First-order recurrences are replaced by vector shuffles inside the loop.
7700     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7701     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7702       return TTI.getShuffleCost(
7703           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7704           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7705 
7706     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7707     // converted into select instructions. We require N - 1 selects per phi
7708     // node, where N is the number of incoming values.
7709     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7710       return (Phi->getNumIncomingValues() - 1) *
7711              TTI.getCmpSelInstrCost(
7712                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7713                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7714                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7715 
7716     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7717   }
7718   case Instruction::UDiv:
7719   case Instruction::SDiv:
7720   case Instruction::URem:
7721   case Instruction::SRem:
7722     // If we have a predicated instruction, it may not be executed for each
7723     // vector lane. Get the scalarization cost and scale this amount by the
7724     // probability of executing the predicated block. If the instruction is not
7725     // predicated, we fall through to the next case.
7726     if (VF.isVector() && isScalarWithPredication(I)) {
7727       InstructionCost Cost = 0;
7728 
7729       // These instructions have a non-void type, so account for the phi nodes
7730       // that we will create. This cost is likely to be zero. The phi node
7731       // cost, if any, should be scaled by the block probability because it
7732       // models a copy at the end of each predicated block.
7733       Cost += VF.getKnownMinValue() *
7734               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7735 
7736       // The cost of the non-predicated instruction.
7737       Cost += VF.getKnownMinValue() *
7738               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7739 
7740       // The cost of insertelement and extractelement instructions needed for
7741       // scalarization.
7742       Cost += getScalarizationOverhead(I, VF);
7743 
7744       // Scale the cost by the probability of executing the predicated blocks.
7745       // This assumes the predicated block for each vector lane is equally
7746       // likely.
7747       return Cost / getReciprocalPredBlockProb();
7748     }
7749     LLVM_FALLTHROUGH;
7750   case Instruction::Add:
7751   case Instruction::FAdd:
7752   case Instruction::Sub:
7753   case Instruction::FSub:
7754   case Instruction::Mul:
7755   case Instruction::FMul:
7756   case Instruction::FDiv:
7757   case Instruction::FRem:
7758   case Instruction::Shl:
7759   case Instruction::LShr:
7760   case Instruction::AShr:
7761   case Instruction::And:
7762   case Instruction::Or:
7763   case Instruction::Xor: {
7764     // Since we will replace the stride by 1 the multiplication should go away.
7765     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7766       return 0;
7767 
7768     // Detect reduction patterns
7769     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7770       return *RedCost;
7771 
7772     // Certain instructions can be cheaper to vectorize if they have a constant
7773     // second vector operand. One example of this are shifts on x86.
7774     Value *Op2 = I->getOperand(1);
7775     TargetTransformInfo::OperandValueProperties Op2VP;
7776     TargetTransformInfo::OperandValueKind Op2VK =
7777         TTI.getOperandInfo(Op2, Op2VP);
7778     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7779       Op2VK = TargetTransformInfo::OK_UniformValue;
7780 
7781     SmallVector<const Value *, 4> Operands(I->operand_values());
7782     return TTI.getArithmeticInstrCost(
7783         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7784         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7785   }
7786   case Instruction::FNeg: {
7787     return TTI.getArithmeticInstrCost(
7788         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7789         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7790         TargetTransformInfo::OP_None, I->getOperand(0), I);
7791   }
7792   case Instruction::Select: {
7793     SelectInst *SI = cast<SelectInst>(I);
7794     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7795     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7796 
7797     const Value *Op0, *Op1;
7798     using namespace llvm::PatternMatch;
7799     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7800                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7801       // select x, y, false --> x & y
7802       // select x, true, y --> x | y
7803       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7804       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7805       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7806       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7807       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7808               Op1->getType()->getScalarSizeInBits() == 1);
7809 
7810       SmallVector<const Value *, 2> Operands{Op0, Op1};
7811       return TTI.getArithmeticInstrCost(
7812           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7813           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7814     }
7815 
7816     Type *CondTy = SI->getCondition()->getType();
7817     if (!ScalarCond)
7818       CondTy = VectorType::get(CondTy, VF);
7819     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7820                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7821   }
7822   case Instruction::ICmp:
7823   case Instruction::FCmp: {
7824     Type *ValTy = I->getOperand(0)->getType();
7825     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7826     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7827       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7828     VectorTy = ToVectorTy(ValTy, VF);
7829     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7830                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7831   }
7832   case Instruction::Store:
7833   case Instruction::Load: {
7834     ElementCount Width = VF;
7835     if (Width.isVector()) {
7836       InstWidening Decision = getWideningDecision(I, Width);
7837       assert(Decision != CM_Unknown &&
7838              "CM decision should be taken at this point");
7839       if (Decision == CM_Scalarize)
7840         Width = ElementCount::getFixed(1);
7841     }
7842     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7843     return getMemoryInstructionCost(I, VF);
7844   }
7845   case Instruction::BitCast:
7846     if (I->getType()->isPointerTy())
7847       return 0;
7848     LLVM_FALLTHROUGH;
7849   case Instruction::ZExt:
7850   case Instruction::SExt:
7851   case Instruction::FPToUI:
7852   case Instruction::FPToSI:
7853   case Instruction::FPExt:
7854   case Instruction::PtrToInt:
7855   case Instruction::IntToPtr:
7856   case Instruction::SIToFP:
7857   case Instruction::UIToFP:
7858   case Instruction::Trunc:
7859   case Instruction::FPTrunc: {
7860     // Computes the CastContextHint from a Load/Store instruction.
7861     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7862       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7863              "Expected a load or a store!");
7864 
7865       if (VF.isScalar() || !TheLoop->contains(I))
7866         return TTI::CastContextHint::Normal;
7867 
7868       switch (getWideningDecision(I, VF)) {
7869       case LoopVectorizationCostModel::CM_GatherScatter:
7870         return TTI::CastContextHint::GatherScatter;
7871       case LoopVectorizationCostModel::CM_Interleave:
7872         return TTI::CastContextHint::Interleave;
7873       case LoopVectorizationCostModel::CM_Scalarize:
7874       case LoopVectorizationCostModel::CM_Widen:
7875         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7876                                         : TTI::CastContextHint::Normal;
7877       case LoopVectorizationCostModel::CM_Widen_Reverse:
7878         return TTI::CastContextHint::Reversed;
7879       case LoopVectorizationCostModel::CM_Unknown:
7880         llvm_unreachable("Instr did not go through cost modelling?");
7881       }
7882 
7883       llvm_unreachable("Unhandled case!");
7884     };
7885 
7886     unsigned Opcode = I->getOpcode();
7887     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7888     // For Trunc, the context is the only user, which must be a StoreInst.
7889     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7890       if (I->hasOneUse())
7891         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7892           CCH = ComputeCCH(Store);
7893     }
7894     // For Z/Sext, the context is the operand, which must be a LoadInst.
7895     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7896              Opcode == Instruction::FPExt) {
7897       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7898         CCH = ComputeCCH(Load);
7899     }
7900 
7901     // We optimize the truncation of induction variables having constant
7902     // integer steps. The cost of these truncations is the same as the scalar
7903     // operation.
7904     if (isOptimizableIVTruncate(I, VF)) {
7905       auto *Trunc = cast<TruncInst>(I);
7906       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7907                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7908     }
7909 
7910     // Detect reduction patterns
7911     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7912       return *RedCost;
7913 
7914     Type *SrcScalarTy = I->getOperand(0)->getType();
7915     Type *SrcVecTy =
7916         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7917     if (canTruncateToMinimalBitwidth(I, VF)) {
7918       // This cast is going to be shrunk. This may remove the cast or it might
7919       // turn it into slightly different cast. For example, if MinBW == 16,
7920       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7921       //
7922       // Calculate the modified src and dest types.
7923       Type *MinVecTy = VectorTy;
7924       if (Opcode == Instruction::Trunc) {
7925         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7926         VectorTy =
7927             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7928       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7929         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7930         VectorTy =
7931             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7932       }
7933     }
7934 
7935     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7936   }
7937   case Instruction::Call: {
7938     bool NeedToScalarize;
7939     CallInst *CI = cast<CallInst>(I);
7940     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7941     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7942       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7943       return std::min(CallCost, IntrinsicCost);
7944     }
7945     return CallCost;
7946   }
7947   case Instruction::ExtractValue:
7948     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7949   case Instruction::Alloca:
7950     // We cannot easily widen alloca to a scalable alloca, as
7951     // the result would need to be a vector of pointers.
7952     if (VF.isScalable())
7953       return InstructionCost::getInvalid();
7954     LLVM_FALLTHROUGH;
7955   default:
7956     // This opcode is unknown. Assume that it is the same as 'mul'.
7957     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7958   } // end of switch.
7959 }
7960 
7961 char LoopVectorize::ID = 0;
7962 
7963 static const char lv_name[] = "Loop Vectorization";
7964 
7965 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7966 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7967 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7968 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7969 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7970 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7971 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7972 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7973 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7974 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7975 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7976 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7977 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7978 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7979 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7980 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7981 
7982 namespace llvm {
7983 
7984 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7985 
7986 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7987                               bool VectorizeOnlyWhenForced) {
7988   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7989 }
7990 
7991 } // end namespace llvm
7992 
7993 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7994   // Check if the pointer operand of a load or store instruction is
7995   // consecutive.
7996   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7997     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7998   return false;
7999 }
8000 
8001 void LoopVectorizationCostModel::collectValuesToIgnore() {
8002   // Ignore ephemeral values.
8003   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
8004 
8005   // Ignore type-promoting instructions we identified during reduction
8006   // detection.
8007   for (auto &Reduction : Legal->getReductionVars()) {
8008     RecurrenceDescriptor &RedDes = Reduction.second;
8009     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
8010     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8011   }
8012   // Ignore type-casting instructions we identified during induction
8013   // detection.
8014   for (auto &Induction : Legal->getInductionVars()) {
8015     InductionDescriptor &IndDes = Induction.second;
8016     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8017     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8018   }
8019 }
8020 
8021 void LoopVectorizationCostModel::collectInLoopReductions() {
8022   for (auto &Reduction : Legal->getReductionVars()) {
8023     PHINode *Phi = Reduction.first;
8024     RecurrenceDescriptor &RdxDesc = Reduction.second;
8025 
8026     // We don't collect reductions that are type promoted (yet).
8027     if (RdxDesc.getRecurrenceType() != Phi->getType())
8028       continue;
8029 
8030     // If the target would prefer this reduction to happen "in-loop", then we
8031     // want to record it as such.
8032     unsigned Opcode = RdxDesc.getOpcode();
8033     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8034         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8035                                    TargetTransformInfo::ReductionFlags()))
8036       continue;
8037 
8038     // Check that we can correctly put the reductions into the loop, by
8039     // finding the chain of operations that leads from the phi to the loop
8040     // exit value.
8041     SmallVector<Instruction *, 4> ReductionOperations =
8042         RdxDesc.getReductionOpChain(Phi, TheLoop);
8043     bool InLoop = !ReductionOperations.empty();
8044     if (InLoop) {
8045       InLoopReductionChains[Phi] = ReductionOperations;
8046       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8047       Instruction *LastChain = Phi;
8048       for (auto *I : ReductionOperations) {
8049         InLoopReductionImmediateChains[I] = LastChain;
8050         LastChain = I;
8051       }
8052     }
8053     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8054                       << " reduction for phi: " << *Phi << "\n");
8055   }
8056 }
8057 
8058 // TODO: we could return a pair of values that specify the max VF and
8059 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8060 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8061 // doesn't have a cost model that can choose which plan to execute if
8062 // more than one is generated.
8063 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8064                                  LoopVectorizationCostModel &CM) {
8065   unsigned WidestType;
8066   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8067   return WidestVectorRegBits / WidestType;
8068 }
8069 
8070 VectorizationFactor
8071 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8072   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8073   ElementCount VF = UserVF;
8074   // Outer loop handling: They may require CFG and instruction level
8075   // transformations before even evaluating whether vectorization is profitable.
