1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 // There is a development effort going on to migrate loop vectorizer to the 30 // VPlan infrastructure and to introduce outer loop vectorization support (see 31 // docs/Proposal/VectorizationPlan.rst and 32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 33 // purpose, we temporarily introduced the VPlan-native vectorization path: an 34 // alternative vectorization path that is natively implemented on top of the 35 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // The reduction-variable vectorization is based on the paper: 40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 41 // 42 // Variable uniformity checks are inspired by: 43 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 44 // 45 // The interleaved access vectorization is based on the paper: 46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 47 // Data for SIMD 48 // 49 // Other ideas/concepts are from: 50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 51 // 52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 53 // Vectorizing Compilers. 54 // 55 //===----------------------------------------------------------------------===// 56 57 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 58 #include "LoopVectorizationPlanner.h" 59 #include "VPRecipeBuilder.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ScalarEvolution.h" 91 #include "llvm/Analysis/ScalarEvolutionExpander.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/LLVMContext.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/Pass.h" 125 #include "llvm/Support/Casting.h" 126 #include "llvm/Support/CommandLine.h" 127 #include "llvm/Support/Compiler.h" 128 #include "llvm/Support/Debug.h" 129 #include "llvm/Support/ErrorHandling.h" 130 #include "llvm/Support/MathExtras.h" 131 #include "llvm/Support/raw_ostream.h" 132 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 133 #include "llvm/Transforms/Utils/LoopSimplify.h" 134 #include "llvm/Transforms/Utils/LoopUtils.h" 135 #include "llvm/Transforms/Utils/LoopVersioning.h" 136 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 137 #include <algorithm> 138 #include <cassert> 139 #include <cstdint> 140 #include <cstdlib> 141 #include <functional> 142 #include <iterator> 143 #include <limits> 144 #include <memory> 145 #include <string> 146 #include <tuple> 147 #include <utility> 148 #include <vector> 149 150 using namespace llvm; 151 152 #define LV_NAME "loop-vectorize" 153 #define DEBUG_TYPE LV_NAME 154 155 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 156 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 157 158 /// Loops with a known constant trip count below this number are vectorized only 159 /// if no scalar iteration overheads are incurred. 160 static cl::opt<unsigned> TinyTripCountVectorThreshold( 161 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 162 cl::desc("Loops with a constant trip count that is smaller than this " 163 "value are vectorized only if no scalar iteration overheads " 164 "are incurred.")); 165 166 static cl::opt<bool> MaximizeBandwidth( 167 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 168 cl::desc("Maximize bandwidth when selecting vectorization factor which " 169 "will be determined by the smallest type in loop.")); 170 171 static cl::opt<bool> EnableInterleavedMemAccesses( 172 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 173 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 174 175 /// An interleave-group may need masking if it resides in a block that needs 176 /// predication, or in order to mask away gaps. 177 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 178 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 179 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 180 181 /// We don't interleave loops with a known constant trip count below this 182 /// number. 183 static const unsigned TinyTripCountInterleaveThreshold = 128; 184 185 static cl::opt<unsigned> ForceTargetNumScalarRegs( 186 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 187 cl::desc("A flag that overrides the target's number of scalar registers.")); 188 189 static cl::opt<unsigned> ForceTargetNumVectorRegs( 190 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's number of vector registers.")); 192 193 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 194 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 195 cl::desc("A flag that overrides the target's max interleave factor for " 196 "scalar loops.")); 197 198 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 199 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 200 cl::desc("A flag that overrides the target's max interleave factor for " 201 "vectorized loops.")); 202 203 static cl::opt<unsigned> ForceTargetInstructionCost( 204 "force-target-instruction-cost", cl::init(0), cl::Hidden, 205 cl::desc("A flag that overrides the target's expected cost for " 206 "an instruction to a single constant value. Mostly " 207 "useful for getting consistent testing.")); 208 209 static cl::opt<unsigned> SmallLoopCost( 210 "small-loop-cost", cl::init(20), cl::Hidden, 211 cl::desc( 212 "The cost of a loop that is considered 'small' by the interleaver.")); 213 214 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 215 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 216 cl::desc("Enable the use of the block frequency analysis to access PGO " 217 "heuristics minimizing code growth in cold regions and being more " 218 "aggressive in hot regions.")); 219 220 // Runtime interleave loops for load/store throughput. 221 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 222 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 223 cl::desc( 224 "Enable runtime interleaving until load/store ports are saturated")); 225 226 /// The number of stores in a loop that are allowed to need predication. 227 static cl::opt<unsigned> NumberOfStoresToPredicate( 228 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 229 cl::desc("Max number of stores to be predicated behind an if.")); 230 231 static cl::opt<bool> EnableIndVarRegisterHeur( 232 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 233 cl::desc("Count the induction variable only once when interleaving")); 234 235 static cl::opt<bool> EnableCondStoresVectorization( 236 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 237 cl::desc("Enable if predication of stores during vectorization.")); 238 239 static cl::opt<unsigned> MaxNestedScalarReductionIC( 240 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 241 cl::desc("The maximum interleave count to use when interleaving a scalar " 242 "reduction in a nested loop.")); 243 244 cl::opt<bool> EnableVPlanNativePath( 245 "enable-vplan-native-path", cl::init(false), cl::Hidden, 246 cl::desc("Enable VPlan-native vectorization path with " 247 "support for outer loop vectorization.")); 248 249 // This flag enables the stress testing of the VPlan H-CFG construction in the 250 // VPlan-native vectorization path. It must be used in conjuction with 251 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 252 // verification of the H-CFGs built. 253 static cl::opt<bool> VPlanBuildStressTest( 254 "vplan-build-stress-test", cl::init(false), cl::Hidden, 255 cl::desc( 256 "Build VPlan for every supported loop nest in the function and bail " 257 "out right after the build (stress test the VPlan H-CFG construction " 258 "in the VPlan-native vectorization path).")); 259 260 /// A helper function for converting Scalar types to vector types. 261 /// If the incoming type is void, we return void. If the VF is 1, we return 262 /// the scalar type. 263 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 264 if (Scalar->isVoidTy() || VF == 1) 265 return Scalar; 266 return VectorType::get(Scalar, VF); 267 } 268 269 /// A helper function that returns the type of loaded or stored value. 270 static Type *getMemInstValueType(Value *I) { 271 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 272 "Expected Load or Store instruction"); 273 if (auto *LI = dyn_cast<LoadInst>(I)) 274 return LI->getType(); 275 return cast<StoreInst>(I)->getValueOperand()->getType(); 276 } 277 278 /// A helper function that returns true if the given type is irregular. The 279 /// type is irregular if its allocated size doesn't equal the store size of an 280 /// element of the corresponding vector type at the given vectorization factor. 281 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 282 // Determine if an array of VF elements of type Ty is "bitcast compatible" 283 // with a <VF x Ty> vector. 284 if (VF > 1) { 285 auto *VectorTy = VectorType::get(Ty, VF); 286 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 287 } 288 289 // If the vectorization factor is one, we just check if an array of type Ty 290 // requires padding between elements. 291 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 292 } 293 294 /// A helper function that returns the reciprocal of the block probability of 295 /// predicated blocks. If we return X, we are assuming the predicated block 296 /// will execute once for every X iterations of the loop header. 297 /// 298 /// TODO: We should use actual block probability here, if available. Currently, 299 /// we always assume predicated blocks have a 50% chance of executing. 300 static unsigned getReciprocalPredBlockProb() { return 2; } 301 302 /// A helper function that adds a 'fast' flag to floating-point operations. 303 static Value *addFastMathFlag(Value *V) { 304 if (isa<FPMathOperator>(V)) { 305 FastMathFlags Flags; 306 Flags.setFast(); 307 cast<Instruction>(V)->setFastMathFlags(Flags); 308 } 309 return V; 310 } 311 312 /// A helper function that returns an integer or floating-point constant with 313 /// value C. 314 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 315 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 316 : ConstantFP::get(Ty, C); 317 } 318 319 namespace llvm { 320 321 /// InnerLoopVectorizer vectorizes loops which contain only one basic 322 /// block to a specified vectorization factor (VF). 323 /// This class performs the widening of scalars into vectors, or multiple 324 /// scalars. This class also implements the following features: 325 /// * It inserts an epilogue loop for handling loops that don't have iteration 326 /// counts that are known to be a multiple of the vectorization factor. 327 /// * It handles the code generation for reduction variables. 328 /// * Scalarization (implementation using scalars) of un-vectorizable 329 /// instructions. 330 /// InnerLoopVectorizer does not perform any vectorization-legality 331 /// checks, and relies on the caller to check for the different legality 332 /// aspects. The InnerLoopVectorizer relies on the 333 /// LoopVectorizationLegality class to provide information about the induction 334 /// and reduction variables that were found to a given vectorization factor. 335 class InnerLoopVectorizer { 336 public: 337 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 338 LoopInfo *LI, DominatorTree *DT, 339 const TargetLibraryInfo *TLI, 340 const TargetTransformInfo *TTI, AssumptionCache *AC, 341 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 342 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 343 LoopVectorizationCostModel *CM) 344 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 345 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 346 Builder(PSE.getSE()->getContext()), 347 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 348 virtual ~InnerLoopVectorizer() = default; 349 350 /// Create a new empty loop. Unlink the old loop and connect the new one. 351 /// Return the pre-header block of the new loop. 352 BasicBlock *createVectorizedLoopSkeleton(); 353 354 /// Widen a single instruction within the innermost loop. 355 void widenInstruction(Instruction &I); 356 357 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 358 void fixVectorizedLoop(); 359 360 // Return true if any runtime check is added. 361 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 362 363 /// A type for vectorized values in the new loop. Each value from the 364 /// original loop, when vectorized, is represented by UF vector values in the 365 /// new unrolled loop, where UF is the unroll factor. 366 using VectorParts = SmallVector<Value *, 2>; 367 368 /// Vectorize a single PHINode in a block. This method handles the induction 369 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 370 /// arbitrary length vectors. 371 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 372 373 /// A helper function to scalarize a single Instruction in the innermost loop. 374 /// Generates a sequence of scalar instances for each lane between \p MinLane 375 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 376 /// inclusive.. 377 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 378 bool IfPredicateInstr); 379 380 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 381 /// is provided, the integer induction variable will first be truncated to 382 /// the corresponding type. 383 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 384 385 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 386 /// vector or scalar value on-demand if one is not yet available. When 387 /// vectorizing a loop, we visit the definition of an instruction before its 388 /// uses. When visiting the definition, we either vectorize or scalarize the 389 /// instruction, creating an entry for it in the corresponding map. (In some 390 /// cases, such as induction variables, we will create both vector and scalar 391 /// entries.) Then, as we encounter uses of the definition, we derive values 392 /// for each scalar or vector use unless such a value is already available. 393 /// For example, if we scalarize a definition and one of its uses is vector, 394 /// we build the required vector on-demand with an insertelement sequence 395 /// when visiting the use. Otherwise, if the use is scalar, we can use the 396 /// existing scalar definition. 397 /// 398 /// Return a value in the new loop corresponding to \p V from the original 399 /// loop at unroll index \p Part. If the value has already been vectorized, 400 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 401 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 402 /// a new vector value on-demand by inserting the scalar values into a vector 403 /// with an insertelement sequence. If the value has been neither vectorized 404 /// nor scalarized, it must be loop invariant, so we simply broadcast the 405 /// value into a vector. 406 Value *getOrCreateVectorValue(Value *V, unsigned Part); 407 408 /// Return a value in the new loop corresponding to \p V from the original 409 /// loop at unroll and vector indices \p Instance. If the value has been 410 /// vectorized but not scalarized, the necessary extractelement instruction 411 /// will be generated. 412 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 413 414 /// Construct the vector value of a scalarized value \p V one lane at a time. 415 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 416 417 /// Try to vectorize the interleaved access group that \p Instr belongs to, 418 /// optionally masking the vector operations if \p BlockInMask is non-null. 419 void vectorizeInterleaveGroup(Instruction *Instr, 420 VectorParts *BlockInMask = nullptr); 421 422 /// Vectorize Load and Store instructions, optionally masking the vector 423 /// operations if \p BlockInMask is non-null. 424 void vectorizeMemoryInstruction(Instruction *Instr, 425 VectorParts *BlockInMask = nullptr); 426 427 /// Set the debug location in the builder using the debug location in 428 /// the instruction. 429 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 430 431 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 432 void fixNonInductionPHIs(void); 433 434 protected: 435 friend class LoopVectorizationPlanner; 436 437 /// A small list of PHINodes. 438 using PhiVector = SmallVector<PHINode *, 4>; 439 440 /// A type for scalarized values in the new loop. Each value from the 441 /// original loop, when scalarized, is represented by UF x VF scalar values 442 /// in the new unrolled loop, where UF is the unroll factor and VF is the 443 /// vectorization factor. 444 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 445 446 /// Set up the values of the IVs correctly when exiting the vector loop. 447 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 448 Value *CountRoundDown, Value *EndValue, 449 BasicBlock *MiddleBlock); 450 451 /// Create a new induction variable inside L. 452 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 453 Value *Step, Instruction *DL); 454 455 /// Handle all cross-iteration phis in the header. 456 void fixCrossIterationPHIs(); 457 458 /// Fix a first-order recurrence. This is the second phase of vectorizing 459 /// this phi node. 460 void fixFirstOrderRecurrence(PHINode *Phi); 461 462 /// Fix a reduction cross-iteration phi. This is the second phase of 463 /// vectorizing this phi node. 464 void fixReduction(PHINode *Phi); 465 466 /// The Loop exit block may have single value PHI nodes with some 467 /// incoming value. While vectorizing we only handled real values 468 /// that were defined inside the loop and we should have one value for 469 /// each predecessor of its parent basic block. See PR14725. 470 void fixLCSSAPHIs(); 471 472 /// Iteratively sink the scalarized operands of a predicated instruction into 473 /// the block that was created for it. 474 void sinkScalarOperands(Instruction *PredInst); 475 476 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 477 /// represented as. 478 void truncateToMinimalBitwidths(); 479 480 /// Insert the new loop to the loop hierarchy and pass manager 481 /// and update the analysis passes. 482 void updateAnalysis(); 483 484 /// Create a broadcast instruction. This method generates a broadcast 485 /// instruction (shuffle) for loop invariant values and for the induction 486 /// value. If this is the induction variable then we extend it to N, N+1, ... 487 /// this is needed because each iteration in the loop corresponds to a SIMD 488 /// element. 489 virtual Value *getBroadcastInstrs(Value *V); 490 491 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 492 /// to each vector element of Val. The sequence starts at StartIndex. 493 /// \p Opcode is relevant for FP induction variable. 494 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 495 Instruction::BinaryOps Opcode = 496 Instruction::BinaryOpsEnd); 497 498 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 499 /// variable on which to base the steps, \p Step is the size of the step, and 500 /// \p EntryVal is the value from the original loop that maps to the steps. 501 /// Note that \p EntryVal doesn't have to be an induction variable - it 502 /// can also be a truncate instruction. 503 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 504 const InductionDescriptor &ID); 505 506 /// Create a vector induction phi node based on an existing scalar one. \p 507 /// EntryVal is the value from the original loop that maps to the vector phi 508 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 509 /// truncate instruction, instead of widening the original IV, we widen a 510 /// version of the IV truncated to \p EntryVal's type. 511 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 512 Value *Step, Instruction *EntryVal); 513 514 /// Returns true if an instruction \p I should be scalarized instead of 515 /// vectorized for the chosen vectorization factor. 516 bool shouldScalarizeInstruction(Instruction *I) const; 517 518 /// Returns true if we should generate a scalar version of \p IV. 519 bool needsScalarInduction(Instruction *IV) const; 520 521 /// If there is a cast involved in the induction variable \p ID, which should 522 /// be ignored in the vectorized loop body, this function records the 523 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 524 /// cast. We had already proved that the casted Phi is equal to the uncasted 525 /// Phi in the vectorized loop (under a runtime guard), and therefore 526 /// there is no need to vectorize the cast - the same value can be used in the 527 /// vector loop for both the Phi and the cast. 528 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 529 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 530 /// 531 /// \p EntryVal is the value from the original loop that maps to the vector 532 /// phi node and is used to distinguish what is the IV currently being 533 /// processed - original one (if \p EntryVal is a phi corresponding to the 534 /// original IV) or the "newly-created" one based on the proof mentioned above 535 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 536 /// latter case \p EntryVal is a TruncInst and we must not record anything for 537 /// that IV, but it's error-prone to expect callers of this routine to care 538 /// about that, hence this explicit parameter. 539 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 540 const Instruction *EntryVal, 541 Value *VectorLoopValue, 542 unsigned Part, 543 unsigned Lane = UINT_MAX); 544 545 /// Generate a shuffle sequence that will reverse the vector Vec. 546 virtual Value *reverseVector(Value *Vec); 547 548 /// Returns (and creates if needed) the original loop trip count. 549 Value *getOrCreateTripCount(Loop *NewLoop); 550 551 /// Returns (and creates if needed) the trip count of the widened loop. 552 Value *getOrCreateVectorTripCount(Loop *NewLoop); 553 554 /// Returns a bitcasted value to the requested vector type. 555 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 556 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 557 const DataLayout &DL); 558 559 /// Emit a bypass check to see if the vector trip count is zero, including if 560 /// it overflows. 561 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 562 563 /// Emit a bypass check to see if all of the SCEV assumptions we've 564 /// had to make are correct. 565 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 566 567 /// Emit bypass checks to check any memory assumptions we may have made. 568 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 569 570 /// Compute the transformed value of Index at offset StartValue using step 571 /// StepValue. 572 /// For integer induction, returns StartValue + Index * StepValue. 573 /// For pointer induction, returns StartValue[Index * StepValue]. 574 /// FIXME: The newly created binary instructions should contain nsw/nuw 575 /// flags, which can be found from the original scalar operations. 576 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 577 const DataLayout &DL, 578 const InductionDescriptor &ID) const; 579 580 /// Add additional metadata to \p To that was not present on \p Orig. 581 /// 582 /// Currently this is used to add the noalias annotations based on the 583 /// inserted memchecks. Use this for instructions that are *cloned* into the 584 /// vector loop. 585 void addNewMetadata(Instruction *To, const Instruction *Orig); 586 587 /// Add metadata from one instruction to another. 588 /// 589 /// This includes both the original MDs from \p From and additional ones (\see 590 /// addNewMetadata). Use this for *newly created* instructions in the vector 591 /// loop. 592 void addMetadata(Instruction *To, Instruction *From); 593 594 /// Similar to the previous function but it adds the metadata to a 595 /// vector of instructions. 596 void addMetadata(ArrayRef<Value *> To, Instruction *From); 597 598 /// The original loop. 599 Loop *OrigLoop; 600 601 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 602 /// dynamic knowledge to simplify SCEV expressions and converts them to a 603 /// more usable form. 604 PredicatedScalarEvolution &PSE; 605 606 /// Loop Info. 607 LoopInfo *LI; 608 609 /// Dominator Tree. 610 DominatorTree *DT; 611 612 /// Alias Analysis. 613 AliasAnalysis *AA; 614 615 /// Target Library Info. 616 const TargetLibraryInfo *TLI; 617 618 /// Target Transform Info. 619 const TargetTransformInfo *TTI; 620 621 /// Assumption Cache. 622 AssumptionCache *AC; 623 624 /// Interface to emit optimization remarks. 625 OptimizationRemarkEmitter *ORE; 626 627 /// LoopVersioning. It's only set up (non-null) if memchecks were 628 /// used. 629 /// 630 /// This is currently only used to add no-alias metadata based on the 631 /// memchecks. The actually versioning is performed manually. 632 std::unique_ptr<LoopVersioning> LVer; 633 634 /// The vectorization SIMD factor to use. Each vector will have this many 635 /// vector elements. 636 unsigned VF; 637 638 /// The vectorization unroll factor to use. Each scalar is vectorized to this 639 /// many different vector instructions. 640 unsigned UF; 641 642 /// The builder that we use 643 IRBuilder<> Builder; 644 645 // --- Vectorization state --- 646 647 /// The vector-loop preheader. 648 BasicBlock *LoopVectorPreHeader; 649 650 /// The scalar-loop preheader. 651 BasicBlock *LoopScalarPreHeader; 652 653 /// Middle Block between the vector and the scalar. 654 BasicBlock *LoopMiddleBlock; 655 656 /// The ExitBlock of the scalar loop. 657 BasicBlock *LoopExitBlock; 658 659 /// The vector loop body. 660 BasicBlock *LoopVectorBody; 661 662 /// The scalar loop body. 663 BasicBlock *LoopScalarBody; 664 665 /// A list of all bypass blocks. The first block is the entry of the loop. 666 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 667 668 /// The new Induction variable which was added to the new block. 669 PHINode *Induction = nullptr; 670 671 /// The induction variable of the old basic block. 672 PHINode *OldInduction = nullptr; 673 674 /// Maps values from the original loop to their corresponding values in the 675 /// vectorized loop. A key value can map to either vector values, scalar 676 /// values or both kinds of values, depending on whether the key was 677 /// vectorized and scalarized. 678 VectorizerValueMap VectorLoopValueMap; 679 680 /// Store instructions that were predicated. 681 SmallVector<Instruction *, 4> PredicatedInstructions; 682 683 /// Trip count of the original loop. 684 Value *TripCount = nullptr; 685 686 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 687 Value *VectorTripCount = nullptr; 688 689 /// The legality analysis. 690 LoopVectorizationLegality *Legal; 691 692 /// The profitablity analysis. 693 LoopVectorizationCostModel *Cost; 694 695 // Record whether runtime checks are added. 696 bool AddedSafetyChecks = false; 697 698 // Holds the end values for each induction variable. We save the end values 699 // so we can later fix-up the external users of the induction variables. 700 DenseMap<PHINode *, Value *> IVEndValues; 701 702 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 703 // fixed up at the end of vector code generation. 704 SmallVector<PHINode *, 8> OrigPHIsToFix; 705 }; 706 707 class InnerLoopUnroller : public InnerLoopVectorizer { 708 public: 709 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 710 LoopInfo *LI, DominatorTree *DT, 711 const TargetLibraryInfo *TLI, 712 const TargetTransformInfo *TTI, AssumptionCache *AC, 713 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 714 LoopVectorizationLegality *LVL, 715 LoopVectorizationCostModel *CM) 716 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 717 UnrollFactor, LVL, CM) {} 718 719 private: 720 Value *getBroadcastInstrs(Value *V) override; 721 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 722 Instruction::BinaryOps Opcode = 723 Instruction::BinaryOpsEnd) override; 724 Value *reverseVector(Value *Vec) override; 725 }; 726 727 } // end namespace llvm 728 729 /// Look for a meaningful debug location on the instruction or it's 730 /// operands. 731 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 732 if (!I) 733 return I; 734 735 DebugLoc Empty; 736 if (I->getDebugLoc() != Empty) 737 return I; 738 739 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 740 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 741 if (OpInst->getDebugLoc() != Empty) 742 return OpInst; 743 } 744 745 return I; 746 } 747 748 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 749 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 750 const DILocation *DIL = Inst->getDebugLoc(); 751 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 752 !isa<DbgInfoIntrinsic>(Inst)) 753 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 754 else 755 B.SetCurrentDebugLocation(DIL); 756 } else 757 B.SetCurrentDebugLocation(DebugLoc()); 758 } 759 760 #ifndef NDEBUG 761 /// \return string containing a file name and a line # for the given loop. 762 static std::string getDebugLocString(const Loop *L) { 763 std::string Result; 764 if (L) { 765 raw_string_ostream OS(Result); 766 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 767 LoopDbgLoc.print(OS); 768 else 769 // Just print the module name. 770 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 771 OS.flush(); 772 } 773 return Result; 774 } 775 #endif 776 777 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 778 const Instruction *Orig) { 779 // If the loop was versioned with memchecks, add the corresponding no-alias 780 // metadata. 781 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 782 LVer->annotateInstWithNoAlias(To, Orig); 783 } 784 785 void InnerLoopVectorizer::addMetadata(Instruction *To, 786 Instruction *From) { 787 propagateMetadata(To, From); 788 addNewMetadata(To, From); 789 } 790 791 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 792 Instruction *From) { 793 for (Value *V : To) { 794 if (Instruction *I = dyn_cast<Instruction>(V)) 795 addMetadata(I, From); 796 } 797 } 798 799 static void emitMissedWarning(Function *F, Loop *L, 800 const LoopVectorizeHints &LH, 801 OptimizationRemarkEmitter *ORE) { 802 LH.emitRemarkWithHints(); 803 804 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 805 if (LH.getWidth() != 1) 806 ORE->emit(DiagnosticInfoOptimizationFailure( 807 DEBUG_TYPE, "FailedRequestedVectorization", 808 L->getStartLoc(), L->getHeader()) 809 << "loop not vectorized: " 810 << "failed explicitly specified loop vectorization"); 811 else if (LH.getInterleave() != 1) 812 ORE->emit(DiagnosticInfoOptimizationFailure( 813 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 814 L->getHeader()) 815 << "loop not interleaved: " 816 << "failed explicitly specified loop interleaving"); 817 } 818 } 819 820 namespace llvm { 821 822 /// LoopVectorizationCostModel - estimates the expected speedups due to 823 /// vectorization. 824 /// In many cases vectorization is not profitable. This can happen because of 825 /// a number of reasons. In this class we mainly attempt to predict the 826 /// expected speedup/slowdowns due to the supported instruction set. We use the 827 /// TargetTransformInfo to query the different backends for the cost of 828 /// different operations. 829 class LoopVectorizationCostModel { 830 public: 831 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 832 LoopInfo *LI, LoopVectorizationLegality *Legal, 833 const TargetTransformInfo &TTI, 834 const TargetLibraryInfo *TLI, DemandedBits *DB, 835 AssumptionCache *AC, 836 OptimizationRemarkEmitter *ORE, const Function *F, 837 const LoopVectorizeHints *Hints, 838 InterleavedAccessInfo &IAI) 839 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 840 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 841 842 /// \return An upper bound for the vectorization factor, or None if 843 /// vectorization should be avoided up front. 844 Optional<unsigned> computeMaxVF(bool OptForSize); 845 846 /// \return The most profitable vectorization factor and the cost of that VF. 847 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 848 /// then this vectorization factor will be selected if vectorization is 849 /// possible. 850 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 851 852 /// Setup cost-based decisions for user vectorization factor. 853 void selectUserVectorizationFactor(unsigned UserVF) { 854 collectUniformsAndScalars(UserVF); 855 collectInstsToScalarize(UserVF); 856 } 857 858 /// \return The size (in bits) of the smallest and widest types in the code 859 /// that needs to be vectorized. We ignore values that remain scalar such as 860 /// 64 bit loop indices. 861 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 862 863 /// \return The desired interleave count. 864 /// If interleave count has been specified by metadata it will be returned. 865 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 866 /// are the selected vectorization factor and the cost of the selected VF. 867 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 868 unsigned LoopCost); 869 870 /// Memory access instruction may be vectorized in more than one way. 871 /// Form of instruction after vectorization depends on cost. 872 /// This function takes cost-based decisions for Load/Store instructions 873 /// and collects them in a map. This decisions map is used for building 874 /// the lists of loop-uniform and loop-scalar instructions. 875 /// The calculated cost is saved with widening decision in order to 876 /// avoid redundant calculations. 877 void setCostBasedWideningDecision(unsigned VF); 878 879 /// A struct that represents some properties of the register usage 880 /// of a loop. 881 struct RegisterUsage { 882 /// Holds the number of loop invariant values that are used in the loop. 883 unsigned LoopInvariantRegs; 884 885 /// Holds the maximum number of concurrent live intervals in the loop. 886 unsigned MaxLocalUsers; 887 }; 888 889 /// \return Returns information about the register usages of the loop for the 890 /// given vectorization factors. 891 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 892 893 /// Collect values we want to ignore in the cost model. 894 void collectValuesToIgnore(); 895 896 /// \returns The smallest bitwidth each instruction can be represented with. 897 /// The vector equivalents of these instructions should be truncated to this 898 /// type. 899 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 900 return MinBWs; 901 } 902 903 /// \returns True if it is more profitable to scalarize instruction \p I for 904 /// vectorization factor \p VF. 905 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 906 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 907 908 // Cost model is not run in the VPlan-native path - return conservative 909 // result until this changes. 910 if (EnableVPlanNativePath) 911 return false; 912 913 auto Scalars = InstsToScalarize.find(VF); 914 assert(Scalars != InstsToScalarize.end() && 915 "VF not yet analyzed for scalarization profitability"); 916 return Scalars->second.find(I) != Scalars->second.end(); 917 } 918 919 /// Returns true if \p I is known to be uniform after vectorization. 920 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 921 if (VF == 1) 922 return true; 923 924 // Cost model is not run in the VPlan-native path - return conservative 925 // result until this changes. 926 if (EnableVPlanNativePath) 927 return false; 928 929 auto UniformsPerVF = Uniforms.find(VF); 930 assert(UniformsPerVF != Uniforms.end() && 931 "VF not yet analyzed for uniformity"); 932 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 933 } 934 935 /// Returns true if \p I is known to be scalar after vectorization. 936 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 937 if (VF == 1) 938 return true; 939 940 // Cost model is not run in the VPlan-native path - return conservative 941 // result until this changes. 942 if (EnableVPlanNativePath) 943 return false; 944 945 auto ScalarsPerVF = Scalars.find(VF); 946 assert(ScalarsPerVF != Scalars.end() && 947 "Scalar values are not calculated for VF"); 948 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 949 } 950 951 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 952 /// for vectorization factor \p VF. 953 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 954 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 955 !isProfitableToScalarize(I, VF) && 956 !isScalarAfterVectorization(I, VF); 957 } 958 959 /// Decision that was taken during cost calculation for memory instruction. 960 enum InstWidening { 961 CM_Unknown, 962 CM_Widen, // For consecutive accesses with stride +1. 963 CM_Widen_Reverse, // For consecutive accesses with stride -1. 964 CM_Interleave, 965 CM_GatherScatter, 966 CM_Scalarize 967 }; 968 969 /// Save vectorization decision \p W and \p Cost taken by the cost model for 970 /// instruction \p I and vector width \p VF. 971 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 972 unsigned Cost) { 973 assert(VF >= 2 && "Expected VF >=2"); 974 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 975 } 976 977 /// Save vectorization decision \p W and \p Cost taken by the cost model for 978 /// interleaving group \p Grp and vector width \p VF. 979 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 980 InstWidening W, unsigned Cost) { 981 assert(VF >= 2 && "Expected VF >=2"); 982 /// Broadcast this decicion to all instructions inside the group. 983 /// But the cost will be assigned to one instruction only. 984 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 985 if (auto *I = Grp->getMember(i)) { 986 if (Grp->getInsertPos() == I) 987 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 988 else 989 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 990 } 991 } 992 } 993 994 /// Return the cost model decision for the given instruction \p I and vector 995 /// width \p VF. Return CM_Unknown if this instruction did not pass 996 /// through the cost modeling. 