1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/Metadata.h"
116 #include "llvm/IR/Module.h"
117 #include "llvm/IR/Operator.h"
118 #include "llvm/IR/PatternMatch.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <functional>
147 #include <iterator>
148 #include <limits>
149 #include <map>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 #ifndef NDEBUG
161 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
162 #endif
163 
164 /// @{
165 /// Metadata attribute names
166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
167 const char LLVMLoopVectorizeFollowupVectorized[] =
168     "llvm.loop.vectorize.followup_vectorized";
169 const char LLVMLoopVectorizeFollowupEpilogue[] =
170     "llvm.loop.vectorize.followup_epilogue";
171 /// @}
172 
173 STATISTIC(LoopsVectorized, "Number of loops vectorized");
174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
176 
177 static cl::opt<bool> EnableEpilogueVectorization(
178     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
179     cl::desc("Enable vectorization of epilogue loops."));
180 
181 static cl::opt<unsigned> EpilogueVectorizationForceVF(
182     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
183     cl::desc("When epilogue vectorization is enabled, and a value greater than "
184              "1 is specified, forces the given VF for all applicable epilogue "
185              "loops."));
186 
187 static cl::opt<unsigned> EpilogueVectorizationMinVF(
188     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
189     cl::desc("Only loops with vectorization factor equal to or larger than "
190              "the specified value are considered for epilogue vectorization."));
191 
192 /// Loops with a known constant trip count below this number are vectorized only
193 /// if no scalar iteration overheads are incurred.
194 static cl::opt<unsigned> TinyTripCountVectorThreshold(
195     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
196     cl::desc("Loops with a constant trip count that is smaller than this "
197              "value are vectorized only if no scalar iteration overheads "
198              "are incurred."));
199 
200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
201     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
202     cl::desc("The maximum allowed number of runtime memory checks with a "
203              "vectorize(enable) pragma."));
204 
205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
206 // that predication is preferred, and this lists all options. I.e., the
207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
208 // and predicate the instructions accordingly. If tail-folding fails, there are
209 // different fallback strategies depending on these values:
210 namespace PreferPredicateTy {
211   enum Option {
212     ScalarEpilogue = 0,
213     PredicateElseScalarEpilogue,
214     PredicateOrDontVectorize
215   };
216 } // namespace PreferPredicateTy
217 
218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
219     "prefer-predicate-over-epilogue",
220     cl::init(PreferPredicateTy::ScalarEpilogue),
221     cl::Hidden,
222     cl::desc("Tail-folding and predication preferences over creating a scalar "
223              "epilogue loop."),
224     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
225                          "scalar-epilogue",
226                          "Don't tail-predicate loops, create scalar epilogue"),
227               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
228                          "predicate-else-scalar-epilogue",
229                          "prefer tail-folding, create scalar epilogue if tail "
230                          "folding fails."),
231               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
232                          "predicate-dont-vectorize",
233                          "prefers tail-folding, don't attempt vectorization if "
234                          "tail-folding fails.")));
235 
236 static cl::opt<bool> MaximizeBandwidth(
237     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
238     cl::desc("Maximize bandwidth when selecting vectorization factor which "
239              "will be determined by the smallest type in loop."));
240 
241 static cl::opt<bool> EnableInterleavedMemAccesses(
242     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
243     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
244 
245 /// An interleave-group may need masking if it resides in a block that needs
246 /// predication, or in order to mask away gaps.
247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
248     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
249     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
250 
251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
252     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
253     cl::desc("We don't interleave loops with a estimated constant trip count "
254              "below this number"));
255 
256 static cl::opt<unsigned> ForceTargetNumScalarRegs(
257     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
258     cl::desc("A flag that overrides the target's number of scalar registers."));
259 
260 static cl::opt<unsigned> ForceTargetNumVectorRegs(
261     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
262     cl::desc("A flag that overrides the target's number of vector registers."));
263 
264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
265     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
266     cl::desc("A flag that overrides the target's max interleave factor for "
267              "scalar loops."));
268 
269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
270     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
271     cl::desc("A flag that overrides the target's max interleave factor for "
272              "vectorized loops."));
273 
274 static cl::opt<unsigned> ForceTargetInstructionCost(
275     "force-target-instruction-cost", cl::init(0), cl::Hidden,
276     cl::desc("A flag that overrides the target's expected cost for "
277              "an instruction to a single constant value. Mostly "
278              "useful for getting consistent testing."));
279 
280 static cl::opt<bool> ForceTargetSupportsScalableVectors(
281     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
282     cl::desc(
283         "Pretend that scalable vectors are supported, even if the target does "
284         "not support them. This flag should only be used for testing."));
285 
286 static cl::opt<unsigned> SmallLoopCost(
287     "small-loop-cost", cl::init(20), cl::Hidden,
288     cl::desc(
289         "The cost of a loop that is considered 'small' by the interleaver."));
290 
291 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
292     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
293     cl::desc("Enable the use of the block frequency analysis to access PGO "
294              "heuristics minimizing code growth in cold regions and being more "
295              "aggressive in hot regions."));
296 
297 // Runtime interleave loops for load/store throughput.
298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
299     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
300     cl::desc(
301         "Enable runtime interleaving until load/store ports are saturated"));
302 
303 /// Interleave small loops with scalar reductions.
304 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
305     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
306     cl::desc("Enable interleaving for loops with small iteration counts that "
307              "contain scalar reductions to expose ILP."));
308 
309 /// The number of stores in a loop that are allowed to need predication.
310 static cl::opt<unsigned> NumberOfStoresToPredicate(
311     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
312     cl::desc("Max number of stores to be predicated behind an if."));
313 
314 static cl::opt<bool> EnableIndVarRegisterHeur(
315     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
316     cl::desc("Count the induction variable only once when interleaving"));
317 
318 static cl::opt<bool> EnableCondStoresVectorization(
319     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
320     cl::desc("Enable if predication of stores during vectorization."));
321 
322 static cl::opt<unsigned> MaxNestedScalarReductionIC(
323     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
324     cl::desc("The maximum interleave count to use when interleaving a scalar "
325              "reduction in a nested loop."));
326 
327 static cl::opt<bool>
328     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
329                            cl::Hidden,
330                            cl::desc("Prefer in-loop vector reductions, "
331                                     "overriding the targets preference."));
332 
333 static cl::opt<bool> ForceOrderedReductions(
334     "force-ordered-reductions", cl::init(false), cl::Hidden,
335     cl::desc("Enable the vectorisation of loops with in-order (strict) "
336              "FP reductions"));
337 
338 static cl::opt<bool> PreferPredicatedReductionSelect(
339     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
340     cl::desc(
341         "Prefer predicating a reduction operation over an after loop select."));
342 
343 cl::opt<bool> EnableVPlanNativePath(
344     "enable-vplan-native-path", cl::init(false), cl::Hidden,
345     cl::desc("Enable VPlan-native vectorization path with "
346              "support for outer loop vectorization."));
347 
348 // FIXME: Remove this switch once we have divergence analysis. Currently we
349 // assume divergent non-backedge branches when this switch is true.
350 cl::opt<bool> EnableVPlanPredication(
351     "enable-vplan-predication", cl::init(false), cl::Hidden,
352     cl::desc("Enable VPlan-native vectorization path predicator with "
353              "support for outer loop vectorization."));
354 
355 // This flag enables the stress testing of the VPlan H-CFG construction in the
356 // VPlan-native vectorization path. It must be used in conjuction with
357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
358 // verification of the H-CFGs built.
359 static cl::opt<bool> VPlanBuildStressTest(
360     "vplan-build-stress-test", cl::init(false), cl::Hidden,
361     cl::desc(
362         "Build VPlan for every supported loop nest in the function and bail "
363         "out right after the build (stress test the VPlan H-CFG construction "
364         "in the VPlan-native vectorization path)."));
365 
366 cl::opt<bool> llvm::EnableLoopInterleaving(
367     "interleave-loops", cl::init(true), cl::Hidden,
368     cl::desc("Enable loop interleaving in Loop vectorization passes"));
369 cl::opt<bool> llvm::EnableLoopVectorization(
370     "vectorize-loops", cl::init(true), cl::Hidden,
371     cl::desc("Run the Loop vectorization passes"));
372 
373 cl::opt<bool> PrintVPlansInDotFormat(
374     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
375     cl::desc("Use dot format instead of plain text when dumping VPlans"));
376 
377 /// A helper function that returns true if the given type is irregular. The
378 /// type is irregular if its allocated size doesn't equal the store size of an
379 /// element of the corresponding vector type.
380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
381   // Determine if an array of N elements of type Ty is "bitcast compatible"
382   // with a <N x Ty> vector.
383   // This is only true if there is no padding between the array elements.
384   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
385 }
386 
387 /// A helper function that returns the reciprocal of the block probability of
388 /// predicated blocks. If we return X, we are assuming the predicated block
389 /// will execute once for every X iterations of the loop header.
390 ///
391 /// TODO: We should use actual block probability here, if available. Currently,
392 ///       we always assume predicated blocks have a 50% chance of executing.
393 static unsigned getReciprocalPredBlockProb() { return 2; }
394 
395 /// A helper function that returns an integer or floating-point constant with
396 /// value C.
397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
398   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
399                            : ConstantFP::get(Ty, C);
400 }
401 
402 /// Returns "best known" trip count for the specified loop \p L as defined by
403 /// the following procedure:
404 ///   1) Returns exact trip count if it is known.
405 ///   2) Returns expected trip count according to profile data if any.
406 ///   3) Returns upper bound estimate if it is known.
407 ///   4) Returns None if all of the above failed.
408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
409   // Check if exact trip count is known.
410   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
411     return ExpectedTC;
412 
413   // Check if there is an expected trip count available from profile data.
414   if (LoopVectorizeWithBlockFrequency)
415     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
416       return EstimatedTC;
417 
418   // Check if upper bound estimate is known.
419   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
420     return ExpectedTC;
421 
422   return None;
423 }
424 
425 // Forward declare GeneratedRTChecks.
426 class GeneratedRTChecks;
427 
428 namespace llvm {
429 
430 AnalysisKey ShouldRunExtraVectorPasses::Key;
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop and the start value for the canonical induction, if it is != 0. The
473   /// latter is the case when vectorizing the epilogue loop. In the case of
474   /// epilogue vectorization, this function is overriden to handle the more
475   /// complex control flow around the loops.
476   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
477 
478   /// Widen a single call instruction within the innermost loop.
479   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
480                             VPTransformState &State);
481 
482   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
483   void fixVectorizedLoop(VPTransformState &State);
484 
485   // Return true if any runtime check is added.