8076   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8077   // the vectorization pipeline.
8078   if (!OrigLoop->isInnermost()) {
8079     // If the user doesn't provide a vectorization factor, determine a
8080     // reasonable one.
8081     if (UserVF.isZero()) {
8082       VF = ElementCount::getFixed(determineVPlanVF(
8083           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8084               .getFixedSize(),
8085           CM));
8086       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8087 
8088       // Make sure we have a VF > 1 for stress testing.
8089       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8090         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8091                           << "overriding computed VF.\n");
8092         VF = ElementCount::getFixed(4);
8093       }
8094     }
8095     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8096     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8097            "VF needs to be a power of two");
8098     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8099                       << "VF " << VF << " to build VPlans.\n");
8100     buildVPlans(VF, VF);
8101 
8102     // For VPlan build stress testing, we bail out after VPlan construction.
8103     if (VPlanBuildStressTest)
8104       return VectorizationFactor::Disabled();
8105 
8106     return {VF, 0 /*Cost*/};
8107   }
8108 
8109   LLVM_DEBUG(
8110       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8111                 "VPlan-native path.\n");
8112   return VectorizationFactor::Disabled();
8113 }
8114 
8115 Optional<VectorizationFactor>
8116 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8117   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8118   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8119   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8120     return None;
8121 
8122   // Invalidate interleave groups if all blocks of loop will be predicated.
8123   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8124       !useMaskedInterleavedAccesses(*TTI)) {
8125     LLVM_DEBUG(
8126         dbgs()
8127         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8128            "which requires masked-interleaved support.\n");
8129     if (CM.InterleaveInfo.invalidateGroups())
8130       // Invalidating interleave groups also requires invalidating all decisions
8131       // based on them, which includes widening decisions and uniform and scalar
8132       // values.
8133       CM.invalidateCostModelingDecisions();
8134   }
8135 
8136   ElementCount MaxUserVF =
8137       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8138   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8139   if (!UserVF.isZero() && UserVFIsLegal) {
8140     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8141            "VF needs to be a power of two");
8142     // Collect the instructions (and their associated costs) that will be more
8143     // profitable to scalarize.
8144     if (CM.selectUserVectorizationFactor(UserVF)) {
8145       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8146       CM.collectInLoopReductions();
8147       buildVPlansWithVPRecipes(UserVF, UserVF);
8148       LLVM_DEBUG(printPlans(dbgs()));
8149       return {{UserVF, 0}};
8150     } else
8151       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8152                               "InvalidCost", ORE, OrigLoop);
8153   }
8154 
8155   // Populate the set of Vectorization Factor Candidates.
8156   ElementCountSet VFCandidates;
8157   for (auto VF = ElementCount::getFixed(1);
8158        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8159     VFCandidates.insert(VF);
8160   for (auto VF = ElementCount::getScalable(1);
8161        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8162     VFCandidates.insert(VF);
8163 
8164   for (const auto &VF : VFCandidates) {
8165     // Collect Uniform and Scalar instructions after vectorization with VF.
8166     CM.collectUniformsAndScalars(VF);
8167 
8168     // Collect the instructions (and their associated costs) that will be more
8169     // profitable to scalarize.
8170     if (VF.isVector())
8171       CM.collectInstsToScalarize(VF);
8172   }
8173 
8174   CM.collectInLoopReductions();
8175   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8176   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8177 
8178   LLVM_DEBUG(printPlans(dbgs()));
8179   if (!MaxFactors.hasVector())
8180     return VectorizationFactor::Disabled();
8181 
8182   // Select the optimal vectorization factor.
8183   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8184 
8185   // Check if it is profitable to vectorize with runtime checks.
8186   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8187   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8188     bool PragmaThresholdReached =
8189         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8190     bool ThresholdReached =
8191         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8192     if ((ThresholdReached && !Hints.allowReordering()) ||
8193         PragmaThresholdReached) {
8194       ORE->emit([&]() {
8195         return OptimizationRemarkAnalysisAliasing(
8196                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8197                    OrigLoop->getHeader())
8198                << "loop not vectorized: cannot prove it is safe to reorder "
8199                   "memory operations";
8200       });
8201       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8202       Hints.emitRemarkWithHints();
8203       return VectorizationFactor::Disabled();
8204     }
8205   }
8206   return SelectedVF;
8207 }
8208 
8209 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8210   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8211                     << '\n');
8212   BestVF = VF;
8213   BestUF = UF;
8214 
8215   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8216     return !Plan->hasVF(VF);
8217   });
8218   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8219 }
8220 
8221 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8222                                            DominatorTree *DT) {
8223   // Perform the actual loop transformation.
8224 
8225   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8226   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8227   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8228 
8229   VPTransformState State{
8230       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8231   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8232   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8233   State.CanonicalIV = ILV.Induction;
8234 
8235   ILV.printDebugTracesAtStart();
8236 
8237   //===------------------------------------------------===//
8238   //
8239   // Notice: any optimization or new instruction that go
8240   // into the code below should also be implemented in
8241   // the cost-model.
8242   //
8243   //===------------------------------------------------===//
8244 
8245   // 2. Copy and widen instructions from the old loop into the new loop.
8246   VPlans.front()->execute(&State);
8247 
8248   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8249   //    predication, updating analyses.
8250   ILV.fixVectorizedLoop(State);
8251 
8252   ILV.printDebugTracesAtEnd();
8253 }
8254 
8255 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8256 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8257   for (const auto &Plan : VPlans)
8258     if (PrintVPlansInDotFormat)
8259       Plan->printDOT(O);
8260     else
8261       Plan->print(O);
8262 }
8263 #endif
8264 
8265 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8266     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8267 
8268   // We create new control-flow for the vectorized loop, so the original exit
8269   // conditions will be dead after vectorization if it's only used by the
8270   // terminator
8271   SmallVector<BasicBlock*> ExitingBlocks;
8272   OrigLoop->getExitingBlocks(ExitingBlocks);
8273   for (auto *BB : ExitingBlocks) {
8274     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8275     if (!Cmp || !Cmp->hasOneUse())
8276       continue;
8277 
8278     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8279     if (!DeadInstructions.insert(Cmp).second)
8280       continue;
8281 
8282     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8283     // TODO: can recurse through operands in general
8284     for (Value *Op : Cmp->operands()) {
8285       if (isa<TruncInst>(Op) && Op->hasOneUse())
8286           DeadInstructions.insert(cast<Instruction>(Op));
8287     }
8288   }
8289 
8290   // We create new "steps" for induction variable updates to which the original
8291   // induction variables map. An original update instruction will be dead if
8292   // all its users except the induction variable are dead.
8293   auto *Latch = OrigLoop->getLoopLatch();
8294   for (auto &Induction : Legal->getInductionVars()) {
8295     PHINode *Ind = Induction.first;
8296     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8297 
8298     // If the tail is to be folded by masking, the primary induction variable,
8299     // if exists, isn't dead: it will be used for masking. Don't kill it.
8300     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8301       continue;
8302 
8303     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8304           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8305         }))
8306       DeadInstructions.insert(IndUpdate);
8307 
8308     // We record as "Dead" also the type-casting instructions we had identified
8309     // during induction analysis. We don't need any handling for them in the
8310     // vectorized loop because we have proven that, under a proper runtime
8311     // test guarding the vectorized loop, the value of the phi, and the casted
8312     // value of the phi, are the same. The last instruction in this casting chain
8313     // will get its scalar/vector/widened def from the scalar/vector/widened def
8314     // of the respective phi node. Any other casts in the induction def-use chain
8315     // have no other uses outside the phi update chain, and will be ignored.
8316     InductionDescriptor &IndDes = Induction.second;
8317     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8318     DeadInstructions.insert(Casts.begin(), Casts.end());
8319   }
8320 }
8321 
8322 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8323 
8324 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8325 
8326 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8327                                         Instruction::BinaryOps BinOp) {
8328   // When unrolling and the VF is 1, we only need to add a simple scalar.
8329   Type *Ty = Val->getType();
8330   assert(!Ty->isVectorTy() && "Val must be a scalar");
8331 
8332   if (Ty->isFloatingPointTy()) {
8333     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8334 
8335     // Floating-point operations inherit FMF via the builder's flags.
8336     Value *MulOp = Builder.CreateFMul(C, Step);
8337     return Builder.CreateBinOp(BinOp, Val, MulOp);
8338   }
8339   Constant *C = ConstantInt::get(Ty, StartIdx);
8340   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8341 }
8342 
8343 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8344   SmallVector<Metadata *, 4> MDs;
8345   // Reserve first location for self reference to the LoopID metadata node.
8346   MDs.push_back(nullptr);
8347   bool IsUnrollMetadata = false;
8348   MDNode *LoopID = L->getLoopID();
8349   if (LoopID) {
8350     // First find existing loop unrolling disable metadata.
8351     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8352       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8353       if (MD) {
8354         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8355         IsUnrollMetadata =
8356             S && S->getString().startswith("llvm.loop.unroll.disable");
8357       }
8358       MDs.push_back(LoopID->getOperand(i));
8359     }
8360   }
8361 
8362   if (!IsUnrollMetadata) {
8363     // Add runtime unroll disable metadata.
8364     LLVMContext &Context = L->getHeader()->getContext();
8365     SmallVector<Metadata *, 1> DisableOperands;
8366     DisableOperands.push_back(
8367         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8368     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8369     MDs.push_back(DisableNode);
8370     MDNode *NewLoopID = MDNode::get(Context, MDs);
8371     // Set operand 0 to refer to the loop id itself.
8372     NewLoopID->replaceOperandWith(0, NewLoopID);
8373     L->setLoopID(NewLoopID);
8374   }
8375 }
8376 
8377 //===--------------------------------------------------------------------===//
8378 // EpilogueVectorizerMainLoop
8379 //===--------------------------------------------------------------------===//
8380 
8381 /// This function is partially responsible for generating the control flow
8382 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8383 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8384   MDNode *OrigLoopID = OrigLoop->getLoopID();
8385   Loop *Lp = createVectorLoopSkeleton("");
8386 
8387   // Generate the code to check the minimum iteration count of the vector
8388   // epilogue (see below).
8389   EPI.EpilogueIterationCountCheck =
8390       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8391   EPI.EpilogueIterationCountCheck->setName("iter.check");
8392 
8393   // Generate the code to check any assumptions that we've made for SCEV
8394   // expressions.
8395   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8396 
8397   // Generate the code that checks at runtime if arrays overlap. We put the
8398   // checks into a separate block to make the more common case of few elements
8399   // faster.
8400   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8401 
8402   // Generate the iteration count check for the main loop, *after* the check
8403   // for the epilogue loop, so that the path-length is shorter for the case
8404   // that goes directly through the vector epilogue. The longer-path length for
8405   // the main loop is compensated for, by the gain from vectorizing the larger
8406   // trip count. Note: the branch will get updated later on when we vectorize
8407   // the epilogue.
8408   EPI.MainLoopIterationCountCheck =
8409       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8410 
8411   // Generate the induction variable.
8412   OldInduction = Legal->getPrimaryInduction();
8413   Type *IdxTy = Legal->getWidestInductionType();
8414   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8415   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8416   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8417   EPI.VectorTripCount = CountRoundDown;
8418   Induction =
8419       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8420                               getDebugLocFromInstOrOperands(OldInduction));
8421 
8422   // Skip induction resume value creation here because they will be created in
8423   // the second pass. If we created them here, they wouldn't be used anyway,
8424   // because the vplan in the second pass still contains the inductions from the
8425   // original loop.
8426 
8427   return completeLoopSkeleton(Lp, OrigLoopID);
8428 }
8429 
8430 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8431   LLVM_DEBUG({
8432     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8433            << "Main Loop VF:" << EPI.MainLoopVF
8434            << ", Main Loop UF:" << EPI.MainLoopUF
8435            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8436            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8437   });
8438 }
8439 
8440 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8441   DEBUG_WITH_TYPE(VerboseDebug, {
8442     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8443   });
8444 }
8445 
8446 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8447     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8448   assert(L && "Expected valid Loop.");
8449   assert(Bypass && "Expected valid bypass basic block.");
8450   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8451   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8452   Value *Count = getOrCreateTripCount(L);
8453   // Reuse existing vector loop preheader for TC checks.