997 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 998 assert(VF >= 2 && "Expected VF >=2"); 999 1000 // Cost model is not run in the VPlan-native path - return conservative 1001 // result until this changes. 1002 if (EnableVPlanNativePath) 1003 return CM_GatherScatter; 1004 1005 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1006 auto Itr = WideningDecisions.find(InstOnVF); 1007 if (Itr == WideningDecisions.end()) 1008 return CM_Unknown; 1009 return Itr->second.first; 1010 } 1011 1012 /// Return the vectorization cost for the given instruction \p I and vector 1013 /// width \p VF. 1014 unsigned getWideningCost(Instruction *I, unsigned VF) { 1015 assert(VF >= 2 && "Expected VF >=2"); 1016 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1017 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1018 "The cost is not calculated"); 1019 return WideningDecisions[InstOnVF].second; 1020 } 1021 1022 /// Return True if instruction \p I is an optimizable truncate whose operand 1023 /// is an induction variable. Such a truncate will be removed by adding a new 1024 /// induction variable with the destination type. 1025 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1026 // If the instruction is not a truncate, return false. 1027 auto *Trunc = dyn_cast<TruncInst>(I); 1028 if (!Trunc) 1029 return false; 1030 1031 // Get the source and destination types of the truncate. 1032 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1033 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1034 1035 // If the truncate is free for the given types, return false. Replacing a 1036 // free truncate with an induction variable would add an induction variable 1037 // update instruction to each iteration of the loop. We exclude from this 1038 // check the primary induction variable since it will need an update 1039 // instruction regardless. 1040 Value *Op = Trunc->getOperand(0); 1041 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1042 return false; 1043 1044 // If the truncated value is not an induction variable, return false. 1045 return Legal->isInductionPhi(Op); 1046 } 1047 1048 /// Collects the instructions to scalarize for each predicated instruction in 1049 /// the loop. 1050 void collectInstsToScalarize(unsigned VF); 1051 1052 /// Collect Uniform and Scalar values for the given \p VF. 1053 /// The sets depend on CM decision for Load/Store instructions 1054 /// that may be vectorized as interleave, gather-scatter or scalarized. 1055 void collectUniformsAndScalars(unsigned VF) { 1056 // Do the analysis once. 1057 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1058 return; 1059 setCostBasedWideningDecision(VF); 1060 collectLoopUniforms(VF); 1061 collectLoopScalars(VF); 1062 } 1063 1064 /// Returns true if the target machine supports masked store operation 1065 /// for the given \p DataType and kind of access to \p Ptr. 1066 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1067 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1068 } 1069 1070 /// Returns true if the target machine supports masked load operation 1071 /// for the given \p DataType and kind of access to \p Ptr. 1072 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1073 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1074 } 1075 1076 /// Returns true if the target machine supports masked scatter operation 1077 /// for the given \p DataType. 1078 bool isLegalMaskedScatter(Type *DataType) { 1079 return TTI.isLegalMaskedScatter(DataType); 1080 } 1081 1082 /// Returns true if the target machine supports masked gather operation 1083 /// for the given \p DataType. 1084 bool isLegalMaskedGather(Type *DataType) { 1085 return TTI.isLegalMaskedGather(DataType); 1086 } 1087 1088 /// Returns true if the target machine can represent \p V as a masked gather 1089 /// or scatter operation. 1090 bool isLegalGatherOrScatter(Value *V) { 1091 bool LI = isa<LoadInst>(V); 1092 bool SI = isa<StoreInst>(V); 1093 if (!LI && !SI) 1094 return false; 1095 auto *Ty = getMemInstValueType(V); 1096 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1097 } 1098 1099 /// Returns true if \p I is an instruction that will be scalarized with 1100 /// predication. Such instructions include conditional stores and 1101 /// instructions that may divide by zero. 1102 /// If a non-zero VF has been calculated, we check if I will be scalarized 1103 /// predication for that VF. 1104 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1105 1106 // Returns true if \p I is an instruction that will be predicated either 1107 // through scalar predication or masked load/store or masked gather/scatter. 1108 // Superset of instructions that return true for isScalarWithPredication. 1109 bool isPredicatedInst(Instruction *I) { 1110 if (!blockNeedsPredication(I->getParent())) 1111 return false; 1112 // Loads and stores that need some form of masked operation are predicated 1113 // instructions. 1114 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1115 return Legal->isMaskRequired(I); 1116 return isScalarWithPredication(I); 1117 } 1118 1119 /// Returns true if \p I is a memory instruction with consecutive memory 1120 /// access that can be widened. 1121 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1122 1123 /// Returns true if \p I is a memory instruction in an interleaved-group 1124 /// of memory accesses that can be vectorized with wide vector loads/stores 1125 /// and shuffles. 1126 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1127 1128 /// Check if \p Instr belongs to any interleaved access group. 1129 bool isAccessInterleaved(Instruction *Instr) { 1130 return InterleaveInfo.isInterleaved(Instr); 1131 } 1132 1133 /// Get the interleaved access group that \p Instr belongs to. 1134 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1135 return InterleaveInfo.getInterleaveGroup(Instr); 1136 } 1137 1138 /// Returns true if an interleaved group requires a scalar iteration 1139 /// to handle accesses with gaps, and there is nothing preventing us from 1140 /// creating a scalar epilogue. 1141 bool requiresScalarEpilogue() const { 1142 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1143 } 1144 1145 /// Returns true if a scalar epilogue is not allowed due to optsize. 1146 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1147 1148 /// Returns true if all loop blocks should be masked to fold tail loop. 1149 bool foldTailByMasking() const { return FoldTailByMasking; } 1150 1151 bool blockNeedsPredication(BasicBlock *BB) { 1152 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1153 } 1154 1155 private: 1156 unsigned NumPredStores = 0; 1157 1158 /// \return An upper bound for the vectorization factor, larger than zero. 1159 /// One is returned if vectorization should best be avoided due to cost. 1160 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1161 1162 /// The vectorization cost is a combination of the cost itself and a boolean 1163 /// indicating whether any of the contributing operations will actually 1164 /// operate on 1165 /// vector values after type legalization in the backend. If this latter value 1166 /// is 1167 /// false, then all operations will be scalarized (i.e. no vectorization has 1168 /// actually taken place). 1169 using VectorizationCostTy = std::pair<unsigned, bool>; 1170 1171 /// Returns the expected execution cost. The unit of the cost does 1172 /// not matter because we use the 'cost' units to compare different 1173 /// vector widths. The cost that is returned is *not* normalized by 1174 /// the factor width. 1175 VectorizationCostTy expectedCost(unsigned VF); 1176 1177 /// Returns the execution time cost of an instruction for a given vector 1178 /// width. Vector width of one means scalar. 1179 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1180 1181 /// The cost-computation logic from getInstructionCost which provides 1182 /// the vector type as an output parameter. 1183 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1184 1185 /// Calculate vectorization cost of memory instruction \p I. 1186 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1187 1188 /// The cost computation for scalarized memory instruction. 1189 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1190 1191 /// The cost computation for interleaving group of memory instructions. 1192 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1193 1194 /// The cost computation for Gather/Scatter instruction. 1195 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1196 1197 /// The cost computation for widening instruction \p I with consecutive 1198 /// memory access. 1199 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1200 1201 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1202 /// Load: scalar load + broadcast. 1203 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1204 /// element) 1205 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1206 1207 /// Returns whether the instruction is a load or store and will be a emitted 1208 /// as a vector operation. 1209 bool isConsecutiveLoadOrStore(Instruction *I); 1210 1211 /// Returns true if an artificially high cost for emulated masked memrefs 1212 /// should be used. 1213 bool useEmulatedMaskMemRefHack(Instruction *I); 1214 1215 /// Create an analysis remark that explains why vectorization failed 1216 /// 1217 /// \p RemarkName is the identifier for the remark. \return the remark object 1218 /// that can be streamed to. 1219 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1220 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1221 RemarkName, TheLoop); 1222 } 1223 1224 /// Map of scalar integer values to the smallest bitwidth they can be legally 1225 /// represented as. The vector equivalents of these values should be truncated 1226 /// to this type. 1227 MapVector<Instruction *, uint64_t> MinBWs; 1228 1229 /// A type representing the costs for instructions if they were to be 1230 /// scalarized rather than vectorized. The entries are Instruction-Cost 1231 /// pairs. 1232 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1233 1234 /// A set containing all BasicBlocks that are known to present after 1235 /// vectorization as a predicated block. 1236 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1237 1238 /// Records whether it is allowed to have the original scalar loop execute at 1239 /// least once. This may be needed as a fallback loop in case runtime 1240 /// aliasing/dependence checks fail, or to handle the tail/remainder 1241 /// iterations when the trip count is unknown or doesn't divide by the VF, 1242 /// or as a peel-loop to handle gaps in interleave-groups. 1243 /// Under optsize and when the trip count is very small we don't allow any 1244 /// iterations to execute in the scalar loop. 1245 bool IsScalarEpilogueAllowed = true; 1246 1247 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1248 bool FoldTailByMasking = false; 1249 1250 /// A map holding scalar costs for different vectorization factors. The 1251 /// presence of a cost for an instruction in the mapping indicates that the 1252 /// instruction will be scalarized when vectorizing with the associated 1253 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1254 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1255 1256 /// Holds the instructions known to be uniform after vectorization. 1257 /// The data is collected per VF. 1258 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1259 1260 /// Holds the instructions known to be scalar after vectorization. 1261 /// The data is collected per VF. 1262 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1263 1264 /// Holds the instructions (address computations) that are forced to be 1265 /// scalarized. 1266 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1267 1268 /// Returns the expected difference in cost from scalarizing the expression 1269 /// feeding a predicated instruction \p PredInst. The instructions to 1270 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1271 /// non-negative return value implies the expression will be scalarized. 1272 /// Currently, only single-use chains are considered for scalarization. 1273 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1274 unsigned VF); 1275 1276 /// Collect the instructions that are uniform after vectorization. An 1277 /// instruction is uniform if we represent it with a single scalar value in 1278 /// the vectorized loop corresponding to each vector iteration. Examples of 1279 /// uniform instructions include pointer operands of consecutive or 1280 /// interleaved memory accesses. Note that although uniformity implies an 1281 /// instruction will be scalar, the reverse is not true. In general, a 1282 /// scalarized instruction will be represented by VF scalar values in the 1283 /// vectorized loop, each corresponding to an iteration of the original 1284 /// scalar loop. 1285 void collectLoopUniforms(unsigned VF); 1286 1287 /// Collect the instructions that are scalar after vectorization. An 1288 /// instruction is scalar if it is known to be uniform or will be scalarized 1289 /// during vectorization. Non-uniform scalarized instructions will be 1290 /// represented by VF values in the vectorized loop, each corresponding to an 1291 /// iteration of the original scalar loop. 1292 void collectLoopScalars(unsigned VF); 1293 1294 /// Keeps cost model vectorization decision and cost for instructions. 1295 /// Right now it is used for memory instructions only. 1296 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1297 std::pair<InstWidening, unsigned>>; 1298 1299 DecisionList WideningDecisions; 1300 1301 public: 1302 /// The loop that we evaluate. 1303 Loop *TheLoop; 1304 1305 /// Predicated scalar evolution analysis. 1306 PredicatedScalarEvolution &PSE; 1307 1308 /// Loop Info analysis. 1309 LoopInfo *LI; 1310 1311 /// Vectorization legality. 1312 LoopVectorizationLegality *Legal; 1313 1314 /// Vector target information. 1315 const TargetTransformInfo &TTI; 1316 1317 /// Target Library Info. 1318 const TargetLibraryInfo *TLI; 1319 1320 /// Demanded bits analysis. 1321 DemandedBits *DB; 1322 1323 /// Assumption cache. 1324 AssumptionCache *AC; 1325 1326 /// Interface to emit optimization remarks. 1327 OptimizationRemarkEmitter *ORE; 1328 1329 const Function *TheFunction; 1330 1331 /// Loop Vectorize Hint. 1332 const LoopVectorizeHints *Hints; 1333 1334 /// The interleave access information contains groups of interleaved accesses 1335 /// with the same stride and close to each other. 1336 InterleavedAccessInfo &InterleaveInfo; 1337 1338 /// Values to ignore in the cost model. 1339 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1340 1341 /// Values to ignore in the cost model when VF > 1. 1342 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1343 }; 1344 1345 } // end namespace llvm 1346 1347 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1348 // vectorization. The loop needs to be annotated with #pragma omp simd 1349 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1350 // vector length information is not provided, vectorization is not considered 1351 // explicit. Interleave hints are not allowed either. These limitations will be 1352 // relaxed in the future. 1353 // Please, note that we are currently forced to abuse the pragma 'clang 1354 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1355 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1356 // provides *explicit vectorization hints* (LV can bypass legal checks and 1357 // assume that vectorization is legal). However, both hints are implemented 1358 // using the same metadata (llvm.loop.vectorize, processed by 1359 // LoopVectorizeHints). This will be fixed in the future when the native IR 1360 // representation for pragma 'omp simd' is introduced. 1361 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1362 OptimizationRemarkEmitter *ORE) { 1363 assert(!OuterLp->empty() && "This is not an outer loop"); 1364 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1365 1366 // Only outer loops with an explicit vectorization hint are supported. 1367 // Unannotated outer loops are ignored. 1368 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1369 return false; 1370 1371 Function *Fn = OuterLp->getHeader()->getParent(); 1372 if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) { 1373 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1374 return false; 1375 } 1376 1377 if (!Hints.getWidth()) { 1378 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1379 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1380 return false; 1381 } 1382 1383 if (Hints.getInterleave() > 1) { 1384 // TODO: Interleave support is future work. 1385 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1386 "outer loops.\n"); 1387 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1388 return false; 1389 } 1390 1391 return true; 1392 } 1393 1394 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1395 OptimizationRemarkEmitter *ORE, 1396 SmallVectorImpl<Loop *> &V) { 1397 // Collect inner loops and outer loops without irreducible control flow. For 1398 // now, only collect outer loops that have explicit vectorization hints. If we 1399 // are stress testing the VPlan H-CFG construction, we collect the outermost 1400 // loop of every loop nest. 1401 if (L.empty() || VPlanBuildStressTest || 1402 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1403 LoopBlocksRPO RPOT(&L); 1404 RPOT.perform(LI); 1405 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1406 V.push_back(&L); 1407 // TODO: Collect inner loops inside marked outer loops in case 1408 // vectorization fails for the outer loop. Do not invoke 1409 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1410 // already known to be reducible. We can use an inherited attribute for 1411 // that. 1412 return; 1413 } 1414 } 1415 for (Loop *InnerL : L) 1416 collectSupportedLoops(*InnerL, LI, ORE, V); 1417 } 1418 1419 namespace { 1420 1421 /// The LoopVectorize Pass. 1422 struct LoopVectorize : public FunctionPass { 1423 /// Pass identification, replacement for typeid 1424 static char ID; 1425 1426 LoopVectorizePass Impl; 1427 1428 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1429 : FunctionPass(ID) { 1430 Impl.DisableUnrolling = NoUnrolling; 1431 Impl.AlwaysVectorize = AlwaysVectorize; 1432 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1433 } 1434 1435 bool runOnFunction(Function &F) override { 1436 if (skipFunction(F)) 1437 return false; 1438 1439 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1440 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1441 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1442 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1443 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1444 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1445 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1446 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1447 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1448 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1449 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1450 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1451 1452 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1453 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1454 1455 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1456 GetLAA, *ORE); 1457 } 1458 1459 void getAnalysisUsage(AnalysisUsage &AU) const override { 1460 AU.addRequired<AssumptionCacheTracker>(); 1461 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1462 AU.addRequired<DominatorTreeWrapperPass>(); 1463 AU.addRequired<LoopInfoWrapperPass>(); 1464 AU.addRequired<ScalarEvolutionWrapperPass>(); 1465 AU.addRequired<TargetTransformInfoWrapperPass>(); 1466 AU.addRequired<AAResultsWrapperPass>(); 1467 AU.addRequired<LoopAccessLegacyAnalysis>(); 1468 AU.addRequired<DemandedBitsWrapperPass>(); 1469 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1470 1471 // We currently do not preserve loopinfo/dominator analyses with outer loop 1472 // vectorization. Until this is addressed, mark these analyses as preserved 1473 // only for non-VPlan-native path. 1474 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1475 if (!EnableVPlanNativePath) { 1476 AU.addPreserved<LoopInfoWrapperPass>(); 1477 AU.addPreserved<DominatorTreeWrapperPass>(); 1478 } 1479 1480 AU.addPreserved<BasicAAWrapperPass>(); 1481 AU.addPreserved<GlobalsAAWrapperPass>(); 1482 } 1483 }; 1484 1485 } // end anonymous namespace 1486 1487 //===----------------------------------------------------------------------===// 1488 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1489 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1490 //===----------------------------------------------------------------------===// 1491 1492 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1493 // We need to place the broadcast of invariant variables outside the loop, 1494 // but only if it's proven safe to do so. Else, broadcast will be inside 1495 // vector loop body. 1496 Instruction *Instr = dyn_cast<Instruction>(V); 1497 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1498 (!Instr || 1499 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1500 // Place the code for broadcasting invariant variables in the new preheader. 1501 IRBuilder<>::InsertPointGuard Guard(Builder); 1502 if (SafeToHoist) 1503 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1504 1505 // Broadcast the scalar into all locations in the vector. 1506 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1507 1508 return Shuf; 1509 } 1510 1511 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1512 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1513 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1514 "Expected either an induction phi-node or a truncate of it!"); 1515 Value *Start = II.getStartValue(); 1516 1517 // Construct the initial value of the vector IV in the vector loop preheader 1518 auto CurrIP = Builder.saveIP(); 1519 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1520 if (isa<TruncInst>(EntryVal)) { 1521 assert(Start->getType()->isIntegerTy() && 1522 "Truncation requires an integer type"); 1523 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1524 Step = Builder.CreateTrunc(Step, TruncType); 1525 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1526 } 1527 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1528 Value *SteppedStart = 1529 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1530 1531 // We create vector phi nodes for both integer and floating-point induction 1532 // variables. Here, we determine the kind of arithmetic we will perform. 1533 Instruction::BinaryOps AddOp; 1534 Instruction::BinaryOps MulOp; 1535 if (Step->getType()->isIntegerTy()) { 1536 AddOp = Instruction::Add; 1537 MulOp = Instruction::Mul; 1538 } else { 1539 AddOp = II.getInductionOpcode(); 1540 MulOp = Instruction::FMul; 1541 } 1542 1543 // Multiply the vectorization factor by the step using integer or 1544 // floating-point arithmetic as appropriate. 1545 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1546 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1547 1548 // Create a vector splat to use in the induction update. 1549 // 1550 // FIXME: If the step is non-constant, we create the vector splat with 1551 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1552 // handle a constant vector splat. 1553 Value *SplatVF = isa<Constant>(Mul) 1554 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1555 : Builder.CreateVectorSplat(VF, Mul); 1556 Builder.restoreIP(CurrIP); 1557 1558 // We may need to add the step a number of times, depending on the unroll 1559 // factor. The last of those goes into the PHI. 1560 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1561 &*LoopVectorBody->getFirstInsertionPt()); 1562 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1563 Instruction *LastInduction = VecInd; 1564 for (unsigned Part = 0; Part < UF; ++Part) { 1565 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1566 1567 if (isa<TruncInst>(EntryVal)) 1568 addMetadata(LastInduction, EntryVal); 1569 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1570 1571 LastInduction = cast<Instruction>(addFastMathFlag( 1572 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1573 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1574 } 1575 1576 // Move the last step to the end of the latch block. This ensures consistent 1577 // placement of all induction updates. 1578 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1579 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1580 auto *ICmp = cast<Instruction>(Br->getCondition()); 1581 LastInduction->moveBefore(ICmp); 1582 LastInduction->setName("vec.ind.next"); 1583 1584 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1585 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1586 } 1587 1588 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1589 return Cost->isScalarAfterVectorization(I, VF) || 1590 Cost->isProfitableToScalarize(I, VF); 1591 } 1592 1593 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1594 if (shouldScalarizeInstruction(IV)) 1595 return true; 1596 auto isScalarInst = [&](User *U) -> bool { 1597 auto *I = cast<Instruction>(U); 1598 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1599 }; 1600 return llvm::any_of(IV->users(), isScalarInst); 1601 } 1602 1603 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1604 const InductionDescriptor &ID, const Instruction *EntryVal, 1605 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1606 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1607 "Expected either an induction phi-node or a truncate of it!"); 1608 1609 // This induction variable is not the phi from the original loop but the 1610 // newly-created IV based on the proof that casted Phi is equal to the 1611 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1612 // re-uses the same InductionDescriptor that original IV uses but we don't 1613 // have to do any recording in this case - that is done when original IV is 1614 // processed. 1615 if (isa<TruncInst>(EntryVal)) 1616 return; 1617 1618 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1619 if (Casts.empty()) 1620 return; 1621 // Only the first Cast instruction in the Casts vector is of interest. 1622 // The rest of the Casts (if exist) have no uses outside the 1623 // induction update chain itself. 1624 Instruction *CastInst = *Casts.begin(); 1625 if (Lane < UINT_MAX) 1626 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1627 else 1628 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1629 } 1630 1631 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1632 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1633 "Primary induction variable must have an integer type"); 1634 1635 auto II = Legal->getInductionVars()->find(IV); 1636 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1637 1638 auto ID = II->second; 1639 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1640 1641 // The scalar value to broadcast. This will be derived from the canonical 1642 // induction variable. 1643 Value *ScalarIV = nullptr; 1644 1645 // The value from the original loop to which we are mapping the new induction 1646 // variable. 1647 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1648 1649 // True if we have vectorized the induction variable. 1650 auto VectorizedIV = false; 1651 1652 // Determine if we want a scalar version of the induction variable. This is 1653 // true if the induction variable itself is not widened, or if it has at 1654 // least one user in the loop that is not widened. 1655 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1656 1657 // Generate code for the induction step. Note that induction steps are 1658 // required to be loop-invariant 1659 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1660 "Induction step should be loop invariant"); 1661 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1662 Value *Step = nullptr; 1663 if (PSE.getSE()->isSCEVable(IV->getType())) { 1664 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1665 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1666 LoopVectorPreHeader->getTerminator()); 1667 } else { 1668 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1669 } 1670 1671 // Try to create a new independent vector induction variable. If we can't 1672 // create the phi node, we will splat the scalar induction variable in each 1673 // loop iteration. 1674 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1675 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1676 VectorizedIV = true; 1677 } 1678 1679 // If we haven't yet vectorized the induction variable, or if we will create 1680 // a scalar one, we need to define the scalar induction variable and step 1681 // values. If we were given a truncation type, truncate the canonical 1682 // induction variable and step. Otherwise, derive these values from the 1683 // induction descriptor. 1684 if (!VectorizedIV || NeedsScalarIV) { 1685 ScalarIV = Induction; 1686 if (IV != OldInduction) { 1687 ScalarIV = IV->getType()->isIntegerTy() 1688 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1689 : Builder.CreateCast(Instruction::SIToFP, Induction, 1690 IV->getType()); 1691 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1692 ScalarIV->setName("offset.idx"); 1693 } 1694 if (Trunc) { 1695 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1696 assert(Step->getType()->isIntegerTy() && 1697 "Truncation requires an integer step"); 1698 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1699 Step = Builder.CreateTrunc(Step, TruncType); 1700 } 1701 } 1702 1703 // If we haven't yet vectorized the induction variable, splat the scalar 1704 // induction variable, and build the necessary step vectors. 1705 // TODO: Don't do it unless the vectorized IV is really required. 1706 if (!VectorizedIV) { 1707 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1708 for (unsigned Part = 0; Part < UF; ++Part) { 1709 Value *EntryPart = 1710 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1711 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1712 if (Trunc) 1713 addMetadata(EntryPart, Trunc); 1714 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1715 } 1716 } 1717 1718 // If an induction variable is only used for counting loop iterations or 1719 // calculating addresses, it doesn't need to be widened. Create scalar steps 1720 // that can be used by instructions we will later scalarize. Note that the 1721 // addition of the scalar steps will not increase the number of instructions 1722 // in the loop in the common case prior to InstCombine. We will be trading 1723 // one vector extract for each scalar step. 1724 if (NeedsScalarIV) 1725 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1726 } 1727 1728 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1729 Instruction::BinaryOps BinOp) { 1730 // Create and check the types. 1731 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1732 int VLen = Val->getType()->getVectorNumElements(); 1733 1734 Type *STy = Val->getType()->getScalarType(); 1735 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1736 "Induction Step must be an integer or FP"); 1737 assert(Step->getType() == STy && "Step has wrong type"); 1738 1739 SmallVector<Constant *, 8> Indices; 1740 1741 if (STy->isIntegerTy()) { 1742 // Create a vector of consecutive numbers from zero to VF. 1743 for (int i = 0; i < VLen; ++i) 1744 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1745 1746 // Add the consecutive indices to the vector value. 1747 Constant *Cv = ConstantVector::get(Indices); 1748 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1749 Step = Builder.CreateVectorSplat(VLen, Step); 1750 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1751 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1752 // which can be found from the original scalar operations. 1753 Step = Builder.CreateMul(Cv, Step); 1754 return Builder.CreateAdd(Val, Step, "induction"); 1755 } 1756 1757 // Floating point induction. 1758 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1759 "Binary Opcode should be specified for FP induction"); 1760 // Create a vector of consecutive numbers from zero to VF. 1761 for (int i = 0; i < VLen; ++i) 1762 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1763 1764 // Add the consecutive indices to the vector value. 1765 Constant *Cv = ConstantVector::get(Indices); 1766 1767 Step = Builder.CreateVectorSplat(VLen, Step); 1768 1769 // Floating point operations had to be 'fast' to enable the induction. 1770 FastMathFlags Flags; 1771 Flags.setFast(); 1772 1773 Value *MulOp = Builder.CreateFMul(Cv, Step); 1774 if (isa<Instruction>(MulOp)) 1775 // Have to check, MulOp may be a constant 1776 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1777 1778 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1779 if (isa<Instruction>(BOp)) 1780 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1781 return BOp; 1782 } 1783 1784 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1785 Instruction *EntryVal, 1786 const InductionDescriptor &ID) { 1787 // We shouldn't have to build scalar steps if we aren't vectorizing. 1788 assert(VF > 1 && "VF should be greater than one"); 1789 1790 // Get the value type and ensure it and the step have the same integer type. 1791 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1792 assert(ScalarIVTy == Step->getType() && 1793 "Val and Step should have the same type"); 1794 1795 // We build scalar steps for both integer and floating-point induction 1796 // variables. Here, we determine the kind of arithmetic we will perform. 1797 Instruction::BinaryOps AddOp; 1798 Instruction::BinaryOps MulOp; 1799 if (ScalarIVTy->isIntegerTy()) { 1800 AddOp = Instruction::Add; 1801 MulOp = Instruction::Mul; 1802 } else { 1803 AddOp = ID.getInductionOpcode(); 1804 MulOp = Instruction::FMul; 1805 } 1806 1807 // Determine the number of scalars we need to generate for each unroll 1808 // iteration. If EntryVal is uniform, we only need to generate the first 1809 // lane. Otherwise, we generate all VF values. 1810 unsigned Lanes = 1811 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1812 : VF; 1813 // Compute the scalar steps and save the results in VectorLoopValueMap. 1814 for (unsigned Part = 0; Part < UF; ++Part) { 1815 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1816 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1817 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1818 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1819 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1820 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1821 } 1822 } 1823 } 1824 1825 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1826 assert(V != Induction && "The new induction variable should not be used."); 1827 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1828 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1829 1830 // If we have a stride that is replaced by one, do it here. Defer this for 1831 // the VPlan-native path until we start running Legal checks in that path. 1832 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1833 V = ConstantInt::get(V->getType(), 1); 1834 1835 // If we have a vector mapped to this value, return it. 1836 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1837 return VectorLoopValueMap.getVectorValue(V, Part); 1838 1839 // If the value has not been vectorized, check if it has been scalarized 1840 // instead. If it has been scalarized, and we actually need the value in 1841 // vector form, we will construct the vector values on demand. 1842 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1843 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1844 1845 // If we've scalarized a value, that value should be an instruction. 1846 auto *I = cast<Instruction>(V); 1847 1848 // If we aren't vectorizing, we can just copy the scalar map values over to 1849 // the vector map. 1850 if (VF == 1) { 1851 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1852 return ScalarValue; 1853 } 1854 1855 // Get the last scalar instruction we generated for V and Part. If the value 1856 // is known to be uniform after vectorization, this corresponds to lane zero 1857 // of the Part unroll iteration. Otherwise, the last instruction is the one 1858 // we created for the last vector lane of the Part unroll iteration. 1859 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1860 auto *LastInst = cast<Instruction>( 1861 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1862 1863 // Set the insert point after the last scalarized instruction. This ensures 1864 // the insertelement sequence will directly follow the scalar definitions. 1865 auto OldIP = Builder.saveIP(); 1866 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1867 Builder.SetInsertPoint(&*NewIP); 1868 1869 // However, if we are vectorizing, we need to construct the vector values. 