1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/PatternMatch.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/InstructionCost.h"
135 #include "llvm/Support/MathExtras.h"
136 #include "llvm/Support/raw_ostream.h"
137 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
138 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
139 #include "llvm/Transforms/Utils/LoopSimplify.h"
140 #include "llvm/Transforms/Utils/LoopUtils.h"
141 #include "llvm/Transforms/Utils/LoopVersioning.h"
142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
143 #include "llvm/Transforms/Utils/SizeOpts.h"
144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
145 #include <algorithm>
146 #include <cassert>
147 #include <cstdint>
148 #include <cstdlib>
149 #include <functional>
150 #include <iterator>
151 #include <limits>
152 #include <memory>
153 #include <string>
154 #include <tuple>
155 #include <utility>
156 
157 using namespace llvm;
158 
159 #define LV_NAME "loop-vectorize"
160 #define DEBUG_TYPE LV_NAME
161 
162 #ifndef NDEBUG
163 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
164 #endif
165 
166 /// @{
167 /// Metadata attribute names
168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
169 const char LLVMLoopVectorizeFollowupVectorized[] =
170     "llvm.loop.vectorize.followup_vectorized";
171 const char LLVMLoopVectorizeFollowupEpilogue[] =
172     "llvm.loop.vectorize.followup_epilogue";
173 /// @}
174 
175 STATISTIC(LoopsVectorized, "Number of loops vectorized");
176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
178 
179 static cl::opt<bool> EnableEpilogueVectorization(
180     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
181     cl::desc("Enable vectorization of epilogue loops."));
182 
183 static cl::opt<unsigned> EpilogueVectorizationForceVF(
184     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
185     cl::desc("When epilogue vectorization is enabled, and a value greater than "
186              "1 is specified, forces the given VF for all applicable epilogue "
187              "loops."));
188 
189 static cl::opt<unsigned> EpilogueVectorizationMinVF(
190     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
191     cl::desc("Only loops with vectorization factor equal to or larger than "
192              "the specified value are considered for epilogue vectorization."));
193 
194 /// Loops with a known constant trip count below this number are vectorized only
195 /// if no scalar iteration overheads are incurred.
196 static cl::opt<unsigned> TinyTripCountVectorThreshold(
197     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
198     cl::desc("Loops with a constant trip count that is smaller than this "
199              "value are vectorized only if no scalar iteration overheads "
200              "are incurred."));
201 
202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
203     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
204     cl::desc("The maximum allowed number of runtime memory checks with a "
205              "vectorize(enable) pragma."));
206 
207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
208 // that predication is preferred, and this lists all options. I.e., the
209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
210 // and predicate the instructions accordingly. If tail-folding fails, there are
211 // different fallback strategies depending on these values:
212 namespace PreferPredicateTy {
213   enum Option {
214     ScalarEpilogue = 0,
215     PredicateElseScalarEpilogue,
216     PredicateOrDontVectorize
217   };
218 } // namespace PreferPredicateTy
219 
220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
221     "prefer-predicate-over-epilogue",
222     cl::init(PreferPredicateTy::ScalarEpilogue),
223     cl::Hidden,
224     cl::desc("Tail-folding and predication preferences over creating a scalar "
225              "epilogue loop."),
226     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
227                          "scalar-epilogue",
228                          "Don't tail-predicate loops, create scalar epilogue"),
229               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
230                          "predicate-else-scalar-epilogue",
231                          "prefer tail-folding, create scalar epilogue if tail "
232                          "folding fails."),
233               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
234                          "predicate-dont-vectorize",
235                          "prefers tail-folding, don't attempt vectorization if "
236                          "tail-folding fails.")));
237 
238 static cl::opt<bool> MaximizeBandwidth(
239     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
240     cl::desc("Maximize bandwidth when selecting vectorization factor which "
241              "will be determined by the smallest type in loop."));
242 
243 static cl::opt<bool> EnableInterleavedMemAccesses(
244     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
245     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
246 
247 /// An interleave-group may need masking if it resides in a block that needs
248 /// predication, or in order to mask away gaps.
249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
250     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
251     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
252 
253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
254     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
255     cl::desc("We don't interleave loops with a estimated constant trip count "
256              "below this number"));
257 
258 static cl::opt<unsigned> ForceTargetNumScalarRegs(
259     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
260     cl::desc("A flag that overrides the target's number of scalar registers."));
261 
262 static cl::opt<unsigned> ForceTargetNumVectorRegs(
263     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
264     cl::desc("A flag that overrides the target's number of vector registers."));
265 
266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
267     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
268     cl::desc("A flag that overrides the target's max interleave factor for "
269              "scalar loops."));
270 
271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
272     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
273     cl::desc("A flag that overrides the target's max interleave factor for "
274              "vectorized loops."));
275 
276 static cl::opt<unsigned> ForceTargetInstructionCost(
277     "force-target-instruction-cost", cl::init(0), cl::Hidden,
278     cl::desc("A flag that overrides the target's expected cost for "
279              "an instruction to a single constant value. Mostly "
280              "useful for getting consistent testing."));
281 
282 static cl::opt<bool> ForceTargetSupportsScalableVectors(
283     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
284     cl::desc(
285         "Pretend that scalable vectors are supported, even if the target does "
286         "not support them. This flag should only be used for testing."));
287 
288 static cl::opt<unsigned> SmallLoopCost(
289     "small-loop-cost", cl::init(20), cl::Hidden,
290     cl::desc(
291         "The cost of a loop that is considered 'small' by the interleaver."));
292 
293 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
294     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
295     cl::desc("Enable the use of the block frequency analysis to access PGO "
296              "heuristics minimizing code growth in cold regions and being more "
297              "aggressive in hot regions."));
298 
299 // Runtime interleave loops for load/store throughput.
300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
301     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
302     cl::desc(
303         "Enable runtime interleaving until load/store ports are saturated"));
304 
305 /// Interleave small loops with scalar reductions.
306 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
307     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
308     cl::desc("Enable interleaving for loops with small iteration counts that "
309              "contain scalar reductions to expose ILP."));
310 
311 /// The number of stores in a loop that are allowed to need predication.
312 static cl::opt<unsigned> NumberOfStoresToPredicate(
313     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
314     cl::desc("Max number of stores to be predicated behind an if."));
315 
316 static cl::opt<bool> EnableIndVarRegisterHeur(
317     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
318     cl::desc("Count the induction variable only once when interleaving"));
319 
320 static cl::opt<bool> EnableCondStoresVectorization(
321     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
322     cl::desc("Enable if predication of stores during vectorization."));
323 
324 static cl::opt<unsigned> MaxNestedScalarReductionIC(
325     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
326     cl::desc("The maximum interleave count to use when interleaving a scalar "
327              "reduction in a nested loop."));
328 
329 static cl::opt<bool>
330     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
331                            cl::Hidden,
332                            cl::desc("Prefer in-loop vector reductions, "
333                                     "overriding the targets preference."));
334 
335 cl::opt<bool> EnableStrictReductions(
336     "enable-strict-reductions", cl::init(false), cl::Hidden,
337     cl::desc("Enable the vectorisation of loops with in-order (strict) "
338              "FP reductions"));
339 
340 static cl::opt<bool> PreferPredicatedReductionSelect(
341     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
342     cl::desc(
343         "Prefer predicating a reduction operation over an after loop select."));
344 
345 cl::opt<bool> EnableVPlanNativePath(
346     "enable-vplan-native-path", cl::init(false), cl::Hidden,
347     cl::desc("Enable VPlan-native vectorization path with "
348              "support for outer loop vectorization."));
349 
350 // FIXME: Remove this switch once we have divergence analysis. Currently we
351 // assume divergent non-backedge branches when this switch is true.
352 cl::opt<bool> EnableVPlanPredication(
353     "enable-vplan-predication", cl::init(false), cl::Hidden,
354     cl::desc("Enable VPlan-native vectorization path predicator with "
355              "support for outer loop vectorization."));
356 
357 // This flag enables the stress testing of the VPlan H-CFG construction in the
358 // VPlan-native vectorization path. It must be used in conjuction with
359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
360 // verification of the H-CFGs built.
361 static cl::opt<bool> VPlanBuildStressTest(
362     "vplan-build-stress-test", cl::init(false), cl::Hidden,
363     cl::desc(
364         "Build VPlan for every supported loop nest in the function and bail "
365         "out right after the build (stress test the VPlan H-CFG construction "
366         "in the VPlan-native vectorization path)."));
367 
368 cl::opt<bool> llvm::EnableLoopInterleaving(
369     "interleave-loops", cl::init(true), cl::Hidden,
370     cl::desc("Enable loop interleaving in Loop vectorization passes"));
371 cl::opt<bool> llvm::EnableLoopVectorization(
372     "vectorize-loops", cl::init(true), cl::Hidden,
373     cl::desc("Run the Loop vectorization passes"));
374 
375 cl::opt<bool> PrintVPlansInDotFormat(
376     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
377     cl::desc("Use dot format instead of plain text when dumping VPlans"));
378 
379 /// A helper function that returns true if the given type is irregular. The
380 /// type is irregular if its allocated size doesn't equal the store size of an
381 /// element of the corresponding vector type.
382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
383   // Determine if an array of N elements of type Ty is "bitcast compatible"
384   // with a <N x Ty> vector.
385   // This is only true if there is no padding between the array elements.
386   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
387 }
388 
389 /// A helper function that returns the reciprocal of the block probability of
390 /// predicated blocks. If we return X, we are assuming the predicated block
391 /// will execute once for every X iterations of the loop header.
392 ///
393 /// TODO: We should use actual block probability here, if available. Currently,
394 ///       we always assume predicated blocks have a 50% chance of executing.
395 static unsigned getReciprocalPredBlockProb() { return 2; }
396 
397 /// A helper function that returns an integer or floating-point constant with
398 /// value C.
399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
400   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
401                            : ConstantFP::get(Ty, C);
402 }
403 
404 /// Returns "best known" trip count for the specified loop \p L as defined by
405 /// the following procedure:
406 ///   1) Returns exact trip count if it is known.
407 ///   2) Returns expected trip count according to profile data if any.
408 ///   3) Returns upper bound estimate if it is known.
409 ///   4) Returns None if all of the above failed.
410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
411   // Check if exact trip count is known.
412   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
413     return ExpectedTC;
414 
415   // Check if there is an expected trip count available from profile data.
416   if (LoopVectorizeWithBlockFrequency)
417     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
418       return EstimatedTC;
419 
420   // Check if upper bound estimate is known.
421   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
422     return ExpectedTC;
423 
424   return None;
425 }
426 
427 // Forward declare GeneratedRTChecks.
428 class GeneratedRTChecks;
429 
430 namespace llvm {
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop.
473   /// In the case of epilogue vectorization, this function is overriden to
474   /// handle the more complex control flow around the loops.
475   virtual BasicBlock *createVectorizedLoopSkeleton();
476 
477   /// Widen a single instruction within the innermost loop.
478   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
479                         VPTransformState &State);
480 
481   /// Widen a single call instruction within the innermost loop.
482   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
483                             VPTransformState &State);
484 
485   /// Widen a single select instruction within the innermost loop.
486   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
487                               bool InvariantCond, VPTransformState &State);
488 
489   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
490   void fixVectorizedLoop(VPTransformState &State);
491 
492   // Return true if any runtime check is added.
493   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
494 
495   /// A type for vectorized values in the new loop. Each value from the
496   /// original loop, when vectorized, is represented by UF vector values in the
497   /// new unrolled loop, where UF is the unroll factor.
498   using VectorParts = SmallVector<Value *, 2>;
499 
500   /// Vectorize a single GetElementPtrInst based on information gathered and
501   /// decisions taken during planning.
502   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
503                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
504                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
505 
506   /// Vectorize a single first-order recurrence or pointer induction PHINode in
507   /// a block. This method handles the induction variable canonicalization. It
508   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
509   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
510                            VPTransformState &State);
511 
512   /// A helper function to scalarize a single Instruction in the innermost loop.
513   /// Generates a sequence of scalar instances for each lane between \p MinLane
514   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
515   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
516   /// Instr's operands.
517   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
518                             const VPIteration &Instance, bool IfPredicateInstr,
519                             VPTransformState &State);
520 
521   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
522   /// is provided, the integer induction variable will first be truncated to
523   /// the corresponding type.
524   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
525                              VPValue *Def, VPValue *CastDef,
526                              VPTransformState &State);
527 
528   /// Construct the vector value of a scalarized value \p V one lane at a time.
529   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
530                                  VPTransformState &State);
531 
532   /// Try to vectorize interleaved access group \p Group with the base address
533   /// given in \p Addr, optionally masking the vector operations if \p
534   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
535   /// values in the vectorized loop.
536   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
537                                 ArrayRef<VPValue *> VPDefs,
538                                 VPTransformState &State, VPValue *Addr,
539                                 ArrayRef<VPValue *> StoredValues,
540                                 VPValue *BlockInMask = nullptr);
541 
542   /// Vectorize Load and Store instructions with the base address given in \p
543   /// Addr, optionally masking the vector operations if \p BlockInMask is
544   /// non-null. Use \p State to translate given VPValues to IR values in the
545   /// vectorized loop.
546   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
547                                   VPValue *Def, VPValue *Addr,
548                                   VPValue *StoredValue, VPValue *BlockInMask);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Fix a first-order recurrence. This is the second phase of vectorizing
594   /// this phi node.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Fix a reduction cross-iteration phi. This is the second phase of
598   /// vectorizing this phi node.
599   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
600 
601   /// Clear NSW/NUW flags from reduction instructions if necessary.
602   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
603                                VPTransformState &State);
604 
605   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
606   /// means we need to add the appropriate incoming value from the middle
607   /// block as exiting edges from the scalar epilogue loop (if present) are
608   /// already in place, and we exit the vector loop exclusively to the middle
609   /// block.
610   void fixLCSSAPHIs(VPTransformState &State);
611 
612   /// Iteratively sink the scalarized operands of a predicated instruction into
613   /// the block that was created for it.
614   void sinkScalarOperands(Instruction *PredInst);
615 
616   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
617   /// represented as.
618   void truncateToMinimalBitwidths(VPTransformState &State);
619 
620   /// This function adds
621   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
622   /// to each vector element of Val. The sequence starts at StartIndex.
623   /// \p Opcode is relevant for FP induction variable.
624   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
625                                Instruction::BinaryOps Opcode =
626                                Instruction::BinaryOpsEnd);
627 
628   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
629   /// variable on which to base the steps, \p Step is the size of the step, and
630   /// \p EntryVal is the value from the original loop that maps to the steps.
631   /// Note that \p EntryVal doesn't have to be an induction variable - it
632   /// can also be a truncate instruction.
633   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
634                         const InductionDescriptor &ID, VPValue *Def,
635                         VPValue *CastDef, VPTransformState &State);
636 
637   /// Create a vector induction phi node based on an existing scalar one. \p
638   /// EntryVal is the value from the original loop that maps to the vector phi
639   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
640   /// truncate instruction, instead of widening the original IV, we widen a
641   /// version of the IV truncated to \p EntryVal's type.
642   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
643                                        Value *Step, Value *Start,
644                                        Instruction *EntryVal, VPValue *Def,
645                                        VPValue *CastDef,
646                                        VPTransformState &State);
647 
648   /// Returns true if an instruction \p I should be scalarized instead of
649   /// vectorized for the chosen vectorization factor.
650   bool shouldScalarizeInstruction(Instruction *I) const;
651 
652   /// Returns true if we should generate a scalar version of \p IV.
653   bool needsScalarInduction(Instruction *IV) const;
654 
655   /// If there is a cast involved in the induction variable \p ID, which should
656   /// be ignored in the vectorized loop body, this function records the
657   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
658   /// cast. We had already proved that the casted Phi is equal to the uncasted
659   /// Phi in the vectorized loop (under a runtime guard), and therefore
660   /// there is no need to vectorize the cast - the same value can be used in the
661   /// vector loop for both the Phi and the cast.
662   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
663   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
664   ///
665   /// \p EntryVal is the value from the original loop that maps to the vector
666   /// phi node and is used to distinguish what is the IV currently being
667   /// processed - original one (if \p EntryVal is a phi corresponding to the
668   /// original IV) or the "newly-created" one based on the proof mentioned above
669   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
670   /// latter case \p EntryVal is a TruncInst and we must not record anything for
671   /// that IV, but it's error-prone to expect callers of this routine to care
672   /// about that, hence this explicit parameter.
673   void recordVectorLoopValueForInductionCast(
674       const InductionDescriptor &ID, const Instruction *EntryVal,
675       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
676       unsigned Part, unsigned Lane = UINT_MAX);
677 
678   /// Generate a shuffle sequence that will reverse the vector Vec.
679   virtual Value *reverseVector(Value *Vec);
680 
681   /// Returns (and creates if needed) the original loop trip count.
682   Value *getOrCreateTripCount(Loop *NewLoop);
683 
684   /// Returns (and creates if needed) the trip count of the widened loop.
685   Value *getOrCreateVectorTripCount(Loop *NewLoop);
686 
687   /// Returns a bitcasted value to the requested vector type.
688   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
689   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
690                                 const DataLayout &DL);
691 
692   /// Emit a bypass check to see if the vector trip count is zero, including if
693   /// it overflows.
694   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
695 
696   /// Emit a bypass check to see if all of the SCEV assumptions we've
697   /// had to make are correct. Returns the block containing the checks or
698   /// nullptr if no checks have been added.
699   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
700 
701   /// Emit bypass checks to check any memory assumptions we may have made.
702   /// Returns the block containing the checks or nullptr if no checks have been
703   /// added.
704   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
705 
706   /// Compute the transformed value of Index at offset StartValue using step
707   /// StepValue.
708   /// For integer induction, returns StartValue + Index * StepValue.
709   /// For pointer induction, returns StartValue[Index * StepValue].
710   /// FIXME: The newly created binary instructions should contain nsw/nuw
711   /// flags, which can be found from the original scalar operations.
712   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
713                               const DataLayout &DL,
714                               const InductionDescriptor &ID) const;
715 
716   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
717   /// vector loop preheader, middle block and scalar preheader. Also
718   /// allocate a loop object for the new vector loop and return it.
719   Loop *createVectorLoopSkeleton(StringRef Prefix);
720 
721   /// Create new phi nodes for the induction variables to resume iteration count
722   /// in the scalar epilogue, from where the vectorized loop left off (given by
723   /// \p VectorTripCount).
724   /// In cases where the loop skeleton is more complicated (eg. epilogue
725   /// vectorization) and the resume values can come from an additional bypass
726   /// block, the \p AdditionalBypass pair provides information about the bypass
727   /// block and the end value on the edge from bypass to this loop.
728   void createInductionResumeValues(
729       Loop *L, Value *VectorTripCount,
730       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
731 
732   /// Complete the loop skeleton by adding debug MDs, creating appropriate
733   /// conditional branches in the middle block, preparing the builder and
734   /// running the verifier. Take in the vector loop \p L as argument, and return
735   /// the preheader of the completed vector loop.
736   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
737 
738   /// Add additional metadata to \p To that was not present on \p Orig.
739   ///
740   /// Currently this is used to add the noalias annotations based on the
741   /// inserted memchecks.  Use this for instructions that are *cloned* into the
742   /// vector loop.
743   void addNewMetadata(Instruction *To, const Instruction *Orig);
744 
745   /// Add metadata from one instruction to another.
746   ///
747   /// This includes both the original MDs from \p From and additional ones (\see
748   /// addNewMetadata).  Use this for *newly created* instructions in the vector
749   /// loop.
750   void addMetadata(Instruction *To, Instruction *From);
751 
752   /// Similar to the previous function but it adds the metadata to a
753   /// vector of instructions.
754   void addMetadata(ArrayRef<Value *> To, Instruction *From);
755 
756   /// Allow subclasses to override and print debug traces before/after vplan
757   /// execution, when trace information is requested.
758   virtual void printDebugTracesAtStart(){};
759   virtual void printDebugTracesAtEnd(){};
760 
761   /// The original loop.
762   Loop *OrigLoop;
763 
764   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
765   /// dynamic knowledge to simplify SCEV expressions and converts them to a
766   /// more usable form.
767   PredicatedScalarEvolution &PSE;
768 
769   /// Loop Info.
770   LoopInfo *LI;
771 
772   /// Dominator Tree.
773   DominatorTree *DT;
774 
775   /// Alias Analysis.
776   AAResults *AA;
777 
778   /// Target Library Info.
779   const TargetLibraryInfo *TLI;
780 
781   /// Target Transform Info.
782   const TargetTransformInfo *TTI;
783 
784   /// Assumption Cache.
785   AssumptionCache *AC;
786 
787   /// Interface to emit optimization remarks.
788   OptimizationRemarkEmitter *ORE;
789 
790   /// LoopVersioning.  It's only set up (non-null) if memchecks were
791   /// used.
792   ///
793   /// This is currently only used to add no-alias metadata based on the
794   /// memchecks.  The actually versioning is performed manually.
795   std::unique_ptr<LoopVersioning> LVer;
796 
797   /// The vectorization SIMD factor to use. Each vector will have this many
798   /// vector elements.
799   ElementCount VF;
800 
801   /// The vectorization unroll factor to use. Each scalar is vectorized to this
802   /// many different vector instructions.
803   unsigned UF;
804 
805   /// The builder that we use
806   IRBuilder<> Builder;
807 
808   // --- Vectorization state ---
809 
810   /// The vector-loop preheader.
811   BasicBlock *LoopVectorPreHeader;
812 
813   /// The scalar-loop preheader.
814   BasicBlock *LoopScalarPreHeader;
815 
816   /// Middle Block between the vector and the scalar.
817   BasicBlock *LoopMiddleBlock;
818 
819   /// The unique ExitBlock of the scalar loop if one exists.  Note that
820   /// there can be multiple exiting edges reaching this block.
821   BasicBlock *LoopExitBlock;
822 
823   /// The vector loop body.
824   BasicBlock *LoopVectorBody;
825 
826   /// The scalar loop body.
827   BasicBlock *LoopScalarBody;
828 
829   /// A list of all bypass blocks. The first block is the entry of the loop.
830   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
831 
832   /// The new Induction variable which was added to the new block.
833   PHINode *Induction = nullptr;
834 
835   /// The induction variable of the old basic block.
836   PHINode *OldInduction = nullptr;
837 
838   /// Store instructions that were predicated.
839   SmallVector<Instruction *, 4> PredicatedInstructions;
840 
841   /// Trip count of the original loop.
842   Value *TripCount = nullptr;
843 
844   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
845   Value *VectorTripCount = nullptr;
846 
847   /// The legality analysis.
848   LoopVectorizationLegality *Legal;
849 
850   /// The profitablity analysis.
851   LoopVectorizationCostModel *Cost;
852 
853   // Record whether runtime checks are added.
854   bool AddedSafetyChecks = false;
855 
856   // Holds the end values for each induction variable. We save the end values
857   // so we can later fix-up the external users of the induction variables.
858   DenseMap<PHINode *, Value *> IVEndValues;
859 
860   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
861   // fixed up at the end of vector code generation.
862   SmallVector<PHINode *, 8> OrigPHIsToFix;
863 
864   /// BFI and PSI are used to check for profile guided size optimizations.
865   BlockFrequencyInfo *BFI;
866   ProfileSummaryInfo *PSI;
867 
868   // Whether this loop should be optimized for size based on profile guided size
869   // optimizatios.
870   bool OptForSizeBasedOnProfile;
871 
872   /// Structure to hold information about generated runtime checks, responsible
873   /// for cleaning the checks, if vectorization turns out unprofitable.
874   GeneratedRTChecks &RTChecks;
875 };
876 
877 class InnerLoopUnroller : public InnerLoopVectorizer {
878 public:
879   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
880                     LoopInfo *LI, DominatorTree *DT,
881                     const TargetLibraryInfo *TLI,
882                     const TargetTransformInfo *TTI, AssumptionCache *AC,
883                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
884                     LoopVectorizationLegality *LVL,
885                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
886                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
887       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
888                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
889                             BFI, PSI, Check) {}
890 
891 private:
892   Value *getBroadcastInstrs(Value *V) override;
893   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
894                        Instruction::BinaryOps Opcode =
895                        Instruction::BinaryOpsEnd) override;
896   Value *reverseVector(Value *Vec) override;
897 };
898 
899 /// Encapsulate information regarding vectorization of a loop and its epilogue.
900 /// This information is meant to be updated and used across two stages of
901 /// epilogue vectorization.
902 struct EpilogueLoopVectorizationInfo {
903   ElementCount MainLoopVF = ElementCount::getFixed(0);
904   unsigned MainLoopUF = 0;
905   ElementCount EpilogueVF = ElementCount::getFixed(0);
906   unsigned EpilogueUF = 0;
907   BasicBlock *MainLoopIterationCountCheck = nullptr;
908   BasicBlock *EpilogueIterationCountCheck = nullptr;
909   BasicBlock *SCEVSafetyCheck = nullptr;
910   BasicBlock *MemSafetyCheck = nullptr;
911   Value *TripCount = nullptr;
912   Value *VectorTripCount = nullptr;
913 
914   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
915                                 unsigned EUF)
916       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
917         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
918     assert(EUF == 1 &&
919            "A high UF for the epilogue loop is likely not beneficial.");
920   }
921 };
922 
923 /// An extension of the inner loop vectorizer that creates a skeleton for a
924 /// vectorized loop that has its epilogue (residual) also vectorized.
925 /// The idea is to run the vplan on a given loop twice, firstly to setup the
926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
927 /// from the first step and vectorize the epilogue.  This is achieved by
928 /// deriving two concrete strategy classes from this base class and invoking
929 /// them in succession from the loop vectorizer planner.
930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
931 public:
932   InnerLoopAndEpilogueVectorizer(
933       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
934       DominatorTree *DT, const TargetLibraryInfo *TLI,
935       const TargetTransformInfo *TTI, AssumptionCache *AC,
936       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
937       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
938       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
939       GeneratedRTChecks &Checks)
940       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
941                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
942                             Checks),
943         EPI(EPI) {}
944 
945   // Override this function to handle the more complex control flow around the
946   // three loops.
947   BasicBlock *createVectorizedLoopSkeleton() final override {
948     return createEpilogueVectorizedLoopSkeleton();
949   }
950 
951   /// The interface for creating a vectorized skeleton using one of two
952   /// different strategies, each corresponding to one execution of the vplan
953   /// as described above.
954   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
955 
956   /// Holds and updates state information required to vectorize the main loop
957   /// and its epilogue in two separate passes. This setup helps us avoid
958   /// regenerating and recomputing runtime safety checks. It also helps us to
959   /// shorten the iteration-count-check path length for the cases where the
960   /// iteration count of the loop is so small that the main vector loop is
961   /// completely skipped.
962   EpilogueLoopVectorizationInfo &EPI;
963 };
964 
965 /// A specialized derived class of inner loop vectorizer that performs
966 /// vectorization of *main* loops in the process of vectorizing loops and their
967 /// epilogues.
968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
969 public:
970   EpilogueVectorizerMainLoop(
971       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
972       DominatorTree *DT, const TargetLibraryInfo *TLI,
973       const TargetTransformInfo *TTI, AssumptionCache *AC,
974       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
975       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
976       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
977       GeneratedRTChecks &Check)
978       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
979                                        EPI, LVL, CM, BFI, PSI, Check) {}
980   /// Implements the interface for creating a vectorized skeleton using the
981   /// *main loop* strategy (ie the first pass of vplan execution).
982   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
983 
984 protected:
985   /// Emits an iteration count bypass check once for the main loop (when \p
986   /// ForEpilogue is false) and once for the epilogue loop (when \p
987   /// ForEpilogue is true).
988   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
989                                              bool ForEpilogue);
990   void printDebugTracesAtStart() override;
991   void printDebugTracesAtEnd() override;
992 };
993 
994 // A specialized derived class of inner loop vectorizer that performs
995 // vectorization of *epilogue* loops in the process of vectorizing loops and
996 // their epilogues.
997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
998 public:
999   EpilogueVectorizerEpilogueLoop(
1000       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1001       DominatorTree *DT, const TargetLibraryInfo *TLI,
1002       const TargetTransformInfo *TTI, AssumptionCache *AC,
1003       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1004       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1005       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1006       GeneratedRTChecks &Checks)
1007       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1008                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1009   /// Implements the interface for creating a vectorized skeleton using the
1010   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1011   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1012 
1013 protected:
1014   /// Emits an iteration count bypass check after the main vector loop has
1015   /// finished to see if there are any iterations left to execute by either
1016   /// the vector epilogue or the scalar epilogue.
1017   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1018                                                       BasicBlock *Bypass,
1019                                                       BasicBlock *Insert);
1020   void printDebugTracesAtStart() override;
1021   void printDebugTracesAtEnd() override;
1022 };
1023 } // end namespace llvm
1024 
1025 /// Look for a meaningful debug location on the instruction or it's
1026 /// operands.
1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1028   if (!I)
1029     return I;
1030 
1031   DebugLoc Empty;
1032   if (I->getDebugLoc() != Empty)
1033     return I;
1034 
1035   for (Use &Op : I->operands()) {
1036     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1037       if (OpInst->getDebugLoc() != Empty)
1038         return OpInst;
1039   }
1040 
1041   return I;
1042 }
1043 
1044 void InnerLoopVectorizer::setDebugLocFromInst(
1045     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1046   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1047   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1048     const DILocation *DIL = Inst->getDebugLoc();
1049 
1050     // When a FSDiscriminator is enabled, we don't need to add the multiply
1051     // factors to the discriminators.
1052     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1053         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1054       // FIXME: For scalable vectors, assume vscale=1.
1055       auto NewDIL =
1056           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1057       if (NewDIL)
1058         B->SetCurrentDebugLocation(NewDIL.getValue());
1059       else
1060         LLVM_DEBUG(dbgs()
1061                    << "Failed to create new discriminator: "
1062                    << DIL->getFilename() << " Line: " << DIL->getLine());
1063     } else
1064       B->SetCurrentDebugLocation(DIL);
1065   } else
1066     B->SetCurrentDebugLocation(DebugLoc());
1067 }
1068 
1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1070 /// is passed, the message relates to that particular instruction.
1071 #ifndef NDEBUG
1072 static void debugVectorizationMessage(const StringRef Prefix,
1073                                       const StringRef DebugMsg,
1074                                       Instruction *I) {
1075   dbgs() << "LV: " << Prefix << DebugMsg;
1076   if (I != nullptr)
1077     dbgs() << " " << *I;
1078   else
1079     dbgs() << '.';
1080   dbgs() << '\n';
1081 }
1082 #endif
1083 
1084 /// Create an analysis remark that explains why vectorization failed
1085 ///
1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1087 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1088 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1089 /// the location of the remark.  \return the remark object that can be
1090 /// streamed to.
1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1092     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1093   Value *CodeRegion = TheLoop->getHeader();
1094   DebugLoc DL = TheLoop->getStartLoc();
1095 
1096   if (I) {
1097     CodeRegion = I->getParent();
1098     // If there is no debug location attached to the instruction, revert back to
1099     // using the loop's.
1100     if (I->getDebugLoc())
1101       DL = I->getDebugLoc();
1102   }
1103 
1104   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1105 }
1106 
1107 /// Return a value for Step multiplied by VF.
1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1109   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1110   Constant *StepVal = ConstantInt::get(
1111       Step->getType(),
1112       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1113   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1114 }
1115 
1116 namespace llvm {
1117 
1118 /// Return the runtime value for VF.
1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1120   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1121   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1122 }
1123 
1124 void reportVectorizationFailure(const StringRef DebugMsg,
1125                                 const StringRef OREMsg, const StringRef ORETag,
1126                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1127                                 Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(
1131       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1132       << "loop not vectorized: " << OREMsg);
1133 }
1134 
1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1136                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1137                              Instruction *I) {
1138   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1139   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1140   ORE->emit(
1141       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1142       << Msg);
1143 }
1144 
1145 } // end namespace llvm
1146 
1147 #ifndef NDEBUG
1148 /// \return string containing a file name and a line # for the given loop.
1149 static std::string getDebugLocString(const Loop *L) {
1150   std::string Result;
1151   if (L) {
1152     raw_string_ostream OS(Result);
1153     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1154       LoopDbgLoc.print(OS);
1155     else
1156       // Just print the module name.
1157       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1158     OS.flush();
1159   }
1160   return Result;
1161 }
1162 #endif
1163 
1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1165                                          const Instruction *Orig) {
1166   // If the loop was versioned with memchecks, add the corresponding no-alias
1167   // metadata.
1168   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1169     LVer->annotateInstWithNoAlias(To, Orig);
1170 }
1171 
1172 void InnerLoopVectorizer::addMetadata(Instruction *To,
1173                                       Instruction *From) {
1174   propagateMetadata(To, From);
1175   addNewMetadata(To, From);
1176 }
1177 
1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1179                                       Instruction *From) {
1180   for (Value *V : To) {
1181     if (Instruction *I = dyn_cast<Instruction>(V))
1182       addMetadata(I, From);
1183   }
1184 }
1185 
1186 namespace llvm {
1187 
1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1189 // lowered.
1190 enum ScalarEpilogueLowering {
1191 
1192   // The default: allowing scalar epilogues.
1193   CM_ScalarEpilogueAllowed,
1194 
1195   // Vectorization with OptForSize: don't allow epilogues.
1196   CM_ScalarEpilogueNotAllowedOptSize,
1197 
1198   // A special case of vectorisation with OptForSize: loops with a very small
1199   // trip count are considered for vectorization under OptForSize, thereby
1200   // making sure the cost of their loop body is dominant, free of runtime
1201   // guards and scalar iteration overheads.
1202   CM_ScalarEpilogueNotAllowedLowTripLoop,
1203 
1204   // Loop hint predicate indicating an epilogue is undesired.
1205   CM_ScalarEpilogueNotNeededUsePredicate,
1206 
1207   // Directive indicating we must either tail fold or not vectorize
1208   CM_ScalarEpilogueNotAllowedUsePredicate
1209 };
1210 
1211 /// ElementCountComparator creates a total ordering for ElementCount
1212 /// for the purposes of using it in a set structure.
1213 struct ElementCountComparator {
1214   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1215     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1216            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1217   }
1218 };
1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1220 
1221 /// LoopVectorizationCostModel - estimates the expected speedups due to
1222 /// vectorization.
1223 /// In many cases vectorization is not profitable. This can happen because of
1224 /// a number of reasons. In this class we mainly attempt to predict the
1225 /// expected speedup/slowdowns due to the supported instruction set. We use the
1226 /// TargetTransformInfo to query the different backends for the cost of
1227 /// different operations.
1228 class LoopVectorizationCostModel {
1229 public:
1230   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1231                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1232                              LoopVectorizationLegality *Legal,
1233                              const TargetTransformInfo &TTI,
1234                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1235                              AssumptionCache *AC,
1236                              OptimizationRemarkEmitter *ORE, const Function *F,
1237                              const LoopVectorizeHints *Hints,
1238                              InterleavedAccessInfo &IAI)
1239       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1240         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1241         Hints(Hints), InterleaveInfo(IAI) {}
1242 
1243   /// \return An upper bound for the vectorization factors (both fixed and
1244   /// scalable). If the factors are 0, vectorization and interleaving should be
1245   /// avoided up front.
1246   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1247 
1248   /// \return True if runtime checks are required for vectorization, and false
1249   /// otherwise.
1250   bool runtimeChecksRequired();
1251 
1252   /// \return The most profitable vectorization factor and the cost of that VF.
1253   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1254   /// then this vectorization factor will be selected if vectorization is
1255   /// possible.
1256   VectorizationFactor
1257   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1258 
1259   VectorizationFactor
1260   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1261                                     const LoopVectorizationPlanner &LVP);
1262 
1263   /// Setup cost-based decisions for user vectorization factor.
1264   /// \return true if the UserVF is a feasible VF to be chosen.
1265   bool selectUserVectorizationFactor(ElementCount UserVF) {
1266     collectUniformsAndScalars(UserVF);
1267     collectInstsToScalarize(UserVF);
1268     return expectedCost(UserVF).first.isValid();
1269   }
1270 
1271   /// \return The size (in bits) of the smallest and widest types in the code
1272   /// that needs to be vectorized. We ignore values that remain scalar such as
1273   /// 64 bit loop indices.
1274   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1275 
1276   /// \return The desired interleave count.
1277   /// If interleave count has been specified by metadata it will be returned.
1278   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1279   /// are the selected vectorization factor and the cost of the selected VF.
1280   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1281 
1282   /// Memory access instruction may be vectorized in more than one way.
1283   /// Form of instruction after vectorization depends on cost.
1284   /// This function takes cost-based decisions for Load/Store instructions
1285   /// and collects them in a map. This decisions map is used for building
1286   /// the lists of loop-uniform and loop-scalar instructions.
1287   /// The calculated cost is saved with widening decision in order to
1288   /// avoid redundant calculations.
1289   void setCostBasedWideningDecision(ElementCount VF);
1290 
1291   /// A struct that represents some properties of the register usage
1292   /// of a loop.
1293   struct RegisterUsage {
1294     /// Holds the number of loop invariant values that are used in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1297     /// Holds the maximum number of concurrent live intervals in the loop.
1298     /// The key is ClassID of target-provided register class.
1299     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1300   };
1301 
1302   /// \return Returns information about the register usages of the loop for the
1303   /// given vectorization factors.
1304   SmallVector<RegisterUsage, 8>
1305   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1306 
1307   /// Collect values we want to ignore in the cost model.
1308   void collectValuesToIgnore();
1309 
1310   /// Collect all element types in the loop for which widening is needed.
1311   void collectElementTypesForWidening();
1312 
1313   /// Split reductions into those that happen in the loop, and those that happen
1314   /// outside. In loop reductions are collected into InLoopReductionChains.
1315   void collectInLoopReductions();
1316 
1317   /// Returns true if we should use strict in-order reductions for the given
1318   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1319   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1320   /// of FP operations.
1321   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1322     return EnableStrictReductions && !Hints->allowReordering() &&
1323            RdxDesc.isOrdered();
1324   }
1325 
1326   /// \returns The smallest bitwidth each instruction can be represented with.
1327   /// The vector equivalents of these instructions should be truncated to this
1328   /// type.
1329   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1330     return MinBWs;
1331   }
1332 
1333   /// \returns True if it is more profitable to scalarize instruction \p I for
1334   /// vectorization factor \p VF.
1335   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1336     assert(VF.isVector() &&
1337            "Profitable to scalarize relevant only for VF > 1.");
1338 
1339     // Cost model is not run in the VPlan-native path - return conservative
1340     // result until this changes.
1341     if (EnableVPlanNativePath)
1342       return false;
1343 
1344     auto Scalars = InstsToScalarize.find(VF);
1345     assert(Scalars != InstsToScalarize.end() &&
1346            "VF not yet analyzed for scalarization profitability");
1347     return Scalars->second.find(I) != Scalars->second.end();
1348   }
1349 
1350   /// Returns true if \p I is known to be uniform after vectorization.
1351   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1352     if (VF.isScalar())
1353       return true;
1354 
1355     // Cost model is not run in the VPlan-native path - return conservative
1356     // result until this changes.
1357     if (EnableVPlanNativePath)
1358       return false;
1359 
1360     auto UniformsPerVF = Uniforms.find(VF);
1361     assert(UniformsPerVF != Uniforms.end() &&
1362            "VF not yet analyzed for uniformity");
1363     return UniformsPerVF->second.count(I);
1364   }
1365 
1366   /// Returns true if \p I is known to be scalar after vectorization.
1367   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1368     if (VF.isScalar())
1369       return true;
1370 
1371     // Cost model is not run in the VPlan-native path - return conservative
1372     // result until this changes.
1373     if (EnableVPlanNativePath)
1374       return false;
1375 
1376     auto ScalarsPerVF = Scalars.find(VF);
1377     assert(ScalarsPerVF != Scalars.end() &&
1378            "Scalar values are not calculated for VF");
1379     return ScalarsPerVF->second.count(I);
1380   }
1381 
1382   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1383   /// for vectorization factor \p VF.
1384   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1385     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1386            !isProfitableToScalarize(I, VF) &&
1387            !isScalarAfterVectorization(I, VF);
1388   }
1389 
1390   /// Decision that was taken during cost calculation for memory instruction.
1391   enum InstWidening {
1392     CM_Unknown,
1393     CM_Widen,         // For consecutive accesses with stride +1.
1394     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1395     CM_Interleave,
1396     CM_GatherScatter,
1397     CM_Scalarize
1398   };
1399 
1400   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1401   /// instruction \p I and vector width \p VF.
1402   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1403                            InstructionCost Cost) {
1404     assert(VF.isVector() && "Expected VF >=2");
1405     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1406   }
1407 
1408   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1409   /// interleaving group \p Grp and vector width \p VF.
1410   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1411                            ElementCount VF, InstWidening W,
1412                            InstructionCost Cost) {
1413     assert(VF.isVector() && "Expected VF >=2");
1414     /// Broadcast this decicion to all instructions inside the group.
1415     /// But the cost will be assigned to one instruction only.
1416     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1417       if (auto *I = Grp->getMember(i)) {
1418         if (Grp->getInsertPos() == I)
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1420         else
1421           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1422       }
1423     }
1424   }
1425 
1426   /// Return the cost model decision for the given instruction \p I and vector
1427   /// width \p VF. Return CM_Unknown if this instruction did not pass
1428   /// through the cost modeling.
1429   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1430     assert(VF.isVector() && "Expected VF to be a vector VF");
1431     // Cost model is not run in the VPlan-native path - return conservative
1432     // result until this changes.
1433     if (EnableVPlanNativePath)
1434       return CM_GatherScatter;
1435 
1436     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1437     auto Itr = WideningDecisions.find(InstOnVF);
1438     if (Itr == WideningDecisions.end())
1439       return CM_Unknown;
1440     return Itr->second.first;
1441   }
1442 
1443   /// Return the vectorization cost for the given instruction \p I and vector
1444   /// width \p VF.
1445   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1446     assert(VF.isVector() && "Expected VF >=2");
1447     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1448     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1449            "The cost is not calculated");
1450     return WideningDecisions[InstOnVF].second;
1451   }
1452 
1453   /// Return True if instruction \p I is an optimizable truncate whose operand
1454   /// is an induction variable. Such a truncate will be removed by adding a new
1455   /// induction variable with the destination type.
1456   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1457     // If the instruction is not a truncate, return false.
1458     auto *Trunc = dyn_cast<TruncInst>(I);
1459     if (!Trunc)
1460       return false;
1461 
1462     // Get the source and destination types of the truncate.