486   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
487 
488   /// A type for vectorized values in the new loop. Each value from the
489   /// original loop, when vectorized, is represented by UF vector values in the
490   /// new unrolled loop, where UF is the unroll factor.
491   using VectorParts = SmallVector<Value *, 2>;
492 
493   /// Vectorize a single vector PHINode in a block in the VPlan-native path
494   /// only.
495   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
496                            VPTransformState &State);
497 
498   /// A helper function to scalarize a single Instruction in the innermost loop.
499   /// Generates a sequence of scalar instances for each lane between \p MinLane
500   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
501   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
502   /// Instr's operands.
503   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
504                             const VPIteration &Instance, bool IfPredicateInstr,
505                             VPTransformState &State);
506 
507   /// Construct the vector value of a scalarized value \p V one lane at a time.
508   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
509                                  VPTransformState &State);
510 
511   /// Try to vectorize interleaved access group \p Group with the base address
512   /// given in \p Addr, optionally masking the vector operations if \p
513   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
514   /// values in the vectorized loop.
515   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
516                                 ArrayRef<VPValue *> VPDefs,
517                                 VPTransformState &State, VPValue *Addr,
518                                 ArrayRef<VPValue *> StoredValues,
519                                 VPValue *BlockInMask = nullptr);
520 
521   /// Set the debug location in the builder \p Ptr using the debug location in
522   /// \p V. If \p Ptr is None then it uses the class member's Builder.
523   void setDebugLocFromInst(const Value *V,
524                            Optional<IRBuilderBase *> CustomBuilder = None);
525 
526   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
527   void fixNonInductionPHIs(VPTransformState &State);
528 
529   /// Returns true if the reordering of FP operations is not allowed, but we are
530   /// able to vectorize with strict in-order reductions for the given RdxDesc.
531   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
532 
533   /// Create a broadcast instruction. This method generates a broadcast
534   /// instruction (shuffle) for loop invariant values and for the induction
535   /// value. If this is the induction variable then we extend it to N, N+1, ...
536   /// this is needed because each iteration in the loop corresponds to a SIMD
537   /// element.
538   virtual Value *getBroadcastInstrs(Value *V);
539 
540   /// Add metadata from one instruction to another.
541   ///
542   /// This includes both the original MDs from \p From and additional ones (\see
543   /// addNewMetadata).  Use this for *newly created* instructions in the vector
544   /// loop.
545   void addMetadata(Instruction *To, Instruction *From);
546 
547   /// Similar to the previous function but it adds the metadata to a
548   /// vector of instructions.
549   void addMetadata(ArrayRef<Value *> To, Instruction *From);
550 
551   // Returns the resume value (bc.merge.rdx) for a reduction as
552   // generated by fixReduction.
553   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
554 
555 protected:
556   friend class LoopVectorizationPlanner;
557 
558   /// A small list of PHINodes.
559   using PhiVector = SmallVector<PHINode *, 4>;
560 
561   /// A type for scalarized values in the new loop. Each value from the
562   /// original loop, when scalarized, is represented by UF x VF scalar values
563   /// in the new unrolled loop, where UF is the unroll factor and VF is the
564   /// vectorization factor.
565   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
566 
567   /// Set up the values of the IVs correctly when exiting the vector loop.
568   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
569                     Value *CountRoundDown, Value *EndValue,
570                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader);
571 
572   /// Handle all cross-iteration phis in the header.
573   void fixCrossIterationPHIs(VPTransformState &State);
574 
575   /// Create the exit value of first order recurrences in the middle block and
576   /// update their users.
577   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
578                                VPTransformState &State);
579 
580   /// Create code for the loop exit value of the reduction.
581   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
582 
583   /// Clear NSW/NUW flags from reduction instructions if necessary.
584   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
585                                VPTransformState &State);
586 
587   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
588   /// means we need to add the appropriate incoming value from the middle
589   /// block as exiting edges from the scalar epilogue loop (if present) are
590   /// already in place, and we exit the vector loop exclusively to the middle
591   /// block.
592   void fixLCSSAPHIs(VPTransformState &State);
593 
594   /// Iteratively sink the scalarized operands of a predicated instruction into
595   /// the block that was created for it.
596   void sinkScalarOperands(Instruction *PredInst);
597 
598   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
599   /// represented as.
600   void truncateToMinimalBitwidths(VPTransformState &State);
601 
602   /// Returns (and creates if needed) the original loop trip count.
603   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
604 
605   /// Returns (and creates if needed) the trip count of the widened loop.
606   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
607 
608   /// Returns a bitcasted value to the requested vector type.
609   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
610   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
611                                 const DataLayout &DL);
612 
613   /// Emit a bypass check to see if the vector trip count is zero, including if
614   /// it overflows.
615   void emitMinimumIterationCountCheck(BasicBlock *Bypass);
616 
617   /// Emit a bypass check to see if all of the SCEV assumptions we've
618   /// had to make are correct. Returns the block containing the checks or
619   /// nullptr if no checks have been added.
620   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
621 
622   /// Emit bypass checks to check any memory assumptions we may have made.
623   /// Returns the block containing the checks or nullptr if no checks have been
624   /// added.
625   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
626 
627   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
628   /// vector loop preheader, middle block and scalar preheader.
629   void createVectorLoopSkeleton(StringRef Prefix);
630 
631   /// Create new phi nodes for the induction variables to resume iteration count
632   /// in the scalar epilogue, from where the vectorized loop left off.
633   /// In cases where the loop skeleton is more complicated (eg. epilogue
634   /// vectorization) and the resume values can come from an additional bypass
635   /// block, the \p AdditionalBypass pair provides information about the bypass
636   /// block and the end value on the edge from bypass to this loop.
637   void createInductionResumeValues(
638       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
639 
640   /// Complete the loop skeleton by adding debug MDs, creating appropriate
641   /// conditional branches in the middle block, preparing the builder and
642   /// running the verifier. Return the preheader of the completed vector loop.
643   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
644 
645   /// Add additional metadata to \p To that was not present on \p Orig.
646   ///
647   /// Currently this is used to add the noalias annotations based on the
648   /// inserted memchecks.  Use this for instructions that are *cloned* into the
649   /// vector loop.
650   void addNewMetadata(Instruction *To, const Instruction *Orig);
651 
652   /// Collect poison-generating recipes that may generate a poison value that is
653   /// used after vectorization, even when their operands are not poison. Those
654   /// recipes meet the following conditions:
655   ///  * Contribute to the address computation of a recipe generating a widen
656   ///    memory load/store (VPWidenMemoryInstructionRecipe or
657   ///    VPInterleaveRecipe).
658   ///  * Such a widen memory load/store has at least one underlying Instruction
659   ///    that is in a basic block that needs predication and after vectorization
660   ///    the generated instruction won't be predicated.
661   void collectPoisonGeneratingRecipes(VPTransformState &State);
662 
663   /// Allow subclasses to override and print debug traces before/after vplan
664   /// execution, when trace information is requested.
665   virtual void printDebugTracesAtStart(){};
666   virtual void printDebugTracesAtEnd(){};
667 
668   /// The original loop.
669   Loop *OrigLoop;
670 
671   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
672   /// dynamic knowledge to simplify SCEV expressions and converts them to a
673   /// more usable form.
674   PredicatedScalarEvolution &PSE;
675 
676   /// Loop Info.
677   LoopInfo *LI;
678 
679   /// Dominator Tree.
680   DominatorTree *DT;
681 
682   /// Alias Analysis.
683   AAResults *AA;
684 
685   /// Target Library Info.
686   const TargetLibraryInfo *TLI;
687 
688   /// Target Transform Info.
689   const TargetTransformInfo *TTI;
690 
691   /// Assumption Cache.
692   AssumptionCache *AC;
693 
694   /// Interface to emit optimization remarks.
695   OptimizationRemarkEmitter *ORE;
696 
697   /// LoopVersioning.  It's only set up (non-null) if memchecks were
698   /// used.
699   ///
700   /// This is currently only used to add no-alias metadata based on the
701   /// memchecks.  The actually versioning is performed manually.
702   std::unique_ptr<LoopVersioning> LVer;
703 
704   /// The vectorization SIMD factor to use. Each vector will have this many
705   /// vector elements.
706   ElementCount VF;
707 
708   /// The vectorization unroll factor to use. Each scalar is vectorized to this
709   /// many different vector instructions.
710   unsigned UF;
711 
712   /// The builder that we use
713   IRBuilder<> Builder;
714 
715   // --- Vectorization state ---
716 
717   /// The vector-loop preheader.
718   BasicBlock *LoopVectorPreHeader;
719 
720   /// The scalar-loop preheader.
721   BasicBlock *LoopScalarPreHeader;
722 
723   /// Middle Block between the vector and the scalar.
724   BasicBlock *LoopMiddleBlock;
725 
726   /// The unique ExitBlock of the scalar loop if one exists.  Note that
727   /// there can be multiple exiting edges reaching this block.
728   BasicBlock *LoopExitBlock;
729 
730   /// The scalar loop body.
731   BasicBlock *LoopScalarBody;
732 
733   /// A list of all bypass blocks. The first block is the entry of the loop.
734   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
735 
736   /// Store instructions that were predicated.
737   SmallVector<Instruction *, 4> PredicatedInstructions;
738 
739   /// Trip count of the original loop.
740   Value *TripCount = nullptr;
741 
742   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
743   Value *VectorTripCount = nullptr;
744 
745   /// The legality analysis.
746   LoopVectorizationLegality *Legal;
747 
748   /// The profitablity analysis.
749   LoopVectorizationCostModel *Cost;
750 
751   // Record whether runtime checks are added.
752   bool AddedSafetyChecks = false;
753 
754   // Holds the end values for each induction variable. We save the end values
755   // so we can later fix-up the external users of the induction variables.
756   DenseMap<PHINode *, Value *> IVEndValues;
757 
758   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
759   // fixed up at the end of vector code generation.
760   SmallVector<PHINode *, 8> OrigPHIsToFix;
761 
762   /// BFI and PSI are used to check for profile guided size optimizations.
763   BlockFrequencyInfo *BFI;
764   ProfileSummaryInfo *PSI;
765 
766   // Whether this loop should be optimized for size based on profile guided size
767   // optimizatios.
768   bool OptForSizeBasedOnProfile;
769 
770   /// Structure to hold information about generated runtime checks, responsible
771   /// for cleaning the checks, if vectorization turns out unprofitable.
772   GeneratedRTChecks &RTChecks;
773 
774   // Holds the resume values for reductions in the loops, used to set the
775   // correct start value of reduction PHIs when vectorizing the epilogue.