8454   // Note that new preheader block is generated for vector loop.
8455   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8456   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8457 
8458   // Generate code to check if the loop's trip count is less than VF * UF of the
8459   // main vector loop.
8460   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8461       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8462 
8463   Value *CheckMinIters = Builder.CreateICmp(
8464       P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor),
8465       "min.iters.check");
8466 
8467   if (!ForEpilogue)
8468     TCCheckBlock->setName("vector.main.loop.iter.check");
8469 
8470   // Create new preheader for vector loop.
8471   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8472                                    DT, LI, nullptr, "vector.ph");
8473 
8474   if (ForEpilogue) {
8475     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8476                                  DT->getNode(Bypass)->getIDom()) &&
8477            "TC check is expected to dominate Bypass");
8478 
8479     // Update dominator for Bypass & LoopExit.
8480     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8481     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8482       // For loops with multiple exits, there's no edge from the middle block
8483       // to exit blocks (as the epilogue must run) and thus no need to update
8484       // the immediate dominator of the exit blocks.
8485       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8486 
8487     LoopBypassBlocks.push_back(TCCheckBlock);
8488 
8489     // Save the trip count so we don't have to regenerate it in the
8490     // vec.epilog.iter.check. This is safe to do because the trip count
8491     // generated here dominates the vector epilog iter check.
8492     EPI.TripCount = Count;
8493   }
8494 
8495   ReplaceInstWithInst(
8496       TCCheckBlock->getTerminator(),
8497       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8498 
8499   return TCCheckBlock;
8500 }
8501 
8502 //===--------------------------------------------------------------------===//
8503 // EpilogueVectorizerEpilogueLoop
8504 //===--------------------------------------------------------------------===//
8505 
8506 /// This function is partially responsible for generating the control flow
8507 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8508 BasicBlock *
8509 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8510   MDNode *OrigLoopID = OrigLoop->getLoopID();
8511   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8512 
8513   // Now, compare the remaining count and if there aren't enough iterations to
8514   // execute the vectorized epilogue skip to the scalar part.
8515   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8516   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8517   LoopVectorPreHeader =
8518       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8519                  LI, nullptr, "vec.epilog.ph");
8520   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8521                                           VecEpilogueIterationCountCheck);
8522 
8523   // Adjust the control flow taking the state info from the main loop
8524   // vectorization into account.
8525   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8526          "expected this to be saved from the previous pass.");
8527   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8528       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8529 
8530   DT->changeImmediateDominator(LoopVectorPreHeader,
8531                                EPI.MainLoopIterationCountCheck);
8532 
8533   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8534       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8535 
8536   if (EPI.SCEVSafetyCheck)
8537     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8538         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8539   if (EPI.MemSafetyCheck)
8540     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8541         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8542 
8543   DT->changeImmediateDominator(
8544       VecEpilogueIterationCountCheck,
8545       VecEpilogueIterationCountCheck->getSinglePredecessor());
8546 
8547   DT->changeImmediateDominator(LoopScalarPreHeader,
8548                                EPI.EpilogueIterationCountCheck);
8549   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8550     // If there is an epilogue which must run, there's no edge from the
8551     // middle block to exit blocks  and thus no need to update the immediate
8552     // dominator of the exit blocks.
8553     DT->changeImmediateDominator(LoopExitBlock,
8554                                  EPI.EpilogueIterationCountCheck);
8555 
8556   // Keep track of bypass blocks, as they feed start values to the induction
8557   // phis in the scalar loop preheader.
8558   if (EPI.SCEVSafetyCheck)
8559     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8560   if (EPI.MemSafetyCheck)
8561     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8562   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8563 
8564   // Generate a resume induction for the vector epilogue and put it in the
8565   // vector epilogue preheader
8566   Type *IdxTy = Legal->getWidestInductionType();
8567   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8568                                          LoopVectorPreHeader->getFirstNonPHI());
8569   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8570   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8571                            EPI.MainLoopIterationCountCheck);
8572 
8573   // Generate the induction variable.
8574   OldInduction = Legal->getPrimaryInduction();
8575   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8576   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8577   Value *StartIdx = EPResumeVal;
8578   Induction =
8579       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8580                               getDebugLocFromInstOrOperands(OldInduction));
8581 
8582   // Generate induction resume values. These variables save the new starting
8583   // indexes for the scalar loop. They are used to test if there are any tail
8584   // iterations left once the vector loop has completed.
8585   // Note that when the vectorized epilogue is skipped due to iteration count
8586   // check, then the resume value for the induction variable comes from
8587   // the trip count of the main vector loop, hence passing the AdditionalBypass
8588   // argument.
8589   createInductionResumeValues(Lp, CountRoundDown,
8590                               {VecEpilogueIterationCountCheck,
8591                                EPI.VectorTripCount} /* AdditionalBypass */);
8592 
8593   AddRuntimeUnrollDisableMetaData(Lp);
8594   return completeLoopSkeleton(Lp, OrigLoopID);
8595 }
8596 
8597 BasicBlock *
8598 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8599     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8600 
8601   assert(EPI.TripCount &&
8602          "Expected trip count to have been safed in the first pass.");
8603   assert(
8604       (!isa<Instruction>(EPI.TripCount) ||
8605        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8606       "saved trip count does not dominate insertion point.");
8607   Value *TC = EPI.TripCount;
8608   IRBuilder<> Builder(Insert->getTerminator());
8609   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8610 
8611   // Generate code to check if the loop's trip count is less than VF * UF of the
8612   // vector epilogue loop.
8613   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8614       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8615 
8616   Value *CheckMinIters = Builder.CreateICmp(
8617       P, Count,
8618       getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF),
8619       "min.epilog.iters.check");
8620 
8621   ReplaceInstWithInst(
8622       Insert->getTerminator(),
8623       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8624 
8625   LoopBypassBlocks.push_back(Insert);
8626   return Insert;
8627 }
8628 
8629 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8630   LLVM_DEBUG({
8631     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8632            << "Epilogue Loop VF:" << EPI.EpilogueVF
8633            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8634   });
8635 }
8636 
8637 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8638   DEBUG_WITH_TYPE(VerboseDebug, {
8639     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8640   });
8641 }
8642 
8643 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8644     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8645   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8646   bool PredicateAtRangeStart = Predicate(Range.Start);
8647 
8648   for (ElementCount TmpVF = Range.Start * 2;
8649        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8650     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8651       Range.End = TmpVF;
8652       break;
8653     }
8654 
8655   return PredicateAtRangeStart;
8656 }
8657 
8658 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8659 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8660 /// of VF's starting at a given VF and extending it as much as possible. Each
8661 /// vectorization decision can potentially shorten this sub-range during
8662 /// buildVPlan().
8663 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8664                                            ElementCount MaxVF) {
8665   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8666   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8667     VFRange SubRange = {VF, MaxVFPlusOne};
8668     VPlans.push_back(buildVPlan(SubRange));
8669     VF = SubRange.End;
8670   }
8671 }
8672 
8673 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8674                                          VPlanPtr &Plan) {
8675   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8676 
8677   // Look for cached value.
8678   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8679   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8680   if (ECEntryIt != EdgeMaskCache.end())
8681     return ECEntryIt->second;
8682 
8683   VPValue *SrcMask = createBlockInMask(Src, Plan);
8684 
8685   // The terminator has to be a branch inst!
8686   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8687   assert(BI && "Unexpected terminator found");
8688 
8689   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8690     return EdgeMaskCache[Edge] = SrcMask;
8691 
8692   // If source is an exiting block, we know the exit edge is dynamically dead
8693   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8694   // adding uses of an otherwise potentially dead instruction.
8695   if (OrigLoop->isLoopExiting(Src))
8696     return EdgeMaskCache[Edge] = SrcMask;
8697 
8698   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8699   assert(EdgeMask && "No Edge Mask found for condition");
8700 
8701   if (BI->getSuccessor(0) != Dst)
8702     EdgeMask = Builder.createNot(EdgeMask);
8703 
8704   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8705     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8706     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8707     // The select version does not introduce new UB if SrcMask is false and
8708     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8709     VPValue *False = Plan->getOrAddVPValue(
8710         ConstantInt::getFalse(BI->getCondition()->getType()));
8711     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8712   }
8713 
8714   return EdgeMaskCache[Edge] = EdgeMask;
8715 }
8716 
8717 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8718   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8719 
8720   // Look for cached value.
8721   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8722   if (BCEntryIt != BlockMaskCache.end())
8723     return BCEntryIt->second;
8724 
8725   // All-one mask is modelled as no-mask following the convention for masked
8726   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8727   VPValue *BlockMask = nullptr;
8728 
8729   if (OrigLoop->getHeader() == BB) {
8730     if (!CM.blockNeedsPredication(BB))
8731       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8732 
8733     // Create the block in mask as the first non-phi instruction in the block.
8734     VPBuilder::InsertPointGuard Guard(Builder);
8735     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8736     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8737 
8738     // Introduce the early-exit compare IV <= BTC to form header block mask.
8739     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8740     // Start by constructing the desired canonical IV.
8741     VPValue *IV = nullptr;
8742     if (Legal->getPrimaryInduction())
8743       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8744     else {
8745       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8746       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8747       IV = IVRecipe->getVPSingleValue();
8748     }
8749     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8750     bool TailFolded = !CM.isScalarEpilogueAllowed();
8751 
8752     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8753       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8754       // as a second argument, we only pass the IV here and extract the
8755       // tripcount from the transform state where codegen of the VP instructions
8756       // happen.
8757       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8758     } else {
8759       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8760     }
8761     return BlockMaskCache[BB] = BlockMask;
8762   }
8763 
8764   // This is the block mask. We OR all incoming edges.
8765   for (auto *Predecessor : predecessors(BB)) {
8766     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8767     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8768       return BlockMaskCache[BB] = EdgeMask;
8769 
8770     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8771       BlockMask = EdgeMask;
8772       continue;
8773     }
8774 
8775     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8776   }
8777 
8778   return BlockMaskCache[BB] = BlockMask;
8779 }
8780 
8781 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8782                                                 ArrayRef<VPValue *> Operands,
8783                                                 VFRange &Range,
8784                                                 VPlanPtr &Plan) {
8785   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8786          "Must be called with either a load or store");
8787 
8788   auto willWiden = [&](ElementCount VF) -> bool {
8789     if (VF.isScalar())
8790       return false;
8791     LoopVectorizationCostModel::InstWidening Decision =
8792         CM.getWideningDecision(I, VF);
8793     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8794            "CM decision should be taken at this point.");
8795     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8796       return true;
8797     if (CM.isScalarAfterVectorization(I, VF) ||
8798         CM.isProfitableToScalarize(I, VF))
8799       return false;
8800     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8801   };
8802 
8803   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8804     return nullptr;
8805 
8806   VPValue *Mask = nullptr;
8807   if (Legal->isMaskRequired(I))
8808     Mask = createBlockInMask(I->getParent(), Plan);
8809 
8810   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8811     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8812 
8813   StoreInst *Store = cast<StoreInst>(I);
8814   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8815                                             Mask);
8816 }
8817 
8818 VPWidenIntOrFpInductionRecipe *
8819 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8820                                            ArrayRef<VPValue *> Operands) const {
8821   // Check if this is an integer or fp induction. If so, build the recipe that
8822   // produces its scalar and vector values.
8823   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8824   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8825       II.getKind() == InductionDescriptor::IK_FpInduction) {
8826     assert(II.getStartValue() ==
8827            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8828     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8829     return new VPWidenIntOrFpInductionRecipe(
8830         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8831   }
8832 
8833   return nullptr;
8834 }
8835 
8836 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8837     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8838     VPlan &Plan) const {
8839   // Optimize the special case where the source is a constant integer
8840   // induction variable. Notice that we can only optimize the 'trunc' case
8841   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8842   // (c) other casts depend on pointer size.