1463     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1464     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1465 
1466     // If the truncate is free for the given types, return false. Replacing a
1467     // free truncate with an induction variable would add an induction variable
1468     // update instruction to each iteration of the loop. We exclude from this
1469     // check the primary induction variable since it will need an update
1470     // instruction regardless.
1471     Value *Op = Trunc->getOperand(0);
1472     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1473       return false;
1474 
1475     // If the truncated value is not an induction variable, return false.
1476     return Legal->isInductionPhi(Op);
1477   }
1478 
1479   /// Collects the instructions to scalarize for each predicated instruction in
1480   /// the loop.
1481   void collectInstsToScalarize(ElementCount VF);
1482 
1483   /// Collect Uniform and Scalar values for the given \p VF.
1484   /// The sets depend on CM decision for Load/Store instructions
1485   /// that may be vectorized as interleave, gather-scatter or scalarized.
1486   void collectUniformsAndScalars(ElementCount VF) {
1487     // Do the analysis once.
1488     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1489       return;
1490     setCostBasedWideningDecision(VF);
1491     collectLoopUniforms(VF);
1492     collectLoopScalars(VF);
1493   }
1494 
1495   /// Returns true if the target machine supports masked store operation
1496   /// for the given \p DataType and kind of access to \p Ptr.
1497   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1498     return Legal->isConsecutivePtr(Ptr) &&
1499            TTI.isLegalMaskedStore(DataType, Alignment);
1500   }
1501 
1502   /// Returns true if the target machine supports masked load operation
1503   /// for the given \p DataType and kind of access to \p Ptr.
1504   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1505     return Legal->isConsecutivePtr(Ptr) &&
1506            TTI.isLegalMaskedLoad(DataType, Alignment);
1507   }
1508 
1509   /// Returns true if the target machine can represent \p V as a masked gather
1510   /// or scatter operation.
1511   bool isLegalGatherOrScatter(Value *V) {
1512     bool LI = isa<LoadInst>(V);
1513     bool SI = isa<StoreInst>(V);
1514     if (!LI && !SI)
1515       return false;
1516     auto *Ty = getLoadStoreType(V);
1517     Align Align = getLoadStoreAlignment(V);
1518     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1519            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1520   }
1521 
1522   /// Returns true if the target machine supports all of the reduction
1523   /// variables found for the given VF.
1524   bool canVectorizeReductions(ElementCount VF) const {
1525     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1526       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1527       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1528     }));
1529   }
1530 
1531   /// Returns true if \p I is an instruction that will be scalarized with
1532   /// predication. Such instructions include conditional stores and
1533   /// instructions that may divide by zero.
1534   /// If a non-zero VF has been calculated, we check if I will be scalarized
1535   /// predication for that VF.
1536   bool isScalarWithPredication(Instruction *I) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // Superset of instructions that return true for isScalarWithPredication.
1541   bool isPredicatedInst(Instruction *I) {
1542     if (!blockNeedsPredication(I->getParent()))
1543       return false;
1544     // Loads and stores that need some form of masked operation are predicated
1545     // instructions.
1546     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1547       return Legal->isMaskRequired(I);
1548     return isScalarWithPredication(I);
1549   }
1550 
1551   /// Returns true if \p I is a memory instruction with consecutive memory
1552   /// access that can be widened.
1553   bool
1554   memoryInstructionCanBeWidened(Instruction *I,
1555                                 ElementCount VF = ElementCount::getFixed(1));
1556 
1557   /// Returns true if \p I is a memory instruction in an interleaved-group
1558   /// of memory accesses that can be vectorized with wide vector loads/stores
1559   /// and shuffles.
1560   bool
1561   interleavedAccessCanBeWidened(Instruction *I,
1562                                 ElementCount VF = ElementCount::getFixed(1));
1563 
1564   /// Check if \p Instr belongs to any interleaved access group.
1565   bool isAccessInterleaved(Instruction *Instr) {
1566     return InterleaveInfo.isInterleaved(Instr);
1567   }
1568 
1569   /// Get the interleaved access group that \p Instr belongs to.
1570   const InterleaveGroup<Instruction> *
1571   getInterleavedAccessGroup(Instruction *Instr) {
1572     return InterleaveInfo.getInterleaveGroup(Instr);
1573   }
1574 
1575   /// Returns true if we're required to use a scalar epilogue for at least
1576   /// the final iteration of the original loop.
1577   bool requiresScalarEpilogue(ElementCount VF) const {
1578     if (!isScalarEpilogueAllowed())
1579       return false;
1580     // If we might exit from anywhere but the latch, must run the exiting
1581     // iteration in scalar form.
1582     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1583       return true;
1584     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1585   }
1586 
1587   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1588   /// loop hint annotation.
1589   bool isScalarEpilogueAllowed() const {
1590     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1591   }
1592 
1593   /// Returns true if all loop blocks should be masked to fold tail loop.
1594   bool foldTailByMasking() const { return FoldTailByMasking; }
1595 
1596   bool blockNeedsPredication(BasicBlock *BB) const {
1597     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1598   }
1599 
1600   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1601   /// nodes to the chain of instructions representing the reductions. Uses a
1602   /// MapVector to ensure deterministic iteration order.
1603   using ReductionChainMap =
1604       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1605 
1606   /// Return the chain of instructions representing an inloop reduction.
1607   const ReductionChainMap &getInLoopReductionChains() const {
1608     return InLoopReductionChains;
1609   }
1610 
1611   /// Returns true if the Phi is part of an inloop reduction.
1612   bool isInLoopReduction(PHINode *Phi) const {
1613     return InLoopReductionChains.count(Phi);
1614   }
1615 
1616   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1617   /// with factor VF.  Return the cost of the instruction, including
1618   /// scalarization overhead if it's needed.
1619   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1620 
1621   /// Estimate cost of a call instruction CI if it were vectorized with factor
1622   /// VF. Return the cost of the instruction, including scalarization overhead
1623   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1624   /// scalarized -
1625   /// i.e. either vector version isn't available, or is too expensive.
1626   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1627                                     bool &NeedToScalarize) const;
1628 
1629   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1630   /// that of B.
1631   bool isMoreProfitable(const VectorizationFactor &A,
1632                         const VectorizationFactor &B) const;
1633 
1634   /// Invalidates decisions already taken by the cost model.
1635   void invalidateCostModelingDecisions() {
1636     WideningDecisions.clear();
1637     Uniforms.clear();
1638     Scalars.clear();
1639   }
1640 
1641 private:
1642   unsigned NumPredStores = 0;
1643 
1644   /// \return An upper bound for the vectorization factors for both
1645   /// fixed and scalable vectorization, where the minimum-known number of
1646   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1647   /// disabled or unsupported, then the scalable part will be equal to
1648   /// ElementCount::getScalable(0).
1649   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1650                                            ElementCount UserVF);
1651 
1652   /// \return the maximized element count based on the targets vector
1653   /// registers and the loop trip-count, but limited to a maximum safe VF.
1654   /// This is a helper function of computeFeasibleMaxVF.
1655   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1656   /// issue that occurred on one of the buildbots which cannot be reproduced
1657   /// without having access to the properietary compiler (see comments on
1658   /// D98509). The issue is currently under investigation and this workaround
1659   /// will be removed as soon as possible.
1660   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1661                                        unsigned SmallestType,
1662                                        unsigned WidestType,
1663                                        const ElementCount &MaxSafeVF);
1664 
1665   /// \return the maximum legal scalable VF, based on the safe max number
1666   /// of elements.
1667   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1668 
1669   /// The vectorization cost is a combination of the cost itself and a boolean
1670   /// indicating whether any of the contributing operations will actually
1671   /// operate on vector values after type legalization in the backend. If this
1672   /// latter value is false, then all operations will be scalarized (i.e. no
1673   /// vectorization has actually taken place).
1674   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1675 
1676   /// Returns the expected execution cost. The unit of the cost does
1677   /// not matter because we use the 'cost' units to compare different
1678   /// vector widths. The cost that is returned is *not* normalized by
1679   /// the factor width. If \p Invalid is not nullptr, this function
1680   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1681   /// each instruction that has an Invalid cost for the given VF.
1682   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1683   VectorizationCostTy
1684   expectedCost(ElementCount VF,
1685                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1686 
1687   /// Returns the execution time cost of an instruction for a given vector
1688   /// width. Vector width of one means scalar.
1689   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1690 
1691   /// The cost-computation logic from getInstructionCost which provides
1692   /// the vector type as an output parameter.
1693   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1694                                      Type *&VectorTy);
1695 
1696   /// Return the cost of instructions in an inloop reduction pattern, if I is
1697   /// part of that pattern.
1698   Optional<InstructionCost>
1699   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1700                           TTI::TargetCostKind CostKind);
1701 
1702   /// Calculate vectorization cost of memory instruction \p I.
1703   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for scalarized memory instruction.
1706   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for interleaving group of memory instructions.
1709   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for Gather/Scatter instruction.
1712   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost computation for widening instruction \p I with consecutive
1715   /// memory access.
1716   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1717 
1718   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1719   /// Load: scalar load + broadcast.
1720   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1721   /// element)
1722   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1723 
1724   /// Estimate the overhead of scalarizing an instruction. This is a
1725   /// convenience wrapper for the type-based getScalarizationOverhead API.
1726   InstructionCost getScalarizationOverhead(Instruction *I,
1727                                            ElementCount VF) const;
1728 
1729   /// Returns whether the instruction is a load or store and will be a emitted
1730   /// as a vector operation.
1731   bool isConsecutiveLoadOrStore(Instruction *I);
1732 
1733   /// Returns true if an artificially high cost for emulated masked memrefs
1734   /// should be used.
1735   bool useEmulatedMaskMemRefHack(Instruction *I);
1736 
1737   /// Map of scalar integer values to the smallest bitwidth they can be legally
1738   /// represented as. The vector equivalents of these values should be truncated
1739   /// to this type.
1740   MapVector<Instruction *, uint64_t> MinBWs;
1741 
1742   /// A type representing the costs for instructions if they were to be
1743   /// scalarized rather than vectorized. The entries are Instruction-Cost
1744   /// pairs.
1745   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1746 
1747   /// A set containing all BasicBlocks that are known to present after
1748   /// vectorization as a predicated block.
1749   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1750 
1751   /// Records whether it is allowed to have the original scalar loop execute at
1752   /// least once. This may be needed as a fallback loop in case runtime
1753   /// aliasing/dependence checks fail, or to handle the tail/remainder
1754   /// iterations when the trip count is unknown or doesn't divide by the VF,
1755   /// or as a peel-loop to handle gaps in interleave-groups.
1756   /// Under optsize and when the trip count is very small we don't allow any
1757   /// iterations to execute in the scalar loop.
1758   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1759 
1760   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1761   bool FoldTailByMasking = false;
1762 
1763   /// A map holding scalar costs for different vectorization factors. The
1764   /// presence of a cost for an instruction in the mapping indicates that the
1765   /// instruction will be scalarized when vectorizing with the associated
1766   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1767   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1768 
1769   /// Holds the instructions known to be uniform after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1772 
1773   /// Holds the instructions known to be scalar after vectorization.
1774   /// The data is collected per VF.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1776 
1777   /// Holds the instructions (address computations) that are forced to be
1778   /// scalarized.
1779   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1780 
1781   /// PHINodes of the reductions that should be expanded in-loop along with
1782   /// their associated chains of reduction operations, in program order from top
1783   /// (PHI) to bottom
1784   ReductionChainMap InLoopReductionChains;
1785 
1786   /// A Map of inloop reduction operations and their immediate chain operand.
1787   /// FIXME: This can be removed once reductions can be costed correctly in
1788   /// vplan. This was added to allow quick lookup to the inloop operations,
1789   /// without having to loop through InLoopReductionChains.
1790   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1791 
1792   /// Returns the expected difference in cost from scalarizing the expression
1793   /// feeding a predicated instruction \p PredInst. The instructions to
1794   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1795   /// non-negative return value implies the expression will be scalarized.
1796   /// Currently, only single-use chains are considered for scalarization.
1797   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1798                               ElementCount VF);
1799 
1800   /// Collect the instructions that are uniform after vectorization. An
1801   /// instruction is uniform if we represent it with a single scalar value in
1802   /// the vectorized loop corresponding to each vector iteration. Examples of
1803   /// uniform instructions include pointer operands of consecutive or
1804   /// interleaved memory accesses. Note that although uniformity implies an
1805   /// instruction will be scalar, the reverse is not true. In general, a
1806   /// scalarized instruction will be represented by VF scalar values in the
1807   /// vectorized loop, each corresponding to an iteration of the original
1808   /// scalar loop.
1809   void collectLoopUniforms(ElementCount VF);
1810 
1811   /// Collect the instructions that are scalar after vectorization. An
1812   /// instruction is scalar if it is known to be uniform or will be scalarized
1813   /// during vectorization. Non-uniform scalarized instructions will be
1814   /// represented by VF values in the vectorized loop, each corresponding to an
1815   /// iteration of the original scalar loop.
1816   void collectLoopScalars(ElementCount VF);
1817 
1818   /// Keeps cost model vectorization decision and cost for instructions.
1819   /// Right now it is used for memory instructions only.
1820   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1821                                 std::pair<InstWidening, InstructionCost>>;
1822 
1823   DecisionList WideningDecisions;
1824 
1825   /// Returns true if \p V is expected to be vectorized and it needs to be
1826   /// extracted.
1827   bool needsExtract(Value *V, ElementCount VF) const {
1828     Instruction *I = dyn_cast<Instruction>(V);
1829     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1830         TheLoop->isLoopInvariant(I))
1831       return false;
1832 
1833     // Assume we can vectorize V (and hence we need extraction) if the
1834     // scalars are not computed yet. This can happen, because it is called
1835     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1836     // the scalars are collected. That should be a safe assumption in most
1837     // cases, because we check if the operands have vectorizable types
1838     // beforehand in LoopVectorizationLegality.
1839     return Scalars.find(VF) == Scalars.end() ||
1840            !isScalarAfterVectorization(I, VF);
1841   };
1842 
1843   /// Returns a range containing only operands needing to be extracted.
1844   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1845                                                    ElementCount VF) const {
1846     return SmallVector<Value *, 4>(make_filter_range(
1847         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1848   }
1849 
1850   /// Determines if we have the infrastructure to vectorize loop \p L and its
1851   /// epilogue, assuming the main loop is vectorized by \p VF.
1852   bool isCandidateForEpilogueVectorization(const Loop &L,
1853                                            const ElementCount VF) const;
1854 
1855   /// Returns true if epilogue vectorization is considered profitable, and
1856   /// false otherwise.
1857   /// \p VF is the vectorization factor chosen for the original loop.
1858   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1859 
1860 public:
1861   /// The loop that we evaluate.
1862   Loop *TheLoop;
1863 
1864   /// Predicated scalar evolution analysis.
1865   PredicatedScalarEvolution &PSE;
1866 
1867   /// Loop Info analysis.
1868   LoopInfo *LI;
1869 
1870   /// Vectorization legality.
1871   LoopVectorizationLegality *Legal;
1872 
1873   /// Vector target information.
1874   const TargetTransformInfo &TTI;
1875 
1876   /// Target Library Info.
1877   const TargetLibraryInfo *TLI;
1878 
1879   /// Demanded bits analysis.
1880   DemandedBits *DB;
1881 
1882   /// Assumption cache.
1883   AssumptionCache *AC;
1884 
1885   /// Interface to emit optimization remarks.
1886   OptimizationRemarkEmitter *ORE;
1887 
1888   const Function *TheFunction;
1889 
1890   /// Loop Vectorize Hint.
1891   const LoopVectorizeHints *Hints;
1892 
1893   /// The interleave access information contains groups of interleaved accesses
1894   /// with the same stride and close to each other.
1895   InterleavedAccessInfo &InterleaveInfo;
1896 
1897   /// Values to ignore in the cost model.
1898   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1899 
1900   /// Values to ignore in the cost model when VF > 1.
1901   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1902 
1903   /// All element types found in the loop.
1904   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1905 
1906   /// Profitable vector factors.
1907   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1908 };
1909 } // end namespace llvm
1910 
1911 /// Helper struct to manage generating runtime checks for vectorization.
1912 ///
1913 /// The runtime checks are created up-front in temporary blocks to allow better
1914 /// estimating the cost and un-linked from the existing IR. After deciding to
1915 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1916 /// temporary blocks are completely removed.
1917 class GeneratedRTChecks {
1918   /// Basic block which contains the generated SCEV checks, if any.
1919   BasicBlock *SCEVCheckBlock = nullptr;
1920 
1921   /// The value representing the result of the generated SCEV checks. If it is
1922   /// nullptr, either no SCEV checks have been generated or they have been used.
1923   Value *SCEVCheckCond = nullptr;
1924 
1925   /// Basic block which contains the generated memory runtime checks, if any.
1926   BasicBlock *MemCheckBlock = nullptr;
1927 
1928   /// The value representing the result of the generated memory runtime checks.
1929   /// If it is nullptr, either no memory runtime checks have been generated or
1930   /// they have been used.
1931   Instruction *MemRuntimeCheckCond = nullptr;
1932 
1933   DominatorTree *DT;
1934   LoopInfo *LI;
1935 
1936   SCEVExpander SCEVExp;
1937   SCEVExpander MemCheckExp;
1938 
1939 public:
1940   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1941                     const DataLayout &DL)
1942       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1943         MemCheckExp(SE, DL, "scev.check") {}
1944 
1945   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1946   /// accurately estimate the cost of the runtime checks. The blocks are
1947   /// un-linked from the IR and is added back during vector code generation. If
1948   /// there is no vector code generation, the check blocks are removed
1949   /// completely.
1950   void Create(Loop *L, const LoopAccessInfo &LAI,
1951               const SCEVUnionPredicate &UnionPred) {
1952 
1953     BasicBlock *LoopHeader = L->getHeader();
1954     BasicBlock *Preheader = L->getLoopPreheader();
1955 
1956     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1957     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1958     // may be used by SCEVExpander. The blocks will be un-linked from their
1959     // predecessors and removed from LI & DT at the end of the function.
1960     if (!UnionPred.isAlwaysTrue()) {
1961       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1962                                   nullptr, "vector.scevcheck");
1963 
1964       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1965           &UnionPred, SCEVCheckBlock->getTerminator());
1966     }
1967 
1968     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1969     if (RtPtrChecking.Need) {
1970       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1971       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1972                                  "vector.memcheck");
1973 
1974       std::tie(std::ignore, MemRuntimeCheckCond) =
1975           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1976                            RtPtrChecking.getChecks(), MemCheckExp);
1977       assert(MemRuntimeCheckCond &&
1978              "no RT checks generated although RtPtrChecking "
1979              "claimed checks are required");
1980     }
1981 
1982     if (!MemCheckBlock && !SCEVCheckBlock)
1983       return;
1984 
1985     // Unhook the temporary block with the checks, update various places
1986     // accordingly.
1987     if (SCEVCheckBlock)
1988       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1989     if (MemCheckBlock)
1990       MemCheckBlock->replaceAllUsesWith(Preheader);
1991 
1992     if (SCEVCheckBlock) {
1993       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1994       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1995       Preheader->getTerminator()->eraseFromParent();
1996     }
1997     if (MemCheckBlock) {
1998       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1999       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2000       Preheader->getTerminator()->eraseFromParent();
2001     }
2002 
2003     DT->changeImmediateDominator(LoopHeader, Preheader);
2004     if (MemCheckBlock) {
2005       DT->eraseNode(MemCheckBlock);
2006       LI->removeBlock(MemCheckBlock);
2007     }
2008     if (SCEVCheckBlock) {
2009       DT->eraseNode(SCEVCheckBlock);
2010       LI->removeBlock(SCEVCheckBlock);
2011     }
2012   }
2013 
2014   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2015   /// unused.
2016   ~GeneratedRTChecks() {
2017     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2018     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2019     if (!SCEVCheckCond)
2020       SCEVCleaner.markResultUsed();
2021 
2022     if (!MemRuntimeCheckCond)
2023       MemCheckCleaner.markResultUsed();
2024 
2025     if (MemRuntimeCheckCond) {
2026       auto &SE = *MemCheckExp.getSE();
2027       // Memory runtime check generation creates compares that use expanded
2028       // values. Remove them before running the SCEVExpanderCleaners.
2029       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2030         if (MemCheckExp.isInsertedInstruction(&I))
2031           continue;
2032         SE.forgetValue(&I);
2033         SE.eraseValueFromMap(&I);
2034         I.eraseFromParent();
2035       }
2036     }
2037     MemCheckCleaner.cleanup();
2038     SCEVCleaner.cleanup();
2039 
2040     if (SCEVCheckCond)
2041       SCEVCheckBlock->eraseFromParent();
2042     if (MemRuntimeCheckCond)
2043       MemCheckBlock->eraseFromParent();
2044   }
2045 
2046   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2047   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2048   /// depending on the generated condition.
2049   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2050                              BasicBlock *LoopVectorPreHeader,
2051                              BasicBlock *LoopExitBlock) {
2052     if (!SCEVCheckCond)
2053       return nullptr;
2054     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2055       if (C->isZero())
2056         return nullptr;
2057 
2058     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2059 
2060     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2061     // Create new preheader for vector loop.
2062     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2063       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2064 
2065     SCEVCheckBlock->getTerminator()->eraseFromParent();
2066     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2067     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2068                                                 SCEVCheckBlock);
2069 
2070     DT->addNewBlock(SCEVCheckBlock, Pred);
2071     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2072 
2073     ReplaceInstWithInst(
2074         SCEVCheckBlock->getTerminator(),
2075         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2076     // Mark the check as used, to prevent it from being removed during cleanup.
2077     SCEVCheckCond = nullptr;
2078     return SCEVCheckBlock;
2079   }
2080 
2081   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2082   /// the branches to branch to the vector preheader or \p Bypass, depending on
2083   /// the generated condition.
2084   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2085                                    BasicBlock *LoopVectorPreHeader) {
2086     // Check if we generated code that checks in runtime if arrays overlap.
2087     if (!MemRuntimeCheckCond)
2088       return nullptr;
2089 
2090     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2091     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2092                                                 MemCheckBlock);
2093 
2094     DT->addNewBlock(MemCheckBlock, Pred);
2095     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2096     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2097 
2098     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2099       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2100 
2101     ReplaceInstWithInst(
2102         MemCheckBlock->getTerminator(),
2103         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2104     MemCheckBlock->getTerminator()->setDebugLoc(
2105         Pred->getTerminator()->getDebugLoc());
2106 
2107     // Mark the check as used, to prevent it from being removed during cleanup.
2108     MemRuntimeCheckCond = nullptr;
2109     return MemCheckBlock;
2110   }
2111 };
2112 
2113 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2114 // vectorization. The loop needs to be annotated with #pragma omp simd
2115 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2116 // vector length information is not provided, vectorization is not considered
2117 // explicit. Interleave hints are not allowed either. These limitations will be
2118 // relaxed in the future.
2119 // Please, note that we are currently forced to abuse the pragma 'clang
2120 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2121 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2122 // provides *explicit vectorization hints* (LV can bypass legal checks and
2123 // assume that vectorization is legal). However, both hints are implemented
2124 // using the same metadata (llvm.loop.vectorize, processed by
2125 // LoopVectorizeHints). This will be fixed in the future when the native IR
2126 // representation for pragma 'omp simd' is introduced.
2127 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2128                                    OptimizationRemarkEmitter *ORE) {
2129   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2130   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2131 
2132   // Only outer loops with an explicit vectorization hint are supported.
2133   // Unannotated outer loops are ignored.
2134   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2135     return false;
2136 
2137   Function *Fn = OuterLp->getHeader()->getParent();
2138   if (!Hints.allowVectorization(Fn, OuterLp,
2139                                 true /*VectorizeOnlyWhenForced*/)) {
2140     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2141     return false;
2142   }
2143 
2144   if (Hints.getInterleave() > 1) {
2145     // TODO: Interleave support is future work.
2146     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2147                          "outer loops.\n");
2148     Hints.emitRemarkWithHints();
2149     return false;
2150   }
2151 
2152   return true;
2153 }
2154 
2155 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2156                                   OptimizationRemarkEmitter *ORE,
2157                                   SmallVectorImpl<Loop *> &V) {
2158   // Collect inner loops and outer loops without irreducible control flow. For
2159   // now, only collect outer loops that have explicit vectorization hints. If we
2160   // are stress testing the VPlan H-CFG construction, we collect the outermost
2161   // loop of every loop nest.
2162   if (L.isInnermost() || VPlanBuildStressTest ||
2163       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2164     LoopBlocksRPO RPOT(&L);
2165     RPOT.perform(LI);
2166     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2167       V.push_back(&L);
2168       // TODO: Collect inner loops inside marked outer loops in case
2169       // vectorization fails for the outer loop. Do not invoke
2170       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2171       // already known to be reducible. We can use an inherited attribute for
2172       // that.
2173       return;
2174     }
2175   }
2176   for (Loop *InnerL : L)
2177     collectSupportedLoops(*InnerL, LI, ORE, V);
2178 }
2179 
2180 namespace {
2181 
2182 /// The LoopVectorize Pass.
2183 struct LoopVectorize : public FunctionPass {
2184   /// Pass identification, replacement for typeid
2185   static char ID;
2186 
2187   LoopVectorizePass Impl;
2188 
2189   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2190                          bool VectorizeOnlyWhenForced = false)
2191       : FunctionPass(ID),
2192         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2193     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2194   }
2195 
2196   bool runOnFunction(Function &F) override {
2197     if (skipFunction(F))
2198       return false;
2199 
2200     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2201     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2202     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2203     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2204     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2205     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2206     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2207     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2208     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2209     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2210     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2211     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2212     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2213 
2214     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2215         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2216 
2217     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2218                         GetLAA, *ORE, PSI).MadeAnyChange;
2219   }
2220 
2221   void getAnalysisUsage(AnalysisUsage &AU) const override {
2222     AU.addRequired<AssumptionCacheTracker>();
2223     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2224     AU.addRequired<DominatorTreeWrapperPass>();
2225     AU.addRequired<LoopInfoWrapperPass>();
2226     AU.addRequired<ScalarEvolutionWrapperPass>();
2227     AU.addRequired<TargetTransformInfoWrapperPass>();
2228     AU.addRequired<AAResultsWrapperPass>();
2229     AU.addRequired<LoopAccessLegacyAnalysis>();
2230     AU.addRequired<DemandedBitsWrapperPass>();
2231     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2232     AU.addRequired<InjectTLIMappingsLegacy>();
2233 
2234     // We currently do not preserve loopinfo/dominator analyses with outer loop
2235     // vectorization. Until this is addressed, mark these analyses as preserved
2236     // only for non-VPlan-native path.
2237     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2238     if (!EnableVPlanNativePath) {
2239       AU.addPreserved<LoopInfoWrapperPass>();
2240       AU.addPreserved<DominatorTreeWrapperPass>();
2241     }
2242 
2243     AU.addPreserved<BasicAAWrapperPass>();
2244     AU.addPreserved<GlobalsAAWrapperPass>();
2245     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2246   }
2247 };
2248 
2249 } // end anonymous namespace
2250 
2251 //===----------------------------------------------------------------------===//
2252 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2253 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2254 //===----------------------------------------------------------------------===//
2255 
2256 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2257   // We need to place the broadcast of invariant variables outside the loop,
2258   // but only if it's proven safe to do so. Else, broadcast will be inside
2259   // vector loop body.
2260   Instruction *Instr = dyn_cast<Instruction>(V);
2261   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2262                      (!Instr ||
2263                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2264   // Place the code for broadcasting invariant variables in the new preheader.
2265   IRBuilder<>::InsertPointGuard Guard(Builder);
2266   if (SafeToHoist)
2267     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2268 
2269   // Broadcast the scalar into all locations in the vector.
2270   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2271 
2272   return Shuf;
2273 }
2274 
2275 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2276     const InductionDescriptor &II, Value *Step, Value *Start,
2277     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2278     VPTransformState &State) {
2279   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2280          "Expected either an induction phi-node or a truncate of it!");
2281 
2282   // Construct the initial value of the vector IV in the vector loop preheader
2283   auto CurrIP = Builder.saveIP();
2284   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2285   if (isa<TruncInst>(EntryVal)) {
2286     assert(Start->getType()->isIntegerTy() &&
2287            "Truncation requires an integer type");
2288     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2289     Step = Builder.CreateTrunc(Step, TruncType);
2290     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2291   }
2292   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2293   Value *SteppedStart =
2294       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2295 
2296   // We create vector phi nodes for both integer and floating-point induction
2297   // variables. Here, we determine the kind of arithmetic we will perform.
2298   Instruction::BinaryOps AddOp;
2299   Instruction::BinaryOps MulOp;
2300   if (Step->getType()->isIntegerTy()) {
2301     AddOp = Instruction::Add;
2302     MulOp = Instruction::Mul;
2303   } else {
2304     AddOp = II.getInductionOpcode();
2305     MulOp = Instruction::FMul;
2306   }
2307 
2308   // Multiply the vectorization factor by the step using integer or
2309   // floating-point arithmetic as appropriate.
2310   Type *StepType = Step->getType();
2311   if (Step->getType()->isFloatingPointTy())
2312     StepType = IntegerType::get(StepType->getContext(),
2313                                 StepType->getScalarSizeInBits());
2314   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2315   if (Step->getType()->isFloatingPointTy())
2316     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2317   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2318 
2319   // Create a vector splat to use in the induction update.
2320   //
2321   // FIXME: If the step is non-constant, we create the vector splat with
2322   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2323   //        handle a constant vector splat.
2324   Value *SplatVF = isa<Constant>(Mul)
2325                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2326                        : Builder.CreateVectorSplat(VF, Mul);
2327   Builder.restoreIP(CurrIP);
2328 
2329   // We may need to add the step a number of times, depending on the unroll
2330   // factor. The last of those goes into the PHI.
2331   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2332                                     &*LoopVectorBody->getFirstInsertionPt());
2333   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2334   Instruction *LastInduction = VecInd;
2335   for (unsigned Part = 0; Part < UF; ++Part) {
2336     State.set(Def, LastInduction, Part);
2337 
2338     if (isa<TruncInst>(EntryVal))
2339       addMetadata(LastInduction, EntryVal);
2340     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2341                                           State, Part);
2342 
2343     LastInduction = cast<Instruction>(
2344         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2345     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2346   }
2347 
2348   // Move the last step to the end of the latch block. This ensures consistent
2349   // placement of all induction updates.
2350   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2351   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2352   auto *ICmp = cast<Instruction>(Br->getCondition());
2353   LastInduction->moveBefore(ICmp);
2354   LastInduction->setName("vec.ind.next");
2355 
2356   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2357   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2358 }
2359 
2360 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2361   return Cost->isScalarAfterVectorization(I, VF) ||
2362          Cost->isProfitableToScalarize(I, VF);
2363 }
2364 
2365 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2366   if (shouldScalarizeInstruction(IV))
2367     return true;
2368   auto isScalarInst = [&](User *U) -> bool {
2369     auto *I = cast<Instruction>(U);
2370     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2371   };
2372   return llvm::any_of(IV->users(), isScalarInst);
2373 }
2374 
2375 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2376     const InductionDescriptor &ID, const Instruction *EntryVal,
2377     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2378     unsigned Part, unsigned Lane) {
2379   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2380          "Expected either an induction phi-node or a truncate of it!");
2381 
2382   // This induction variable is not the phi from the original loop but the
2383   // newly-created IV based on the proof that casted Phi is equal to the
2384   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2385   // re-uses the same InductionDescriptor that original IV uses but we don't
2386   // have to do any recording in this case - that is done when original IV is
2387   // processed.
2388   if (isa<TruncInst>(EntryVal))
2389     return;
2390 
2391   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2392   if (Casts.empty())
2393     return;
2394   // Only the first Cast instruction in the Casts vector is of interest.
2395   // The rest of the Casts (if exist) have no uses outside the
2396   // induction update chain itself.
2397   if (Lane < UINT_MAX)
2398     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2399   else
2400     State.set(CastDef, VectorLoopVal, Part);
2401 }
2402 
2403 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2404                                                 TruncInst *Trunc, VPValue *Def,
2405                                                 VPValue *CastDef,
2406                                                 VPTransformState &State) {
2407   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2408          "Primary induction variable must have an integer type");
2409 
2410   auto II = Legal->getInductionVars().find(IV);
2411   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2412 
2413   auto ID = II->second;
2414   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2415 
2416   // The value from the original loop to which we are mapping the new induction
2417   // variable.
2418   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2419 
2420   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2421 
2422   // Generate code for the induction step. Note that induction steps are
2423   // required to be loop-invariant
2424   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2425     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2426            "Induction step should be loop invariant");
2427     if (PSE.getSE()->isSCEVable(IV->getType())) {
2428       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2429       return Exp.expandCodeFor(Step, Step->getType(),
2430                                LoopVectorPreHeader->getTerminator());
2431     }
2432     return cast<SCEVUnknown>(Step)->getValue();
2433   };
2434 
2435   // The scalar value to broadcast. This is derived from the canonical
2436   // induction variable. If a truncation type is given, truncate the canonical
2437   // induction variable and step. Otherwise, derive these values from the
2438   // induction descriptor.
2439   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2440     Value *ScalarIV = Induction;
2441     if (IV != OldInduction) {
2442       ScalarIV = IV->getType()->isIntegerTy()
2443                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2444                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2445                                           IV->getType());
2446       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2447       ScalarIV->setName("offset.idx");
2448     }
2449     if (Trunc) {
2450       auto *TruncType = cast<IntegerType>(Trunc->getType());
2451       assert(Step->getType()->isIntegerTy() &&
2452              "Truncation requires an integer step");
2453       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2454       Step = Builder.CreateTrunc(Step, TruncType);
2455     }
2456     return ScalarIV;
2457   };
2458 
2459   // Create the vector values from the scalar IV, in the absence of creating a
2460   // vector IV.
2461   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2462     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2463     for (unsigned Part = 0; Part < UF; ++Part) {
2464       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2465       Value *EntryPart =
2466           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2467                         ID.getInductionOpcode());
2468       State.set(Def, EntryPart, Part);
2469       if (Trunc)
2470         addMetadata(EntryPart, Trunc);
2471       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2472                                             State, Part);
2473     }
2474   };
2475 
2476   // Fast-math-flags propagate from the original induction instruction.
2477   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2478   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2479     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2480 
2481   // Now do the actual transformations, and start with creating the step value.
2482   Value *Step = CreateStepValue(ID.getStep());
2483   if (VF.isZero() || VF.isScalar()) {
2484     Value *ScalarIV = CreateScalarIV(Step);
2485     CreateSplatIV(ScalarIV, Step);
2486     return;
2487   }
2488 
2489   // Determine if we want a scalar version of the induction variable. This is
2490   // true if the induction variable itself is not widened, or if it has at
2491   // least one user in the loop that is not widened.
2492   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2493   if (!NeedsScalarIV) {
2494     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2495                                     State);
2496     return;
2497   }
2498 
2499   // Try to create a new independent vector induction variable. If we can't
2500   // create the phi node, we will splat the scalar induction variable in each
2501   // loop iteration.
2502   if (!shouldScalarizeInstruction(EntryVal)) {
2503     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2504                                     State);
2505     Value *ScalarIV = CreateScalarIV(Step);
2506     // Create scalar steps that can be used by instructions we will later
2507     // scalarize. Note that the addition of the scalar steps will not increase
2508     // the number of instructions in the loop in the common case prior to
2509     // InstCombine. We will be trading one vector extract for each scalar step.
2510     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2511     return;
2512   }
2513 
2514   // All IV users are scalar instructions, so only emit a scalar IV, not a
2515   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2516   // predicate used by the masked loads/stores.
2517   Value *ScalarIV = CreateScalarIV(Step);
2518   if (!Cost->isScalarEpilogueAllowed())
2519     CreateSplatIV(ScalarIV, Step);
2520   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2521 }
2522 
2523 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2524                                           Instruction::BinaryOps BinOp) {
2525   // Create and check the types.
2526   auto *ValVTy = cast<VectorType>(Val->getType());
2527   ElementCount VLen = ValVTy->getElementCount();
2528 
2529   Type *STy = Val->getType()->getScalarType();
2530   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2531          "Induction Step must be an integer or FP");
2532   assert(Step->getType() == STy && "Step has wrong type");
2533 
2534   SmallVector<Constant *, 8> Indices;
2535 
2536   // Create a vector of consecutive numbers from zero to VF.
2537   VectorType *InitVecValVTy = ValVTy;
2538   Type *InitVecValSTy = STy;
2539   if (STy->isFloatingPointTy()) {
2540     InitVecValSTy =
2541         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2542     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2543   }
2544   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2545 
2546   // Add on StartIdx
2547   Value *StartIdxSplat = Builder.CreateVectorSplat(
2548       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2549   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2550 
2551   if (STy->isIntegerTy()) {
2552     Step = Builder.CreateVectorSplat(VLen, Step);
2553     assert(Step->getType() == Val->getType() && "Invalid step vec");
2554     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2555     // which can be found from the original scalar operations.
2556     Step = Builder.CreateMul(InitVec, Step);
2557     return Builder.CreateAdd(Val, Step, "induction");
2558   }
2559 
2560   // Floating point induction.
2561   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2562          "Binary Opcode should be specified for FP induction");
2563   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2564   Step = Builder.CreateVectorSplat(VLen, Step);
2565   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2566   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2567 }
2568 
2569 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2570                                            Instruction *EntryVal,
2571                                            const InductionDescriptor &ID,
2572                                            VPValue *Def, VPValue *CastDef,
2573                                            VPTransformState &State) {
2574   // We shouldn't have to build scalar steps if we aren't vectorizing.
2575   assert(VF.isVector() && "VF should be greater than one");
2576   // Get the value type and ensure it and the step have the same integer type.
2577   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2578   assert(ScalarIVTy == Step->getType() &&
2579          "Val and Step should have the same type");
2580 
2581   // We build scalar steps for both integer and floating-point induction
2582   // variables. Here, we determine the kind of arithmetic we will perform.
2583   Instruction::BinaryOps AddOp;
2584   Instruction::BinaryOps MulOp;
2585   if (ScalarIVTy->isIntegerTy()) {
2586     AddOp = Instruction::Add;
2587     MulOp = Instruction::Mul;
2588   } else {
2589     AddOp = ID.getInductionOpcode();
2590     MulOp = Instruction::FMul;
2591   }
2592 
2593   // Determine the number of scalars we need to generate for each unroll
2594   // iteration. If EntryVal is uniform, we only need to generate the first
2595   // lane. Otherwise, we generate all VF values.
2596   bool IsUniform =
2597       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2598   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2599   // Compute the scalar steps and save the results in State.
2600   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2601                                      ScalarIVTy->getScalarSizeInBits());
2602   Type *VecIVTy = nullptr;
2603   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2604   if (!IsUniform && VF.isScalable()) {
2605     VecIVTy = VectorType::get(ScalarIVTy, VF);
2606     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2607     SplatStep = Builder.CreateVectorSplat(VF, Step);
2608     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2609   }
2610 
2611   for (unsigned Part = 0; Part < UF; ++Part) {
2612     Value *StartIdx0 =
2613         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2614 
2615     if (!IsUniform && VF.isScalable()) {
2616       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2617       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2618       if (ScalarIVTy->isFloatingPointTy())
2619         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2620       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2621       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2622       State.set(Def, Add, Part);
2623       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2624                                             Part);
2625       // It's useful to record the lane values too for the known minimum number
2626       // of elements so we do those below. This improves the code quality when
2627       // trying to extract the first element, for example.
2628     }
2629 
2630     if (ScalarIVTy->isFloatingPointTy())
2631       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2632 
2633     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2634       Value *StartIdx = Builder.CreateBinOp(
2635           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2636       // The step returned by `createStepForVF` is a runtime-evaluated value
2637       // when VF is scalable. Otherwise, it should be folded into a Constant.
2638       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2639              "Expected StartIdx to be folded to a constant when VF is not "
2640              "scalable");
2641       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2642       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2643       State.set(Def, Add, VPIteration(Part, Lane));
2644       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2645                                             Part, Lane);
2646     }
2647   }
2648 }
2649 
2650 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2651                                                     const VPIteration &Instance,
2652                                                     VPTransformState &State) {
2653   Value *ScalarInst = State.get(Def, Instance);
2654   Value *VectorValue = State.get(Def, Instance.Part);
2655   VectorValue = Builder.CreateInsertElement(
2656       VectorValue, ScalarInst,
2657       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2658   State.set(Def, VectorValue, Instance.Part);
2659 }
2660 
2661 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2662   assert(Vec->getType()->isVectorTy() && "Invalid type");
2663   return Builder.CreateVectorReverse(Vec, "reverse");
2664 }
2665 
2666 // Return whether we allow using masked interleave-groups (for dealing with
2667 // strided loads/stores that reside in predicated blocks, or for dealing
2668 // with gaps).
2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2670   // If an override option has been passed in for interleaved accesses, use it.
2671   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2672     return EnableMaskedInterleavedMemAccesses;
2673 
2674   return TTI.enableMaskedInterleavedAccessVectorization();
2675 }
2676 
2677 // Try to vectorize the interleave group that \p Instr belongs to.
2678 //
2679 // E.g. Translate following interleaved load group (factor = 3):
2680 //   for (i = 0; i < N; i+=3) {
2681 //     R = Pic[i];             // Member of index 0
2682 //     G = Pic[i+1];           // Member of index 1
2683 //     B = Pic[i+2];           // Member of index 2
2684 //     ... // do something to R, G, B
2685 //   }
2686 // To:
2687 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2688 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2689 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2690 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2691 //
2692 // Or translate following interleaved store group (factor = 3):
2693 //   for (i = 0; i < N; i+=3) {
2694 //     ... do something to R, G, B
2695 //     Pic[i]   = R;           // Member of index 0
2696 //     Pic[i+1] = G;           // Member of index 1
2697 //     Pic[i+2] = B;           // Member of index 2
2698 //   }
2699 // To:
2700 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2701 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2702 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2703 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2704 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2705 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2706     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2707     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2708     VPValue *BlockInMask) {
2709   Instruction *Instr = Group->getInsertPos();
2710   const DataLayout &DL = Instr->getModule()->getDataLayout();
2711 
2712   // Prepare for the vector type of the interleaved load/store.
2713   Type *ScalarTy = getLoadStoreType(Instr);
2714   unsigned InterleaveFactor = Group->getFactor();
2715   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2716   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2717 
2718   // Prepare for the new pointers.
2719   SmallVector<Value *, 2> AddrParts;
2720   unsigned Index = Group->getIndex(Instr);
2721 
2722   // TODO: extend the masked interleaved-group support to reversed access.