1870 // If the value is known to be uniform after vectorization, we can just 1871 // broadcast the scalar value corresponding to lane zero for each unroll 1872 // iteration. Otherwise, we construct the vector values using insertelement 1873 // instructions. Since the resulting vectors are stored in 1874 // VectorLoopValueMap, we will only generate the insertelements once. 1875 Value *VectorValue = nullptr; 1876 if (Cost->isUniformAfterVectorization(I, VF)) { 1877 VectorValue = getBroadcastInstrs(ScalarValue); 1878 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1879 } else { 1880 // Initialize packing with insertelements to start from undef. 1881 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1882 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1883 for (unsigned Lane = 0; Lane < VF; ++Lane) 1884 packScalarIntoVectorValue(V, {Part, Lane}); 1885 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1886 } 1887 Builder.restoreIP(OldIP); 1888 return VectorValue; 1889 } 1890 1891 // If this scalar is unknown, assume that it is a constant or that it is 1892 // loop invariant. Broadcast V and save the value for future uses. 1893 Value *B = getBroadcastInstrs(V); 1894 VectorLoopValueMap.setVectorValue(V, Part, B); 1895 return B; 1896 } 1897 1898 Value * 1899 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1900 const VPIteration &Instance) { 1901 // If the value is not an instruction contained in the loop, it should 1902 // already be scalar. 1903 if (OrigLoop->isLoopInvariant(V)) 1904 return V; 1905 1906 assert(Instance.Lane > 0 1907 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1908 : true && "Uniform values only have lane zero"); 1909 1910 // If the value from the original loop has not been vectorized, it is 1911 // represented by UF x VF scalar values in the new loop. Return the requested 1912 // scalar value. 1913 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1914 return VectorLoopValueMap.getScalarValue(V, Instance); 1915 1916 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1917 // for the given unroll part. If this entry is not a vector type (i.e., the 1918 // vectorization factor is one), there is no need to generate an 1919 // extractelement instruction. 1920 auto *U = getOrCreateVectorValue(V, Instance.Part); 1921 if (!U->getType()->isVectorTy()) { 1922 assert(VF == 1 && "Value not scalarized has non-vector type"); 1923 return U; 1924 } 1925 1926 // Otherwise, the value from the original loop has been vectorized and is 1927 // represented by UF vector values. Extract and return the requested scalar 1928 // value from the appropriate vector lane. 1929 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1930 } 1931 1932 void InnerLoopVectorizer::packScalarIntoVectorValue( 1933 Value *V, const VPIteration &Instance) { 1934 assert(V != Induction && "The new induction variable should not be used."); 1935 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1936 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1937 1938 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1939 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1940 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1941 Builder.getInt32(Instance.Lane)); 1942 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1943 } 1944 1945 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1946 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1947 SmallVector<Constant *, 8> ShuffleMask; 1948 for (unsigned i = 0; i < VF; ++i) 1949 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1950 1951 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1952 ConstantVector::get(ShuffleMask), 1953 "reverse"); 1954 } 1955 1956 // Return whether we allow using masked interleave-groups (for dealing with 1957 // strided loads/stores that reside in predicated blocks, or for dealing 1958 // with gaps). 1959 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1960 // If an override option has been passed in for interleaved accesses, use it. 1961 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1962 return EnableMaskedInterleavedMemAccesses; 1963 1964 return TTI.enableMaskedInterleavedAccessVectorization(); 1965 } 1966 1967 // Try to vectorize the interleave group that \p Instr belongs to. 1968 // 1969 // E.g. Translate following interleaved load group (factor = 3): 1970 // for (i = 0; i < N; i+=3) { 1971 // R = Pic[i]; // Member of index 0 1972 // G = Pic[i+1]; // Member of index 1 1973 // B = Pic[i+2]; // Member of index 2 1974 // ... // do something to R, G, B 1975 // } 1976 // To: 1977 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1978 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 1979 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 1980 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 1981 // 1982 // Or translate following interleaved store group (factor = 3): 1983 // for (i = 0; i < N; i+=3) { 1984 // ... do something to R, G, B 1985 // Pic[i] = R; // Member of index 0 1986 // Pic[i+1] = G; // Member of index 1 1987 // Pic[i+2] = B; // Member of index 2 1988 // } 1989 // To: 1990 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 1991 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 1992 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 1993 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 1994 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 1995 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 1996 VectorParts *BlockInMask) { 1997 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr); 1998 assert(Group && "Fail to get an interleaved access group."); 1999 2000 // Skip if current instruction is not the insert position. 2001 if (Instr != Group->getInsertPos()) 2002 return; 2003 2004 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2005 Value *Ptr = getLoadStorePointerOperand(Instr); 2006 2007 // Prepare for the vector type of the interleaved load/store. 2008 Type *ScalarTy = getMemInstValueType(Instr); 2009 unsigned InterleaveFactor = Group->getFactor(); 2010 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2011 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2012 2013 // Prepare for the new pointers. 2014 setDebugLocFromInst(Builder, Ptr); 2015 SmallVector<Value *, 2> NewPtrs; 2016 unsigned Index = Group->getIndex(Instr); 2017 2018 VectorParts Mask; 2019 bool IsMaskForCondRequired = BlockInMask; 2020 if (IsMaskForCondRequired) { 2021 Mask = *BlockInMask; 2022 // TODO: extend the masked interleaved-group support to reversed access. 2023 assert(!Group->isReverse() && "Reversed masked interleave-group " 2024 "not supported."); 2025 } 2026 2027 // If the group is reverse, adjust the index to refer to the last vector lane 2028 // instead of the first. We adjust the index from the first vector lane, 2029 // rather than directly getting the pointer for lane VF - 1, because the 2030 // pointer operand of the interleaved access is supposed to be uniform. For 2031 // uniform instructions, we're only required to generate a value for the 2032 // first vector lane in each unroll iteration. 2033 if (Group->isReverse()) 2034 Index += (VF - 1) * Group->getFactor(); 2035 2036 bool InBounds = false; 2037 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2038 InBounds = gep->isInBounds(); 2039 2040 for (unsigned Part = 0; Part < UF; Part++) { 2041 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2042 2043 // Notice current instruction could be any index. Need to adjust the address 2044 // to the member of index 0. 2045 // 2046 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2047 // b = A[i]; // Member of index 0 2048 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2049 // 2050 // E.g. A[i+1] = a; // Member of index 1 2051 // A[i] = b; // Member of index 0 2052 // A[i+2] = c; // Member of index 2 (Current instruction) 2053 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2054 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2055 if (InBounds) 2056 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2057 2058 // Cast to the vector pointer type. 2059 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2060 } 2061 2062 setDebugLocFromInst(Builder, Instr); 2063 Value *UndefVec = UndefValue::get(VecTy); 2064 2065 Value *MaskForGaps = nullptr; 2066 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2067 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2068 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2069 } 2070 2071 // Vectorize the interleaved load group. 2072 if (isa<LoadInst>(Instr)) { 2073 // For each unroll part, create a wide load for the group. 2074 SmallVector<Value *, 2> NewLoads; 2075 for (unsigned Part = 0; Part < UF; Part++) { 2076 Instruction *NewLoad; 2077 if (IsMaskForCondRequired || MaskForGaps) { 2078 assert(useMaskedInterleavedAccesses(*TTI) && 2079 "masked interleaved groups are not allowed."); 2080 Value *GroupMask = MaskForGaps; 2081 if (IsMaskForCondRequired) { 2082 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2083 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2084 Value *ShuffledMask = Builder.CreateShuffleVector( 2085 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2086 GroupMask = MaskForGaps 2087 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2088 MaskForGaps) 2089 : ShuffledMask; 2090 } 2091 NewLoad = 2092 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2093 GroupMask, UndefVec, "wide.masked.vec"); 2094 } 2095 else 2096 NewLoad = Builder.CreateAlignedLoad(NewPtrs[Part], 2097 Group->getAlignment(), "wide.vec"); 2098 Group->addMetadata(NewLoad); 2099 NewLoads.push_back(NewLoad); 2100 } 2101 2102 // For each member in the group, shuffle out the appropriate data from the 2103 // wide loads. 2104 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2105 Instruction *Member = Group->getMember(I); 2106 2107 // Skip the gaps in the group. 2108 if (!Member) 2109 continue; 2110 2111 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2112 for (unsigned Part = 0; Part < UF; Part++) { 2113 Value *StridedVec = Builder.CreateShuffleVector( 2114 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2115 2116 // If this member has different type, cast the result type. 2117 if (Member->getType() != ScalarTy) { 2118 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2119 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2120 } 2121 2122 if (Group->isReverse()) 2123 StridedVec = reverseVector(StridedVec); 2124 2125 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2126 } 2127 } 2128 return; 2129 } 2130 2131 // The sub vector type for current instruction. 2132 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2133 2134 // Vectorize the interleaved store group. 2135 for (unsigned Part = 0; Part < UF; Part++) { 2136 // Collect the stored vector from each member. 2137 SmallVector<Value *, 4> StoredVecs; 2138 for (unsigned i = 0; i < InterleaveFactor; i++) { 2139 // Interleaved store group doesn't allow a gap, so each index has a member 2140 Instruction *Member = Group->getMember(i); 2141 assert(Member && "Fail to get a member from an interleaved store group"); 2142 2143 Value *StoredVec = getOrCreateVectorValue( 2144 cast<StoreInst>(Member)->getValueOperand(), Part); 2145 if (Group->isReverse()) 2146 StoredVec = reverseVector(StoredVec); 2147 2148 // If this member has different type, cast it to a unified type. 2149 2150 if (StoredVec->getType() != SubVT) 2151 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2152 2153 StoredVecs.push_back(StoredVec); 2154 } 2155 2156 // Concatenate all vectors into a wide vector. 2157 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2158 2159 // Interleave the elements in the wide vector. 2160 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2161 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2162 "interleaved.vec"); 2163 2164 Instruction *NewStoreInstr; 2165 if (IsMaskForCondRequired) { 2166 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2167 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2168 Value *ShuffledMask = Builder.CreateShuffleVector( 2169 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2170 NewStoreInstr = Builder.CreateMaskedStore( 2171 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2172 } 2173 else 2174 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2175 Group->getAlignment()); 2176 2177 Group->addMetadata(NewStoreInstr); 2178 } 2179 } 2180 2181 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2182 VectorParts *BlockInMask) { 2183 // Attempt to issue a wide load. 2184 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2185 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2186 2187 assert((LI || SI) && "Invalid Load/Store instruction"); 2188 2189 LoopVectorizationCostModel::InstWidening Decision = 2190 Cost->getWideningDecision(Instr, VF); 2191 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2192 "CM decision should be taken at this point"); 2193 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2194 return vectorizeInterleaveGroup(Instr); 2195 2196 Type *ScalarDataTy = getMemInstValueType(Instr); 2197 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2198 Value *Ptr = getLoadStorePointerOperand(Instr); 2199 unsigned Alignment = getLoadStoreAlignment(Instr); 2200 // An alignment of 0 means target abi alignment. We need to use the scalar's 2201 // target abi alignment in such a case. 2202 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2203 if (!Alignment) 2204 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2205 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2206 2207 // Determine if the pointer operand of the access is either consecutive or 2208 // reverse consecutive. 2209 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2210 bool ConsecutiveStride = 2211 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2212 bool CreateGatherScatter = 2213 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2214 2215 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2216 // gather/scatter. Otherwise Decision should have been to Scalarize. 2217 assert((ConsecutiveStride || CreateGatherScatter) && 2218 "The instruction should be scalarized"); 2219 2220 // Handle consecutive loads/stores. 2221 if (ConsecutiveStride) 2222 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2223 2224 VectorParts Mask; 2225 bool isMaskRequired = BlockInMask; 2226 if (isMaskRequired) 2227 Mask = *BlockInMask; 2228 2229 bool InBounds = false; 2230 if (auto *gep = dyn_cast<GetElementPtrInst>( 2231 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2232 InBounds = gep->isInBounds(); 2233 2234 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2235 // Calculate the pointer for the specific unroll-part. 2236 GetElementPtrInst *PartPtr = nullptr; 2237 2238 if (Reverse) { 2239 // If the address is consecutive but reversed, then the 2240 // wide store needs to start at the last vector element. 2241 PartPtr = cast<GetElementPtrInst>( 2242 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2243 PartPtr->setIsInBounds(InBounds); 2244 PartPtr = cast<GetElementPtrInst>( 2245 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2246 PartPtr->setIsInBounds(InBounds); 2247 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2248 Mask[Part] = reverseVector(Mask[Part]); 2249 } else { 2250 PartPtr = cast<GetElementPtrInst>( 2251 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2252 PartPtr->setIsInBounds(InBounds); 2253 } 2254 2255 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2256 }; 2257 2258 // Handle Stores: 2259 if (SI) { 2260 setDebugLocFromInst(Builder, SI); 2261 2262 for (unsigned Part = 0; Part < UF; ++Part) { 2263 Instruction *NewSI = nullptr; 2264 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2265 if (CreateGatherScatter) { 2266 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2267 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2268 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2269 MaskPart); 2270 } else { 2271 if (Reverse) { 2272 // If we store to reverse consecutive memory locations, then we need 2273 // to reverse the order of elements in the stored value. 2274 StoredVal = reverseVector(StoredVal); 2275 // We don't want to update the value in the map as it might be used in 2276 // another expression. So don't call resetVectorValue(StoredVal). 2277 } 2278 auto *VecPtr = CreateVecPtr(Part, Ptr); 2279 if (isMaskRequired) 2280 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2281 Mask[Part]); 2282 else 2283 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2284 } 2285 addMetadata(NewSI, SI); 2286 } 2287 return; 2288 } 2289 2290 // Handle loads. 2291 assert(LI && "Must have a load instruction"); 2292 setDebugLocFromInst(Builder, LI); 2293 for (unsigned Part = 0; Part < UF; ++Part) { 2294 Value *NewLI; 2295 if (CreateGatherScatter) { 2296 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2297 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2298 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2299 nullptr, "wide.masked.gather"); 2300 addMetadata(NewLI, LI); 2301 } else { 2302 auto *VecPtr = CreateVecPtr(Part, Ptr); 2303 if (isMaskRequired) 2304 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2305 UndefValue::get(DataTy), 2306 "wide.masked.load"); 2307 else 2308 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2309 2310 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2311 addMetadata(NewLI, LI); 2312 if (Reverse) 2313 NewLI = reverseVector(NewLI); 2314 } 2315 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2316 } 2317 } 2318 2319 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2320 const VPIteration &Instance, 2321 bool IfPredicateInstr) { 2322 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2323 2324 setDebugLocFromInst(Builder, Instr); 2325 2326 // Does this instruction return a value ? 2327 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2328 2329 Instruction *Cloned = Instr->clone(); 2330 if (!IsVoidRetTy) 2331 Cloned->setName(Instr->getName() + ".cloned"); 2332 2333 // Replace the operands of the cloned instructions with their scalar 2334 // equivalents in the new loop. 2335 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2336 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2337 Cloned->setOperand(op, NewOp); 2338 } 2339 addNewMetadata(Cloned, Instr); 2340 2341 // Place the cloned scalar in the new loop. 2342 Builder.Insert(Cloned); 2343 2344 // Add the cloned scalar to the scalar map entry. 2345 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2346 2347 // If we just cloned a new assumption, add it the assumption cache. 2348 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2349 if (II->getIntrinsicID() == Intrinsic::assume) 2350 AC->registerAssumption(II); 2351 2352 // End if-block. 2353 if (IfPredicateInstr) 2354 PredicatedInstructions.push_back(Cloned); 2355 } 2356 2357 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2358 Value *End, Value *Step, 2359 Instruction *DL) { 2360 BasicBlock *Header = L->getHeader(); 2361 BasicBlock *Latch = L->getLoopLatch(); 2362 // As we're just creating this loop, it's possible no latch exists 2363 // yet. If so, use the header as this will be a single block loop. 2364 if (!Latch) 2365 Latch = Header; 2366 2367 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2368 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2369 setDebugLocFromInst(Builder, OldInst); 2370 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2371 2372 Builder.SetInsertPoint(Latch->getTerminator()); 2373 setDebugLocFromInst(Builder, OldInst); 2374 2375 // Create i+1 and fill the PHINode. 2376 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2377 Induction->addIncoming(Start, L->getLoopPreheader()); 2378 Induction->addIncoming(Next, Latch); 2379 // Create the compare. 2380 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2381 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2382 2383 // Now we have two terminators. Remove the old one from the block. 2384 Latch->getTerminator()->eraseFromParent(); 2385 2386 return Induction; 2387 } 2388 2389 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2390 if (TripCount) 2391 return TripCount; 2392 2393 assert(L && "Create Trip Count for null loop."); 2394 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2395 // Find the loop boundaries. 2396 ScalarEvolution *SE = PSE.getSE(); 2397 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2398 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2399 "Invalid loop count"); 2400 2401 Type *IdxTy = Legal->getWidestInductionType(); 2402 assert(IdxTy && "No type for induction"); 2403 2404 // The exit count might have the type of i64 while the phi is i32. This can 2405 // happen if we have an induction variable that is sign extended before the 2406 // compare. The only way that we get a backedge taken count is that the 2407 // induction variable was signed and as such will not overflow. In such a case 2408 // truncation is legal. 2409 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2410 IdxTy->getPrimitiveSizeInBits()) 2411 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2412 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2413 2414 // Get the total trip count from the count by adding 1. 2415 const SCEV *ExitCount = SE->getAddExpr( 2416 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2417 2418 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2419 2420 // Expand the trip count and place the new instructions in the preheader. 2421 // Notice that the pre-header does not change, only the loop body. 2422 SCEVExpander Exp(*SE, DL, "induction"); 2423 2424 // Count holds the overall loop count (N). 2425 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2426 L->getLoopPreheader()->getTerminator()); 2427 2428 if (TripCount->getType()->isPointerTy()) 2429 TripCount = 2430 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2431 L->getLoopPreheader()->getTerminator()); 2432 2433 return TripCount; 2434 } 2435 2436 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2437 if (VectorTripCount) 2438 return VectorTripCount; 2439 2440 Value *TC = getOrCreateTripCount(L); 2441 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2442 2443 Type *Ty = TC->getType(); 2444 Constant *Step = ConstantInt::get(Ty, VF * UF); 2445 2446 // If the tail is to be folded by masking, round the number of iterations N 2447 // up to a multiple of Step instead of rounding down. This is done by first 2448 // adding Step-1 and then rounding down. Note that it's ok if this addition 2449 // overflows: the vector induction variable will eventually wrap to zero given 2450 // that it starts at zero and its Step is a power of two; the loop will then 2451 // exit, with the last early-exit vector comparison also producing all-true. 2452 if (Cost->foldTailByMasking()) { 2453 assert(isPowerOf2_32(VF * UF) && 2454 "VF*UF must be a power of 2 when folding tail by masking"); 2455 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2456 } 2457 2458 // Now we need to generate the expression for the part of the loop that the 2459 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2460 // iterations are not required for correctness, or N - Step, otherwise. Step 2461 // is equal to the vectorization factor (number of SIMD elements) times the 2462 // unroll factor (number of SIMD instructions). 2463 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2464 2465 // If there is a non-reversed interleaved group that may speculatively access 2466 // memory out-of-bounds, we need to ensure that there will be at least one 2467 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2468 // the trip count, we set the remainder to be equal to the step. If the step 2469 // does not evenly divide the trip count, no adjustment is necessary since 2470 // there will already be scalar iterations. Note that the minimum iterations 2471 // check ensures that N >= Step. 2472 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2473 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2474 R = Builder.CreateSelect(IsZero, Step, R); 2475 } 2476 2477 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2478 2479 return VectorTripCount; 2480 } 2481 2482 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2483 const DataLayout &DL) { 2484 // Verify that V is a vector type with same number of elements as DstVTy. 2485 unsigned VF = DstVTy->getNumElements(); 2486 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2487 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2488 Type *SrcElemTy = SrcVecTy->getElementType(); 2489 Type *DstElemTy = DstVTy->getElementType(); 2490 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2491 "Vector elements must have same size"); 2492 2493 // Do a direct cast if element types are castable. 2494 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2495 return Builder.CreateBitOrPointerCast(V, DstVTy); 2496 } 2497 // V cannot be directly casted to desired vector type. 2498 // May happen when V is a floating point vector but DstVTy is a vector of 2499 // pointers or vice-versa. Handle this using a two-step bitcast using an 2500 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2501 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2502 "Only one type should be a pointer type"); 2503 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2504 "Only one type should be a floating point type"); 2505 Type *IntTy = 2506 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2507 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2508 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2509 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2510 } 2511 2512 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2513 BasicBlock *Bypass) { 2514 Value *Count = getOrCreateTripCount(L); 2515 BasicBlock *BB = L->getLoopPreheader(); 2516 IRBuilder<> Builder(BB->getTerminator()); 2517 2518 // Generate code to check if the loop's trip count is less than VF * UF, or 2519 // equal to it in case a scalar epilogue is required; this implies that the 2520 // vector trip count is zero. This check also covers the case where adding one 2521 // to the backedge-taken count overflowed leading to an incorrect trip count 2522 // of zero. In this case we will also jump to the scalar loop. 2523 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2524 : ICmpInst::ICMP_ULT; 2525 2526 // If tail is to be folded, vector loop takes care of all iterations. 2527 Value *CheckMinIters = Builder.getFalse(); 2528 if (!Cost->foldTailByMasking()) 2529 CheckMinIters = Builder.CreateICmp( 2530 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2531 "min.iters.check"); 2532 2533 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2534 // Update dominator tree immediately if the generated block is a 2535 // LoopBypassBlock because SCEV expansions to generate loop bypass 2536 // checks may query it before the current function is finished. 2537 DT->addNewBlock(NewBB, BB); 2538 if (L->getParentLoop()) 2539 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2540 ReplaceInstWithInst(BB->getTerminator(), 2541 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2542 LoopBypassBlocks.push_back(BB); 2543 } 2544 2545 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2546 BasicBlock *BB = L->getLoopPreheader(); 2547 2548 // Generate the code to check that the SCEV assumptions that we made. 2549 // We want the new basic block to start at the first instruction in a 2550 // sequence of instructions that form a check. 2551 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2552 "scev.check"); 2553 Value *SCEVCheck = 2554 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2555 2556 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2557 if (C->isZero()) 2558 return; 2559 2560 assert(!Cost->foldTailByMasking() && 2561 "Cannot SCEV check stride or overflow when folding tail"); 2562 // Create a new block containing the stride check. 2563 BB->setName("vector.scevcheck"); 2564 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2565 // Update dominator tree immediately if the generated block is a 2566 // LoopBypassBlock because SCEV expansions to generate loop bypass 2567 // checks may query it before the current function is finished. 2568 DT->addNewBlock(NewBB, BB); 2569 if (L->getParentLoop()) 2570 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2571 ReplaceInstWithInst(BB->getTerminator(), 2572 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2573 LoopBypassBlocks.push_back(BB); 2574 AddedSafetyChecks = true; 2575 } 2576 2577 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2578 // VPlan-native path does not do any analysis for runtime checks currently. 2579 if (EnableVPlanNativePath) 2580 return; 2581 2582 BasicBlock *BB = L->getLoopPreheader(); 2583 2584 // Generate the code that checks in runtime if arrays overlap. We put the 2585 // checks into a separate block to make the more common case of few elements 2586 // faster. 2587 Instruction *FirstCheckInst; 2588 Instruction *MemRuntimeCheck; 2589 std::tie(FirstCheckInst, MemRuntimeCheck) = 2590 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2591 if (!MemRuntimeCheck) 2592 return; 2593 2594 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2595 // Create a new block containing the memory check. 2596 BB->setName("vector.memcheck"); 2597 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2598 // Update dominator tree immediately if the generated block is a 2599 // LoopBypassBlock because SCEV expansions to generate loop bypass 2600 // checks may query it before the current function is finished. 2601 DT->addNewBlock(NewBB, BB); 2602 if (L->getParentLoop()) 2603 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2604 ReplaceInstWithInst(BB->getTerminator(), 2605 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2606 LoopBypassBlocks.push_back(BB); 2607 AddedSafetyChecks = true; 2608 2609 // We currently don't use LoopVersioning for the actual loop cloning but we 2610 // still use it to add the noalias metadata. 2611 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2612 PSE.getSE()); 2613 LVer->prepareNoAliasMetadata(); 2614 } 2615 2616 Value *InnerLoopVectorizer::emitTransformedIndex( 2617 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2618 const InductionDescriptor &ID) const { 2619 2620 SCEVExpander Exp(*SE, DL, "induction"); 2621 auto Step = ID.getStep(); 2622 auto StartValue = ID.getStartValue(); 2623 assert(Index->getType() == Step->getType() && 2624 "Index type does not match StepValue type"); 2625 2626 // Note: the IR at this point is broken. We cannot use SE to create any new 2627 // SCEV and then expand it, hoping that SCEV's simplification will give us 2628 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2629 // lead to various SCEV crashes. So all we can do is to use builder and rely 2630 // on InstCombine for future simplifications. Here we handle some trivial 2631 // cases only. 2632 auto CreateAdd = [&B](Value *X, Value *Y) { 2633 assert(X->getType() == Y->getType() && "Types don't match!"); 2634 if (auto *CX = dyn_cast<ConstantInt>(X)) 2635 if (CX->isZero()) 2636 return Y; 2637 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2638 if (CY->isZero()) 2639 return X; 2640 return B.CreateAdd(X, Y); 2641 }; 2642 2643 auto CreateMul = [&B](Value *X, Value *Y) { 2644 assert(X->getType() == Y->getType() && "Types don't match!"); 2645 if (auto *CX = dyn_cast<ConstantInt>(X)) 2646 if (CX->isOne()) 2647 return Y; 2648 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2649 if (CY->isOne()) 2650 return X; 2651 return B.CreateMul(X, Y); 2652 }; 2653 2654 switch (ID.getKind()) { 2655 case InductionDescriptor::IK_IntInduction: { 2656 assert(Index->getType() == StartValue->getType() && 2657 "Index type does not match StartValue type"); 2658 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2659 return B.CreateSub(StartValue, Index); 2660 auto *Offset = CreateMul( 2661 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2662 return CreateAdd(StartValue, Offset); 2663 } 2664 case InductionDescriptor::IK_PtrInduction: { 2665 assert(isa<SCEVConstant>(Step) && 2666 "Expected constant step for pointer induction"); 2667 return B.CreateGEP( 2668 nullptr, StartValue, 2669 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2670 &*B.GetInsertPoint()))); 2671 } 2672 case InductionDescriptor::IK_FpInduction: { 2673 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2674 auto InductionBinOp = ID.getInductionBinOp(); 2675 assert(InductionBinOp && 2676 (InductionBinOp->getOpcode() == Instruction::FAdd || 2677 InductionBinOp->getOpcode() == Instruction::FSub) && 2678 "Original bin op should be defined for FP induction"); 2679 2680 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2681 2682 // Floating point operations had to be 'fast' to enable the induction. 2683 FastMathFlags Flags; 2684 Flags.setFast(); 2685 2686 Value *MulExp = B.CreateFMul(StepValue, Index); 2687 if (isa<Instruction>(MulExp)) 2688 // We have to check, the MulExp may be a constant. 2689 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2690 2691 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2692 "induction"); 2693 if (isa<Instruction>(BOp)) 2694 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2695 2696 return BOp; 2697 } 2698 case InductionDescriptor::IK_NoInduction: 2699 return nullptr; 2700 } 2701 llvm_unreachable("invalid enum"); 2702 } 2703 2704 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2705 /* 2706 In this function we generate a new loop. The new loop will contain 2707 the vectorized instructions while the old loop will continue to run the 2708 scalar remainder. 2709 2710 [ ] <-- loop iteration number check. 2711 / | 2712 / v 2713 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2714 | / | 2715 | / v 2716 || [ ] <-- vector pre header. 2717 |/ | 2718 | v 2719 | [ ] \ 2720 | [ ]_| <-- vector loop. 2721 | | 2722 | v 2723 | -[ ] <--- middle-block. 2724 | / | 2725 | / v 2726 -|- >[ ] <--- new preheader. 2727 | | 2728 | v 2729 | [ ] \ 2730 | [ ]_| <-- old scalar loop to handle remainder. 2731 \ | 2732 \ v 2733 >[ ] <-- exit block. 2734 ... 2735 */ 2736 2737 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2738 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2739 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2740 assert(VectorPH && "Invalid loop structure"); 2741 assert(ExitBlock && "Must have an exit block"); 2742 2743 // Some loops have a single integer induction variable, while other loops 2744 // don't. One example is c++ iterators that often have multiple pointer 2745 // induction variables. In the code below we also support a case where we 2746 // don't have a single induction variable. 2747 // 2748 // We try to obtain an induction variable from the original loop as hard 2749 // as possible. However if we don't find one that: 2750 // - is an integer 2751 // - counts from zero, stepping by one 2752 // - is the size of the widest induction variable type 2753 // then we create a new one. 2754 OldInduction = Legal->getPrimaryInduction(); 2755 Type *IdxTy = Legal->getWidestInductionType(); 2756 2757 // Split the single block loop into the two loop structure described above. 2758 BasicBlock *VecBody = 2759 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2760 BasicBlock *MiddleBlock = 2761 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2762 BasicBlock *ScalarPH = 2763 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2764 2765 // Create and register the new vector loop. 2766 Loop *Lp = LI->AllocateLoop(); 2767 Loop *ParentLoop = OrigLoop->getParentLoop(); 2768 2769 // Insert the new loop into the loop nest and register the new basic blocks 2770 // before calling any utilities such as SCEV that require valid LoopInfo. 2771 if (ParentLoop) { 2772 ParentLoop->addChildLoop(Lp); 2773 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2774 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2775 } else { 2776 LI->addTopLevelLoop(Lp); 2777 } 2778 Lp->addBasicBlockToLoop(VecBody, *LI); 2779 2780 // Find the loop boundaries. 2781 Value *Count = getOrCreateTripCount(Lp); 2782 2783 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2784 2785 // Now, compare the new count to zero. If it is zero skip the vector loop and 2786 // jump to the scalar loop. This check also covers the case where the 2787 // backedge-taken count is uint##_max: adding one to it will overflow leading 2788 // to an incorrect trip count of zero. In this (rare) case we will also jump 2789 // to the scalar loop. 2790 emitMinimumIterationCountCheck(Lp, ScalarPH); 2791 2792 // Generate the code to check any assumptions that we've made for SCEV 2793 // expressions. 2794 emitSCEVChecks(Lp, ScalarPH); 2795 2796 // Generate the code that checks in runtime if arrays overlap. We put the 2797 // checks into a separate block to make the more common case of few elements 2798 // faster. 2799 emitMemRuntimeChecks(Lp, ScalarPH); 2800 2801 // Generate the induction variable. 2802 // The loop step is equal to the vectorization factor (num of SIMD elements) 2803 // times the unroll factor (num of SIMD instructions). 2804 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2805 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2806 Induction = 2807 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2808 getDebugLocFromInstOrOperands(OldInduction)); 2809 2810 // We are going to resume the execution of the scalar loop. 2811 // Go over all of the induction variables that we found and fix the 2812 // PHIs that are left in the scalar version of the loop. 2813 // The starting values of PHI nodes depend on the counter of the last 2814 // iteration in the vectorized loop. 2815 // If we come from a bypass edge then we need to start from the original 2816 // start value. 