776   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
777       ReductionResumeValues;
778 };
779 
780 class InnerLoopUnroller : public InnerLoopVectorizer {
781 public:
782   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
783                     LoopInfo *LI, DominatorTree *DT,
784                     const TargetLibraryInfo *TLI,
785                     const TargetTransformInfo *TTI, AssumptionCache *AC,
786                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
787                     LoopVectorizationLegality *LVL,
788                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
789                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
790       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
791                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
792                             BFI, PSI, Check) {}
793 
794 private:
795   Value *getBroadcastInstrs(Value *V) override;
796 };
797 
798 /// Encapsulate information regarding vectorization of a loop and its epilogue.
799 /// This information is meant to be updated and used across two stages of
800 /// epilogue vectorization.
801 struct EpilogueLoopVectorizationInfo {
802   ElementCount MainLoopVF = ElementCount::getFixed(0);
803   unsigned MainLoopUF = 0;
804   ElementCount EpilogueVF = ElementCount::getFixed(0);
805   unsigned EpilogueUF = 0;
806   BasicBlock *MainLoopIterationCountCheck = nullptr;
807   BasicBlock *EpilogueIterationCountCheck = nullptr;
808   BasicBlock *SCEVSafetyCheck = nullptr;
809   BasicBlock *MemSafetyCheck = nullptr;
810   Value *TripCount = nullptr;
811   Value *VectorTripCount = nullptr;
812 
813   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
814                                 ElementCount EVF, unsigned EUF)
815       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
816     assert(EUF == 1 &&
817            "A high UF for the epilogue loop is likely not beneficial.");
818   }
819 };
820 
821 /// An extension of the inner loop vectorizer that creates a skeleton for a
822 /// vectorized loop that has its epilogue (residual) also vectorized.
823 /// The idea is to run the vplan on a given loop twice, firstly to setup the
824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
825 /// from the first step and vectorize the epilogue.  This is achieved by
826 /// deriving two concrete strategy classes from this base class and invoking
827 /// them in succession from the loop vectorizer planner.
828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
829 public:
830   InnerLoopAndEpilogueVectorizer(
831       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
832       DominatorTree *DT, const TargetLibraryInfo *TLI,
833       const TargetTransformInfo *TTI, AssumptionCache *AC,
834       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
835       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
836       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
837       GeneratedRTChecks &Checks)
838       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
839                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
840                             Checks),
841         EPI(EPI) {}
842 
843   // Override this function to handle the more complex control flow around the
844   // three loops.
845   std::pair<BasicBlock *, Value *>
846   createVectorizedLoopSkeleton() final override {
847     return createEpilogueVectorizedLoopSkeleton();
848   }
849 
850   /// The interface for creating a vectorized skeleton using one of two
851   /// different strategies, each corresponding to one execution of the vplan
852   /// as described above.
853   virtual std::pair<BasicBlock *, Value *>
854   createEpilogueVectorizedLoopSkeleton() = 0;
855 
856   /// Holds and updates state information required to vectorize the main loop
857   /// and its epilogue in two separate passes. This setup helps us avoid
858   /// regenerating and recomputing runtime safety checks. It also helps us to
859   /// shorten the iteration-count-check path length for the cases where the
860   /// iteration count of the loop is so small that the main vector loop is
861   /// completely skipped.
862   EpilogueLoopVectorizationInfo &EPI;
863 };
864 
865 /// A specialized derived class of inner loop vectorizer that performs
866 /// vectorization of *main* loops in the process of vectorizing loops and their
867 /// epilogues.
868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
869 public:
870   EpilogueVectorizerMainLoop(
871       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
872       DominatorTree *DT, const TargetLibraryInfo *TLI,
873       const TargetTransformInfo *TTI, AssumptionCache *AC,
874       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
875       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
876       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
877       GeneratedRTChecks &Check)
878       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
879                                        EPI, LVL, CM, BFI, PSI, Check) {}
880   /// Implements the interface for creating a vectorized skeleton using the
881   /// *main loop* strategy (ie the first pass of vplan execution).
882   std::pair<BasicBlock *, Value *>
883   createEpilogueVectorizedLoopSkeleton() final override;
884 
885 protected:
886   /// Emits an iteration count bypass check once for the main loop (when \p
887   /// ForEpilogue is false) and once for the epilogue loop (when \p
888   /// ForEpilogue is true).
889   BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass,
890                                              bool ForEpilogue);
891   void printDebugTracesAtStart() override;
892   void printDebugTracesAtEnd() override;
893 };
894 
895 // A specialized derived class of inner loop vectorizer that performs
896 // vectorization of *epilogue* loops in the process of vectorizing loops and
897 // their epilogues.
898 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
899 public:
900   EpilogueVectorizerEpilogueLoop(
901       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
902       DominatorTree *DT, const TargetLibraryInfo *TLI,
903       const TargetTransformInfo *TTI, AssumptionCache *AC,
904       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
905       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
906       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
907       GeneratedRTChecks &Checks)
908       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
909                                        EPI, LVL, CM, BFI, PSI, Checks) {
910     TripCount = EPI.TripCount;
911   }
912   /// Implements the interface for creating a vectorized skeleton using the
913   /// *epilogue loop* strategy (ie the second pass of vplan execution).
914   std::pair<BasicBlock *, Value *>
915   createEpilogueVectorizedLoopSkeleton() final override;
916 
917 protected:
918   /// Emits an iteration count bypass check after the main vector loop has
919   /// finished to see if there are any iterations left to execute by either
920   /// the vector epilogue or the scalar epilogue.
921   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
922                                                       BasicBlock *Bypass,
923                                                       BasicBlock *Insert);
924   void printDebugTracesAtStart() override;
925   void printDebugTracesAtEnd() override;
926 };
927 } // end namespace llvm
928 
929 /// Look for a meaningful debug location on the instruction or it's
930 /// operands.
931 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
932   if (!I)
933     return I;
934 
935   DebugLoc Empty;
936   if (I->getDebugLoc() != Empty)
937     return I;
938 
939   for (Use &Op : I->operands()) {
940     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
941       if (OpInst->getDebugLoc() != Empty)
942         return OpInst;
943   }
944 
945   return I;
946 }
947 
948 void InnerLoopVectorizer::setDebugLocFromInst(
949     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
950   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
951   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
952     const DILocation *DIL = Inst->getDebugLoc();
953 
954     // When a FSDiscriminator is enabled, we don't need to add the multiply
955     // factors to the discriminators.
956     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
957         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
958       // FIXME: For scalable vectors, assume vscale=1.
959       auto NewDIL =
960           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
961       if (NewDIL)
962         B->SetCurrentDebugLocation(NewDIL.getValue());
963       else
964         LLVM_DEBUG(dbgs()
965                    << "Failed to create new discriminator: "
966                    << DIL->getFilename() << " Line: " << DIL->getLine());
967     } else
968       B->SetCurrentDebugLocation(DIL);
969   } else
970     B->SetCurrentDebugLocation(DebugLoc());
971 }
972 
973 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
974 /// is passed, the message relates to that particular instruction.
975 #ifndef NDEBUG
976 static void debugVectorizationMessage(const StringRef Prefix,
977                                       const StringRef DebugMsg,
978                                       Instruction *I) {
979   dbgs() << "LV: " << Prefix << DebugMsg;
980   if (I != nullptr)
981     dbgs() << " " << *I;
982   else
983     dbgs() << '.';
984   dbgs() << '\n';
985 }
986 #endif
987 
988 /// Create an analysis remark that explains why vectorization failed
989 ///
990 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
991 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
992 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
993 /// the location of the remark.  \return the remark object that can be
994 /// streamed to.
995 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
996     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
997   Value *CodeRegion = TheLoop->getHeader();
998   DebugLoc DL = TheLoop->getStartLoc();
999 
1000   if (I) {
1001     CodeRegion = I->getParent();
1002     // If there is no debug location attached to the instruction, revert back to
1003     // using the loop's.
1004     if (I->getDebugLoc())
1005       DL = I->getDebugLoc();
1006   }
1007 
1008   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1009 }
1010 
1011 namespace llvm {
1012 
1013 /// Return a value for Step multiplied by VF.
1014 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1015                        int64_t Step) {
1016   assert(Ty->isIntegerTy() && "Expected an integer step");
1017   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1018   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1019 }
1020 
1021 /// Return the runtime value for VF.
1022 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1023   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1024   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1025 }
1026 
1027 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1028                                   ElementCount VF) {
1029   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1030   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1031   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1032   return B.CreateUIToFP(RuntimeVF, FTy);
1033 }
1034 
1035 void reportVectorizationFailure(const StringRef DebugMsg,
1036                                 const StringRef OREMsg, const StringRef ORETag,
1037                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1038                                 Instruction *I) {
1039   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1040   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1041   ORE->emit(
1042       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1043       << "loop not vectorized: " << OREMsg);
1044 }
1045 
1046 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1047                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1048                              Instruction *I) {
1049   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1050   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1051   ORE->emit(
1052       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1053       << Msg);
1054 }
1055 
1056 } // end namespace llvm
1057 
1058 #ifndef NDEBUG
1059 /// \return string containing a file name and a line # for the given loop.
1060 static std::string getDebugLocString(const Loop *L) {
1061   std::string Result;
1062   if (L) {
1063     raw_string_ostream OS(Result);
1064     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1065       LoopDbgLoc.print(OS);
1066     else
1067       // Just print the module name.
1068       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1069     OS.flush();
1070   }
1071   return Result;
1072 }
1073 #endif
1074 
1075 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1076                                          const Instruction *Orig) {
1077   // If the loop was versioned with memchecks, add the corresponding no-alias
1078   // metadata.
1079   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1080     LVer->annotateInstWithNoAlias(To, Orig);
1081 }
1082 
1083 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1084     VPTransformState &State) {
1085 
1086   // Collect recipes in the backward slice of `Root` that may generate a poison
1087   // value that is used after vectorization.
1088   SmallPtrSet<VPRecipeBase *, 16> Visited;
1089   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1090     SmallVector<VPRecipeBase *, 16> Worklist;
1091     Worklist.push_back(Root);
1092 
1093     // Traverse the backward slice of Root through its use-def chain.
1094     while (!Worklist.empty()) {
1095       VPRecipeBase *CurRec = Worklist.back();
1096       Worklist.pop_back();
1097 
1098       if (!Visited.insert(CurRec).second)
1099         continue;
1100 
1101       // Prune search if we find another recipe generating a widen memory
1102       // instruction. Widen memory instructions involved in address computation
1103       // will lead to gather/scatter instructions, which don't need to be
1104       // handled.