8843 
8844   // Determine whether \p K is a truncation based on an induction variable that
8845   // can be optimized.
8846   auto isOptimizableIVTruncate =
8847       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8848     return [=](ElementCount VF) -> bool {
8849       return CM.isOptimizableIVTruncate(K, VF);
8850     };
8851   };
8852 
8853   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8854           isOptimizableIVTruncate(I), Range)) {
8855 
8856     InductionDescriptor II =
8857         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8858     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8859     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8860                                              Start, nullptr, I);
8861   }
8862   return nullptr;
8863 }
8864 
8865 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8866                                                 ArrayRef<VPValue *> Operands,
8867                                                 VPlanPtr &Plan) {
8868   // If all incoming values are equal, the incoming VPValue can be used directly
8869   // instead of creating a new VPBlendRecipe.
8870   VPValue *FirstIncoming = Operands[0];
8871   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8872         return FirstIncoming == Inc;
8873       })) {
8874     return Operands[0];
8875   }
8876 
8877   // We know that all PHIs in non-header blocks are converted into selects, so
8878   // we don't have to worry about the insertion order and we can just use the
8879   // builder. At this point we generate the predication tree. There may be
8880   // duplications since this is a simple recursive scan, but future
8881   // optimizations will clean it up.
8882   SmallVector<VPValue *, 2> OperandsWithMask;
8883   unsigned NumIncoming = Phi->getNumIncomingValues();
8884 
8885   for (unsigned In = 0; In < NumIncoming; In++) {
8886     VPValue *EdgeMask =
8887       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8888     assert((EdgeMask || NumIncoming == 1) &&
8889            "Multiple predecessors with one having a full mask");
8890     OperandsWithMask.push_back(Operands[In]);
8891     if (EdgeMask)
8892       OperandsWithMask.push_back(EdgeMask);
8893   }
8894   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8895 }
8896 
8897 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8898                                                    ArrayRef<VPValue *> Operands,
8899                                                    VFRange &Range) const {
8900 
8901   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8902       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8903       Range);
8904 
8905   if (IsPredicated)
8906     return nullptr;
8907 
8908   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8909   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8910              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8911              ID == Intrinsic::pseudoprobe ||
8912              ID == Intrinsic::experimental_noalias_scope_decl))
8913     return nullptr;
8914 
8915   auto willWiden = [&](ElementCount VF) -> bool {
8916     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8917     // The following case may be scalarized depending on the VF.
8918     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8919     // version of the instruction.
8920     // Is it beneficial to perform intrinsic call compared to lib call?
8921     bool NeedToScalarize = false;
8922     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8923     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8924     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8925     return UseVectorIntrinsic || !NeedToScalarize;
8926   };
8927 
8928   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8929     return nullptr;
8930 
8931   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8932   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8933 }
8934 
8935 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8936   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8937          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8938   // Instruction should be widened, unless it is scalar after vectorization,
8939   // scalarization is profitable or it is predicated.
8940   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8941     return CM.isScalarAfterVectorization(I, VF) ||
8942            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8943   };
8944   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8945                                                              Range);
8946 }
8947 
8948 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8949                                            ArrayRef<VPValue *> Operands) const {
8950   auto IsVectorizableOpcode = [](unsigned Opcode) {
8951     switch (Opcode) {
8952     case Instruction::Add:
8953     case Instruction::And:
8954     case Instruction::AShr:
8955     case Instruction::BitCast:
8956     case Instruction::FAdd:
8957     case Instruction::FCmp:
8958     case Instruction::FDiv:
8959     case Instruction::FMul:
8960     case Instruction::FNeg:
8961     case Instruction::FPExt:
8962     case Instruction::FPToSI:
8963     case Instruction::FPToUI:
8964     case Instruction::FPTrunc:
8965     case Instruction::FRem:
8966     case Instruction::FSub:
8967     case Instruction::ICmp:
8968     case Instruction::IntToPtr:
8969     case Instruction::LShr:
8970     case Instruction::Mul:
8971     case Instruction::Or:
8972     case Instruction::PtrToInt:
8973     case Instruction::SDiv:
8974     case Instruction::Select:
8975     case Instruction::SExt:
8976     case Instruction::Shl:
8977     case Instruction::SIToFP:
8978     case Instruction::SRem:
8979     case Instruction::Sub:
8980     case Instruction::Trunc:
8981     case Instruction::UDiv:
8982     case Instruction::UIToFP:
8983     case Instruction::URem:
8984     case Instruction::Xor:
8985     case Instruction::ZExt:
8986       return true;
8987     }
8988     return false;
8989   };
8990 
8991   if (!IsVectorizableOpcode(I->getOpcode()))
8992     return nullptr;
8993 
8994   // Success: widen this instruction.
8995   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8996 }
8997 
8998 void VPRecipeBuilder::fixHeaderPhis() {
8999   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
9000   for (VPWidenPHIRecipe *R : PhisToFix) {
9001     auto *PN = cast<PHINode>(R->getUnderlyingValue());
9002     VPRecipeBase *IncR =
9003         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
9004     R->addOperand(IncR->getVPSingleValue());
9005   }
9006 }
9007 
9008 VPBasicBlock *VPRecipeBuilder::handleReplication(
9009     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
9010     VPlanPtr &Plan) {
9011   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
9012       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
9013       Range);
9014 
9015   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9016       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9017 
9018   // Even if the instruction is not marked as uniform, there are certain
9019   // intrinsic calls that can be effectively treated as such, so we check for
9020   // them here. Conservatively, we only do this for scalable vectors, since
9021   // for fixed-width VFs we can always fall back on full scalarization.
9022   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9023     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9024     case Intrinsic::assume:
9025     case Intrinsic::lifetime_start:
9026     case Intrinsic::lifetime_end:
9027       // For scalable vectors if one of the operands is variant then we still
9028       // want to mark as uniform, which will generate one instruction for just
9029       // the first lane of the vector. We can't scalarize the call in the same
9030       // way as for fixed-width vectors because we don't know how many lanes
9031       // there are.
9032       //
9033       // The reasons for doing it this way for scalable vectors are:
9034       //   1. For the assume intrinsic generating the instruction for the first
9035       //      lane is still be better than not generating any at all. For
9036       //      example, the input may be a splat across all lanes.
9037       //   2. For the lifetime start/end intrinsics the pointer operand only
9038       //      does anything useful when the input comes from a stack object,
9039       //      which suggests it should always be uniform. For non-stack objects
9040       //      the effect is to poison the object, which still allows us to
9041       //      remove the call.
9042       IsUniform = true;
9043       break;
9044     default:
9045       break;
9046     }
9047   }
9048 
9049   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9050                                        IsUniform, IsPredicated);
9051   setRecipe(I, Recipe);
9052   Plan->addVPValue(I, Recipe);
9053 
9054   // Find if I uses a predicated instruction. If so, it will use its scalar
9055   // value. Avoid hoisting the insert-element which packs the scalar value into
9056   // a vector value, as that happens iff all users use the vector value.
9057   for (VPValue *Op : Recipe->operands()) {
9058     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9059     if (!PredR)
9060       continue;
9061     auto *RepR =
9062         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9063     assert(RepR->isPredicated() &&
9064            "expected Replicate recipe to be predicated");
9065     RepR->setAlsoPack(false);
9066   }
9067 
9068   // Finalize the recipe for Instr, first if it is not predicated.
9069   if (!IsPredicated) {
9070     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9071     VPBB->appendRecipe(Recipe);
9072     return VPBB;
9073   }
9074   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9075   assert(VPBB->getSuccessors().empty() &&
9076          "VPBB has successors when handling predicated replication.");
9077   // Record predicated instructions for above packing optimizations.
9078   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9079   VPBlockUtils::insertBlockAfter(Region, VPBB);
9080   auto *RegSucc = new VPBasicBlock();
9081   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9082   return RegSucc;
9083 }
9084 
9085 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9086                                                       VPRecipeBase *PredRecipe,
9087                                                       VPlanPtr &Plan) {
9088   // Instructions marked for predication are replicated and placed under an
9089   // if-then construct to prevent side-effects.
9090 
9091   // Generate recipes to compute the block mask for this region.
9092   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9093 
9094   // Build the triangular if-then region.
9095   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9096   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9097   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9098   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9099   auto *PHIRecipe = Instr->getType()->isVoidTy()
9100                         ? nullptr
9101                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9102   if (PHIRecipe) {
9103     Plan->removeVPValueFor(Instr);
9104     Plan->addVPValue(Instr, PHIRecipe);
9105   }
9106   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9107   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9108   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9109 
9110   // Note: first set Entry as region entry and then connect successors starting
9111   // from it in order, to propagate the "parent" of each VPBasicBlock.
9112   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9113   VPBlockUtils::connectBlocks(Pred, Exit);
9114 
9115   return Region;
9116 }
9117 
9118 VPRecipeOrVPValueTy
9119 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9120                                         ArrayRef<VPValue *> Operands,
9121                                         VFRange &Range, VPlanPtr &Plan) {
9122   // First, check for specific widening recipes that deal with calls, memory
9123   // operations, inductions and Phi nodes.
9124   if (auto *CI = dyn_cast<CallInst>(Instr))
9125     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9126 
9127   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9128     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9129 
9130   VPRecipeBase *Recipe;
9131   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9132     if (Phi->getParent() != OrigLoop->getHeader())
9133       return tryToBlend(Phi, Operands, Plan);
9134     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9135       return toVPRecipeResult(Recipe);
9136 
9137     VPWidenPHIRecipe *PhiRecipe = nullptr;
9138     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9139       VPValue *StartV = Operands[0];
9140       if (Legal->isReductionVariable(Phi)) {
9141         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9142         assert(RdxDesc.getRecurrenceStartValue() ==
9143                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9144         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9145                                              CM.isInLoopReduction(Phi),
9146                                              CM.useOrderedReductions(RdxDesc));
9147       } else {
9148         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9149       }
9150 
9151       // Record the incoming value from the backedge, so we can add the incoming
9152       // value from the backedge after all recipes have been created.
9153       recordRecipeOf(cast<Instruction>(
9154           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9155       PhisToFix.push_back(PhiRecipe);
9156     } else {
9157       // TODO: record start and backedge value for remaining pointer induction
9158       // phis.
9159       assert(Phi->getType()->isPointerTy() &&
9160              "only pointer phis should be handled here");
9161       PhiRecipe = new VPWidenPHIRecipe(Phi);
9162     }
9163 
9164     return toVPRecipeResult(PhiRecipe);
9165   }
9166 
9167   if (isa<TruncInst>(Instr) &&
9168       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9169                                                Range, *Plan)))
9170     return toVPRecipeResult(Recipe);
9171 
9172   if (!shouldWiden(Instr, Range))
9173     return nullptr;
9174 
9175   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9176     return toVPRecipeResult(new VPWidenGEPRecipe(
9177         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9178 
9179   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9180     bool InvariantCond =
9181         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9182     return toVPRecipeResult(new VPWidenSelectRecipe(
9183         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9184   }
9185 
9186   return toVPRecipeResult(tryToWiden(Instr, Operands));
9187 }
9188 
9189 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9190                                                         ElementCount MaxVF) {
9191   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9192 
9193   // Collect instructions from the original loop that will become trivially dead
9194   // in the vectorized loop. We don't need to vectorize these instructions. For
9195   // example, original induction update instructions can become dead because we
9196   // separately emit induction "steps" when generating code for the new loop.
9197   // Similarly, we create a new latch condition when setting up the structure
9198   // of the new loop, so the old one can become dead.
9199   SmallPtrSet<Instruction *, 4> DeadInstructions;
9200   collectTriviallyDeadInstructions(DeadInstructions);
9201 
9202   // Add assume instructions we need to drop to DeadInstructions, to prevent
9203   // them from being added to the VPlan.