2817 2818 // This variable saves the new starting index for the scalar loop. It is used 2819 // to test if there are any tail iterations left once the vector loop has 2820 // completed. 2821 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2822 for (auto &InductionEntry : *List) { 2823 PHINode *OrigPhi = InductionEntry.first; 2824 InductionDescriptor II = InductionEntry.second; 2825 2826 // Create phi nodes to merge from the backedge-taken check block. 2827 PHINode *BCResumeVal = PHINode::Create( 2828 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2829 // Copy original phi DL over to the new one. 2830 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2831 Value *&EndValue = IVEndValues[OrigPhi]; 2832 if (OrigPhi == OldInduction) { 2833 // We know what the end value is. 2834 EndValue = CountRoundDown; 2835 } else { 2836 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2837 Type *StepType = II.getStep()->getType(); 2838 Instruction::CastOps CastOp = 2839 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2840 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2841 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2842 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2843 EndValue->setName("ind.end"); 2844 } 2845 2846 // The new PHI merges the original incoming value, in case of a bypass, 2847 // or the value at the end of the vectorized loop. 2848 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2849 2850 // Fix the scalar body counter (PHI node). 2851 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2852 2853 // The old induction's phi node in the scalar body needs the truncated 2854 // value. 2855 for (BasicBlock *BB : LoopBypassBlocks) 2856 BCResumeVal->addIncoming(II.getStartValue(), BB); 2857 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2858 } 2859 2860 // Add a check in the middle block to see if we have completed 2861 // all of the iterations in the first vector loop. 2862 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2863 // If tail is to be folded, we know we don't need to run the remainder. 2864 Value *CmpN = Builder.getTrue(); 2865 if (!Cost->foldTailByMasking()) 2866 CmpN = 2867 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2868 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2869 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2870 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2871 2872 // Get ready to start creating new instructions into the vectorized body. 2873 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2874 2875 // Save the state. 2876 LoopVectorPreHeader = Lp->getLoopPreheader(); 2877 LoopScalarPreHeader = ScalarPH; 2878 LoopMiddleBlock = MiddleBlock; 2879 LoopExitBlock = ExitBlock; 2880 LoopVectorBody = VecBody; 2881 LoopScalarBody = OldBasicBlock; 2882 2883 // Keep all loop hints from the original loop on the vector loop (we'll 2884 // replace the vectorizer-specific hints below). 2885 if (MDNode *LID = OrigLoop->getLoopID()) 2886 Lp->setLoopID(LID); 2887 2888 LoopVectorizeHints Hints(Lp, true, *ORE); 2889 Hints.setAlreadyVectorized(); 2890 2891 return LoopVectorPreHeader; 2892 } 2893 2894 // Fix up external users of the induction variable. At this point, we are 2895 // in LCSSA form, with all external PHIs that use the IV having one input value, 2896 // coming from the remainder loop. We need those PHIs to also have a correct 2897 // value for the IV when arriving directly from the middle block. 2898 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2899 const InductionDescriptor &II, 2900 Value *CountRoundDown, Value *EndValue, 2901 BasicBlock *MiddleBlock) { 2902 // There are two kinds of external IV usages - those that use the value 2903 // computed in the last iteration (the PHI) and those that use the penultimate 2904 // value (the value that feeds into the phi from the loop latch). 2905 // We allow both, but they, obviously, have different values. 2906 2907 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2908 2909 DenseMap<Value *, Value *> MissingVals; 2910 2911 // An external user of the last iteration's value should see the value that 2912 // the remainder loop uses to initialize its own IV. 2913 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2914 for (User *U : PostInc->users()) { 2915 Instruction *UI = cast<Instruction>(U); 2916 if (!OrigLoop->contains(UI)) { 2917 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2918 MissingVals[UI] = EndValue; 2919 } 2920 } 2921 2922 // An external user of the penultimate value need to see EndValue - Step. 2923 // The simplest way to get this is to recompute it from the constituent SCEVs, 2924 // that is Start + (Step * (CRD - 1)). 2925 for (User *U : OrigPhi->users()) { 2926 auto *UI = cast<Instruction>(U); 2927 if (!OrigLoop->contains(UI)) { 2928 const DataLayout &DL = 2929 OrigLoop->getHeader()->getModule()->getDataLayout(); 2930 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2931 2932 IRBuilder<> B(MiddleBlock->getTerminator()); 2933 Value *CountMinusOne = B.CreateSub( 2934 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2935 Value *CMO = 2936 !II.getStep()->getType()->isIntegerTy() 2937 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 2938 II.getStep()->getType()) 2939 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 2940 CMO->setName("cast.cmo"); 2941 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 2942 Escape->setName("ind.escape"); 2943 MissingVals[UI] = Escape; 2944 } 2945 } 2946 2947 for (auto &I : MissingVals) { 2948 PHINode *PHI = cast<PHINode>(I.first); 2949 // One corner case we have to handle is two IVs "chasing" each-other, 2950 // that is %IV2 = phi [...], [ %IV1, %latch ] 2951 // In this case, if IV1 has an external use, we need to avoid adding both 2952 // "last value of IV1" and "penultimate value of IV2". So, verify that we 2953 // don't already have an incoming value for the middle block. 2954 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 2955 PHI->addIncoming(I.second, MiddleBlock); 2956 } 2957 } 2958 2959 namespace { 2960 2961 struct CSEDenseMapInfo { 2962 static bool canHandle(const Instruction *I) { 2963 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2964 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2965 } 2966 2967 static inline Instruction *getEmptyKey() { 2968 return DenseMapInfo<Instruction *>::getEmptyKey(); 2969 } 2970 2971 static inline Instruction *getTombstoneKey() { 2972 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2973 } 2974 2975 static unsigned getHashValue(const Instruction *I) { 2976 assert(canHandle(I) && "Unknown instruction!"); 2977 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2978 I->value_op_end())); 2979 } 2980 2981 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 2982 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2983 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2984 return LHS == RHS; 2985 return LHS->isIdenticalTo(RHS); 2986 } 2987 }; 2988 2989 } // end anonymous namespace 2990 2991 ///Perform cse of induction variable instructions. 2992 static void cse(BasicBlock *BB) { 2993 // Perform simple cse. 2994 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2995 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2996 Instruction *In = &*I++; 2997 2998 if (!CSEDenseMapInfo::canHandle(In)) 2999 continue; 3000 3001 // Check if we can replace this instruction with any of the 3002 // visited instructions. 3003 if (Instruction *V = CSEMap.lookup(In)) { 3004 In->replaceAllUsesWith(V); 3005 In->eraseFromParent(); 3006 continue; 3007 } 3008 3009 CSEMap[In] = In; 3010 } 3011 } 3012 3013 /// Estimate the overhead of scalarizing an instruction. This is a 3014 /// convenience wrapper for the type-based getScalarizationOverhead API. 3015 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3016 const TargetTransformInfo &TTI) { 3017 if (VF == 1) 3018 return 0; 3019 3020 unsigned Cost = 0; 3021 Type *RetTy = ToVectorTy(I->getType(), VF); 3022 if (!RetTy->isVoidTy() && 3023 (!isa<LoadInst>(I) || 3024 !TTI.supportsEfficientVectorElementLoadStore())) 3025 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3026 3027 // Some targets keep addresses scalar. 3028 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 3029 return Cost; 3030 3031 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3032 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3033 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3034 } 3035 else if (!isa<StoreInst>(I) || 3036 !TTI.supportsEfficientVectorElementLoadStore()) { 3037 SmallVector<const Value *, 4> Operands(I->operand_values()); 3038 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3039 } 3040 3041 return Cost; 3042 } 3043 3044 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3045 // Return the cost of the instruction, including scalarization overhead if it's 3046 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3047 // i.e. either vector version isn't available, or is too expensive. 3048 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3049 const TargetTransformInfo &TTI, 3050 const TargetLibraryInfo *TLI, 3051 bool &NeedToScalarize) { 3052 Function *F = CI->getCalledFunction(); 3053 StringRef FnName = CI->getCalledFunction()->getName(); 3054 Type *ScalarRetTy = CI->getType(); 3055 SmallVector<Type *, 4> Tys, ScalarTys; 3056 for (auto &ArgOp : CI->arg_operands()) 3057 ScalarTys.push_back(ArgOp->getType()); 3058 3059 // Estimate cost of scalarized vector call. The source operands are assumed 3060 // to be vectors, so we need to extract individual elements from there, 3061 // execute VF scalar calls, and then gather the result into the vector return 3062 // value. 3063 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3064 if (VF == 1) 3065 return ScalarCallCost; 3066 3067 // Compute corresponding vector type for return value and arguments. 3068 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3069 for (Type *ScalarTy : ScalarTys) 3070 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3071 3072 // Compute costs of unpacking argument values for the scalar calls and 3073 // packing the return values to a vector. 3074 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3075 3076 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3077 3078 // If we can't emit a vector call for this function, then the currently found 3079 // cost is the cost we need to return. 3080 NeedToScalarize = true; 3081 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3082 return Cost; 3083 3084 // If the corresponding vector cost is cheaper, return its cost. 3085 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3086 if (VectorCallCost < Cost) { 3087 NeedToScalarize = false; 3088 return VectorCallCost; 3089 } 3090 return Cost; 3091 } 3092 3093 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3094 // factor VF. Return the cost of the instruction, including scalarization 3095 // overhead if it's needed. 3096 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3097 const TargetTransformInfo &TTI, 3098 const TargetLibraryInfo *TLI) { 3099 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3100 assert(ID && "Expected intrinsic call!"); 3101 3102 FastMathFlags FMF; 3103 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3104 FMF = FPMO->getFastMathFlags(); 3105 3106 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3107 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3108 } 3109 3110 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3111 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3112 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3113 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3114 } 3115 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3116 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3117 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3118 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3119 } 3120 3121 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3122 // For every instruction `I` in MinBWs, truncate the operands, create a 3123 // truncated version of `I` and reextend its result. InstCombine runs 3124 // later and will remove any ext/trunc pairs. 3125 SmallPtrSet<Value *, 4> Erased; 3126 for (const auto &KV : Cost->getMinimalBitwidths()) { 3127 // If the value wasn't vectorized, we must maintain the original scalar 3128 // type. The absence of the value from VectorLoopValueMap indicates that it 3129 // wasn't vectorized. 3130 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3131 continue; 3132 for (unsigned Part = 0; Part < UF; ++Part) { 3133 Value *I = getOrCreateVectorValue(KV.first, Part); 3134 if (Erased.find(I) != Erased.end() || I->use_empty() || 3135 !isa<Instruction>(I)) 3136 continue; 3137 Type *OriginalTy = I->getType(); 3138 Type *ScalarTruncatedTy = 3139 IntegerType::get(OriginalTy->getContext(), KV.second); 3140 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3141 OriginalTy->getVectorNumElements()); 3142 if (TruncatedTy == OriginalTy) 3143 continue; 3144 3145 IRBuilder<> B(cast<Instruction>(I)); 3146 auto ShrinkOperand = [&](Value *V) -> Value * { 3147 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3148 if (ZI->getSrcTy() == TruncatedTy) 3149 return ZI->getOperand(0); 3150 return B.CreateZExtOrTrunc(V, TruncatedTy); 3151 }; 3152 3153 // The actual instruction modification depends on the instruction type, 3154 // unfortunately. 3155 Value *NewI = nullptr; 3156 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3157 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3158 ShrinkOperand(BO->getOperand(1))); 3159 3160 // Any wrapping introduced by shrinking this operation shouldn't be 3161 // considered undefined behavior. So, we can't unconditionally copy 3162 // arithmetic wrapping flags to NewI. 3163 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3164 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3165 NewI = 3166 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3167 ShrinkOperand(CI->getOperand(1))); 3168 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3169 NewI = B.CreateSelect(SI->getCondition(), 3170 ShrinkOperand(SI->getTrueValue()), 3171 ShrinkOperand(SI->getFalseValue())); 3172 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3173 switch (CI->getOpcode()) { 3174 default: 3175 llvm_unreachable("Unhandled cast!"); 3176 case Instruction::Trunc: 3177 NewI = ShrinkOperand(CI->getOperand(0)); 3178 break; 3179 case Instruction::SExt: 3180 NewI = B.CreateSExtOrTrunc( 3181 CI->getOperand(0), 3182 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3183 break; 3184 case Instruction::ZExt: 3185 NewI = B.CreateZExtOrTrunc( 3186 CI->getOperand(0), 3187 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3188 break; 3189 } 3190 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3191 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3192 auto *O0 = B.CreateZExtOrTrunc( 3193 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3194 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3195 auto *O1 = B.CreateZExtOrTrunc( 3196 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3197 3198 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3199 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3200 // Don't do anything with the operands, just extend the result. 3201 continue; 3202 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3203 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3204 auto *O0 = B.CreateZExtOrTrunc( 3205 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3206 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3207 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3208 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3209 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3210 auto *O0 = B.CreateZExtOrTrunc( 3211 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3212 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3213 } else { 3214 // If we don't know what to do, be conservative and don't do anything. 3215 continue; 3216 } 3217 3218 // Lastly, extend the result. 3219 NewI->takeName(cast<Instruction>(I)); 3220 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3221 I->replaceAllUsesWith(Res); 3222 cast<Instruction>(I)->eraseFromParent(); 3223 Erased.insert(I); 3224 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3225 } 3226 } 3227 3228 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3229 for (const auto &KV : Cost->getMinimalBitwidths()) { 3230 // If the value wasn't vectorized, we must maintain the original scalar 3231 // type. The absence of the value from VectorLoopValueMap indicates that it 3232 // wasn't vectorized. 3233 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3234 continue; 3235 for (unsigned Part = 0; Part < UF; ++Part) { 3236 Value *I = getOrCreateVectorValue(KV.first, Part); 3237 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3238 if (Inst && Inst->use_empty()) { 3239 Value *NewI = Inst->getOperand(0); 3240 Inst->eraseFromParent(); 3241 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3242 } 3243 } 3244 } 3245 } 3246 3247 void InnerLoopVectorizer::fixVectorizedLoop() { 3248 // Insert truncates and extends for any truncated instructions as hints to 3249 // InstCombine. 3250 if (VF > 1) 3251 truncateToMinimalBitwidths(); 3252 3253 // Fix widened non-induction PHIs by setting up the PHI operands. 3254 if (OrigPHIsToFix.size()) { 3255 assert(EnableVPlanNativePath && 3256 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3257 fixNonInductionPHIs(); 3258 } 3259 3260 // At this point every instruction in the original loop is widened to a 3261 // vector form. Now we need to fix the recurrences in the loop. These PHI 3262 // nodes are currently empty because we did not want to introduce cycles. 3263 // This is the second stage of vectorizing recurrences. 3264 fixCrossIterationPHIs(); 3265 3266 // Update the dominator tree. 3267 // 3268 // FIXME: After creating the structure of the new loop, the dominator tree is 3269 // no longer up-to-date, and it remains that way until we update it 3270 // here. An out-of-date dominator tree is problematic for SCEV, 3271 // because SCEVExpander uses it to guide code generation. The 3272 // vectorizer use SCEVExpanders in several places. Instead, we should 3273 // keep the dominator tree up-to-date as we go. 3274 updateAnalysis(); 3275 3276 // Fix-up external users of the induction variables. 3277 for (auto &Entry : *Legal->getInductionVars()) 3278 fixupIVUsers(Entry.first, Entry.second, 3279 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3280 IVEndValues[Entry.first], LoopMiddleBlock); 3281 3282 fixLCSSAPHIs(); 3283 for (Instruction *PI : PredicatedInstructions) 3284 sinkScalarOperands(&*PI); 3285 3286 // Remove redundant induction instructions. 3287 cse(LoopVectorBody); 3288 } 3289 3290 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3291 // In order to support recurrences we need to be able to vectorize Phi nodes. 3292 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3293 // stage #2: We now need to fix the recurrences by adding incoming edges to 3294 // the currently empty PHI nodes. At this point every instruction in the 3295 // original loop is widened to a vector form so we can use them to construct 3296 // the incoming edges. 3297 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3298 // Handle first-order recurrences and reductions that need to be fixed. 3299 if (Legal->isFirstOrderRecurrence(&Phi)) 3300 fixFirstOrderRecurrence(&Phi); 3301 else if (Legal->isReductionVariable(&Phi)) 3302 fixReduction(&Phi); 3303 } 3304 } 3305 3306 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3307 // This is the second phase of vectorizing first-order recurrences. An 3308 // overview of the transformation is described below. Suppose we have the 3309 // following loop. 3310 // 3311 // for (int i = 0; i < n; ++i) 3312 // b[i] = a[i] - a[i - 1]; 3313 // 3314 // There is a first-order recurrence on "a". For this loop, the shorthand 3315 // scalar IR looks like: 3316 // 3317 // scalar.ph: 3318 // s_init = a[-1] 3319 // br scalar.body 3320 // 3321 // scalar.body: 3322 // i = phi [0, scalar.ph], [i+1, scalar.body] 3323 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3324 // s2 = a[i] 3325 // b[i] = s2 - s1 3326 // br cond, scalar.body, ... 3327 // 3328 // In this example, s1 is a recurrence because it's value depends on the 3329 // previous iteration. In the first phase of vectorization, we created a 3330 // temporary value for s1. We now complete the vectorization and produce the 3331 // shorthand vector IR shown below (for VF = 4, UF = 1). 3332 // 3333 // vector.ph: 3334 // v_init = vector(..., ..., ..., a[-1]) 3335 // br vector.body 3336 // 3337 // vector.body 3338 // i = phi [0, vector.ph], [i+4, vector.body] 3339 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3340 // v2 = a[i, i+1, i+2, i+3]; 3341 // v3 = vector(v1(3), v2(0, 1, 2)) 3342 // b[i, i+1, i+2, i+3] = v2 - v3 3343 // br cond, vector.body, middle.block 3344 // 3345 // middle.block: 3346 // x = v2(3) 3347 // br scalar.ph 3348 // 3349 // scalar.ph: 3350 // s_init = phi [x, middle.block], [a[-1], otherwise] 3351 // br scalar.body 3352 // 3353 // After execution completes the vector loop, we extract the next value of 3354 // the recurrence (x) to use as the initial value in the scalar loop. 3355 3356 // Get the original loop preheader and single loop latch. 3357 auto *Preheader = OrigLoop->getLoopPreheader(); 3358 auto *Latch = OrigLoop->getLoopLatch(); 3359 3360 // Get the initial and previous values of the scalar recurrence. 3361 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3362 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3363 3364 // Create a vector from the initial value. 3365 auto *VectorInit = ScalarInit; 3366 if (VF > 1) { 3367 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3368 VectorInit = Builder.CreateInsertElement( 3369 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3370 Builder.getInt32(VF - 1), "vector.recur.init"); 3371 } 3372 3373 // We constructed a temporary phi node in the first phase of vectorization. 3374 // This phi node will eventually be deleted. 3375 Builder.SetInsertPoint( 3376 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3377 3378 // Create a phi node for the new recurrence. The current value will either be 3379 // the initial value inserted into a vector or loop-varying vector value. 3380 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3381 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3382 3383 // Get the vectorized previous value of the last part UF - 1. It appears last 3384 // among all unrolled iterations, due to the order of their construction. 3385 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3386 3387 // Set the insertion point after the previous value if it is an instruction. 3388 // Note that the previous value may have been constant-folded so it is not 3389 // guaranteed to be an instruction in the vector loop. Also, if the previous 3390 // value is a phi node, we should insert after all the phi nodes to avoid 3391 // breaking basic block verification. 3392 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3393 isa<PHINode>(PreviousLastPart)) 3394 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3395 else 3396 Builder.SetInsertPoint( 3397 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3398 3399 // We will construct a vector for the recurrence by combining the values for 3400 // the current and previous iterations. This is the required shuffle mask. 3401 SmallVector<Constant *, 8> ShuffleMask(VF); 3402 ShuffleMask[0] = Builder.getInt32(VF - 1); 3403 for (unsigned I = 1; I < VF; ++I) 3404 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3405 3406 // The vector from which to take the initial value for the current iteration 3407 // (actual or unrolled). Initially, this is the vector phi node. 3408 Value *Incoming = VecPhi; 3409 3410 // Shuffle the current and previous vector and update the vector parts. 3411 for (unsigned Part = 0; Part < UF; ++Part) { 3412 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3413 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3414 auto *Shuffle = 3415 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3416 ConstantVector::get(ShuffleMask)) 3417 : Incoming; 3418 PhiPart->replaceAllUsesWith(Shuffle); 3419 cast<Instruction>(PhiPart)->eraseFromParent(); 3420 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3421 Incoming = PreviousPart; 3422 } 3423 3424 // Fix the latch value of the new recurrence in the vector loop. 3425 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3426 3427 // Extract the last vector element in the middle block. This will be the 3428 // initial value for the recurrence when jumping to the scalar loop. 3429 auto *ExtractForScalar = Incoming; 3430 if (VF > 1) { 3431 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3432 ExtractForScalar = Builder.CreateExtractElement( 3433 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3434 } 3435 // Extract the second last element in the middle block if the 3436 // Phi is used outside the loop. We need to extract the phi itself 3437 // and not the last element (the phi update in the current iteration). This 3438 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3439 // when the scalar loop is not run at all. 3440 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3441 if (VF > 1) 3442 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3443 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3444 // When loop is unrolled without vectorizing, initialize 3445 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3446 // `Incoming`. This is analogous to the vectorized case above: extracting the 3447 // second last element when VF > 1. 3448 else if (UF > 1) 3449 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3450 3451 // Fix the initial value of the original recurrence in the scalar loop. 3452 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3453 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3454 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3455 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3456 Start->addIncoming(Incoming, BB); 3457 } 3458 3459 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3460 Phi->setName("scalar.recur"); 3461 3462 // Finally, fix users of the recurrence outside the loop. The users will need 3463 // either the last value of the scalar recurrence or the last value of the 3464 // vector recurrence we extracted in the middle block. Since the loop is in 3465 // LCSSA form, we just need to find all the phi nodes for the original scalar 3466 // recurrence in the exit block, and then add an edge for the middle block. 3467 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3468 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3469 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3470 } 3471 } 3472 } 3473 3474 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3475 Constant *Zero = Builder.getInt32(0); 3476 3477 // Get it's reduction variable descriptor. 3478 assert(Legal->isReductionVariable(Phi) && 3479 "Unable to find the reduction variable"); 3480 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3481 3482 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3483 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3484 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3485 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3486 RdxDesc.getMinMaxRecurrenceKind(); 3487 setDebugLocFromInst(Builder, ReductionStartValue); 3488 3489 // We need to generate a reduction vector from the incoming scalar. 3490 // To do so, we need to generate the 'identity' vector and override 3491 // one of the elements with the incoming scalar reduction. We need 3492 // to do it in the vector-loop preheader. 3493 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3494 3495 // This is the vector-clone of the value that leaves the loop. 3496 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3497 3498 // Find the reduction identity variable. Zero for addition, or, xor, 3499 // one for multiplication, -1 for And. 3500 Value *Identity; 3501 Value *VectorStart; 3502 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3503 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3504 // MinMax reduction have the start value as their identify. 3505 if (VF == 1) { 3506 VectorStart = Identity = ReductionStartValue; 3507 } else { 3508 VectorStart = Identity = 3509 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3510 } 3511 } else { 3512 // Handle other reduction kinds: 3513 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3514 RK, VecTy->getScalarType()); 3515 if (VF == 1) { 3516 Identity = Iden; 3517 // This vector is the Identity vector where the first element is the 3518 // incoming scalar reduction. 3519 VectorStart = ReductionStartValue; 3520 } else { 3521 Identity = ConstantVector::getSplat(VF, Iden); 3522 3523 // This vector is the Identity vector where the first element is the 3524 // incoming scalar reduction. 3525 VectorStart = 3526 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3527 } 3528 } 3529 3530 // Fix the vector-loop phi. 3531 3532 // Reductions do not have to start at zero. They can start with 3533 // any loop invariant values. 3534 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3535 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3536 for (unsigned Part = 0; Part < UF; ++Part) { 3537 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3538 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3539 // Make sure to add the reduction stat value only to the 3540 // first unroll part. 3541 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3542 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3543 cast<PHINode>(VecRdxPhi) 3544 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3545 } 3546 3547 // Before each round, move the insertion point right between 3548 // the PHIs and the values we are going to write. 3549 // This allows us to write both PHINodes and the extractelement 3550 // instructions. 3551 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3552 3553 setDebugLocFromInst(Builder, LoopExitInst); 3554 3555 // If the vector reduction can be performed in a smaller type, we truncate 3556 // then extend the loop exit value to enable InstCombine to evaluate the 3557 // entire expression in the smaller type. 3558 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3559 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3560 Builder.SetInsertPoint( 3561 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3562 VectorParts RdxParts(UF); 3563 for (unsigned Part = 0; Part < UF; ++Part) { 3564 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3565 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3566 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3567 : Builder.CreateZExt(Trunc, VecTy); 3568 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3569 UI != RdxParts[Part]->user_end();) 3570 if (*UI != Trunc) { 3571 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3572 RdxParts[Part] = Extnd; 3573 } else { 3574 ++UI; 3575 } 3576 } 3577 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3578 for (unsigned Part = 0; Part < UF; ++Part) { 3579 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3580 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3581 } 3582 } 3583 3584 // Reduce all of the unrolled parts into a single vector. 3585 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3586 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3587 setDebugLocFromInst(Builder, ReducedPartRdx); 3588 for (unsigned Part = 1; Part < UF; ++Part) { 3589 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3590 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3591 // Floating point operations had to be 'fast' to enable the reduction. 3592 ReducedPartRdx = addFastMathFlag( 3593 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3594 ReducedPartRdx, "bin.rdx")); 3595 else 3596 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3597 RdxPart); 3598 } 3599 3600 if (VF > 1) { 3601 bool NoNaN = Legal->hasFunNoNaNAttr(); 3602 ReducedPartRdx = 3603 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3604 // If the reduction can be performed in a smaller type, we need to extend 3605 // the reduction to the wider type before we branch to the original loop. 3606 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3607 ReducedPartRdx = 3608 RdxDesc.isSigned() 3609 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3610 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3611 } 3612 3613 // Create a phi node that merges control-flow from the backedge-taken check 3614 // block and the middle block. 3615 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3616 LoopScalarPreHeader->getTerminator()); 3617 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3618 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3619 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3620 3621 // Now, we need to fix the users of the reduction variable 3622 // inside and outside of the scalar remainder loop. 3623 // We know that the loop is in LCSSA form. We need to update the 3624 // PHI nodes in the exit blocks. 3625 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3626 // All PHINodes need to have a single entry edge, or two if 3627 // we already fixed them. 3628 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3629 3630 // We found a reduction value exit-PHI. Update it with the 3631 // incoming bypass edge. 3632 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3633 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3634 } // end of the LCSSA phi scan. 3635 3636 // Fix the scalar loop reduction variable with the incoming reduction sum 3637 // from the vector body and from the backedge value. 3638 int IncomingEdgeBlockIdx = 3639 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3640 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3641 // Pick the other block. 3642 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3643 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3644 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3645 } 3646 3647 void InnerLoopVectorizer::fixLCSSAPHIs() { 3648 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3649 if (LCSSAPhi.getNumIncomingValues() == 1) { 3650 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3651 // Non-instruction incoming values will have only one value. 3652 unsigned LastLane = 0; 3653 if (isa<Instruction>(IncomingValue)) 3654 LastLane = Cost->isUniformAfterVectorization( 3655 cast<Instruction>(IncomingValue), VF) 3656 ? 0 3657 : VF - 1; 3658 // Can be a loop invariant incoming value or the last scalar value to be 3659 // extracted from the vectorized loop. 3660 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3661 Value *lastIncomingValue = 3662 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3663 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3664 } 3665 } 3666 } 3667 3668 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3669 // The basic block and loop containing the predicated instruction. 3670 auto *PredBB = PredInst->getParent(); 3671 auto *VectorLoop = LI->getLoopFor(PredBB); 3672 3673 // Initialize a worklist with the operands of the predicated instruction. 3674 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3675 3676 // Holds instructions that we need to analyze again. An instruction may be 3677 // reanalyzed if we don't yet know if we can sink it or not. 3678 SmallVector<Instruction *, 8> InstsToReanalyze; 3679 3680 // Returns true if a given use occurs in the predicated block. Phi nodes use 3681 // their operands in their corresponding predecessor blocks. 3682 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3683 auto *I = cast<Instruction>(U.getUser()); 3684 BasicBlock *BB = I->getParent(); 3685 if (auto *Phi = dyn_cast<PHINode>(I)) 3686 BB = Phi->getIncomingBlock( 3687 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3688 return BB == PredBB; 3689 }; 3690 3691 // Iteratively sink the scalarized operands of the predicated instruction 3692 // into the block we created for it. When an instruction is sunk, it's 3693 // operands are then added to the worklist. The algorithm ends after one pass 3694 // through the worklist doesn't sink a single instruction. 3695 bool Changed; 3696 do { 3697 // Add the instructions that need to be reanalyzed to the worklist, and 3698 // reset the changed indicator. 3699 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3700 InstsToReanalyze.clear(); 3701 Changed = false; 3702 3703 while (!Worklist.empty()) { 3704 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3705 3706 // We can't sink an instruction if it is a phi node, is already in the 3707 // predicated block, is not in the loop, or may have side effects. 3708 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3709 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3710 continue; 3711 3712 // It's legal to sink the instruction if all its uses occur in the 3713 // predicated block. Otherwise, there's nothing to do yet, and we may 3714 // need to reanalyze the instruction. 