1105       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1106           isa<VPInterleaveRecipe>(CurRec) ||
1107           isa<VPScalarIVStepsRecipe>(CurRec) ||
1108           isa<VPCanonicalIVPHIRecipe>(CurRec))
1109         continue;
1110 
1111       // This recipe contributes to the address computation of a widen
1112       // load/store. Collect recipe if its underlying instruction has
1113       // poison-generating flags.
1114       Instruction *Instr = CurRec->getUnderlyingInstr();
1115       if (Instr && Instr->hasPoisonGeneratingFlags())
1116         State.MayGeneratePoisonRecipes.insert(CurRec);
1117 
1118       // Add new definitions to the worklist.
1119       for (VPValue *operand : CurRec->operands())
1120         if (VPDef *OpDef = operand->getDef())
1121           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1122     }
1123   });
1124 
1125   // Traverse all the recipes in the VPlan and collect the poison-generating
1126   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1127   // VPInterleaveRecipe.
1128   auto Iter = depth_first(
1129       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1130   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1131     for (VPRecipeBase &Recipe : *VPBB) {
1132       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1133         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1134         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1135         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1136             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1137           collectPoisonGeneratingInstrsInBackwardSlice(
1138               cast<VPRecipeBase>(AddrDef));
1139       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1140         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1141         if (AddrDef) {
1142           // Check if any member of the interleave group needs predication.
1143           const InterleaveGroup<Instruction> *InterGroup =
1144               InterleaveRec->getInterleaveGroup();
1145           bool NeedPredication = false;
1146           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1147                I < NumMembers; ++I) {
1148             Instruction *Member = InterGroup->getMember(I);
1149             if (Member)
1150               NeedPredication |=
1151                   Legal->blockNeedsPredication(Member->getParent());
1152           }
1153 
1154           if (NeedPredication)
1155             collectPoisonGeneratingInstrsInBackwardSlice(
1156                 cast<VPRecipeBase>(AddrDef));
1157         }
1158       }
1159     }
1160   }
1161 }
1162 
1163 void InnerLoopVectorizer::addMetadata(Instruction *To,
1164                                       Instruction *From) {
1165   propagateMetadata(To, From);
1166   addNewMetadata(To, From);
1167 }
1168 
1169 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1170                                       Instruction *From) {
1171   for (Value *V : To) {
1172     if (Instruction *I = dyn_cast<Instruction>(V))
1173       addMetadata(I, From);
1174   }
1175 }
1176 
1177 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1178     const RecurrenceDescriptor &RdxDesc) {
1179   auto It = ReductionResumeValues.find(&RdxDesc);
1180   assert(It != ReductionResumeValues.end() &&
1181          "Expected to find a resume value for the reduction.");
1182   return It->second;
1183 }
1184 
1185 namespace llvm {
1186 
1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1188 // lowered.
1189 enum ScalarEpilogueLowering {
1190 
1191   // The default: allowing scalar epilogues.
1192   CM_ScalarEpilogueAllowed,
1193 
1194   // Vectorization with OptForSize: don't allow epilogues.
1195   CM_ScalarEpilogueNotAllowedOptSize,
1196 
1197   // A special case of vectorisation with OptForSize: loops with a very small
1198   // trip count are considered for vectorization under OptForSize, thereby
1199   // making sure the cost of their loop body is dominant, free of runtime
1200   // guards and scalar iteration overheads.
1201   CM_ScalarEpilogueNotAllowedLowTripLoop,
1202 
1203   // Loop hint predicate indicating an epilogue is undesired.
1204   CM_ScalarEpilogueNotNeededUsePredicate,
1205 
1206   // Directive indicating we must either tail fold or not vectorize
1207   CM_ScalarEpilogueNotAllowedUsePredicate
1208 };
1209 
1210 /// ElementCountComparator creates a total ordering for ElementCount
1211 /// for the purposes of using it in a set structure.
1212 struct ElementCountComparator {
1213   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1214     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1215            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1216   }
1217 };
1218 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1219 
1220 /// LoopVectorizationCostModel - estimates the expected speedups due to
1221 /// vectorization.
1222 /// In many cases vectorization is not profitable. This can happen because of
1223 /// a number of reasons. In this class we mainly attempt to predict the
1224 /// expected speedup/slowdowns due to the supported instruction set. We use the
1225 /// TargetTransformInfo to query the different backends for the cost of
1226 /// different operations.
1227 class LoopVectorizationCostModel {
1228 public:
1229   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1230                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1231                              LoopVectorizationLegality *Legal,
1232                              const TargetTransformInfo &TTI,
1233                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1234                              AssumptionCache *AC,
1235                              OptimizationRemarkEmitter *ORE, const Function *F,
1236                              const LoopVectorizeHints *Hints,
1237                              InterleavedAccessInfo &IAI)
1238       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1239         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1240         Hints(Hints), InterleaveInfo(IAI) {}
1241 
1242   /// \return An upper bound for the vectorization factors (both fixed and
1243   /// scalable). If the factors are 0, vectorization and interleaving should be
1244   /// avoided up front.
1245   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1246 
1247   /// \return True if runtime checks are required for vectorization, and false
1248   /// otherwise.
1249   bool runtimeChecksRequired();
1250 
1251   /// \return The most profitable vectorization factor and the cost of that VF.
1252   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1253   /// then this vectorization factor will be selected if vectorization is
1254   /// possible.
1255   VectorizationFactor
1256   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1257 
1258   VectorizationFactor
1259   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1260                                     const LoopVectorizationPlanner &LVP);
1261 
1262   /// Setup cost-based decisions for user vectorization factor.
1263   /// \return true if the UserVF is a feasible VF to be chosen.
1264   bool selectUserVectorizationFactor(ElementCount UserVF) {
1265     collectUniformsAndScalars(UserVF);
1266     collectInstsToScalarize(UserVF);
1267     return expectedCost(UserVF).first.isValid();
1268   }
1269 
1270   /// \return The size (in bits) of the smallest and widest types in the code
1271   /// that needs to be vectorized. We ignore values that remain scalar such as
1272   /// 64 bit loop indices.
1273   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1274 
1275   /// \return The desired interleave count.
1276   /// If interleave count has been specified by metadata it will be returned.
1277   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1278   /// are the selected vectorization factor and the cost of the selected VF.
1279   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1280 
1281   /// Memory access instruction may be vectorized in more than one way.
1282   /// Form of instruction after vectorization depends on cost.
1283   /// This function takes cost-based decisions for Load/Store instructions
1284   /// and collects them in a map. This decisions map is used for building
1285   /// the lists of loop-uniform and loop-scalar instructions.
1286   /// The calculated cost is saved with widening decision in order to
1287   /// avoid redundant calculations.
1288   void setCostBasedWideningDecision(ElementCount VF);
1289 
1290   /// A struct that represents some properties of the register usage
1291   /// of a loop.
1292   struct RegisterUsage {
1293     /// Holds the number of loop invariant values that are used in the loop.
1294     /// The key is ClassID of target-provided register class.
1295     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1296     /// Holds the maximum number of concurrent live intervals in the loop.
1297     /// The key is ClassID of target-provided register class.
1298     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1299   };
1300 
1301   /// \return Returns information about the register usages of the loop for the
1302   /// given vectorization factors.
1303   SmallVector<RegisterUsage, 8>
1304   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1305 
1306   /// Collect values we want to ignore in the cost model.
1307   void collectValuesToIgnore();
1308 
1309   /// Collect all element types in the loop for which widening is needed.
1310   void collectElementTypesForWidening();
1311 
1312   /// Split reductions into those that happen in the loop, and those that happen
1313   /// outside. In loop reductions are collected into InLoopReductionChains.
1314   void collectInLoopReductions();
1315 
1316   /// Returns true if we should use strict in-order reductions for the given
1317   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1318   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1319   /// of FP operations.
1320   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1321     return !Hints->allowReordering() && RdxDesc.isOrdered();
1322   }
1323 
1324   /// \returns The smallest bitwidth each instruction can be represented with.
1325   /// The vector equivalents of these instructions should be truncated to this
1326   /// type.
1327   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1328     return MinBWs;
1329   }
1330 
1331   /// \returns True if it is more profitable to scalarize instruction \p I for
1332   /// vectorization factor \p VF.
1333   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1334     assert(VF.isVector() &&
1335            "Profitable to scalarize relevant only for VF > 1.");
1336 
1337     // Cost model is not run in the VPlan-native path - return conservative
1338     // result until this changes.
1339     if (EnableVPlanNativePath)
1340       return false;
1341 
1342     auto Scalars = InstsToScalarize.find(VF);
1343     assert(Scalars != InstsToScalarize.end() &&
1344            "VF not yet analyzed for scalarization profitability");
1345     return Scalars->second.find(I) != Scalars->second.end();
1346   }
1347 
1348   /// Returns true if \p I is known to be uniform after vectorization.
1349   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1350     if (VF.isScalar())
1351       return true;
1352 
1353     // Cost model is not run in the VPlan-native path - return conservative
1354     // result until this changes.
1355     if (EnableVPlanNativePath)
1356       return false;
1357 
1358     auto UniformsPerVF = Uniforms.find(VF);
1359     assert(UniformsPerVF != Uniforms.end() &&
1360            "VF not yet analyzed for uniformity");
1361     return UniformsPerVF->second.count(I);
1362   }
1363 
1364   /// Returns true if \p I is known to be scalar after vectorization.
1365   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1366     if (VF.isScalar())
1367       return true;
1368 
1369     // Cost model is not run in the VPlan-native path - return conservative
1370     // result until this changes.
1371     if (EnableVPlanNativePath)
1372       return false;
1373 
1374     auto ScalarsPerVF = Scalars.find(VF);
1375     assert(ScalarsPerVF != Scalars.end() &&
1376            "Scalar values are not calculated for VF");
1377     return ScalarsPerVF->second.count(I);
1378   }
1379 
1380   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1381   /// for vectorization factor \p VF.
1382   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1383     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1384            !isProfitableToScalarize(I, VF) &&
1385            !isScalarAfterVectorization(I, VF);
1386   }
1387 
1388   /// Decision that was taken during cost calculation for memory instruction.
1389   enum InstWidening {
1390     CM_Unknown,
1391     CM_Widen,         // For consecutive accesses with stride +1.
1392     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1393     CM_Interleave,
1394     CM_GatherScatter,
1395     CM_Scalarize
1396   };
1397 
1398   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1399   /// instruction \p I and vector width \p VF.
1400   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1401                            InstructionCost Cost) {
1402     assert(VF.isVector() && "Expected VF >=2");
1403     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1404   }
1405 
1406   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1407   /// interleaving group \p Grp and vector width \p VF.