2723   assert((!BlockInMask || !Group->isReverse()) &&
2724          "Reversed masked interleave-group not supported.");
2725 
2726   // If the group is reverse, adjust the index to refer to the last vector lane
2727   // instead of the first. We adjust the index from the first vector lane,
2728   // rather than directly getting the pointer for lane VF - 1, because the
2729   // pointer operand of the interleaved access is supposed to be uniform. For
2730   // uniform instructions, we're only required to generate a value for the
2731   // first vector lane in each unroll iteration.
2732   if (Group->isReverse())
2733     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2734 
2735   for (unsigned Part = 0; Part < UF; Part++) {
2736     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2737     setDebugLocFromInst(AddrPart);
2738 
2739     // Notice current instruction could be any index. Need to adjust the address
2740     // to the member of index 0.
2741     //
2742     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2743     //       b = A[i];       // Member of index 0
2744     // Current pointer is pointed to A[i+1], adjust it to A[i].
2745     //
2746     // E.g.  A[i+1] = a;     // Member of index 1
2747     //       A[i]   = b;     // Member of index 0
2748     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2749     // Current pointer is pointed to A[i+2], adjust it to A[i].
2750 
2751     bool InBounds = false;
2752     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2753       InBounds = gep->isInBounds();
2754     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2755     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2756 
2757     // Cast to the vector pointer type.
2758     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2759     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2760     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2761   }
2762 
2763   setDebugLocFromInst(Instr);
2764   Value *PoisonVec = PoisonValue::get(VecTy);
2765 
2766   Value *MaskForGaps = nullptr;
2767   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2768     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2769     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2770   }
2771 
2772   // Vectorize the interleaved load group.
2773   if (isa<LoadInst>(Instr)) {
2774     // For each unroll part, create a wide load for the group.
2775     SmallVector<Value *, 2> NewLoads;
2776     for (unsigned Part = 0; Part < UF; Part++) {
2777       Instruction *NewLoad;
2778       if (BlockInMask || MaskForGaps) {
2779         assert(useMaskedInterleavedAccesses(*TTI) &&
2780                "masked interleaved groups are not allowed.");
2781         Value *GroupMask = MaskForGaps;
2782         if (BlockInMask) {
2783           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2784           Value *ShuffledMask = Builder.CreateShuffleVector(
2785               BlockInMaskPart,
2786               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2787               "interleaved.mask");
2788           GroupMask = MaskForGaps
2789                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2790                                                 MaskForGaps)
2791                           : ShuffledMask;
2792         }
2793         NewLoad =
2794             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2795                                      GroupMask, PoisonVec, "wide.masked.vec");
2796       }
2797       else
2798         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2799                                             Group->getAlign(), "wide.vec");
2800       Group->addMetadata(NewLoad);
2801       NewLoads.push_back(NewLoad);
2802     }
2803 
2804     // For each member in the group, shuffle out the appropriate data from the
2805     // wide loads.
2806     unsigned J = 0;
2807     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2808       Instruction *Member = Group->getMember(I);
2809 
2810       // Skip the gaps in the group.
2811       if (!Member)
2812         continue;
2813 
2814       auto StrideMask =
2815           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2816       for (unsigned Part = 0; Part < UF; Part++) {
2817         Value *StridedVec = Builder.CreateShuffleVector(
2818             NewLoads[Part], StrideMask, "strided.vec");
2819 
2820         // If this member has different type, cast the result type.
2821         if (Member->getType() != ScalarTy) {
2822           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2823           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2824           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2825         }
2826 
2827         if (Group->isReverse())
2828           StridedVec = reverseVector(StridedVec);
2829 
2830         State.set(VPDefs[J], StridedVec, Part);
2831       }
2832       ++J;
2833     }
2834     return;
2835   }
2836 
2837   // The sub vector type for current instruction.
2838   auto *SubVT = VectorType::get(ScalarTy, VF);
2839 
2840   // Vectorize the interleaved store group.
2841   for (unsigned Part = 0; Part < UF; Part++) {
2842     // Collect the stored vector from each member.
2843     SmallVector<Value *, 4> StoredVecs;
2844     for (unsigned i = 0; i < InterleaveFactor; i++) {
2845       // Interleaved store group doesn't allow a gap, so each index has a member
2846       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2847 
2848       Value *StoredVec = State.get(StoredValues[i], Part);
2849 
2850       if (Group->isReverse())
2851         StoredVec = reverseVector(StoredVec);
2852 
2853       // If this member has different type, cast it to a unified type.
2854 
2855       if (StoredVec->getType() != SubVT)
2856         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2857 
2858       StoredVecs.push_back(StoredVec);
2859     }
2860 
2861     // Concatenate all vectors into a wide vector.
2862     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2863 
2864     // Interleave the elements in the wide vector.
2865     Value *IVec = Builder.CreateShuffleVector(
2866         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2867         "interleaved.vec");
2868 
2869     Instruction *NewStoreInstr;
2870     if (BlockInMask) {
2871       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2872       Value *ShuffledMask = Builder.CreateShuffleVector(
2873           BlockInMaskPart,
2874           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2875           "interleaved.mask");
2876       NewStoreInstr = Builder.CreateMaskedStore(
2877           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2878     }
2879     else
2880       NewStoreInstr =
2881           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2882 
2883     Group->addMetadata(NewStoreInstr);
2884   }
2885 }
2886 
2887 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2888     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2889     VPValue *StoredValue, VPValue *BlockInMask) {
2890   // Attempt to issue a wide load.
2891   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2892   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2893 
2894   assert((LI || SI) && "Invalid Load/Store instruction");
2895   assert((!SI || StoredValue) && "No stored value provided for widened store");
2896   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2897 
2898   LoopVectorizationCostModel::InstWidening Decision =
2899       Cost->getWideningDecision(Instr, VF);
2900   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2901           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2902           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2903          "CM decision is not to widen the memory instruction");
2904 
2905   Type *ScalarDataTy = getLoadStoreType(Instr);
2906 
2907   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2908   const Align Alignment = getLoadStoreAlignment(Instr);
2909 
2910   // Determine if the pointer operand of the access is either consecutive or
2911   // reverse consecutive.
2912   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2913   bool ConsecutiveStride =
2914       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2915   bool CreateGatherScatter =
2916       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2917 
2918   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2919   // gather/scatter. Otherwise Decision should have been to Scalarize.
2920   assert((ConsecutiveStride || CreateGatherScatter) &&
2921          "The instruction should be scalarized");
2922   (void)ConsecutiveStride;
2923 
2924   VectorParts BlockInMaskParts(UF);
2925   bool isMaskRequired = BlockInMask;
2926   if (isMaskRequired)
2927     for (unsigned Part = 0; Part < UF; ++Part)
2928       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2929 
2930   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2931     // Calculate the pointer for the specific unroll-part.
2932     GetElementPtrInst *PartPtr = nullptr;
2933 
2934     bool InBounds = false;
2935     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2936       InBounds = gep->isInBounds();
2937     if (Reverse) {
2938       // If the address is consecutive but reversed, then the
2939       // wide store needs to start at the last vector element.
2940       // RunTimeVF =  VScale * VF.getKnownMinValue()
2941       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2942       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2943       // NumElt = -Part * RunTimeVF
2944       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2945       // LastLane = 1 - RunTimeVF
2946       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2947       PartPtr =
2948           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2949       PartPtr->setIsInBounds(InBounds);
2950       PartPtr = cast<GetElementPtrInst>(
2951           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2952       PartPtr->setIsInBounds(InBounds);
2953       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2954         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2955     } else {
2956       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2957       PartPtr = cast<GetElementPtrInst>(
2958           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2959       PartPtr->setIsInBounds(InBounds);
2960     }
2961 
2962     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2963     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2964   };
2965 
2966   // Handle Stores:
2967   if (SI) {
2968     setDebugLocFromInst(SI);
2969 
2970     for (unsigned Part = 0; Part < UF; ++Part) {
2971       Instruction *NewSI = nullptr;
2972       Value *StoredVal = State.get(StoredValue, Part);
2973       if (CreateGatherScatter) {
2974         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2975         Value *VectorGep = State.get(Addr, Part);
2976         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2977                                             MaskPart);
2978       } else {
2979         if (Reverse) {
2980           // If we store to reverse consecutive memory locations, then we need
2981           // to reverse the order of elements in the stored value.
2982           StoredVal = reverseVector(StoredVal);
2983           // We don't want to update the value in the map as it might be used in
2984           // another expression. So don't call resetVectorValue(StoredVal).
2985         }
2986         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2987         if (isMaskRequired)
2988           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2989                                             BlockInMaskParts[Part]);
2990         else
2991           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2992       }
2993       addMetadata(NewSI, SI);
2994     }
2995     return;
2996   }
2997 
2998   // Handle loads.
2999   assert(LI && "Must have a load instruction");
3000   setDebugLocFromInst(LI);
3001   for (unsigned Part = 0; Part < UF; ++Part) {
3002     Value *NewLI;
3003     if (CreateGatherScatter) {
3004       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3005       Value *VectorGep = State.get(Addr, Part);
3006       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3007                                          nullptr, "wide.masked.gather");
3008       addMetadata(NewLI, LI);
3009     } else {
3010       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3011       if (isMaskRequired)
3012         NewLI = Builder.CreateMaskedLoad(
3013             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3014             PoisonValue::get(DataTy), "wide.masked.load");
3015       else
3016         NewLI =
3017             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3018 
3019       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3020       addMetadata(NewLI, LI);
3021       if (Reverse)
3022         NewLI = reverseVector(NewLI);
3023     }
3024 
3025     State.set(Def, NewLI, Part);
3026   }
3027 }
3028 
3029 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3030                                                VPUser &User,
3031                                                const VPIteration &Instance,
3032                                                bool IfPredicateInstr,
3033                                                VPTransformState &State) {
3034   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3035 
3036   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3037   // the first lane and part.
3038   if (isa<NoAliasScopeDeclInst>(Instr))
3039     if (!Instance.isFirstIteration())
3040       return;
3041 
3042   setDebugLocFromInst(Instr);
3043 
3044   // Does this instruction return a value ?
3045   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3046 
3047   Instruction *Cloned = Instr->clone();
3048   if (!IsVoidRetTy)
3049     Cloned->setName(Instr->getName() + ".cloned");
3050 
3051   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3052                                Builder.GetInsertPoint());
3053   // Replace the operands of the cloned instructions with their scalar
3054   // equivalents in the new loop.
3055   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3056     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3057     auto InputInstance = Instance;
3058     if (!Operand || !OrigLoop->contains(Operand) ||
3059         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3060       InputInstance.Lane = VPLane::getFirstLane();
3061     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3062     Cloned->setOperand(op, NewOp);
3063   }
3064   addNewMetadata(Cloned, Instr);
3065 
3066   // Place the cloned scalar in the new loop.
3067   Builder.Insert(Cloned);
3068 
3069   State.set(Def, Cloned, Instance);
3070 
3071   // If we just cloned a new assumption, add it the assumption cache.
3072   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3073     AC->registerAssumption(II);
3074 
3075   // End if-block.
3076   if (IfPredicateInstr)
3077     PredicatedInstructions.push_back(Cloned);
3078 }
3079 
3080 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3081                                                       Value *End, Value *Step,
3082                                                       Instruction *DL) {
3083   BasicBlock *Header = L->getHeader();
3084   BasicBlock *Latch = L->getLoopLatch();
3085   // As we're just creating this loop, it's possible no latch exists
3086   // yet. If so, use the header as this will be a single block loop.
3087   if (!Latch)
3088     Latch = Header;
3089 
3090   IRBuilder<> B(&*Header->getFirstInsertionPt());
3091   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3092   setDebugLocFromInst(OldInst, &B);
3093   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3094 
3095   B.SetInsertPoint(Latch->getTerminator());
3096   setDebugLocFromInst(OldInst, &B);
3097 
3098   // Create i+1 and fill the PHINode.
3099   //
3100   // If the tail is not folded, we know that End - Start >= Step (either
3101   // statically or through the minimum iteration checks). We also know that both
3102   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3103   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3104   // overflows and we can mark the induction increment as NUW.
3105   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3106                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3107   Induction->addIncoming(Start, L->getLoopPreheader());
3108   Induction->addIncoming(Next, Latch);
3109   // Create the compare.
3110   Value *ICmp = B.CreateICmpEQ(Next, End);
3111   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3112 
3113   // Now we have two terminators. Remove the old one from the block.
3114   Latch->getTerminator()->eraseFromParent();
3115 
3116   return Induction;
3117 }
3118 
3119 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3120   if (TripCount)
3121     return TripCount;
3122 
3123   assert(L && "Create Trip Count for null loop.");
3124   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3125   // Find the loop boundaries.
3126   ScalarEvolution *SE = PSE.getSE();
3127   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3128   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3129          "Invalid loop count");
3130 
3131   Type *IdxTy = Legal->getWidestInductionType();
3132   assert(IdxTy && "No type for induction");
3133 
3134   // The exit count might have the type of i64 while the phi is i32. This can
3135   // happen if we have an induction variable that is sign extended before the
3136   // compare. The only way that we get a backedge taken count is that the
3137   // induction variable was signed and as such will not overflow. In such a case
3138   // truncation is legal.
3139   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3140       IdxTy->getPrimitiveSizeInBits())
3141     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3142   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3143 
3144   // Get the total trip count from the count by adding 1.
3145   const SCEV *ExitCount = SE->getAddExpr(
3146       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3147 
3148   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3149 
3150   // Expand the trip count and place the new instructions in the preheader.
3151   // Notice that the pre-header does not change, only the loop body.
3152   SCEVExpander Exp(*SE, DL, "induction");
3153 
3154   // Count holds the overall loop count (N).
3155   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3156                                 L->getLoopPreheader()->getTerminator());
3157 
3158   if (TripCount->getType()->isPointerTy())
3159     TripCount =
3160         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3161                                     L->getLoopPreheader()->getTerminator());
3162 
3163   return TripCount;
3164 }
3165 
3166 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3167   if (VectorTripCount)
3168     return VectorTripCount;
3169 
3170   Value *TC = getOrCreateTripCount(L);
3171   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3172 
3173   Type *Ty = TC->getType();
3174   // This is where we can make the step a runtime constant.
3175   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3176 
3177   // If the tail is to be folded by masking, round the number of iterations N
3178   // up to a multiple of Step instead of rounding down. This is done by first
3179   // adding Step-1 and then rounding down. Note that it's ok if this addition
3180   // overflows: the vector induction variable will eventually wrap to zero given
3181   // that it starts at zero and its Step is a power of two; the loop will then
3182   // exit, with the last early-exit vector comparison also producing all-true.
3183   if (Cost->foldTailByMasking()) {
3184     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3185            "VF*UF must be a power of 2 when folding tail by masking");
3186     assert(!VF.isScalable() &&
3187            "Tail folding not yet supported for scalable vectors");
3188     TC = Builder.CreateAdd(
3189         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3190   }
3191 
3192   // Now we need to generate the expression for the part of the loop that the
3193   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3194   // iterations are not required for correctness, or N - Step, otherwise. Step
3195   // is equal to the vectorization factor (number of SIMD elements) times the
3196   // unroll factor (number of SIMD instructions).
3197   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3198 
3199   // There are cases where we *must* run at least one iteration in the remainder
3200   // loop.  See the cost model for when this can happen.  If the step evenly
3201   // divides the trip count, we set the remainder to be equal to the step. If
3202   // the step does not evenly divide the trip count, no adjustment is necessary
3203   // since there will already be scalar iterations. Note that the minimum
3204   // iterations check ensures that N >= Step.
3205   if (Cost->requiresScalarEpilogue(VF)) {
3206     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3207     R = Builder.CreateSelect(IsZero, Step, R);
3208   }
3209 
3210   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3211 
3212   return VectorTripCount;
3213 }
3214 
3215 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3216                                                    const DataLayout &DL) {
3217   // Verify that V is a vector type with same number of elements as DstVTy.
3218   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3219   unsigned VF = DstFVTy->getNumElements();
3220   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3221   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3222   Type *SrcElemTy = SrcVecTy->getElementType();
3223   Type *DstElemTy = DstFVTy->getElementType();
3224   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3225          "Vector elements must have same size");
3226 
3227   // Do a direct cast if element types are castable.
3228   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3229     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3230   }
3231   // V cannot be directly casted to desired vector type.
3232   // May happen when V is a floating point vector but DstVTy is a vector of
3233   // pointers or vice-versa. Handle this using a two-step bitcast using an
3234   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3235   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3236          "Only one type should be a pointer type");
3237   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3238          "Only one type should be a floating point type");
3239   Type *IntTy =
3240       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3241   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3242   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3243   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3244 }
3245 
3246 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3247                                                          BasicBlock *Bypass) {
3248   Value *Count = getOrCreateTripCount(L);
3249   // Reuse existing vector loop preheader for TC checks.
3250   // Note that new preheader block is generated for vector loop.
3251   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3252   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3253 
3254   // Generate code to check if the loop's trip count is less than VF * UF, or
3255   // equal to it in case a scalar epilogue is required; this implies that the
3256   // vector trip count is zero. This check also covers the case where adding one
3257   // to the backedge-taken count overflowed leading to an incorrect trip count
3258   // of zero. In this case we will also jump to the scalar loop.
3259   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3260                                             : ICmpInst::ICMP_ULT;
3261 
3262   // If tail is to be folded, vector loop takes care of all iterations.
3263   Value *CheckMinIters = Builder.getFalse();
3264   if (!Cost->foldTailByMasking()) {
3265     Value *Step =
3266         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3267     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3268   }
3269   // Create new preheader for vector loop.
3270   LoopVectorPreHeader =
3271       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3272                  "vector.ph");
3273 
3274   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3275                                DT->getNode(Bypass)->getIDom()) &&
3276          "TC check is expected to dominate Bypass");
3277 
3278   // Update dominator for Bypass & LoopExit (if needed).
3279   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3280   if (!Cost->requiresScalarEpilogue(VF))
3281     // If there is an epilogue which must run, there's no edge from the
3282     // middle block to exit blocks  and thus no need to update the immediate
3283     // dominator of the exit blocks.
3284     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3285 
3286   ReplaceInstWithInst(
3287       TCCheckBlock->getTerminator(),
3288       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3289   LoopBypassBlocks.push_back(TCCheckBlock);
3290 }
3291 
3292 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3293 
3294   BasicBlock *const SCEVCheckBlock =
3295       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3296   if (!SCEVCheckBlock)
3297     return nullptr;
3298 
3299   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3300            (OptForSizeBasedOnProfile &&
3301             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3302          "Cannot SCEV check stride or overflow when optimizing for size");
3303 
3304 
3305   // Update dominator only if this is first RT check.
3306   if (LoopBypassBlocks.empty()) {
3307     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3308     if (!Cost->requiresScalarEpilogue(VF))
3309       // If there is an epilogue which must run, there's no edge from the
3310       // middle block to exit blocks  and thus no need to update the immediate
3311       // dominator of the exit blocks.
3312       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3313   }
3314 
3315   LoopBypassBlocks.push_back(SCEVCheckBlock);
3316   AddedSafetyChecks = true;
3317   return SCEVCheckBlock;
3318 }
3319 
3320 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3321                                                       BasicBlock *Bypass) {
3322   // VPlan-native path does not do any analysis for runtime checks currently.
3323   if (EnableVPlanNativePath)
3324     return nullptr;
3325 
3326   BasicBlock *const MemCheckBlock =
3327       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3328 
3329   // Check if we generated code that checks in runtime if arrays overlap. We put
3330   // the checks into a separate block to make the more common case of few
3331   // elements faster.
3332   if (!MemCheckBlock)
3333     return nullptr;
3334 
3335   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3336     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3337            "Cannot emit memory checks when optimizing for size, unless forced "
3338            "to vectorize.");
3339     ORE->emit([&]() {
3340       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3341                                         L->getStartLoc(), L->getHeader())
3342              << "Code-size may be reduced by not forcing "
3343                 "vectorization, or by source-code modifications "
3344                 "eliminating the need for runtime checks "
3345                 "(e.g., adding 'restrict').";
3346     });
3347   }
3348 
3349   LoopBypassBlocks.push_back(MemCheckBlock);
3350 
3351   AddedSafetyChecks = true;
3352 
3353   // We currently don't use LoopVersioning for the actual loop cloning but we
3354   // still use it to add the noalias metadata.
3355   LVer = std::make_unique<LoopVersioning>(
3356       *Legal->getLAI(),
3357       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3358       DT, PSE.getSE());
3359   LVer->prepareNoAliasMetadata();
3360   return MemCheckBlock;
3361 }
3362 
3363 Value *InnerLoopVectorizer::emitTransformedIndex(
3364     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3365     const InductionDescriptor &ID) const {
3366 
3367   SCEVExpander Exp(*SE, DL, "induction");
3368   auto Step = ID.getStep();
3369   auto StartValue = ID.getStartValue();
3370   assert(Index->getType()->getScalarType() == Step->getType() &&
3371          "Index scalar type does not match StepValue type");
3372 
3373   // Note: the IR at this point is broken. We cannot use SE to create any new
3374   // SCEV and then expand it, hoping that SCEV's simplification will give us
3375   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3376   // lead to various SCEV crashes. So all we can do is to use builder and rely
3377   // on InstCombine for future simplifications. Here we handle some trivial
3378   // cases only.
3379   auto CreateAdd = [&B](Value *X, Value *Y) {
3380     assert(X->getType() == Y->getType() && "Types don't match!");
3381     if (auto *CX = dyn_cast<ConstantInt>(X))
3382       if (CX->isZero())
3383         return Y;
3384     if (auto *CY = dyn_cast<ConstantInt>(Y))
3385       if (CY->isZero())
3386         return X;
3387     return B.CreateAdd(X, Y);
3388   };
3389 
3390   // We allow X to be a vector type, in which case Y will potentially be
3391   // splatted into a vector with the same element count.
3392   auto CreateMul = [&B](Value *X, Value *Y) {
3393     assert(X->getType()->getScalarType() == Y->getType() &&
3394            "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isOne())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isOne())
3400         return X;
3401     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3402     if (XVTy && !isa<VectorType>(Y->getType()))
3403       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3404     return B.CreateMul(X, Y);
3405   };
3406 
3407   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3408   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3409   // the DomTree is not kept up-to-date for additional blocks generated in the
3410   // vector loop. By using the header as insertion point, we guarantee that the
3411   // expanded instructions dominate all their uses.
3412   auto GetInsertPoint = [this, &B]() {
3413     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3414     if (InsertBB != LoopVectorBody &&
3415         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3416       return LoopVectorBody->getTerminator();
3417     return &*B.GetInsertPoint();
3418   };
3419 
3420   switch (ID.getKind()) {
3421   case InductionDescriptor::IK_IntInduction: {
3422     assert(!isa<VectorType>(Index->getType()) &&
3423            "Vector indices not supported for integer inductions yet");
3424     assert(Index->getType() == StartValue->getType() &&
3425            "Index type does not match StartValue type");
3426     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3427       return B.CreateSub(StartValue, Index);
3428     auto *Offset = CreateMul(
3429         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3430     return CreateAdd(StartValue, Offset);
3431   }
3432   case InductionDescriptor::IK_PtrInduction: {
3433     assert(isa<SCEVConstant>(Step) &&
3434            "Expected constant step for pointer induction");
3435     return B.CreateGEP(
3436         StartValue->getType()->getPointerElementType(), StartValue,
3437         CreateMul(Index,
3438                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3439                                     GetInsertPoint())));
3440   }
3441   case InductionDescriptor::IK_FpInduction: {
3442     assert(!isa<VectorType>(Index->getType()) &&
3443            "Vector indices not supported for FP inductions yet");
3444     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3445     auto InductionBinOp = ID.getInductionBinOp();
3446     assert(InductionBinOp &&
3447            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3448             InductionBinOp->getOpcode() == Instruction::FSub) &&
3449            "Original bin op should be defined for FP induction");
3450 
3451     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3452     Value *MulExp = B.CreateFMul(StepValue, Index);
3453     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3454                          "induction");
3455   }
3456   case InductionDescriptor::IK_NoInduction:
3457     return nullptr;
3458   }
3459   llvm_unreachable("invalid enum");
3460 }
3461 
3462 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3463   LoopScalarBody = OrigLoop->getHeader();
3464   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3465   assert(LoopVectorPreHeader && "Invalid loop structure");
3466   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3467   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3468          "multiple exit loop without required epilogue?");
3469 
3470   LoopMiddleBlock =
3471       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3472                  LI, nullptr, Twine(Prefix) + "middle.block");
3473   LoopScalarPreHeader =
3474       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3475                  nullptr, Twine(Prefix) + "scalar.ph");
3476 
3477   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3478 
3479   // Set up the middle block terminator.  Two cases:
3480   // 1) If we know that we must execute the scalar epilogue, emit an
3481   //    unconditional branch.
3482   // 2) Otherwise, we must have a single unique exit block (due to how we
3483   //    implement the multiple exit case).  In this case, set up a conditonal
3484   //    branch from the middle block to the loop scalar preheader, and the
3485   //    exit block.  completeLoopSkeleton will update the condition to use an
3486   //    iteration check, if required to decide whether to execute the remainder.
3487   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3488     BranchInst::Create(LoopScalarPreHeader) :
3489     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3490                        Builder.getTrue());
3491   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3492   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3493 
3494   // We intentionally don't let SplitBlock to update LoopInfo since
3495   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3496   // LoopVectorBody is explicitly added to the correct place few lines later.
3497   LoopVectorBody =
3498       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3499                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3500 
3501   // Update dominator for loop exit.
3502   if (!Cost->requiresScalarEpilogue(VF))
3503     // If there is an epilogue which must run, there's no edge from the
3504     // middle block to exit blocks  and thus no need to update the immediate
3505     // dominator of the exit blocks.
3506     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3507 
3508   // Create and register the new vector loop.
3509   Loop *Lp = LI->AllocateLoop();
3510   Loop *ParentLoop = OrigLoop->getParentLoop();
3511 
3512   // Insert the new loop into the loop nest and register the new basic blocks
3513   // before calling any utilities such as SCEV that require valid LoopInfo.
3514   if (ParentLoop) {
3515     ParentLoop->addChildLoop(Lp);
3516   } else {
3517     LI->addTopLevelLoop(Lp);
3518   }
3519   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3520   return Lp;
3521 }
3522 
3523 void InnerLoopVectorizer::createInductionResumeValues(
3524     Loop *L, Value *VectorTripCount,
3525     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3526   assert(VectorTripCount && L && "Expected valid arguments");
3527   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3528           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3529          "Inconsistent information about additional bypass.");
3530   // We are going to resume the execution of the scalar loop.
3531   // Go over all of the induction variables that we found and fix the
3532   // PHIs that are left in the scalar version of the loop.
3533   // The starting values of PHI nodes depend on the counter of the last
3534   // iteration in the vectorized loop.
3535   // If we come from a bypass edge then we need to start from the original
3536   // start value.
3537   for (auto &InductionEntry : Legal->getInductionVars()) {
3538     PHINode *OrigPhi = InductionEntry.first;
3539     InductionDescriptor II = InductionEntry.second;
3540 
3541     // Create phi nodes to merge from the  backedge-taken check block.
3542     PHINode *BCResumeVal =
3543         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3544                         LoopScalarPreHeader->getTerminator());
3545     // Copy original phi DL over to the new one.
3546     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3547     Value *&EndValue = IVEndValues[OrigPhi];
3548     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3549     if (OrigPhi == OldInduction) {
3550       // We know what the end value is.
3551       EndValue = VectorTripCount;
3552     } else {
3553       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3554 
3555       // Fast-math-flags propagate from the original induction instruction.
3556       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3557         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3558 
3559       Type *StepType = II.getStep()->getType();
3560       Instruction::CastOps CastOp =
3561           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3562       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3563       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3564       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3565       EndValue->setName("ind.end");
3566 
3567       // Compute the end value for the additional bypass (if applicable).
3568       if (AdditionalBypass.first) {
3569         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3570         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3571                                          StepType, true);
3572         CRD =
3573             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3574         EndValueFromAdditionalBypass =
3575             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3576         EndValueFromAdditionalBypass->setName("ind.end");
3577       }
3578     }
3579     // The new PHI merges the original incoming value, in case of a bypass,
3580     // or the value at the end of the vectorized loop.
3581     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3582 
3583     // Fix the scalar body counter (PHI node).
3584     // The old induction's phi node in the scalar body needs the truncated
3585     // value.
3586     for (BasicBlock *BB : LoopBypassBlocks)
3587       BCResumeVal->addIncoming(II.getStartValue(), BB);
3588 
3589     if (AdditionalBypass.first)
3590       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3591                                             EndValueFromAdditionalBypass);
3592 
3593     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3594   }
3595 }
3596 
3597 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3598                                                       MDNode *OrigLoopID) {
3599   assert(L && "Expected valid loop.");
3600 
3601   // The trip counts should be cached by now.
3602   Value *Count = getOrCreateTripCount(L);
3603   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3604 
3605   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3606 
3607   // Add a check in the middle block to see if we have completed
3608   // all of the iterations in the first vector loop.  Three cases:
3609   // 1) If we require a scalar epilogue, there is no conditional branch as
3610   //    we unconditionally branch to the scalar preheader.  Do nothing.
3611   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3612   //    Thus if tail is to be folded, we know we don't need to run the
3613   //    remainder and we can use the previous value for the condition (true).
3614   // 3) Otherwise, construct a runtime check.
3615   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3616     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3617                                         Count, VectorTripCount, "cmp.n",
3618                                         LoopMiddleBlock->getTerminator());
3619 
3620     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3621     // of the corresponding compare because they may have ended up with
3622     // different line numbers and we want to avoid awkward line stepping while
3623     // debugging. Eg. if the compare has got a line number inside the loop.
3624     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3625     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3626   }
3627 
3628   // Get ready to start creating new instructions into the vectorized body.
3629   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3630          "Inconsistent vector loop preheader");
3631   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3632 
3633   Optional<MDNode *> VectorizedLoopID =
3634       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3635                                       LLVMLoopVectorizeFollowupVectorized});
3636   if (VectorizedLoopID.hasValue()) {
3637     L->setLoopID(VectorizedLoopID.getValue());
3638 
3639     // Do not setAlreadyVectorized if loop attributes have been defined
3640     // explicitly.
3641     return LoopVectorPreHeader;
3642   }
3643 
3644   // Keep all loop hints from the original loop on the vector loop (we'll
3645   // replace the vectorizer-specific hints below).
3646   if (MDNode *LID = OrigLoop->getLoopID())
3647     L->setLoopID(LID);
3648 
3649   LoopVectorizeHints Hints(L, true, *ORE);
3650   Hints.setAlreadyVectorized();
3651 
3652 #ifdef EXPENSIVE_CHECKS
3653   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3654   LI->verify(*DT);
3655 #endif
3656 
3657   return LoopVectorPreHeader;
3658 }
3659 
3660 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3661   /*
3662    In this function we generate a new loop. The new loop will contain
3663    the vectorized instructions while the old loop will continue to run the
3664    scalar remainder.
3665 
3666        [ ] <-- loop iteration number check.
3667     /   |
3668    /    v
3669   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3670   |  /  |
3671   | /   v
3672   ||   [ ]     <-- vector pre header.
3673   |/    |
3674   |     v
3675   |    [  ] \
3676   |    [  ]_|   <-- vector loop.
3677   |     |
3678   |     v
3679   \   -[ ]   <--- middle-block.
3680    \/   |
3681    /\   v
3682    | ->[ ]     <--- new preheader.
3683    |    |
3684  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3685    |   [ ] \
3686    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3687     \   |
3688      \  v
3689       >[ ]     <-- exit block(s).
3690    ...
3691    */
3692 
3693   // Get the metadata of the original loop before it gets modified.
3694   MDNode *OrigLoopID = OrigLoop->getLoopID();
3695 
3696   // Workaround!  Compute the trip count of the original loop and cache it
3697   // before we start modifying the CFG.  This code has a systemic problem
3698   // wherein it tries to run analysis over partially constructed IR; this is
3699   // wrong, and not simply for SCEV.  The trip count of the original loop
3700   // simply happens to be prone to hitting this in practice.  In theory, we
3701   // can hit the same issue for any SCEV, or ValueTracking query done during
3702   // mutation.  See PR49900.
3703   getOrCreateTripCount(OrigLoop);
3704 
3705   // Create an empty vector loop, and prepare basic blocks for the runtime
3706   // checks.
3707   Loop *Lp = createVectorLoopSkeleton("");
3708 
3709   // Now, compare the new count to zero. If it is zero skip the vector loop and
3710   // jump to the scalar loop. This check also covers the case where the
3711   // backedge-taken count is uint##_max: adding one to it will overflow leading
3712   // to an incorrect trip count of zero. In this (rare) case we will also jump
3713   // to the scalar loop.
3714   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3715 
3716   // Generate the code to check any assumptions that we've made for SCEV
3717   // expressions.
3718   emitSCEVChecks(Lp, LoopScalarPreHeader);
3719 
3720   // Generate the code that checks in runtime if arrays overlap. We put the
3721   // checks into a separate block to make the more common case of few elements
3722   // faster.
3723   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3724 
3725   // Some loops have a single integer induction variable, while other loops
3726   // don't. One example is c++ iterators that often have multiple pointer
3727   // induction variables. In the code below we also support a case where we
3728   // don't have a single induction variable.
3729   //
3730   // We try to obtain an induction variable from the original loop as hard
3731   // as possible. However if we don't find one that:
3732   //   - is an integer
3733   //   - counts from zero, stepping by one
3734   //   - is the size of the widest induction variable type
3735   // then we create a new one.
3736   OldInduction = Legal->getPrimaryInduction();
3737   Type *IdxTy = Legal->getWidestInductionType();
3738   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3739   // The loop step is equal to the vectorization factor (num of SIMD elements)
3740   // times the unroll factor (num of SIMD instructions).
3741   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3742   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3743   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3744   Induction =
3745       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3746                               getDebugLocFromInstOrOperands(OldInduction));
3747 
3748   // Emit phis for the new starting index of the scalar loop.
3749   createInductionResumeValues(Lp, CountRoundDown);
3750 
3751   return completeLoopSkeleton(Lp, OrigLoopID);
3752 }
3753 
3754 // Fix up external users of the induction variable. At this point, we are
3755 // in LCSSA form, with all external PHIs that use the IV having one input value,
3756 // coming from the remainder loop. We need those PHIs to also have a correct
3757 // value for the IV when arriving directly from the middle block.
3758 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3759                                        const InductionDescriptor &II,
3760                                        Value *CountRoundDown, Value *EndValue,
3761                                        BasicBlock *MiddleBlock) {
3762   // There are two kinds of external IV usages - those that use the value
3763   // computed in the last iteration (the PHI) and those that use the penultimate
3764   // value (the value that feeds into the phi from the loop latch).
3765   // We allow both, but they, obviously, have different values.
3766 
3767   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3768 
3769   DenseMap<Value *, Value *> MissingVals;
3770 
3771   // An external user of the last iteration's value should see the value that
3772   // the remainder loop uses to initialize its own IV.
3773   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3774   for (User *U : PostInc->users()) {
3775     Instruction *UI = cast<Instruction>(U);
3776     if (!OrigLoop->contains(UI)) {
3777       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3778       MissingVals[UI] = EndValue;
3779     }
3780   }
3781 
3782   // An external user of the penultimate value need to see EndValue - Step.
3783   // The simplest way to get this is to recompute it from the constituent SCEVs,
3784   // that is Start + (Step * (CRD - 1)).
3785   for (User *U : OrigPhi->users()) {
3786     auto *UI = cast<Instruction>(U);
3787     if (!OrigLoop->contains(UI)) {
3788       const DataLayout &DL =
3789           OrigLoop->getHeader()->getModule()->getDataLayout();
3790       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3791 
3792       IRBuilder<> B(MiddleBlock->getTerminator());
3793 
3794       // Fast-math-flags propagate from the original induction instruction.
3795       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3796         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3797 
3798       Value *CountMinusOne = B.CreateSub(
3799           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3800       Value *CMO =
3801           !II.getStep()->getType()->isIntegerTy()
3802               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3803                              II.getStep()->getType())
3804               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3805       CMO->setName("cast.cmo");
3806       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3807       Escape->setName("ind.escape");
3808       MissingVals[UI] = Escape;
3809     }
3810   }
3811 
3812   for (auto &I : MissingVals) {
3813     PHINode *PHI = cast<PHINode>(I.first);
3814     // One corner case we have to handle is two IVs "chasing" each-other,
3815     // that is %IV2 = phi [...], [ %IV1, %latch ]
3816     // In this case, if IV1 has an external use, we need to avoid adding both
3817     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3818     // don't already have an incoming value for the middle block.
3819     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3820       PHI->addIncoming(I.second, MiddleBlock);
3821   }
3822 }
3823 
3824 namespace {
3825 
3826 struct CSEDenseMapInfo {
3827   static bool canHandle(const Instruction *I) {
3828     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3829            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3830   }
3831 
3832   static inline Instruction *getEmptyKey() {
3833     return DenseMapInfo<Instruction *>::getEmptyKey();
3834   }
3835 
3836   static inline Instruction *getTombstoneKey() {
3837     return DenseMapInfo<Instruction *>::getTombstoneKey();
3838   }
3839 
3840   static unsigned getHashValue(const Instruction *I) {
3841     assert(canHandle(I) && "Unknown instruction!");
3842     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3843                                                            I->value_op_end()));
3844   }
3845 
3846   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3847     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3848         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3849       return LHS == RHS;
3850     return LHS->isIdenticalTo(RHS);
3851   }
3852 };
3853 
3854 } // end anonymous namespace
3855 
3856 ///Perform cse of induction variable instructions.
3857 static void cse(BasicBlock *BB) {
3858   // Perform simple cse.
3859   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3860   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3861     Instruction *In = &*I++;
3862 
3863     if (!CSEDenseMapInfo::canHandle(In))
3864       continue;
3865 
3866     // Check if we can replace this instruction with any of the
3867     // visited instructions.
3868     if (Instruction *V = CSEMap.lookup(In)) {
3869       In->replaceAllUsesWith(V);
3870       In->eraseFromParent();
3871       continue;
3872     }
3873 
3874     CSEMap[In] = In;
3875   }
3876 }
3877 
3878 InstructionCost
3879 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3880                                               bool &NeedToScalarize) const {
3881   Function *F = CI->getCalledFunction();
3882   Type *ScalarRetTy = CI->getType();
3883   SmallVector<Type *, 4> Tys, ScalarTys;
3884   for (auto &ArgOp : CI->arg_operands())
3885     ScalarTys.push_back(ArgOp->getType());
3886 
3887   // Estimate cost of scalarized vector call. The source operands are assumed
3888   // to be vectors, so we need to extract individual elements from there,
3889   // execute VF scalar calls, and then gather the result into the vector return
3890   // value.
3891   InstructionCost ScalarCallCost =
3892       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3893   if (VF.isScalar())
3894     return ScalarCallCost;
3895 
3896   // Compute corresponding vector type for return value and arguments.
3897   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3898   for (Type *ScalarTy : ScalarTys)
3899     Tys.push_back(ToVectorTy(ScalarTy, VF));
3900 
3901   // Compute costs of unpacking argument values for the scalar calls and
3902   // packing the return values to a vector.
3903   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3904 
3905   InstructionCost Cost =
3906       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3907 
3908   // If we can't emit a vector call for this function, then the currently found
3909   // cost is the cost we need to return.
3910   NeedToScalarize = true;
3911   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3912   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3913 
3914   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3915     return Cost;
3916 
3917   // If the corresponding vector cost is cheaper, return its cost.
3918   InstructionCost VectorCallCost =
3919       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3920   if (VectorCallCost < Cost) {
3921     NeedToScalarize = false;
3922     Cost = VectorCallCost;
3923   }
3924   return Cost;
3925 }
3926 
3927 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3928   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3929     return Elt;
3930   return VectorType::get(Elt, VF);
3931 }
3932 
3933 InstructionCost
3934 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3935                                                    ElementCount VF) const {
3936   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3937   assert(ID && "Expected intrinsic call!");
3938   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3939   FastMathFlags FMF;
3940   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3941     FMF = FPMO->getFastMathFlags();
3942 
3943   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3944   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3945   SmallVector<Type *> ParamTys;
3946   std::transform(FTy->param_begin(), FTy->param_end(),
3947                  std::back_inserter(ParamTys),
3948                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3949 
3950   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3951                                     dyn_cast<IntrinsicInst>(CI));
3952   return TTI.getIntrinsicInstrCost(CostAttrs,
3953                                    TargetTransformInfo::TCK_RecipThroughput);
3954 }
3955 
3956 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3957   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3958   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3959   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3960 }
3961 
3962 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3963   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3964   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3965   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3966 }
3967 
3968 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3969   // For every instruction `I` in MinBWs, truncate the operands, create a
3970   // truncated version of `I` and reextend its result. InstCombine runs
3971   // later and will remove any ext/trunc pairs.
3972   SmallPtrSet<Value *, 4> Erased;
3973   for (const auto &KV : Cost->getMinimalBitwidths()) {
3974     // If the value wasn't vectorized, we must maintain the original scalar
3975     // type. The absence of the value from State indicates that it
3976     // wasn't vectorized.
3977     VPValue *Def = State.Plan->getVPValue(KV.first);
3978     if (!State.hasAnyVectorValue(Def))
3979       continue;
3980     for (unsigned Part = 0; Part < UF; ++Part) {
3981       Value *I = State.get(Def, Part);
3982       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3983         continue;
3984       Type *OriginalTy = I->getType();
3985       Type *ScalarTruncatedTy =
3986           IntegerType::get(OriginalTy->getContext(), KV.second);
3987       auto *TruncatedTy = VectorType::get(
3988           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3989       if (TruncatedTy == OriginalTy)
3990         continue;
3991 
3992       IRBuilder<> B(cast<Instruction>(I));
3993       auto ShrinkOperand = [&](Value *V) -> Value * {
3994         if (auto *ZI = dyn_cast<ZExtInst>(V))
3995           if (ZI->getSrcTy() == TruncatedTy)
3996             return ZI->getOperand(0);
3997         return B.CreateZExtOrTrunc(V, TruncatedTy);
3998       };
3999 
4000       // The actual instruction modification depends on the instruction type,
4001       // unfortunately.
4002       Value *NewI = nullptr;
4003       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4004         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4005                              ShrinkOperand(BO->getOperand(1)));
4006 
4007         // Any wrapping introduced by shrinking this operation shouldn't be
4008         // considered undefined behavior. So, we can't unconditionally copy
4009         // arithmetic wrapping flags to NewI.