3715 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3716 InstsToReanalyze.push_back(I); 3717 continue; 3718 } 3719 3720 // Move the instruction to the beginning of the predicated block, and add 3721 // it's operands to the worklist. 3722 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3723 Worklist.insert(I->op_begin(), I->op_end()); 3724 3725 // The sinking may have enabled other instructions to be sunk, so we will 3726 // need to iterate. 3727 Changed = true; 3728 } 3729 } while (Changed); 3730 } 3731 3732 void InnerLoopVectorizer::fixNonInductionPHIs() { 3733 for (PHINode *OrigPhi : OrigPHIsToFix) { 3734 PHINode *NewPhi = 3735 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3736 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3737 3738 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3739 predecessors(OrigPhi->getParent())); 3740 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3741 predecessors(NewPhi->getParent())); 3742 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3743 "Scalar and Vector BB should have the same number of predecessors"); 3744 3745 // The insertion point in Builder may be invalidated by the time we get 3746 // here. Force the Builder insertion point to something valid so that we do 3747 // not run into issues during insertion point restore in 3748 // getOrCreateVectorValue calls below. 3749 Builder.SetInsertPoint(NewPhi); 3750 3751 // The predecessor order is preserved and we can rely on mapping between 3752 // scalar and vector block predecessors. 3753 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3754 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3755 3756 // When looking up the new scalar/vector values to fix up, use incoming 3757 // values from original phi. 3758 Value *ScIncV = 3759 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3760 3761 // Scalar incoming value may need a broadcast 3762 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3763 NewPhi->addIncoming(NewIncV, NewPredBB); 3764 } 3765 } 3766 } 3767 3768 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3769 unsigned VF) { 3770 PHINode *P = cast<PHINode>(PN); 3771 if (EnableVPlanNativePath) { 3772 // Currently we enter here in the VPlan-native path for non-induction 3773 // PHIs where all control flow is uniform. We simply widen these PHIs. 3774 // Create a vector phi with no operands - the vector phi operands will be 3775 // set at the end of vector code generation. 3776 Type *VecTy = 3777 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3778 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3779 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3780 OrigPHIsToFix.push_back(P); 3781 3782 return; 3783 } 3784 3785 assert(PN->getParent() == OrigLoop->getHeader() && 3786 "Non-header phis should have been handled elsewhere"); 3787 3788 // In order to support recurrences we need to be able to vectorize Phi nodes. 3789 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3790 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3791 // this value when we vectorize all of the instructions that use the PHI. 3792 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3793 for (unsigned Part = 0; Part < UF; ++Part) { 3794 // This is phase one of vectorizing PHIs. 3795 Type *VecTy = 3796 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3797 Value *EntryPart = PHINode::Create( 3798 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3799 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3800 } 3801 return; 3802 } 3803 3804 setDebugLocFromInst(Builder, P); 3805 3806 // This PHINode must be an induction variable. 3807 // Make sure that we know about it. 3808 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3809 3810 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3811 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3812 3813 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3814 // which can be found from the original scalar operations. 3815 switch (II.getKind()) { 3816 case InductionDescriptor::IK_NoInduction: 3817 llvm_unreachable("Unknown induction"); 3818 case InductionDescriptor::IK_IntInduction: 3819 case InductionDescriptor::IK_FpInduction: 3820 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3821 case InductionDescriptor::IK_PtrInduction: { 3822 // Handle the pointer induction variable case. 3823 assert(P->getType()->isPointerTy() && "Unexpected type."); 3824 // This is the normalized GEP that starts counting at zero. 3825 Value *PtrInd = Induction; 3826 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3827 // Determine the number of scalars we need to generate for each unroll 3828 // iteration. If the instruction is uniform, we only need to generate the 3829 // first lane. Otherwise, we generate all VF values. 3830 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3831 // These are the scalar results. Notice that we don't generate vector GEPs 3832 // because scalar GEPs result in better code. 3833 for (unsigned Part = 0; Part < UF; ++Part) { 3834 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3835 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3836 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3837 Value *SclrGep = 3838 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3839 SclrGep->setName("next.gep"); 3840 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3841 } 3842 } 3843 return; 3844 } 3845 } 3846 } 3847 3848 /// A helper function for checking whether an integer division-related 3849 /// instruction may divide by zero (in which case it must be predicated if 3850 /// executed conditionally in the scalar code). 3851 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3852 /// Non-zero divisors that are non compile-time constants will not be 3853 /// converted into multiplication, so we will still end up scalarizing 3854 /// the division, but can do so w/o predication. 3855 static bool mayDivideByZero(Instruction &I) { 3856 assert((I.getOpcode() == Instruction::UDiv || 3857 I.getOpcode() == Instruction::SDiv || 3858 I.getOpcode() == Instruction::URem || 3859 I.getOpcode() == Instruction::SRem) && 3860 "Unexpected instruction"); 3861 Value *Divisor = I.getOperand(1); 3862 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3863 return !CInt || CInt->isZero(); 3864 } 3865 3866 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3867 switch (I.getOpcode()) { 3868 case Instruction::Br: 3869 case Instruction::PHI: 3870 llvm_unreachable("This instruction is handled by a different recipe."); 3871 case Instruction::GetElementPtr: { 3872 // Construct a vector GEP by widening the operands of the scalar GEP as 3873 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3874 // results in a vector of pointers when at least one operand of the GEP 3875 // is vector-typed. Thus, to keep the representation compact, we only use 3876 // vector-typed operands for loop-varying values. 3877 auto *GEP = cast<GetElementPtrInst>(&I); 3878 3879 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3880 // If we are vectorizing, but the GEP has only loop-invariant operands, 3881 // the GEP we build (by only using vector-typed operands for 3882 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3883 // produce a vector of pointers, we need to either arbitrarily pick an 3884 // operand to broadcast, or broadcast a clone of the original GEP. 3885 // Here, we broadcast a clone of the original. 3886 // 3887 // TODO: If at some point we decide to scalarize instructions having 3888 // loop-invariant operands, this special case will no longer be 3889 // required. We would add the scalarization decision to 3890 // collectLoopScalars() and teach getVectorValue() to broadcast 3891 // the lane-zero scalar value. 3892 auto *Clone = Builder.Insert(GEP->clone()); 3893 for (unsigned Part = 0; Part < UF; ++Part) { 3894 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3895 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3896 addMetadata(EntryPart, GEP); 3897 } 3898 } else { 3899 // If the GEP has at least one loop-varying operand, we are sure to 3900 // produce a vector of pointers. But if we are only unrolling, we want 3901 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3902 // produce with the code below will be scalar (if VF == 1) or vector 3903 // (otherwise). Note that for the unroll-only case, we still maintain 3904 // values in the vector mapping with initVector, as we do for other 3905 // instructions. 3906 for (unsigned Part = 0; Part < UF; ++Part) { 3907 // The pointer operand of the new GEP. If it's loop-invariant, we 3908 // won't broadcast it. 3909 auto *Ptr = 3910 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3911 ? GEP->getPointerOperand() 3912 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3913 3914 // Collect all the indices for the new GEP. If any index is 3915 // loop-invariant, we won't broadcast it. 3916 SmallVector<Value *, 4> Indices; 3917 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3918 if (OrigLoop->isLoopInvariant(U.get())) 3919 Indices.push_back(U.get()); 3920 else 3921 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3922 } 3923 3924 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3925 // but it should be a vector, otherwise. 3926 auto *NewGEP = GEP->isInBounds() 3927 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3928 : Builder.CreateGEP(Ptr, Indices); 3929 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3930 "NewGEP is not a pointer vector"); 3931 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3932 addMetadata(NewGEP, GEP); 3933 } 3934 } 3935 3936 break; 3937 } 3938 case Instruction::UDiv: 3939 case Instruction::SDiv: 3940 case Instruction::SRem: 3941 case Instruction::URem: 3942 case Instruction::Add: 3943 case Instruction::FAdd: 3944 case Instruction::Sub: 3945 case Instruction::FSub: 3946 case Instruction::Mul: 3947 case Instruction::FMul: 3948 case Instruction::FDiv: 3949 case Instruction::FRem: 3950 case Instruction::Shl: 3951 case Instruction::LShr: 3952 case Instruction::AShr: 3953 case Instruction::And: 3954 case Instruction::Or: 3955 case Instruction::Xor: { 3956 // Just widen binops. 3957 auto *BinOp = cast<BinaryOperator>(&I); 3958 setDebugLocFromInst(Builder, BinOp); 3959 3960 for (unsigned Part = 0; Part < UF; ++Part) { 3961 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3962 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3963 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3964 3965 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3966 VecOp->copyIRFlags(BinOp); 3967 3968 // Use this vector value for all users of the original instruction. 3969 VectorLoopValueMap.setVectorValue(&I, Part, V); 3970 addMetadata(V, BinOp); 3971 } 3972 3973 break; 3974 } 3975 case Instruction::Select: { 3976 // Widen selects. 3977 // If the selector is loop invariant we can create a select 3978 // instruction with a scalar condition. Otherwise, use vector-select. 3979 auto *SE = PSE.getSE(); 3980 bool InvariantCond = 3981 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 3982 setDebugLocFromInst(Builder, &I); 3983 3984 // The condition can be loop invariant but still defined inside the 3985 // loop. This means that we can't just use the original 'cond' value. 3986 // We have to take the 'vectorized' value and pick the first lane. 3987 // Instcombine will make this a no-op. 3988 3989 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 3990 3991 for (unsigned Part = 0; Part < UF; ++Part) { 3992 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 3993 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 3994 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 3995 Value *Sel = 3996 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 3997 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 3998 addMetadata(Sel, &I); 3999 } 4000 4001 break; 4002 } 4003 4004 case Instruction::ICmp: 4005 case Instruction::FCmp: { 4006 // Widen compares. Generate vector compares. 4007 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4008 auto *Cmp = dyn_cast<CmpInst>(&I); 4009 setDebugLocFromInst(Builder, Cmp); 4010 for (unsigned Part = 0; Part < UF; ++Part) { 4011 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4012 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4013 Value *C = nullptr; 4014 if (FCmp) { 4015 // Propagate fast math flags. 4016 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4017 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4018 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4019 } else { 4020 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4021 } 4022 VectorLoopValueMap.setVectorValue(&I, Part, C); 4023 addMetadata(C, &I); 4024 } 4025 4026 break; 4027 } 4028 4029 case Instruction::ZExt: 4030 case Instruction::SExt: 4031 case Instruction::FPToUI: 4032 case Instruction::FPToSI: 4033 case Instruction::FPExt: 4034 case Instruction::PtrToInt: 4035 case Instruction::IntToPtr: 4036 case Instruction::SIToFP: 4037 case Instruction::UIToFP: 4038 case Instruction::Trunc: 4039 case Instruction::FPTrunc: 4040 case Instruction::BitCast: { 4041 auto *CI = dyn_cast<CastInst>(&I); 4042 setDebugLocFromInst(Builder, CI); 4043 4044 /// Vectorize casts. 4045 Type *DestTy = 4046 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4047 4048 for (unsigned Part = 0; Part < UF; ++Part) { 4049 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4050 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4051 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4052 addMetadata(Cast, &I); 4053 } 4054 break; 4055 } 4056 4057 case Instruction::Call: { 4058 // Ignore dbg intrinsics. 4059 if (isa<DbgInfoIntrinsic>(I)) 4060 break; 4061 setDebugLocFromInst(Builder, &I); 4062 4063 Module *M = I.getParent()->getParent()->getParent(); 4064 auto *CI = cast<CallInst>(&I); 4065 4066 StringRef FnName = CI->getCalledFunction()->getName(); 4067 Function *F = CI->getCalledFunction(); 4068 Type *RetTy = ToVectorTy(CI->getType(), VF); 4069 SmallVector<Type *, 4> Tys; 4070 for (Value *ArgOperand : CI->arg_operands()) 4071 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4072 4073 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4074 4075 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4076 // version of the instruction. 4077 // Is it beneficial to perform intrinsic call compared to lib call? 4078 bool NeedToScalarize; 4079 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4080 bool UseVectorIntrinsic = 4081 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4082 assert((UseVectorIntrinsic || !NeedToScalarize) && 4083 "Instruction should be scalarized elsewhere."); 4084 4085 for (unsigned Part = 0; Part < UF; ++Part) { 4086 SmallVector<Value *, 4> Args; 4087 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4088 Value *Arg = CI->getArgOperand(i); 4089 // Some intrinsics have a scalar argument - don't replace it with a 4090 // vector. 4091 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4092 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4093 Args.push_back(Arg); 4094 } 4095 4096 Function *VectorF; 4097 if (UseVectorIntrinsic) { 4098 // Use vector version of the intrinsic. 4099 Type *TysForDecl[] = {CI->getType()}; 4100 if (VF > 1) 4101 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4102 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4103 } else { 4104 // Use vector version of the library call. 4105 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4106 assert(!VFnName.empty() && "Vector function name is empty."); 4107 VectorF = M->getFunction(VFnName); 4108 if (!VectorF) { 4109 // Generate a declaration 4110 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4111 VectorF = 4112 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4113 VectorF->copyAttributesFrom(F); 4114 } 4115 } 4116 assert(VectorF && "Can't create vector function."); 4117 4118 SmallVector<OperandBundleDef, 1> OpBundles; 4119 CI->getOperandBundlesAsDefs(OpBundles); 4120 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4121 4122 if (isa<FPMathOperator>(V)) 4123 V->copyFastMathFlags(CI); 4124 4125 VectorLoopValueMap.setVectorValue(&I, Part, V); 4126 addMetadata(V, &I); 4127 } 4128 4129 break; 4130 } 4131 4132 default: 4133 // This instruction is not vectorized by simple widening. 4134 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4135 llvm_unreachable("Unhandled instruction!"); 4136 } // end of switch. 4137 } 4138 4139 void InnerLoopVectorizer::updateAnalysis() { 4140 // Forget the original basic block. 4141 PSE.getSE()->forgetLoop(OrigLoop); 4142 4143 // DT is not kept up-to-date for outer loop vectorization 4144 if (EnableVPlanNativePath) 4145 return; 4146 4147 // Update the dominator tree information. 4148 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4149 "Entry does not dominate exit."); 4150 4151 DT->addNewBlock(LoopMiddleBlock, 4152 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4153 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4154 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4155 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4156 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4157 } 4158 4159 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4160 // We should not collect Scalars more than once per VF. Right now, this 4161 // function is called from collectUniformsAndScalars(), which already does 4162 // this check. Collecting Scalars for VF=1 does not make any sense. 4163 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4164 "This function should not be visited twice for the same VF"); 4165 4166 SmallSetVector<Instruction *, 8> Worklist; 4167 4168 // These sets are used to seed the analysis with pointers used by memory 4169 // accesses that will remain scalar. 4170 SmallSetVector<Instruction *, 8> ScalarPtrs; 4171 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4172 4173 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4174 // The pointer operands of loads and stores will be scalar as long as the 4175 // memory access is not a gather or scatter operation. The value operand of a 4176 // store will remain scalar if the store is scalarized. 4177 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4178 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4179 assert(WideningDecision != CM_Unknown && 4180 "Widening decision should be ready at this moment"); 4181 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4182 if (Ptr == Store->getValueOperand()) 4183 return WideningDecision == CM_Scalarize; 4184 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4185 "Ptr is neither a value or pointer operand"); 4186 return WideningDecision != CM_GatherScatter; 4187 }; 4188 4189 // A helper that returns true if the given value is a bitcast or 4190 // getelementptr instruction contained in the loop. 4191 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4192 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4193 isa<GetElementPtrInst>(V)) && 4194 !TheLoop->isLoopInvariant(V); 4195 }; 4196 4197 // A helper that evaluates a memory access's use of a pointer. If the use 4198 // will be a scalar use, and the pointer is only used by memory accesses, we 4199 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4200 // PossibleNonScalarPtrs. 4201 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4202 // We only care about bitcast and getelementptr instructions contained in 4203 // the loop. 4204 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4205 return; 4206 4207 // If the pointer has already been identified as scalar (e.g., if it was 4208 // also identified as uniform), there's nothing to do. 4209 auto *I = cast<Instruction>(Ptr); 4210 if (Worklist.count(I)) 4211 return; 4212 4213 // If the use of the pointer will be a scalar use, and all users of the 4214 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4215 // place the pointer in PossibleNonScalarPtrs. 4216 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4217 return isa<LoadInst>(U) || isa<StoreInst>(U); 4218 })) 4219 ScalarPtrs.insert(I); 4220 else 4221 PossibleNonScalarPtrs.insert(I); 4222 }; 4223 4224 // We seed the scalars analysis with three classes of instructions: (1) 4225 // instructions marked uniform-after-vectorization, (2) bitcast and 4226 // getelementptr instructions used by memory accesses requiring a scalar use, 4227 // and (3) pointer induction variables and their update instructions (we 4228 // currently only scalarize these). 4229 // 4230 // (1) Add to the worklist all instructions that have been identified as 4231 // uniform-after-vectorization. 4232 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4233 4234 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4235 // memory accesses requiring a scalar use. The pointer operands of loads and 4236 // stores will be scalar as long as the memory accesses is not a gather or 4237 // scatter operation. The value operand of a store will remain scalar if the 4238 // store is scalarized. 4239 for (auto *BB : TheLoop->blocks()) 4240 for (auto &I : *BB) { 4241 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4242 evaluatePtrUse(Load, Load->getPointerOperand()); 4243 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4244 evaluatePtrUse(Store, Store->getPointerOperand()); 4245 evaluatePtrUse(Store, Store->getValueOperand()); 4246 } 4247 } 4248 for (auto *I : ScalarPtrs) 4249 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4250 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4251 Worklist.insert(I); 4252 } 4253 4254 // (3) Add to the worklist all pointer induction variables and their update 4255 // instructions. 4256 // 4257 // TODO: Once we are able to vectorize pointer induction variables we should 4258 // no longer insert them into the worklist here. 4259 auto *Latch = TheLoop->getLoopLatch(); 4260 for (auto &Induction : *Legal->getInductionVars()) { 4261 auto *Ind = Induction.first; 4262 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4263 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4264 continue; 4265 Worklist.insert(Ind); 4266 Worklist.insert(IndUpdate); 4267 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4268 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4269 << "\n"); 4270 } 4271 4272 // Insert the forced scalars. 4273 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4274 // induction variable when the PHI user is scalarized. 4275 auto ForcedScalar = ForcedScalars.find(VF); 4276 if (ForcedScalar != ForcedScalars.end()) 4277 for (auto *I : ForcedScalar->second) 4278 Worklist.insert(I); 4279 4280 // Expand the worklist by looking through any bitcasts and getelementptr 4281 // instructions we've already identified as scalar. This is similar to the 4282 // expansion step in collectLoopUniforms(); however, here we're only 4283 // expanding to include additional bitcasts and getelementptr instructions. 4284 unsigned Idx = 0; 4285 while (Idx != Worklist.size()) { 4286 Instruction *Dst = Worklist[Idx++]; 4287 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4288 continue; 4289 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4290 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4291 auto *J = cast<Instruction>(U); 4292 return !TheLoop->contains(J) || Worklist.count(J) || 4293 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4294 isScalarUse(J, Src)); 4295 })) { 4296 Worklist.insert(Src); 4297 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4298 } 4299 } 4300 4301 // An induction variable will remain scalar if all users of the induction 4302 // variable and induction variable update remain scalar. 4303 for (auto &Induction : *Legal->getInductionVars()) { 4304 auto *Ind = Induction.first; 4305 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4306 4307 // We already considered pointer induction variables, so there's no reason 4308 // to look at their users again. 4309 // 4310 // TODO: Once we are able to vectorize pointer induction variables we 4311 // should no longer skip over them here. 4312 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4313 continue; 4314 4315 // Determine if all users of the induction variable are scalar after 4316 // vectorization. 4317 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4318 auto *I = cast<Instruction>(U); 4319 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4320 }); 4321 if (!ScalarInd) 4322 continue; 4323 4324 // Determine if all users of the induction variable update instruction are 4325 // scalar after vectorization. 4326 auto ScalarIndUpdate = 4327 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4328 auto *I = cast<Instruction>(U); 4329 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4330 }); 4331 if (!ScalarIndUpdate) 4332 continue; 4333 4334 // The induction variable and its update instruction will remain scalar. 4335 Worklist.insert(Ind); 4336 Worklist.insert(IndUpdate); 4337 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4338 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4339 << "\n"); 4340 } 4341 4342 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4343 } 4344 4345 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4346 if (!blockNeedsPredication(I->getParent())) 4347 return false; 4348 switch(I->getOpcode()) { 4349 default: 4350 break; 4351 case Instruction::Load: 4352 case Instruction::Store: { 4353 if (!Legal->isMaskRequired(I)) 4354 return false; 4355 auto *Ptr = getLoadStorePointerOperand(I); 4356 auto *Ty = getMemInstValueType(I); 4357 // We have already decided how to vectorize this instruction, get that 4358 // result. 4359 if (VF > 1) { 4360 InstWidening WideningDecision = getWideningDecision(I, VF); 4361 assert(WideningDecision != CM_Unknown && 4362 "Widening decision should be ready at this moment"); 4363 return WideningDecision == CM_Scalarize; 4364 } 4365 return isa<LoadInst>(I) ? 4366 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4367 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4368 } 4369 case Instruction::UDiv: 4370 case Instruction::SDiv: 4371 case Instruction::SRem: 4372 case Instruction::URem: 4373 return mayDivideByZero(*I); 4374 } 4375 return false; 4376 } 4377 4378 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4379 unsigned VF) { 4380 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4381 assert(getWideningDecision(I, VF) == CM_Unknown && 4382 "Decision should not be set yet."); 4383 auto *Group = getInterleavedAccessGroup(I); 4384 assert(Group && "Must have a group."); 4385 4386 // Check if masking is required. 4387 // A Group may need masking for one of two reasons: it resides in a block that 4388 // needs predication, or it was decided to use masking to deal with gaps. 4389 bool PredicatedAccessRequiresMasking = 4390 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4391 bool AccessWithGapsRequiresMasking = 4392 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4393 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4394 return true; 4395 4396 // If masked interleaving is required, we expect that the user/target had 4397 // enabled it, because otherwise it either wouldn't have been created or 4398 // it should have been invalidated by the CostModel. 4399 assert(useMaskedInterleavedAccesses(TTI) && 4400 "Masked interleave-groups for predicated accesses are not enabled."); 4401 4402 auto *Ty = getMemInstValueType(I); 4403 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4404 : TTI.isLegalMaskedStore(Ty); 4405 } 4406 4407 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4408 unsigned VF) { 4409 // Get and ensure we have a valid memory instruction. 4410 LoadInst *LI = dyn_cast<LoadInst>(I); 4411 StoreInst *SI = dyn_cast<StoreInst>(I); 4412 assert((LI || SI) && "Invalid memory instruction"); 4413 4414 auto *Ptr = getLoadStorePointerOperand(I); 4415 4416 // In order to be widened, the pointer should be consecutive, first of all. 4417 if (!Legal->isConsecutivePtr(Ptr)) 4418 return false; 4419 4420 // If the instruction is a store located in a predicated block, it will be 4421 // scalarized. 4422 if (isScalarWithPredication(I)) 4423 return false; 4424 4425 // If the instruction's allocated size doesn't equal it's type size, it 4426 // requires padding and will be scalarized. 4427 auto &DL = I->getModule()->getDataLayout(); 4428 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4429 if (hasIrregularType(ScalarTy, DL, VF)) 4430 return false; 4431 4432 return true; 4433 } 4434 4435 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4436 // We should not collect Uniforms more than once per VF. Right now, 4437 // this function is called from collectUniformsAndScalars(), which 4438 // already does this check. Collecting Uniforms for VF=1 does not make any 4439 // sense. 4440 4441 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4442 "This function should not be visited twice for the same VF"); 4443 4444 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4445 // not analyze again. Uniforms.count(VF) will return 1. 4446 Uniforms[VF].clear(); 4447 4448 // We now know that the loop is vectorizable! 4449 // Collect instructions inside the loop that will remain uniform after 4450 // vectorization. 4451 4452 // Global values, params and instructions outside of current loop are out of 4453 // scope. 4454 auto isOutOfScope = [&](Value *V) -> bool { 4455 Instruction *I = dyn_cast<Instruction>(V); 4456 return (!I || !TheLoop->contains(I)); 4457 }; 4458 4459 SetVector<Instruction *> Worklist; 4460 BasicBlock *Latch = TheLoop->getLoopLatch(); 4461 4462 // Start with the conditional branch. If the branch condition is an 4463 // instruction contained in the loop that is only used by the branch, it is 4464 // uniform. 4465 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4466 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4467 Worklist.insert(Cmp); 4468 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4469 } 4470 4471 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4472 // are pointers that are treated like consecutive pointers during 4473 // vectorization. The pointer operands of interleaved accesses are an 4474 // example. 4475 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4476 4477 // Holds pointer operands of instructions that are possibly non-uniform. 4478 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4479 4480 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4481 InstWidening WideningDecision = getWideningDecision(I, VF); 4482 assert(WideningDecision != CM_Unknown && 4483 "Widening decision should be ready at this moment"); 4484 4485 return (WideningDecision == CM_Widen || 4486 WideningDecision == CM_Widen_Reverse || 4487 WideningDecision == CM_Interleave); 4488 }; 4489 // Iterate over the instructions in the loop, and collect all 4490 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4491 // that a consecutive-like pointer operand will be scalarized, we collect it 4492 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4493 // getelementptr instruction can be used by both vectorized and scalarized 4494 // memory instructions. For example, if a loop loads and stores from the same 4495 // location, but the store is conditional, the store will be scalarized, and 4496 // the getelementptr won't remain uniform. 4497 for (auto *BB : TheLoop->blocks()) 4498 for (auto &I : *BB) { 4499 // If there's no pointer operand, there's nothing to do. 4500 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4501 if (!Ptr) 4502 continue; 4503 4504 // True if all users of Ptr are memory accesses that have Ptr as their 4505 // pointer operand. 4506 auto UsersAreMemAccesses = 4507 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4508 return getLoadStorePointerOperand(U) == Ptr; 4509 }); 4510 4511 // Ensure the memory instruction will not be scalarized or used by 4512 // gather/scatter, making its pointer operand non-uniform. If the pointer 4513 // operand is used by any instruction other than a memory access, we 4514 // conservatively assume the pointer operand may be non-uniform. 4515 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4516 PossibleNonUniformPtrs.insert(Ptr); 4517 4518 // If the memory instruction will be vectorized and its pointer operand 4519 // is consecutive-like, or interleaving - the pointer operand should 4520 // remain uniform. 4521 else 4522 ConsecutiveLikePtrs.insert(Ptr); 4523 } 4524 4525 // Add to the Worklist all consecutive and consecutive-like pointers that 4526 // aren't also identified as possibly non-uniform. 4527 for (auto *V : ConsecutiveLikePtrs) 4528 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4529 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4530 Worklist.insert(V); 4531 } 4532 4533 // Expand Worklist in topological order: whenever a new instruction 4534 // is added , its users should be already inside Worklist. It ensures 4535 // a uniform instruction will only be used by uniform instructions. 4536 unsigned idx = 0; 4537 while (idx != Worklist.size()) { 4538 Instruction *I = Worklist[idx++]; 4539 4540 for (auto OV : I->operand_values()) { 4541 // isOutOfScope operands cannot be uniform instructions. 4542 if (isOutOfScope(OV)) 4543 continue; 4544 // First order recurrence Phi's should typically be considered 4545 // non-uniform. 4546 auto *OP = dyn_cast<PHINode>(OV); 4547 if (OP && Legal->isFirstOrderRecurrence(OP)) 4548 continue; 4549 // If all the users of the operand are uniform, then add the 4550 // operand into the uniform worklist. 4551 auto *OI = cast<Instruction>(OV); 4552 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4553 auto *J = cast<Instruction>(U); 4554 return Worklist.count(J) || 4555 (OI == getLoadStorePointerOperand(J) && 4556 isUniformDecision(J, VF)); 4557 })) { 4558 Worklist.insert(OI); 4559 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4560 } 4561 } 4562 } 4563 4564 // Returns true if Ptr is the pointer operand of a memory access instruction 4565 // I, and I is known to not require scalarization. 4566 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4567 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4568 }; 4569 4570 // For an instruction to be added into Worklist above, all its users inside 4571 // the loop should also be in Worklist. However, this condition cannot be 4572 // true for phi nodes that form a cyclic dependence. We must process phi 4573 // nodes separately. An induction variable will remain uniform if all users 4574 // of the induction variable and induction variable update remain uniform. 4575 // The code below handles both pointer and non-pointer induction variables. 4576 for (auto &Induction : *Legal->getInductionVars()) { 4577 auto *Ind = Induction.first; 4578 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4579 4580 // Determine if all users of the induction variable are uniform after 4581 // vectorization. 4582 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4583 auto *I = cast<Instruction>(U); 4584 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4585 isVectorizedMemAccessUse(I, Ind); 4586 }); 4587 if (!UniformInd) 4588 continue; 4589 4590 // Determine if all users of the induction variable update instruction are 4591 // uniform after vectorization. 4592 auto UniformIndUpdate = 4593 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4594 auto *I = cast<Instruction>(U); 4595 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4596 isVectorizedMemAccessUse(I, IndUpdate); 4597 }); 4598 if (!UniformIndUpdate) 4599 continue; 4600 4601 // The induction variable and its update instruction will remain uniform. 4602 Worklist.insert(Ind); 4603 Worklist.insert(IndUpdate); 4604 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4605 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4606 << "\n"); 4607 } 4608 4609 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4610 } 4611 4612 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4613 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4614 // TODO: It may by useful to do since it's still likely to be dynamically 4615 // uniform if the target can skip. 4616 LLVM_DEBUG( 4617 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4618 4619 ORE->emit( 4620 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4621 << "runtime pointer checks needed. Not enabled for divergent target"); 4622 4623 return None; 4624 } 4625 4626 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4627 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4628 return computeFeasibleMaxVF(OptForSize, TC); 4629 4630 if (Legal->getRuntimePointerChecking()->Need) { 4631 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4632 << "runtime pointer checks needed. Enable vectorization of this " 4633 "loop with '#pragma clang loop vectorize(enable)' when " 4634 "compiling with -Os/-Oz"); 4635 LLVM_DEBUG( 4636 dbgs() 4637 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4638 return None; 4639 } 4640 4641 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4642 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4643 << "runtime SCEV checks needed. Enable vectorization of this " 4644 "loop with '#pragma clang loop vectorize(enable)' when " 4645 "compiling with -Os/-Oz"); 4646 LLVM_DEBUG( 4647 dbgs() 4648 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4649 return None; 4650 } 4651 4652 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4653 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4654 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4655 << "runtime stride == 1 checks needed. Enable vectorization of " 4656 "this loop with '#pragma clang loop vectorize(enable)' when " 4657 "compiling with -Os/-Oz"); 4658 LLVM_DEBUG( 4659 dbgs() 4660 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4661 return None; 4662 } 4663 4664 // If we optimize the program for size, avoid creating the tail loop. 4665 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4666 4667 if (TC == 1) { 4668 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4669 << "loop trip count is one, irrelevant for vectorization"); 4670 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4671 return None; 4672 } 4673 4674 // Record that scalar epilogue is not allowed. 