1408   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1409                            ElementCount VF, InstWidening W,
1410                            InstructionCost Cost) {
1411     assert(VF.isVector() && "Expected VF >=2");
1412     /// Broadcast this decicion to all instructions inside the group.
1413     /// But the cost will be assigned to one instruction only.
1414     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1415       if (auto *I = Grp->getMember(i)) {
1416         if (Grp->getInsertPos() == I)
1417           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1418         else
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1420       }
1421     }
1422   }
1423 
1424   /// Return the cost model decision for the given instruction \p I and vector
1425   /// width \p VF. Return CM_Unknown if this instruction did not pass
1426   /// through the cost modeling.
1427   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1428     assert(VF.isVector() && "Expected VF to be a vector VF");
1429     // Cost model is not run in the VPlan-native path - return conservative
1430     // result until this changes.
1431     if (EnableVPlanNativePath)
1432       return CM_GatherScatter;
1433 
1434     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1435     auto Itr = WideningDecisions.find(InstOnVF);
1436     if (Itr == WideningDecisions.end())
1437       return CM_Unknown;
1438     return Itr->second.first;
1439   }
1440 
1441   /// Return the vectorization cost for the given instruction \p I and vector
1442   /// width \p VF.
1443   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1444     assert(VF.isVector() && "Expected VF >=2");
1445     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1446     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1447            "The cost is not calculated");
1448     return WideningDecisions[InstOnVF].second;
1449   }
1450 
1451   /// Return True if instruction \p I is an optimizable truncate whose operand
1452   /// is an induction variable. Such a truncate will be removed by adding a new
1453   /// induction variable with the destination type.
1454   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1455     // If the instruction is not a truncate, return false.
1456     auto *Trunc = dyn_cast<TruncInst>(I);
1457     if (!Trunc)
1458       return false;
1459 
1460     // Get the source and destination types of the truncate.
1461     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1462     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1463 
1464     // If the truncate is free for the given types, return false. Replacing a
1465     // free truncate with an induction variable would add an induction variable
1466     // update instruction to each iteration of the loop. We exclude from this
1467     // check the primary induction variable since it will need an update
1468     // instruction regardless.
1469     Value *Op = Trunc->getOperand(0);
1470     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1471       return false;
1472 
1473     // If the truncated value is not an induction variable, return false.
1474     return Legal->isInductionPhi(Op);
1475   }
1476 
1477   /// Collects the instructions to scalarize for each predicated instruction in
1478   /// the loop.
1479   void collectInstsToScalarize(ElementCount VF);
1480 
1481   /// Collect Uniform and Scalar values for the given \p VF.
1482   /// The sets depend on CM decision for Load/Store instructions
1483   /// that may be vectorized as interleave, gather-scatter or scalarized.
1484   void collectUniformsAndScalars(ElementCount VF) {
1485     // Do the analysis once.
1486     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1487       return;
1488     setCostBasedWideningDecision(VF);
1489     collectLoopUniforms(VF);
1490     collectLoopScalars(VF);
1491   }
1492 
1493   /// Returns true if the target machine supports masked store operation
1494   /// for the given \p DataType and kind of access to \p Ptr.
1495   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1496     return Legal->isConsecutivePtr(DataType, Ptr) &&
1497            TTI.isLegalMaskedStore(DataType, Alignment);
1498   }
1499 
1500   /// Returns true if the target machine supports masked load operation
1501   /// for the given \p DataType and kind of access to \p Ptr.
1502   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1503     return Legal->isConsecutivePtr(DataType, Ptr) &&
1504            TTI.isLegalMaskedLoad(DataType, Alignment);
1505   }
1506 
1507   /// Returns true if the target machine can represent \p V as a masked gather
1508   /// or scatter operation.
1509   bool isLegalGatherOrScatter(Value *V,
1510                               ElementCount VF = ElementCount::getFixed(1)) {
1511     bool LI = isa<LoadInst>(V);
1512     bool SI = isa<StoreInst>(V);
1513     if (!LI && !SI)
1514       return false;
1515     auto *Ty = getLoadStoreType(V);
1516     Align Align = getLoadStoreAlignment(V);
1517     if (VF.isVector())
1518       Ty = VectorType::get(Ty, VF);
1519     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1520            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1521   }
1522 
1523   /// Returns true if the target machine supports all of the reduction
1524   /// variables found for the given VF.
1525   bool canVectorizeReductions(ElementCount VF) const {
1526     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1527       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1528       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1529     }));
1530   }
1531 
1532   /// Returns true if \p I is an instruction that will be scalarized with
1533   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1534   /// instructions include conditional stores and instructions that may divide
1535   /// by zero.
1536   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // \p VF is the vectorization factor that will be used to vectorize \p I.
1541   // Superset of instructions that return true for isScalarWithPredication.
1542   bool isPredicatedInst(Instruction *I, ElementCount VF,
1543                         bool IsKnownUniform = false) {
1544     // When we know the load is uniform and the original scalar loop was not
1545     // predicated we don't need to mark it as a predicated instruction. Any
1546     // vectorised blocks created when tail-folding are something artificial we
1547     // have introduced and we know there is always at least one active lane.
1548     // That's why we call Legal->blockNeedsPredication here because it doesn't
1549     // query tail-folding.
1550     if (IsKnownUniform && isa<LoadInst>(I) &&
1551         !Legal->blockNeedsPredication(I->getParent()))
1552       return false;
1553     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1554       return false;
1555     // Loads and stores that need some form of masked operation are predicated
1556     // instructions.
1557     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1558       return Legal->isMaskRequired(I);
1559     return isScalarWithPredication(I, VF);
1560   }
1561 
1562   /// Returns true if \p I is a memory instruction with consecutive memory
1563   /// access that can be widened.
1564   bool
1565   memoryInstructionCanBeWidened(Instruction *I,
1566                                 ElementCount VF = ElementCount::getFixed(1));
1567 
1568   /// Returns true if \p I is a memory instruction in an interleaved-group
1569   /// of memory accesses that can be vectorized with wide vector loads/stores
1570   /// and shuffles.
1571   bool
1572   interleavedAccessCanBeWidened(Instruction *I,
1573                                 ElementCount VF = ElementCount::getFixed(1));
1574 
1575   /// Check if \p Instr belongs to any interleaved access group.
1576   bool isAccessInterleaved(Instruction *Instr) {
1577     return InterleaveInfo.isInterleaved(Instr);
1578   }
1579 
1580   /// Get the interleaved access group that \p Instr belongs to.
1581   const InterleaveGroup<Instruction> *
1582   getInterleavedAccessGroup(Instruction *Instr) {
1583     return InterleaveInfo.getInterleaveGroup(Instr);
1584   }
1585 
1586   /// Returns true if we're required to use a scalar epilogue for at least
1587   /// the final iteration of the original loop.
1588   bool requiresScalarEpilogue(ElementCount VF) const {
1589     if (!isScalarEpilogueAllowed())
1590       return false;
1591     // If we might exit from anywhere but the latch, must run the exiting
1592     // iteration in scalar form.
1593     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1594       return true;
1595     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1596   }
1597 
1598   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1599   /// loop hint annotation.
1600   bool isScalarEpilogueAllowed() const {
1601     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1602   }
1603 
1604   /// Returns true if all loop blocks should be masked to fold tail loop.
1605   bool foldTailByMasking() const { return FoldTailByMasking; }
1606 
1607   /// Returns true if the instructions in this block requires predication
1608   /// for any reason, e.g. because tail folding now requires a predicate
1609   /// or because the block in the original loop was predicated.
1610   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1611     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1612   }
1613 
1614   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1615   /// nodes to the chain of instructions representing the reductions. Uses a
1616   /// MapVector to ensure deterministic iteration order.
1617   using ReductionChainMap =
1618       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1619 
1620   /// Return the chain of instructions representing an inloop reduction.
1621   const ReductionChainMap &getInLoopReductionChains() const {
1622     return InLoopReductionChains;
1623   }
1624 
1625   /// Returns true if the Phi is part of an inloop reduction.
1626   bool isInLoopReduction(PHINode *Phi) const {
1627     return InLoopReductionChains.count(Phi);
1628   }
1629 
1630   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1631   /// with factor VF.  Return the cost of the instruction, including
1632   /// scalarization overhead if it's needed.
1633   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1634 
1635   /// Estimate cost of a call instruction CI if it were vectorized with factor
1636   /// VF. Return the cost of the instruction, including scalarization overhead
1637   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1638   /// scalarized -
1639   /// i.e. either vector version isn't available, or is too expensive.
1640   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1641                                     bool &NeedToScalarize) const;
1642 
1643   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1644   /// that of B.
1645   bool isMoreProfitable(const VectorizationFactor &A,
1646                         const VectorizationFactor &B) const;
1647 
1648   /// Invalidates decisions already taken by the cost model.
1649   void invalidateCostModelingDecisions() {
1650     WideningDecisions.clear();
1651     Uniforms.clear();
1652     Scalars.clear();
1653   }
1654 
1655 private:
1656   unsigned NumPredStores = 0;
1657 
1658   /// Convenience function that returns the value of vscale_range iff
1659   /// vscale_range.min == vscale_range.max or otherwise returns the value
1660   /// returned by the corresponding TLI method.
1661   Optional<unsigned> getVScaleForTuning() const;
1662 
1663   /// \return An upper bound for the vectorization factors for both
1664   /// fixed and scalable vectorization, where the minimum-known number of
1665   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1666   /// disabled or unsupported, then the scalable part will be equal to
1667   /// ElementCount::getScalable(0).
1668   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1669                                            ElementCount UserVF,
1670                                            bool FoldTailByMasking);
1671 
1672   /// \return the maximized element count based on the targets vector
1673   /// registers and the loop trip-count, but limited to a maximum safe VF.
1674   /// This is a helper function of computeFeasibleMaxVF.
1675   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1676   /// issue that occurred on one of the buildbots which cannot be reproduced
1677   /// without having access to the properietary compiler (see comments on
1678   /// D98509). The issue is currently under investigation and this workaround
1679   /// will be removed as soon as possible.
1680   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1681                                        unsigned SmallestType,
1682                                        unsigned WidestType,
1683                                        const ElementCount &MaxSafeVF,
1684                                        bool FoldTailByMasking);
1685 
1686   /// \return the maximum legal scalable VF, based on the safe max number
1687   /// of elements.
1688   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1689 
1690   /// The vectorization cost is a combination of the cost itself and a boolean
1691   /// indicating whether any of the contributing operations will actually
1692   /// operate on vector values after type legalization in the backend. If this
1693   /// latter value is false, then all operations will be scalarized (i.e. no
1694   /// vectorization has actually taken place).