4010         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4011       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4012         NewI =
4013             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4014                          ShrinkOperand(CI->getOperand(1)));
4015       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4016         NewI = B.CreateSelect(SI->getCondition(),
4017                               ShrinkOperand(SI->getTrueValue()),
4018                               ShrinkOperand(SI->getFalseValue()));
4019       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4020         switch (CI->getOpcode()) {
4021         default:
4022           llvm_unreachable("Unhandled cast!");
4023         case Instruction::Trunc:
4024           NewI = ShrinkOperand(CI->getOperand(0));
4025           break;
4026         case Instruction::SExt:
4027           NewI = B.CreateSExtOrTrunc(
4028               CI->getOperand(0),
4029               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4030           break;
4031         case Instruction::ZExt:
4032           NewI = B.CreateZExtOrTrunc(
4033               CI->getOperand(0),
4034               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4035           break;
4036         }
4037       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4038         auto Elements0 =
4039             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4040         auto *O0 = B.CreateZExtOrTrunc(
4041             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4042         auto Elements1 =
4043             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4044         auto *O1 = B.CreateZExtOrTrunc(
4045             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4046 
4047         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4048       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4049         // Don't do anything with the operands, just extend the result.
4050         continue;
4051       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4052         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
4053                             ->getNumElements();
4054         auto *O0 = B.CreateZExtOrTrunc(
4055             IE->getOperand(0),
4056             FixedVectorType::get(ScalarTruncatedTy, Elements));
4057         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4058         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4059       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4060         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
4061                             ->getNumElements();
4062         auto *O0 = B.CreateZExtOrTrunc(
4063             EE->getOperand(0),
4064             FixedVectorType::get(ScalarTruncatedTy, Elements));
4065         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4066       } else {
4067         // If we don't know what to do, be conservative and don't do anything.
4068         continue;
4069       }
4070 
4071       // Lastly, extend the result.
4072       NewI->takeName(cast<Instruction>(I));
4073       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4074       I->replaceAllUsesWith(Res);
4075       cast<Instruction>(I)->eraseFromParent();
4076       Erased.insert(I);
4077       State.reset(Def, Res, Part);
4078     }
4079   }
4080 
4081   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4082   for (const auto &KV : Cost->getMinimalBitwidths()) {
4083     // If the value wasn't vectorized, we must maintain the original scalar
4084     // type. The absence of the value from State indicates that it
4085     // wasn't vectorized.
4086     VPValue *Def = State.Plan->getVPValue(KV.first);
4087     if (!State.hasAnyVectorValue(Def))
4088       continue;
4089     for (unsigned Part = 0; Part < UF; ++Part) {
4090       Value *I = State.get(Def, Part);
4091       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4092       if (Inst && Inst->use_empty()) {
4093         Value *NewI = Inst->getOperand(0);
4094         Inst->eraseFromParent();
4095         State.reset(Def, NewI, Part);
4096       }
4097     }
4098   }
4099 }
4100 
4101 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4102   // Insert truncates and extends for any truncated instructions as hints to
4103   // InstCombine.
4104   if (VF.isVector())
4105     truncateToMinimalBitwidths(State);
4106 
4107   // Fix widened non-induction PHIs by setting up the PHI operands.
4108   if (OrigPHIsToFix.size()) {
4109     assert(EnableVPlanNativePath &&
4110            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4111     fixNonInductionPHIs(State);
4112   }
4113 
4114   // At this point every instruction in the original loop is widened to a
4115   // vector form. Now we need to fix the recurrences in the loop. These PHI
4116   // nodes are currently empty because we did not want to introduce cycles.
4117   // This is the second stage of vectorizing recurrences.
4118   fixCrossIterationPHIs(State);
4119 
4120   // Forget the original basic block.
4121   PSE.getSE()->forgetLoop(OrigLoop);
4122 
4123   // If we inserted an edge from the middle block to the unique exit block,
4124   // update uses outside the loop (phis) to account for the newly inserted
4125   // edge.
4126   if (!Cost->requiresScalarEpilogue(VF)) {
4127     // Fix-up external users of the induction variables.
4128     for (auto &Entry : Legal->getInductionVars())
4129       fixupIVUsers(Entry.first, Entry.second,
4130                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4131                    IVEndValues[Entry.first], LoopMiddleBlock);
4132 
4133     fixLCSSAPHIs(State);
4134   }
4135 
4136   for (Instruction *PI : PredicatedInstructions)
4137     sinkScalarOperands(&*PI);
4138 
4139   // Remove redundant induction instructions.
4140   cse(LoopVectorBody);
4141 
4142   // Set/update profile weights for the vector and remainder loops as original
4143   // loop iterations are now distributed among them. Note that original loop
4144   // represented by LoopScalarBody becomes remainder loop after vectorization.
4145   //
4146   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4147   // end up getting slightly roughened result but that should be OK since
4148   // profile is not inherently precise anyway. Note also possible bypass of
4149   // vector code caused by legality checks is ignored, assigning all the weight
4150   // to the vector loop, optimistically.
4151   //
4152   // For scalable vectorization we can't know at compile time how many iterations
4153   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4154   // vscale of '1'.
4155   setProfileInfoAfterUnrolling(
4156       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4157       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4158 }
4159 
4160 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4161   // In order to support recurrences we need to be able to vectorize Phi nodes.
4162   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4163   // stage #2: We now need to fix the recurrences by adding incoming edges to
4164   // the currently empty PHI nodes. At this point every instruction in the
4165   // original loop is widened to a vector form so we can use them to construct
4166   // the incoming edges.
4167   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4168   for (VPRecipeBase &R : Header->phis()) {
4169     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4170       fixReduction(ReductionPhi, State);
4171     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4172       fixFirstOrderRecurrence(FOR, State);
4173   }
4174 }
4175 
4176 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4177                                                   VPTransformState &State) {
4178   // This is the second phase of vectorizing first-order recurrences. An
4179   // overview of the transformation is described below. Suppose we have the
4180   // following loop.
4181   //
4182   //   for (int i = 0; i < n; ++i)
4183   //     b[i] = a[i] - a[i - 1];
4184   //
4185   // There is a first-order recurrence on "a". For this loop, the shorthand
4186   // scalar IR looks like:
4187   //
4188   //   scalar.ph:
4189   //     s_init = a[-1]
4190   //     br scalar.body
4191   //
4192   //   scalar.body:
4193   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4194   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4195   //     s2 = a[i]
4196   //     b[i] = s2 - s1
4197   //     br cond, scalar.body, ...
4198   //
4199   // In this example, s1 is a recurrence because it's value depends on the
4200   // previous iteration. In the first phase of vectorization, we created a
4201   // vector phi v1 for s1. We now complete the vectorization and produce the
4202   // shorthand vector IR shown below (for VF = 4, UF = 1).
4203   //
4204   //   vector.ph:
4205   //     v_init = vector(..., ..., ..., a[-1])
4206   //     br vector.body
4207   //
4208   //   vector.body
4209   //     i = phi [0, vector.ph], [i+4, vector.body]
4210   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4211   //     v2 = a[i, i+1, i+2, i+3];
4212   //     v3 = vector(v1(3), v2(0, 1, 2))
4213   //     b[i, i+1, i+2, i+3] = v2 - v3
4214   //     br cond, vector.body, middle.block
4215   //
4216   //   middle.block:
4217   //     x = v2(3)
4218   //     br scalar.ph
4219   //
4220   //   scalar.ph:
4221   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4222   //     br scalar.body
4223   //
4224   // After execution completes the vector loop, we extract the next value of
4225   // the recurrence (x) to use as the initial value in the scalar loop.
4226 
4227   auto *IdxTy = Builder.getInt32Ty();
4228   auto *VecPhi = cast<PHINode>(State.get(PhiR, 0));
4229 
4230   // Fix the latch value of the new recurrence in the vector loop.
4231   VPValue *PreviousDef = PhiR->getBackedgeValue();
4232   Value *Incoming = State.get(PreviousDef, UF - 1);
4233   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4234 
4235   // Extract the last vector element in the middle block. This will be the
4236   // initial value for the recurrence when jumping to the scalar loop.
4237   auto *ExtractForScalar = Incoming;
4238   if (VF.isVector()) {
4239     auto *One = ConstantInt::get(IdxTy, 1);
4240     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4241     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4242     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4243     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4244                                                     "vector.recur.extract");
4245   }
4246   // Extract the second last element in the middle block if the
4247   // Phi is used outside the loop. We need to extract the phi itself
4248   // and not the last element (the phi update in the current iteration). This
4249   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4250   // when the scalar loop is not run at all.
4251   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4252   if (VF.isVector()) {
4253     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4254     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4255     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4256         Incoming, Idx, "vector.recur.extract.for.phi");
4257   } else if (UF > 1)
4258     // When loop is unrolled without vectorizing, initialize
4259     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4260     // of `Incoming`. This is analogous to the vectorized case above: extracting
4261     // the second last element when VF > 1.
4262     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4263 
4264   // Fix the initial value of the original recurrence in the scalar loop.
4265   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4266   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4267   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4268   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4269   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4270     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4271     Start->addIncoming(Incoming, BB);
4272   }
4273 
4274   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4275   Phi->setName("scalar.recur");
4276 
4277   // Finally, fix users of the recurrence outside the loop. The users will need
4278   // either the last value of the scalar recurrence or the last value of the
4279   // vector recurrence we extracted in the middle block. Since the loop is in
4280   // LCSSA form, we just need to find all the phi nodes for the original scalar
4281   // recurrence in the exit block, and then add an edge for the middle block.
4282   // Note that LCSSA does not imply single entry when the original scalar loop
4283   // had multiple exiting edges (as we always run the last iteration in the
4284   // scalar epilogue); in that case, there is no edge from middle to exit and
4285   // and thus no phis which needed updated.
4286   if (!Cost->requiresScalarEpilogue(VF))
4287     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4288       if (any_of(LCSSAPhi.incoming_values(),
4289                  [Phi](Value *V) { return V == Phi; }))
4290         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4291 }
4292 
4293 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4294                                        VPTransformState &State) {
4295   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4296   // Get it's reduction variable descriptor.
4297   assert(Legal->isReductionVariable(OrigPhi) &&
4298          "Unable to find the reduction variable");
4299   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4300 
4301   RecurKind RK = RdxDesc.getRecurrenceKind();
4302   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4303   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4304   setDebugLocFromInst(ReductionStartValue);
4305 
4306   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4307   // This is the vector-clone of the value that leaves the loop.
4308   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4309 
4310   // Wrap flags are in general invalid after vectorization, clear them.
4311   clearReductionWrapFlags(RdxDesc, State);
4312 
4313   // Fix the vector-loop phi.
4314 
4315   // Reductions do not have to start at zero. They can start with
4316   // any loop invariant values.
4317   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4318 
4319   unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF;
4320   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
4321     Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
4322     Value *Val = State.get(PhiR->getBackedgeValue(), Part);
4323     if (PhiR->isOrdered())
4324       Val = State.get(PhiR->getBackedgeValue(), UF - 1);
4325 
4326     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4327   }
4328 
4329   // Before each round, move the insertion point right between
4330   // the PHIs and the values we are going to write.
4331   // This allows us to write both PHINodes and the extractelement
4332   // instructions.
4333   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4334 
4335   setDebugLocFromInst(LoopExitInst);
4336 
4337   Type *PhiTy = OrigPhi->getType();
4338   // If tail is folded by masking, the vector value to leave the loop should be
4339   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4340   // instead of the former. For an inloop reduction the reduction will already
4341   // be predicated, and does not need to be handled here.
4342   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4343     for (unsigned Part = 0; Part < UF; ++Part) {
4344       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4345       Value *Sel = nullptr;
4346       for (User *U : VecLoopExitInst->users()) {
4347         if (isa<SelectInst>(U)) {
4348           assert(!Sel && "Reduction exit feeding two selects");
4349           Sel = U;
4350         } else
4351           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4352       }
4353       assert(Sel && "Reduction exit feeds no select");
4354       State.reset(LoopExitInstDef, Sel, Part);
4355 
4356       // If the target can create a predicated operator for the reduction at no
4357       // extra cost in the loop (for example a predicated vadd), it can be
4358       // cheaper for the select to remain in the loop than be sunk out of it,
4359       // and so use the select value for the phi instead of the old
4360       // LoopExitValue.
4361       if (PreferPredicatedReductionSelect ||
4362           TTI->preferPredicatedReductionSelect(
4363               RdxDesc.getOpcode(), PhiTy,
4364               TargetTransformInfo::ReductionFlags())) {
4365         auto *VecRdxPhi =
4366             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4367         VecRdxPhi->setIncomingValueForBlock(
4368             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4369       }
4370     }
4371   }
4372 
4373   // If the vector reduction can be performed in a smaller type, we truncate
4374   // then extend the loop exit value to enable InstCombine to evaluate the
4375   // entire expression in the smaller type.
4376   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4377     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4378     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4379     Builder.SetInsertPoint(
4380         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4381     VectorParts RdxParts(UF);
4382     for (unsigned Part = 0; Part < UF; ++Part) {
4383       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4384       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4385       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4386                                         : Builder.CreateZExt(Trunc, VecTy);
4387       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4388            UI != RdxParts[Part]->user_end();)
4389         if (*UI != Trunc) {
4390           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4391           RdxParts[Part] = Extnd;
4392         } else {
4393           ++UI;
4394         }
4395     }
4396     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4397     for (unsigned Part = 0; Part < UF; ++Part) {
4398       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4399       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4400     }
4401   }
4402 
4403   // Reduce all of the unrolled parts into a single vector.
4404   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4405   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4406 
4407   // The middle block terminator has already been assigned a DebugLoc here (the
4408   // OrigLoop's single latch terminator). We want the whole middle block to
4409   // appear to execute on this line because: (a) it is all compiler generated,
4410   // (b) these instructions are always executed after evaluating the latch
4411   // conditional branch, and (c) other passes may add new predecessors which
4412   // terminate on this line. This is the easiest way to ensure we don't
4413   // accidentally cause an extra step back into the loop while debugging.
4414   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4415   if (PhiR->isOrdered())
4416     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4417   else {
4418     // Floating-point operations should have some FMF to enable the reduction.
4419     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4420     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4421     for (unsigned Part = 1; Part < UF; ++Part) {
4422       Value *RdxPart = State.get(LoopExitInstDef, Part);
4423       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4424         ReducedPartRdx = Builder.CreateBinOp(
4425             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4426       } else {
4427         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4428       }
4429     }
4430   }
4431 
4432   // Create the reduction after the loop. Note that inloop reductions create the
4433   // target reduction in the loop using a Reduction recipe.
4434   if (VF.isVector() && !PhiR->isInLoop()) {
4435     ReducedPartRdx =
4436         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4437     // If the reduction can be performed in a smaller type, we need to extend
4438     // the reduction to the wider type before we branch to the original loop.
4439     if (PhiTy != RdxDesc.getRecurrenceType())
4440       ReducedPartRdx = RdxDesc.isSigned()
4441                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4442                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4443   }
4444 
4445   // Create a phi node that merges control-flow from the backedge-taken check
4446   // block and the middle block.
4447   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4448                                         LoopScalarPreHeader->getTerminator());
4449   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4450     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4451   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4452 
4453   // Now, we need to fix the users of the reduction variable
4454   // inside and outside of the scalar remainder loop.
4455 
4456   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4457   // in the exit blocks.  See comment on analogous loop in
4458   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4459   if (!Cost->requiresScalarEpilogue(VF))
4460     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4461       if (any_of(LCSSAPhi.incoming_values(),
4462                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4463         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4464 
4465   // Fix the scalar loop reduction variable with the incoming reduction sum
4466   // from the vector body and from the backedge value.
4467   int IncomingEdgeBlockIdx =
4468       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4469   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4470   // Pick the other block.
4471   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4472   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4473   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4474 }
4475 
4476 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4477                                                   VPTransformState &State) {
4478   RecurKind RK = RdxDesc.getRecurrenceKind();
4479   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4480     return;
4481 
4482   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4483   assert(LoopExitInstr && "null loop exit instruction");
4484   SmallVector<Instruction *, 8> Worklist;
4485   SmallPtrSet<Instruction *, 8> Visited;
4486   Worklist.push_back(LoopExitInstr);
4487   Visited.insert(LoopExitInstr);
4488 
4489   while (!Worklist.empty()) {
4490     Instruction *Cur = Worklist.pop_back_val();
4491     if (isa<OverflowingBinaryOperator>(Cur))
4492       for (unsigned Part = 0; Part < UF; ++Part) {
4493         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4494         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4495       }
4496 
4497     for (User *U : Cur->users()) {
4498       Instruction *UI = cast<Instruction>(U);
4499       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4500           Visited.insert(UI).second)
4501         Worklist.push_back(UI);
4502     }
4503   }
4504 }
4505 
4506 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4507   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4508     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4509       // Some phis were already hand updated by the reduction and recurrence
4510       // code above, leave them alone.
4511       continue;
4512 
4513     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4514     // Non-instruction incoming values will have only one value.
4515 
4516     VPLane Lane = VPLane::getFirstLane();
4517     if (isa<Instruction>(IncomingValue) &&
4518         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4519                                            VF))
4520       Lane = VPLane::getLastLaneForVF(VF);
4521 
4522     // Can be a loop invariant incoming value or the last scalar value to be
4523     // extracted from the vectorized loop.
4524     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4525     Value *lastIncomingValue =
4526         OrigLoop->isLoopInvariant(IncomingValue)
4527             ? IncomingValue
4528             : State.get(State.Plan->getVPValue(IncomingValue),
4529                         VPIteration(UF - 1, Lane));
4530     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4531   }
4532 }
4533 
4534 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4535   // The basic block and loop containing the predicated instruction.
4536   auto *PredBB = PredInst->getParent();
4537   auto *VectorLoop = LI->getLoopFor(PredBB);
4538 
4539   // Initialize a worklist with the operands of the predicated instruction.
4540   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4541 
4542   // Holds instructions that we need to analyze again. An instruction may be
4543   // reanalyzed if we don't yet know if we can sink it or not.
4544   SmallVector<Instruction *, 8> InstsToReanalyze;
4545 
4546   // Returns true if a given use occurs in the predicated block. Phi nodes use
4547   // their operands in their corresponding predecessor blocks.
4548   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4549     auto *I = cast<Instruction>(U.getUser());
4550     BasicBlock *BB = I->getParent();
4551     if (auto *Phi = dyn_cast<PHINode>(I))
4552       BB = Phi->getIncomingBlock(
4553           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4554     return BB == PredBB;
4555   };
4556 
4557   // Iteratively sink the scalarized operands of the predicated instruction
4558   // into the block we created for it. When an instruction is sunk, it's
4559   // operands are then added to the worklist. The algorithm ends after one pass
4560   // through the worklist doesn't sink a single instruction.
4561   bool Changed;
4562   do {
4563     // Add the instructions that need to be reanalyzed to the worklist, and
4564     // reset the changed indicator.
4565     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4566     InstsToReanalyze.clear();
4567     Changed = false;
4568 
4569     while (!Worklist.empty()) {
4570       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4571 
4572       // We can't sink an instruction if it is a phi node, is not in the loop,
4573       // or may have side effects.
4574       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4575           I->mayHaveSideEffects())
4576         continue;
4577 
4578       // If the instruction is already in PredBB, check if we can sink its
4579       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4580       // sinking the scalar instruction I, hence it appears in PredBB; but it
4581       // may have failed to sink I's operands (recursively), which we try
4582       // (again) here.
4583       if (I->getParent() == PredBB) {
4584         Worklist.insert(I->op_begin(), I->op_end());
4585         continue;
4586       }
4587 
4588       // It's legal to sink the instruction if all its uses occur in the
4589       // predicated block. Otherwise, there's nothing to do yet, and we may
4590       // need to reanalyze the instruction.
4591       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4592         InstsToReanalyze.push_back(I);
4593         continue;
4594       }
4595 
4596       // Move the instruction to the beginning of the predicated block, and add
4597       // it's operands to the worklist.
4598       I->moveBefore(&*PredBB->getFirstInsertionPt());
4599       Worklist.insert(I->op_begin(), I->op_end());
4600 
4601       // The sinking may have enabled other instructions to be sunk, so we will
4602       // need to iterate.
4603       Changed = true;
4604     }
4605   } while (Changed);
4606 }
4607 
4608 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4609   for (PHINode *OrigPhi : OrigPHIsToFix) {
4610     VPWidenPHIRecipe *VPPhi =
4611         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4612     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4613     // Make sure the builder has a valid insert point.
4614     Builder.SetInsertPoint(NewPhi);
4615     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4616       VPValue *Inc = VPPhi->getIncomingValue(i);
4617       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4618       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4619     }
4620   }
4621 }
4622 
4623 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4624   return Cost->useOrderedReductions(RdxDesc);
4625 }
4626 
4627 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4628                                    VPUser &Operands, unsigned UF,
4629                                    ElementCount VF, bool IsPtrLoopInvariant,
4630                                    SmallBitVector &IsIndexLoopInvariant,
4631                                    VPTransformState &State) {
4632   // Construct a vector GEP by widening the operands of the scalar GEP as
4633   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4634   // results in a vector of pointers when at least one operand of the GEP
4635   // is vector-typed. Thus, to keep the representation compact, we only use
4636   // vector-typed operands for loop-varying values.
4637 
4638   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4639     // If we are vectorizing, but the GEP has only loop-invariant operands,
4640     // the GEP we build (by only using vector-typed operands for
4641     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4642     // produce a vector of pointers, we need to either arbitrarily pick an
4643     // operand to broadcast, or broadcast a clone of the original GEP.
4644     // Here, we broadcast a clone of the original.
4645     //
4646     // TODO: If at some point we decide to scalarize instructions having
4647     //       loop-invariant operands, this special case will no longer be
4648     //       required. We would add the scalarization decision to
4649     //       collectLoopScalars() and teach getVectorValue() to broadcast
4650     //       the lane-zero scalar value.
4651     auto *Clone = Builder.Insert(GEP->clone());
4652     for (unsigned Part = 0; Part < UF; ++Part) {
4653       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4654       State.set(VPDef, EntryPart, Part);
4655       addMetadata(EntryPart, GEP);
4656     }
4657   } else {
4658     // If the GEP has at least one loop-varying operand, we are sure to
4659     // produce a vector of pointers. But if we are only unrolling, we want
4660     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4661     // produce with the code below will be scalar (if VF == 1) or vector
4662     // (otherwise). Note that for the unroll-only case, we still maintain
4663     // values in the vector mapping with initVector, as we do for other
4664     // instructions.
4665     for (unsigned Part = 0; Part < UF; ++Part) {
4666       // The pointer operand of the new GEP. If it's loop-invariant, we
4667       // won't broadcast it.
4668       auto *Ptr = IsPtrLoopInvariant
4669                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4670                       : State.get(Operands.getOperand(0), Part);
4671 
4672       // Collect all the indices for the new GEP. If any index is
4673       // loop-invariant, we won't broadcast it.
4674       SmallVector<Value *, 4> Indices;
4675       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4676         VPValue *Operand = Operands.getOperand(I);
4677         if (IsIndexLoopInvariant[I - 1])
4678           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4679         else
4680           Indices.push_back(State.get(Operand, Part));
4681       }
4682 
4683       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4684       // but it should be a vector, otherwise.
4685       auto *NewGEP =
4686           GEP->isInBounds()
4687               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4688                                           Indices)
4689               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4690       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4691              "NewGEP is not a pointer vector");
4692       State.set(VPDef, NewGEP, Part);
4693       addMetadata(NewGEP, GEP);
4694     }
4695   }
4696 }
4697 
4698 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4699                                               VPWidenPHIRecipe *PhiR,
4700                                               VPTransformState &State) {
4701   PHINode *P = cast<PHINode>(PN);
4702   if (EnableVPlanNativePath) {
4703     // Currently we enter here in the VPlan-native path for non-induction
4704     // PHIs where all control flow is uniform. We simply widen these PHIs.
4705     // Create a vector phi with no operands - the vector phi operands will be
4706     // set at the end of vector code generation.
4707     Type *VecTy = (State.VF.isScalar())
4708                       ? PN->getType()
4709                       : VectorType::get(PN->getType(), State.VF);
4710     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4711     State.set(PhiR, VecPhi, 0);
4712     OrigPHIsToFix.push_back(P);
4713 
4714     return;
4715   }
4716 
4717   assert(PN->getParent() == OrigLoop->getHeader() &&
4718          "Non-header phis should have been handled elsewhere");
4719 
4720   // In order to support recurrences we need to be able to vectorize Phi nodes.
4721   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4722   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4723   // this value when we vectorize all of the instructions that use the PHI.
4724 
4725   assert(!Legal->isReductionVariable(P) &&
4726          "reductions should be handled elsewhere");
4727 
4728   setDebugLocFromInst(P);
4729 
4730   // This PHINode must be an induction variable.
4731   // Make sure that we know about it.
4732   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4733 
4734   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4735   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4736 
4737   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4738   // which can be found from the original scalar operations.
4739   switch (II.getKind()) {
4740   case InductionDescriptor::IK_NoInduction:
4741     llvm_unreachable("Unknown induction");
4742   case InductionDescriptor::IK_IntInduction:
4743   case InductionDescriptor::IK_FpInduction:
4744     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4745   case InductionDescriptor::IK_PtrInduction: {
4746     // Handle the pointer induction variable case.
4747     assert(P->getType()->isPointerTy() && "Unexpected type.");
4748 
4749     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4750       // This is the normalized GEP that starts counting at zero.
4751       Value *PtrInd =
4752           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4753       // Determine the number of scalars we need to generate for each unroll
4754       // iteration. If the instruction is uniform, we only need to generate the
4755       // first lane. Otherwise, we generate all VF values.
4756       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4757       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4758 
4759       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4760       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4761       if (NeedsVectorIndex) {
4762         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4763         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4764         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4765       }
4766 
4767       for (unsigned Part = 0; Part < UF; ++Part) {
4768         Value *PartStart = createStepForVF(
4769             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4770 
4771         if (NeedsVectorIndex) {
4772           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4773           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4774           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4775           Value *SclrGep =
4776               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4777           SclrGep->setName("next.gep");
4778           State.set(PhiR, SclrGep, Part);
4779           // We've cached the whole vector, which means we can support the
4780           // extraction of any lane.
4781           continue;
4782         }
4783 
4784         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4785           Value *Idx = Builder.CreateAdd(
4786               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4787           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4788           Value *SclrGep =
4789               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4790           SclrGep->setName("next.gep");
4791           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4792         }
4793       }
4794       return;
4795     }
4796     assert(isa<SCEVConstant>(II.getStep()) &&
4797            "Induction step not a SCEV constant!");
4798     Type *PhiType = II.getStep()->getType();
4799 
4800     // Build a pointer phi
4801     Value *ScalarStartValue = II.getStartValue();
4802     Type *ScStValueType = ScalarStartValue->getType();
4803     PHINode *NewPointerPhi =
4804         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4805     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4806 
4807     // A pointer induction, performed by using a gep
4808     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4809     Instruction *InductionLoc = LoopLatch->getTerminator();
4810     const SCEV *ScalarStep = II.getStep();
4811     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4812     Value *ScalarStepValue =
4813         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4814     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4815     Value *NumUnrolledElems =
4816         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4817     Value *InductionGEP = GetElementPtrInst::Create(
4818         ScStValueType->getPointerElementType(), NewPointerPhi,
4819         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4820         InductionLoc);
4821     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4822 
4823     // Create UF many actual address geps that use the pointer
4824     // phi as base and a vectorized version of the step value
4825     // (<step*0, ..., step*N>) as offset.
4826     for (unsigned Part = 0; Part < State.UF; ++Part) {
4827       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4828       Value *StartOffsetScalar =
4829           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4830       Value *StartOffset =
4831           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4832       // Create a vector of consecutive numbers from zero to VF.
4833       StartOffset =
4834           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4835 
4836       Value *GEP = Builder.CreateGEP(
4837           ScStValueType->getPointerElementType(), NewPointerPhi,
4838           Builder.CreateMul(
4839               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4840               "vector.gep"));
4841       State.set(PhiR, GEP, Part);
4842     }
4843   }
4844   }
4845 }
4846 
4847 /// A helper function for checking whether an integer division-related
4848 /// instruction may divide by zero (in which case it must be predicated if
4849 /// executed conditionally in the scalar code).
4850 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4851 /// Non-zero divisors that are non compile-time constants will not be
4852 /// converted into multiplication, so we will still end up scalarizing
4853 /// the division, but can do so w/o predication.
4854 static bool mayDivideByZero(Instruction &I) {
4855   assert((I.getOpcode() == Instruction::UDiv ||
4856           I.getOpcode() == Instruction::SDiv ||
4857           I.getOpcode() == Instruction::URem ||
4858           I.getOpcode() == Instruction::SRem) &&
4859          "Unexpected instruction");
4860   Value *Divisor = I.getOperand(1);
4861   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4862   return !CInt || CInt->isZero();
4863 }
4864 
4865 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4866                                            VPUser &User,
4867                                            VPTransformState &State) {
4868   switch (I.getOpcode()) {
4869   case Instruction::Call:
4870   case Instruction::Br:
4871   case Instruction::PHI:
4872   case Instruction::GetElementPtr:
4873   case Instruction::Select:
4874     llvm_unreachable("This instruction is handled by a different recipe.");
4875   case Instruction::UDiv:
4876   case Instruction::SDiv:
4877   case Instruction::SRem:
4878   case Instruction::URem:
4879   case Instruction::Add:
4880   case Instruction::FAdd:
4881   case Instruction::Sub:
4882   case Instruction::FSub:
4883   case Instruction::FNeg:
4884   case Instruction::Mul:
4885   case Instruction::FMul:
4886   case Instruction::FDiv:
4887   case Instruction::FRem:
4888   case Instruction::Shl:
4889   case Instruction::LShr:
4890   case Instruction::AShr:
4891   case Instruction::And:
4892   case Instruction::Or:
4893   case Instruction::Xor: {
4894     // Just widen unops and binops.
4895     setDebugLocFromInst(&I);
4896 
4897     for (unsigned Part = 0; Part < UF; ++Part) {
4898       SmallVector<Value *, 2> Ops;
4899       for (VPValue *VPOp : User.operands())
4900         Ops.push_back(State.get(VPOp, Part));
4901 
4902       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4903 
4904       if (auto *VecOp = dyn_cast<Instruction>(V))
4905         VecOp->copyIRFlags(&I);
4906 
4907       // Use this vector value for all users of the original instruction.
4908       State.set(Def, V, Part);
4909       addMetadata(V, &I);
4910     }
4911 
4912     break;
4913   }
4914   case Instruction::ICmp:
4915   case Instruction::FCmp: {
4916     // Widen compares. Generate vector compares.
4917     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4918     auto *Cmp = cast<CmpInst>(&I);
4919     setDebugLocFromInst(Cmp);
4920     for (unsigned Part = 0; Part < UF; ++Part) {
4921       Value *A = State.get(User.getOperand(0), Part);
4922       Value *B = State.get(User.getOperand(1), Part);
4923       Value *C = nullptr;
4924       if (FCmp) {
4925         // Propagate fast math flags.
4926         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4927         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4928         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4929       } else {
4930         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4931       }
4932       State.set(Def, C, Part);
4933       addMetadata(C, &I);
4934     }
4935 
4936     break;
4937   }
4938 
4939   case Instruction::ZExt:
4940   case Instruction::SExt:
4941   case Instruction::FPToUI:
4942   case Instruction::FPToSI:
4943   case Instruction::FPExt:
4944   case Instruction::PtrToInt:
4945   case Instruction::IntToPtr:
4946   case Instruction::SIToFP:
4947   case Instruction::UIToFP:
4948   case Instruction::Trunc:
4949   case Instruction::FPTrunc:
4950   case Instruction::BitCast: {
4951     auto *CI = cast<CastInst>(&I);
4952     setDebugLocFromInst(CI);
4953 
4954     /// Vectorize casts.
4955     Type *DestTy =
4956         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4957 
4958     for (unsigned Part = 0; Part < UF; ++Part) {
4959       Value *A = State.get(User.getOperand(0), Part);
4960       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4961       State.set(Def, Cast, Part);
4962       addMetadata(Cast, &I);
4963     }
4964     break;
4965   }
4966   default:
4967     // This instruction is not vectorized by simple widening.
4968     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4969     llvm_unreachable("Unhandled instruction!");
4970   } // end of switch.
4971 }
4972 
4973 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4974                                                VPUser &ArgOperands,
4975                                                VPTransformState &State) {
4976   assert(!isa<DbgInfoIntrinsic>(I) &&
4977          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4978   setDebugLocFromInst(&I);
4979 
4980   Module *M = I.getParent()->getParent()->getParent();
4981   auto *CI = cast<CallInst>(&I);
4982 
4983   SmallVector<Type *, 4> Tys;
4984   for (Value *ArgOperand : CI->arg_operands())
4985     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4986 
4987   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4988 
4989   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4990   // version of the instruction.
4991   // Is it beneficial to perform intrinsic call compared to lib call?
4992   bool NeedToScalarize = false;
4993   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4994   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4995   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4996   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4997          "Instruction should be scalarized elsewhere.");
4998   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4999          "Either the intrinsic cost or vector call cost must be valid");
5000 
5001   for (unsigned Part = 0; Part < UF; ++Part) {
5002     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5003     SmallVector<Value *, 4> Args;
5004     for (auto &I : enumerate(ArgOperands.operands())) {
5005       // Some intrinsics have a scalar argument - don't replace it with a
5006       // vector.
5007       Value *Arg;
5008       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5009         Arg = State.get(I.value(), Part);
5010       else {
5011         Arg = State.get(I.value(), VPIteration(0, 0));
5012         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5013           TysForDecl.push_back(Arg->getType());
5014       }
5015       Args.push_back(Arg);
5016     }
5017 
5018     Function *VectorF;
5019     if (UseVectorIntrinsic) {
5020       // Use vector version of the intrinsic.
5021       if (VF.isVector())
5022         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5023       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5024       assert(VectorF && "Can't retrieve vector intrinsic.");
5025     } else {
5026       // Use vector version of the function call.
5027       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5028 #ifndef NDEBUG
5029       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5030              "Can't create vector function.");
5031 #endif
5032         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5033     }
5034       SmallVector<OperandBundleDef, 1> OpBundles;
5035       CI->getOperandBundlesAsDefs(OpBundles);
5036       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5037 
5038       if (isa<FPMathOperator>(V))
5039         V->copyFastMathFlags(CI);
5040 
5041       State.set(Def, V, Part);
5042       addMetadata(V, &I);
5043   }
5044 }
5045 
5046 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5047                                                  VPUser &Operands,
5048                                                  bool InvariantCond,
5049                                                  VPTransformState &State) {
5050   setDebugLocFromInst(&I);
5051 
5052   // The condition can be loop invariant  but still defined inside the
5053   // loop. This means that we can't just use the original 'cond' value.
5054   // We have to take the 'vectorized' value and pick the first lane.
5055   // Instcombine will make this a no-op.
5056   auto *InvarCond = InvariantCond
5057                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5058                         : nullptr;
5059 
5060   for (unsigned Part = 0; Part < UF; ++Part) {
5061     Value *Cond =
5062         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5063     Value *Op0 = State.get(Operands.getOperand(1), Part);
5064     Value *Op1 = State.get(Operands.getOperand(2), Part);
5065     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5066     State.set(VPDef, Sel, Part);
5067     addMetadata(Sel, &I);
5068   }
5069 }
5070 
5071 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5072   // We should not collect Scalars more than once per VF. Right now, this
5073   // function is called from collectUniformsAndScalars(), which already does
5074   // this check. Collecting Scalars for VF=1 does not make any sense.
5075   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5076          "This function should not be visited twice for the same VF");
5077 
5078   SmallSetVector<Instruction *, 8> Worklist;
5079 
5080   // These sets are used to seed the analysis with pointers used by memory
5081   // accesses that will remain scalar.
5082   SmallSetVector<Instruction *, 8> ScalarPtrs;
5083   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5084   auto *Latch = TheLoop->getLoopLatch();
5085 
5086   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5087   // The pointer operands of loads and stores will be scalar as long as the
5088   // memory access is not a gather or scatter operation. The value operand of a
5089   // store will remain scalar if the store is scalarized.
5090   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5091     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5092     assert(WideningDecision != CM_Unknown &&
5093            "Widening decision should be ready at this moment");
5094     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5095       if (Ptr == Store->getValueOperand())
5096         return WideningDecision == CM_Scalarize;
5097     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5098            "Ptr is neither a value or pointer operand");
5099     return WideningDecision != CM_GatherScatter;
5100   };
5101 
5102   // A helper that returns true if the given value is a bitcast or
5103   // getelementptr instruction contained in the loop.
5104   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5105     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5106             isa<GetElementPtrInst>(V)) &&
5107            !TheLoop->isLoopInvariant(V);
5108   };
5109 
5110   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5111     if (!isa<PHINode>(Ptr) ||
5112         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5113       return false;
5114     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5115     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5116       return false;
5117     return isScalarUse(MemAccess, Ptr);
5118   };
5119 
5120   // A helper that evaluates a memory access's use of a pointer. If the
5121   // pointer is actually the pointer induction of a loop, it is being
5122   // inserted into Worklist. If the use will be a scalar use, and the
5123   // pointer is only used by memory accesses, we place the pointer in
5124   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5125   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5126     if (isScalarPtrInduction(MemAccess, Ptr)) {
5127       Worklist.insert(cast<Instruction>(Ptr));
5128       Instruction *Update = cast<Instruction>(
5129           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5130       Worklist.insert(Update);
5131       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5132                         << "\n");
5133       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5134                         << "\n");
5135       return;
5136     }
5137     // We only care about bitcast and getelementptr instructions contained in
5138     // the loop.
5139     if (!isLoopVaryingBitCastOrGEP(Ptr))
5140       return;
5141 
5142     // If the pointer has already been identified as scalar (e.g., if it was
5143     // also identified as uniform), there's nothing to do.
5144     auto *I = cast<Instruction>(Ptr);
5145     if (Worklist.count(I))
5146       return;
5147 
5148     // If the use of the pointer will be a scalar use, and all users of the
5149     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5150     // place the pointer in PossibleNonScalarPtrs.
5151     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5152           return isa<LoadInst>(U) || isa<StoreInst>(U);
5153         }))
5154       ScalarPtrs.insert(I);
5155     else
5156       PossibleNonScalarPtrs.insert(I);
5157   };
5158 
5159   // We seed the scalars analysis with three classes of instructions: (1)
5160   // instructions marked uniform-after-vectorization and (2) bitcast,
5161   // getelementptr and (pointer) phi instructions used by memory accesses
5162   // requiring a scalar use.
5163   //
5164   // (1) Add to the worklist all instructions that have been identified as
5165   // uniform-after-vectorization.
5166   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5167 
5168   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5169   // memory accesses requiring a scalar use. The pointer operands of loads and
5170   // stores will be scalar as long as the memory accesses is not a gather or
5171   // scatter operation. The value operand of a store will remain scalar if the
5172   // store is scalarized.
5173   for (auto *BB : TheLoop->blocks())
5174     for (auto &I : *BB) {
5175       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5176         evaluatePtrUse(Load, Load->getPointerOperand());
5177       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5178         evaluatePtrUse(Store, Store->getPointerOperand());
5179         evaluatePtrUse(Store, Store->getValueOperand());
5180       }
5181     }
5182   for (auto *I : ScalarPtrs)
5183     if (!PossibleNonScalarPtrs.count(I)) {
5184       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5185       Worklist.insert(I);
5186     }
5187 
5188   // Insert the forced scalars.
5189   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5190   // induction variable when the PHI user is scalarized.
5191   auto ForcedScalar = ForcedScalars.find(VF);
5192   if (ForcedScalar != ForcedScalars.end())
5193     for (auto *I : ForcedScalar->second)
5194       Worklist.insert(I);
5195 
5196   // Expand the worklist by looking through any bitcasts and getelementptr
5197   // instructions we've already identified as scalar. This is similar to the
5198   // expansion step in collectLoopUniforms(); however, here we're only
5199   // expanding to include additional bitcasts and getelementptr instructions.
5200   unsigned Idx = 0;
5201   while (Idx != Worklist.size()) {
5202     Instruction *Dst = Worklist[Idx++];
5203     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5204       continue;
5205     auto *Src = cast<Instruction>(Dst->getOperand(0));
5206     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5207           auto *J = cast<Instruction>(U);
5208           return !TheLoop->contains(J) || Worklist.count(J) ||
5209                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5210                   isScalarUse(J, Src));
5211         })) {
5212       Worklist.insert(Src);
5213       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5214     }
5215   }
5216 
5217   // An induction variable will remain scalar if all users of the induction
5218   // variable and induction variable update remain scalar.
5219   for (auto &Induction : Legal->getInductionVars()) {
5220     auto *Ind = Induction.first;
5221     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5222 
5223     // If tail-folding is applied, the primary induction variable will be used
5224     // to feed a vector compare.
5225     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5226       continue;
5227 
5228     // Determine if all users of the induction variable are scalar after
5229     // vectorization.
5230     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5231       auto *I = cast<Instruction>(U);
5232       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5233     });
5234     if (!ScalarInd)
5235       continue;
5236 
5237     // Determine if all users of the induction variable update instruction are
5238     // scalar after vectorization.
5239     auto ScalarIndUpdate =
5240         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5241           auto *I = cast<Instruction>(U);
5242           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5243         });
5244     if (!ScalarIndUpdate)
5245       continue;
5246 
5247     // The induction variable and its update instruction will remain scalar.
5248     Worklist.insert(Ind);
5249     Worklist.insert(IndUpdate);
5250     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5251     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5252                       << "\n");
5253   }
5254 
5255   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5256 }
5257 
5258 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5259   if (!blockNeedsPredication(I->getParent()))
5260     return false;
5261   switch(I->getOpcode()) {
5262   default:
5263     break;
5264   case Instruction::Load:
5265   case Instruction::Store: {
5266     if (!Legal->isMaskRequired(I))
5267       return false;
5268     auto *Ptr = getLoadStorePointerOperand(I);
5269     auto *Ty = getLoadStoreType(I);
5270     const Align Alignment = getLoadStoreAlignment(I);
5271     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5272                                 TTI.isLegalMaskedGather(Ty, Alignment))
5273                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5274                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5275   }
5276   case Instruction::UDiv:
5277   case Instruction::SDiv:
5278   case Instruction::SRem:
5279   case Instruction::URem:
5280     return mayDivideByZero(*I);
5281   }
5282   return false;
5283 }
5284 
5285 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5286     Instruction *I, ElementCount VF) {
5287   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5288   assert(getWideningDecision(I, VF) == CM_Unknown &&
5289          "Decision should not be set yet.");
5290   auto *Group = getInterleavedAccessGroup(I);
5291   assert(Group && "Must have a group.");
5292 
5293   // If the instruction's allocated size doesn't equal it's type size, it
5294   // requires padding and will be scalarized.