4675 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4676 4677 IsScalarEpilogueAllowed = !OptForSize; 4678 4679 // We don't create an epilogue when optimizing for size. 4680 // Invalidate interleave groups that require an epilogue if we can't mask 4681 // the interleave-group. 4682 if (!useMaskedInterleavedAccesses(TTI)) 4683 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4684 4685 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4686 4687 if (TC > 0 && TC % MaxVF == 0) { 4688 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4689 return MaxVF; 4690 } 4691 4692 // If we don't know the precise trip count, or if the trip count that we 4693 // found modulo the vectorization factor is not zero, try to fold the tail 4694 // by masking. 4695 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4696 if (Legal->canFoldTailByMasking()) { 4697 FoldTailByMasking = true; 4698 return MaxVF; 4699 } 4700 4701 if (TC == 0) { 4702 ORE->emit( 4703 createMissedAnalysis("UnknownLoopCountComplexCFG") 4704 << "unable to calculate the loop count due to complex control flow"); 4705 return None; 4706 } 4707 4708 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4709 << "cannot optimize for size and vectorize at the same time. " 4710 "Enable vectorization of this loop with '#pragma clang loop " 4711 "vectorize(enable)' when compiling with -Os/-Oz"); 4712 return None; 4713 } 4714 4715 unsigned 4716 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4717 unsigned ConstTripCount) { 4718 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4719 unsigned SmallestType, WidestType; 4720 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4721 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4722 4723 // Get the maximum safe dependence distance in bits computed by LAA. 4724 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4725 // the memory accesses that is most restrictive (involved in the smallest 4726 // dependence distance). 4727 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4728 4729 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4730 4731 unsigned MaxVectorSize = WidestRegister / WidestType; 4732 4733 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4734 << " / " << WidestType << " bits.\n"); 4735 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4736 << WidestRegister << " bits.\n"); 4737 4738 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4739 " into one vector!"); 4740 if (MaxVectorSize == 0) { 4741 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4742 MaxVectorSize = 1; 4743 return MaxVectorSize; 4744 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4745 isPowerOf2_32(ConstTripCount)) { 4746 // We need to clamp the VF to be the ConstTripCount. There is no point in 4747 // choosing a higher viable VF as done in the loop below. 4748 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4749 << ConstTripCount << "\n"); 4750 MaxVectorSize = ConstTripCount; 4751 return MaxVectorSize; 4752 } 4753 4754 unsigned MaxVF = MaxVectorSize; 4755 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4756 (MaximizeBandwidth && !OptForSize)) { 4757 // Collect all viable vectorization factors larger than the default MaxVF 4758 // (i.e. MaxVectorSize). 4759 SmallVector<unsigned, 8> VFs; 4760 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4761 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4762 VFs.push_back(VS); 4763 4764 // For each VF calculate its register usage. 4765 auto RUs = calculateRegisterUsage(VFs); 4766 4767 // Select the largest VF which doesn't require more registers than existing 4768 // ones. 4769 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4770 for (int i = RUs.size() - 1; i >= 0; --i) { 4771 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4772 MaxVF = VFs[i]; 4773 break; 4774 } 4775 } 4776 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4777 if (MaxVF < MinVF) { 4778 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4779 << ") with target's minimum: " << MinVF << '\n'); 4780 MaxVF = MinVF; 4781 } 4782 } 4783 } 4784 return MaxVF; 4785 } 4786 4787 VectorizationFactor 4788 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4789 float Cost = expectedCost(1).first; 4790 const float ScalarCost = Cost; 4791 unsigned Width = 1; 4792 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4793 4794 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4795 if (ForceVectorization && MaxVF > 1) { 4796 // Ignore scalar width, because the user explicitly wants vectorization. 4797 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4798 // evaluation. 4799 Cost = std::numeric_limits<float>::max(); 4800 } 4801 4802 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4803 // Notice that the vector loop needs to be executed less times, so 4804 // we need to divide the cost of the vector loops by the width of 4805 // the vector elements. 4806 VectorizationCostTy C = expectedCost(i); 4807 float VectorCost = C.first / (float)i; 4808 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4809 << " costs: " << (int)VectorCost << ".\n"); 4810 if (!C.second && !ForceVectorization) { 4811 LLVM_DEBUG( 4812 dbgs() << "LV: Not considering vector loop of width " << i 4813 << " because it will not generate any vector instructions.\n"); 4814 continue; 4815 } 4816 if (VectorCost < Cost) { 4817 Cost = VectorCost; 4818 Width = i; 4819 } 4820 } 4821 4822 if (!EnableCondStoresVectorization && NumPredStores) { 4823 ORE->emit(createMissedAnalysis("ConditionalStore") 4824 << "store that is conditionally executed prevents vectorization"); 4825 LLVM_DEBUG( 4826 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4827 Width = 1; 4828 Cost = ScalarCost; 4829 } 4830 4831 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4832 << "LV: Vectorization seems to be not beneficial, " 4833 << "but was forced by a user.\n"); 4834 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4835 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4836 return Factor; 4837 } 4838 4839 std::pair<unsigned, unsigned> 4840 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4841 unsigned MinWidth = -1U; 4842 unsigned MaxWidth = 8; 4843 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4844 4845 // For each block. 4846 for (BasicBlock *BB : TheLoop->blocks()) { 4847 // For each instruction in the loop. 4848 for (Instruction &I : BB->instructionsWithoutDebug()) { 4849 Type *T = I.getType(); 4850 4851 // Skip ignored values. 4852 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4853 continue; 4854 4855 // Only examine Loads, Stores and PHINodes. 4856 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4857 continue; 4858 4859 // Examine PHI nodes that are reduction variables. Update the type to 4860 // account for the recurrence type. 4861 if (auto *PN = dyn_cast<PHINode>(&I)) { 4862 if (!Legal->isReductionVariable(PN)) 4863 continue; 4864 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4865 T = RdxDesc.getRecurrenceType(); 4866 } 4867 4868 // Examine the stored values. 4869 if (auto *ST = dyn_cast<StoreInst>(&I)) 4870 T = ST->getValueOperand()->getType(); 4871 4872 // Ignore loaded pointer types and stored pointer types that are not 4873 // vectorizable. 4874 // 4875 // FIXME: The check here attempts to predict whether a load or store will 4876 // be vectorized. We only know this for certain after a VF has 4877 // been selected. Here, we assume that if an access can be 4878 // vectorized, it will be. We should also look at extending this 4879 // optimization to non-pointer types. 4880 // 4881 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4882 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4883 continue; 4884 4885 MinWidth = std::min(MinWidth, 4886 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4887 MaxWidth = std::max(MaxWidth, 4888 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4889 } 4890 } 4891 4892 return {MinWidth, MaxWidth}; 4893 } 4894 4895 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4896 unsigned VF, 4897 unsigned LoopCost) { 4898 // -- The interleave heuristics -- 4899 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4900 // There are many micro-architectural considerations that we can't predict 4901 // at this level. For example, frontend pressure (on decode or fetch) due to 4902 // code size, or the number and capabilities of the execution ports. 4903 // 4904 // We use the following heuristics to select the interleave count: 4905 // 1. If the code has reductions, then we interleave to break the cross 4906 // iteration dependency. 4907 // 2. If the loop is really small, then we interleave to reduce the loop 4908 // overhead. 4909 // 3. We don't interleave if we think that we will spill registers to memory 4910 // due to the increased register pressure. 4911 4912 // When we optimize for size, we don't interleave. 4913 if (OptForSize) 4914 return 1; 4915 4916 // We used the distance for the interleave count. 4917 if (Legal->getMaxSafeDepDistBytes() != -1U) 4918 return 1; 4919 4920 // Do not interleave loops with a relatively small trip count. 4921 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4922 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4923 return 1; 4924 4925 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4926 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4927 << " registers\n"); 4928 4929 if (VF == 1) { 4930 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4931 TargetNumRegisters = ForceTargetNumScalarRegs; 4932 } else { 4933 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4934 TargetNumRegisters = ForceTargetNumVectorRegs; 4935 } 4936 4937 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4938 // We divide by these constants so assume that we have at least one 4939 // instruction that uses at least one register. 4940 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4941 4942 // We calculate the interleave count using the following formula. 4943 // Subtract the number of loop invariants from the number of available 4944 // registers. These registers are used by all of the interleaved instances. 4945 // Next, divide the remaining registers by the number of registers that is 4946 // required by the loop, in order to estimate how many parallel instances 4947 // fit without causing spills. All of this is rounded down if necessary to be 4948 // a power of two. We want power of two interleave count to simplify any 4949 // addressing operations or alignment considerations. 4950 // We also want power of two interleave counts to ensure that the induction 4951 // variable of the vector loop wraps to zero, when tail is folded by masking; 4952 // this currently happens when OptForSize, in which case IC is set to 1 above. 4953 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4954 R.MaxLocalUsers); 4955 4956 // Don't count the induction variable as interleaved. 4957 if (EnableIndVarRegisterHeur) 4958 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4959 std::max(1U, (R.MaxLocalUsers - 1))); 4960 4961 // Clamp the interleave ranges to reasonable counts. 4962 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4963 4964 // Check if the user has overridden the max. 4965 if (VF == 1) { 4966 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4967 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4968 } else { 4969 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4970 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4971 } 4972 4973 // If we did not calculate the cost for VF (because the user selected the VF) 4974 // then we calculate the cost of VF here. 4975 if (LoopCost == 0) 4976 LoopCost = expectedCost(VF).first; 4977 4978 // Clamp the calculated IC to be between the 1 and the max interleave count 4979 // that the target allows. 4980 if (IC > MaxInterleaveCount) 4981 IC = MaxInterleaveCount; 4982 else if (IC < 1) 4983 IC = 1; 4984 4985 // Interleave if we vectorized this loop and there is a reduction that could 4986 // benefit from interleaving. 4987 if (VF > 1 && !Legal->getReductionVars()->empty()) { 4988 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 4989 return IC; 4990 } 4991 4992 // Note that if we've already vectorized the loop we will have done the 4993 // runtime check and so interleaving won't require further checks. 4994 bool InterleavingRequiresRuntimePointerCheck = 4995 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 4996 4997 // We want to interleave small loops in order to reduce the loop overhead and 4998 // potentially expose ILP opportunities. 4999 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5000 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5001 // We assume that the cost overhead is 1 and we use the cost model 5002 // to estimate the cost of the loop and interleave until the cost of the 5003 // loop overhead is about 5% of the cost of the loop. 5004 unsigned SmallIC = 5005 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5006 5007 // Interleave until store/load ports (estimated by max interleave count) are 5008 // saturated. 5009 unsigned NumStores = Legal->getNumStores(); 5010 unsigned NumLoads = Legal->getNumLoads(); 5011 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5012 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5013 5014 // If we have a scalar reduction (vector reductions are already dealt with 5015 // by this point), we can increase the critical path length if the loop 5016 // we're interleaving is inside another loop. Limit, by default to 2, so the 5017 // critical path only gets increased by one reduction operation. 5018 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5019 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5020 SmallIC = std::min(SmallIC, F); 5021 StoresIC = std::min(StoresIC, F); 5022 LoadsIC = std::min(LoadsIC, F); 5023 } 5024 5025 if (EnableLoadStoreRuntimeInterleave && 5026 std::max(StoresIC, LoadsIC) > SmallIC) { 5027 LLVM_DEBUG( 5028 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5029 return std::max(StoresIC, LoadsIC); 5030 } 5031 5032 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5033 return SmallIC; 5034 } 5035 5036 // Interleave if this is a large loop (small loops are already dealt with by 5037 // this point) that could benefit from interleaving. 5038 bool HasReductions = !Legal->getReductionVars()->empty(); 5039 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5040 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5041 return IC; 5042 } 5043 5044 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5045 return 1; 5046 } 5047 5048 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5049 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5050 // This function calculates the register usage by measuring the highest number 5051 // of values that are alive at a single location. Obviously, this is a very 5052 // rough estimation. We scan the loop in a topological order in order and 5053 // assign a number to each instruction. We use RPO to ensure that defs are 5054 // met before their users. We assume that each instruction that has in-loop 5055 // users starts an interval. We record every time that an in-loop value is 5056 // used, so we have a list of the first and last occurrences of each 5057 // instruction. Next, we transpose this data structure into a multi map that 5058 // holds the list of intervals that *end* at a specific location. This multi 5059 // map allows us to perform a linear search. We scan the instructions linearly 5060 // and record each time that a new interval starts, by placing it in a set. 5061 // If we find this value in the multi-map then we remove it from the set. 5062 // The max register usage is the maximum size of the set. 5063 // We also search for instructions that are defined outside the loop, but are 5064 // used inside the loop. We need this number separately from the max-interval 5065 // usage number because when we unroll, loop-invariant values do not take 5066 // more register. 5067 LoopBlocksDFS DFS(TheLoop); 5068 DFS.perform(LI); 5069 5070 RegisterUsage RU; 5071 5072 // Each 'key' in the map opens a new interval. The values 5073 // of the map are the index of the 'last seen' usage of the 5074 // instruction that is the key. 5075 using IntervalMap = DenseMap<Instruction *, unsigned>; 5076 5077 // Maps instruction to its index. 5078 SmallVector<Instruction *, 64> IdxToInstr; 5079 // Marks the end of each interval. 5080 IntervalMap EndPoint; 5081 // Saves the list of instruction indices that are used in the loop. 5082 SmallPtrSet<Instruction *, 8> Ends; 5083 // Saves the list of values that are used in the loop but are 5084 // defined outside the loop, such as arguments and constants. 5085 SmallPtrSet<Value *, 8> LoopInvariants; 5086 5087 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5088 for (Instruction &I : BB->instructionsWithoutDebug()) { 5089 IdxToInstr.push_back(&I); 5090 5091 // Save the end location of each USE. 5092 for (Value *U : I.operands()) { 5093 auto *Instr = dyn_cast<Instruction>(U); 5094 5095 // Ignore non-instruction values such as arguments, constants, etc. 5096 if (!Instr) 5097 continue; 5098 5099 // If this instruction is outside the loop then record it and continue. 5100 if (!TheLoop->contains(Instr)) { 5101 LoopInvariants.insert(Instr); 5102 continue; 5103 } 5104 5105 // Overwrite previous end points. 5106 EndPoint[Instr] = IdxToInstr.size(); 5107 Ends.insert(Instr); 5108 } 5109 } 5110 } 5111 5112 // Saves the list of intervals that end with the index in 'key'. 5113 using InstrList = SmallVector<Instruction *, 2>; 5114 DenseMap<unsigned, InstrList> TransposeEnds; 5115 5116 // Transpose the EndPoints to a list of values that end at each index. 5117 for (auto &Interval : EndPoint) 5118 TransposeEnds[Interval.second].push_back(Interval.first); 5119 5120 SmallPtrSet<Instruction *, 8> OpenIntervals; 5121 5122 // Get the size of the widest register. 5123 unsigned MaxSafeDepDist = -1U; 5124 if (Legal->getMaxSafeDepDistBytes() != -1U) 5125 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5126 unsigned WidestRegister = 5127 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5128 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5129 5130 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5131 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5132 5133 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5134 5135 // A lambda that gets the register usage for the given type and VF. 5136 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5137 if (Ty->isTokenTy()) 5138 return 0U; 5139 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5140 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5141 }; 5142 5143 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5144 Instruction *I = IdxToInstr[i]; 5145 5146 // Remove all of the instructions that end at this location. 5147 InstrList &List = TransposeEnds[i]; 5148 for (Instruction *ToRemove : List) 5149 OpenIntervals.erase(ToRemove); 5150 5151 // Ignore instructions that are never used within the loop. 5152 if (Ends.find(I) == Ends.end()) 5153 continue; 5154 5155 // Skip ignored values. 5156 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5157 continue; 5158 5159 // For each VF find the maximum usage of registers. 5160 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5161 if (VFs[j] == 1) { 5162 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5163 continue; 5164 } 5165 collectUniformsAndScalars(VFs[j]); 5166 // Count the number of live intervals. 5167 unsigned RegUsage = 0; 5168 for (auto Inst : OpenIntervals) { 5169 // Skip ignored values for VF > 1. 5170 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5171 isScalarAfterVectorization(Inst, VFs[j])) 5172 continue; 5173 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5174 } 5175 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5176 } 5177 5178 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5179 << OpenIntervals.size() << '\n'); 5180 5181 // Add the current instruction to the list of open intervals. 5182 OpenIntervals.insert(I); 5183 } 5184 5185 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5186 unsigned Invariant = 0; 5187 if (VFs[i] == 1) 5188 Invariant = LoopInvariants.size(); 5189 else { 5190 for (auto Inst : LoopInvariants) 5191 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5192 } 5193 5194 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5195 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5196 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5197 << '\n'); 5198 5199 RU.LoopInvariantRegs = Invariant; 5200 RU.MaxLocalUsers = MaxUsages[i]; 5201 RUs[i] = RU; 5202 } 5203 5204 return RUs; 5205 } 5206 5207 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5208 // TODO: Cost model for emulated masked load/store is completely 5209 // broken. This hack guides the cost model to use an artificially 5210 // high enough value to practically disable vectorization with such 5211 // operations, except where previously deployed legality hack allowed 5212 // using very low cost values. This is to avoid regressions coming simply 5213 // from moving "masked load/store" check from legality to cost model. 5214 // Masked Load/Gather emulation was previously never allowed. 5215 // Limited number of Masked Store/Scatter emulation was allowed. 5216 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5217 return isa<LoadInst>(I) || 5218 (isa<StoreInst>(I) && 5219 NumPredStores > NumberOfStoresToPredicate); 5220 } 5221 5222 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5223 // If we aren't vectorizing the loop, or if we've already collected the 5224 // instructions to scalarize, there's nothing to do. Collection may already 5225 // have occurred if we have a user-selected VF and are now computing the 5226 // expected cost for interleaving. 5227 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5228 return; 5229 5230 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5231 // not profitable to scalarize any instructions, the presence of VF in the 5232 // map will indicate that we've analyzed it already. 5233 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5234 5235 // Find all the instructions that are scalar with predication in the loop and 5236 // determine if it would be better to not if-convert the blocks they are in. 5237 // If so, we also record the instructions to scalarize. 5238 for (BasicBlock *BB : TheLoop->blocks()) { 5239 if (!blockNeedsPredication(BB)) 5240 continue; 5241 for (Instruction &I : *BB) 5242 if (isScalarWithPredication(&I)) { 5243 ScalarCostsTy ScalarCosts; 5244 // Do not apply discount logic if hacked cost is needed 5245 // for emulated masked memrefs. 5246 if (!useEmulatedMaskMemRefHack(&I) && 5247 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5248 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5249 // Remember that BB will remain after vectorization. 5250 PredicatedBBsAfterVectorization.insert(BB); 5251 } 5252 } 5253 } 5254 5255 int LoopVectorizationCostModel::computePredInstDiscount( 5256 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5257 unsigned VF) { 5258 assert(!isUniformAfterVectorization(PredInst, VF) && 5259 "Instruction marked uniform-after-vectorization will be predicated"); 5260 5261 // Initialize the discount to zero, meaning that the scalar version and the 5262 // vector version cost the same. 5263 int Discount = 0; 5264 5265 // Holds instructions to analyze. The instructions we visit are mapped in 5266 // ScalarCosts. Those instructions are the ones that would be scalarized if 5267 // we find that the scalar version costs less. 5268 SmallVector<Instruction *, 8> Worklist; 5269 5270 // Returns true if the given instruction can be scalarized. 5271 auto canBeScalarized = [&](Instruction *I) -> bool { 5272 // We only attempt to scalarize instructions forming a single-use chain 5273 // from the original predicated block that would otherwise be vectorized. 5274 // Although not strictly necessary, we give up on instructions we know will 5275 // already be scalar to avoid traversing chains that are unlikely to be 5276 // beneficial. 5277 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5278 isScalarAfterVectorization(I, VF)) 5279 return false; 5280 5281 // If the instruction is scalar with predication, it will be analyzed 5282 // separately. We ignore it within the context of PredInst. 5283 if (isScalarWithPredication(I)) 5284 return false; 5285 5286 // If any of the instruction's operands are uniform after vectorization, 5287 // the instruction cannot be scalarized. This prevents, for example, a 5288 // masked load from being scalarized. 5289 // 5290 // We assume we will only emit a value for lane zero of an instruction 5291 // marked uniform after vectorization, rather than VF identical values. 5292 // Thus, if we scalarize an instruction that uses a uniform, we would 5293 // create uses of values corresponding to the lanes we aren't emitting code 5294 // for. This behavior can be changed by allowing getScalarValue to clone 5295 // the lane zero values for uniforms rather than asserting. 5296 for (Use &U : I->operands()) 5297 if (auto *J = dyn_cast<Instruction>(U.get())) 5298 if (isUniformAfterVectorization(J, VF)) 5299 return false; 5300 5301 // Otherwise, we can scalarize the instruction. 5302 return true; 5303 }; 5304 5305 // Returns true if an operand that cannot be scalarized must be extracted 5306 // from a vector. We will account for this scalarization overhead below. Note 5307 // that the non-void predicated instructions are placed in their own blocks, 5308 // and their return values are inserted into vectors. Thus, an extract would 5309 // still be required. 5310 auto needsExtract = [&](Instruction *I) -> bool { 5311 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5312 }; 5313 5314 // Compute the expected cost discount from scalarizing the entire expression 5315 // feeding the predicated instruction. We currently only consider expressions 5316 // that are single-use instruction chains. 5317 Worklist.push_back(PredInst); 5318 while (!Worklist.empty()) { 5319 Instruction *I = Worklist.pop_back_val(); 5320 5321 // If we've already analyzed the instruction, there's nothing to do. 5322 if (ScalarCosts.find(I) != ScalarCosts.end()) 5323 continue; 5324 5325 // Compute the cost of the vector instruction. Note that this cost already 5326 // includes the scalarization overhead of the predicated instruction. 5327 unsigned VectorCost = getInstructionCost(I, VF).first; 5328 5329 // Compute the cost of the scalarized instruction. This cost is the cost of 5330 // the instruction as if it wasn't if-converted and instead remained in the 5331 // predicated block. We will scale this cost by block probability after 5332 // computing the scalarization overhead. 5333 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5334 5335 // Compute the scalarization overhead of needed insertelement instructions 5336 // and phi nodes. 5337 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5338 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5339 true, false); 5340 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5341 } 5342 5343 // Compute the scalarization overhead of needed extractelement 5344 // instructions. For each of the instruction's operands, if the operand can 5345 // be scalarized, add it to the worklist; otherwise, account for the 5346 // overhead. 5347 for (Use &U : I->operands()) 5348 if (auto *J = dyn_cast<Instruction>(U.get())) { 5349 assert(VectorType::isValidElementType(J->getType()) && 5350 "Instruction has non-scalar type"); 5351 if (canBeScalarized(J)) 5352 Worklist.push_back(J); 5353 else if (needsExtract(J)) 5354 ScalarCost += TTI.getScalarizationOverhead( 5355 ToVectorTy(J->getType(),VF), false, true); 5356 } 5357 5358 // Scale the total scalar cost by block probability. 5359 ScalarCost /= getReciprocalPredBlockProb(); 5360 5361 // Compute the discount. A non-negative discount means the vector version 5362 // of the instruction costs more, and scalarizing would be beneficial. 5363 Discount += VectorCost - ScalarCost; 5364 ScalarCosts[I] = ScalarCost; 5365 } 5366 5367 return Discount; 5368 } 5369 5370 LoopVectorizationCostModel::VectorizationCostTy 5371 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5372 VectorizationCostTy Cost; 5373 5374 // For each block. 5375 for (BasicBlock *BB : TheLoop->blocks()) { 5376 VectorizationCostTy BlockCost; 5377 5378 // For each instruction in the old loop. 5379 for (Instruction &I : BB->instructionsWithoutDebug()) { 5380 // Skip ignored values. 5381 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5382 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5383 continue; 5384 5385 VectorizationCostTy C = getInstructionCost(&I, VF); 5386 5387 // Check if we should override the cost. 5388 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5389 C.first = ForceTargetInstructionCost; 5390 5391 BlockCost.first += C.first; 5392 BlockCost.second |= C.second; 5393 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5394 << " for VF " << VF << " For instruction: " << I 5395 << '\n'); 5396 } 5397 5398 // If we are vectorizing a predicated block, it will have been 5399 // if-converted. This means that the block's instructions (aside from 5400 // stores and instructions that may divide by zero) will now be 5401 // unconditionally executed. For the scalar case, we may not always execute 5402 // the predicated block. Thus, scale the block's cost by the probability of 5403 // executing it. 5404 if (VF == 1 && blockNeedsPredication(BB)) 5405 BlockCost.first /= getReciprocalPredBlockProb(); 5406 5407 Cost.first += BlockCost.first; 5408 Cost.second |= BlockCost.second; 5409 } 5410 5411 return Cost; 5412 } 5413 5414 /// Gets Address Access SCEV after verifying that the access pattern 5415 /// is loop invariant except the induction variable dependence. 5416 /// 5417 /// This SCEV can be sent to the Target in order to estimate the address 5418 /// calculation cost. 5419 static const SCEV *getAddressAccessSCEV( 5420 Value *Ptr, 5421 LoopVectorizationLegality *Legal, 5422 PredicatedScalarEvolution &PSE, 5423 const Loop *TheLoop) { 5424 5425 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5426 if (!Gep) 5427 return nullptr; 5428 5429 // We are looking for a gep with all loop invariant indices except for one 5430 // which should be an induction variable. 5431 auto SE = PSE.getSE(); 5432 unsigned NumOperands = Gep->getNumOperands(); 5433 for (unsigned i = 1; i < NumOperands; ++i) { 5434 Value *Opd = Gep->getOperand(i); 5435 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5436 !Legal->isInductionVariable(Opd)) 5437 return nullptr; 5438 } 5439 5440 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5441 return PSE.getSCEV(Ptr); 5442 } 5443 5444 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5445 return Legal->hasStride(I->getOperand(0)) || 5446 Legal->hasStride(I->getOperand(1)); 5447 } 5448 5449 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5450 unsigned VF) { 5451 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5452 Type *ValTy = getMemInstValueType(I); 5453 auto SE = PSE.getSE(); 5454 5455 unsigned Alignment = getLoadStoreAlignment(I); 5456 unsigned AS = getLoadStoreAddressSpace(I); 5457 Value *Ptr = getLoadStorePointerOperand(I); 5458 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5459 5460 // Figure out whether the access is strided and get the stride value 5461 // if it's known in compile time 5462 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5463 5464 // Get the cost of the scalar memory instruction and address computation. 5465 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5466 5467 // Don't pass *I here, since it is scalar but will actually be part of a 5468 // vectorized loop where the user of it is a vectorized instruction. 5469 Cost += VF * 5470 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5471 AS); 5472 5473 // Get the overhead of the extractelement and insertelement instructions 5474 // we might create due to scalarization. 5475 Cost += getScalarizationOverhead(I, VF, TTI); 5476 5477 // If we have a predicated store, it may not be executed for each vector 5478 // lane. Scale the cost by the probability of executing the predicated 5479 // block. 5480 if (isPredicatedInst(I)) { 5481 Cost /= getReciprocalPredBlockProb(); 5482 5483 if (useEmulatedMaskMemRefHack(I)) 5484 // Artificially setting to a high enough value to practically disable 5485 // vectorization with such operations. 5486 Cost = 3000000; 5487 } 5488 5489 return Cost; 5490 } 5491 5492 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5493 unsigned VF) { 5494 Type *ValTy = getMemInstValueType(I); 5495 Type *VectorTy = ToVectorTy(ValTy, VF); 5496 unsigned Alignment = getLoadStoreAlignment(I); 5497 Value *Ptr = getLoadStorePointerOperand(I); 5498 unsigned AS = getLoadStoreAddressSpace(I); 5499 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5500 5501 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5502 "Stride should be 1 or -1 for consecutive memory access"); 5503 unsigned Cost = 0; 5504 if (Legal->isMaskRequired(I)) 5505 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5506 else 5507 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5508 5509 bool Reverse = ConsecutiveStride < 0; 5510 if (Reverse) 5511 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5512 return Cost; 5513 } 5514 5515 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5516 unsigned VF) { 5517 Type *ValTy = getMemInstValueType(I); 5518 Type *VectorTy = ToVectorTy(ValTy, VF); 5519 unsigned Alignment = getLoadStoreAlignment(I); 5520 unsigned AS = getLoadStoreAddressSpace(I); 5521 if (isa<LoadInst>(I)) { 5522 return TTI.getAddressComputationCost(ValTy) + 5523 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5524 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5525 } 5526 StoreInst *SI = cast<StoreInst>(I); 5527 5528 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5529 return TTI.getAddressComputationCost(ValTy) + 5530 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5531 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5532 Instruction::ExtractElement, 5533 VectorTy, VF - 1)); 5534 } 5535 5536 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5537 unsigned VF) { 5538 Type *ValTy = getMemInstValueType(I); 5539 Type *VectorTy = ToVectorTy(ValTy, VF); 5540 unsigned Alignment = getLoadStoreAlignment(I); 5541 Value *Ptr = getLoadStorePointerOperand(I); 5542 5543 return TTI.getAddressComputationCost(VectorTy) + 5544 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5545 Legal->isMaskRequired(I), Alignment); 5546 } 5547 5548 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5549 unsigned VF) { 5550 Type *ValTy = getMemInstValueType(I); 5551 Type *VectorTy = ToVectorTy(ValTy, VF); 5552 unsigned AS = getLoadStoreAddressSpace(I); 5553 5554 auto Group = getInterleavedAccessGroup(I); 5555 assert(Group && "Fail to get an interleaved access group."); 5556 5557 unsigned InterleaveFactor = Group->getFactor(); 5558 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5559 5560 // Holds the indices of existing members in an interleaved load group. 5561 // An interleaved store group doesn't need this as it doesn't allow gaps. 5562 SmallVector<unsigned, 4> Indices; 5563 if (isa<LoadInst>(I)) { 5564 for (unsigned i = 0; i < InterleaveFactor; i++) 5565 if (Group->getMember(i)) 5566 Indices.push_back(i); 5567 } 5568 5569 // Calculate the cost of the whole interleaved group. 5570 bool UseMaskForGaps = 5571 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5572 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5573 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5574 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5575 5576 if (Group->isReverse()) { 5577 // TODO: Add support for reversed masked interleaved access. 5578 assert(!Legal->isMaskRequired(I) && 5579 "Reverse masked interleaved access not supported."); 5580 Cost += Group->getNumMembers() * 5581 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5582 } 5583 return Cost; 5584 } 5585 5586 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5587 unsigned VF) { 5588 // Calculate scalar cost only. Vectorization cost should be ready at this 5589 // moment. 