9204   // TODO: We only need to drop assumes in blocks that get flattend. If the
9205   // control flow is preserved, we should keep them.
9206   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9207   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9208 
9209   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9210   // Dead instructions do not need sinking. Remove them from SinkAfter.
9211   for (Instruction *I : DeadInstructions)
9212     SinkAfter.erase(I);
9213 
9214   // Cannot sink instructions after dead instructions (there won't be any
9215   // recipes for them). Instead, find the first non-dead previous instruction.
9216   for (auto &P : Legal->getSinkAfter()) {
9217     Instruction *SinkTarget = P.second;
9218     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9219     (void)FirstInst;
9220     while (DeadInstructions.contains(SinkTarget)) {
9221       assert(
9222           SinkTarget != FirstInst &&
9223           "Must find a live instruction (at least the one feeding the "
9224           "first-order recurrence PHI) before reaching beginning of the block");
9225       SinkTarget = SinkTarget->getPrevNode();
9226       assert(SinkTarget != P.first &&
9227              "sink source equals target, no sinking required");
9228     }
9229     P.second = SinkTarget;
9230   }
9231 
9232   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9233   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9234     VFRange SubRange = {VF, MaxVFPlusOne};
9235     VPlans.push_back(
9236         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9237     VF = SubRange.End;
9238   }
9239 }
9240 
9241 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9242     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9243     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9244 
9245   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9246 
9247   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9248 
9249   // ---------------------------------------------------------------------------
9250   // Pre-construction: record ingredients whose recipes we'll need to further
9251   // process after constructing the initial VPlan.
9252   // ---------------------------------------------------------------------------
9253 
9254   // Mark instructions we'll need to sink later and their targets as
9255   // ingredients whose recipe we'll need to record.
9256   for (auto &Entry : SinkAfter) {
9257     RecipeBuilder.recordRecipeOf(Entry.first);
9258     RecipeBuilder.recordRecipeOf(Entry.second);
9259   }
9260   for (auto &Reduction : CM.getInLoopReductionChains()) {
9261     PHINode *Phi = Reduction.first;
9262     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9263     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9264 
9265     RecipeBuilder.recordRecipeOf(Phi);
9266     for (auto &R : ReductionOperations) {
9267       RecipeBuilder.recordRecipeOf(R);
9268       // For min/max reducitons, where we have a pair of icmp/select, we also
9269       // need to record the ICmp recipe, so it can be removed later.
9270       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9271              "Only min/max recurrences allowed for inloop reductions");
9272       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9273         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9274     }
9275   }
9276 
9277   // For each interleave group which is relevant for this (possibly trimmed)
9278   // Range, add it to the set of groups to be later applied to the VPlan and add
9279   // placeholders for its members' Recipes which we'll be replacing with a
9280   // single VPInterleaveRecipe.
9281   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9282     auto applyIG = [IG, this](ElementCount VF) -> bool {
9283       return (VF.isVector() && // Query is illegal for VF == 1
9284               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9285                   LoopVectorizationCostModel::CM_Interleave);
9286     };
9287     if (!getDecisionAndClampRange(applyIG, Range))
9288       continue;
9289     InterleaveGroups.insert(IG);
9290     for (unsigned i = 0; i < IG->getFactor(); i++)
9291       if (Instruction *Member = IG->getMember(i))
9292         RecipeBuilder.recordRecipeOf(Member);
9293   };
9294 
9295   // ---------------------------------------------------------------------------
9296   // Build initial VPlan: Scan the body of the loop in a topological order to
9297   // visit each basic block after having visited its predecessor basic blocks.
9298   // ---------------------------------------------------------------------------
9299 
9300   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9301   auto Plan = std::make_unique<VPlan>();
9302   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9303   Plan->setEntry(VPBB);
9304 
9305   // Scan the body of the loop in a topological order to visit each basic block
9306   // after having visited its predecessor basic blocks.
9307   LoopBlocksDFS DFS(OrigLoop);
9308   DFS.perform(LI);
9309 
9310   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9311     // Relevant instructions from basic block BB will be grouped into VPRecipe
9312     // ingredients and fill a new VPBasicBlock.
9313     unsigned VPBBsForBB = 0;
9314     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9315     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9316     VPBB = FirstVPBBForBB;
9317     Builder.setInsertPoint(VPBB);
9318 
9319     // Introduce each ingredient into VPlan.
9320     // TODO: Model and preserve debug instrinsics in VPlan.
9321     for (Instruction &I : BB->instructionsWithoutDebug()) {
9322       Instruction *Instr = &I;
9323 
9324       // First filter out irrelevant instructions, to ensure no recipes are
9325       // built for them.
9326       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9327         continue;
9328 
9329       SmallVector<VPValue *, 4> Operands;
9330       auto *Phi = dyn_cast<PHINode>(Instr);
9331       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9332         Operands.push_back(Plan->getOrAddVPValue(
9333             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9334       } else {
9335         auto OpRange = Plan->mapToVPValues(Instr->operands());
9336         Operands = {OpRange.begin(), OpRange.end()};
9337       }
9338       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9339               Instr, Operands, Range, Plan)) {
9340         // If Instr can be simplified to an existing VPValue, use it.
9341         if (RecipeOrValue.is<VPValue *>()) {
9342           auto *VPV = RecipeOrValue.get<VPValue *>();
9343           Plan->addVPValue(Instr, VPV);
9344           // If the re-used value is a recipe, register the recipe for the
9345           // instruction, in case the recipe for Instr needs to be recorded.
9346           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9347             RecipeBuilder.setRecipe(Instr, R);
9348           continue;
9349         }
9350         // Otherwise, add the new recipe.
9351         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9352         for (auto *Def : Recipe->definedValues()) {
9353           auto *UV = Def->getUnderlyingValue();
9354           Plan->addVPValue(UV, Def);
9355         }
9356 
9357         RecipeBuilder.setRecipe(Instr, Recipe);
9358         VPBB->appendRecipe(Recipe);
9359         continue;
9360       }
9361 
9362       // Otherwise, if all widening options failed, Instruction is to be
9363       // replicated. This may create a successor for VPBB.
9364       VPBasicBlock *NextVPBB =
9365           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9366       if (NextVPBB != VPBB) {
9367         VPBB = NextVPBB;
9368         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9369                                     : "");
9370       }
9371     }
9372   }
9373 
9374   RecipeBuilder.fixHeaderPhis();
9375 
9376   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9377   // may also be empty, such as the last one VPBB, reflecting original
9378   // basic-blocks with no recipes.
9379   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9380   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9381   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9382   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9383   delete PreEntry;
9384 
9385   // ---------------------------------------------------------------------------
9386   // Transform initial VPlan: Apply previously taken decisions, in order, to
9387   // bring the VPlan to its final state.
9388   // ---------------------------------------------------------------------------
9389 
9390   // Apply Sink-After legal constraints.
9391   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9392     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9393     if (Region && Region->isReplicator()) {
9394       assert(Region->getNumSuccessors() == 1 &&
9395              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9396       assert(R->getParent()->size() == 1 &&
9397              "A recipe in an original replicator region must be the only "
9398              "recipe in its block");
9399       return Region;
9400     }
9401     return nullptr;
9402   };
9403   for (auto &Entry : SinkAfter) {
9404     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9405     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9406 
9407     auto *TargetRegion = GetReplicateRegion(Target);
9408     auto *SinkRegion = GetReplicateRegion(Sink);
9409     if (!SinkRegion) {
9410       // If the sink source is not a replicate region, sink the recipe directly.
9411       if (TargetRegion) {
9412         // The target is in a replication region, make sure to move Sink to
9413         // the block after it, not into the replication region itself.
9414         VPBasicBlock *NextBlock =
9415             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9416         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9417       } else
9418         Sink->moveAfter(Target);
9419       continue;
9420     }
9421 
9422     // The sink source is in a replicate region. Unhook the region from the CFG.
9423     auto *SinkPred = SinkRegion->getSinglePredecessor();
9424     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9425     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9426     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9427     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9428 
9429     if (TargetRegion) {
9430       // The target recipe is also in a replicate region, move the sink region
9431       // after the target region.
9432       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9433       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9434       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9435       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9436     } else {
9437       // The sink source is in a replicate region, we need to move the whole
9438       // replicate region, which should only contain a single recipe in the
9439       // main block.
9440       auto *SplitBlock =
9441           Target->getParent()->splitAt(std::next(Target->getIterator()));
9442 
9443       auto *SplitPred = SplitBlock->getSinglePredecessor();
9444 
9445       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9446       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9447       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9448       if (VPBB == SplitPred)
9449         VPBB = SplitBlock;
9450     }
9451   }
9452 
9453   // Adjust the recipes for any inloop reductions.
9454   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9455 
9456   // Introduce a recipe to combine the incoming and previous values of a
9457   // first-order recurrence.
9458   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9459     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9460     if (!RecurPhi)
9461       continue;
9462 
9463     auto *RecurSplice = cast<VPInstruction>(
9464         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9465                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9466 
9467     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9468     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9469       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9470       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9471     } else
9472       RecurSplice->moveAfter(PrevRecipe);
9473     RecurPhi->replaceAllUsesWith(RecurSplice);
9474     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9475     // all users.
9476     RecurSplice->setOperand(0, RecurPhi);
9477   }
9478 
9479   // Interleave memory: for each Interleave Group we marked earlier as relevant
9480   // for this VPlan, replace the Recipes widening its memory instructions with a
9481   // single VPInterleaveRecipe at its insertion point.
9482   for (auto IG : InterleaveGroups) {
9483     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9484         RecipeBuilder.getRecipe(IG->getInsertPos()));
9485     SmallVector<VPValue *, 4> StoredValues;
9486     for (unsigned i = 0; i < IG->getFactor(); ++i)
9487       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9488         auto *StoreR =
9489             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9490         StoredValues.push_back(StoreR->getStoredValue());
9491       }
9492 
9493     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9494                                         Recipe->getMask());
9495     VPIG->insertBefore(Recipe);
9496     unsigned J = 0;
9497     for (unsigned i = 0; i < IG->getFactor(); ++i)
9498       if (Instruction *Member = IG->getMember(i)) {
9499         if (!Member->getType()->isVoidTy()) {
9500           VPValue *OriginalV = Plan->getVPValue(Member);
9501           Plan->removeVPValueFor(Member);
9502           Plan->addVPValue(Member, VPIG->getVPValue(J));
9503           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9504           J++;
9505         }
9506         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9507       }
9508   }
9509 
9510   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9511   // in ways that accessing values using original IR values is incorrect.
9512   Plan->disableValue2VPValue();
9513 
9514   VPlanTransforms::sinkScalarOperands(*Plan);
9515   VPlanTransforms::mergeReplicateRegions(*Plan);
9516 
9517   std::string PlanName;
9518   raw_string_ostream RSO(PlanName);
9519   ElementCount VF = Range.Start;
9520   Plan->addVF(VF);
9521   RSO << "Initial VPlan for VF={" << VF;
9522   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9523     Plan->addVF(VF);
9524     RSO << "," << VF;
9525   }
9526   RSO << "},UF>=1";
9527   RSO.flush();
9528   Plan->setName(PlanName);
9529 
9530   return Plan;
9531 }
9532 
9533 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9534   // Outer loop handling: They may require CFG and instruction level
9535   // transformations before even evaluating whether vectorization is profitable.
9536   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9537   // the vectorization pipeline.
9538   assert(!OrigLoop->isInnermost());
9539   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9540 
9541   // Create new empty VPlan
9542   auto Plan = std::make_unique<VPlan>();
9543 
9544   // Build hierarchical CFG
9545   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9546   HCFGBuilder.buildHierarchicalCFG();
9547 
9548   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9549        VF *= 2)
9550     Plan->addVF(VF);
9551 
9552   if (EnableVPlanPredication) {
9553     VPlanPredicator VPP(*Plan);
9554     VPP.predicate();
9555 
9556     // Avoid running transformation to recipes until masked code generation in
9557     // VPlan-native path is in place.