5295   auto &DL = I->getModule()->getDataLayout();
5296   auto *ScalarTy = getLoadStoreType(I);
5297   if (hasIrregularType(ScalarTy, DL))
5298     return false;
5299 
5300   // Check if masking is required.
5301   // A Group may need masking for one of two reasons: it resides in a block that
5302   // needs predication, or it was decided to use masking to deal with gaps.
5303   bool PredicatedAccessRequiresMasking =
5304       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5305   bool AccessWithGapsRequiresMasking =
5306       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5307   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5308     return true;
5309 
5310   // If masked interleaving is required, we expect that the user/target had
5311   // enabled it, because otherwise it either wouldn't have been created or
5312   // it should have been invalidated by the CostModel.
5313   assert(useMaskedInterleavedAccesses(TTI) &&
5314          "Masked interleave-groups for predicated accesses are not enabled.");
5315 
5316   auto *Ty = getLoadStoreType(I);
5317   const Align Alignment = getLoadStoreAlignment(I);
5318   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5319                           : TTI.isLegalMaskedStore(Ty, Alignment);
5320 }
5321 
5322 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5323     Instruction *I, ElementCount VF) {
5324   // Get and ensure we have a valid memory instruction.
5325   LoadInst *LI = dyn_cast<LoadInst>(I);
5326   StoreInst *SI = dyn_cast<StoreInst>(I);
5327   assert((LI || SI) && "Invalid memory instruction");
5328 
5329   auto *Ptr = getLoadStorePointerOperand(I);
5330 
5331   // In order to be widened, the pointer should be consecutive, first of all.
5332   if (!Legal->isConsecutivePtr(Ptr))
5333     return false;
5334 
5335   // If the instruction is a store located in a predicated block, it will be
5336   // scalarized.
5337   if (isScalarWithPredication(I))
5338     return false;
5339 
5340   // If the instruction's allocated size doesn't equal it's type size, it
5341   // requires padding and will be scalarized.
5342   auto &DL = I->getModule()->getDataLayout();
5343   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5344   if (hasIrregularType(ScalarTy, DL))
5345     return false;
5346 
5347   return true;
5348 }
5349 
5350 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5351   // We should not collect Uniforms more than once per VF. Right now,
5352   // this function is called from collectUniformsAndScalars(), which
5353   // already does this check. Collecting Uniforms for VF=1 does not make any
5354   // sense.
5355 
5356   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5357          "This function should not be visited twice for the same VF");
5358 
5359   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5360   // not analyze again.  Uniforms.count(VF) will return 1.
5361   Uniforms[VF].clear();
5362 
5363   // We now know that the loop is vectorizable!
5364   // Collect instructions inside the loop that will remain uniform after
5365   // vectorization.
5366 
5367   // Global values, params and instructions outside of current loop are out of
5368   // scope.
5369   auto isOutOfScope = [&](Value *V) -> bool {
5370     Instruction *I = dyn_cast<Instruction>(V);
5371     return (!I || !TheLoop->contains(I));
5372   };
5373 
5374   SetVector<Instruction *> Worklist;
5375   BasicBlock *Latch = TheLoop->getLoopLatch();
5376 
5377   // Instructions that are scalar with predication must not be considered
5378   // uniform after vectorization, because that would create an erroneous
5379   // replicating region where only a single instance out of VF should be formed.
5380   // TODO: optimize such seldom cases if found important, see PR40816.
5381   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5382     if (isOutOfScope(I)) {
5383       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5384                         << *I << "\n");
5385       return;
5386     }
5387     if (isScalarWithPredication(I)) {
5388       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5389                         << *I << "\n");
5390       return;
5391     }
5392     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5393     Worklist.insert(I);
5394   };
5395 
5396   // Start with the conditional branch. If the branch condition is an
5397   // instruction contained in the loop that is only used by the branch, it is
5398   // uniform.
5399   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5400   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5401     addToWorklistIfAllowed(Cmp);
5402 
5403   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5404     InstWidening WideningDecision = getWideningDecision(I, VF);
5405     assert(WideningDecision != CM_Unknown &&
5406            "Widening decision should be ready at this moment");
5407 
5408     // A uniform memory op is itself uniform.  We exclude uniform stores
5409     // here as they demand the last lane, not the first one.
5410     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5411       assert(WideningDecision == CM_Scalarize);
5412       return true;
5413     }
5414 
5415     return (WideningDecision == CM_Widen ||
5416             WideningDecision == CM_Widen_Reverse ||
5417             WideningDecision == CM_Interleave);
5418   };
5419 
5420 
5421   // Returns true if Ptr is the pointer operand of a memory access instruction
5422   // I, and I is known to not require scalarization.
5423   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5424     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5425   };
5426 
5427   // Holds a list of values which are known to have at least one uniform use.
5428   // Note that there may be other uses which aren't uniform.  A "uniform use"
5429   // here is something which only demands lane 0 of the unrolled iterations;
5430   // it does not imply that all lanes produce the same value (e.g. this is not
5431   // the usual meaning of uniform)
5432   SetVector<Value *> HasUniformUse;
5433 
5434   // Scan the loop for instructions which are either a) known to have only
5435   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5436   for (auto *BB : TheLoop->blocks())
5437     for (auto &I : *BB) {
5438       // If there's no pointer operand, there's nothing to do.
5439       auto *Ptr = getLoadStorePointerOperand(&I);
5440       if (!Ptr)
5441         continue;
5442 
5443       // A uniform memory op is itself uniform.  We exclude uniform stores
5444       // here as they demand the last lane, not the first one.
5445       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5446         addToWorklistIfAllowed(&I);
5447 
5448       if (isUniformDecision(&I, VF)) {
5449         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5450         HasUniformUse.insert(Ptr);
5451       }
5452     }
5453 
5454   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5455   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5456   // disallows uses outside the loop as well.
5457   for (auto *V : HasUniformUse) {
5458     if (isOutOfScope(V))
5459       continue;
5460     auto *I = cast<Instruction>(V);
5461     auto UsersAreMemAccesses =
5462       llvm::all_of(I->users(), [&](User *U) -> bool {
5463         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5464       });
5465     if (UsersAreMemAccesses)
5466       addToWorklistIfAllowed(I);
5467   }
5468 
5469   // Expand Worklist in topological order: whenever a new instruction
5470   // is added , its users should be already inside Worklist.  It ensures
5471   // a uniform instruction will only be used by uniform instructions.
5472   unsigned idx = 0;
5473   while (idx != Worklist.size()) {
5474     Instruction *I = Worklist[idx++];
5475 
5476     for (auto OV : I->operand_values()) {
5477       // isOutOfScope operands cannot be uniform instructions.
5478       if (isOutOfScope(OV))
5479         continue;
5480       // First order recurrence Phi's should typically be considered
5481       // non-uniform.
5482       auto *OP = dyn_cast<PHINode>(OV);
5483       if (OP && Legal->isFirstOrderRecurrence(OP))
5484         continue;
5485       // If all the users of the operand are uniform, then add the
5486       // operand into the uniform worklist.
5487       auto *OI = cast<Instruction>(OV);
5488       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5489             auto *J = cast<Instruction>(U);
5490             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5491           }))
5492         addToWorklistIfAllowed(OI);
5493     }
5494   }
5495 
5496   // For an instruction to be added into Worklist above, all its users inside
5497   // the loop should also be in Worklist. However, this condition cannot be
5498   // true for phi nodes that form a cyclic dependence. We must process phi
5499   // nodes separately. An induction variable will remain uniform if all users
5500   // of the induction variable and induction variable update remain uniform.
5501   // The code below handles both pointer and non-pointer induction variables.
5502   for (auto &Induction : Legal->getInductionVars()) {
5503     auto *Ind = Induction.first;
5504     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5505 
5506     // Determine if all users of the induction variable are uniform after
5507     // vectorization.
5508     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5509       auto *I = cast<Instruction>(U);
5510       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5511              isVectorizedMemAccessUse(I, Ind);
5512     });
5513     if (!UniformInd)
5514       continue;
5515 
5516     // Determine if all users of the induction variable update instruction are
5517     // uniform after vectorization.
5518     auto UniformIndUpdate =
5519         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5520           auto *I = cast<Instruction>(U);
5521           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5522                  isVectorizedMemAccessUse(I, IndUpdate);
5523         });
5524     if (!UniformIndUpdate)
5525       continue;
5526 
5527     // The induction variable and its update instruction will remain uniform.
5528     addToWorklistIfAllowed(Ind);
5529     addToWorklistIfAllowed(IndUpdate);
5530   }
5531 
5532   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5533 }
5534 
5535 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5536   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5537 
5538   if (Legal->getRuntimePointerChecking()->Need) {
5539     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5540         "runtime pointer checks needed. Enable vectorization of this "
5541         "loop with '#pragma clang loop vectorize(enable)' when "
5542         "compiling with -Os/-Oz",
5543         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5544     return true;
5545   }
5546 
5547   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5548     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5549         "runtime SCEV checks needed. Enable vectorization of this "
5550         "loop with '#pragma clang loop vectorize(enable)' when "
5551         "compiling with -Os/-Oz",
5552         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5553     return true;
5554   }
5555 
5556   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5557   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5558     reportVectorizationFailure("Runtime stride check for small trip count",
5559         "runtime stride == 1 checks needed. Enable vectorization of "
5560         "this loop without such check by compiling with -Os/-Oz",
5561         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5562     return true;
5563   }
5564 
5565   return false;
5566 }
5567 
5568 ElementCount
5569 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5570   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5571     reportVectorizationInfo(
5572         "Disabling scalable vectorization, because target does not "
5573         "support scalable vectors.",
5574         "ScalableVectorsUnsupported", ORE, TheLoop);
5575     return ElementCount::getScalable(0);
5576   }
5577 
5578   if (Hints->isScalableVectorizationDisabled()) {
5579     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5580                             "ScalableVectorizationDisabled", ORE, TheLoop);
5581     return ElementCount::getScalable(0);
5582   }
5583 
5584   auto MaxScalableVF = ElementCount::getScalable(
5585       std::numeric_limits<ElementCount::ScalarTy>::max());
5586 
5587   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5588   // FIXME: While for scalable vectors this is currently sufficient, this should
5589   // be replaced by a more detailed mechanism that filters out specific VFs,
5590   // instead of invalidating vectorization for a whole set of VFs based on the
5591   // MaxVF.
5592 
5593   // Disable scalable vectorization if the loop contains unsupported reductions.
5594   if (!canVectorizeReductions(MaxScalableVF)) {
5595     reportVectorizationInfo(
5596         "Scalable vectorization not supported for the reduction "
5597         "operations found in this loop.",
5598         "ScalableVFUnfeasible", ORE, TheLoop);
5599     return ElementCount::getScalable(0);
5600   }
5601 
5602   // Disable scalable vectorization if the loop contains any instructions
5603   // with element types not supported for scalable vectors.
5604   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5605         return !Ty->isVoidTy() &&
5606                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5607       })) {
5608     reportVectorizationInfo("Scalable vectorization is not supported "
5609                             "for all element types found in this loop.",
5610                             "ScalableVFUnfeasible", ORE, TheLoop);
5611     return ElementCount::getScalable(0);
5612   }
5613 
5614   if (Legal->isSafeForAnyVectorWidth())
5615     return MaxScalableVF;
5616 
5617   // Limit MaxScalableVF by the maximum safe dependence distance.
5618   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5619   MaxScalableVF = ElementCount::getScalable(
5620       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5621   if (!MaxScalableVF)
5622     reportVectorizationInfo(
5623         "Max legal vector width too small, scalable vectorization "
5624         "unfeasible.",
5625         "ScalableVFUnfeasible", ORE, TheLoop);
5626 
5627   return MaxScalableVF;
5628 }
5629 
5630 FixedScalableVFPair
5631 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5632                                                  ElementCount UserVF) {
5633   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5634   unsigned SmallestType, WidestType;
5635   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5636 
5637   // Get the maximum safe dependence distance in bits computed by LAA.
5638   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5639   // the memory accesses that is most restrictive (involved in the smallest
5640   // dependence distance).
5641   unsigned MaxSafeElements =
5642       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5643 
5644   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5645   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5646 
5647   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5648                     << ".\n");
5649   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5650                     << ".\n");
5651 
5652   // First analyze the UserVF, fall back if the UserVF should be ignored.
5653   if (UserVF) {
5654     auto MaxSafeUserVF =
5655         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5656 
5657     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5658       // If `VF=vscale x N` is safe, then so is `VF=N`
5659       if (UserVF.isScalable())
5660         return FixedScalableVFPair(
5661             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5662       else
5663         return UserVF;
5664     }
5665 
5666     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5667 
5668     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5669     // is better to ignore the hint and let the compiler choose a suitable VF.
5670     if (!UserVF.isScalable()) {
5671       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5672                         << " is unsafe, clamping to max safe VF="
5673                         << MaxSafeFixedVF << ".\n");
5674       ORE->emit([&]() {
5675         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5676                                           TheLoop->getStartLoc(),
5677                                           TheLoop->getHeader())
5678                << "User-specified vectorization factor "
5679                << ore::NV("UserVectorizationFactor", UserVF)
5680                << " is unsafe, clamping to maximum safe vectorization factor "
5681                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5682       });
5683       return MaxSafeFixedVF;
5684     }
5685 
5686     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5687                       << " is unsafe. Ignoring scalable UserVF.\n");
5688     ORE->emit([&]() {
5689       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5690                                         TheLoop->getStartLoc(),
5691                                         TheLoop->getHeader())
5692              << "User-specified vectorization factor "
5693              << ore::NV("UserVectorizationFactor", UserVF)
5694              << " is unsafe. Ignoring the hint to let the compiler pick a "
5695                 "suitable VF.";
5696     });
5697   }
5698 
5699   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5700                     << " / " << WidestType << " bits.\n");
5701 
5702   FixedScalableVFPair Result(ElementCount::getFixed(1),
5703                              ElementCount::getScalable(0));
5704   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5705                                            WidestType, MaxSafeFixedVF))
5706     Result.FixedVF = MaxVF;
5707 
5708   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5709                                            WidestType, MaxSafeScalableVF))
5710     if (MaxVF.isScalable()) {
5711       Result.ScalableVF = MaxVF;
5712       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5713                         << "\n");
5714     }
5715 
5716   return Result;
5717 }
5718 
5719 FixedScalableVFPair
5720 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5721   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5722     // TODO: It may by useful to do since it's still likely to be dynamically
5723     // uniform if the target can skip.
5724     reportVectorizationFailure(
5725         "Not inserting runtime ptr check for divergent target",
5726         "runtime pointer checks needed. Not enabled for divergent target",
5727         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5728     return FixedScalableVFPair::getNone();
5729   }
5730 
5731   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5732   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5733   if (TC == 1) {
5734     reportVectorizationFailure("Single iteration (non) loop",
5735         "loop trip count is one, irrelevant for vectorization",
5736         "SingleIterationLoop", ORE, TheLoop);
5737     return FixedScalableVFPair::getNone();
5738   }
5739 
5740   switch (ScalarEpilogueStatus) {
5741   case CM_ScalarEpilogueAllowed:
5742     return computeFeasibleMaxVF(TC, UserVF);
5743   case CM_ScalarEpilogueNotAllowedUsePredicate:
5744     LLVM_FALLTHROUGH;
5745   case CM_ScalarEpilogueNotNeededUsePredicate:
5746     LLVM_DEBUG(
5747         dbgs() << "LV: vector predicate hint/switch found.\n"
5748                << "LV: Not allowing scalar epilogue, creating predicated "
5749                << "vector loop.\n");
5750     break;
5751   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5752     // fallthrough as a special case of OptForSize
5753   case CM_ScalarEpilogueNotAllowedOptSize:
5754     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5755       LLVM_DEBUG(
5756           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5757     else
5758       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5759                         << "count.\n");
5760 
5761     // Bail if runtime checks are required, which are not good when optimising
5762     // for size.
5763     if (runtimeChecksRequired())
5764       return FixedScalableVFPair::getNone();
5765 
5766     break;
5767   }
5768 
5769   // The only loops we can vectorize without a scalar epilogue, are loops with
5770   // a bottom-test and a single exiting block. We'd have to handle the fact
5771   // that not every instruction executes on the last iteration.  This will
5772   // require a lane mask which varies through the vector loop body.  (TODO)
5773   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5774     // If there was a tail-folding hint/switch, but we can't fold the tail by
5775     // masking, fallback to a vectorization with a scalar epilogue.
5776     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5777       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5778                            "scalar epilogue instead.\n");
5779       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5780       return computeFeasibleMaxVF(TC, UserVF);
5781     }
5782     return FixedScalableVFPair::getNone();
5783   }
5784 
5785   // Now try the tail folding
5786 
5787   // Invalidate interleave groups that require an epilogue if we can't mask
5788   // the interleave-group.
5789   if (!useMaskedInterleavedAccesses(TTI)) {
5790     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5791            "No decisions should have been taken at this point");
5792     // Note: There is no need to invalidate any cost modeling decisions here, as
5793     // non where taken so far.
5794     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5795   }
5796 
5797   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5798   // Avoid tail folding if the trip count is known to be a multiple of any VF
5799   // we chose.
5800   // FIXME: The condition below pessimises the case for fixed-width vectors,
5801   // when scalable VFs are also candidates for vectorization.
5802   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5803     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5804     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5805            "MaxFixedVF must be a power of 2");
5806     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5807                                    : MaxFixedVF.getFixedValue();
5808     ScalarEvolution *SE = PSE.getSE();
5809     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5810     const SCEV *ExitCount = SE->getAddExpr(
5811         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5812     const SCEV *Rem = SE->getURemExpr(
5813         SE->applyLoopGuards(ExitCount, TheLoop),
5814         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5815     if (Rem->isZero()) {
5816       // Accept MaxFixedVF if we do not have a tail.
5817       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5818       return MaxFactors;
5819     }
5820   }
5821 
5822   // If we don't know the precise trip count, or if the trip count that we
5823   // found modulo the vectorization factor is not zero, try to fold the tail
5824   // by masking.
5825   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5826   if (Legal->prepareToFoldTailByMasking()) {
5827     FoldTailByMasking = true;
5828     return MaxFactors;
5829   }
5830 
5831   // If there was a tail-folding hint/switch, but we can't fold the tail by
5832   // masking, fallback to a vectorization with a scalar epilogue.
5833   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5834     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5835                          "scalar epilogue instead.\n");
5836     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5837     return MaxFactors;
5838   }
5839 
5840   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5841     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5842     return FixedScalableVFPair::getNone();
5843   }
5844 
5845   if (TC == 0) {
5846     reportVectorizationFailure(
5847         "Unable to calculate the loop count due to complex control flow",
5848         "unable to calculate the loop count due to complex control flow",
5849         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5850     return FixedScalableVFPair::getNone();
5851   }
5852 
5853   reportVectorizationFailure(
5854       "Cannot optimize for size and vectorize at the same time.",
5855       "cannot optimize for size and vectorize at the same time. "
5856       "Enable vectorization of this loop with '#pragma clang loop "
5857       "vectorize(enable)' when compiling with -Os/-Oz",
5858       "NoTailLoopWithOptForSize", ORE, TheLoop);
5859   return FixedScalableVFPair::getNone();
5860 }
5861 
5862 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5863     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5864     const ElementCount &MaxSafeVF) {
5865   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5866   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5867       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5868                            : TargetTransformInfo::RGK_FixedWidthVector);
5869 
5870   // Convenience function to return the minimum of two ElementCounts.
5871   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5872     assert((LHS.isScalable() == RHS.isScalable()) &&
5873            "Scalable flags must match");
5874     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5875   };
5876 
5877   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5878   // Note that both WidestRegister and WidestType may not be a powers of 2.
5879   auto MaxVectorElementCount = ElementCount::get(
5880       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5881       ComputeScalableMaxVF);
5882   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5883   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5884                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5885 
5886   if (!MaxVectorElementCount) {
5887     LLVM_DEBUG(dbgs() << "LV: The target has no "
5888                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5889                       << " vector registers.\n");
5890     return ElementCount::getFixed(1);
5891   }
5892 
5893   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5894   if (ConstTripCount &&
5895       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5896       isPowerOf2_32(ConstTripCount)) {
5897     // We need to clamp the VF to be the ConstTripCount. There is no point in
5898     // choosing a higher viable VF as done in the loop below. If
5899     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5900     // the TC is less than or equal to the known number of lanes.
5901     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5902                       << ConstTripCount << "\n");
5903     return TripCountEC;
5904   }
5905 
5906   ElementCount MaxVF = MaxVectorElementCount;
5907   if (TTI.shouldMaximizeVectorBandwidth() ||
5908       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5909     auto MaxVectorElementCountMaxBW = ElementCount::get(
5910         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5911         ComputeScalableMaxVF);
5912     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5913 
5914     // Collect all viable vectorization factors larger than the default MaxVF
5915     // (i.e. MaxVectorElementCount).
5916     SmallVector<ElementCount, 8> VFs;
5917     for (ElementCount VS = MaxVectorElementCount * 2;
5918          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5919       VFs.push_back(VS);
5920 
5921     // For each VF calculate its register usage.
5922     auto RUs = calculateRegisterUsage(VFs);
5923 
5924     // Select the largest VF which doesn't require more registers than existing
5925     // ones.
5926     for (int i = RUs.size() - 1; i >= 0; --i) {
5927       bool Selected = true;
5928       for (auto &pair : RUs[i].MaxLocalUsers) {
5929         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5930         if (pair.second > TargetNumRegisters)
5931           Selected = false;
5932       }
5933       if (Selected) {
5934         MaxVF = VFs[i];
5935         break;
5936       }
5937     }
5938     if (ElementCount MinVF =
5939             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5940       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5941         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5942                           << ") with target's minimum: " << MinVF << '\n');
5943         MaxVF = MinVF;
5944       }
5945     }
5946   }
5947   return MaxVF;
5948 }
5949 
5950 bool LoopVectorizationCostModel::isMoreProfitable(
5951     const VectorizationFactor &A, const VectorizationFactor &B) const {
5952   InstructionCost CostA = A.Cost;
5953   InstructionCost CostB = B.Cost;
5954 
5955   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5956 
5957   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5958       MaxTripCount) {
5959     // If we are folding the tail and the trip count is a known (possibly small)
5960     // constant, the trip count will be rounded up to an integer number of
5961     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5962     // which we compare directly. When not folding the tail, the total cost will
5963     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5964     // approximated with the per-lane cost below instead of using the tripcount
5965     // as here.
5966     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5967     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5968     return RTCostA < RTCostB;
5969   }
5970 
5971   // When set to preferred, for now assume vscale may be larger than 1, so
5972   // that scalable vectorization is slightly favorable over fixed-width
5973   // vectorization.
5974   if (Hints->isScalableVectorizationPreferred())
5975     if (A.Width.isScalable() && !B.Width.isScalable())
5976       return (CostA * B.Width.getKnownMinValue()) <=
5977              (CostB * A.Width.getKnownMinValue());
5978 
5979   // To avoid the need for FP division:
5980   //      (CostA / A.Width) < (CostB / B.Width)
5981   // <=>  (CostA * B.Width) < (CostB * A.Width)
5982   return (CostA * B.Width.getKnownMinValue()) <
5983          (CostB * A.Width.getKnownMinValue());
5984 }
5985 
5986 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5987     const ElementCountSet &VFCandidates) {
5988   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5989   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5990   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5991   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5992          "Expected Scalar VF to be a candidate");
5993 
5994   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5995   VectorizationFactor ChosenFactor = ScalarCost;
5996 
5997   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5998   if (ForceVectorization && VFCandidates.size() > 1) {
5999     // Ignore scalar width, because the user explicitly wants vectorization.
6000     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6001     // evaluation.
6002     ChosenFactor.Cost = InstructionCost::getMax();
6003   }
6004 
6005   SmallVector<InstructionVFPair> InvalidCosts;
6006   for (const auto &i : VFCandidates) {
6007     // The cost for scalar VF=1 is already calculated, so ignore it.
6008     if (i.isScalar())
6009       continue;
6010 
6011     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6012     VectorizationFactor Candidate(i, C.first);
6013     LLVM_DEBUG(
6014         dbgs() << "LV: Vector loop of width " << i << " costs: "
6015                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6016                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6017                << ".\n");
6018 
6019     if (!C.second && !ForceVectorization) {
6020       LLVM_DEBUG(
6021           dbgs() << "LV: Not considering vector loop of width " << i
6022                  << " because it will not generate any vector instructions.\n");
6023       continue;
6024     }
6025 
6026     // If profitable add it to ProfitableVF list.
6027     if (isMoreProfitable(Candidate, ScalarCost))
6028       ProfitableVFs.push_back(Candidate);
6029 
6030     if (isMoreProfitable(Candidate, ChosenFactor))
6031       ChosenFactor = Candidate;
6032   }
6033 
6034   // Emit a report of VFs with invalid costs in the loop.
6035   if (!InvalidCosts.empty()) {
6036     // Group the remarks per instruction, keeping the instruction order from
6037     // InvalidCosts.
6038     std::map<Instruction *, unsigned> Numbering;
6039     unsigned I = 0;
6040     for (auto &Pair : InvalidCosts)
6041       if (!Numbering.count(Pair.first))
6042         Numbering[Pair.first] = I++;
6043 
6044     // Sort the list, first on instruction(number) then on VF.
6045     llvm::sort(InvalidCosts,
6046                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6047                  if (Numbering[A.first] != Numbering[B.first])
6048                    return Numbering[A.first] < Numbering[B.first];
6049                  ElementCountComparator ECC;
6050                  return ECC(A.second, B.second);
6051                });
6052 
6053     // For a list of ordered instruction-vf pairs:
6054     //   [(load, vf1), (load, vf2), (store, vf1)]
6055     // Group the instructions together to emit separate remarks for:
6056     //   load  (vf1, vf2)
6057     //   store (vf1)
6058     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6059     auto Subset = ArrayRef<InstructionVFPair>();
6060     do {
6061       if (Subset.empty())
6062         Subset = Tail.take_front(1);
6063 
6064       Instruction *I = Subset.front().first;
6065 
6066       // If the next instruction is different, or if there are no other pairs,
6067       // emit a remark for the collated subset. e.g.
6068       //   [(load, vf1), (load, vf2))]
6069       // to emit:
6070       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6071       if (Subset == Tail || Tail[Subset.size()].first != I) {
6072         std::string OutString;
6073         raw_string_ostream OS(OutString);
6074         assert(!Subset.empty() && "Unexpected empty range");
6075         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6076         for (auto &Pair : Subset)
6077           OS << (Pair.second == Subset.front().second ? "" : ", ")
6078              << Pair.second;
6079         OS << "):";
6080         if (auto *CI = dyn_cast<CallInst>(I))
6081           OS << " call to " << CI->getCalledFunction()->getName();
6082         else
6083           OS << " " << I->getOpcodeName();
6084         OS.flush();
6085         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6086         Tail = Tail.drop_front(Subset.size());
6087         Subset = {};
6088       } else
6089         // Grow the subset by one element
6090         Subset = Tail.take_front(Subset.size() + 1);
6091     } while (!Tail.empty());
6092   }
6093 
6094   if (!EnableCondStoresVectorization && NumPredStores) {
6095     reportVectorizationFailure("There are conditional stores.",
6096         "store that is conditionally executed prevents vectorization",
6097         "ConditionalStore", ORE, TheLoop);
6098     ChosenFactor = ScalarCost;
6099   }
6100 
6101   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6102                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6103              << "LV: Vectorization seems to be not beneficial, "
6104              << "but was forced by a user.\n");
6105   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6106   return ChosenFactor;
6107 }
6108 
6109 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6110     const Loop &L, ElementCount VF) const {
6111   // Cross iteration phis such as reductions need special handling and are
6112   // currently unsupported.
6113   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6114         return Legal->isFirstOrderRecurrence(&Phi) ||
6115                Legal->isReductionVariable(&Phi);
6116       }))
6117     return false;
6118 
6119   // Phis with uses outside of the loop require special handling and are
6120   // currently unsupported.
6121   for (auto &Entry : Legal->getInductionVars()) {
6122     // Look for uses of the value of the induction at the last iteration.
6123     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6124     for (User *U : PostInc->users())
6125       if (!L.contains(cast<Instruction>(U)))
6126         return false;
6127     // Look for uses of penultimate value of the induction.
6128     for (User *U : Entry.first->users())
6129       if (!L.contains(cast<Instruction>(U)))
6130         return false;
6131   }
6132 
6133   // Induction variables that are widened require special handling that is
6134   // currently not supported.
6135   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6136         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6137                  this->isProfitableToScalarize(Entry.first, VF));
6138       }))
6139     return false;
6140 
6141   // Epilogue vectorization code has not been auditted to ensure it handles
6142   // non-latch exits properly.  It may be fine, but it needs auditted and
6143   // tested.
6144   if (L.getExitingBlock() != L.getLoopLatch())
6145     return false;
6146 
6147   return true;
6148 }
6149 
6150 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6151     const ElementCount VF) const {
6152   // FIXME: We need a much better cost-model to take different parameters such
6153   // as register pressure, code size increase and cost of extra branches into
6154   // account. For now we apply a very crude heuristic and only consider loops
6155   // with vectorization factors larger than a certain value.
6156   // We also consider epilogue vectorization unprofitable for targets that don't
6157   // consider interleaving beneficial (eg. MVE).
6158   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6159     return false;
6160   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6161     return true;
6162   return false;
6163 }
6164 
6165 VectorizationFactor
6166 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6167     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6168   VectorizationFactor Result = VectorizationFactor::Disabled();
6169   if (!EnableEpilogueVectorization) {
6170     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6171     return Result;
6172   }
6173 
6174   if (!isScalarEpilogueAllowed()) {
6175     LLVM_DEBUG(
6176         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6177                   "allowed.\n";);
6178     return Result;
6179   }
6180 
6181   // FIXME: This can be fixed for scalable vectors later, because at this stage
6182   // the LoopVectorizer will only consider vectorizing a loop with scalable
6183   // vectors when the loop has a hint to enable vectorization for a given VF.
6184   if (MainLoopVF.isScalable()) {
6185     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6186                          "yet supported.\n");
6187     return Result;
6188   }
6189 
6190   // Not really a cost consideration, but check for unsupported cases here to
6191   // simplify the logic.
6192   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6193     LLVM_DEBUG(
6194         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6195                   "not a supported candidate.\n";);
6196     return Result;
6197   }
6198 
6199   if (EpilogueVectorizationForceVF > 1) {
6200     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6201     if (LVP.hasPlanWithVFs(
6202             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6203       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6204     else {
6205       LLVM_DEBUG(
6206           dbgs()
6207               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6208       return Result;
6209     }
6210   }
6211 
6212   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6213       TheLoop->getHeader()->getParent()->hasMinSize()) {
6214     LLVM_DEBUG(
6215         dbgs()
6216             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6217     return Result;
6218   }
6219 
6220   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6221     return Result;
6222 
6223   for (auto &NextVF : ProfitableVFs)
6224     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6225         (Result.Width.getFixedValue() == 1 ||
6226          isMoreProfitable(NextVF, Result)) &&
6227         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6228       Result = NextVF;
6229 
6230   if (Result != VectorizationFactor::Disabled())
6231     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6232                       << Result.Width.getFixedValue() << "\n";);
6233   return Result;
6234 }
6235 
6236 std::pair<unsigned, unsigned>
6237 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6238   unsigned MinWidth = -1U;
6239   unsigned MaxWidth = 8;
6240   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6241   for (Type *T : ElementTypesInLoop) {
6242     MinWidth = std::min<unsigned>(
6243         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6244     MaxWidth = std::max<unsigned>(
6245         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6246   }
6247   return {MinWidth, MaxWidth};
6248 }
6249 
6250 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6251   ElementTypesInLoop.clear();
6252   // For each block.
6253   for (BasicBlock *BB : TheLoop->blocks()) {
6254     // For each instruction in the loop.
6255     for (Instruction &I : BB->instructionsWithoutDebug()) {
6256       Type *T = I.getType();
6257 
6258       // Skip ignored values.
6259       if (ValuesToIgnore.count(&I))
6260         continue;
6261 
6262       // Only examine Loads, Stores and PHINodes.
6263       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6264         continue;
6265 
6266       // Examine PHI nodes that are reduction variables. Update the type to
6267       // account for the recurrence type.
6268       if (auto *PN = dyn_cast<PHINode>(&I)) {
6269         if (!Legal->isReductionVariable(PN))
6270           continue;
6271         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6272         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6273             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6274                                       RdxDesc.getRecurrenceType(),
6275                                       TargetTransformInfo::ReductionFlags()))
6276           continue;
6277         T = RdxDesc.getRecurrenceType();
6278       }
6279 
6280       // Examine the stored values.
6281       if (auto *ST = dyn_cast<StoreInst>(&I))
6282         T = ST->getValueOperand()->getType();
6283 
6284       // Ignore loaded pointer types and stored pointer types that are not
6285       // vectorizable.
6286       //
6287       // FIXME: The check here attempts to predict whether a load or store will
6288       //        be vectorized. We only know this for certain after a VF has
6289       //        been selected. Here, we assume that if an access can be
6290       //        vectorized, it will be. We should also look at extending this
6291       //        optimization to non-pointer types.
6292       //
6293       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6294           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6295         continue;
6296 
6297       ElementTypesInLoop.insert(T);
6298     }
6299   }
6300 }
6301 
6302 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6303                                                            unsigned LoopCost) {
6304   // -- The interleave heuristics --
6305   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6306   // There are many micro-architectural considerations that we can't predict
6307   // at this level. For example, frontend pressure (on decode or fetch) due to
6308   // code size, or the number and capabilities of the execution ports.
6309   //
6310   // We use the following heuristics to select the interleave count:
6311   // 1. If the code has reductions, then we interleave to break the cross
6312   // iteration dependency.
6313   // 2. If the loop is really small, then we interleave to reduce the loop
6314   // overhead.
6315   // 3. We don't interleave if we think that we will spill registers to memory
6316   // due to the increased register pressure.
6317 
6318   if (!isScalarEpilogueAllowed())
6319     return 1;
6320 
6321   // We used the distance for the interleave count.
6322   if (Legal->getMaxSafeDepDistBytes() != -1U)
6323     return 1;
6324 
6325   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6326   const bool HasReductions = !Legal->getReductionVars().empty();
6327   // Do not interleave loops with a relatively small known or estimated trip
6328   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6329   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6330   // because with the above conditions interleaving can expose ILP and break
6331   // cross iteration dependences for reductions.
6332   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6333       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6334     return 1;
6335 
6336   RegisterUsage R = calculateRegisterUsage({VF})[0];
6337   // We divide by these constants so assume that we have at least one
6338   // instruction that uses at least one register.
6339   for (auto& pair : R.MaxLocalUsers) {
6340     pair.second = std::max(pair.second, 1U);
6341   }
6342 
6343   // We calculate the interleave count using the following formula.
6344   // Subtract the number of loop invariants from the number of available
6345   // registers. These registers are used by all of the interleaved instances.
6346   // Next, divide the remaining registers by the number of registers that is
6347   // required by the loop, in order to estimate how many parallel instances
6348   // fit without causing spills. All of this is rounded down if necessary to be
6349   // a power of two. We want power of two interleave count to simplify any
6350   // addressing operations or alignment considerations.
6351   // We also want power of two interleave counts to ensure that the induction
6352   // variable of the vector loop wraps to zero, when tail is folded by masking;
6353   // this currently happens when OptForSize, in which case IC is set to 1 above.
6354   unsigned IC = UINT_MAX;
6355 
6356   for (auto& pair : R.MaxLocalUsers) {
6357     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6358     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6359                       << " registers of "
6360                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6361     if (VF.isScalar()) {
6362       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6363         TargetNumRegisters = ForceTargetNumScalarRegs;
6364     } else {
6365       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6366         TargetNumRegisters = ForceTargetNumVectorRegs;
6367     }
6368     unsigned MaxLocalUsers = pair.second;
6369     unsigned LoopInvariantRegs = 0;
6370     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6371       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6372 
6373     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6374     // Don't count the induction variable as interleaved.
6375     if (EnableIndVarRegisterHeur) {
6376       TmpIC =
6377           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6378                         std::max(1U, (MaxLocalUsers - 1)));
6379     }
6380 
6381     IC = std::min(IC, TmpIC);
6382   }
6383 
6384   // Clamp the interleave ranges to reasonable counts.
6385   unsigned MaxInterleaveCount =
6386       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6387 
6388   // Check if the user has overridden the max.
6389   if (VF.isScalar()) {
6390     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6391       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6392   } else {
6393     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6394       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6395   }
6396 
6397   // If trip count is known or estimated compile time constant, limit the
6398   // interleave count to be less than the trip count divided by VF, provided it
6399   // is at least 1.
6400   //
6401   // For scalable vectors we can't know if interleaving is beneficial. It may
6402   // not be beneficial for small loops if none of the lanes in the second vector
6403   // iterations is enabled. However, for larger loops, there is likely to be a
6404   // similar benefit as for fixed-width vectors. For now, we choose to leave
6405   // the InterleaveCount as if vscale is '1', although if some information about
6406   // the vector is known (e.g. min vector size), we can make a better decision.
6407   if (BestKnownTC) {
6408     MaxInterleaveCount =
6409         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6410     // Make sure MaxInterleaveCount is greater than 0.
6411     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6412   }
6413 
6414   assert(MaxInterleaveCount > 0 &&
6415          "Maximum interleave count must be greater than 0");
6416 
6417   // Clamp the calculated IC to be between the 1 and the max interleave count
6418   // that the target and trip count allows.
6419   if (IC > MaxInterleaveCount)
6420     IC = MaxInterleaveCount;
6421   else
6422     // Make sure IC is greater than 0.
6423     IC = std::max(1u, IC);
6424 
6425   assert(IC > 0 && "Interleave count must be greater than 0.");
6426 
6427   // If we did not calculate the cost for VF (because the user selected the VF)
6428   // then we calculate the cost of VF here.
6429   if (LoopCost == 0) {
6430     InstructionCost C = expectedCost(VF).first;
6431     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6432     LoopCost = *C.getValue();
6433   }
6434 
6435   assert(LoopCost && "Non-zero loop cost expected");
6436 
6437   // Interleave if we vectorized this loop and there is a reduction that could
6438   // benefit from interleaving.
6439   if (VF.isVector() && HasReductions) {
6440     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6441     return IC;
6442   }
6443 
6444   // Note that if we've already vectorized the loop we will have done the
6445   // runtime check and so interleaving won't require further checks.
6446   bool InterleavingRequiresRuntimePointerCheck =
6447       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6448 
6449   // We want to interleave small loops in order to reduce the loop overhead and
6450   // potentially expose ILP opportunities.
6451   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6452                     << "LV: IC is " << IC << '\n'
6453                     << "LV: VF is " << VF << '\n');
6454   const bool AggressivelyInterleaveReductions =
6455       TTI.enableAggressiveInterleaving(HasReductions);
6456   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6457     // We assume that the cost overhead is 1 and we use the cost model
6458     // to estimate the cost of the loop and interleave until the cost of the
6459     // loop overhead is about 5% of the cost of the loop.
6460     unsigned SmallIC =
6461         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6462 
6463     // Interleave until store/load ports (estimated by max interleave count) are
6464     // saturated.
6465     unsigned NumStores = Legal->getNumStores();
6466     unsigned NumLoads = Legal->getNumLoads();
6467     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6468     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6469 
6470     // If we have a scalar reduction (vector reductions are already dealt with
6471     // by this point), we can increase the critical path length if the loop
6472     // we're interleaving is inside another loop. Limit, by default to 2, so the
6473     // critical path only gets increased by one reduction operation.
6474     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6475       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6476       SmallIC = std::min(SmallIC, F);
6477       StoresIC = std::min(StoresIC, F);
6478       LoadsIC = std::min(LoadsIC, F);
6479     }
6480 
6481     if (EnableLoadStoreRuntimeInterleave &&
6482         std::max(StoresIC, LoadsIC) > SmallIC) {
6483       LLVM_DEBUG(
6484           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6485       return std::max(StoresIC, LoadsIC);
6486     }
6487 
6488     // If there are scalar reductions and TTI has enabled aggressive
6489     // interleaving for reductions, we will interleave to expose ILP.
6490     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6491         AggressivelyInterleaveReductions) {
6492       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6493       // Interleave no less than SmallIC but not as aggressive as the normal IC
6494       // to satisfy the rare situation when resources are too limited.
6495       return std::max(IC / 2, SmallIC);
6496     } else {
6497       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6498       return SmallIC;
6499     }
6500   }
6501 
6502   // Interleave if this is a large loop (small loops are already dealt with by
6503   // this point) that could benefit from interleaving.
6504   if (AggressivelyInterleaveReductions) {
6505     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6506     return IC;
6507   }
6508 
6509   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6510   return 1;
6511 }
6512 
6513 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6514 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6515   // This function calculates the register usage by measuring the highest number
6516   // of values that are alive at a single location. Obviously, this is a very
6517   // rough estimation. We scan the loop in a topological order in order and
6518   // assign a number to each instruction. We use RPO to ensure that defs are
6519   // met before their users. We assume that each instruction that has in-loop
6520   // users starts an interval. We record every time that an in-loop value is
6521   // used, so we have a list of the first and last occurrences of each
6522   // instruction. Next, we transpose this data structure into a multi map that
6523   // holds the list of intervals that *end* at a specific location. This multi
6524   // map allows us to perform a linear search. We scan the instructions linearly
6525   // and record each time that a new interval starts, by placing it in a set.
6526   // If we find this value in the multi-map then we remove it from the set.
6527   // The max register usage is the maximum size of the set.
6528   // We also search for instructions that are defined outside the loop, but are
6529   // used inside the loop. We need this number separately from the max-interval
6530   // usage number because when we unroll, loop-invariant values do not take
6531   // more register.
6532   LoopBlocksDFS DFS(TheLoop);
6533   DFS.perform(LI);
6534 
6535   RegisterUsage RU;
6536 
6537   // Each 'key' in the map opens a new interval. The values
6538   // of the map are the index of the 'last seen' usage of the
6539   // instruction that is the key.