5590 if (VF == 1) { 5591 Type *ValTy = getMemInstValueType(I); 5592 unsigned Alignment = getLoadStoreAlignment(I); 5593 unsigned AS = getLoadStoreAddressSpace(I); 5594 5595 return TTI.getAddressComputationCost(ValTy) + 5596 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5597 } 5598 return getWideningCost(I, VF); 5599 } 5600 5601 LoopVectorizationCostModel::VectorizationCostTy 5602 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5603 // If we know that this instruction will remain uniform, check the cost of 5604 // the scalar version. 5605 if (isUniformAfterVectorization(I, VF)) 5606 VF = 1; 5607 5608 if (VF > 1 && isProfitableToScalarize(I, VF)) 5609 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5610 5611 // Forced scalars do not have any scalarization overhead. 5612 auto ForcedScalar = ForcedScalars.find(VF); 5613 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5614 auto InstSet = ForcedScalar->second; 5615 if (InstSet.find(I) != InstSet.end()) 5616 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5617 } 5618 5619 Type *VectorTy; 5620 unsigned C = getInstructionCost(I, VF, VectorTy); 5621 5622 bool TypeNotScalarized = 5623 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5624 return VectorizationCostTy(C, TypeNotScalarized); 5625 } 5626 5627 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5628 if (VF == 1) 5629 return; 5630 NumPredStores = 0; 5631 for (BasicBlock *BB : TheLoop->blocks()) { 5632 // For each instruction in the old loop. 5633 for (Instruction &I : *BB) { 5634 Value *Ptr = getLoadStorePointerOperand(&I); 5635 if (!Ptr) 5636 continue; 5637 5638 // TODO: We should generate better code and update the cost model for 5639 // predicated uniform stores. Today they are treated as any other 5640 // predicated store (see added test cases in 5641 // invariant-store-vectorization.ll). 5642 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5643 NumPredStores++; 5644 5645 if (Legal->isUniform(Ptr) && 5646 // Conditional loads and stores should be scalarized and predicated. 5647 // isScalarWithPredication cannot be used here since masked 5648 // gather/scatters are not considered scalar with predication. 5649 !Legal->blockNeedsPredication(I.getParent())) { 5650 // TODO: Avoid replicating loads and stores instead of 5651 // relying on instcombine to remove them. 5652 // Load: Scalar load + broadcast 5653 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5654 unsigned Cost = getUniformMemOpCost(&I, VF); 5655 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5656 continue; 5657 } 5658 5659 // We assume that widening is the best solution when possible. 5660 if (memoryInstructionCanBeWidened(&I, VF)) { 5661 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5662 int ConsecutiveStride = 5663 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5664 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5665 "Expected consecutive stride."); 5666 InstWidening Decision = 5667 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5668 setWideningDecision(&I, VF, Decision, Cost); 5669 continue; 5670 } 5671 5672 // Choose between Interleaving, Gather/Scatter or Scalarization. 5673 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5674 unsigned NumAccesses = 1; 5675 if (isAccessInterleaved(&I)) { 5676 auto Group = getInterleavedAccessGroup(&I); 5677 assert(Group && "Fail to get an interleaved access group."); 5678 5679 // Make one decision for the whole group. 5680 if (getWideningDecision(&I, VF) != CM_Unknown) 5681 continue; 5682 5683 NumAccesses = Group->getNumMembers(); 5684 if (interleavedAccessCanBeWidened(&I, VF)) 5685 InterleaveCost = getInterleaveGroupCost(&I, VF); 5686 } 5687 5688 unsigned GatherScatterCost = 5689 isLegalGatherOrScatter(&I) 5690 ? getGatherScatterCost(&I, VF) * NumAccesses 5691 : std::numeric_limits<unsigned>::max(); 5692 5693 unsigned ScalarizationCost = 5694 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5695 5696 // Choose better solution for the current VF, 5697 // write down this decision and use it during vectorization. 5698 unsigned Cost; 5699 InstWidening Decision; 5700 if (InterleaveCost <= GatherScatterCost && 5701 InterleaveCost < ScalarizationCost) { 5702 Decision = CM_Interleave; 5703 Cost = InterleaveCost; 5704 } else if (GatherScatterCost < ScalarizationCost) { 5705 Decision = CM_GatherScatter; 5706 Cost = GatherScatterCost; 5707 } else { 5708 Decision = CM_Scalarize; 5709 Cost = ScalarizationCost; 5710 } 5711 // If the instructions belongs to an interleave group, the whole group 5712 // receives the same decision. The whole group receives the cost, but 5713 // the cost will actually be assigned to one instruction. 5714 if (auto Group = getInterleavedAccessGroup(&I)) 5715 setWideningDecision(Group, VF, Decision, Cost); 5716 else 5717 setWideningDecision(&I, VF, Decision, Cost); 5718 } 5719 } 5720 5721 // Make sure that any load of address and any other address computation 5722 // remains scalar unless there is gather/scatter support. This avoids 5723 // inevitable extracts into address registers, and also has the benefit of 5724 // activating LSR more, since that pass can't optimize vectorized 5725 // addresses. 5726 if (TTI.prefersVectorizedAddressing()) 5727 return; 5728 5729 // Start with all scalar pointer uses. 5730 SmallPtrSet<Instruction *, 8> AddrDefs; 5731 for (BasicBlock *BB : TheLoop->blocks()) 5732 for (Instruction &I : *BB) { 5733 Instruction *PtrDef = 5734 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5735 if (PtrDef && TheLoop->contains(PtrDef) && 5736 getWideningDecision(&I, VF) != CM_GatherScatter) 5737 AddrDefs.insert(PtrDef); 5738 } 5739 5740 // Add all instructions used to generate the addresses. 5741 SmallVector<Instruction *, 4> Worklist; 5742 for (auto *I : AddrDefs) 5743 Worklist.push_back(I); 5744 while (!Worklist.empty()) { 5745 Instruction *I = Worklist.pop_back_val(); 5746 for (auto &Op : I->operands()) 5747 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5748 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5749 AddrDefs.insert(InstOp).second) 5750 Worklist.push_back(InstOp); 5751 } 5752 5753 for (auto *I : AddrDefs) { 5754 if (isa<LoadInst>(I)) { 5755 // Setting the desired widening decision should ideally be handled in 5756 // by cost functions, but since this involves the task of finding out 5757 // if the loaded register is involved in an address computation, it is 5758 // instead changed here when we know this is the case. 5759 InstWidening Decision = getWideningDecision(I, VF); 5760 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5761 // Scalarize a widened load of address. 5762 setWideningDecision(I, VF, CM_Scalarize, 5763 (VF * getMemoryInstructionCost(I, 1))); 5764 else if (auto Group = getInterleavedAccessGroup(I)) { 5765 // Scalarize an interleave group of address loads. 5766 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5767 if (Instruction *Member = Group->getMember(I)) 5768 setWideningDecision(Member, VF, CM_Scalarize, 5769 (VF * getMemoryInstructionCost(Member, 1))); 5770 } 5771 } 5772 } else 5773 // Make sure I gets scalarized and a cost estimate without 5774 // scalarization overhead. 5775 ForcedScalars[VF].insert(I); 5776 } 5777 } 5778 5779 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5780 unsigned VF, 5781 Type *&VectorTy) { 5782 Type *RetTy = I->getType(); 5783 if (canTruncateToMinimalBitwidth(I, VF)) 5784 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5785 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5786 auto SE = PSE.getSE(); 5787 5788 // TODO: We need to estimate the cost of intrinsic calls. 5789 switch (I->getOpcode()) { 5790 case Instruction::GetElementPtr: 5791 // We mark this instruction as zero-cost because the cost of GEPs in 5792 // vectorized code depends on whether the corresponding memory instruction 5793 // is scalarized or not. Therefore, we handle GEPs with the memory 5794 // instruction cost. 5795 return 0; 5796 case Instruction::Br: { 5797 // In cases of scalarized and predicated instructions, there will be VF 5798 // predicated blocks in the vectorized loop. Each branch around these 5799 // blocks requires also an extract of its vector compare i1 element. 5800 bool ScalarPredicatedBB = false; 5801 BranchInst *BI = cast<BranchInst>(I); 5802 if (VF > 1 && BI->isConditional() && 5803 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5804 PredicatedBBsAfterVectorization.end() || 5805 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5806 PredicatedBBsAfterVectorization.end())) 5807 ScalarPredicatedBB = true; 5808 5809 if (ScalarPredicatedBB) { 5810 // Return cost for branches around scalarized and predicated blocks. 5811 Type *Vec_i1Ty = 5812 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5813 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5814 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5815 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5816 // The back-edge branch will remain, as will all scalar branches. 5817 return TTI.getCFInstrCost(Instruction::Br); 5818 else 5819 // This branch will be eliminated by if-conversion. 5820 return 0; 5821 // Note: We currently assume zero cost for an unconditional branch inside 5822 // a predicated block since it will become a fall-through, although we 5823 // may decide in the future to call TTI for all branches. 5824 } 5825 case Instruction::PHI: { 5826 auto *Phi = cast<PHINode>(I); 5827 5828 // First-order recurrences are replaced by vector shuffles inside the loop. 5829 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5830 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5831 VectorTy, VF - 1, ToVectorTy(RetTy, 1)); 5832 5833 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5834 // converted into select instructions. We require N - 1 selects per phi 5835 // node, where N is the number of incoming values. 5836 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5837 return (Phi->getNumIncomingValues() - 1) * 5838 TTI.getCmpSelInstrCost( 5839 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5840 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5841 5842 return TTI.getCFInstrCost(Instruction::PHI); 5843 } 5844 case Instruction::UDiv: 5845 case Instruction::SDiv: 5846 case Instruction::URem: 5847 case Instruction::SRem: 5848 // If we have a predicated instruction, it may not be executed for each 5849 // vector lane. Get the scalarization cost and scale this amount by the 5850 // probability of executing the predicated block. If the instruction is not 5851 // predicated, we fall through to the next case. 5852 if (VF > 1 && isScalarWithPredication(I)) { 5853 unsigned Cost = 0; 5854 5855 // These instructions have a non-void type, so account for the phi nodes 5856 // that we will create. This cost is likely to be zero. The phi node 5857 // cost, if any, should be scaled by the block probability because it 5858 // models a copy at the end of each predicated block. 5859 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5860 5861 // The cost of the non-predicated instruction. 5862 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5863 5864 // The cost of insertelement and extractelement instructions needed for 5865 // scalarization. 5866 Cost += getScalarizationOverhead(I, VF, TTI); 5867 5868 // Scale the cost by the probability of executing the predicated blocks. 5869 // This assumes the predicated block for each vector lane is equally 5870 // likely. 5871 return Cost / getReciprocalPredBlockProb(); 5872 } 5873 LLVM_FALLTHROUGH; 5874 case Instruction::Add: 5875 case Instruction::FAdd: 5876 case Instruction::Sub: 5877 case Instruction::FSub: 5878 case Instruction::Mul: 5879 case Instruction::FMul: 5880 case Instruction::FDiv: 5881 case Instruction::FRem: 5882 case Instruction::Shl: 5883 case Instruction::LShr: 5884 case Instruction::AShr: 5885 case Instruction::And: 5886 case Instruction::Or: 5887 case Instruction::Xor: { 5888 // Since we will replace the stride by 1 the multiplication should go away. 5889 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5890 return 0; 5891 // Certain instructions can be cheaper to vectorize if they have a constant 5892 // second vector operand. One example of this are shifts on x86. 5893 Value *Op2 = I->getOperand(1); 5894 TargetTransformInfo::OperandValueProperties Op2VP; 5895 TargetTransformInfo::OperandValueKind Op2VK = 5896 TTI.getOperandInfo(Op2, Op2VP); 5897 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5898 Op2VK = TargetTransformInfo::OK_UniformValue; 5899 5900 SmallVector<const Value *, 4> Operands(I->operand_values()); 5901 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5902 return N * TTI.getArithmeticInstrCost( 5903 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5904 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5905 } 5906 case Instruction::Select: { 5907 SelectInst *SI = cast<SelectInst>(I); 5908 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5909 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5910 Type *CondTy = SI->getCondition()->getType(); 5911 if (!ScalarCond) 5912 CondTy = VectorType::get(CondTy, VF); 5913 5914 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5915 } 5916 case Instruction::ICmp: 5917 case Instruction::FCmp: { 5918 Type *ValTy = I->getOperand(0)->getType(); 5919 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5920 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5921 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5922 VectorTy = ToVectorTy(ValTy, VF); 5923 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5924 } 5925 case Instruction::Store: 5926 case Instruction::Load: { 5927 unsigned Width = VF; 5928 if (Width > 1) { 5929 InstWidening Decision = getWideningDecision(I, Width); 5930 assert(Decision != CM_Unknown && 5931 "CM decision should be taken at this point"); 5932 if (Decision == CM_Scalarize) 5933 Width = 1; 5934 } 5935 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5936 return getMemoryInstructionCost(I, VF); 5937 } 5938 case Instruction::ZExt: 5939 case Instruction::SExt: 5940 case Instruction::FPToUI: 5941 case Instruction::FPToSI: 5942 case Instruction::FPExt: 5943 case Instruction::PtrToInt: 5944 case Instruction::IntToPtr: 5945 case Instruction::SIToFP: 5946 case Instruction::UIToFP: 5947 case Instruction::Trunc: 5948 case Instruction::FPTrunc: 5949 case Instruction::BitCast: { 5950 // We optimize the truncation of induction variables having constant 5951 // integer steps. The cost of these truncations is the same as the scalar 5952 // operation. 5953 if (isOptimizableIVTruncate(I, VF)) { 5954 auto *Trunc = cast<TruncInst>(I); 5955 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 5956 Trunc->getSrcTy(), Trunc); 5957 } 5958 5959 Type *SrcScalarTy = I->getOperand(0)->getType(); 5960 Type *SrcVecTy = 5961 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 5962 if (canTruncateToMinimalBitwidth(I, VF)) { 5963 // This cast is going to be shrunk. This may remove the cast or it might 5964 // turn it into slightly different cast. For example, if MinBW == 16, 5965 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5966 // 5967 // Calculate the modified src and dest types. 5968 Type *MinVecTy = VectorTy; 5969 if (I->getOpcode() == Instruction::Trunc) { 5970 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5971 VectorTy = 5972 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5973 } else if (I->getOpcode() == Instruction::ZExt || 5974 I->getOpcode() == Instruction::SExt) { 5975 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5976 VectorTy = 5977 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5978 } 5979 } 5980 5981 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5982 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 5983 } 5984 case Instruction::Call: { 5985 bool NeedToScalarize; 5986 CallInst *CI = cast<CallInst>(I); 5987 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5988 if (getVectorIntrinsicIDForCall(CI, TLI)) 5989 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5990 return CallCost; 5991 } 5992 default: 5993 // The cost of executing VF copies of the scalar instruction. This opcode 5994 // is unknown. Assume that it is the same as 'mul'. 5995 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 5996 getScalarizationOverhead(I, VF, TTI); 5997 } // end of switch. 5998 } 5999 6000 char LoopVectorize::ID = 0; 6001 6002 static const char lv_name[] = "Loop Vectorization"; 6003 6004 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6005 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6006 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6007 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6008 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6009 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6010 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6011 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6012 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6013 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6014 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6015 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6016 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6017 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6018 6019 namespace llvm { 6020 6021 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6022 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6023 } 6024 6025 } // end namespace llvm 6026 6027 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6028 // Check if the pointer operand of a load or store instruction is 6029 // consecutive. 6030 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6031 return Legal->isConsecutivePtr(Ptr); 6032 return false; 6033 } 6034 6035 void LoopVectorizationCostModel::collectValuesToIgnore() { 6036 // Ignore ephemeral values. 6037 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6038 6039 // Ignore type-promoting instructions we identified during reduction 6040 // detection. 6041 for (auto &Reduction : *Legal->getReductionVars()) { 6042 RecurrenceDescriptor &RedDes = Reduction.second; 6043 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6044 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6045 } 6046 // Ignore type-casting instructions we identified during induction 6047 // detection. 6048 for (auto &Induction : *Legal->getInductionVars()) { 6049 InductionDescriptor &IndDes = Induction.second; 6050 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6051 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6052 } 6053 } 6054 6055 VectorizationFactor 6056 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6057 unsigned UserVF) { 6058 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6059 const VectorizationFactor NoVectorization = {1U, 0U}; 6060 6061 // Outer loop handling: They may require CFG and instruction level 6062 // transformations before even evaluating whether vectorization is profitable. 6063 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6064 // the vectorization pipeline. 6065 if (!OrigLoop->empty()) { 6066 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6067 // This won't be necessary when UserVF is not required in the VPlan-native 6068 // path. 6069 if (VPlanBuildStressTest && !UserVF) 6070 UserVF = 4; 6071 6072 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6073 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6074 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6075 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6076 buildVPlans(UserVF, UserVF); 6077 6078 // For VPlan build stress testing, we bail out after VPlan construction. 6079 if (VPlanBuildStressTest) 6080 return NoVectorization; 6081 6082 return {UserVF, 0}; 6083 } 6084 6085 LLVM_DEBUG( 6086 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6087 "VPlan-native path.\n"); 6088 return NoVectorization; 6089 } 6090 6091 VectorizationFactor 6092 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 6093 assert(OrigLoop->empty() && "Inner loop expected."); 6094 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6095 const VectorizationFactor NoVectorization = {1U, 0U}; 6096 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6097 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 6098 return NoVectorization; 6099 6100 // Invalidate interleave groups if all blocks of loop will be predicated. 6101 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6102 !useMaskedInterleavedAccesses(*TTI)) { 6103 LLVM_DEBUG( 6104 dbgs() 6105 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6106 "which requires masked-interleaved support.\n"); 6107 CM.InterleaveInfo.reset(); 6108 } 6109 6110 if (UserVF) { 6111 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6112 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6113 // Collect the instructions (and their associated costs) that will be more 6114 // profitable to scalarize. 6115 CM.selectUserVectorizationFactor(UserVF); 6116 buildVPlansWithVPRecipes(UserVF, UserVF); 6117 LLVM_DEBUG(printPlans(dbgs())); 6118 return {UserVF, 0}; 6119 } 6120 6121 unsigned MaxVF = MaybeMaxVF.getValue(); 6122 assert(MaxVF != 0 && "MaxVF is zero."); 6123 6124 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6125 // Collect Uniform and Scalar instructions after vectorization with VF. 6126 CM.collectUniformsAndScalars(VF); 6127 6128 // Collect the instructions (and their associated costs) that will be more 6129 // profitable to scalarize. 6130 if (VF > 1) 6131 CM.collectInstsToScalarize(VF); 6132 } 6133 6134 buildVPlansWithVPRecipes(1, MaxVF); 6135 LLVM_DEBUG(printPlans(dbgs())); 6136 if (MaxVF == 1) 6137 return NoVectorization; 6138 6139 // Select the optimal vectorization factor. 6140 return CM.selectVectorizationFactor(MaxVF); 6141 } 6142 6143 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6144 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6145 << '\n'); 6146 BestVF = VF; 6147 BestUF = UF; 6148 6149 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6150 return !Plan->hasVF(VF); 6151 }); 6152 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6153 } 6154 6155 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6156 DominatorTree *DT) { 6157 // Perform the actual loop transformation. 6158 6159 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6160 VPCallbackILV CallbackILV(ILV); 6161 6162 VPTransformState State{BestVF, BestUF, LI, 6163 DT, ILV.Builder, ILV.VectorLoopValueMap, 6164 &ILV, CallbackILV}; 6165 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6166 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6167 6168 //===------------------------------------------------===// 6169 // 6170 // Notice: any optimization or new instruction that go 6171 // into the code below should also be implemented in 6172 // the cost-model. 6173 // 6174 //===------------------------------------------------===// 6175 6176 // 2. Copy and widen instructions from the old loop into the new loop. 6177 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6178 VPlans.front()->execute(&State); 6179 6180 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6181 // predication, updating analyses. 6182 ILV.fixVectorizedLoop(); 6183 } 6184 6185 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6186 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6187 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6188 6189 // We create new control-flow for the vectorized loop, so the original 6190 // condition will be dead after vectorization if it's only used by the 6191 // branch. 6192 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6193 if (Cmp && Cmp->hasOneUse()) 6194 DeadInstructions.insert(Cmp); 6195 6196 // We create new "steps" for induction variable updates to which the original 6197 // induction variables map. An original update instruction will be dead if 6198 // all its users except the induction variable are dead. 6199 for (auto &Induction : *Legal->getInductionVars()) { 6200 PHINode *Ind = Induction.first; 6201 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6202 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6203 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6204 DeadInstructions.end(); 6205 })) 6206 DeadInstructions.insert(IndUpdate); 6207 6208 // We record as "Dead" also the type-casting instructions we had identified 6209 // during induction analysis. We don't need any handling for them in the 6210 // vectorized loop because we have proven that, under a proper runtime 6211 // test guarding the vectorized loop, the value of the phi, and the casted 6212 // value of the phi, are the same. The last instruction in this casting chain 6213 // will get its scalar/vector/widened def from the scalar/vector/widened def 6214 // of the respective phi node. Any other casts in the induction def-use chain 6215 // have no other uses outside the phi update chain, and will be ignored. 6216 InductionDescriptor &IndDes = Induction.second; 6217 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6218 DeadInstructions.insert(Casts.begin(), Casts.end()); 6219 } 6220 } 6221 6222 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6223 6224 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6225 6226 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6227 Instruction::BinaryOps BinOp) { 6228 // When unrolling and the VF is 1, we only need to add a simple scalar. 6229 Type *Ty = Val->getType(); 6230 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6231 6232 if (Ty->isFloatingPointTy()) { 6233 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6234 6235 // Floating point operations had to be 'fast' to enable the unrolling. 6236 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6237 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6238 } 6239 Constant *C = ConstantInt::get(Ty, StartIdx); 6240 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6241 } 6242 6243 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6244 SmallVector<Metadata *, 4> MDs; 6245 // Reserve first location for self reference to the LoopID metadata node. 6246 MDs.push_back(nullptr); 6247 bool IsUnrollMetadata = false; 6248 MDNode *LoopID = L->getLoopID(); 6249 if (LoopID) { 6250 // First find existing loop unrolling disable metadata. 6251 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6252 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6253 if (MD) { 6254 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6255 IsUnrollMetadata = 6256 S && S->getString().startswith("llvm.loop.unroll.disable"); 6257 } 6258 MDs.push_back(LoopID->getOperand(i)); 6259 } 6260 } 6261 6262 if (!IsUnrollMetadata) { 6263 // Add runtime unroll disable metadata. 6264 LLVMContext &Context = L->getHeader()->getContext(); 6265 SmallVector<Metadata *, 1> DisableOperands; 6266 DisableOperands.push_back( 6267 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6268 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6269 MDs.push_back(DisableNode); 6270 MDNode *NewLoopID = MDNode::get(Context, MDs); 6271 // Set operand 0 to refer to the loop id itself. 6272 NewLoopID->replaceOperandWith(0, NewLoopID); 6273 L->setLoopID(NewLoopID); 6274 } 6275 } 6276 6277 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6278 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6279 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6280 bool PredicateAtRangeStart = Predicate(Range.Start); 6281 6282 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6283 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6284 Range.End = TmpVF; 6285 break; 6286 } 6287 6288 return PredicateAtRangeStart; 6289 } 6290 6291 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6292 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6293 /// of VF's starting at a given VF and extending it as much as possible. Each 6294 /// vectorization decision can potentially shorten this sub-range during 6295 /// buildVPlan(). 6296 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6297 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6298 VFRange SubRange = {VF, MaxVF + 1}; 6299 VPlans.push_back(buildVPlan(SubRange)); 6300 VF = SubRange.End; 6301 } 6302 } 6303 6304 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6305 VPlanPtr &Plan) { 6306 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6307 6308 // Look for cached value. 6309 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6310 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6311 if (ECEntryIt != EdgeMaskCache.end()) 6312 return ECEntryIt->second; 6313 6314 VPValue *SrcMask = createBlockInMask(Src, Plan); 6315 6316 // The terminator has to be a branch inst! 6317 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6318 assert(BI && "Unexpected terminator found"); 6319 6320 if (!BI->isConditional()) 6321 return EdgeMaskCache[Edge] = SrcMask; 6322 6323 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6324 assert(EdgeMask && "No Edge Mask found for condition"); 6325 6326 if (BI->getSuccessor(0) != Dst) 6327 EdgeMask = Builder.createNot(EdgeMask); 6328 6329 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6330 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6331 6332 return EdgeMaskCache[Edge] = EdgeMask; 6333 } 6334 6335 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6336 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6337 6338 // Look for cached value. 6339 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6340 if (BCEntryIt != BlockMaskCache.end()) 6341 return BCEntryIt->second; 6342 6343 // All-one mask is modelled as no-mask following the convention for masked 6344 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6345 VPValue *BlockMask = nullptr; 6346 6347 if (OrigLoop->getHeader() == BB) { 6348 if (!CM.blockNeedsPredication(BB)) 6349 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6350 6351 // Introduce the early-exit compare IV <= BTC to form header block mask. 6352 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6353 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6354 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6355 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6356 return BlockMaskCache[BB] = BlockMask; 6357 } 6358 6359 // This is the block mask. We OR all incoming edges. 6360 for (auto *Predecessor : predecessors(BB)) { 6361 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6362 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6363 return BlockMaskCache[BB] = EdgeMask; 6364 6365 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6366 BlockMask = EdgeMask; 6367 continue; 6368 } 6369 6370 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6371 } 6372 6373 return BlockMaskCache[BB] = BlockMask; 6374 } 6375 6376 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6377 VFRange &Range, 6378 VPlanPtr &Plan) { 6379 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I); 6380 if (!IG) 6381 return nullptr; 6382 6383 // Now check if IG is relevant for VF's in the given range. 6384 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6385 return [=](unsigned VF) -> bool { 6386 return (VF >= 2 && // Query is illegal for VF == 1 6387 CM.getWideningDecision(I, VF) == 6388 LoopVectorizationCostModel::CM_Interleave); 6389 }; 6390 }; 6391 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6392 return nullptr; 6393 6394 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6395 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6396 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6397 assert(I == IG->getInsertPos() && 6398 "Generating a recipe for an adjunct member of an interleave group"); 6399 6400 VPValue *Mask = nullptr; 6401 if (Legal->isMaskRequired(I)) 6402 Mask = createBlockInMask(I->getParent(), Plan); 6403 6404 return new VPInterleaveRecipe(IG, Mask); 6405 } 6406 6407 VPWidenMemoryInstructionRecipe * 6408 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6409 VPlanPtr &Plan) { 6410 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6411 return nullptr; 6412 6413 auto willWiden = [&](unsigned VF) -> bool { 6414 if (VF == 1) 6415 return false; 6416 if (CM.isScalarAfterVectorization(I, VF) || 6417 CM.isProfitableToScalarize(I, VF)) 6418 return false; 6419 LoopVectorizationCostModel::InstWidening Decision = 6420 CM.getWideningDecision(I, VF); 6421 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6422 "CM decision should be taken at this point."); 6423 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6424 "Interleave memory opportunity should be caught earlier."); 6425 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6426 }; 6427 6428 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6429 return nullptr; 6430 6431 VPValue *Mask = nullptr; 6432 if (Legal->isMaskRequired(I)) 6433 Mask = createBlockInMask(I->getParent(), Plan); 6434 6435 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6436 } 6437 6438 VPWidenIntOrFpInductionRecipe * 6439 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6440 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6441 // Check if this is an integer or fp induction. If so, build the recipe that 6442 // produces its scalar and vector values. 6443 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6444 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6445 II.getKind() == InductionDescriptor::IK_FpInduction) 6446 return new VPWidenIntOrFpInductionRecipe(Phi); 6447 6448 return nullptr; 6449 } 6450 6451 // Optimize the special case where the source is a constant integer 6452 // induction variable. Notice that we can only optimize the 'trunc' case 6453 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6454 // (c) other casts depend on pointer size. 6455 6456 // Determine whether \p K is a truncation based on an induction variable that 6457 // can be optimized. 6458 auto isOptimizableIVTruncate = 6459 [&](Instruction *K) -> std::function<bool(unsigned)> { 6460 return 6461 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6462 }; 6463 6464 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6465 isOptimizableIVTruncate(I), Range)) 6466 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6467 cast<TruncInst>(I)); 6468 return nullptr; 6469 } 6470 6471 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6472 PHINode *Phi = dyn_cast<PHINode>(I); 6473 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6474 return nullptr; 6475 6476 // We know that all PHIs in non-header blocks are converted into selects, so 6477 // we don't have to worry about the insertion order and we can just use the 6478 // builder. At this point we generate the predication tree. There may be 6479 // duplications since this is a simple recursive scan, but future 6480 // optimizations will clean it up. 6481 6482 SmallVector<VPValue *, 2> Masks; 6483 unsigned NumIncoming = Phi->getNumIncomingValues(); 6484 for (unsigned In = 0; In < NumIncoming; In++) { 6485 VPValue *EdgeMask = 6486 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6487 assert((EdgeMask || NumIncoming == 1) && 6488 "Multiple predecessors with one having a full mask"); 6489 if (EdgeMask) 6490 Masks.push_back(EdgeMask); 6491 } 6492 return new VPBlendRecipe(Phi, Masks); 6493 } 6494 6495 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6496 VFRange &Range) { 6497 6498 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6499 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6500 6501 if (IsPredicated) 6502 return false; 6503 6504 auto IsVectorizableOpcode = [](unsigned Opcode) { 6505 switch (Opcode) { 6506 case Instruction::Add: 6507 case Instruction::And: 6508 case Instruction::AShr: 6509 case Instruction::BitCast: 6510 case Instruction::Br: 6511 case Instruction::Call: 6512 case Instruction::FAdd: 6513 case Instruction::FCmp: 6514 case Instruction::FDiv: 6515 case Instruction::FMul: 6516 case Instruction::FPExt: 6517 case Instruction::FPToSI: 6518 case Instruction::FPToUI: 6519 case Instruction::FPTrunc: 6520 case Instruction::FRem: 6521 case Instruction::FSub: 6522 case Instruction::GetElementPtr: 6523 case Instruction::ICmp: 6524 case Instruction::IntToPtr: 6525 case Instruction::Load: 6526 case Instruction::LShr: 6527 case Instruction::Mul: 6528 case Instruction::Or: 6529 case Instruction::PHI: 6530 case Instruction::PtrToInt: 6531 case Instruction::SDiv: 6532 case Instruction::Select: 6533 case Instruction::SExt: 6534 case Instruction::Shl: 6535 case Instruction::SIToFP: 6536 case Instruction::SRem: 6537 case Instruction::Store: 6538 case Instruction::Sub: 6539 case Instruction::Trunc: 6540 case Instruction::UDiv: 6541 case Instruction::UIToFP: 6542 case Instruction::URem: 6543 case Instruction::Xor: 6544 case Instruction::ZExt: 6545 return true; 6546 } 6547 return false; 6548 }; 6549 6550 if (!IsVectorizableOpcode(I->getOpcode())) 6551 return false; 6552 6553 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6554 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6555 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6556 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6557 return false; 6558 } 6559 6560 auto willWiden = [&](unsigned VF) -> bool { 6561 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6562 CM.isProfitableToScalarize(I, VF))) 6563 return false; 6564 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6565 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6566 // The following case may be scalarized depending on the VF. 6567 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6568 // version of the instruction. 