9558     return Plan;
9559   }
9560 
9561   SmallPtrSet<Instruction *, 1> DeadInstructions;
9562   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9563                                              Legal->getInductionVars(),
9564                                              DeadInstructions, *PSE.getSE());
9565   return Plan;
9566 }
9567 
9568 // Adjust the recipes for reductions. For in-loop reductions the chain of
9569 // instructions leading from the loop exit instr to the phi need to be converted
9570 // to reductions, with one operand being vector and the other being the scalar
9571 // reduction chain. For other reductions, a select is introduced between the phi
9572 // and live-out recipes when folding the tail.
9573 void LoopVectorizationPlanner::adjustRecipesForReductions(
9574     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9575     ElementCount MinVF) {
9576   for (auto &Reduction : CM.getInLoopReductionChains()) {
9577     PHINode *Phi = Reduction.first;
9578     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9579     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9580 
9581     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9582       continue;
9583 
9584     // ReductionOperations are orders top-down from the phi's use to the
9585     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9586     // which of the two operands will remain scalar and which will be reduced.
9587     // For minmax the chain will be the select instructions.
9588     Instruction *Chain = Phi;
9589     for (Instruction *R : ReductionOperations) {
9590       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9591       RecurKind Kind = RdxDesc.getRecurrenceKind();
9592 
9593       VPValue *ChainOp = Plan->getVPValue(Chain);
9594       unsigned FirstOpId;
9595       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9596              "Only min/max recurrences allowed for inloop reductions");
9597       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9598         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9599                "Expected to replace a VPWidenSelectSC");
9600         FirstOpId = 1;
9601       } else {
9602         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9603                "Expected to replace a VPWidenSC");
9604         FirstOpId = 0;
9605       }
9606       unsigned VecOpId =
9607           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9608       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9609 
9610       auto *CondOp = CM.foldTailByMasking()
9611                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9612                          : nullptr;
9613       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9614           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9615       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9616       Plan->removeVPValueFor(R);
9617       Plan->addVPValue(R, RedRecipe);
9618       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9619       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9620       WidenRecipe->eraseFromParent();
9621 
9622       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9623         VPRecipeBase *CompareRecipe =
9624             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9625         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9626                "Expected to replace a VPWidenSC");
9627         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9628                "Expected no remaining users");
9629         CompareRecipe->eraseFromParent();
9630       }
9631       Chain = R;
9632     }
9633   }
9634 
9635   // If tail is folded by masking, introduce selects between the phi
9636   // and the live-out instruction of each reduction, at the end of the latch.
9637   if (CM.foldTailByMasking()) {
9638     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9639       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9640       if (!PhiR || PhiR->isInLoop())
9641         continue;
9642       Builder.setInsertPoint(LatchVPBB);
9643       VPValue *Cond =
9644           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9645       VPValue *Red = PhiR->getBackedgeValue();
9646       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9647     }
9648   }
9649 }
9650 
9651 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9652 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9653                                VPSlotTracker &SlotTracker) const {
9654   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9655   IG->getInsertPos()->printAsOperand(O, false);
9656   O << ", ";
9657   getAddr()->printAsOperand(O, SlotTracker);
9658   VPValue *Mask = getMask();
9659   if (Mask) {
9660     O << ", ";
9661     Mask->printAsOperand(O, SlotTracker);
9662   }
9663 
9664   unsigned OpIdx = 0;
9665   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9666     if (!IG->getMember(i))
9667       continue;
9668     if (getNumStoreOperands() > 0) {
9669       O << "\n" << Indent << "  store ";
9670       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9671       O << " to index " << i;
9672     } else {
9673       O << "\n" << Indent << "  ";
9674       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9675       O << " = load from index " << i;
9676     }
9677     ++OpIdx;
9678   }
9679 }
9680 #endif
9681 
9682 void VPWidenCallRecipe::execute(VPTransformState &State) {
9683   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9684                                   *this, State);
9685 }
9686 
9687 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9688   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9689                                     this, *this, InvariantCond, State);
9690 }
9691 
9692 void VPWidenRecipe::execute(VPTransformState &State) {
9693   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9694 }
9695 
9696 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9697   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9698                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9699                       IsIndexLoopInvariant, State);
9700 }
9701 
9702 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9703   assert(!State.Instance && "Int or FP induction being replicated.");
9704   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9705                                    getTruncInst(), getVPValue(0),
9706                                    getCastValue(), State);
9707 }
9708 
9709 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9710   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9711                                  State);
9712 }
9713 
9714 void VPBlendRecipe::execute(VPTransformState &State) {
9715   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9716   // We know that all PHIs in non-header blocks are converted into
9717   // selects, so we don't have to worry about the insertion order and we
9718   // can just use the builder.
9719   // At this point we generate the predication tree. There may be
9720   // duplications since this is a simple recursive scan, but future
9721   // optimizations will clean it up.
9722 
9723   unsigned NumIncoming = getNumIncomingValues();
9724 
9725   // Generate a sequence of selects of the form:
9726   // SELECT(Mask3, In3,
9727   //        SELECT(Mask2, In2,
9728   //               SELECT(Mask1, In1,
9729   //                      In0)))
9730   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9731   // are essentially undef are taken from In0.
9732   InnerLoopVectorizer::VectorParts Entry(State.UF);
9733   for (unsigned In = 0; In < NumIncoming; ++In) {
9734     for (unsigned Part = 0; Part < State.UF; ++Part) {
9735       // We might have single edge PHIs (blocks) - use an identity
9736       // 'select' for the first PHI operand.
9737       Value *In0 = State.get(getIncomingValue(In), Part);
9738       if (In == 0)
9739         Entry[Part] = In0; // Initialize with the first incoming value.
9740       else {
9741         // Select between the current value and the previous incoming edge
9742         // based on the incoming mask.
9743         Value *Cond = State.get(getMask(In), Part);
9744         Entry[Part] =
9745             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9746       }
9747     }
9748   }
9749   for (unsigned Part = 0; Part < State.UF; ++Part)
9750     State.set(this, Entry[Part], Part);
9751 }
9752 
9753 void VPInterleaveRecipe::execute(VPTransformState &State) {
9754   assert(!State.Instance && "Interleave group being replicated.");
9755   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9756                                       getStoredValues(), getMask());
9757 }
9758 
9759 void VPReductionRecipe::execute(VPTransformState &State) {
9760   assert(!State.Instance && "Reduction being replicated.");
9761   Value *PrevInChain = State.get(getChainOp(), 0);
9762   for (unsigned Part = 0; Part < State.UF; ++Part) {
9763     RecurKind Kind = RdxDesc->getRecurrenceKind();
9764     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9765     Value *NewVecOp = State.get(getVecOp(), Part);
9766     if (VPValue *Cond = getCondOp()) {
9767       Value *NewCond = State.get(Cond, Part);
9768       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9769       Value *Iden = RdxDesc->getRecurrenceIdentity(
9770           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9771       Value *IdenVec =
9772           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9773       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9774       NewVecOp = Select;
9775     }
9776     Value *NewRed;
9777     Value *NextInChain;
9778     if (IsOrdered) {
9779       if (State.VF.isVector())
9780         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9781                                         PrevInChain);
9782       else
9783         NewRed = State.Builder.CreateBinOp(
9784             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9785             PrevInChain, NewVecOp);
9786       PrevInChain = NewRed;
9787     } else {
9788       PrevInChain = State.get(getChainOp(), Part);
9789       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9790     }
9791     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9792       NextInChain =
9793           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9794                          NewRed, PrevInChain);
9795     } else if (IsOrdered)
9796       NextInChain = NewRed;
9797     else {
9798       NextInChain = State.Builder.CreateBinOp(
9799           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9800           PrevInChain);
9801     }
9802     State.set(this, NextInChain, Part);
9803   }
9804 }
9805 
9806 void VPReplicateRecipe::execute(VPTransformState &State) {
9807   if (State.Instance) { // Generate a single instance.
9808     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9809     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9810                                     *State.Instance, IsPredicated, State);
9811     // Insert scalar instance packing it into a vector.
9812     if (AlsoPack && State.VF.isVector()) {
9813       // If we're constructing lane 0, initialize to start from poison.
9814       if (State.Instance->Lane.isFirstLane()) {
9815         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9816         Value *Poison = PoisonValue::get(
9817             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9818         State.set(this, Poison, State.Instance->Part);
9819       }
9820       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9821     }
9822     return;
9823   }
9824 
9825   // Generate scalar instances for all VF lanes of all UF parts, unless the
9826   // instruction is uniform inwhich case generate only the first lane for each
9827   // of the UF parts.
9828   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9829   assert((!State.VF.isScalable() || IsUniform) &&
9830          "Can't scalarize a scalable vector");
9831   for (unsigned Part = 0; Part < State.UF; ++Part)
9832     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9833       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9834                                       VPIteration(Part, Lane), IsPredicated,
9835                                       State);
9836 }
9837 
9838 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9839   assert(State.Instance && "Branch on Mask works only on single instance.");
9840 
9841   unsigned Part = State.Instance->Part;
9842   unsigned Lane = State.Instance->Lane.getKnownLane();
9843 
9844   Value *ConditionBit = nullptr;
9845   VPValue *BlockInMask = getMask();
9846   if (BlockInMask) {
9847     ConditionBit = State.get(BlockInMask, Part);
9848     if (ConditionBit->getType()->isVectorTy())
9849       ConditionBit = State.Builder.CreateExtractElement(
9850           ConditionBit, State.Builder.getInt32(Lane));
9851   } else // Block in mask is all-one.
9852     ConditionBit = State.Builder.getTrue();
9853 
9854   // Replace the temporary unreachable terminator with a new conditional branch,
9855   // whose two destinations will be set later when they are created.
9856   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9857   assert(isa<UnreachableInst>(CurrentTerminator) &&
9858          "Expected to replace unreachable terminator with conditional branch.");
9859   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9860   CondBr->setSuccessor(0, nullptr);
9861   ReplaceInstWithInst(CurrentTerminator, CondBr);
9862 }
9863 
9864 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9865   assert(State.Instance && "Predicated instruction PHI works per instance.");
9866   Instruction *ScalarPredInst =
9867       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9868   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9869   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9870   assert(PredicatingBB && "Predicated block has no single predecessor.");
9871   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9872          "operand must be VPReplicateRecipe");
9873 
9874   // By current pack/unpack logic we need to generate only a single phi node: if
9875   // a vector value for the predicated instruction exists at this point it means
9876   // the instruction has vector users only, and a phi for the vector value is
9877   // needed. In this case the recipe of the predicated instruction is marked to
9878   // also do that packing, thereby "hoisting" the insert-element sequence.
9879   // Otherwise, a phi node for the scalar value is needed.
9880   unsigned Part = State.Instance->Part;
9881   if (State.hasVectorValue(getOperand(0), Part)) {
9882     Value *VectorValue = State.get(getOperand(0), Part);
9883     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9884     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9885     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9886     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9887     if (State.hasVectorValue(this, Part))
9888       State.reset(this, VPhi, Part);
9889     else
9890       State.set(this, VPhi, Part);
9891     // NOTE: Currently we need to update the value of the operand, so the next
9892     // predicated iteration inserts its generated value in the correct vector.
9893     State.reset(getOperand(0), VPhi, Part);
9894   } else {
9895     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9896     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9897     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9898                      PredicatingBB);
9899     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9900     if (State.hasScalarValue(this, *State.Instance))
9901       State.reset(this, Phi, *State.Instance);
9902     else
9903       State.set(this, Phi, *State.Instance);
9904     // NOTE: Currently we need to update the value of the operand, so the next
9905     // predicated iteration inserts its generated value in the correct vector.
9906     State.reset(getOperand(0), Phi, *State.Instance);
9907   }
9908 }
9909 
9910 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9911   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9912   State.ILV->vectorizeMemoryInstruction(
9913       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9914       StoredValue, getMask());
9915 }
9916 
9917 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9918 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9919 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9920 // for predication.