6540   using IntervalMap = DenseMap<Instruction *, unsigned>;
6541 
6542   // Maps instruction to its index.
6543   SmallVector<Instruction *, 64> IdxToInstr;
6544   // Marks the end of each interval.
6545   IntervalMap EndPoint;
6546   // Saves the list of instruction indices that are used in the loop.
6547   SmallPtrSet<Instruction *, 8> Ends;
6548   // Saves the list of values that are used in the loop but are
6549   // defined outside the loop, such as arguments and constants.
6550   SmallPtrSet<Value *, 8> LoopInvariants;
6551 
6552   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6553     for (Instruction &I : BB->instructionsWithoutDebug()) {
6554       IdxToInstr.push_back(&I);
6555 
6556       // Save the end location of each USE.
6557       for (Value *U : I.operands()) {
6558         auto *Instr = dyn_cast<Instruction>(U);
6559 
6560         // Ignore non-instruction values such as arguments, constants, etc.
6561         if (!Instr)
6562           continue;
6563 
6564         // If this instruction is outside the loop then record it and continue.
6565         if (!TheLoop->contains(Instr)) {
6566           LoopInvariants.insert(Instr);
6567           continue;
6568         }
6569 
6570         // Overwrite previous end points.
6571         EndPoint[Instr] = IdxToInstr.size();
6572         Ends.insert(Instr);
6573       }
6574     }
6575   }
6576 
6577   // Saves the list of intervals that end with the index in 'key'.
6578   using InstrList = SmallVector<Instruction *, 2>;
6579   DenseMap<unsigned, InstrList> TransposeEnds;
6580 
6581   // Transpose the EndPoints to a list of values that end at each index.
6582   for (auto &Interval : EndPoint)
6583     TransposeEnds[Interval.second].push_back(Interval.first);
6584 
6585   SmallPtrSet<Instruction *, 8> OpenIntervals;
6586   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6587   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6588 
6589   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6590 
6591   // A lambda that gets the register usage for the given type and VF.
6592   const auto &TTICapture = TTI;
6593   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6594     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6595       return 0;
6596     InstructionCost::CostType RegUsage =
6597         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6598     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6599            "Nonsensical values for register usage.");
6600     return RegUsage;
6601   };
6602 
6603   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6604     Instruction *I = IdxToInstr[i];
6605 
6606     // Remove all of the instructions that end at this location.
6607     InstrList &List = TransposeEnds[i];
6608     for (Instruction *ToRemove : List)
6609       OpenIntervals.erase(ToRemove);
6610 
6611     // Ignore instructions that are never used within the loop.
6612     if (!Ends.count(I))
6613       continue;
6614 
6615     // Skip ignored values.
6616     if (ValuesToIgnore.count(I))
6617       continue;
6618 
6619     // For each VF find the maximum usage of registers.
6620     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6621       // Count the number of live intervals.
6622       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6623 
6624       if (VFs[j].isScalar()) {
6625         for (auto Inst : OpenIntervals) {
6626           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6627           if (RegUsage.find(ClassID) == RegUsage.end())
6628             RegUsage[ClassID] = 1;
6629           else
6630             RegUsage[ClassID] += 1;
6631         }
6632       } else {
6633         collectUniformsAndScalars(VFs[j]);
6634         for (auto Inst : OpenIntervals) {
6635           // Skip ignored values for VF > 1.
6636           if (VecValuesToIgnore.count(Inst))
6637             continue;
6638           if (isScalarAfterVectorization(Inst, VFs[j])) {
6639             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6640             if (RegUsage.find(ClassID) == RegUsage.end())
6641               RegUsage[ClassID] = 1;
6642             else
6643               RegUsage[ClassID] += 1;
6644           } else {
6645             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6646             if (RegUsage.find(ClassID) == RegUsage.end())
6647               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6648             else
6649               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6650           }
6651         }
6652       }
6653 
6654       for (auto& pair : RegUsage) {
6655         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6656           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6657         else
6658           MaxUsages[j][pair.first] = pair.second;
6659       }
6660     }
6661 
6662     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6663                       << OpenIntervals.size() << '\n');
6664 
6665     // Add the current instruction to the list of open intervals.
6666     OpenIntervals.insert(I);
6667   }
6668 
6669   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6670     SmallMapVector<unsigned, unsigned, 4> Invariant;
6671 
6672     for (auto Inst : LoopInvariants) {
6673       unsigned Usage =
6674           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6675       unsigned ClassID =
6676           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6677       if (Invariant.find(ClassID) == Invariant.end())
6678         Invariant[ClassID] = Usage;
6679       else
6680         Invariant[ClassID] += Usage;
6681     }
6682 
6683     LLVM_DEBUG({
6684       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6685       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6686              << " item\n";
6687       for (const auto &pair : MaxUsages[i]) {
6688         dbgs() << "LV(REG): RegisterClass: "
6689                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6690                << " registers\n";
6691       }
6692       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6693              << " item\n";
6694       for (const auto &pair : Invariant) {
6695         dbgs() << "LV(REG): RegisterClass: "
6696                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6697                << " registers\n";
6698       }
6699     });
6700 
6701     RU.LoopInvariantRegs = Invariant;
6702     RU.MaxLocalUsers = MaxUsages[i];
6703     RUs[i] = RU;
6704   }
6705 
6706   return RUs;
6707 }
6708 
6709 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6710   // TODO: Cost model for emulated masked load/store is completely
6711   // broken. This hack guides the cost model to use an artificially
6712   // high enough value to practically disable vectorization with such
6713   // operations, except where previously deployed legality hack allowed
6714   // using very low cost values. This is to avoid regressions coming simply
6715   // from moving "masked load/store" check from legality to cost model.
6716   // Masked Load/Gather emulation was previously never allowed.
6717   // Limited number of Masked Store/Scatter emulation was allowed.
6718   assert(isPredicatedInst(I) &&
6719          "Expecting a scalar emulated instruction");
6720   return isa<LoadInst>(I) ||
6721          (isa<StoreInst>(I) &&
6722           NumPredStores > NumberOfStoresToPredicate);
6723 }
6724 
6725 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6726   // If we aren't vectorizing the loop, or if we've already collected the
6727   // instructions to scalarize, there's nothing to do. Collection may already
6728   // have occurred if we have a user-selected VF and are now computing the
6729   // expected cost for interleaving.
6730   if (VF.isScalar() || VF.isZero() ||
6731       InstsToScalarize.find(VF) != InstsToScalarize.end())
6732     return;
6733 
6734   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6735   // not profitable to scalarize any instructions, the presence of VF in the
6736   // map will indicate that we've analyzed it already.
6737   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6738 
6739   // Find all the instructions that are scalar with predication in the loop and
6740   // determine if it would be better to not if-convert the blocks they are in.
6741   // If so, we also record the instructions to scalarize.
6742   for (BasicBlock *BB : TheLoop->blocks()) {
6743     if (!blockNeedsPredication(BB))
6744       continue;
6745     for (Instruction &I : *BB)
6746       if (isScalarWithPredication(&I)) {
6747         ScalarCostsTy ScalarCosts;
6748         // Do not apply discount logic if hacked cost is needed
6749         // for emulated masked memrefs.
6750         if (!useEmulatedMaskMemRefHack(&I) &&
6751             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6752           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6753         // Remember that BB will remain after vectorization.
6754         PredicatedBBsAfterVectorization.insert(BB);
6755       }
6756   }
6757 }
6758 
6759 int LoopVectorizationCostModel::computePredInstDiscount(
6760     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6761   assert(!isUniformAfterVectorization(PredInst, VF) &&
6762          "Instruction marked uniform-after-vectorization will be predicated");
6763 
6764   // Initialize the discount to zero, meaning that the scalar version and the
6765   // vector version cost the same.
6766   InstructionCost Discount = 0;
6767 
6768   // Holds instructions to analyze. The instructions we visit are mapped in
6769   // ScalarCosts. Those instructions are the ones that would be scalarized if
6770   // we find that the scalar version costs less.
6771   SmallVector<Instruction *, 8> Worklist;
6772 
6773   // Returns true if the given instruction can be scalarized.
6774   auto canBeScalarized = [&](Instruction *I) -> bool {
6775     // We only attempt to scalarize instructions forming a single-use chain
6776     // from the original predicated block that would otherwise be vectorized.
6777     // Although not strictly necessary, we give up on instructions we know will
6778     // already be scalar to avoid traversing chains that are unlikely to be
6779     // beneficial.
6780     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6781         isScalarAfterVectorization(I, VF))
6782       return false;
6783 
6784     // If the instruction is scalar with predication, it will be analyzed
6785     // separately. We ignore it within the context of PredInst.
6786     if (isScalarWithPredication(I))
6787       return false;
6788 
6789     // If any of the instruction's operands are uniform after vectorization,
6790     // the instruction cannot be scalarized. This prevents, for example, a
6791     // masked load from being scalarized.
6792     //
6793     // We assume we will only emit a value for lane zero of an instruction
6794     // marked uniform after vectorization, rather than VF identical values.
6795     // Thus, if we scalarize an instruction that uses a uniform, we would
6796     // create uses of values corresponding to the lanes we aren't emitting code
6797     // for. This behavior can be changed by allowing getScalarValue to clone
6798     // the lane zero values for uniforms rather than asserting.
6799     for (Use &U : I->operands())
6800       if (auto *J = dyn_cast<Instruction>(U.get()))
6801         if (isUniformAfterVectorization(J, VF))
6802           return false;
6803 
6804     // Otherwise, we can scalarize the instruction.
6805     return true;
6806   };
6807 
6808   // Compute the expected cost discount from scalarizing the entire expression
6809   // feeding the predicated instruction. We currently only consider expressions
6810   // that are single-use instruction chains.
6811   Worklist.push_back(PredInst);
6812   while (!Worklist.empty()) {
6813     Instruction *I = Worklist.pop_back_val();
6814 
6815     // If we've already analyzed the instruction, there's nothing to do.
6816     if (ScalarCosts.find(I) != ScalarCosts.end())
6817       continue;
6818 
6819     // Compute the cost of the vector instruction. Note that this cost already
6820     // includes the scalarization overhead of the predicated instruction.
6821     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6822 
6823     // Compute the cost of the scalarized instruction. This cost is the cost of
6824     // the instruction as if it wasn't if-converted and instead remained in the
6825     // predicated block. We will scale this cost by block probability after
6826     // computing the scalarization overhead.
6827     InstructionCost ScalarCost =
6828         VF.getFixedValue() *
6829         getInstructionCost(I, ElementCount::getFixed(1)).first;
6830 
6831     // Compute the scalarization overhead of needed insertelement instructions
6832     // and phi nodes.
6833     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6834       ScalarCost += TTI.getScalarizationOverhead(
6835           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6836           APInt::getAllOnesValue(VF.getFixedValue()), true, false);
6837       ScalarCost +=
6838           VF.getFixedValue() *
6839           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6840     }
6841 
6842     // Compute the scalarization overhead of needed extractelement
6843     // instructions. For each of the instruction's operands, if the operand can
6844     // be scalarized, add it to the worklist; otherwise, account for the
6845     // overhead.
6846     for (Use &U : I->operands())
6847       if (auto *J = dyn_cast<Instruction>(U.get())) {
6848         assert(VectorType::isValidElementType(J->getType()) &&
6849                "Instruction has non-scalar type");
6850         if (canBeScalarized(J))
6851           Worklist.push_back(J);
6852         else if (needsExtract(J, VF)) {
6853           ScalarCost += TTI.getScalarizationOverhead(
6854               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6855               APInt::getAllOnesValue(VF.getFixedValue()), false, true);
6856         }
6857       }
6858 
6859     // Scale the total scalar cost by block probability.
6860     ScalarCost /= getReciprocalPredBlockProb();
6861 
6862     // Compute the discount. A non-negative discount means the vector version
6863     // of the instruction costs more, and scalarizing would be beneficial.
6864     Discount += VectorCost - ScalarCost;
6865     ScalarCosts[I] = ScalarCost;
6866   }
6867 
6868   return *Discount.getValue();
6869 }
6870 
6871 LoopVectorizationCostModel::VectorizationCostTy
6872 LoopVectorizationCostModel::expectedCost(
6873     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6874   VectorizationCostTy Cost;
6875 
6876   // For each block.
6877   for (BasicBlock *BB : TheLoop->blocks()) {
6878     VectorizationCostTy BlockCost;
6879 
6880     // For each instruction in the old loop.
6881     for (Instruction &I : BB->instructionsWithoutDebug()) {
6882       // Skip ignored values.
6883       if (ValuesToIgnore.count(&I) ||
6884           (VF.isVector() && VecValuesToIgnore.count(&I)))
6885         continue;
6886 
6887       VectorizationCostTy C = getInstructionCost(&I, VF);
6888 
6889       // Check if we should override the cost.
6890       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6891         C.first = InstructionCost(ForceTargetInstructionCost);
6892 
6893       // Keep a list of instructions with invalid costs.
6894       if (Invalid && !C.first.isValid())
6895         Invalid->emplace_back(&I, VF);
6896 
6897       BlockCost.first += C.first;
6898       BlockCost.second |= C.second;
6899       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6900                         << " for VF " << VF << " For instruction: " << I
6901                         << '\n');
6902     }
6903 
6904     // If we are vectorizing a predicated block, it will have been
6905     // if-converted. This means that the block's instructions (aside from
6906     // stores and instructions that may divide by zero) will now be
6907     // unconditionally executed. For the scalar case, we may not always execute
6908     // the predicated block, if it is an if-else block. Thus, scale the block's
6909     // cost by the probability of executing it. blockNeedsPredication from
6910     // Legal is used so as to not include all blocks in tail folded loops.
6911     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6912       BlockCost.first /= getReciprocalPredBlockProb();
6913 
6914     Cost.first += BlockCost.first;
6915     Cost.second |= BlockCost.second;
6916   }
6917 
6918   return Cost;
6919 }
6920 
6921 /// Gets Address Access SCEV after verifying that the access pattern
6922 /// is loop invariant except the induction variable dependence.
6923 ///
6924 /// This SCEV can be sent to the Target in order to estimate the address
6925 /// calculation cost.
6926 static const SCEV *getAddressAccessSCEV(
6927               Value *Ptr,
6928               LoopVectorizationLegality *Legal,
6929               PredicatedScalarEvolution &PSE,
6930               const Loop *TheLoop) {
6931 
6932   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6933   if (!Gep)
6934     return nullptr;
6935 
6936   // We are looking for a gep with all loop invariant indices except for one
6937   // which should be an induction variable.
6938   auto SE = PSE.getSE();
6939   unsigned NumOperands = Gep->getNumOperands();
6940   for (unsigned i = 1; i < NumOperands; ++i) {
6941     Value *Opd = Gep->getOperand(i);
6942     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6943         !Legal->isInductionVariable(Opd))
6944       return nullptr;
6945   }
6946 
6947   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6948   return PSE.getSCEV(Ptr);
6949 }
6950 
6951 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6952   return Legal->hasStride(I->getOperand(0)) ||
6953          Legal->hasStride(I->getOperand(1));
6954 }
6955 
6956 InstructionCost
6957 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6958                                                         ElementCount VF) {
6959   assert(VF.isVector() &&
6960          "Scalarization cost of instruction implies vectorization.");
6961   if (VF.isScalable())
6962     return InstructionCost::getInvalid();
6963 
6964   Type *ValTy = getLoadStoreType(I);
6965   auto SE = PSE.getSE();
6966 
6967   unsigned AS = getLoadStoreAddressSpace(I);
6968   Value *Ptr = getLoadStorePointerOperand(I);
6969   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6970 
6971   // Figure out whether the access is strided and get the stride value
6972   // if it's known in compile time
6973   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6974 
6975   // Get the cost of the scalar memory instruction and address computation.
6976   InstructionCost Cost =
6977       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6978 
6979   // Don't pass *I here, since it is scalar but will actually be part of a
6980   // vectorized loop where the user of it is a vectorized instruction.
6981   const Align Alignment = getLoadStoreAlignment(I);
6982   Cost += VF.getKnownMinValue() *
6983           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6984                               AS, TTI::TCK_RecipThroughput);
6985 
6986   // Get the overhead of the extractelement and insertelement instructions
6987   // we might create due to scalarization.
6988   Cost += getScalarizationOverhead(I, VF);
6989 
6990   // If we have a predicated load/store, it will need extra i1 extracts and
6991   // conditional branches, but may not be executed for each vector lane. Scale
6992   // the cost by the probability of executing the predicated block.
6993   if (isPredicatedInst(I)) {
6994     Cost /= getReciprocalPredBlockProb();
6995 
6996     // Add the cost of an i1 extract and a branch
6997     auto *Vec_i1Ty =
6998         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6999     Cost += TTI.getScalarizationOverhead(
7000         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7001         /*Insert=*/false, /*Extract=*/true);
7002     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7003 
7004     if (useEmulatedMaskMemRefHack(I))
7005       // Artificially setting to a high enough value to practically disable
7006       // vectorization with such operations.
7007       Cost = 3000000;
7008   }
7009 
7010   return Cost;
7011 }
7012 
7013 InstructionCost
7014 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7015                                                     ElementCount VF) {
7016   Type *ValTy = getLoadStoreType(I);
7017   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7018   Value *Ptr = getLoadStorePointerOperand(I);
7019   unsigned AS = getLoadStoreAddressSpace(I);
7020   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7021   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7022 
7023   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7024          "Stride should be 1 or -1 for consecutive memory access");
7025   const Align Alignment = getLoadStoreAlignment(I);
7026   InstructionCost Cost = 0;
7027   if (Legal->isMaskRequired(I))
7028     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7029                                       CostKind);
7030   else
7031     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7032                                 CostKind, I);
7033 
7034   bool Reverse = ConsecutiveStride < 0;
7035   if (Reverse)
7036     Cost +=
7037         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7038   return Cost;
7039 }
7040 
7041 InstructionCost
7042 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7043                                                 ElementCount VF) {
7044   assert(Legal->isUniformMemOp(*I));
7045 
7046   Type *ValTy = getLoadStoreType(I);
7047   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7048   const Align Alignment = getLoadStoreAlignment(I);
7049   unsigned AS = getLoadStoreAddressSpace(I);
7050   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7051   if (isa<LoadInst>(I)) {
7052     return TTI.getAddressComputationCost(ValTy) +
7053            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7054                                CostKind) +
7055            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7056   }
7057   StoreInst *SI = cast<StoreInst>(I);
7058 
7059   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7060   return TTI.getAddressComputationCost(ValTy) +
7061          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7062                              CostKind) +
7063          (isLoopInvariantStoreValue
7064               ? 0
7065               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7066                                        VF.getKnownMinValue() - 1));
7067 }
7068 
7069 InstructionCost
7070 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7071                                                  ElementCount VF) {
7072   Type *ValTy = getLoadStoreType(I);
7073   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7074   const Align Alignment = getLoadStoreAlignment(I);
7075   const Value *Ptr = getLoadStorePointerOperand(I);
7076 
7077   return TTI.getAddressComputationCost(VectorTy) +
7078          TTI.getGatherScatterOpCost(
7079              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7080              TargetTransformInfo::TCK_RecipThroughput, I);
7081 }
7082 
7083 InstructionCost
7084 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7085                                                    ElementCount VF) {
7086   // TODO: Once we have support for interleaving with scalable vectors
7087   // we can calculate the cost properly here.
7088   if (VF.isScalable())
7089     return InstructionCost::getInvalid();
7090 
7091   Type *ValTy = getLoadStoreType(I);
7092   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7093   unsigned AS = getLoadStoreAddressSpace(I);
7094 
7095   auto Group = getInterleavedAccessGroup(I);
7096   assert(Group && "Fail to get an interleaved access group.");
7097 
7098   unsigned InterleaveFactor = Group->getFactor();
7099   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7100 
7101   // Holds the indices of existing members in an interleaved load group.
7102   // An interleaved store group doesn't need this as it doesn't allow gaps.
7103   SmallVector<unsigned, 4> Indices;
7104   if (isa<LoadInst>(I)) {
7105     for (unsigned i = 0; i < InterleaveFactor; i++)
7106       if (Group->getMember(i))
7107         Indices.push_back(i);
7108   }
7109 
7110   // Calculate the cost of the whole interleaved group.
7111   bool UseMaskForGaps =
7112       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
7113   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7114       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7115       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7116 
7117   if (Group->isReverse()) {
7118     // TODO: Add support for reversed masked interleaved access.
7119     assert(!Legal->isMaskRequired(I) &&
7120            "Reverse masked interleaved access not supported.");
7121     Cost +=
7122         Group->getNumMembers() *
7123         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7124   }
7125   return Cost;
7126 }
7127 
7128 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7129     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7130   using namespace llvm::PatternMatch;
7131   // Early exit for no inloop reductions
7132   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7133     return None;
7134   auto *VectorTy = cast<VectorType>(Ty);
7135 
7136   // We are looking for a pattern of, and finding the minimal acceptable cost:
7137   //  reduce(mul(ext(A), ext(B))) or
7138   //  reduce(mul(A, B)) or
7139   //  reduce(ext(A)) or
7140   //  reduce(A).
7141   // The basic idea is that we walk down the tree to do that, finding the root
7142   // reduction instruction in InLoopReductionImmediateChains. From there we find
7143   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7144   // of the components. If the reduction cost is lower then we return it for the
7145   // reduction instruction and 0 for the other instructions in the pattern. If
7146   // it is not we return an invalid cost specifying the orignal cost method
7147   // should be used.
7148   Instruction *RetI = I;
7149   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7150     if (!RetI->hasOneUser())
7151       return None;
7152     RetI = RetI->user_back();
7153   }
7154   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7155       RetI->user_back()->getOpcode() == Instruction::Add) {
7156     if (!RetI->hasOneUser())
7157       return None;
7158     RetI = RetI->user_back();
7159   }
7160 
7161   // Test if the found instruction is a reduction, and if not return an invalid
7162   // cost specifying the parent to use the original cost modelling.
7163   if (!InLoopReductionImmediateChains.count(RetI))
7164     return None;
7165 
7166   // Find the reduction this chain is a part of and calculate the basic cost of
7167   // the reduction on its own.
7168   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7169   Instruction *ReductionPhi = LastChain;
7170   while (!isa<PHINode>(ReductionPhi))
7171     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7172 
7173   const RecurrenceDescriptor &RdxDesc =
7174       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7175   InstructionCost BaseCost =
7176       TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), VectorTy, CostKind);
7177 
7178   // Get the operand that was not the reduction chain and match it to one of the
7179   // patterns, returning the better cost if it is found.
7180   Instruction *RedOp = RetI->getOperand(1) == LastChain
7181                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7182                            : dyn_cast<Instruction>(RetI->getOperand(1));
7183 
7184   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7185 
7186   Instruction *Op0, *Op1;
7187   if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7188       !TheLoop->isLoopInvariant(RedOp)) {
7189     // Matched reduce(ext(A))
7190     bool IsUnsigned = isa<ZExtInst>(RedOp);
7191     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7192     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7193         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7194         CostKind);
7195 
7196     InstructionCost ExtCost =
7197         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7198                              TTI::CastContextHint::None, CostKind, RedOp);
7199     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7200       return I == RetI ? RedCost : 0;
7201   } else if (RedOp &&
7202              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7203     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7204         Op0->getOpcode() == Op1->getOpcode() &&
7205         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7206         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7207       bool IsUnsigned = isa<ZExtInst>(Op0);
7208       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7209       // Matched reduce(mul(ext, ext))
7210       InstructionCost ExtCost =
7211           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7212                                TTI::CastContextHint::None, CostKind, Op0);
7213       InstructionCost MulCost =
7214           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7215 
7216       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7217           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7218           CostKind);
7219 
7220       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7221         return I == RetI ? RedCost : 0;
7222     } else {
7223       // Matched reduce(mul())
7224       InstructionCost MulCost =
7225           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7226 
7227       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7228           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7229           CostKind);
7230 
7231       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7232         return I == RetI ? RedCost : 0;
7233     }
7234   }
7235 
7236   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7237 }
7238 
7239 InstructionCost
7240 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7241                                                      ElementCount VF) {
7242   // Calculate scalar cost only. Vectorization cost should be ready at this
7243   // moment.
7244   if (VF.isScalar()) {
7245     Type *ValTy = getLoadStoreType(I);
7246     const Align Alignment = getLoadStoreAlignment(I);
7247     unsigned AS = getLoadStoreAddressSpace(I);
7248 
7249     return TTI.getAddressComputationCost(ValTy) +
7250            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7251                                TTI::TCK_RecipThroughput, I);
7252   }
7253   return getWideningCost(I, VF);
7254 }
7255 
7256 LoopVectorizationCostModel::VectorizationCostTy
7257 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7258                                                ElementCount VF) {
7259   // If we know that this instruction will remain uniform, check the cost of
7260   // the scalar version.
7261   if (isUniformAfterVectorization(I, VF))
7262     VF = ElementCount::getFixed(1);
7263 
7264   if (VF.isVector() && isProfitableToScalarize(I, VF))
7265     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7266 
7267   // Forced scalars do not have any scalarization overhead.
7268   auto ForcedScalar = ForcedScalars.find(VF);
7269   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7270     auto InstSet = ForcedScalar->second;
7271     if (InstSet.count(I))
7272       return VectorizationCostTy(
7273           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7274            VF.getKnownMinValue()),
7275           false);
7276   }
7277 
7278   Type *VectorTy;
7279   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7280 
7281   bool TypeNotScalarized =
7282       VF.isVector() && VectorTy->isVectorTy() &&
7283       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7284   return VectorizationCostTy(C, TypeNotScalarized);
7285 }
7286 
7287 InstructionCost
7288 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7289                                                      ElementCount VF) const {
7290 
7291   // There is no mechanism yet to create a scalable scalarization loop,
7292   // so this is currently Invalid.
7293   if (VF.isScalable())
7294     return InstructionCost::getInvalid();
7295 
7296   if (VF.isScalar())
7297     return 0;
7298 
7299   InstructionCost Cost = 0;
7300   Type *RetTy = ToVectorTy(I->getType(), VF);
7301   if (!RetTy->isVoidTy() &&
7302       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7303     Cost += TTI.getScalarizationOverhead(
7304         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7305         true, false);
7306 
7307   // Some targets keep addresses scalar.
7308   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7309     return Cost;
7310 
7311   // Some targets support efficient element stores.
7312   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7313     return Cost;
7314 
7315   // Collect operands to consider.
7316   CallInst *CI = dyn_cast<CallInst>(I);
7317   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7318 
7319   // Skip operands that do not require extraction/scalarization and do not incur
7320   // any overhead.
7321   SmallVector<Type *> Tys;
7322   for (auto *V : filterExtractingOperands(Ops, VF))
7323     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7324   return Cost + TTI.getOperandsScalarizationOverhead(
7325                     filterExtractingOperands(Ops, VF), Tys);
7326 }
7327 
7328 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7329   if (VF.isScalar())
7330     return;
7331   NumPredStores = 0;
7332   for (BasicBlock *BB : TheLoop->blocks()) {
7333     // For each instruction in the old loop.
7334     for (Instruction &I : *BB) {
7335       Value *Ptr =  getLoadStorePointerOperand(&I);
7336       if (!Ptr)
7337         continue;
7338 
7339       // TODO: We should generate better code and update the cost model for
7340       // predicated uniform stores. Today they are treated as any other
7341       // predicated store (see added test cases in
7342       // invariant-store-vectorization.ll).
7343       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7344         NumPredStores++;
7345 
7346       if (Legal->isUniformMemOp(I)) {
7347         // TODO: Avoid replicating loads and stores instead of
7348         // relying on instcombine to remove them.
7349         // Load: Scalar load + broadcast
7350         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7351         InstructionCost Cost;
7352         if (isa<StoreInst>(&I) && VF.isScalable() &&
7353             isLegalGatherOrScatter(&I)) {
7354           Cost = getGatherScatterCost(&I, VF);
7355           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7356         } else {
7357           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7358                  "Cannot yet scalarize uniform stores");
7359           Cost = getUniformMemOpCost(&I, VF);
7360           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7361         }
7362         continue;
7363       }
7364 
7365       // We assume that widening is the best solution when possible.
7366       if (memoryInstructionCanBeWidened(&I, VF)) {
7367         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7368         int ConsecutiveStride =
7369                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7370         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7371                "Expected consecutive stride.");
7372         InstWidening Decision =
7373             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7374         setWideningDecision(&I, VF, Decision, Cost);
7375         continue;
7376       }
7377 
7378       // Choose between Interleaving, Gather/Scatter or Scalarization.
7379       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7380       unsigned NumAccesses = 1;
7381       if (isAccessInterleaved(&I)) {
7382         auto Group = getInterleavedAccessGroup(&I);
7383         assert(Group && "Fail to get an interleaved access group.");
7384 
7385         // Make one decision for the whole group.
7386         if (getWideningDecision(&I, VF) != CM_Unknown)
7387           continue;
7388 
7389         NumAccesses = Group->getNumMembers();
7390         if (interleavedAccessCanBeWidened(&I, VF))
7391           InterleaveCost = getInterleaveGroupCost(&I, VF);
7392       }
7393 
7394       InstructionCost GatherScatterCost =
7395           isLegalGatherOrScatter(&I)
7396               ? getGatherScatterCost(&I, VF) * NumAccesses
7397               : InstructionCost::getInvalid();
7398 
7399       InstructionCost ScalarizationCost =
7400           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7401 
7402       // Choose better solution for the current VF,
7403       // write down this decision and use it during vectorization.
7404       InstructionCost Cost;
7405       InstWidening Decision;
7406       if (InterleaveCost <= GatherScatterCost &&
7407           InterleaveCost < ScalarizationCost) {
7408         Decision = CM_Interleave;
7409         Cost = InterleaveCost;
7410       } else if (GatherScatterCost < ScalarizationCost) {
7411         Decision = CM_GatherScatter;
7412         Cost = GatherScatterCost;
7413       } else {
7414         assert(!VF.isScalable() &&
7415                "We cannot yet scalarise for scalable vectors");
7416         Decision = CM_Scalarize;
7417         Cost = ScalarizationCost;
7418       }
7419       // If the instructions belongs to an interleave group, the whole group
7420       // receives the same decision. The whole group receives the cost, but
7421       // the cost will actually be assigned to one instruction.
7422       if (auto Group = getInterleavedAccessGroup(&I))
7423         setWideningDecision(Group, VF, Decision, Cost);
7424       else
7425         setWideningDecision(&I, VF, Decision, Cost);
7426     }
7427   }
7428 
7429   // Make sure that any load of address and any other address computation
7430   // remains scalar unless there is gather/scatter support. This avoids
7431   // inevitable extracts into address registers, and also has the benefit of
7432   // activating LSR more, since that pass can't optimize vectorized
7433   // addresses.
7434   if (TTI.prefersVectorizedAddressing())
7435     return;
7436 
7437   // Start with all scalar pointer uses.
7438   SmallPtrSet<Instruction *, 8> AddrDefs;
7439   for (BasicBlock *BB : TheLoop->blocks())
7440     for (Instruction &I : *BB) {
7441       Instruction *PtrDef =
7442         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7443       if (PtrDef && TheLoop->contains(PtrDef) &&
7444           getWideningDecision(&I, VF) != CM_GatherScatter)
7445         AddrDefs.insert(PtrDef);
7446     }
7447 
7448   // Add all instructions used to generate the addresses.
7449   SmallVector<Instruction *, 4> Worklist;
7450   append_range(Worklist, AddrDefs);
7451   while (!Worklist.empty()) {
7452     Instruction *I = Worklist.pop_back_val();
7453     for (auto &Op : I->operands())
7454       if (auto *InstOp = dyn_cast<Instruction>(Op))
7455         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7456             AddrDefs.insert(InstOp).second)
7457           Worklist.push_back(InstOp);
7458   }
7459 
7460   for (auto *I : AddrDefs) {
7461     if (isa<LoadInst>(I)) {
7462       // Setting the desired widening decision should ideally be handled in
7463       // by cost functions, but since this involves the task of finding out
7464       // if the loaded register is involved in an address computation, it is
7465       // instead changed here when we know this is the case.
7466       InstWidening Decision = getWideningDecision(I, VF);
7467       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7468         // Scalarize a widened load of address.
7469         setWideningDecision(
7470             I, VF, CM_Scalarize,
7471             (VF.getKnownMinValue() *
7472              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7473       else if (auto Group = getInterleavedAccessGroup(I)) {
7474         // Scalarize an interleave group of address loads.
7475         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7476           if (Instruction *Member = Group->getMember(I))
7477             setWideningDecision(
7478                 Member, VF, CM_Scalarize,
7479                 (VF.getKnownMinValue() *
7480                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7481         }
7482       }
7483     } else
7484       // Make sure I gets scalarized and a cost estimate without
7485       // scalarization overhead.
7486       ForcedScalars[VF].insert(I);
7487   }
7488 }
7489 
7490 InstructionCost
7491 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7492                                                Type *&VectorTy) {
7493   Type *RetTy = I->getType();
7494   if (canTruncateToMinimalBitwidth(I, VF))
7495     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7496   auto SE = PSE.getSE();
7497   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7498 
7499   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7500                                                 ElementCount VF) -> bool {
7501     if (VF.isScalar())
7502       return true;
7503 
7504     auto Scalarized = InstsToScalarize.find(VF);
7505     assert(Scalarized != InstsToScalarize.end() &&
7506            "VF not yet analyzed for scalarization profitability");
7507     return !Scalarized->second.count(I) &&
7508            llvm::all_of(I->users(), [&](User *U) {
7509              auto *UI = cast<Instruction>(U);
7510              return !Scalarized->second.count(UI);
7511            });
7512   };
7513   (void) hasSingleCopyAfterVectorization;
7514 
7515   if (isScalarAfterVectorization(I, VF)) {
7516     // With the exception of GEPs and PHIs, after scalarization there should
7517     // only be one copy of the instruction generated in the loop. This is
7518     // because the VF is either 1, or any instructions that need scalarizing
7519     // have already been dealt with by the the time we get here. As a result,
7520     // it means we don't have to multiply the instruction cost by VF.
7521     assert(I->getOpcode() == Instruction::GetElementPtr ||
7522            I->getOpcode() == Instruction::PHI ||
7523            (I->getOpcode() == Instruction::BitCast &&
7524             I->getType()->isPointerTy()) ||
7525            hasSingleCopyAfterVectorization(I, VF));
7526     VectorTy = RetTy;
7527   } else
7528     VectorTy = ToVectorTy(RetTy, VF);
7529 
7530   // TODO: We need to estimate the cost of intrinsic calls.
7531   switch (I->getOpcode()) {
7532   case Instruction::GetElementPtr:
7533     // We mark this instruction as zero-cost because the cost of GEPs in
7534     // vectorized code depends on whether the corresponding memory instruction
7535     // is scalarized or not. Therefore, we handle GEPs with the memory
7536     // instruction cost.
7537     return 0;
7538   case Instruction::Br: {
7539     // In cases of scalarized and predicated instructions, there will be VF
7540     // predicated blocks in the vectorized loop. Each branch around these
7541     // blocks requires also an extract of its vector compare i1 element.
7542     bool ScalarPredicatedBB = false;
7543     BranchInst *BI = cast<BranchInst>(I);
7544     if (VF.isVector() && BI->isConditional() &&
7545         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7546          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7547       ScalarPredicatedBB = true;
7548 
7549     if (ScalarPredicatedBB) {
7550       // Return cost for branches around scalarized and predicated blocks.
7551       auto *Vec_i1Ty =
7552           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7553       return (
7554           TTI.getScalarizationOverhead(
7555               Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false,
7556               true) +
7557           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7558     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7559       // The back-edge branch will remain, as will all scalar branches.
7560       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7561     else
7562       // This branch will be eliminated by if-conversion.
7563       return 0;
7564     // Note: We currently assume zero cost for an unconditional branch inside
7565     // a predicated block since it will become a fall-through, although we
7566     // may decide in the future to call TTI for all branches.
7567   }
7568   case Instruction::PHI: {
7569     auto *Phi = cast<PHINode>(I);
7570 
7571     // First-order recurrences are replaced by vector shuffles inside the loop.
7572     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7573     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7574       return TTI.getShuffleCost(
7575           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7576           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7577 
7578     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7579     // converted into select instructions. We require N - 1 selects per phi
7580     // node, where N is the number of incoming values.
7581     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7582       return (Phi->getNumIncomingValues() - 1) *
7583              TTI.getCmpSelInstrCost(
7584                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7585                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7586                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7587 
7588     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7589   }
7590   case Instruction::UDiv:
7591   case Instruction::SDiv:
7592   case Instruction::URem:
7593   case Instruction::SRem:
7594     // If we have a predicated instruction, it may not be executed for each
7595     // vector lane. Get the scalarization cost and scale this amount by the
7596     // probability of executing the predicated block. If the instruction is not
7597     // predicated, we fall through to the next case.
7598     if (VF.isVector() && isScalarWithPredication(I)) {
7599       InstructionCost Cost = 0;
7600 
7601       // These instructions have a non-void type, so account for the phi nodes
7602       // that we will create. This cost is likely to be zero. The phi node
7603       // cost, if any, should be scaled by the block probability because it
7604       // models a copy at the end of each predicated block.
7605       Cost += VF.getKnownMinValue() *
7606               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7607 
7608       // The cost of the non-predicated instruction.
7609       Cost += VF.getKnownMinValue() *
7610               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7611 
7612       // The cost of insertelement and extractelement instructions needed for
7613       // scalarization.
7614       Cost += getScalarizationOverhead(I, VF);
7615 
7616       // Scale the cost by the probability of executing the predicated blocks.
7617       // This assumes the predicated block for each vector lane is equally
7618       // likely.
7619       return Cost / getReciprocalPredBlockProb();
7620     }
7621     LLVM_FALLTHROUGH;
7622   case Instruction::Add:
7623   case Instruction::FAdd:
7624   case Instruction::Sub:
7625   case Instruction::FSub:
7626   case Instruction::Mul:
7627   case Instruction::FMul:
7628   case Instruction::FDiv:
7629   case Instruction::FRem:
7630   case Instruction::Shl:
7631   case Instruction::LShr:
7632   case Instruction::AShr:
7633   case Instruction::And:
7634   case Instruction::Or:
7635   case Instruction::Xor: {
7636     // Since we will replace the stride by 1 the multiplication should go away.
7637     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7638       return 0;
7639 
7640     // Detect reduction patterns
7641     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7642       return *RedCost;
7643 
7644     // Certain instructions can be cheaper to vectorize if they have a constant
7645     // second vector operand. One example of this are shifts on x86.
7646     Value *Op2 = I->getOperand(1);
7647     TargetTransformInfo::OperandValueProperties Op2VP;
7648     TargetTransformInfo::OperandValueKind Op2VK =
7649         TTI.getOperandInfo(Op2, Op2VP);
7650     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7651       Op2VK = TargetTransformInfo::OK_UniformValue;
7652 
7653     SmallVector<const Value *, 4> Operands(I->operand_values());
7654     return TTI.getArithmeticInstrCost(
7655         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7656         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7657   }
7658   case Instruction::FNeg: {
7659     return TTI.getArithmeticInstrCost(
7660         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7661         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7662         TargetTransformInfo::OP_None, I->getOperand(0), I);
7663   }
7664   case Instruction::Select: {
7665     SelectInst *SI = cast<SelectInst>(I);
7666     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7667     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7668 
7669     const Value *Op0, *Op1;
7670     using namespace llvm::PatternMatch;
7671     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7672                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7673       // select x, y, false --> x & y
7674       // select x, true, y --> x | y
7675       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7676       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7677       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7678       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7679       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7680               Op1->getType()->getScalarSizeInBits() == 1);
7681 
7682       SmallVector<const Value *, 2> Operands{Op0, Op1};
7683       return TTI.getArithmeticInstrCost(
7684           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7685           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7686     }
7687 
7688     Type *CondTy = SI->getCondition()->getType();
7689     if (!ScalarCond)
7690       CondTy = VectorType::get(CondTy, VF);
7691     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7692                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7693   }
7694   case Instruction::ICmp:
7695   case Instruction::FCmp: {
7696     Type *ValTy = I->getOperand(0)->getType();
7697     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7698     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7699       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7700     VectorTy = ToVectorTy(ValTy, VF);
7701     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7702                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7703   }
7704   case Instruction::Store:
7705   case Instruction::Load: {
7706     ElementCount Width = VF;
7707     if (Width.isVector()) {
7708       InstWidening Decision = getWideningDecision(I, Width);
7709       assert(Decision != CM_Unknown &&
7710              "CM decision should be taken at this point");
7711       if (Decision == CM_Scalarize)
7712         Width = ElementCount::getFixed(1);
7713     }
7714     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7715     return getMemoryInstructionCost(I, VF);
7716   }
7717   case Instruction::BitCast:
7718     if (I->getType()->isPointerTy())
7719       return 0;
7720     LLVM_FALLTHROUGH;
7721   case Instruction::ZExt:
7722   case Instruction::SExt:
7723   case Instruction::FPToUI:
7724   case Instruction::FPToSI:
7725   case Instruction::FPExt:
7726   case Instruction::PtrToInt:
7727   case Instruction::IntToPtr:
7728   case Instruction::SIToFP:
7729   case Instruction::UIToFP:
7730   case Instruction::Trunc:
7731   case Instruction::FPTrunc: {
7732     // Computes the CastContextHint from a Load/Store instruction.
7733     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7734       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7735              "Expected a load or a store!");
7736 
7737       if (VF.isScalar() || !TheLoop->contains(I))
7738         return TTI::CastContextHint::Normal;
7739 
7740       switch (getWideningDecision(I, VF)) {
7741       case LoopVectorizationCostModel::CM_GatherScatter:
7742         return TTI::CastContextHint::GatherScatter;
7743       case LoopVectorizationCostModel::CM_Interleave:
7744         return TTI::CastContextHint::Interleave;
7745       case LoopVectorizationCostModel::CM_Scalarize:
7746       case LoopVectorizationCostModel::CM_Widen:
7747         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7748                                         : TTI::CastContextHint::Normal;
7749       case LoopVectorizationCostModel::CM_Widen_Reverse:
7750         return TTI::CastContextHint::Reversed;
7751       case LoopVectorizationCostModel::CM_Unknown:
7752         llvm_unreachable("Instr did not go through cost modelling?");
7753       }
7754 
7755       llvm_unreachable("Unhandled case!");
7756     };
7757 
7758     unsigned Opcode = I->getOpcode();
7759     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7760     // For Trunc, the context is the only user, which must be a StoreInst.