1695   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1696 
1697   /// Returns the expected execution cost. The unit of the cost does
1698   /// not matter because we use the 'cost' units to compare different
1699   /// vector widths. The cost that is returned is *not* normalized by
1700   /// the factor width. If \p Invalid is not nullptr, this function
1701   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1702   /// each instruction that has an Invalid cost for the given VF.
1703   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1704   VectorizationCostTy
1705   expectedCost(ElementCount VF,
1706                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1707 
1708   /// Returns the execution time cost of an instruction for a given vector
1709   /// width. Vector width of one means scalar.
1710   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1711 
1712   /// The cost-computation logic from getInstructionCost which provides
1713   /// the vector type as an output parameter.
1714   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1715                                      Type *&VectorTy);
1716 
1717   /// Return the cost of instructions in an inloop reduction pattern, if I is
1718   /// part of that pattern.
1719   Optional<InstructionCost>
1720   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1721                           TTI::TargetCostKind CostKind);
1722 
1723   /// Calculate vectorization cost of memory instruction \p I.
1724   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1725 
1726   /// The cost computation for scalarized memory instruction.
1727   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1728 
1729   /// The cost computation for interleaving group of memory instructions.
1730   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1731 
1732   /// The cost computation for Gather/Scatter instruction.
1733   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1734 
1735   /// The cost computation for widening instruction \p I with consecutive
1736   /// memory access.
1737   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1738 
1739   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1740   /// Load: scalar load + broadcast.
1741   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1742   /// element)
1743   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1744 
1745   /// Estimate the overhead of scalarizing an instruction. This is a
1746   /// convenience wrapper for the type-based getScalarizationOverhead API.
1747   InstructionCost getScalarizationOverhead(Instruction *I,
1748                                            ElementCount VF) const;
1749 
1750   /// Returns whether the instruction is a load or store and will be a emitted
1751   /// as a vector operation.
1752   bool isConsecutiveLoadOrStore(Instruction *I);
1753 
1754   /// Returns true if an artificially high cost for emulated masked memrefs
1755   /// should be used.
1756   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1757 
1758   /// Map of scalar integer values to the smallest bitwidth they can be legally
1759   /// represented as. The vector equivalents of these values should be truncated
1760   /// to this type.
1761   MapVector<Instruction *, uint64_t> MinBWs;
1762 
1763   /// A type representing the costs for instructions if they were to be
1764   /// scalarized rather than vectorized. The entries are Instruction-Cost
1765   /// pairs.
1766   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1767 
1768   /// A set containing all BasicBlocks that are known to present after
1769   /// vectorization as a predicated block.
1770   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1771 
1772   /// Records whether it is allowed to have the original scalar loop execute at
1773   /// least once. This may be needed as a fallback loop in case runtime
1774   /// aliasing/dependence checks fail, or to handle the tail/remainder
1775   /// iterations when the trip count is unknown or doesn't divide by the VF,
1776   /// or as a peel-loop to handle gaps in interleave-groups.
1777   /// Under optsize and when the trip count is very small we don't allow any
1778   /// iterations to execute in the scalar loop.
1779   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1780 
1781   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1782   bool FoldTailByMasking = false;
1783 
1784   /// A map holding scalar costs for different vectorization factors. The
1785   /// presence of a cost for an instruction in the mapping indicates that the
1786   /// instruction will be scalarized when vectorizing with the associated
1787   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1788   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1789 
1790   /// Holds the instructions known to be uniform after vectorization.
1791   /// The data is collected per VF.
1792   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1793 
1794   /// Holds the instructions known to be scalar after vectorization.
1795   /// The data is collected per VF.
1796   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1797 
1798   /// Holds the instructions (address computations) that are forced to be
1799   /// scalarized.
1800   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1801 
1802   /// PHINodes of the reductions that should be expanded in-loop along with
1803   /// their associated chains of reduction operations, in program order from top
1804   /// (PHI) to bottom
1805   ReductionChainMap InLoopReductionChains;
1806 
1807   /// A Map of inloop reduction operations and their immediate chain operand.
1808   /// FIXME: This can be removed once reductions can be costed correctly in
1809   /// vplan. This was added to allow quick lookup to the inloop operations,
1810   /// without having to loop through InLoopReductionChains.
1811   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1812 
1813   /// Returns the expected difference in cost from scalarizing the expression
1814   /// feeding a predicated instruction \p PredInst. The instructions to
1815   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1816   /// non-negative return value implies the expression will be scalarized.
1817   /// Currently, only single-use chains are considered for scalarization.
1818   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1819                               ElementCount VF);
1820 
1821   /// Collect the instructions that are uniform after vectorization. An
1822   /// instruction is uniform if we represent it with a single scalar value in
1823   /// the vectorized loop corresponding to each vector iteration. Examples of
1824   /// uniform instructions include pointer operands of consecutive or
1825   /// interleaved memory accesses. Note that although uniformity implies an
1826   /// instruction will be scalar, the reverse is not true. In general, a
1827   /// scalarized instruction will be represented by VF scalar values in the
1828   /// vectorized loop, each corresponding to an iteration of the original
1829   /// scalar loop.
1830   void collectLoopUniforms(ElementCount VF);
1831 
1832   /// Collect the instructions that are scalar after vectorization. An
1833   /// instruction is scalar if it is known to be uniform or will be scalarized
1834   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1835   /// to the list if they are used by a load/store instruction that is marked as
1836   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1837   /// VF values in the vectorized loop, each corresponding to an iteration of
1838   /// the original scalar loop.
1839   void collectLoopScalars(ElementCount VF);
1840 
1841   /// Keeps cost model vectorization decision and cost for instructions.
1842   /// Right now it is used for memory instructions only.
1843   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1844                                 std::pair<InstWidening, InstructionCost>>;
1845 
1846   DecisionList WideningDecisions;
1847 
1848   /// Returns true if \p V is expected to be vectorized and it needs to be
1849   /// extracted.
1850   bool needsExtract(Value *V, ElementCount VF) const {
1851     Instruction *I = dyn_cast<Instruction>(V);
1852     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1853         TheLoop->isLoopInvariant(I))
1854       return false;
1855 
1856     // Assume we can vectorize V (and hence we need extraction) if the
1857     // scalars are not computed yet. This can happen, because it is called
1858     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1859     // the scalars are collected. That should be a safe assumption in most
1860     // cases, because we check if the operands have vectorizable types
1861     // beforehand in LoopVectorizationLegality.
1862     return Scalars.find(VF) == Scalars.end() ||
1863            !isScalarAfterVectorization(I, VF);
1864   };
1865 
1866   /// Returns a range containing only operands needing to be extracted.
1867   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1868                                                    ElementCount VF) const {
1869     return SmallVector<Value *, 4>(make_filter_range(
1870         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1871   }
1872 
1873   /// Determines if we have the infrastructure to vectorize loop \p L and its
1874   /// epilogue, assuming the main loop is vectorized by \p VF.
1875   bool isCandidateForEpilogueVectorization(const Loop &L,
1876                                            const ElementCount VF) const;
1877 
1878   /// Returns true if epilogue vectorization is considered profitable, and
1879   /// false otherwise.
1880   /// \p VF is the vectorization factor chosen for the original loop.
1881   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1882 
1883 public:
1884   /// The loop that we evaluate.
1885   Loop *TheLoop;
1886 
1887   /// Predicated scalar evolution analysis.
1888   PredicatedScalarEvolution &PSE;
1889 
1890   /// Loop Info analysis.
1891   LoopInfo *LI;
1892 
1893   /// Vectorization legality.
1894   LoopVectorizationLegality *Legal;
1895 
1896   /// Vector target information.
1897   const TargetTransformInfo &TTI;
1898 
1899   /// Target Library Info.
1900   const TargetLibraryInfo *TLI;
1901 
1902   /// Demanded bits analysis.
1903   DemandedBits *DB;
1904 
1905   /// Assumption cache.
1906   AssumptionCache *AC;
1907 
1908   /// Interface to emit optimization remarks.
1909   OptimizationRemarkEmitter *ORE;
1910 
1911   const Function *TheFunction;
1912 
1913   /// Loop Vectorize Hint.
1914   const LoopVectorizeHints *Hints;
1915 
1916   /// The interleave access information contains groups of interleaved accesses
1917   /// with the same stride and close to each other.
1918   InterleavedAccessInfo &InterleaveInfo;
1919 
1920   /// Values to ignore in the cost model.
1921   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1922 
1923   /// Values to ignore in the cost model when VF > 1.
1924   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1925 
1926   /// All element types found in the loop.
1927   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1928 
1929   /// Profitable vector factors.
1930   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1931 };
1932 } // end namespace llvm
1933 
1934 /// Helper struct to manage generating runtime checks for vectorization.
1935 ///
1936 /// The runtime checks are created up-front in temporary blocks to allow better
1937 /// estimating the cost and un-linked from the existing IR. After deciding to
1938 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1939 /// temporary blocks are completely removed.
1940 class GeneratedRTChecks {
1941   /// Basic block which contains the generated SCEV checks, if any.
1942   BasicBlock *SCEVCheckBlock = nullptr;
1943 
1944   /// The value representing the result of the generated SCEV checks. If it is
1945   /// nullptr, either no SCEV checks have been generated or they have been used.
1946   Value *SCEVCheckCond = nullptr;
1947 
1948   /// Basic block which contains the generated memory runtime checks, if any.
1949   BasicBlock *MemCheckBlock = nullptr;
1950 
1951   /// The value representing the result of the generated memory runtime checks.
1952   /// If it is nullptr, either no memory runtime checks have been generated or
1953   /// they have been used.
1954   Value *MemRuntimeCheckCond = nullptr;
1955 
1956   DominatorTree *DT;
1957   LoopInfo *LI;
1958 
1959   SCEVExpander SCEVExp;
1960   SCEVExpander MemCheckExp;
1961 
1962 public:
1963   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1964                     const DataLayout &DL)
1965       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1966         MemCheckExp(SE, DL, "scev.check") {}
1967 
1968   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1969   /// accurately estimate the cost of the runtime checks. The blocks are
1970   /// un-linked from the IR and is added back during vector code generation. If
1971   /// there is no vector code generation, the check blocks are removed
1972   /// completely.
1973   void Create(Loop *L, const LoopAccessInfo &LAI,
1974               const SCEVPredicate &Pred) {
1975 
1976     BasicBlock *LoopHeader = L->getHeader();
1977     BasicBlock *Preheader = L->getLoopPreheader();
1978 
1979     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1980     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1981     // may be used by SCEVExpander. The blocks will be un-linked from their
1982     // predecessors and removed from LI & DT at the end of the function.