9921 static ScalarEpilogueLowering getScalarEpilogueLowering(
9922     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9923     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9924     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9925     LoopVectorizationLegality &LVL) {
9926   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9927   // don't look at hints or options, and don't request a scalar epilogue.
9928   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9929   // LoopAccessInfo (due to code dependency and not being able to reliably get
9930   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9931   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9932   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9933   // back to the old way and vectorize with versioning when forced. See D81345.)
9934   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9935                                                       PGSOQueryType::IRPass) &&
9936                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9937     return CM_ScalarEpilogueNotAllowedOptSize;
9938 
9939   // 2) If set, obey the directives
9940   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9941     switch (PreferPredicateOverEpilogue) {
9942     case PreferPredicateTy::ScalarEpilogue:
9943       return CM_ScalarEpilogueAllowed;
9944     case PreferPredicateTy::PredicateElseScalarEpilogue:
9945       return CM_ScalarEpilogueNotNeededUsePredicate;
9946     case PreferPredicateTy::PredicateOrDontVectorize:
9947       return CM_ScalarEpilogueNotAllowedUsePredicate;
9948     };
9949   }
9950 
9951   // 3) If set, obey the hints
9952   switch (Hints.getPredicate()) {
9953   case LoopVectorizeHints::FK_Enabled:
9954     return CM_ScalarEpilogueNotNeededUsePredicate;
9955   case LoopVectorizeHints::FK_Disabled:
9956     return CM_ScalarEpilogueAllowed;
9957   };
9958 
9959   // 4) if the TTI hook indicates this is profitable, request predication.
9960   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9961                                        LVL.getLAI()))
9962     return CM_ScalarEpilogueNotNeededUsePredicate;
9963 
9964   return CM_ScalarEpilogueAllowed;
9965 }
9966 
9967 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9968   // If Values have been set for this Def return the one relevant for \p Part.
9969   if (hasVectorValue(Def, Part))
9970     return Data.PerPartOutput[Def][Part];
9971 
9972   if (!hasScalarValue(Def, {Part, 0})) {
9973     Value *IRV = Def->getLiveInIRValue();
9974     Value *B = ILV->getBroadcastInstrs(IRV);
9975     set(Def, B, Part);
9976     return B;
9977   }
9978 
9979   Value *ScalarValue = get(Def, {Part, 0});
9980   // If we aren't vectorizing, we can just copy the scalar map values over
9981   // to the vector map.
9982   if (VF.isScalar()) {
9983     set(Def, ScalarValue, Part);
9984     return ScalarValue;
9985   }
9986 
9987   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9988   bool IsUniform = RepR && RepR->isUniform();
9989 
9990   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9991   // Check if there is a scalar value for the selected lane.
9992   if (!hasScalarValue(Def, {Part, LastLane})) {
9993     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9994     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9995            "unexpected recipe found to be invariant");
9996     IsUniform = true;
9997     LastLane = 0;
9998   }
9999 
10000   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10001   // Set the insert point after the last scalarized instruction or after the
10002   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10003   // will directly follow the scalar definitions.
10004   auto OldIP = Builder.saveIP();
10005   auto NewIP =
10006       isa<PHINode>(LastInst)
10007           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10008           : std::next(BasicBlock::iterator(LastInst));
10009   Builder.SetInsertPoint(&*NewIP);
10010 
10011   // However, if we are vectorizing, we need to construct the vector values.
10012   // If the value is known to be uniform after vectorization, we can just
10013   // broadcast the scalar value corresponding to lane zero for each unroll
10014   // iteration. Otherwise, we construct the vector values using
10015   // insertelement instructions. Since the resulting vectors are stored in
10016   // State, we will only generate the insertelements once.
10017   Value *VectorValue = nullptr;
10018   if (IsUniform) {
10019     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10020     set(Def, VectorValue, Part);
10021   } else {
10022     // Initialize packing with insertelements to start from undef.
10023     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10024     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10025     set(Def, Undef, Part);
10026     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10027       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10028     VectorValue = get(Def, Part);
10029   }
10030   Builder.restoreIP(OldIP);
10031   return VectorValue;
10032 }
10033 
10034 // Process the loop in the VPlan-native vectorization path. This path builds
10035 // VPlan upfront in the vectorization pipeline, which allows to apply
10036 // VPlan-to-VPlan transformations from the very beginning without modifying the
10037 // input LLVM IR.
10038 static bool processLoopInVPlanNativePath(
10039     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10040     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10041     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10042     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10043     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10044     LoopVectorizationRequirements &Requirements) {
10045 
10046   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10047     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10048     return false;
10049   }
10050   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10051   Function *F = L->getHeader()->getParent();
10052   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10053 
10054   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10055       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10056 
10057   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10058                                 &Hints, IAI);
10059   // Use the planner for outer loop vectorization.
10060   // TODO: CM is not used at this point inside the planner. Turn CM into an
10061   // optional argument if we don't need it in the future.
10062   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10063                                Requirements, ORE);
10064 
10065   // Get user vectorization factor.
10066   ElementCount UserVF = Hints.getWidth();
10067 
10068   CM.collectElementTypesForWidening();
10069 
10070   // Plan how to best vectorize, return the best VF and its cost.
10071   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10072 
10073   // If we are stress testing VPlan builds, do not attempt to generate vector
10074   // code. Masked vector code generation support will follow soon.
10075   // Also, do not attempt to vectorize if no vector code will be produced.
10076   if (VPlanBuildStressTest || EnableVPlanPredication ||
10077       VectorizationFactor::Disabled() == VF)
10078     return false;
10079 
10080   LVP.setBestPlan(VF.Width, 1);
10081 
10082   {
10083     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10084                              F->getParent()->getDataLayout());
10085     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10086                            &CM, BFI, PSI, Checks);
10087     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10088                       << L->getHeader()->getParent()->getName() << "\"\n");
10089     LVP.executePlan(LB, DT);
10090   }
10091 
10092   // Mark the loop as already vectorized to avoid vectorizing again.
10093   Hints.setAlreadyVectorized();
10094   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10095   return true;
10096 }
10097 
10098 // Emit a remark if there are stores to floats that required a floating point
10099 // extension. If the vectorized loop was generated with floating point there
10100 // will be a performance penalty from the conversion overhead and the change in
10101 // the vector width.
10102 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10103   SmallVector<Instruction *, 4> Worklist;
10104   for (BasicBlock *BB : L->getBlocks()) {
10105     for (Instruction &Inst : *BB) {
10106       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10107         if (S->getValueOperand()->getType()->isFloatTy())
10108           Worklist.push_back(S);
10109       }
10110     }
10111   }
10112 
10113   // Traverse the floating point stores upwards searching, for floating point
10114   // conversions.
10115   SmallPtrSet<const Instruction *, 4> Visited;
10116   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10117   while (!Worklist.empty()) {
10118     auto *I = Worklist.pop_back_val();
10119     if (!L->contains(I))
10120       continue;
10121     if (!Visited.insert(I).second)
10122       continue;
10123 
10124     // Emit a remark if the floating point store required a floating
10125     // point conversion.
10126     // TODO: More work could be done to identify the root cause such as a
10127     // constant or a function return type and point the user to it.
10128     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10129       ORE->emit([&]() {
10130         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10131                                           I->getDebugLoc(), L->getHeader())
10132                << "floating point conversion changes vector width. "
10133                << "Mixed floating point precision requires an up/down "
10134                << "cast that will negatively impact performance.";
10135       });
10136 
10137     for (Use &Op : I->operands())
10138       if (auto *OpI = dyn_cast<Instruction>(Op))
10139         Worklist.push_back(OpI);
10140   }
10141 }
10142 
10143 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10144     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10145                                !EnableLoopInterleaving),
10146       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10147                               !EnableLoopVectorization) {}
10148 
10149 bool LoopVectorizePass::processLoop(Loop *L) {
10150   assert((EnableVPlanNativePath || L->isInnermost()) &&
10151          "VPlan-native path is not enabled. Only process inner loops.");
10152 
10153 #ifndef NDEBUG
10154   const std::string DebugLocStr = getDebugLocString(L);
10155 #endif /* NDEBUG */
10156 
10157   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10158                     << L->getHeader()->getParent()->getName() << "\" from "
10159                     << DebugLocStr << "\n");
10160 
10161   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10162 
10163   LLVM_DEBUG(
10164       dbgs() << "LV: Loop hints:"
10165              << " force="
10166              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10167                      ? "disabled"
10168                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10169                             ? "enabled"
10170                             : "?"))
10171              << " width=" << Hints.getWidth()
10172              << " interleave=" << Hints.getInterleave() << "\n");
10173 
10174   // Function containing loop
10175   Function *F = L->getHeader()->getParent();
10176 
10177   // Looking at the diagnostic output is the only way to determine if a loop
10178   // was vectorized (other than looking at the IR or machine code), so it
10179   // is important to generate an optimization remark for each loop. Most of
10180   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10181   // generated as OptimizationRemark and OptimizationRemarkMissed are
10182   // less verbose reporting vectorized loops and unvectorized loops that may
10183   // benefit from vectorization, respectively.
10184 
10185   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10186     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10187     return false;
10188   }
10189 
10190   PredicatedScalarEvolution PSE(*SE, *L);
10191 
10192   // Check if it is legal to vectorize the loop.
10193   LoopVectorizationRequirements Requirements;
10194   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10195                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10196   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10197     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10198     Hints.emitRemarkWithHints();
10199     return false;
10200   }
10201 
10202   // Check the function attributes and profiles to find out if this function
10203   // should be optimized for size.
10204   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10205       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10206 
10207   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10208   // here. They may require CFG and instruction level transformations before
10209   // even evaluating whether vectorization is profitable. Since we cannot modify
10210   // the incoming IR, we need to build VPlan upfront in the vectorization
10211   // pipeline.
10212   if (!L->isInnermost())
10213     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10214                                         ORE, BFI, PSI, Hints, Requirements);
10215 
10216   assert(L->isInnermost() && "Inner loop expected.");
10217 
10218   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10219   // count by optimizing for size, to minimize overheads.
10220   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10221   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10222     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10223                       << "This loop is worth vectorizing only if no scalar "
10224                       << "iteration overheads are incurred.");
10225     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10226       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10227     else {
10228       LLVM_DEBUG(dbgs() << "\n");
10229       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10230     }
10231   }
10232 
10233   // Check the function attributes to see if implicit floats are allowed.
10234   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10235   // an integer loop and the vector instructions selected are purely integer
10236   // vector instructions?
10237   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10238     reportVectorizationFailure(
10239         "Can't vectorize when the NoImplicitFloat attribute is used",
10240         "loop not vectorized due to NoImplicitFloat attribute",
10241         "NoImplicitFloat", ORE, L);
10242     Hints.emitRemarkWithHints();
10243     return false;
10244   }
10245 
10246   // Check if the target supports potentially unsafe FP vectorization.
10247   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10248   // for the target we're vectorizing for, to make sure none of the
10249   // additional fp-math flags can help.
10250   if (Hints.isPotentiallyUnsafe() &&
10251       TTI->isFPVectorizationPotentiallyUnsafe()) {
10252     reportVectorizationFailure(
10253         "Potentially unsafe FP op prevents vectorization",
10254         "loop not vectorized due to unsafe FP support.",
10255         "UnsafeFP", ORE, L);
10256     Hints.emitRemarkWithHints();
10257     return false;
10258   }
10259 
10260   bool AllowOrderedReductions;
10261   // If the flag is set, use that instead and override the TTI behaviour.