7761     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7762       if (I->hasOneUse())
7763         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7764           CCH = ComputeCCH(Store);
7765     }
7766     // For Z/Sext, the context is the operand, which must be a LoadInst.
7767     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7768              Opcode == Instruction::FPExt) {
7769       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7770         CCH = ComputeCCH(Load);
7771     }
7772 
7773     // We optimize the truncation of induction variables having constant
7774     // integer steps. The cost of these truncations is the same as the scalar
7775     // operation.
7776     if (isOptimizableIVTruncate(I, VF)) {
7777       auto *Trunc = cast<TruncInst>(I);
7778       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7779                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7780     }
7781 
7782     // Detect reduction patterns
7783     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7784       return *RedCost;
7785 
7786     Type *SrcScalarTy = I->getOperand(0)->getType();
7787     Type *SrcVecTy =
7788         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7789     if (canTruncateToMinimalBitwidth(I, VF)) {
7790       // This cast is going to be shrunk. This may remove the cast or it might
7791       // turn it into slightly different cast. For example, if MinBW == 16,
7792       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7793       //
7794       // Calculate the modified src and dest types.
7795       Type *MinVecTy = VectorTy;
7796       if (Opcode == Instruction::Trunc) {
7797         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7798         VectorTy =
7799             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7800       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7801         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7802         VectorTy =
7803             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7804       }
7805     }
7806 
7807     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7808   }
7809   case Instruction::Call: {
7810     bool NeedToScalarize;
7811     CallInst *CI = cast<CallInst>(I);
7812     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7813     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7814       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7815       return std::min(CallCost, IntrinsicCost);
7816     }
7817     return CallCost;
7818   }
7819   case Instruction::ExtractValue:
7820     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7821   case Instruction::Alloca:
7822     // We cannot easily widen alloca to a scalable alloca, as
7823     // the result would need to be a vector of pointers.
7824     if (VF.isScalable())
7825       return InstructionCost::getInvalid();
7826     LLVM_FALLTHROUGH;
7827   default:
7828     // This opcode is unknown. Assume that it is the same as 'mul'.
7829     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7830   } // end of switch.
7831 }
7832 
7833 char LoopVectorize::ID = 0;
7834 
7835 static const char lv_name[] = "Loop Vectorization";
7836 
7837 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7838 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7839 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7840 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7841 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7842 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7843 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7844 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7845 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7846 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7847 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7848 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7849 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7850 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7851 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7852 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7853 
7854 namespace llvm {
7855 
7856 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7857 
7858 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7859                               bool VectorizeOnlyWhenForced) {
7860   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7861 }
7862 
7863 } // end namespace llvm
7864 
7865 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7866   // Check if the pointer operand of a load or store instruction is
7867   // consecutive.
7868   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7869     return Legal->isConsecutivePtr(Ptr);
7870   return false;
7871 }
7872 
7873 void LoopVectorizationCostModel::collectValuesToIgnore() {
7874   // Ignore ephemeral values.
7875   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7876 
7877   // Ignore type-promoting instructions we identified during reduction
7878   // detection.
7879   for (auto &Reduction : Legal->getReductionVars()) {
7880     RecurrenceDescriptor &RedDes = Reduction.second;
7881     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7882     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7883   }
7884   // Ignore type-casting instructions we identified during induction
7885   // detection.
7886   for (auto &Induction : Legal->getInductionVars()) {
7887     InductionDescriptor &IndDes = Induction.second;
7888     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7889     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7890   }
7891 }
7892 
7893 void LoopVectorizationCostModel::collectInLoopReductions() {
7894   for (auto &Reduction : Legal->getReductionVars()) {
7895     PHINode *Phi = Reduction.first;
7896     RecurrenceDescriptor &RdxDesc = Reduction.second;
7897 
7898     // We don't collect reductions that are type promoted (yet).
7899     if (RdxDesc.getRecurrenceType() != Phi->getType())
7900       continue;
7901 
7902     // If the target would prefer this reduction to happen "in-loop", then we
7903     // want to record it as such.
7904     unsigned Opcode = RdxDesc.getOpcode();
7905     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7906         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7907                                    TargetTransformInfo::ReductionFlags()))
7908       continue;
7909 
7910     // Check that we can correctly put the reductions into the loop, by
7911     // finding the chain of operations that leads from the phi to the loop
7912     // exit value.
7913     SmallVector<Instruction *, 4> ReductionOperations =
7914         RdxDesc.getReductionOpChain(Phi, TheLoop);
7915     bool InLoop = !ReductionOperations.empty();
7916     if (InLoop) {
7917       InLoopReductionChains[Phi] = ReductionOperations;
7918       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7919       Instruction *LastChain = Phi;
7920       for (auto *I : ReductionOperations) {
7921         InLoopReductionImmediateChains[I] = LastChain;
7922         LastChain = I;
7923       }
7924     }
7925     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7926                       << " reduction for phi: " << *Phi << "\n");
7927   }
7928 }
7929 
7930 // TODO: we could return a pair of values that specify the max VF and
7931 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7932 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7933 // doesn't have a cost model that can choose which plan to execute if
7934 // more than one is generated.
7935 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7936                                  LoopVectorizationCostModel &CM) {
7937   unsigned WidestType;
7938   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7939   return WidestVectorRegBits / WidestType;
7940 }
7941 
7942 VectorizationFactor
7943 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7944   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7945   ElementCount VF = UserVF;
7946   // Outer loop handling: They may require CFG and instruction level
7947   // transformations before even evaluating whether vectorization is profitable.
7948   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7949   // the vectorization pipeline.
7950   if (!OrigLoop->isInnermost()) {
7951     // If the user doesn't provide a vectorization factor, determine a
7952     // reasonable one.
7953     if (UserVF.isZero()) {
7954       VF = ElementCount::getFixed(determineVPlanVF(
7955           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7956               .getFixedSize(),
7957           CM));
7958       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7959 
7960       // Make sure we have a VF > 1 for stress testing.
7961       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7962         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7963                           << "overriding computed VF.\n");
7964         VF = ElementCount::getFixed(4);
7965       }
7966     }
7967     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7968     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7969            "VF needs to be a power of two");
7970     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7971                       << "VF " << VF << " to build VPlans.\n");
7972     buildVPlans(VF, VF);
7973 
7974     // For VPlan build stress testing, we bail out after VPlan construction.
7975     if (VPlanBuildStressTest)
7976       return VectorizationFactor::Disabled();
7977 
7978     return {VF, 0 /*Cost*/};
7979   }
7980 
7981   LLVM_DEBUG(
7982       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7983                 "VPlan-native path.\n");
7984   return VectorizationFactor::Disabled();
7985 }
7986 
7987 Optional<VectorizationFactor>
7988 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7989   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7990   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7991   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7992     return None;
7993 
7994   // Invalidate interleave groups if all blocks of loop will be predicated.
7995   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7996       !useMaskedInterleavedAccesses(*TTI)) {
7997     LLVM_DEBUG(
7998         dbgs()
7999         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8000            "which requires masked-interleaved support.\n");
8001     if (CM.InterleaveInfo.invalidateGroups())
8002       // Invalidating interleave groups also requires invalidating all decisions
8003       // based on them, which includes widening decisions and uniform and scalar
8004       // values.
8005       CM.invalidateCostModelingDecisions();
8006   }
8007 
8008   ElementCount MaxUserVF =
8009       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8010   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8011   if (!UserVF.isZero() && UserVFIsLegal) {
8012     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8013            "VF needs to be a power of two");
8014     // Collect the instructions (and their associated costs) that will be more
8015     // profitable to scalarize.
8016     if (CM.selectUserVectorizationFactor(UserVF)) {
8017       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8018       CM.collectInLoopReductions();
8019       buildVPlansWithVPRecipes(UserVF, UserVF);
8020       LLVM_DEBUG(printPlans(dbgs()));
8021       return {{UserVF, 0}};
8022     } else
8023       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8024                               "InvalidCost", ORE, OrigLoop);
8025   }
8026 
8027   // Populate the set of Vectorization Factor Candidates.
8028   ElementCountSet VFCandidates;
8029   for (auto VF = ElementCount::getFixed(1);
8030        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8031     VFCandidates.insert(VF);
8032   for (auto VF = ElementCount::getScalable(1);
8033        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8034     VFCandidates.insert(VF);
8035 
8036   for (const auto &VF : VFCandidates) {
8037     // Collect Uniform and Scalar instructions after vectorization with VF.
8038     CM.collectUniformsAndScalars(VF);
8039 
8040     // Collect the instructions (and their associated costs) that will be more
8041     // profitable to scalarize.
8042     if (VF.isVector())
8043       CM.collectInstsToScalarize(VF);
8044   }
8045 
8046   CM.collectInLoopReductions();
8047   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8048   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8049 
8050   LLVM_DEBUG(printPlans(dbgs()));
8051   if (!MaxFactors.hasVector())
8052     return VectorizationFactor::Disabled();
8053 
8054   // Select the optimal vectorization factor.
8055   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8056 
8057   // Check if it is profitable to vectorize with runtime checks.
8058   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8059   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8060     bool PragmaThresholdReached =
8061         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8062     bool ThresholdReached =
8063         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8064     if ((ThresholdReached && !Hints.allowReordering()) ||
8065         PragmaThresholdReached) {
8066       ORE->emit([&]() {
8067         return OptimizationRemarkAnalysisAliasing(
8068                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8069                    OrigLoop->getHeader())
8070                << "loop not vectorized: cannot prove it is safe to reorder "
8071                   "memory operations";
8072       });
8073       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8074       Hints.emitRemarkWithHints();
8075       return VectorizationFactor::Disabled();
8076     }
8077   }
8078   return SelectedVF;
8079 }
8080 
8081 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8082   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8083                     << '\n');
8084   BestVF = VF;
8085   BestUF = UF;
8086 
8087   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8088     return !Plan->hasVF(VF);
8089   });
8090   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8091 }
8092 
8093 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8094                                            DominatorTree *DT) {
8095   // Perform the actual loop transformation.
8096 
8097   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8098   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8099   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8100 
8101   VPTransformState State{
8102       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8103   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8104   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8105   State.CanonicalIV = ILV.Induction;
8106 
8107   ILV.printDebugTracesAtStart();
8108 
8109   //===------------------------------------------------===//
8110   //
8111   // Notice: any optimization or new instruction that go
8112   // into the code below should also be implemented in
8113   // the cost-model.
8114   //
8115   //===------------------------------------------------===//
8116 
8117   // 2. Copy and widen instructions from the old loop into the new loop.
8118   VPlans.front()->execute(&State);
8119 
8120   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8121   //    predication, updating analyses.
8122   ILV.fixVectorizedLoop(State);
8123 
8124   ILV.printDebugTracesAtEnd();
8125 }
8126 
8127 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8128 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8129   for (const auto &Plan : VPlans)
8130     if (PrintVPlansInDotFormat)
8131       Plan->printDOT(O);
8132     else
8133       Plan->print(O);
8134 }
8135 #endif
8136 
8137 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8138     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8139 
8140   // We create new control-flow for the vectorized loop, so the original exit
8141   // conditions will be dead after vectorization if it's only used by the
8142   // terminator
8143   SmallVector<BasicBlock*> ExitingBlocks;
8144   OrigLoop->getExitingBlocks(ExitingBlocks);
8145   for (auto *BB : ExitingBlocks) {
8146     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8147     if (!Cmp || !Cmp->hasOneUse())
8148       continue;
8149 
8150     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8151     if (!DeadInstructions.insert(Cmp).second)
8152       continue;
8153 
8154     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8155     // TODO: can recurse through operands in general
8156     for (Value *Op : Cmp->operands()) {
8157       if (isa<TruncInst>(Op) && Op->hasOneUse())
8158           DeadInstructions.insert(cast<Instruction>(Op));
8159     }
8160   }
8161 
8162   // We create new "steps" for induction variable updates to which the original
8163   // induction variables map. An original update instruction will be dead if
8164   // all its users except the induction variable are dead.
8165   auto *Latch = OrigLoop->getLoopLatch();
8166   for (auto &Induction : Legal->getInductionVars()) {
8167     PHINode *Ind = Induction.first;
8168     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8169 
8170     // If the tail is to be folded by masking, the primary induction variable,
8171     // if exists, isn't dead: it will be used for masking. Don't kill it.
8172     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8173       continue;
8174 
8175     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8176           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8177         }))
8178       DeadInstructions.insert(IndUpdate);
8179 
8180     // We record as "Dead" also the type-casting instructions we had identified
8181     // during induction analysis. We don't need any handling for them in the
8182     // vectorized loop because we have proven that, under a proper runtime
8183     // test guarding the vectorized loop, the value of the phi, and the casted
8184     // value of the phi, are the same. The last instruction in this casting chain
8185     // will get its scalar/vector/widened def from the scalar/vector/widened def
8186     // of the respective phi node. Any other casts in the induction def-use chain
8187     // have no other uses outside the phi update chain, and will be ignored.
8188     InductionDescriptor &IndDes = Induction.second;
8189     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8190     DeadInstructions.insert(Casts.begin(), Casts.end());
8191   }
8192 }
8193 
8194 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8195 
8196 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8197 
8198 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8199                                         Instruction::BinaryOps BinOp) {
8200   // When unrolling and the VF is 1, we only need to add a simple scalar.
8201   Type *Ty = Val->getType();
8202   assert(!Ty->isVectorTy() && "Val must be a scalar");
8203 
8204   if (Ty->isFloatingPointTy()) {
8205     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8206 
8207     // Floating-point operations inherit FMF via the builder's flags.
8208     Value *MulOp = Builder.CreateFMul(C, Step);
8209     return Builder.CreateBinOp(BinOp, Val, MulOp);
8210   }
8211   Constant *C = ConstantInt::get(Ty, StartIdx);
8212   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8213 }
8214 
8215 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8216   SmallVector<Metadata *, 4> MDs;
8217   // Reserve first location for self reference to the LoopID metadata node.
8218   MDs.push_back(nullptr);
8219   bool IsUnrollMetadata = false;
8220   MDNode *LoopID = L->getLoopID();
8221   if (LoopID) {
8222     // First find existing loop unrolling disable metadata.
8223     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8224       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8225       if (MD) {
8226         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8227         IsUnrollMetadata =
8228             S && S->getString().startswith("llvm.loop.unroll.disable");
8229       }
8230       MDs.push_back(LoopID->getOperand(i));
8231     }
8232   }
8233 
8234   if (!IsUnrollMetadata) {
8235     // Add runtime unroll disable metadata.
8236     LLVMContext &Context = L->getHeader()->getContext();
8237     SmallVector<Metadata *, 1> DisableOperands;
8238     DisableOperands.push_back(
8239         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8240     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8241     MDs.push_back(DisableNode);
8242     MDNode *NewLoopID = MDNode::get(Context, MDs);
8243     // Set operand 0 to refer to the loop id itself.
8244     NewLoopID->replaceOperandWith(0, NewLoopID);
8245     L->setLoopID(NewLoopID);
8246   }
8247 }
8248 
8249 //===--------------------------------------------------------------------===//
8250 // EpilogueVectorizerMainLoop
8251 //===--------------------------------------------------------------------===//
8252 
8253 /// This function is partially responsible for generating the control flow
8254 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8255 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8256   MDNode *OrigLoopID = OrigLoop->getLoopID();
8257   Loop *Lp = createVectorLoopSkeleton("");
8258 
8259   // Generate the code to check the minimum iteration count of the vector
8260   // epilogue (see below).
8261   EPI.EpilogueIterationCountCheck =
8262       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8263   EPI.EpilogueIterationCountCheck->setName("iter.check");
8264 
8265   // Generate the code to check any assumptions that we've made for SCEV
8266   // expressions.
8267   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8268 
8269   // Generate the code that checks at runtime if arrays overlap. We put the
8270   // checks into a separate block to make the more common case of few elements
8271   // faster.
8272   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8273 
8274   // Generate the iteration count check for the main loop, *after* the check
8275   // for the epilogue loop, so that the path-length is shorter for the case
8276   // that goes directly through the vector epilogue. The longer-path length for
8277   // the main loop is compensated for, by the gain from vectorizing the larger
8278   // trip count. Note: the branch will get updated later on when we vectorize
8279   // the epilogue.
8280   EPI.MainLoopIterationCountCheck =
8281       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8282 
8283   // Generate the induction variable.
8284   OldInduction = Legal->getPrimaryInduction();
8285   Type *IdxTy = Legal->getWidestInductionType();
8286   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8287   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8288   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8289   EPI.VectorTripCount = CountRoundDown;
8290   Induction =
8291       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8292                               getDebugLocFromInstOrOperands(OldInduction));
8293 
8294   // Skip induction resume value creation here because they will be created in
8295   // the second pass. If we created them here, they wouldn't be used anyway,
8296   // because the vplan in the second pass still contains the inductions from the
8297   // original loop.
8298 
8299   return completeLoopSkeleton(Lp, OrigLoopID);
8300 }
8301 
8302 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8303   LLVM_DEBUG({
8304     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8305            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8306            << ", Main Loop UF:" << EPI.MainLoopUF
8307            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8308            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8309   });
8310 }
8311 
8312 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8313   DEBUG_WITH_TYPE(VerboseDebug, {
8314     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8315   });
8316 }
8317 
8318 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8319     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8320   assert(L && "Expected valid Loop.");
8321   assert(Bypass && "Expected valid bypass basic block.");
8322   unsigned VFactor =
8323       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8324   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8325   Value *Count = getOrCreateTripCount(L);
8326   // Reuse existing vector loop preheader for TC checks.
8327   // Note that new preheader block is generated for vector loop.
8328   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8329   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8330 
8331   // Generate code to check if the loop's trip count is less than VF * UF of the
8332   // main vector loop.
8333   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8334       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8335 
8336   Value *CheckMinIters = Builder.CreateICmp(
8337       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8338       "min.iters.check");
8339 
8340   if (!ForEpilogue)
8341     TCCheckBlock->setName("vector.main.loop.iter.check");
8342 
8343   // Create new preheader for vector loop.
8344   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8345                                    DT, LI, nullptr, "vector.ph");
8346 
8347   if (ForEpilogue) {
8348     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8349                                  DT->getNode(Bypass)->getIDom()) &&
8350            "TC check is expected to dominate Bypass");
8351 
8352     // Update dominator for Bypass & LoopExit.
8353     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8354     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8355       // For loops with multiple exits, there's no edge from the middle block
8356       // to exit blocks (as the epilogue must run) and thus no need to update
8357       // the immediate dominator of the exit blocks.
8358       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8359 
8360     LoopBypassBlocks.push_back(TCCheckBlock);
8361 
8362     // Save the trip count so we don't have to regenerate it in the
8363     // vec.epilog.iter.check. This is safe to do because the trip count
8364     // generated here dominates the vector epilog iter check.
8365     EPI.TripCount = Count;
8366   }
8367 
8368   ReplaceInstWithInst(
8369       TCCheckBlock->getTerminator(),
8370       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8371 
8372   return TCCheckBlock;
8373 }
8374 
8375 //===--------------------------------------------------------------------===//
8376 // EpilogueVectorizerEpilogueLoop
8377 //===--------------------------------------------------------------------===//
8378 
8379 /// This function is partially responsible for generating the control flow
8380 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8381 BasicBlock *
8382 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8383   MDNode *OrigLoopID = OrigLoop->getLoopID();
8384   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8385 
8386   // Now, compare the remaining count and if there aren't enough iterations to
8387   // execute the vectorized epilogue skip to the scalar part.
8388   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8389   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8390   LoopVectorPreHeader =
8391       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8392                  LI, nullptr, "vec.epilog.ph");
8393   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8394                                           VecEpilogueIterationCountCheck);
8395 
8396   // Adjust the control flow taking the state info from the main loop
8397   // vectorization into account.
8398   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8399          "expected this to be saved from the previous pass.");
8400   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8401       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8402 
8403   DT->changeImmediateDominator(LoopVectorPreHeader,
8404                                EPI.MainLoopIterationCountCheck);
8405 
8406   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8407       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8408 
8409   if (EPI.SCEVSafetyCheck)
8410     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8411         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8412   if (EPI.MemSafetyCheck)
8413     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8414         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8415 
8416   DT->changeImmediateDominator(
8417       VecEpilogueIterationCountCheck,
8418       VecEpilogueIterationCountCheck->getSinglePredecessor());
8419 
8420   DT->changeImmediateDominator(LoopScalarPreHeader,
8421                                EPI.EpilogueIterationCountCheck);
8422   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8423     // If there is an epilogue which must run, there's no edge from the
8424     // middle block to exit blocks  and thus no need to update the immediate
8425     // dominator of the exit blocks.
8426     DT->changeImmediateDominator(LoopExitBlock,
8427                                  EPI.EpilogueIterationCountCheck);
8428 
8429   // Keep track of bypass blocks, as they feed start values to the induction
8430   // phis in the scalar loop preheader.
8431   if (EPI.SCEVSafetyCheck)
8432     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8433   if (EPI.MemSafetyCheck)
8434     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8435   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8436 
8437   // Generate a resume induction for the vector epilogue and put it in the
8438   // vector epilogue preheader
8439   Type *IdxTy = Legal->getWidestInductionType();
8440   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8441                                          LoopVectorPreHeader->getFirstNonPHI());
8442   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8443   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8444                            EPI.MainLoopIterationCountCheck);
8445 
8446   // Generate the induction variable.
8447   OldInduction = Legal->getPrimaryInduction();
8448   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8449   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8450   Value *StartIdx = EPResumeVal;
8451   Induction =
8452       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8453                               getDebugLocFromInstOrOperands(OldInduction));
8454 
8455   // Generate induction resume values. These variables save the new starting
8456   // indexes for the scalar loop. They are used to test if there are any tail
8457   // iterations left once the vector loop has completed.
8458   // Note that when the vectorized epilogue is skipped due to iteration count
8459   // check, then the resume value for the induction variable comes from
8460   // the trip count of the main vector loop, hence passing the AdditionalBypass
8461   // argument.
8462   createInductionResumeValues(Lp, CountRoundDown,
8463                               {VecEpilogueIterationCountCheck,
8464                                EPI.VectorTripCount} /* AdditionalBypass */);
8465 
8466   AddRuntimeUnrollDisableMetaData(Lp);
8467   return completeLoopSkeleton(Lp, OrigLoopID);
8468 }
8469 
8470 BasicBlock *
8471 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8472     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8473 
8474   assert(EPI.TripCount &&
8475          "Expected trip count to have been safed in the first pass.");
8476   assert(
8477       (!isa<Instruction>(EPI.TripCount) ||
8478        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8479       "saved trip count does not dominate insertion point.");
8480   Value *TC = EPI.TripCount;
8481   IRBuilder<> Builder(Insert->getTerminator());
8482   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8483 
8484   // Generate code to check if the loop's trip count is less than VF * UF of the
8485   // vector epilogue loop.
8486   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8487       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8488 
8489   Value *CheckMinIters = Builder.CreateICmp(
8490       P, Count,
8491       ConstantInt::get(Count->getType(),
8492                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8493       "min.epilog.iters.check");
8494 
8495   ReplaceInstWithInst(
8496       Insert->getTerminator(),
8497       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8498 
8499   LoopBypassBlocks.push_back(Insert);
8500   return Insert;
8501 }
8502 
8503 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8504   LLVM_DEBUG({
8505     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8506            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8507            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8508   });
8509 }
8510 
8511 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8512   DEBUG_WITH_TYPE(VerboseDebug, {
8513     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8514   });
8515 }
8516 
8517 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8518     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8519   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8520   bool PredicateAtRangeStart = Predicate(Range.Start);
8521 
8522   for (ElementCount TmpVF = Range.Start * 2;
8523        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8524     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8525       Range.End = TmpVF;
8526       break;
8527     }
8528 
8529   return PredicateAtRangeStart;
8530 }
8531 
8532 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8533 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8534 /// of VF's starting at a given VF and extending it as much as possible. Each
8535 /// vectorization decision can potentially shorten this sub-range during
8536 /// buildVPlan().
8537 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8538                                            ElementCount MaxVF) {
8539   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8540   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8541     VFRange SubRange = {VF, MaxVFPlusOne};
8542     VPlans.push_back(buildVPlan(SubRange));
8543     VF = SubRange.End;
8544   }
8545 }
8546 
8547 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8548                                          VPlanPtr &Plan) {
8549   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8550 
8551   // Look for cached value.
8552   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8553   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8554   if (ECEntryIt != EdgeMaskCache.end())
8555     return ECEntryIt->second;
8556 
8557   VPValue *SrcMask = createBlockInMask(Src, Plan);
8558 
8559   // The terminator has to be a branch inst!
8560   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8561   assert(BI && "Unexpected terminator found");
8562 
8563   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8564     return EdgeMaskCache[Edge] = SrcMask;
8565 
8566   // If source is an exiting block, we know the exit edge is dynamically dead
8567   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8568   // adding uses of an otherwise potentially dead instruction.
8569   if (OrigLoop->isLoopExiting(Src))
8570     return EdgeMaskCache[Edge] = SrcMask;
8571 
8572   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8573   assert(EdgeMask && "No Edge Mask found for condition");
8574 
8575   if (BI->getSuccessor(0) != Dst)
8576     EdgeMask = Builder.createNot(EdgeMask);
8577 
8578   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8579     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8580     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8581     // The select version does not introduce new UB if SrcMask is false and
8582     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8583     VPValue *False = Plan->getOrAddVPValue(
8584         ConstantInt::getFalse(BI->getCondition()->getType()));
8585     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8586   }
8587 
8588   return EdgeMaskCache[Edge] = EdgeMask;
8589 }
8590 
8591 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8592   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8593 
8594   // Look for cached value.
8595   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8596   if (BCEntryIt != BlockMaskCache.end())
8597     return BCEntryIt->second;
8598 
8599   // All-one mask is modelled as no-mask following the convention for masked
8600   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8601   VPValue *BlockMask = nullptr;
8602 
8603   if (OrigLoop->getHeader() == BB) {
8604     if (!CM.blockNeedsPredication(BB))
8605       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8606 
8607     // Create the block in mask as the first non-phi instruction in the block.
8608     VPBuilder::InsertPointGuard Guard(Builder);
8609     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8610     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8611 
8612     // Introduce the early-exit compare IV <= BTC to form header block mask.
8613     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8614     // Start by constructing the desired canonical IV.
8615     VPValue *IV = nullptr;
8616     if (Legal->getPrimaryInduction())
8617       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8618     else {
8619       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8620       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8621       IV = IVRecipe->getVPSingleValue();
8622     }
8623     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8624     bool TailFolded = !CM.isScalarEpilogueAllowed();
8625 
8626     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8627       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8628       // as a second argument, we only pass the IV here and extract the
8629       // tripcount from the transform state where codegen of the VP instructions
8630       // happen.
8631       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8632     } else {
8633       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8634     }
8635     return BlockMaskCache[BB] = BlockMask;
8636   }
8637 
8638   // This is the block mask. We OR all incoming edges.
8639   for (auto *Predecessor : predecessors(BB)) {
8640     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8641     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8642       return BlockMaskCache[BB] = EdgeMask;
8643 
8644     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8645       BlockMask = EdgeMask;
8646       continue;
8647     }
8648 
8649     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8650   }
8651 
8652   return BlockMaskCache[BB] = BlockMask;
8653 }
8654 
8655 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8656                                                 ArrayRef<VPValue *> Operands,
8657                                                 VFRange &Range,
8658                                                 VPlanPtr &Plan) {
8659   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8660          "Must be called with either a load or store");
8661 
8662   auto willWiden = [&](ElementCount VF) -> bool {
8663     if (VF.isScalar())
8664       return false;
8665     LoopVectorizationCostModel::InstWidening Decision =
8666         CM.getWideningDecision(I, VF);
8667     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8668            "CM decision should be taken at this point.");
8669     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8670       return true;
8671     if (CM.isScalarAfterVectorization(I, VF) ||
8672         CM.isProfitableToScalarize(I, VF))
8673       return false;
8674     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8675   };
8676 
8677   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8678     return nullptr;
8679 
8680   VPValue *Mask = nullptr;
8681   if (Legal->isMaskRequired(I))
8682     Mask = createBlockInMask(I->getParent(), Plan);
8683 
8684   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8685     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8686 
8687   StoreInst *Store = cast<StoreInst>(I);
8688   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8689                                             Mask);
8690 }
8691 
8692 VPWidenIntOrFpInductionRecipe *
8693 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8694                                            ArrayRef<VPValue *> Operands) const {
8695   // Check if this is an integer or fp induction. If so, build the recipe that
8696   // produces its scalar and vector values.
8697   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8698   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8699       II.getKind() == InductionDescriptor::IK_FpInduction) {
8700     assert(II.getStartValue() ==
8701            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8702     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8703     return new VPWidenIntOrFpInductionRecipe(
8704         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8705   }
8706 
8707   return nullptr;
8708 }
8709 
8710 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8711     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8712     VPlan &Plan) const {
8713   // Optimize the special case where the source is a constant integer
8714   // induction variable. Notice that we can only optimize the 'trunc' case
8715   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8716   // (c) other casts depend on pointer size.
8717 
8718   // Determine whether \p K is a truncation based on an induction variable that
8719   // can be optimized.
8720   auto isOptimizableIVTruncate =
8721       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8722     return [=](ElementCount VF) -> bool {
8723       return CM.isOptimizableIVTruncate(K, VF);
8724     };
8725   };
8726 
8727   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8728           isOptimizableIVTruncate(I), Range)) {
8729 
8730     InductionDescriptor II =
8731         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8732     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8733     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8734                                              Start, nullptr, I);
8735   }
8736   return nullptr;
8737 }
8738 
8739 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8740                                                 ArrayRef<VPValue *> Operands,
8741                                                 VPlanPtr &Plan) {
8742   // If all incoming values are equal, the incoming VPValue can be used directly
8743   // instead of creating a new VPBlendRecipe.
8744   VPValue *FirstIncoming = Operands[0];
8745   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8746         return FirstIncoming == Inc;
8747       })) {
8748     return Operands[0];
8749   }
8750 
8751   // We know that all PHIs in non-header blocks are converted into selects, so
8752   // we don't have to worry about the insertion order and we can just use the
8753   // builder. At this point we generate the predication tree. There may be
8754   // duplications since this is a simple recursive scan, but future
8755   // optimizations will clean it up.
8756   SmallVector<VPValue *, 2> OperandsWithMask;
8757   unsigned NumIncoming = Phi->getNumIncomingValues();
8758 
8759   for (unsigned In = 0; In < NumIncoming; In++) {
8760     VPValue *EdgeMask =
8761       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8762     assert((EdgeMask || NumIncoming == 1) &&
8763            "Multiple predecessors with one having a full mask");
8764     OperandsWithMask.push_back(Operands[In]);
8765     if (EdgeMask)
8766       OperandsWithMask.push_back(EdgeMask);
8767   }
8768   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8769 }
8770 
8771 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8772                                                    ArrayRef<VPValue *> Operands,
8773                                                    VFRange &Range) const {
8774 
8775   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8776       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8777       Range);
8778 
8779   if (IsPredicated)
8780     return nullptr;
8781 
8782   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8783   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8784              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8785              ID == Intrinsic::pseudoprobe ||
8786              ID == Intrinsic::experimental_noalias_scope_decl))
8787     return nullptr;
8788 
8789   auto willWiden = [&](ElementCount VF) -> bool {
8790     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8791     // The following case may be scalarized depending on the VF.
8792     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8793     // version of the instruction.
8794     // Is it beneficial to perform intrinsic call compared to lib call?
8795     bool NeedToScalarize = false;
8796     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8797     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8798     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8799     return UseVectorIntrinsic || !NeedToScalarize;
8800   };
8801 
8802   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8803     return nullptr;
8804 
8805   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8806   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8807 }
8808 
8809 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8810   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8811          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8812   // Instruction should be widened, unless it is scalar after vectorization,
8813   // scalarization is profitable or it is predicated.
8814   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8815     return CM.isScalarAfterVectorization(I, VF) ||
8816            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8817   };
8818   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8819                                                              Range);
8820 }
8821 
8822 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8823                                            ArrayRef<VPValue *> Operands) const {
8824   auto IsVectorizableOpcode = [](unsigned Opcode) {
8825     switch (Opcode) {
8826     case Instruction::Add:
8827     case Instruction::And:
8828     case Instruction::AShr:
8829     case Instruction::BitCast:
8830     case Instruction::FAdd:
8831     case Instruction::FCmp:
8832     case Instruction::FDiv:
8833     case Instruction::FMul:
8834     case Instruction::FNeg:
8835     case Instruction::FPExt:
8836     case Instruction::FPToSI:
8837     case Instruction::FPToUI:
8838     case Instruction::FPTrunc:
8839     case Instruction::FRem:
8840     case Instruction::FSub:
8841     case Instruction::ICmp:
8842     case Instruction::IntToPtr:
8843     case Instruction::LShr:
8844     case Instruction::Mul:
8845     case Instruction::Or:
8846     case Instruction::PtrToInt:
8847     case Instruction::SDiv:
8848     case Instruction::Select:
8849     case Instruction::SExt:
8850     case Instruction::Shl:
8851     case Instruction::SIToFP:
8852     case Instruction::SRem:
8853     case Instruction::Sub:
8854     case Instruction::Trunc:
8855     case Instruction::UDiv:
8856     case Instruction::UIToFP:
8857     case Instruction::URem:
8858     case Instruction::Xor:
8859     case Instruction::ZExt:
8860       return true;
8861     }
8862     return false;
8863   };
8864 
8865   if (!IsVectorizableOpcode(I->getOpcode()))
8866     return nullptr;
8867 
8868   // Success: widen this instruction.
8869   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8870 }
8871 
8872 void VPRecipeBuilder::fixHeaderPhis() {
8873   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8874   for (VPWidenPHIRecipe *R : PhisToFix) {
8875     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8876     VPRecipeBase *IncR =
8877         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8878     R->addOperand(IncR->getVPSingleValue());
8879   }
8880 }
8881 
8882 VPBasicBlock *VPRecipeBuilder::handleReplication(
8883     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8884     VPlanPtr &Plan) {
8885   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8886       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8887       Range);
8888 
8889   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8890       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8891 
8892   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8893                                        IsUniform, IsPredicated);
8894   setRecipe(I, Recipe);
8895   Plan->addVPValue(I, Recipe);
8896 
8897   // Find if I uses a predicated instruction. If so, it will use its scalar
8898   // value. Avoid hoisting the insert-element which packs the scalar value into
8899   // a vector value, as that happens iff all users use the vector value.
8900   for (VPValue *Op : Recipe->operands()) {
8901     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8902     if (!PredR)
8903       continue;
8904     auto *RepR =
8905         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8906     assert(RepR->isPredicated() &&
8907            "expected Replicate recipe to be predicated");
8908     RepR->setAlsoPack(false);
8909   }
8910 
8911   // Finalize the recipe for Instr, first if it is not predicated.
8912   if (!IsPredicated) {
8913     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8914     VPBB->appendRecipe(Recipe);
8915     return VPBB;
8916   }
8917   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8918   assert(VPBB->getSuccessors().empty() &&
8919          "VPBB has successors when handling predicated replication.");
8920   // Record predicated instructions for above packing optimizations.
8921   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8922   VPBlockUtils::insertBlockAfter(Region, VPBB);
8923   auto *RegSucc = new VPBasicBlock();
8924   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8925   return RegSucc;
8926 }
8927 
8928 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8929                                                       VPRecipeBase *PredRecipe,
8930                                                       VPlanPtr &Plan) {
8931   // Instructions marked for predication are replicated and placed under an
8932   // if-then construct to prevent side-effects.
8933 
8934   // Generate recipes to compute the block mask for this region.
8935   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8936 
8937   // Build the triangular if-then region.
8938   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8939   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8940   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8941   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8942   auto *PHIRecipe = Instr->getType()->isVoidTy()
8943                         ? nullptr
8944                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8945   if (PHIRecipe) {
8946     Plan->removeVPValueFor(Instr);
8947     Plan->addVPValue(Instr, PHIRecipe);
8948   }
8949   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8950   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8951   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8952 
8953   // Note: first set Entry as region entry and then connect successors starting
8954   // from it in order, to propagate the "parent" of each VPBasicBlock.
8955   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8956   VPBlockUtils::connectBlocks(Pred, Exit);
8957 
8958   return Region;
8959 }
8960 
8961 VPRecipeOrVPValueTy
8962 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8963                                         ArrayRef<VPValue *> Operands,
8964                                         VFRange &Range, VPlanPtr &Plan) {
8965   // First, check for specific widening recipes that deal with calls, memory
8966   // operations, inductions and Phi nodes.
8967   if (auto *CI = dyn_cast<CallInst>(Instr))
8968     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8969 
8970   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8971     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8972 
8973   VPRecipeBase *Recipe;
8974   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8975     if (Phi->getParent() != OrigLoop->getHeader())
8976       return tryToBlend(Phi, Operands, Plan);
8977     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8978       return toVPRecipeResult(Recipe);
8979 
8980     VPWidenPHIRecipe *PhiRecipe = nullptr;
8981     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8982       VPValue *StartV = Operands[0];
8983       if (Legal->isReductionVariable(Phi)) {
8984         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8985         assert(RdxDesc.getRecurrenceStartValue() ==
8986                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8987         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8988                                              CM.isInLoopReduction(Phi),
8989                                              CM.useOrderedReductions(RdxDesc));
8990       } else {
8991         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8992       }
8993 
8994       // Record the incoming value from the backedge, so we can add the incoming
8995       // value from the backedge after all recipes have been created.
8996       recordRecipeOf(cast<Instruction>(
8997           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8998       PhisToFix.push_back(PhiRecipe);
8999     } else {
9000       // TODO: record start and backedge value for remaining pointer induction
9001       // phis.
9002       assert(Phi->getType()->isPointerTy() &&
9003              "only pointer phis should be handled here");
9004       PhiRecipe = new VPWidenPHIRecipe(Phi);
9005     }
9006 
9007     return toVPRecipeResult(PhiRecipe);
9008   }
9009 
9010   if (isa<TruncInst>(Instr) &&
9011       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9012                                                Range, *Plan)))
9013     return toVPRecipeResult(Recipe);
9014 
9015   if (!shouldWiden(Instr, Range))
9016     return nullptr;
9017 
9018   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9019     return toVPRecipeResult(new VPWidenGEPRecipe(
9020         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9021 
9022   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9023     bool InvariantCond =
9024         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9025     return toVPRecipeResult(new VPWidenSelectRecipe(
9026         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9027   }
9028 
9029   return toVPRecipeResult(tryToWiden(Instr, Operands));
9030 }
9031 
9032 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9033                                                         ElementCount MaxVF) {
9034   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9035 
9036   // Collect instructions from the original loop that will become trivially dead
9037   // in the vectorized loop. We don't need to vectorize these instructions. For
9038   // example, original induction update instructions can become dead because we
9039   // separately emit induction "steps" when generating code for the new loop.
9040   // Similarly, we create a new latch condition when setting up the structure
9041   // of the new loop, so the old one can become dead.
9042   SmallPtrSet<Instruction *, 4> DeadInstructions;
9043   collectTriviallyDeadInstructions(DeadInstructions);
9044 
9045   // Add assume instructions we need to drop to DeadInstructions, to prevent
9046   // them from being added to the VPlan.
9047   // TODO: We only need to drop assumes in blocks that get flattend. If the
9048   // control flow is preserved, we should keep them.
9049   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9050   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9051 
9052   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9053   // Dead instructions do not need sinking. Remove them from SinkAfter.
9054   for (Instruction *I : DeadInstructions)
9055     SinkAfter.erase(I);
9056 
9057   // Cannot sink instructions after dead instructions (there won't be any
9058   // recipes for them). Instead, find the first non-dead previous instruction.
9059   for (auto &P : Legal->getSinkAfter()) {
9060     Instruction *SinkTarget = P.second;
9061     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9062     (void)FirstInst;
9063     while (DeadInstructions.contains(SinkTarget)) {
9064       assert(
9065           SinkTarget != FirstInst &&
9066           "Must find a live instruction (at least the one feeding the "
9067           "first-order recurrence PHI) before reaching beginning of the block");
9068       SinkTarget = SinkTarget->getPrevNode();
9069       assert(SinkTarget != P.first &&
9070              "sink source equals target, no sinking required");
9071     }
9072     P.second = SinkTarget;
9073   }
9074 
9075   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9076   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9077     VFRange SubRange = {VF, MaxVFPlusOne};
9078     VPlans.push_back(
9079         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9080     VF = SubRange.End;
9081   }
9082 }
9083 
9084 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9085     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9086     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9087 
9088   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9089 
9090   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9091 
9092   // ---------------------------------------------------------------------------
9093   // Pre-construction: record ingredients whose recipes we'll need to further
9094   // process after constructing the initial VPlan.
9095   // ---------------------------------------------------------------------------
9096 
9097   // Mark instructions we'll need to sink later and their targets as
9098   // ingredients whose recipe we'll need to record.
9099   for (auto &Entry : SinkAfter) {
9100     RecipeBuilder.recordRecipeOf(Entry.first);
9101     RecipeBuilder.recordRecipeOf(Entry.second);
9102   }
9103   for (auto &Reduction : CM.getInLoopReductionChains()) {
9104     PHINode *Phi = Reduction.first;
9105     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9106     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9107 
9108     RecipeBuilder.recordRecipeOf(Phi);
9109     for (auto &R : ReductionOperations) {
9110       RecipeBuilder.recordRecipeOf(R);
9111       // For min/max reducitons, where we have a pair of icmp/select, we also
9112       // need to record the ICmp recipe, so it can be removed later.
9113       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9114         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9115     }
9116   }
9117 
9118   // For each interleave group which is relevant for this (possibly trimmed)
9119   // Range, add it to the set of groups to be later applied to the VPlan and add
9120   // placeholders for its members' Recipes which we'll be replacing with a
9121   // single VPInterleaveRecipe.
9122   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9123     auto applyIG = [IG, this](ElementCount VF) -> bool {
9124       return (VF.isVector() && // Query is illegal for VF == 1
9125               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9126                   LoopVectorizationCostModel::CM_Interleave);
9127     };
9128     if (!getDecisionAndClampRange(applyIG, Range))
9129       continue;
9130     InterleaveGroups.insert(IG);
9131     for (unsigned i = 0; i < IG->getFactor(); i++)
9132       if (Instruction *Member = IG->getMember(i))
9133         RecipeBuilder.recordRecipeOf(Member);
9134   };
9135 
9136   // ---------------------------------------------------------------------------
9137   // Build initial VPlan: Scan the body of the loop in a topological order to
9138   // visit each basic block after having visited its predecessor basic blocks.