1983     if (!Pred.isAlwaysTrue()) {
1984       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1985                                   nullptr, "vector.scevcheck");
1986 
1987       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1988           &Pred, SCEVCheckBlock->getTerminator());
1989     }
1990 
1991     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1992     if (RtPtrChecking.Need) {
1993       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1994       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1995                                  "vector.memcheck");
1996 
1997       MemRuntimeCheckCond =
1998           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1999                            RtPtrChecking.getChecks(), MemCheckExp);
2000       assert(MemRuntimeCheckCond &&
2001              "no RT checks generated although RtPtrChecking "
2002              "claimed checks are required");
2003     }
2004 
2005     if (!MemCheckBlock && !SCEVCheckBlock)
2006       return;
2007 
2008     // Unhook the temporary block with the checks, update various places
2009     // accordingly.
2010     if (SCEVCheckBlock)
2011       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2012     if (MemCheckBlock)
2013       MemCheckBlock->replaceAllUsesWith(Preheader);
2014 
2015     if (SCEVCheckBlock) {
2016       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2017       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2018       Preheader->getTerminator()->eraseFromParent();
2019     }
2020     if (MemCheckBlock) {
2021       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2022       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2023       Preheader->getTerminator()->eraseFromParent();
2024     }
2025 
2026     DT->changeImmediateDominator(LoopHeader, Preheader);
2027     if (MemCheckBlock) {
2028       DT->eraseNode(MemCheckBlock);
2029       LI->removeBlock(MemCheckBlock);
2030     }
2031     if (SCEVCheckBlock) {
2032       DT->eraseNode(SCEVCheckBlock);
2033       LI->removeBlock(SCEVCheckBlock);
2034     }
2035   }
2036 
2037   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2038   /// unused.
2039   ~GeneratedRTChecks() {
2040     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2041     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2042     if (!SCEVCheckCond)
2043       SCEVCleaner.markResultUsed();
2044 
2045     if (!MemRuntimeCheckCond)
2046       MemCheckCleaner.markResultUsed();
2047 
2048     if (MemRuntimeCheckCond) {
2049       auto &SE = *MemCheckExp.getSE();
2050       // Memory runtime check generation creates compares that use expanded
2051       // values. Remove them before running the SCEVExpanderCleaners.
2052       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2053         if (MemCheckExp.isInsertedInstruction(&I))
2054           continue;
2055         SE.forgetValue(&I);
2056         I.eraseFromParent();
2057       }
2058     }
2059     MemCheckCleaner.cleanup();
2060     SCEVCleaner.cleanup();
2061 
2062     if (SCEVCheckCond)
2063       SCEVCheckBlock->eraseFromParent();
2064     if (MemRuntimeCheckCond)
2065       MemCheckBlock->eraseFromParent();
2066   }
2067 
2068   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2069   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2070   /// depending on the generated condition.
2071   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2072                              BasicBlock *LoopVectorPreHeader,
2073                              BasicBlock *LoopExitBlock) {
2074     if (!SCEVCheckCond)
2075       return nullptr;
2076     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2077       if (C->isZero())
2078         return nullptr;
2079 
2080     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2081 
2082     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2083     // Create new preheader for vector loop.
2084     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2085       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2086 
2087     SCEVCheckBlock->getTerminator()->eraseFromParent();
2088     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2089     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2090                                                 SCEVCheckBlock);
2091 
2092     DT->addNewBlock(SCEVCheckBlock, Pred);
2093     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2094 
2095     ReplaceInstWithInst(
2096         SCEVCheckBlock->getTerminator(),
2097         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2098     // Mark the check as used, to prevent it from being removed during cleanup.
2099     SCEVCheckCond = nullptr;
2100     return SCEVCheckBlock;
2101   }
2102 
2103   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2104   /// the branches to branch to the vector preheader or \p Bypass, depending on
2105   /// the generated condition.
2106   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2107                                    BasicBlock *LoopVectorPreHeader) {
2108     // Check if we generated code that checks in runtime if arrays overlap.
2109     if (!MemRuntimeCheckCond)
2110       return nullptr;
2111 
2112     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2113     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2114                                                 MemCheckBlock);
2115 
2116     DT->addNewBlock(MemCheckBlock, Pred);
2117     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2118     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2119 
2120     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2121       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2122 
2123     ReplaceInstWithInst(
2124         MemCheckBlock->getTerminator(),
2125         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2126     MemCheckBlock->getTerminator()->setDebugLoc(
2127         Pred->getTerminator()->getDebugLoc());
2128 
2129     // Mark the check as used, to prevent it from being removed during cleanup.
2130     MemRuntimeCheckCond = nullptr;
2131     return MemCheckBlock;
2132   }
2133 };
2134 
2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2136 // vectorization. The loop needs to be annotated with #pragma omp simd
2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2138 // vector length information is not provided, vectorization is not considered
2139 // explicit. Interleave hints are not allowed either. These limitations will be
2140 // relaxed in the future.
2141 // Please, note that we are currently forced to abuse the pragma 'clang
2142 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2144 // provides *explicit vectorization hints* (LV can bypass legal checks and
2145 // assume that vectorization is legal). However, both hints are implemented
2146 // using the same metadata (llvm.loop.vectorize, processed by
2147 // LoopVectorizeHints). This will be fixed in the future when the native IR
2148 // representation for pragma 'omp simd' is introduced.
2149 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2150                                    OptimizationRemarkEmitter *ORE) {
2151   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2152   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2153 
2154   // Only outer loops with an explicit vectorization hint are supported.
2155   // Unannotated outer loops are ignored.
2156   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2157     return false;
2158 
2159   Function *Fn = OuterLp->getHeader()->getParent();
2160   if (!Hints.allowVectorization(Fn, OuterLp,
2161                                 true /*VectorizeOnlyWhenForced*/)) {
2162     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2163     return false;
2164   }
2165 
2166   if (Hints.getInterleave() > 1) {
2167     // TODO: Interleave support is future work.
2168     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2169                          "outer loops.\n");
2170     Hints.emitRemarkWithHints();
2171     return false;
2172   }
2173 
2174   return true;
2175 }
2176 
2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2178                                   OptimizationRemarkEmitter *ORE,
2179                                   SmallVectorImpl<Loop *> &V) {
2180   // Collect inner loops and outer loops without irreducible control flow. For
2181   // now, only collect outer loops that have explicit vectorization hints. If we
2182   // are stress testing the VPlan H-CFG construction, we collect the outermost
2183   // loop of every loop nest.
2184   if (L.isInnermost() || VPlanBuildStressTest ||
2185       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2186     LoopBlocksRPO RPOT(&L);
2187     RPOT.perform(LI);
2188     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2189       V.push_back(&L);
2190       // TODO: Collect inner loops inside marked outer loops in case
2191       // vectorization fails for the outer loop. Do not invoke
2192       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2193       // already known to be reducible. We can use an inherited attribute for
2194       // that.
2195       return;
2196     }
2197   }
2198   for (Loop *InnerL : L)
2199     collectSupportedLoops(*InnerL, LI, ORE, V);
2200 }
2201 
2202 namespace {
2203 
2204 /// The LoopVectorize Pass.
2205 struct LoopVectorize : public FunctionPass {
2206   /// Pass identification, replacement for typeid
2207   static char ID;
2208 
2209   LoopVectorizePass Impl;
2210 
2211   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2212                          bool VectorizeOnlyWhenForced = false)
2213       : FunctionPass(ID),
2214         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2215     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2216   }
2217 
2218   bool runOnFunction(Function &F) override {
2219     if (skipFunction(F))
2220       return false;
2221 
2222     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2223     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2224     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2225     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2226     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2227     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2228     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2229     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2230     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2231     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2232     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2233     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2234     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2235 
2236     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2237         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2238 
2239     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2240                         GetLAA, *ORE, PSI).MadeAnyChange;
2241   }
2242 
2243   void getAnalysisUsage(AnalysisUsage &AU) const override {
2244     AU.addRequired<AssumptionCacheTracker>();
2245     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2246     AU.addRequired<DominatorTreeWrapperPass>();
2247     AU.addRequired<LoopInfoWrapperPass>();
2248     AU.addRequired<ScalarEvolutionWrapperPass>();
2249     AU.addRequired<TargetTransformInfoWrapperPass>();
2250     AU.addRequired<AAResultsWrapperPass>();
2251     AU.addRequired<LoopAccessLegacyAnalysis>();
2252     AU.addRequired<DemandedBitsWrapperPass>();
2253     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2254     AU.addRequired<InjectTLIMappingsLegacy>();
2255 
2256     // We currently do not preserve loopinfo/dominator analyses with outer loop
2257     // vectorization. Until this is addressed, mark these analyses as preserved
2258     // only for non-VPlan-native path.
2259     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2260     if (!EnableVPlanNativePath) {
2261       AU.addPreserved<LoopInfoWrapperPass>();
2262       AU.addPreserved<DominatorTreeWrapperPass>();
2263     }
2264 
2265     AU.addPreserved<BasicAAWrapperPass>();
2266     AU.addPreserved<GlobalsAAWrapperPass>();
2267     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2268   }
2269 };
2270 
2271 } // end anonymous namespace
2272 
2273 //===----------------------------------------------------------------------===//
2274 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2275 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2276 //===----------------------------------------------------------------------===//
2277 
2278 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2279   // We need to place the broadcast of invariant variables outside the loop,
2280   // but only if it's proven safe to do so. Else, broadcast will be inside
2281   // vector loop body.
2282   Instruction *Instr = dyn_cast<Instruction>(V);
2283   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2284                      (!Instr ||
2285                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2286   // Place the code for broadcasting invariant variables in the new preheader.
2287   IRBuilder<>::InsertPointGuard Guard(Builder);
2288   if (SafeToHoist)
2289     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2290 
2291   // Broadcast the scalar into all locations in the vector.
2292   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2293 
2294   return Shuf;
2295 }
2296 
2297 /// This function adds
2298 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2299 /// to each vector element of Val. The sequence starts at StartIndex.
2300 /// \p Opcode is relevant for FP induction variable.
2301 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2302                             Instruction::BinaryOps BinOp, ElementCount VF,
2303                             IRBuilderBase &Builder) {
2304   assert(VF.isVector() && "only vector VFs are supported");
2305 
2306   // Create and check the types.
2307   auto *ValVTy = cast<VectorType>(Val->getType());
2308   ElementCount VLen = ValVTy->getElementCount();
2309 
2310   Type *STy = Val->getType()->getScalarType();
2311   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2312          "Induction Step must be an integer or FP");
2313   assert(Step->getType() == STy && "Step has wrong type");
2314 
2315   SmallVector<Constant *, 8> Indices;
2316 
2317   // Create a vector of consecutive numbers from zero to VF.