10262   if (ForceOrderedReductions.getNumOccurrences() > 0)
10263     AllowOrderedReductions = ForceOrderedReductions;
10264   else
10265     AllowOrderedReductions = TTI->enableOrderedReductions();
10266   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10267     ORE->emit([&]() {
10268       auto *ExactFPMathInst = Requirements.getExactFPInst();
10269       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10270                                                  ExactFPMathInst->getDebugLoc(),
10271                                                  ExactFPMathInst->getParent())
10272              << "loop not vectorized: cannot prove it is safe to reorder "
10273                 "floating-point operations";
10274     });
10275     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10276                          "reorder floating-point operations\n");
10277     Hints.emitRemarkWithHints();
10278     return false;
10279   }
10280 
10281   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10282   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10283 
10284   // If an override option has been passed in for interleaved accesses, use it.
10285   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10286     UseInterleaved = EnableInterleavedMemAccesses;
10287 
10288   // Analyze interleaved memory accesses.
10289   if (UseInterleaved) {
10290     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10291   }
10292 
10293   // Use the cost model.
10294   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10295                                 F, &Hints, IAI);
10296   CM.collectValuesToIgnore();
10297   CM.collectElementTypesForWidening();
10298 
10299   // Use the planner for vectorization.
10300   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10301                                Requirements, ORE);
10302 
10303   // Get user vectorization factor and interleave count.
10304   ElementCount UserVF = Hints.getWidth();
10305   unsigned UserIC = Hints.getInterleave();
10306 
10307   // Plan how to best vectorize, return the best VF and its cost.
10308   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10309 
10310   VectorizationFactor VF = VectorizationFactor::Disabled();
10311   unsigned IC = 1;
10312 
10313   if (MaybeVF) {
10314     VF = *MaybeVF;
10315     // Select the interleave count.
10316     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10317   }
10318 
10319   // Identify the diagnostic messages that should be produced.
10320   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10321   bool VectorizeLoop = true, InterleaveLoop = true;
10322   if (VF.Width.isScalar()) {
10323     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10324     VecDiagMsg = std::make_pair(
10325         "VectorizationNotBeneficial",
10326         "the cost-model indicates that vectorization is not beneficial");
10327     VectorizeLoop = false;
10328   }
10329 
10330   if (!MaybeVF && UserIC > 1) {
10331     // Tell the user interleaving was avoided up-front, despite being explicitly
10332     // requested.
10333     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10334                          "interleaving should be avoided up front\n");
10335     IntDiagMsg = std::make_pair(
10336         "InterleavingAvoided",
10337         "Ignoring UserIC, because interleaving was avoided up front");
10338     InterleaveLoop = false;
10339   } else if (IC == 1 && UserIC <= 1) {
10340     // Tell the user interleaving is not beneficial.
10341     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10342     IntDiagMsg = std::make_pair(
10343         "InterleavingNotBeneficial",
10344         "the cost-model indicates that interleaving is not beneficial");
10345     InterleaveLoop = false;
10346     if (UserIC == 1) {
10347       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10348       IntDiagMsg.second +=
10349           " and is explicitly disabled or interleave count is set to 1";
10350     }
10351   } else if (IC > 1 && UserIC == 1) {
10352     // Tell the user interleaving is beneficial, but it explicitly disabled.
10353     LLVM_DEBUG(
10354         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10355     IntDiagMsg = std::make_pair(
10356         "InterleavingBeneficialButDisabled",
10357         "the cost-model indicates that interleaving is beneficial "
10358         "but is explicitly disabled or interleave count is set to 1");
10359     InterleaveLoop = false;
10360   }
10361 
10362   // Override IC if user provided an interleave count.
10363   IC = UserIC > 0 ? UserIC : IC;
10364 
10365   // Emit diagnostic messages, if any.
10366   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10367   if (!VectorizeLoop && !InterleaveLoop) {
10368     // Do not vectorize or interleaving the loop.
10369     ORE->emit([&]() {
10370       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10371                                       L->getStartLoc(), L->getHeader())
10372              << VecDiagMsg.second;
10373     });
10374     ORE->emit([&]() {
10375       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10376                                       L->getStartLoc(), L->getHeader())
10377              << IntDiagMsg.second;
10378     });
10379     return false;
10380   } else if (!VectorizeLoop && InterleaveLoop) {
10381     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10382     ORE->emit([&]() {
10383       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10384                                         L->getStartLoc(), L->getHeader())
10385              << VecDiagMsg.second;
10386     });
10387   } else if (VectorizeLoop && !InterleaveLoop) {
10388     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10389                       << ") in " << DebugLocStr << '\n');
10390     ORE->emit([&]() {
10391       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10392                                         L->getStartLoc(), L->getHeader())
10393              << IntDiagMsg.second;
10394     });
10395   } else if (VectorizeLoop && InterleaveLoop) {
10396     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10397                       << ") in " << DebugLocStr << '\n');
10398     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10399   }
10400 
10401   bool DisableRuntimeUnroll = false;
10402   MDNode *OrigLoopID = L->getLoopID();
10403   {
10404     // Optimistically generate runtime checks. Drop them if they turn out to not
10405     // be profitable. Limit the scope of Checks, so the cleanup happens
10406     // immediately after vector codegeneration is done.
10407     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10408                              F->getParent()->getDataLayout());
10409     if (!VF.Width.isScalar() || IC > 1)
10410       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10411     LVP.setBestPlan(VF.Width, IC);
10412 
10413     using namespace ore;
10414     if (!VectorizeLoop) {
10415       assert(IC > 1 && "interleave count should not be 1 or 0");
10416       // If we decided that it is not legal to vectorize the loop, then
10417       // interleave it.
10418       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10419                                  &CM, BFI, PSI, Checks);
10420       LVP.executePlan(Unroller, DT);
10421 
10422       ORE->emit([&]() {
10423         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10424                                   L->getHeader())
10425                << "interleaved loop (interleaved count: "
10426                << NV("InterleaveCount", IC) << ")";
10427       });
10428     } else {
10429       // If we decided that it is *legal* to vectorize the loop, then do it.
10430 
10431       // Consider vectorizing the epilogue too if it's profitable.
10432       VectorizationFactor EpilogueVF =
10433           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10434       if (EpilogueVF.Width.isVector()) {
10435 
10436         // The first pass vectorizes the main loop and creates a scalar epilogue
10437         // to be vectorized by executing the plan (potentially with a different
10438         // factor) again shortly afterwards.
10439         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10440         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10441                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10442 
10443         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10444         LVP.executePlan(MainILV, DT);
10445         ++LoopsVectorized;
10446 
10447         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10448         formLCSSARecursively(*L, *DT, LI, SE);
10449 
10450         // Second pass vectorizes the epilogue and adjusts the control flow
10451         // edges from the first pass.
10452         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10453         EPI.MainLoopVF = EPI.EpilogueVF;
10454         EPI.MainLoopUF = EPI.EpilogueUF;
10455         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10456                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10457                                                  Checks);
10458         LVP.executePlan(EpilogILV, DT);
10459         ++LoopsEpilogueVectorized;
10460 
10461         if (!MainILV.areSafetyChecksAdded())
10462           DisableRuntimeUnroll = true;
10463       } else {
10464         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10465                                &LVL, &CM, BFI, PSI, Checks);
10466         LVP.executePlan(LB, DT);
10467         ++LoopsVectorized;
10468 
10469         // Add metadata to disable runtime unrolling a scalar loop when there
10470         // are no runtime checks about strides and memory. A scalar loop that is
10471         // rarely used is not worth unrolling.
10472         if (!LB.areSafetyChecksAdded())
10473           DisableRuntimeUnroll = true;
10474       }
10475       // Report the vectorization decision.
10476       ORE->emit([&]() {
10477         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10478                                   L->getHeader())
10479                << "vectorized loop (vectorization width: "
10480                << NV("VectorizationFactor", VF.Width)
10481                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10482       });
10483     }
10484 
10485     if (ORE->allowExtraAnalysis(LV_NAME))
10486       checkMixedPrecision(L, ORE);
10487   }
10488 
10489   Optional<MDNode *> RemainderLoopID =
10490       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10491                                       LLVMLoopVectorizeFollowupEpilogue});
10492   if (RemainderLoopID.hasValue()) {
10493     L->setLoopID(RemainderLoopID.getValue());
10494   } else {
10495     if (DisableRuntimeUnroll)
10496       AddRuntimeUnrollDisableMetaData(L);
10497 
10498     // Mark the loop as already vectorized to avoid vectorizing again.
10499     Hints.setAlreadyVectorized();
10500   }
10501 
10502   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10503   return true;
10504 }
10505 
10506 LoopVectorizeResult LoopVectorizePass::runImpl(
10507     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10508     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10509     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10510     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10511     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10512   SE = &SE_;
10513   LI = &LI_;
10514   TTI = &TTI_;
10515   DT = &DT_;
10516   BFI = &BFI_;
10517   TLI = TLI_;
10518   AA = &AA_;
10519   AC = &AC_;
10520   GetLAA = &GetLAA_;
10521   DB = &DB_;
10522   ORE = &ORE_;
10523   PSI = PSI_;
10524 
10525   // Don't attempt if
10526   // 1. the target claims to have no vector registers, and
10527   // 2. interleaving won't help ILP.
10528   //
10529   // The second condition is necessary because, even if the target has no
10530   // vector registers, loop vectorization may still enable scalar
10531   // interleaving.
10532   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10533       TTI->getMaxInterleaveFactor(1) < 2)
10534     return LoopVectorizeResult(false, false);
10535 
10536   bool Changed = false, CFGChanged = false;
10537 
10538   // The vectorizer requires loops to be in simplified form.
10539   // Since simplification may add new inner loops, it has to run before the
10540   // legality and profitability checks. This means running the loop vectorizer
10541   // will simplify all loops, regardless of whether anything end up being
10542   // vectorized.
10543   for (auto &L : *LI)
10544     Changed |= CFGChanged |=
10545         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10546 
10547   // Build up a worklist of inner-loops to vectorize. This is necessary as
10548   // the act of vectorizing or partially unrolling a loop creates new loops
10549   // and can invalidate iterators across the loops.
10550   SmallVector<Loop *, 8> Worklist;
10551 
10552   for (Loop *L : *LI)
10553     collectSupportedLoops(*L, LI, ORE, Worklist);
10554 
10555   LoopsAnalyzed += Worklist.size();
10556 
10557   // Now walk the identified inner loops.
10558   while (!Worklist.empty()) {
10559     Loop *L = Worklist.pop_back_val();
10560 
10561     // For the inner loops we actually process, form LCSSA to simplify the
10562     // transform.
10563     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10564 
10565     Changed |= CFGChanged |= processLoop(L);
10566   }
10567 
10568   // Process each loop nest in the function.
10569   return LoopVectorizeResult(Changed, CFGChanged);
10570 }
10571 
10572 PreservedAnalyses LoopVectorizePass::run(Function &F,
10573                                          FunctionAnalysisManager &AM) {
10574     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10575     auto &LI = AM.getResult<LoopAnalysis>(F);
10576     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10577     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10578     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10579     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10580     auto &AA = AM.getResult<AAManager>(F);
10581     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10582     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10583     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10584 
10585     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10586     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10587         [&](Loop &L) -> const LoopAccessInfo & {
10588       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10589                                         TLI, TTI, nullptr, nullptr, nullptr};
10590       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10591     };
10592     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10593     ProfileSummaryInfo *PSI =
10594         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10595     LoopVectorizeResult Result =
10596         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10597     if (!Result.MadeAnyChange)
10598       return PreservedAnalyses::all();
10599     PreservedAnalyses PA;
10600 
10601     // We currently do not preserve loopinfo/dominator analyses with outer loop
10602     // vectorization. Until this is addressed, mark these analyses as preserved
10603     // only for non-VPlan-native path.
10604     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10605     if (!EnableVPlanNativePath) {
10606       PA.preserve<LoopAnalysis>();
10607       PA.preserve<DominatorTreeAnalysis>();
10608     }
10609     if (!Result.MadeCFGChange)
10610       PA.preserveSet<CFGAnalyses>();
10611     return PA;
10612 }
10613 
10614 void LoopVectorizePass::printPipeline(
10615     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10616   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10617       OS, MapClassName2PassName);
10618 
10619   OS << "<";
10620   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10621   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10622   OS << ">";
10623 }
10624