9139   // ---------------------------------------------------------------------------
9140 
9141   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9142   auto Plan = std::make_unique<VPlan>();
9143   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9144   Plan->setEntry(VPBB);
9145 
9146   // Scan the body of the loop in a topological order to visit each basic block
9147   // after having visited its predecessor basic blocks.
9148   LoopBlocksDFS DFS(OrigLoop);
9149   DFS.perform(LI);
9150 
9151   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9152     // Relevant instructions from basic block BB will be grouped into VPRecipe
9153     // ingredients and fill a new VPBasicBlock.
9154     unsigned VPBBsForBB = 0;
9155     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9156     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9157     VPBB = FirstVPBBForBB;
9158     Builder.setInsertPoint(VPBB);
9159 
9160     // Introduce each ingredient into VPlan.
9161     // TODO: Model and preserve debug instrinsics in VPlan.
9162     for (Instruction &I : BB->instructionsWithoutDebug()) {
9163       Instruction *Instr = &I;
9164 
9165       // First filter out irrelevant instructions, to ensure no recipes are
9166       // built for them.
9167       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9168         continue;
9169 
9170       SmallVector<VPValue *, 4> Operands;
9171       auto *Phi = dyn_cast<PHINode>(Instr);
9172       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9173         Operands.push_back(Plan->getOrAddVPValue(
9174             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9175       } else {
9176         auto OpRange = Plan->mapToVPValues(Instr->operands());
9177         Operands = {OpRange.begin(), OpRange.end()};
9178       }
9179       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9180               Instr, Operands, Range, Plan)) {
9181         // If Instr can be simplified to an existing VPValue, use it.
9182         if (RecipeOrValue.is<VPValue *>()) {
9183           auto *VPV = RecipeOrValue.get<VPValue *>();
9184           Plan->addVPValue(Instr, VPV);
9185           // If the re-used value is a recipe, register the recipe for the
9186           // instruction, in case the recipe for Instr needs to be recorded.
9187           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9188             RecipeBuilder.setRecipe(Instr, R);
9189           continue;
9190         }
9191         // Otherwise, add the new recipe.
9192         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9193         for (auto *Def : Recipe->definedValues()) {
9194           auto *UV = Def->getUnderlyingValue();
9195           Plan->addVPValue(UV, Def);
9196         }
9197 
9198         RecipeBuilder.setRecipe(Instr, Recipe);
9199         VPBB->appendRecipe(Recipe);
9200         continue;
9201       }
9202 
9203       // Otherwise, if all widening options failed, Instruction is to be
9204       // replicated. This may create a successor for VPBB.
9205       VPBasicBlock *NextVPBB =
9206           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9207       if (NextVPBB != VPBB) {
9208         VPBB = NextVPBB;
9209         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9210                                     : "");
9211       }
9212     }
9213   }
9214 
9215   RecipeBuilder.fixHeaderPhis();
9216 
9217   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9218   // may also be empty, such as the last one VPBB, reflecting original
9219   // basic-blocks with no recipes.
9220   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9221   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9222   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9223   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9224   delete PreEntry;
9225 
9226   // ---------------------------------------------------------------------------
9227   // Transform initial VPlan: Apply previously taken decisions, in order, to
9228   // bring the VPlan to its final state.
9229   // ---------------------------------------------------------------------------
9230 
9231   // Apply Sink-After legal constraints.
9232   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9233     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9234     if (Region && Region->isReplicator()) {
9235       assert(Region->getNumSuccessors() == 1 &&
9236              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9237       assert(R->getParent()->size() == 1 &&
9238              "A recipe in an original replicator region must be the only "
9239              "recipe in its block");
9240       return Region;
9241     }
9242     return nullptr;
9243   };
9244   for (auto &Entry : SinkAfter) {
9245     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9246     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9247 
9248     auto *TargetRegion = GetReplicateRegion(Target);
9249     auto *SinkRegion = GetReplicateRegion(Sink);
9250     if (!SinkRegion) {
9251       // If the sink source is not a replicate region, sink the recipe directly.
9252       if (TargetRegion) {
9253         // The target is in a replication region, make sure to move Sink to
9254         // the block after it, not into the replication region itself.
9255         VPBasicBlock *NextBlock =
9256             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9257         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9258       } else
9259         Sink->moveAfter(Target);
9260       continue;
9261     }
9262 
9263     // The sink source is in a replicate region. Unhook the region from the CFG.
9264     auto *SinkPred = SinkRegion->getSinglePredecessor();
9265     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9266     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9267     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9268     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9269 
9270     if (TargetRegion) {
9271       // The target recipe is also in a replicate region, move the sink region
9272       // after the target region.
9273       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9274       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9275       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9276       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9277     } else {
9278       // The sink source is in a replicate region, we need to move the whole
9279       // replicate region, which should only contain a single recipe in the
9280       // main block.
9281       auto *SplitBlock =
9282           Target->getParent()->splitAt(std::next(Target->getIterator()));
9283 
9284       auto *SplitPred = SplitBlock->getSinglePredecessor();
9285 
9286       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9287       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9288       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9289       if (VPBB == SplitPred)
9290         VPBB = SplitBlock;
9291     }
9292   }
9293 
9294   // Introduce a recipe to combine the incoming and previous values of a
9295   // first-order recurrence.
9296   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9297     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9298     if (!RecurPhi)
9299       continue;
9300 
9301     auto *RecurSplice = cast<VPInstruction>(
9302         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9303                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9304 
9305     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9306     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9307       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9308       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9309     } else
9310       RecurSplice->moveAfter(PrevRecipe);
9311     RecurPhi->replaceAllUsesWith(RecurSplice);
9312     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9313     // all users.
9314     RecurSplice->setOperand(0, RecurPhi);
9315   }
9316 
9317   // Interleave memory: for each Interleave Group we marked earlier as relevant
9318   // for this VPlan, replace the Recipes widening its memory instructions with a
9319   // single VPInterleaveRecipe at its insertion point.
9320   for (auto IG : InterleaveGroups) {
9321     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9322         RecipeBuilder.getRecipe(IG->getInsertPos()));
9323     SmallVector<VPValue *, 4> StoredValues;
9324     for (unsigned i = 0; i < IG->getFactor(); ++i)
9325       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
9326         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
9327 
9328     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9329                                         Recipe->getMask());
9330     VPIG->insertBefore(Recipe);
9331     unsigned J = 0;
9332     for (unsigned i = 0; i < IG->getFactor(); ++i)
9333       if (Instruction *Member = IG->getMember(i)) {
9334         if (!Member->getType()->isVoidTy()) {
9335           VPValue *OriginalV = Plan->getVPValue(Member);
9336           Plan->removeVPValueFor(Member);
9337           Plan->addVPValue(Member, VPIG->getVPValue(J));
9338           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9339           J++;
9340         }
9341         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9342       }
9343   }
9344 
9345   // Adjust the recipes for any inloop reductions.
9346   adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start);
9347 
9348   // Finally, if tail is folded by masking, introduce selects between the phi
9349   // and the live-out instruction of each reduction, at the end of the latch.
9350   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9351     Builder.setInsertPoint(VPBB);
9352     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9353     for (auto &Reduction : Legal->getReductionVars()) {
9354       if (CM.isInLoopReduction(Reduction.first))
9355         continue;
9356       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9357       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9358       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9359     }
9360   }
9361 
9362   VPlanTransforms::sinkScalarOperands(*Plan);
9363   VPlanTransforms::mergeReplicateRegions(*Plan);
9364 
9365   std::string PlanName;
9366   raw_string_ostream RSO(PlanName);
9367   ElementCount VF = Range.Start;
9368   Plan->addVF(VF);
9369   RSO << "Initial VPlan for VF={" << VF;
9370   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9371     Plan->addVF(VF);
9372     RSO << "," << VF;
9373   }
9374   RSO << "},UF>=1";
9375   RSO.flush();
9376   Plan->setName(PlanName);
9377 
9378   return Plan;
9379 }
9380 
9381 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9382   // Outer loop handling: They may require CFG and instruction level
9383   // transformations before even evaluating whether vectorization is profitable.
9384   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9385   // the vectorization pipeline.
9386   assert(!OrigLoop->isInnermost());
9387   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9388 
9389   // Create new empty VPlan
9390   auto Plan = std::make_unique<VPlan>();
9391 
9392   // Build hierarchical CFG
9393   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9394   HCFGBuilder.buildHierarchicalCFG();
9395 
9396   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9397        VF *= 2)
9398     Plan->addVF(VF);
9399 
9400   if (EnableVPlanPredication) {
9401     VPlanPredicator VPP(*Plan);
9402     VPP.predicate();
9403 
9404     // Avoid running transformation to recipes until masked code generation in
9405     // VPlan-native path is in place.
9406     return Plan;
9407   }
9408 
9409   SmallPtrSet<Instruction *, 1> DeadInstructions;
9410   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9411                                              Legal->getInductionVars(),
9412                                              DeadInstructions, *PSE.getSE());
9413   return Plan;
9414 }
9415 
9416 // Adjust the recipes for any inloop reductions. The chain of instructions
9417 // leading from the loop exit instr to the phi need to be converted to
9418 // reductions, with one operand being vector and the other being the scalar
9419 // reduction chain.
9420 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9421     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
9422   for (auto &Reduction : CM.getInLoopReductionChains()) {
9423     PHINode *Phi = Reduction.first;
9424     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9425     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9426 
9427     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9428       continue;
9429 
9430     // ReductionOperations are orders top-down from the phi's use to the
9431     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9432     // which of the two operands will remain scalar and which will be reduced.
9433     // For minmax the chain will be the select instructions.
9434     Instruction *Chain = Phi;
9435     for (Instruction *R : ReductionOperations) {
9436       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9437       RecurKind Kind = RdxDesc.getRecurrenceKind();
9438 
9439       VPValue *ChainOp = Plan->getVPValue(Chain);
9440       unsigned FirstOpId;
9441       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9442         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9443                "Expected to replace a VPWidenSelectSC");
9444         FirstOpId = 1;
9445       } else {
9446         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9447                "Expected to replace a VPWidenSC");
9448         FirstOpId = 0;
9449       }
9450       unsigned VecOpId =
9451           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9452       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9453 
9454       auto *CondOp = CM.foldTailByMasking()
9455                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9456                          : nullptr;
9457       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9458           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9459       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9460       Plan->removeVPValueFor(R);
9461       Plan->addVPValue(R, RedRecipe);
9462       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9463       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9464       WidenRecipe->eraseFromParent();
9465 
9466       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9467         VPRecipeBase *CompareRecipe =
9468             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9469         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9470                "Expected to replace a VPWidenSC");
9471         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9472                "Expected no remaining users");
9473         CompareRecipe->eraseFromParent();
9474       }
9475       Chain = R;
9476     }
9477   }
9478 }
9479 
9480 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9481 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9482                                VPSlotTracker &SlotTracker) const {
9483   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9484   IG->getInsertPos()->printAsOperand(O, false);
9485   O << ", ";
9486   getAddr()->printAsOperand(O, SlotTracker);
9487   VPValue *Mask = getMask();
9488   if (Mask) {
9489     O << ", ";
9490     Mask->printAsOperand(O, SlotTracker);
9491   }
9492   for (unsigned i = 0; i < IG->getFactor(); ++i)
9493     if (Instruction *I = IG->getMember(i))
9494       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9495 }
9496 #endif
9497 
9498 void VPWidenCallRecipe::execute(VPTransformState &State) {
9499   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9500                                   *this, State);
9501 }
9502 
9503 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9504   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9505                                     this, *this, InvariantCond, State);
9506 }
9507 
9508 void VPWidenRecipe::execute(VPTransformState &State) {
9509   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9510 }
9511 
9512 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9513   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9514                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9515                       IsIndexLoopInvariant, State);
9516 }
9517 
9518 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9519   assert(!State.Instance && "Int or FP induction being replicated.");
9520   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9521                                    getTruncInst(), getVPValue(0),
9522                                    getCastValue(), State);
9523 }
9524 
9525 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9526   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9527                                  State);
9528 }
9529 
9530 void VPBlendRecipe::execute(VPTransformState &State) {
9531   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9532   // We know that all PHIs in non-header blocks are converted into
9533   // selects, so we don't have to worry about the insertion order and we
9534   // can just use the builder.
9535   // At this point we generate the predication tree. There may be
9536   // duplications since this is a simple recursive scan, but future
9537   // optimizations will clean it up.
9538 
9539   unsigned NumIncoming = getNumIncomingValues();
9540 
9541   // Generate a sequence of selects of the form:
9542   // SELECT(Mask3, In3,
9543   //        SELECT(Mask2, In2,
9544   //               SELECT(Mask1, In1,
9545   //                      In0)))
9546   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9547   // are essentially undef are taken from In0.
9548   InnerLoopVectorizer::VectorParts Entry(State.UF);
9549   for (unsigned In = 0; In < NumIncoming; ++In) {
9550     for (unsigned Part = 0; Part < State.UF; ++Part) {
9551       // We might have single edge PHIs (blocks) - use an identity
9552       // 'select' for the first PHI operand.
9553       Value *In0 = State.get(getIncomingValue(In), Part);
9554       if (In == 0)
9555         Entry[Part] = In0; // Initialize with the first incoming value.
9556       else {
9557         // Select between the current value and the previous incoming edge
9558         // based on the incoming mask.
9559         Value *Cond = State.get(getMask(In), Part);
9560         Entry[Part] =
9561             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9562       }
9563     }
9564   }
9565   for (unsigned Part = 0; Part < State.UF; ++Part)
9566     State.set(this, Entry[Part], Part);
9567 }
9568 
9569 void VPInterleaveRecipe::execute(VPTransformState &State) {
9570   assert(!State.Instance && "Interleave group being replicated.");
9571   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9572                                       getStoredValues(), getMask());
9573 }
9574 
9575 void VPReductionRecipe::execute(VPTransformState &State) {
9576   assert(!State.Instance && "Reduction being replicated.");
9577   Value *PrevInChain = State.get(getChainOp(), 0);
9578   for (unsigned Part = 0; Part < State.UF; ++Part) {
9579     RecurKind Kind = RdxDesc->getRecurrenceKind();
9580     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9581     Value *NewVecOp = State.get(getVecOp(), Part);
9582     if (VPValue *Cond = getCondOp()) {
9583       Value *NewCond = State.get(Cond, Part);
9584       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9585       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9586           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9587       Constant *IdenVec =
9588           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9589       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9590       NewVecOp = Select;
9591     }
9592     Value *NewRed;
9593     Value *NextInChain;
9594     if (IsOrdered) {
9595       if (State.VF.isVector())
9596         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9597                                         PrevInChain);
9598       else
9599         NewRed = State.Builder.CreateBinOp(
9600             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9601             PrevInChain, NewVecOp);
9602       PrevInChain = NewRed;
9603     } else {
9604       PrevInChain = State.get(getChainOp(), Part);
9605       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9606     }
9607     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9608       NextInChain =
9609           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9610                          NewRed, PrevInChain);
9611     } else if (IsOrdered)
9612       NextInChain = NewRed;
9613     else {
9614       NextInChain = State.Builder.CreateBinOp(
9615           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9616           PrevInChain);
9617     }
9618     State.set(this, NextInChain, Part);
9619   }
9620 }
9621 
9622 void VPReplicateRecipe::execute(VPTransformState &State) {
9623   if (State.Instance) { // Generate a single instance.
9624     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9625     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9626                                     *State.Instance, IsPredicated, State);
9627     // Insert scalar instance packing it into a vector.
9628     if (AlsoPack && State.VF.isVector()) {
9629       // If we're constructing lane 0, initialize to start from poison.
9630       if (State.Instance->Lane.isFirstLane()) {
9631         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9632         Value *Poison = PoisonValue::get(
9633             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9634         State.set(this, Poison, State.Instance->Part);
9635       }
9636       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9637     }
9638     return;
9639   }
9640 
9641   // Generate scalar instances for all VF lanes of all UF parts, unless the
9642   // instruction is uniform inwhich case generate only the first lane for each
9643   // of the UF parts.
9644   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9645   assert((!State.VF.isScalable() || IsUniform) &&
9646          "Can't scalarize a scalable vector");
9647   for (unsigned Part = 0; Part < State.UF; ++Part)
9648     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9649       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9650                                       VPIteration(Part, Lane), IsPredicated,
9651                                       State);
9652 }
9653 
9654 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9655   assert(State.Instance && "Branch on Mask works only on single instance.");
9656 
9657   unsigned Part = State.Instance->Part;
9658   unsigned Lane = State.Instance->Lane.getKnownLane();
9659 
9660   Value *ConditionBit = nullptr;
9661   VPValue *BlockInMask = getMask();
9662   if (BlockInMask) {
9663     ConditionBit = State.get(BlockInMask, Part);
9664     if (ConditionBit->getType()->isVectorTy())
9665       ConditionBit = State.Builder.CreateExtractElement(
9666           ConditionBit, State.Builder.getInt32(Lane));
9667   } else // Block in mask is all-one.
9668     ConditionBit = State.Builder.getTrue();
9669 
9670   // Replace the temporary unreachable terminator with a new conditional branch,
9671   // whose two destinations will be set later when they are created.
9672   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9673   assert(isa<UnreachableInst>(CurrentTerminator) &&
9674          "Expected to replace unreachable terminator with conditional branch.");
9675   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9676   CondBr->setSuccessor(0, nullptr);
9677   ReplaceInstWithInst(CurrentTerminator, CondBr);
9678 }
9679 
9680 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9681   assert(State.Instance && "Predicated instruction PHI works per instance.");
9682   Instruction *ScalarPredInst =
9683       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9684   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9685   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9686   assert(PredicatingBB && "Predicated block has no single predecessor.");
9687   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9688          "operand must be VPReplicateRecipe");
9689 
9690   // By current pack/unpack logic we need to generate only a single phi node: if
9691   // a vector value for the predicated instruction exists at this point it means
9692   // the instruction has vector users only, and a phi for the vector value is
9693   // needed. In this case the recipe of the predicated instruction is marked to
9694   // also do that packing, thereby "hoisting" the insert-element sequence.
9695   // Otherwise, a phi node for the scalar value is needed.
9696   unsigned Part = State.Instance->Part;
9697   if (State.hasVectorValue(getOperand(0), Part)) {
9698     Value *VectorValue = State.get(getOperand(0), Part);
9699     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9700     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9701     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9702     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9703     if (State.hasVectorValue(this, Part))
9704       State.reset(this, VPhi, Part);
9705     else
9706       State.set(this, VPhi, Part);
9707     // NOTE: Currently we need to update the value of the operand, so the next
9708     // predicated iteration inserts its generated value in the correct vector.
9709     State.reset(getOperand(0), VPhi, Part);
9710   } else {
9711     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9712     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9713     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9714                      PredicatingBB);
9715     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9716     if (State.hasScalarValue(this, *State.Instance))
9717       State.reset(this, Phi, *State.Instance);
9718     else
9719       State.set(this, Phi, *State.Instance);
9720     // NOTE: Currently we need to update the value of the operand, so the next
9721     // predicated iteration inserts its generated value in the correct vector.
9722     State.reset(getOperand(0), Phi, *State.Instance);
9723   }
9724 }
9725 
9726 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9727   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9728   State.ILV->vectorizeMemoryInstruction(
9729       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9730       StoredValue, getMask());
9731 }
9732 
9733 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9734 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9735 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9736 // for predication.
9737 static ScalarEpilogueLowering getScalarEpilogueLowering(
9738     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9739     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9740     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9741     LoopVectorizationLegality &LVL) {
9742   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9743   // don't look at hints or options, and don't request a scalar epilogue.
9744   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9745   // LoopAccessInfo (due to code dependency and not being able to reliably get
9746   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9747   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9748   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9749   // back to the old way and vectorize with versioning when forced. See D81345.)
9750   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9751                                                       PGSOQueryType::IRPass) &&
9752                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9753     return CM_ScalarEpilogueNotAllowedOptSize;
9754 
9755   // 2) If set, obey the directives
9756   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9757     switch (PreferPredicateOverEpilogue) {
9758     case PreferPredicateTy::ScalarEpilogue:
9759       return CM_ScalarEpilogueAllowed;
9760     case PreferPredicateTy::PredicateElseScalarEpilogue:
9761       return CM_ScalarEpilogueNotNeededUsePredicate;
9762     case PreferPredicateTy::PredicateOrDontVectorize:
9763       return CM_ScalarEpilogueNotAllowedUsePredicate;
9764     };
9765   }
9766 
9767   // 3) If set, obey the hints
9768   switch (Hints.getPredicate()) {
9769   case LoopVectorizeHints::FK_Enabled:
9770     return CM_ScalarEpilogueNotNeededUsePredicate;
9771   case LoopVectorizeHints::FK_Disabled:
9772     return CM_ScalarEpilogueAllowed;
9773   };
9774 
9775   // 4) if the TTI hook indicates this is profitable, request predication.
9776   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9777                                        LVL.getLAI()))
9778     return CM_ScalarEpilogueNotNeededUsePredicate;
9779 
9780   return CM_ScalarEpilogueAllowed;
9781 }
9782 
9783 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9784   // If Values have been set for this Def return the one relevant for \p Part.
9785   if (hasVectorValue(Def, Part))
9786     return Data.PerPartOutput[Def][Part];
9787 
9788   if (!hasScalarValue(Def, {Part, 0})) {
9789     Value *IRV = Def->getLiveInIRValue();
9790     Value *B = ILV->getBroadcastInstrs(IRV);
9791     set(Def, B, Part);
9792     return B;
9793   }
9794 
9795   Value *ScalarValue = get(Def, {Part, 0});
9796   // If we aren't vectorizing, we can just copy the scalar map values over
9797   // to the vector map.
9798   if (VF.isScalar()) {
9799     set(Def, ScalarValue, Part);
9800     return ScalarValue;
9801   }
9802 
9803   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9804   bool IsUniform = RepR && RepR->isUniform();
9805 
9806   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9807   // Check if there is a scalar value for the selected lane.
9808   if (!hasScalarValue(Def, {Part, LastLane})) {
9809     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9810     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9811            "unexpected recipe found to be invariant");
9812     IsUniform = true;
9813     LastLane = 0;
9814   }
9815 
9816   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9817   // Set the insert point after the last scalarized instruction or after the
9818   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9819   // will directly follow the scalar definitions.
9820   auto OldIP = Builder.saveIP();
9821   auto NewIP =
9822       isa<PHINode>(LastInst)
9823           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9824           : std::next(BasicBlock::iterator(LastInst));
9825   Builder.SetInsertPoint(&*NewIP);
9826 
9827   // However, if we are vectorizing, we need to construct the vector values.
9828   // If the value is known to be uniform after vectorization, we can just
9829   // broadcast the scalar value corresponding to lane zero for each unroll
9830   // iteration. Otherwise, we construct the vector values using
9831   // insertelement instructions. Since the resulting vectors are stored in
9832   // State, we will only generate the insertelements once.
9833   Value *VectorValue = nullptr;
9834   if (IsUniform) {
9835     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9836     set(Def, VectorValue, Part);
9837   } else {
9838     // Initialize packing with insertelements to start from undef.
9839     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9840     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9841     set(Def, Undef, Part);
9842     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9843       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9844     VectorValue = get(Def, Part);
9845   }
9846   Builder.restoreIP(OldIP);
9847   return VectorValue;
9848 }
9849 
9850 // Process the loop in the VPlan-native vectorization path. This path builds
9851 // VPlan upfront in the vectorization pipeline, which allows to apply
9852 // VPlan-to-VPlan transformations from the very beginning without modifying the
9853 // input LLVM IR.
9854 static bool processLoopInVPlanNativePath(
9855     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9856     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9857     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9858     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9859     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9860     LoopVectorizationRequirements &Requirements) {
9861 
9862   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9863     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9864     return false;
9865   }
9866   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9867   Function *F = L->getHeader()->getParent();
9868   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9869 
9870   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9871       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9872 
9873   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9874                                 &Hints, IAI);
9875   // Use the planner for outer loop vectorization.
9876   // TODO: CM is not used at this point inside the planner. Turn CM into an
9877   // optional argument if we don't need it in the future.
9878   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9879                                Requirements, ORE);
9880 
9881   // Get user vectorization factor.
9882   ElementCount UserVF = Hints.getWidth();
9883 
9884   CM.collectElementTypesForWidening();
9885 
9886   // Plan how to best vectorize, return the best VF and its cost.
9887   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9888 
9889   // If we are stress testing VPlan builds, do not attempt to generate vector
9890   // code. Masked vector code generation support will follow soon.
9891   // Also, do not attempt to vectorize if no vector code will be produced.
9892   if (VPlanBuildStressTest || EnableVPlanPredication ||
9893       VectorizationFactor::Disabled() == VF)
9894     return false;
9895 
9896   LVP.setBestPlan(VF.Width, 1);
9897 
9898   {
9899     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9900                              F->getParent()->getDataLayout());
9901     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9902                            &CM, BFI, PSI, Checks);
9903     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9904                       << L->getHeader()->getParent()->getName() << "\"\n");
9905     LVP.executePlan(LB, DT);
9906   }
9907 
9908   // Mark the loop as already vectorized to avoid vectorizing again.
9909   Hints.setAlreadyVectorized();
9910   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9911   return true;
9912 }
9913 
9914 // Emit a remark if there are stores to floats that required a floating point
9915 // extension. If the vectorized loop was generated with floating point there
9916 // will be a performance penalty from the conversion overhead and the change in
9917 // the vector width.
9918 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9919   SmallVector<Instruction *, 4> Worklist;
9920   for (BasicBlock *BB : L->getBlocks()) {
9921     for (Instruction &Inst : *BB) {
9922       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9923         if (S->getValueOperand()->getType()->isFloatTy())
9924           Worklist.push_back(S);
9925       }
9926     }
9927   }
9928 
9929   // Traverse the floating point stores upwards searching, for floating point
9930   // conversions.
9931   SmallPtrSet<const Instruction *, 4> Visited;
9932   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9933   while (!Worklist.empty()) {
9934     auto *I = Worklist.pop_back_val();
9935     if (!L->contains(I))
9936       continue;
9937     if (!Visited.insert(I).second)
9938       continue;
9939 
9940     // Emit a remark if the floating point store required a floating
9941     // point conversion.
9942     // TODO: More work could be done to identify the root cause such as a
9943     // constant or a function return type and point the user to it.
9944     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9945       ORE->emit([&]() {
9946         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9947                                           I->getDebugLoc(), L->getHeader())
9948                << "floating point conversion changes vector width. "
9949                << "Mixed floating point precision requires an up/down "
9950                << "cast that will negatively impact performance.";
9951       });
9952 
9953     for (Use &Op : I->operands())
9954       if (auto *OpI = dyn_cast<Instruction>(Op))
9955         Worklist.push_back(OpI);
9956   }
9957 }
9958 
9959 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9960     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9961                                !EnableLoopInterleaving),
9962       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9963                               !EnableLoopVectorization) {}
9964 
9965 bool LoopVectorizePass::processLoop(Loop *L) {
9966   assert((EnableVPlanNativePath || L->isInnermost()) &&
9967          "VPlan-native path is not enabled. Only process inner loops.");
9968 
9969 #ifndef NDEBUG
9970   const std::string DebugLocStr = getDebugLocString(L);
9971 #endif /* NDEBUG */
9972 
9973   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9974                     << L->getHeader()->getParent()->getName() << "\" from "
9975                     << DebugLocStr << "\n");
9976 
9977   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9978 
9979   LLVM_DEBUG(
9980       dbgs() << "LV: Loop hints:"
9981              << " force="
9982              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9983                      ? "disabled"
9984                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9985                             ? "enabled"
9986                             : "?"))
9987              << " width=" << Hints.getWidth()
9988              << " interleave=" << Hints.getInterleave() << "\n");
9989 
9990   // Function containing loop
9991   Function *F = L->getHeader()->getParent();
9992 
9993   // Looking at the diagnostic output is the only way to determine if a loop
9994   // was vectorized (other than looking at the IR or machine code), so it
9995   // is important to generate an optimization remark for each loop. Most of
9996   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9997   // generated as OptimizationRemark and OptimizationRemarkMissed are
9998   // less verbose reporting vectorized loops and unvectorized loops that may
9999   // benefit from vectorization, respectively.
10000 
10001   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10002     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10003     return false;
10004   }
10005 
10006   PredicatedScalarEvolution PSE(*SE, *L);
10007 
10008   // Check if it is legal to vectorize the loop.
10009   LoopVectorizationRequirements Requirements;
10010   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10011                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10012   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10013     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10014     Hints.emitRemarkWithHints();
10015     return false;
10016   }
10017 
10018   // Check the function attributes and profiles to find out if this function
10019   // should be optimized for size.
10020   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10021       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10022 
10023   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10024   // here. They may require CFG and instruction level transformations before
10025   // even evaluating whether vectorization is profitable. Since we cannot modify
10026   // the incoming IR, we need to build VPlan upfront in the vectorization
10027   // pipeline.
10028   if (!L->isInnermost())
10029     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10030                                         ORE, BFI, PSI, Hints, Requirements);
10031 
10032   assert(L->isInnermost() && "Inner loop expected.");
10033 
10034   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10035   // count by optimizing for size, to minimize overheads.
10036   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10037   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10038     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10039                       << "This loop is worth vectorizing only if no scalar "
10040                       << "iteration overheads are incurred.");
10041     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10042       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10043     else {
10044       LLVM_DEBUG(dbgs() << "\n");
10045       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10046     }
10047   }
10048 
10049   // Check the function attributes to see if implicit floats are allowed.
10050   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10051   // an integer loop and the vector instructions selected are purely integer
10052   // vector instructions?
10053   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10054     reportVectorizationFailure(
10055         "Can't vectorize when the NoImplicitFloat attribute is used",
10056         "loop not vectorized due to NoImplicitFloat attribute",
10057         "NoImplicitFloat", ORE, L);
10058     Hints.emitRemarkWithHints();
10059     return false;
10060   }
10061 
10062   // Check if the target supports potentially unsafe FP vectorization.
10063   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10064   // for the target we're vectorizing for, to make sure none of the
10065   // additional fp-math flags can help.
10066   if (Hints.isPotentiallyUnsafe() &&
10067       TTI->isFPVectorizationPotentiallyUnsafe()) {
10068     reportVectorizationFailure(
10069         "Potentially unsafe FP op prevents vectorization",
10070         "loop not vectorized due to unsafe FP support.",
10071         "UnsafeFP", ORE, L);
10072     Hints.emitRemarkWithHints();
10073     return false;
10074   }
10075 
10076   if (!LVL.canVectorizeFPMath(EnableStrictReductions)) {
10077     ORE->emit([&]() {
10078       auto *ExactFPMathInst = Requirements.getExactFPInst();
10079       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10080                                                  ExactFPMathInst->getDebugLoc(),
10081                                                  ExactFPMathInst->getParent())
10082              << "loop not vectorized: cannot prove it is safe to reorder "
10083                 "floating-point operations";
10084     });
10085     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10086                          "reorder floating-point operations\n");
10087     Hints.emitRemarkWithHints();
10088     return false;
10089   }
10090 
10091   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10092   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10093 
10094   // If an override option has been passed in for interleaved accesses, use it.
10095   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10096     UseInterleaved = EnableInterleavedMemAccesses;
10097 
10098   // Analyze interleaved memory accesses.
10099   if (UseInterleaved) {
10100     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10101   }
10102 
10103   // Use the cost model.
10104   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10105                                 F, &Hints, IAI);
10106   CM.collectValuesToIgnore();
10107   CM.collectElementTypesForWidening();
10108 
10109   // Use the planner for vectorization.
10110   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10111                                Requirements, ORE);
10112 
10113   // Get user vectorization factor and interleave count.
10114   ElementCount UserVF = Hints.getWidth();
10115   unsigned UserIC = Hints.getInterleave();
10116 
10117   // Plan how to best vectorize, return the best VF and its cost.
10118   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10119 
10120   VectorizationFactor VF = VectorizationFactor::Disabled();
10121   unsigned IC = 1;
10122 
10123   if (MaybeVF) {
10124     VF = *MaybeVF;
10125     // Select the interleave count.
10126     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10127   }
10128 
10129   // Identify the diagnostic messages that should be produced.
10130   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10131   bool VectorizeLoop = true, InterleaveLoop = true;
10132   if (VF.Width.isScalar()) {
10133     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10134     VecDiagMsg = std::make_pair(
10135         "VectorizationNotBeneficial",
10136         "the cost-model indicates that vectorization is not beneficial");
10137     VectorizeLoop = false;
10138   }
10139 
10140   if (!MaybeVF && UserIC > 1) {
10141     // Tell the user interleaving was avoided up-front, despite being explicitly
10142     // requested.
10143     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10144                          "interleaving should be avoided up front\n");
10145     IntDiagMsg = std::make_pair(
10146         "InterleavingAvoided",
10147         "Ignoring UserIC, because interleaving was avoided up front");
10148     InterleaveLoop = false;
10149   } else if (IC == 1 && UserIC <= 1) {
10150     // Tell the user interleaving is not beneficial.
10151     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10152     IntDiagMsg = std::make_pair(
10153         "InterleavingNotBeneficial",
10154         "the cost-model indicates that interleaving is not beneficial");
10155     InterleaveLoop = false;
10156     if (UserIC == 1) {
10157       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10158       IntDiagMsg.second +=
10159           " and is explicitly disabled or interleave count is set to 1";
10160     }
10161   } else if (IC > 1 && UserIC == 1) {
10162     // Tell the user interleaving is beneficial, but it explicitly disabled.
10163     LLVM_DEBUG(
10164         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10165     IntDiagMsg = std::make_pair(
10166         "InterleavingBeneficialButDisabled",
10167         "the cost-model indicates that interleaving is beneficial "
10168         "but is explicitly disabled or interleave count is set to 1");
10169     InterleaveLoop = false;
10170   }
10171 
10172   // Override IC if user provided an interleave count.
10173   IC = UserIC > 0 ? UserIC : IC;
10174 
10175   // Emit diagnostic messages, if any.
10176   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10177   if (!VectorizeLoop && !InterleaveLoop) {
10178     // Do not vectorize or interleaving the loop.
10179     ORE->emit([&]() {
10180       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10181                                       L->getStartLoc(), L->getHeader())
10182              << VecDiagMsg.second;
10183     });
10184     ORE->emit([&]() {
10185       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10186                                       L->getStartLoc(), L->getHeader())
10187              << IntDiagMsg.second;
10188     });
10189     return false;
10190   } else if (!VectorizeLoop && InterleaveLoop) {
10191     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10192     ORE->emit([&]() {
10193       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10194                                         L->getStartLoc(), L->getHeader())
10195              << VecDiagMsg.second;
10196     });
10197   } else if (VectorizeLoop && !InterleaveLoop) {
10198     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10199                       << ") in " << DebugLocStr << '\n');
10200     ORE->emit([&]() {
10201       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10202                                         L->getStartLoc(), L->getHeader())
10203              << IntDiagMsg.second;
10204     });
10205   } else if (VectorizeLoop && InterleaveLoop) {
10206     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10207                       << ") in " << DebugLocStr << '\n');
10208     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10209   }
10210 
10211   bool DisableRuntimeUnroll = false;
10212   MDNode *OrigLoopID = L->getLoopID();
10213   {
10214     // Optimistically generate runtime checks. Drop them if they turn out to not
10215     // be profitable. Limit the scope of Checks, so the cleanup happens
10216     // immediately after vector codegeneration is done.
10217     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10218                              F->getParent()->getDataLayout());
10219     if (!VF.Width.isScalar() || IC > 1)
10220       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10221     LVP.setBestPlan(VF.Width, IC);
10222 
10223     using namespace ore;
10224     if (!VectorizeLoop) {
10225       assert(IC > 1 && "interleave count should not be 1 or 0");
10226       // If we decided that it is not legal to vectorize the loop, then
10227       // interleave it.
10228       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10229                                  &CM, BFI, PSI, Checks);
10230       LVP.executePlan(Unroller, DT);
10231 
10232       ORE->emit([&]() {
10233         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10234                                   L->getHeader())
10235                << "interleaved loop (interleaved count: "
10236                << NV("InterleaveCount", IC) << ")";
10237       });
10238     } else {
10239       // If we decided that it is *legal* to vectorize the loop, then do it.
10240 
10241       // Consider vectorizing the epilogue too if it's profitable.
10242       VectorizationFactor EpilogueVF =
10243           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10244       if (EpilogueVF.Width.isVector()) {
10245 
10246         // The first pass vectorizes the main loop and creates a scalar epilogue
10247         // to be vectorized by executing the plan (potentially with a different
10248         // factor) again shortly afterwards.
10249         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10250                                           EpilogueVF.Width.getKnownMinValue(),
10251                                           1);
10252         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10253                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10254 
10255         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10256         LVP.executePlan(MainILV, DT);
10257         ++LoopsVectorized;
10258 
10259         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10260         formLCSSARecursively(*L, *DT, LI, SE);
10261 
10262         // Second pass vectorizes the epilogue and adjusts the control flow
10263         // edges from the first pass.
10264         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10265         EPI.MainLoopVF = EPI.EpilogueVF;
10266         EPI.MainLoopUF = EPI.EpilogueUF;
10267         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10268                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10269                                                  Checks);
10270         LVP.executePlan(EpilogILV, DT);
10271         ++LoopsEpilogueVectorized;
10272 
10273         if (!MainILV.areSafetyChecksAdded())
10274           DisableRuntimeUnroll = true;
10275       } else {
10276         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10277                                &LVL, &CM, BFI, PSI, Checks);
10278         LVP.executePlan(LB, DT);
10279         ++LoopsVectorized;
10280 
10281         // Add metadata to disable runtime unrolling a scalar loop when there
10282         // are no runtime checks about strides and memory. A scalar loop that is
10283         // rarely used is not worth unrolling.
10284         if (!LB.areSafetyChecksAdded())
10285           DisableRuntimeUnroll = true;
10286       }
10287       // Report the vectorization decision.
10288       ORE->emit([&]() {
10289         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10290                                   L->getHeader())
10291                << "vectorized loop (vectorization width: "
10292                << NV("VectorizationFactor", VF.Width)
10293                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10294       });
10295     }
10296 
10297     if (ORE->allowExtraAnalysis(LV_NAME))
10298       checkMixedPrecision(L, ORE);
10299   }
10300 
10301   Optional<MDNode *> RemainderLoopID =
10302       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10303                                       LLVMLoopVectorizeFollowupEpilogue});
10304   if (RemainderLoopID.hasValue()) {
10305     L->setLoopID(RemainderLoopID.getValue());
10306   } else {
10307     if (DisableRuntimeUnroll)
10308       AddRuntimeUnrollDisableMetaData(L);
10309 
10310     // Mark the loop as already vectorized to avoid vectorizing again.
10311     Hints.setAlreadyVectorized();
10312   }
10313 
10314   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10315   return true;
10316 }
10317 
10318 LoopVectorizeResult LoopVectorizePass::runImpl(
10319     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10320     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10321     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10322     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10323     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10324   SE = &SE_;
10325   LI = &LI_;
10326   TTI = &TTI_;
10327   DT = &DT_;
10328   BFI = &BFI_;
10329   TLI = TLI_;
10330   AA = &AA_;
10331   AC = &AC_;
10332   GetLAA = &GetLAA_;
10333   DB = &DB_;
10334   ORE = &ORE_;
10335   PSI = PSI_;
10336 
10337   // Don't attempt if
10338   // 1. the target claims to have no vector registers, and
10339   // 2. interleaving won't help ILP.
10340   //
10341   // The second condition is necessary because, even if the target has no
10342   // vector registers, loop vectorization may still enable scalar
10343   // interleaving.
10344   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10345       TTI->getMaxInterleaveFactor(1) < 2)
10346     return LoopVectorizeResult(false, false);
10347 
10348   bool Changed = false, CFGChanged = false;
10349 
10350   // The vectorizer requires loops to be in simplified form.
10351   // Since simplification may add new inner loops, it has to run before the
10352   // legality and profitability checks. This means running the loop vectorizer
10353   // will simplify all loops, regardless of whether anything end up being
10354   // vectorized.
10355   for (auto &L : *LI)
10356     Changed |= CFGChanged |=
10357         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10358 
10359   // Build up a worklist of inner-loops to vectorize. This is necessary as
10360   // the act of vectorizing or partially unrolling a loop creates new loops
10361   // and can invalidate iterators across the loops.
10362   SmallVector<Loop *, 8> Worklist;
10363 
10364   for (Loop *L : *LI)
10365     collectSupportedLoops(*L, LI, ORE, Worklist);
10366 
10367   LoopsAnalyzed += Worklist.size();
10368 
10369   // Now walk the identified inner loops.
10370   while (!Worklist.empty()) {
10371     Loop *L = Worklist.pop_back_val();
10372 
10373     // For the inner loops we actually process, form LCSSA to simplify the
10374     // transform.
10375     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10376 
10377     Changed |= CFGChanged |= processLoop(L);
10378   }
10379 
10380   // Process each loop nest in the function.
10381   return LoopVectorizeResult(Changed, CFGChanged);
10382 }
10383 
10384 PreservedAnalyses LoopVectorizePass::run(Function &F,
10385                                          FunctionAnalysisManager &AM) {
10386     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10387     auto &LI = AM.getResult<LoopAnalysis>(F);
10388     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10389     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10390     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10391     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10392     auto &AA = AM.getResult<AAManager>(F);
10393     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10394     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10395     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10396     MemorySSA *MSSA = EnableMSSALoopDependency
10397                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10398                           : nullptr;
10399 
10400     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10401     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10402         [&](Loop &L) -> const LoopAccessInfo & {
10403       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10404                                         TLI, TTI, nullptr, MSSA};
10405       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10406     };
10407     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10408     ProfileSummaryInfo *PSI =
10409         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10410     LoopVectorizeResult Result =
10411         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10412     if (!Result.MadeAnyChange)
10413       return PreservedAnalyses::all();
10414     PreservedAnalyses PA;
10415 
10416     // We currently do not preserve loopinfo/dominator analyses with outer loop
10417     // vectorization. Until this is addressed, mark these analyses as preserved
10418     // only for non-VPlan-native path.
10419     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10420     if (!EnableVPlanNativePath) {
10421       PA.preserve<LoopAnalysis>();
10422       PA.preserve<DominatorTreeAnalysis>();
10423     }
10424     if (!Result.MadeCFGChange)
10425       PA.preserveSet<CFGAnalyses>();
10426     return PA;
10427 }
10428