6569 // Is it beneficial to perform intrinsic call compared to lib call? 6570 bool NeedToScalarize; 6571 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6572 bool UseVectorIntrinsic = 6573 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6574 return UseVectorIntrinsic || !NeedToScalarize; 6575 } 6576 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6577 assert(CM.getWideningDecision(I, VF) == 6578 LoopVectorizationCostModel::CM_Scalarize && 6579 "Memory widening decisions should have been taken care by now"); 6580 return false; 6581 } 6582 return true; 6583 }; 6584 6585 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6586 return false; 6587 6588 // Success: widen this instruction. We optimize the common case where 6589 // consecutive instructions can be represented by a single recipe. 6590 if (!VPBB->empty()) { 6591 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6592 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6593 return true; 6594 } 6595 6596 VPBB->appendRecipe(new VPWidenRecipe(I)); 6597 return true; 6598 } 6599 6600 VPBasicBlock *VPRecipeBuilder::handleReplication( 6601 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6602 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6603 VPlanPtr &Plan) { 6604 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6605 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6606 Range); 6607 6608 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6609 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6610 6611 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6612 6613 // Find if I uses a predicated instruction. If so, it will use its scalar 6614 // value. Avoid hoisting the insert-element which packs the scalar value into 6615 // a vector value, as that happens iff all users use the vector value. 6616 for (auto &Op : I->operands()) 6617 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6618 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6619 PredInst2Recipe[PredInst]->setAlsoPack(false); 6620 6621 // Finalize the recipe for Instr, first if it is not predicated. 6622 if (!IsPredicated) { 6623 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6624 VPBB->appendRecipe(Recipe); 6625 return VPBB; 6626 } 6627 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6628 assert(VPBB->getSuccessors().empty() && 6629 "VPBB has successors when handling predicated replication."); 6630 // Record predicated instructions for above packing optimizations. 6631 PredInst2Recipe[I] = Recipe; 6632 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6633 VPBlockUtils::insertBlockAfter(Region, VPBB); 6634 auto *RegSucc = new VPBasicBlock(); 6635 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6636 return RegSucc; 6637 } 6638 6639 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6640 VPRecipeBase *PredRecipe, 6641 VPlanPtr &Plan) { 6642 // Instructions marked for predication are replicated and placed under an 6643 // if-then construct to prevent side-effects. 6644 6645 // Generate recipes to compute the block mask for this region. 6646 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6647 6648 // Build the triangular if-then region. 6649 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6650 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6651 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6652 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6653 auto *PHIRecipe = 6654 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6655 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6656 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6657 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6658 6659 // Note: first set Entry as region entry and then connect successors starting 6660 // from it in order, to propagate the "parent" of each VPBasicBlock. 6661 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6662 VPBlockUtils::connectBlocks(Pred, Exit); 6663 6664 return Region; 6665 } 6666 6667 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6668 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6669 VPRecipeBase *Recipe = nullptr; 6670 // Check if Instr should belong to an interleave memory recipe, or already 6671 // does. In the latter case Instr is irrelevant. 6672 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6673 VPBB->appendRecipe(Recipe); 6674 return true; 6675 } 6676 6677 // Check if Instr is a memory operation that should be widened. 6678 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6679 VPBB->appendRecipe(Recipe); 6680 return true; 6681 } 6682 6683 // Check if Instr should form some PHI recipe. 6684 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6685 VPBB->appendRecipe(Recipe); 6686 return true; 6687 } 6688 if ((Recipe = tryToBlend(Instr, Plan))) { 6689 VPBB->appendRecipe(Recipe); 6690 return true; 6691 } 6692 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6693 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6694 return true; 6695 } 6696 6697 // Check if Instr is to be widened by a general VPWidenRecipe, after 6698 // having first checked for specific widening recipes that deal with 6699 // Interleave Groups, Inductions and Phi nodes. 6700 if (tryToWiden(Instr, VPBB, Range)) 6701 return true; 6702 6703 return false; 6704 } 6705 6706 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6707 unsigned MaxVF) { 6708 assert(OrigLoop->empty() && "Inner loop expected."); 6709 6710 // Collect conditions feeding internal conditional branches; they need to be 6711 // represented in VPlan for it to model masking. 6712 SmallPtrSet<Value *, 1> NeedDef; 6713 6714 auto *Latch = OrigLoop->getLoopLatch(); 6715 for (BasicBlock *BB : OrigLoop->blocks()) { 6716 if (BB == Latch) 6717 continue; 6718 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6719 if (Branch && Branch->isConditional()) 6720 NeedDef.insert(Branch->getCondition()); 6721 } 6722 6723 // If the tail is to be folded by masking, the primary induction variable 6724 // needs to be represented in VPlan for it to model early-exit masking. 6725 if (CM.foldTailByMasking()) 6726 NeedDef.insert(Legal->getPrimaryInduction()); 6727 6728 // Collect instructions from the original loop that will become trivially dead 6729 // in the vectorized loop. We don't need to vectorize these instructions. For 6730 // example, original induction update instructions can become dead because we 6731 // separately emit induction "steps" when generating code for the new loop. 6732 // Similarly, we create a new latch condition when setting up the structure 6733 // of the new loop, so the old one can become dead. 6734 SmallPtrSet<Instruction *, 4> DeadInstructions; 6735 collectTriviallyDeadInstructions(DeadInstructions); 6736 6737 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6738 VFRange SubRange = {VF, MaxVF + 1}; 6739 VPlans.push_back( 6740 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6741 VF = SubRange.End; 6742 } 6743 } 6744 6745 LoopVectorizationPlanner::VPlanPtr 6746 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6747 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6748 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6749 // Hold a mapping from predicated instructions to their recipes, in order to 6750 // fix their AlsoPack behavior if a user is determined to replicate and use a 6751 // scalar instead of vector value. 6752 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6753 6754 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6755 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6756 6757 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6758 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6759 auto Plan = llvm::make_unique<VPlan>(VPBB); 6760 6761 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6762 // Represent values that will have defs inside VPlan. 6763 for (Value *V : NeedDef) 6764 Plan->addVPValue(V); 6765 6766 // Scan the body of the loop in a topological order to visit each basic block 6767 // after having visited its predecessor basic blocks. 6768 LoopBlocksDFS DFS(OrigLoop); 6769 DFS.perform(LI); 6770 6771 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6772 // Relevant instructions from basic block BB will be grouped into VPRecipe 6773 // ingredients and fill a new VPBasicBlock. 6774 unsigned VPBBsForBB = 0; 6775 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6776 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6777 VPBB = FirstVPBBForBB; 6778 Builder.setInsertPoint(VPBB); 6779 6780 std::vector<Instruction *> Ingredients; 6781 6782 // Organize the ingredients to vectorize from current basic block in the 6783 // right order. 6784 for (Instruction &I : BB->instructionsWithoutDebug()) { 6785 Instruction *Instr = &I; 6786 6787 // First filter out irrelevant instructions, to ensure no recipes are 6788 // built for them. 6789 if (isa<BranchInst>(Instr) || 6790 DeadInstructions.find(Instr) != DeadInstructions.end()) 6791 continue; 6792 6793 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6794 // member of the IG, do not construct any Recipe for it. 6795 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr); 6796 if (IG && Instr != IG->getInsertPos() && 6797 Range.Start >= 2 && // Query is illegal for VF == 1 6798 CM.getWideningDecision(Instr, Range.Start) == 6799 LoopVectorizationCostModel::CM_Interleave) { 6800 auto SinkCandidate = SinkAfterInverse.find(Instr); 6801 if (SinkCandidate != SinkAfterInverse.end()) 6802 Ingredients.push_back(SinkCandidate->second); 6803 continue; 6804 } 6805 6806 // Move instructions to handle first-order recurrences, step 1: avoid 6807 // handling this instruction until after we've handled the instruction it 6808 // should follow. 6809 auto SAIt = SinkAfter.find(Instr); 6810 if (SAIt != SinkAfter.end()) { 6811 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6812 << *SAIt->second 6813 << " to vectorize a 1st order recurrence.\n"); 6814 SinkAfterInverse[SAIt->second] = Instr; 6815 continue; 6816 } 6817 6818 Ingredients.push_back(Instr); 6819 6820 // Move instructions to handle first-order recurrences, step 2: push the 6821 // instruction to be sunk at its insertion point. 6822 auto SAInvIt = SinkAfterInverse.find(Instr); 6823 if (SAInvIt != SinkAfterInverse.end()) 6824 Ingredients.push_back(SAInvIt->second); 6825 } 6826 6827 // Introduce each ingredient into VPlan. 6828 for (Instruction *Instr : Ingredients) { 6829 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6830 continue; 6831 6832 // Otherwise, if all widening options failed, Instruction is to be 6833 // replicated. This may create a successor for VPBB. 6834 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6835 Instr, Range, VPBB, PredInst2Recipe, Plan); 6836 if (NextVPBB != VPBB) { 6837 VPBB = NextVPBB; 6838 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6839 : ""); 6840 } 6841 } 6842 } 6843 6844 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6845 // may also be empty, such as the last one VPBB, reflecting original 6846 // basic-blocks with no recipes. 6847 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6848 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6849 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6850 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6851 delete PreEntry; 6852 6853 std::string PlanName; 6854 raw_string_ostream RSO(PlanName); 6855 unsigned VF = Range.Start; 6856 Plan->addVF(VF); 6857 RSO << "Initial VPlan for VF={" << VF; 6858 for (VF *= 2; VF < Range.End; VF *= 2) { 6859 Plan->addVF(VF); 6860 RSO << "," << VF; 6861 } 6862 RSO << "},UF>=1"; 6863 RSO.flush(); 6864 Plan->setName(PlanName); 6865 6866 return Plan; 6867 } 6868 6869 LoopVectorizationPlanner::VPlanPtr 6870 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6871 // Outer loop handling: They may require CFG and instruction level 6872 // transformations before even evaluating whether vectorization is profitable. 6873 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6874 // the vectorization pipeline. 6875 assert(!OrigLoop->empty()); 6876 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6877 6878 // Create new empty VPlan 6879 auto Plan = llvm::make_unique<VPlan>(); 6880 6881 // Build hierarchical CFG 6882 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6883 HCFGBuilder.buildHierarchicalCFG(); 6884 6885 SmallPtrSet<Instruction *, 1> DeadInstructions; 6886 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6887 Plan, Legal->getInductionVars(), DeadInstructions); 6888 6889 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6890 Plan->addVF(VF); 6891 6892 return Plan; 6893 } 6894 6895 Value* LoopVectorizationPlanner::VPCallbackILV:: 6896 getOrCreateVectorValues(Value *V, unsigned Part) { 6897 return ILV.getOrCreateVectorValue(V, Part); 6898 } 6899 6900 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6901 O << " +\n" 6902 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6903 IG->getInsertPos()->printAsOperand(O, false); 6904 if (User) { 6905 O << ", "; 6906 User->getOperand(0)->printAsOperand(O); 6907 } 6908 O << "\\l\""; 6909 for (unsigned i = 0; i < IG->getFactor(); ++i) 6910 if (Instruction *I = IG->getMember(i)) 6911 O << " +\n" 6912 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6913 } 6914 6915 void VPWidenRecipe::execute(VPTransformState &State) { 6916 for (auto &Instr : make_range(Begin, End)) 6917 State.ILV->widenInstruction(Instr); 6918 } 6919 6920 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 6921 assert(!State.Instance && "Int or FP induction being replicated."); 6922 State.ILV->widenIntOrFpInduction(IV, Trunc); 6923 } 6924 6925 void VPWidenPHIRecipe::execute(VPTransformState &State) { 6926 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 6927 } 6928 6929 void VPBlendRecipe::execute(VPTransformState &State) { 6930 State.ILV->setDebugLocFromInst(State.Builder, Phi); 6931 // We know that all PHIs in non-header blocks are converted into 6932 // selects, so we don't have to worry about the insertion order and we 6933 // can just use the builder. 6934 // At this point we generate the predication tree. There may be 6935 // duplications since this is a simple recursive scan, but future 6936 // optimizations will clean it up. 6937 6938 unsigned NumIncoming = Phi->getNumIncomingValues(); 6939 6940 assert((User || NumIncoming == 1) && 6941 "Multiple predecessors with predecessors having a full mask"); 6942 // Generate a sequence of selects of the form: 6943 // SELECT(Mask3, In3, 6944 // SELECT(Mask2, In2, 6945 // ( ...))) 6946 InnerLoopVectorizer::VectorParts Entry(State.UF); 6947 for (unsigned In = 0; In < NumIncoming; ++In) { 6948 for (unsigned Part = 0; Part < State.UF; ++Part) { 6949 // We might have single edge PHIs (blocks) - use an identity 6950 // 'select' for the first PHI operand. 6951 Value *In0 = 6952 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 6953 if (In == 0) 6954 Entry[Part] = In0; // Initialize with the first incoming value. 6955 else { 6956 // Select between the current value and the previous incoming edge 6957 // based on the incoming mask. 6958 Value *Cond = State.get(User->getOperand(In), Part); 6959 Entry[Part] = 6960 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 6961 } 6962 } 6963 } 6964 for (unsigned Part = 0; Part < State.UF; ++Part) 6965 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 6966 } 6967 6968 void VPInterleaveRecipe::execute(VPTransformState &State) { 6969 assert(!State.Instance && "Interleave group being replicated."); 6970 if (!User) 6971 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 6972 6973 // Last (and currently only) operand is a mask. 6974 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 6975 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 6976 for (unsigned Part = 0; Part < State.UF; ++Part) 6977 MaskValues[Part] = State.get(Mask, Part); 6978 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 6979 } 6980 6981 void VPReplicateRecipe::execute(VPTransformState &State) { 6982 if (State.Instance) { // Generate a single instance. 6983 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 6984 // Insert scalar instance packing it into a vector. 6985 if (AlsoPack && State.VF > 1) { 6986 // If we're constructing lane 0, initialize to start from undef. 6987 if (State.Instance->Lane == 0) { 6988 Value *Undef = 6989 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 6990 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 6991 } 6992 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 6993 } 6994 return; 6995 } 6996 6997 // Generate scalar instances for all VF lanes of all UF parts, unless the 6998 // instruction is uniform inwhich case generate only the first lane for each 6999 // of the UF parts. 7000 unsigned EndLane = IsUniform ? 1 : State.VF; 7001 for (unsigned Part = 0; Part < State.UF; ++Part) 7002 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7003 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7004 } 7005 7006 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7007 assert(State.Instance && "Branch on Mask works only on single instance."); 7008 7009 unsigned Part = State.Instance->Part; 7010 unsigned Lane = State.Instance->Lane; 7011 7012 Value *ConditionBit = nullptr; 7013 if (!User) // Block in mask is all-one. 7014 ConditionBit = State.Builder.getTrue(); 7015 else { 7016 VPValue *BlockInMask = User->getOperand(0); 7017 ConditionBit = State.get(BlockInMask, Part); 7018 if (ConditionBit->getType()->isVectorTy()) 7019 ConditionBit = State.Builder.CreateExtractElement( 7020 ConditionBit, State.Builder.getInt32(Lane)); 7021 } 7022 7023 // Replace the temporary unreachable terminator with a new conditional branch, 7024 // whose two destinations will be set later when they are created. 7025 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7026 assert(isa<UnreachableInst>(CurrentTerminator) && 7027 "Expected to replace unreachable terminator with conditional branch."); 7028 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7029 CondBr->setSuccessor(0, nullptr); 7030 ReplaceInstWithInst(CurrentTerminator, CondBr); 7031 } 7032 7033 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7034 assert(State.Instance && "Predicated instruction PHI works per instance."); 7035 Instruction *ScalarPredInst = cast<Instruction>( 7036 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7037 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7038 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7039 assert(PredicatingBB && "Predicated block has no single predecessor."); 7040 7041 // By current pack/unpack logic we need to generate only a single phi node: if 7042 // a vector value for the predicated instruction exists at this point it means 7043 // the instruction has vector users only, and a phi for the vector value is 7044 // needed. In this case the recipe of the predicated instruction is marked to 7045 // also do that packing, thereby "hoisting" the insert-element sequence. 7046 // Otherwise, a phi node for the scalar value is needed. 7047 unsigned Part = State.Instance->Part; 7048 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7049 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7050 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7051 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7052 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7053 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7054 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7055 } else { 7056 Type *PredInstType = PredInst->getType(); 7057 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7058 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7059 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7060 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7061 } 7062 } 7063 7064 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7065 if (!User) 7066 return State.ILV->vectorizeMemoryInstruction(&Instr); 7067 7068 // Last (and currently only) operand is a mask. 7069 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7070 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7071 for (unsigned Part = 0; Part < State.UF; ++Part) 7072 MaskValues[Part] = State.get(Mask, Part); 7073 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7074 } 7075 7076 // Process the loop in the VPlan-native vectorization path. This path builds 7077 // VPlan upfront in the vectorization pipeline, which allows to apply 7078 // VPlan-to-VPlan transformations from the very beginning without modifying the 7079 // input LLVM IR. 7080 static bool processLoopInVPlanNativePath( 7081 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7082 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7083 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7084 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7085 7086 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7087 Function *F = L->getHeader()->getParent(); 7088 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7089 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7090 &Hints, IAI); 7091 // Use the planner for outer loop vectorization. 7092 // TODO: CM is not used at this point inside the planner. Turn CM into an 7093 // optional argument if we don't need it in the future. 7094 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7095 7096 // Get user vectorization factor. 7097 unsigned UserVF = Hints.getWidth(); 7098 7099 // Check the function attributes to find out if this function should be 7100 // optimized for size. 7101 bool OptForSize = 7102 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7103 7104 // Plan how to best vectorize, return the best VF and its cost. 7105 VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7106 7107 // If we are stress testing VPlan builds, do not attempt to generate vector 7108 // code. 7109 if (VPlanBuildStressTest) 7110 return false; 7111 7112 LVP.setBestPlan(VF.Width, 1); 7113 7114 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, UserVF, 1, LVL, 7115 &CM); 7116 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7117 << L->getHeader()->getParent()->getName() << "\"\n"); 7118 LVP.executePlan(LB, DT); 7119 7120 // Mark the loop as already vectorized to avoid vectorizing again. 7121 Hints.setAlreadyVectorized(); 7122 7123 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7124 return true; 7125 } 7126 7127 bool LoopVectorizePass::processLoop(Loop *L) { 7128 assert((EnableVPlanNativePath || L->empty()) && 7129 "VPlan-native path is not enabled. Only process inner loops."); 7130 7131 #ifndef NDEBUG 7132 const std::string DebugLocStr = getDebugLocString(L); 7133 #endif /* NDEBUG */ 7134 7135 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7136 << L->getHeader()->getParent()->getName() << "\" from " 7137 << DebugLocStr << "\n"); 7138 7139 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7140 7141 LLVM_DEBUG( 7142 dbgs() << "LV: Loop hints:" 7143 << " force=" 7144 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7145 ? "disabled" 7146 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7147 ? "enabled" 7148 : "?")) 7149 << " width=" << Hints.getWidth() 7150 << " unroll=" << Hints.getInterleave() << "\n"); 7151 7152 // Function containing loop 7153 Function *F = L->getHeader()->getParent(); 7154 7155 // Looking at the diagnostic output is the only way to determine if a loop 7156 // was vectorized (other than looking at the IR or machine code), so it 7157 // is important to generate an optimization remark for each loop. Most of 7158 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7159 // generated as OptimizationRemark and OptimizationRemarkMissed are 7160 // less verbose reporting vectorized loops and unvectorized loops that may 7161 // benefit from vectorization, respectively. 7162 7163 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7164 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7165 return false; 7166 } 7167 7168 PredicatedScalarEvolution PSE(*SE, *L); 7169 7170 // Check if it is legal to vectorize the loop. 7171 LoopVectorizationRequirements Requirements(*ORE); 7172 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7173 &Requirements, &Hints, DB, AC); 7174 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7175 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7176 emitMissedWarning(F, L, Hints, ORE); 7177 return false; 7178 } 7179 7180 // Check the function attributes to find out if this function should be 7181 // optimized for size. 7182 bool OptForSize = 7183 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7184 7185 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7186 // here. They may require CFG and instruction level transformations before 7187 // even evaluating whether vectorization is profitable. Since we cannot modify 7188 // the incoming IR, we need to build VPlan upfront in the vectorization 7189 // pipeline. 7190 if (!L->empty()) 7191 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7192 ORE, Hints); 7193 7194 assert(L->empty() && "Inner loop expected."); 7195 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7196 // count by optimizing for size, to minimize overheads. 7197 // Prefer constant trip counts over profile data, over upper bound estimate. 7198 unsigned ExpectedTC = 0; 7199 bool HasExpectedTC = false; 7200 if (const SCEVConstant *ConstExits = 7201 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7202 const APInt &ExitsCount = ConstExits->getAPInt(); 7203 // We are interested in small values for ExpectedTC. Skip over those that 7204 // can't fit an unsigned. 7205 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7206 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7207 HasExpectedTC = true; 7208 } 7209 } 7210 // ExpectedTC may be large because it's bound by a variable. Check 7211 // profiling information to validate we should vectorize. 7212 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7213 auto EstimatedTC = getLoopEstimatedTripCount(L); 7214 if (EstimatedTC) { 7215 ExpectedTC = *EstimatedTC; 7216 HasExpectedTC = true; 7217 } 7218 } 7219 if (!HasExpectedTC) { 7220 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7221 HasExpectedTC = (ExpectedTC > 0); 7222 } 7223 7224 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7225 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7226 << "This loop is worth vectorizing only if no scalar " 7227 << "iteration overheads are incurred."); 7228 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7229 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7230 else { 7231 LLVM_DEBUG(dbgs() << "\n"); 7232 // Loops with a very small trip count are considered for vectorization 7233 // under OptForSize, thereby making sure the cost of their loop body is 7234 // dominant, free of runtime guards and scalar iteration overheads. 7235 OptForSize = true; 7236 } 7237 } 7238 7239 // Check the function attributes to see if implicit floats are allowed. 7240 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7241 // an integer loop and the vector instructions selected are purely integer 7242 // vector instructions? 7243 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7244 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7245 "attribute is used.\n"); 7246 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7247 "NoImplicitFloat", L) 7248 << "loop not vectorized due to NoImplicitFloat attribute"); 7249 emitMissedWarning(F, L, Hints, ORE); 7250 return false; 7251 } 7252 7253 // Check if the target supports potentially unsafe FP vectorization. 7254 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7255 // for the target we're vectorizing for, to make sure none of the 7256 // additional fp-math flags can help. 7257 if (Hints.isPotentiallyUnsafe() && 7258 TTI->isFPVectorizationPotentiallyUnsafe()) { 7259 LLVM_DEBUG( 7260 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7261 ORE->emit( 7262 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7263 << "loop not vectorized due to unsafe FP support."); 7264 emitMissedWarning(F, L, Hints, ORE); 7265 return false; 7266 } 7267 7268 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7269 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7270 7271 // If an override option has been passed in for interleaved accesses, use it. 7272 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7273 UseInterleaved = EnableInterleavedMemAccesses; 7274 7275 // Analyze interleaved memory accesses. 7276 if (UseInterleaved) { 7277 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7278 } 7279 7280 // Use the cost model. 7281 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7282 &Hints, IAI); 7283 CM.collectValuesToIgnore(); 7284 7285 // Use the planner for vectorization. 7286 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7287 7288 // Get user vectorization factor. 7289 unsigned UserVF = Hints.getWidth(); 7290 7291 // Plan how to best vectorize, return the best VF and its cost. 7292 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7293 7294 // Select the interleave count. 7295 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7296 7297 // Get user interleave count. 7298 unsigned UserIC = Hints.getInterleave(); 7299 7300 // Identify the diagnostic messages that should be produced. 7301 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7302 bool VectorizeLoop = true, InterleaveLoop = true; 7303 if (Requirements.doesNotMeet(F, L, Hints)) { 7304 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7305 "requirements.\n"); 7306 emitMissedWarning(F, L, Hints, ORE); 7307 return false; 7308 } 7309 7310 if (VF.Width == 1) { 7311 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7312 VecDiagMsg = std::make_pair( 7313 "VectorizationNotBeneficial", 7314 "the cost-model indicates that vectorization is not beneficial"); 7315 VectorizeLoop = false; 7316 } 7317 7318 if (IC == 1 && UserIC <= 1) { 7319 // Tell the user interleaving is not beneficial. 7320 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7321 IntDiagMsg = std::make_pair( 7322 "InterleavingNotBeneficial", 7323 "the cost-model indicates that interleaving is not beneficial"); 7324 InterleaveLoop = false; 7325 if (UserIC == 1) { 7326 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7327 IntDiagMsg.second += 7328 " and is explicitly disabled or interleave count is set to 1"; 7329 } 7330 } else if (IC > 1 && UserIC == 1) { 7331 // Tell the user interleaving is beneficial, but it explicitly disabled. 7332 LLVM_DEBUG( 7333 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7334 IntDiagMsg = std::make_pair( 7335 "InterleavingBeneficialButDisabled", 7336 "the cost-model indicates that interleaving is beneficial " 7337 "but is explicitly disabled or interleave count is set to 1"); 7338 InterleaveLoop = false; 7339 } 7340 7341 // Override IC if user provided an interleave count. 7342 IC = UserIC > 0 ? UserIC : IC; 7343 7344 // Emit diagnostic messages, if any. 7345 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7346 if (!VectorizeLoop && !InterleaveLoop) { 7347 // Do not vectorize or interleaving the loop. 7348 ORE->emit([&]() { 7349 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7350 L->getStartLoc(), L->getHeader()) 7351 << VecDiagMsg.second; 7352 }); 7353 ORE->emit([&]() { 7354 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7355 L->getStartLoc(), L->getHeader()) 7356 << IntDiagMsg.second; 7357 }); 7358 return false; 7359 } else if (!VectorizeLoop && InterleaveLoop) { 7360 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7361 ORE->emit([&]() { 7362 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7363 L->getStartLoc(), L->getHeader()) 7364 << VecDiagMsg.second; 7365 }); 7366 } else if (VectorizeLoop && !InterleaveLoop) { 7367 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7368 << ") in " << DebugLocStr << '\n'); 7369 ORE->emit([&]() { 7370 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7371 L->getStartLoc(), L->getHeader()) 7372 << IntDiagMsg.second; 7373 }); 7374 } else if (VectorizeLoop && InterleaveLoop) { 7375 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7376 << ") in " << DebugLocStr << '\n'); 7377 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7378 } 7379 7380 LVP.setBestPlan(VF.Width, IC); 7381 7382 using namespace ore; 7383 7384 if (!VectorizeLoop) { 7385 assert(IC > 1 && "interleave count should not be 1 or 0"); 7386 // If we decided that it is not legal to vectorize the loop, then 7387 // interleave it. 7388 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7389 &CM); 7390 LVP.executePlan(Unroller, DT); 7391 7392 ORE->emit([&]() { 7393 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7394 L->getHeader()) 7395 << "interleaved loop (interleaved count: " 7396 << NV("InterleaveCount", IC) << ")"; 7397 }); 7398 } else { 7399 // If we decided that it is *legal* to vectorize the loop, then do it. 7400 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7401 &LVL, &CM); 7402 LVP.executePlan(LB, DT); 7403 ++LoopsVectorized; 7404 7405 // Add metadata to disable runtime unrolling a scalar loop when there are 7406 // no runtime checks about strides and memory. A scalar loop that is 7407 // rarely used is not worth unrolling. 7408 if (!LB.areSafetyChecksAdded()) 7409 AddRuntimeUnrollDisableMetaData(L); 7410 7411 // Report the vectorization decision. 7412 ORE->emit([&]() { 7413 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7414 L->getHeader()) 7415 << "vectorized loop (vectorization width: " 7416 << NV("VectorizationFactor", VF.Width) 7417 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7418 }); 7419 } 7420 7421 // Mark the loop as already vectorized to avoid vectorizing again. 7422 Hints.setAlreadyVectorized(); 7423 7424 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7425 return true; 7426 } 7427 7428 bool LoopVectorizePass::runImpl( 7429 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7430 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7431 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7432 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7433 OptimizationRemarkEmitter &ORE_) { 7434 SE = &SE_; 7435 LI = &LI_; 7436 TTI = &TTI_; 7437 DT = &DT_; 7438 BFI = &BFI_; 7439 TLI = TLI_; 7440 AA = &AA_; 7441 AC = &AC_; 7442 GetLAA = &GetLAA_; 7443 DB = &DB_; 7444 ORE = &ORE_; 7445 7446 // Don't attempt if 7447 // 1. the target claims to have no vector registers, and 7448 // 2. interleaving won't help ILP. 7449 // 7450 // The second condition is necessary because, even if the target has no 7451 // vector registers, loop vectorization may still enable scalar 7452 // interleaving. 7453 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7454 return false; 7455 7456 bool Changed = false; 7457 7458 // The vectorizer requires loops to be in simplified form. 7459 // Since simplification may add new inner loops, it has to run before the 7460 // legality and profitability checks. This means running the loop vectorizer 7461 // will simplify all loops, regardless of whether anything end up being 7462 // vectorized. 7463 for (auto &L : *LI) 7464 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7465 7466 // Build up a worklist of inner-loops to vectorize. This is necessary as 7467 // the act of vectorizing or partially unrolling a loop creates new loops 7468 // and can invalidate iterators across the loops. 7469 SmallVector<Loop *, 8> Worklist; 7470 7471 for (Loop *L : *LI) 7472 collectSupportedLoops(*L, LI, ORE, Worklist); 7473 7474 LoopsAnalyzed += Worklist.size(); 7475 7476 // Now walk the identified inner loops. 7477 while (!Worklist.empty()) { 7478 Loop *L = Worklist.pop_back_val(); 7479 7480 // For the inner loops we actually process, form LCSSA to simplify the 7481 // transform. 7482 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7483 7484 Changed |= processLoop(L); 7485 } 7486 7487 // Process each loop nest in the function. 7488 return Changed; 7489 } 7490 7491 PreservedAnalyses LoopVectorizePass::run(Function &F, 7492 FunctionAnalysisManager &AM) { 7493 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7494 auto &LI = AM.getResult<LoopAnalysis>(F); 7495 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7496 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7497 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7498 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7499 auto &AA = AM.getResult<AAManager>(F); 7500 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7501 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7502 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7503 7504 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7505 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7506 [&](Loop &L) -> const LoopAccessInfo & { 7507 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7508 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7509 }; 7510 bool Changed = 7511 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7512 if (!Changed) 7513 return PreservedAnalyses::all(); 7514 PreservedAnalyses PA; 7515 7516 // We currently do not preserve loopinfo/dominator analyses with outer loop 7517 // vectorization. Until this is addressed, mark these analyses as preserved 7518 // only for non-VPlan-native path. 7519 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7520 if (!EnableVPlanNativePath) { 7521 PA.preserve<LoopAnalysis>(); 7522 PA.preserve<DominatorTreeAnalysis>(); 7523 } 7524 PA.preserve<BasicAA>(); 7525 PA.preserve<GlobalsAA>(); 7526 return PA; 7527 } 7528