2318   VectorType *InitVecValVTy = ValVTy;
2319   if (STy->isFloatingPointTy()) {
2320     Type *InitVecValSTy =
2321         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2322     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2323   }
2324   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2325 
2326   // Splat the StartIdx
2327   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2328 
2329   if (STy->isIntegerTy()) {
2330     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2331     Step = Builder.CreateVectorSplat(VLen, Step);
2332     assert(Step->getType() == Val->getType() && "Invalid step vec");
2333     // FIXME: The newly created binary instructions should contain nsw/nuw
2334     // flags, which can be found from the original scalar operations.
2335     Step = Builder.CreateMul(InitVec, Step);
2336     return Builder.CreateAdd(Val, Step, "induction");
2337   }
2338 
2339   // Floating point induction.
2340   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2341          "Binary Opcode should be specified for FP induction");
2342   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2343   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2344 
2345   Step = Builder.CreateVectorSplat(VLen, Step);
2346   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2347   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2348 }
2349 
2350 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2351 /// variable on which to base the steps, \p Step is the size of the step.
2352 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2353                              const InductionDescriptor &ID, VPValue *Def,
2354                              VPTransformState &State) {
2355   IRBuilderBase &Builder = State.Builder;
2356   // We shouldn't have to build scalar steps if we aren't vectorizing.
2357   assert(State.VF.isVector() && "VF should be greater than one");
2358   // Get the value type and ensure it and the step have the same integer type.
2359   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2360   assert(ScalarIVTy == Step->getType() &&
2361          "Val and Step should have the same type");
2362 
2363   // We build scalar steps for both integer and floating-point induction
2364   // variables. Here, we determine the kind of arithmetic we will perform.
2365   Instruction::BinaryOps AddOp;
2366   Instruction::BinaryOps MulOp;
2367   if (ScalarIVTy->isIntegerTy()) {
2368     AddOp = Instruction::Add;
2369     MulOp = Instruction::Mul;
2370   } else {
2371     AddOp = ID.getInductionOpcode();
2372     MulOp = Instruction::FMul;
2373   }
2374 
2375   // Determine the number of scalars we need to generate for each unroll
2376   // iteration.
2377   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2378   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2379   // Compute the scalar steps and save the results in State.
2380   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2381                                      ScalarIVTy->getScalarSizeInBits());
2382   Type *VecIVTy = nullptr;
2383   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2384   if (!FirstLaneOnly && State.VF.isScalable()) {
2385     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2386     UnitStepVec =
2387         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2388     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2389     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2390   }
2391 
2392   for (unsigned Part = 0; Part < State.UF; ++Part) {
2393     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2394 
2395     if (!FirstLaneOnly && State.VF.isScalable()) {
2396       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2397       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2398       if (ScalarIVTy->isFloatingPointTy())
2399         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2400       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2401       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2402       State.set(Def, Add, Part);
2403       // It's useful to record the lane values too for the known minimum number
2404       // of elements so we do those below. This improves the code quality when
2405       // trying to extract the first element, for example.
2406     }
2407 
2408     if (ScalarIVTy->isFloatingPointTy())
2409       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2410 
2411     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2412       Value *StartIdx = Builder.CreateBinOp(
2413           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2414       // The step returned by `createStepForVF` is a runtime-evaluated value
2415       // when VF is scalable. Otherwise, it should be folded into a Constant.
2416       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2417              "Expected StartIdx to be folded to a constant when VF is not "
2418              "scalable");
2419       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2420       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2421       State.set(Def, Add, VPIteration(Part, Lane));
2422     }
2423   }
2424 }
2425 
2426 // Generate code for the induction step. Note that induction steps are
2427 // required to be loop-invariant
2428 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2429                               Instruction *InsertBefore,
2430                               Loop *OrigLoop = nullptr) {
2431   const DataLayout &DL = SE.getDataLayout();
2432   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2433          "Induction step should be loop invariant");
2434   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2435     return E->getValue();
2436 
2437   SCEVExpander Exp(SE, DL, "induction");
2438   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2439 }
2440 
2441 /// Compute the transformed value of Index at offset StartValue using step
2442 /// StepValue.
2443 /// For integer induction, returns StartValue + Index * StepValue.
2444 /// For pointer induction, returns StartValue[Index * StepValue].
2445 /// FIXME: The newly created binary instructions should contain nsw/nuw
2446 /// flags, which can be found from the original scalar operations.
2447 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2448                                    Value *StartValue, Value *Step,
2449                                    const InductionDescriptor &ID) {
2450   assert(Index->getType()->getScalarType() == Step->getType() &&
2451          "Index scalar type does not match StepValue type");
2452 
2453   // Note: the IR at this point is broken. We cannot use SE to create any new
2454   // SCEV and then expand it, hoping that SCEV's simplification will give us
2455   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2456   // lead to various SCEV crashes. So all we can do is to use builder and rely
2457   // on InstCombine for future simplifications. Here we handle some trivial
2458   // cases only.
2459   auto CreateAdd = [&B](Value *X, Value *Y) {
2460     assert(X->getType() == Y->getType() && "Types don't match!");
2461     if (auto *CX = dyn_cast<ConstantInt>(X))
2462       if (CX->isZero())
2463         return Y;
2464     if (auto *CY = dyn_cast<ConstantInt>(Y))
2465       if (CY->isZero())
2466         return X;
2467     return B.CreateAdd(X, Y);
2468   };
2469 
2470   // We allow X to be a vector type, in which case Y will potentially be
2471   // splatted into a vector with the same element count.
2472   auto CreateMul = [&B](Value *X, Value *Y) {
2473     assert(X->getType()->getScalarType() == Y->getType() &&
2474            "Types don't match!");
2475     if (auto *CX = dyn_cast<ConstantInt>(X))
2476       if (CX->isOne())
2477         return Y;
2478     if (auto *CY = dyn_cast<ConstantInt>(Y))
2479       if (CY->isOne())
2480         return X;
2481     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2482     if (XVTy && !isa<VectorType>(Y->getType()))
2483       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2484     return B.CreateMul(X, Y);
2485   };
2486 
2487   switch (ID.getKind()) {
2488   case InductionDescriptor::IK_IntInduction: {
2489     assert(!isa<VectorType>(Index->getType()) &&
2490            "Vector indices not supported for integer inductions yet");
2491     assert(Index->getType() == StartValue->getType() &&
2492            "Index type does not match StartValue type");
2493     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2494       return B.CreateSub(StartValue, Index);
2495     auto *Offset = CreateMul(Index, Step);
2496     return CreateAdd(StartValue, Offset);
2497   }
2498   case InductionDescriptor::IK_PtrInduction: {
2499     assert(isa<Constant>(Step) &&
2500            "Expected constant step for pointer induction");
2501     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2502   }
2503   case InductionDescriptor::IK_FpInduction: {
2504     assert(!isa<VectorType>(Index->getType()) &&
2505            "Vector indices not supported for FP inductions yet");
2506     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2507     auto InductionBinOp = ID.getInductionBinOp();
2508     assert(InductionBinOp &&
2509            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2510             InductionBinOp->getOpcode() == Instruction::FSub) &&
2511            "Original bin op should be defined for FP induction");
2512 
2513     Value *MulExp = B.CreateFMul(Step, Index);
2514     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2515                          "induction");
2516   }
2517   case InductionDescriptor::IK_NoInduction:
2518     return nullptr;
2519   }
2520   llvm_unreachable("invalid enum");
2521 }
2522 
2523 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2524                                                     const VPIteration &Instance,
2525                                                     VPTransformState &State) {
2526   Value *ScalarInst = State.get(Def, Instance);
2527   Value *VectorValue = State.get(Def, Instance.Part);
2528   VectorValue = Builder.CreateInsertElement(
2529       VectorValue, ScalarInst,
2530       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2531   State.set(Def, VectorValue, Instance.Part);
2532 }
2533 
2534 // Return whether we allow using masked interleave-groups (for dealing with
2535 // strided loads/stores that reside in predicated blocks, or for dealing
2536 // with gaps).
2537 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2538   // If an override option has been passed in for interleaved accesses, use it.
2539   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2540     return EnableMaskedInterleavedMemAccesses;
2541 
2542   return TTI.enableMaskedInterleavedAccessVectorization();
2543 }
2544 
2545 // Try to vectorize the interleave group that \p Instr belongs to.
2546 //
2547 // E.g. Translate following interleaved load group (factor = 3):
2548 //   for (i = 0; i < N; i+=3) {
2549 //     R = Pic[i];             // Member of index 0
2550 //     G = Pic[i+1];           // Member of index 1
2551 //     B = Pic[i+2];           // Member of index 2
2552 //     ... // do something to R, G, B
2553 //   }
2554 // To:
2555 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2556 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2557 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2558 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2559 //
2560 // Or translate following interleaved store group (factor = 3):
2561 //   for (i = 0; i < N; i+=3) {
2562 //     ... do something to R, G, B
2563 //     Pic[i]   = R;           // Member of index 0
2564 //     Pic[i+1] = G;           // Member of index 1
2565 //     Pic[i+2] = B;           // Member of index 2
2566 //   }
2567 // To:
2568 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2569 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2570 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2571 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2572 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2573 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2574     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2575     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2576     VPValue *BlockInMask) {
2577   Instruction *Instr = Group->getInsertPos();
2578   const DataLayout &DL = Instr->getModule()->getDataLayout();
2579 
2580   // Prepare for the vector type of the interleaved load/store.
2581   Type *ScalarTy = getLoadStoreType(Instr);
2582   unsigned InterleaveFactor = Group->getFactor();
2583   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2584   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2585 
2586   // Prepare for the new pointers.
2587   SmallVector<Value *, 2> AddrParts;
2588   unsigned Index = Group->getIndex(Instr);
2589 
2590   // TODO: extend the masked interleaved-group support to reversed access.
2591   assert((!BlockInMask || !Group->isReverse()) &&
2592          "Reversed masked interleave-group not supported.");
2593 
2594   // If the group is reverse, adjust the index to refer to the last vector lane
2595   // instead of the first. We adjust the index from the first vector lane,
2596   // rather than directly getting the pointer for lane VF - 1, because the
2597   // pointer operand of the interleaved access is supposed to be uniform. For
2598   // uniform instructions, we're only required to generate a value for the
2599   // first vector lane in each unroll iteration.
2600   if (Group->isReverse())
2601     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2602 
2603   for (unsigned Part = 0; Part < UF; Part++) {
2604     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2605     setDebugLocFromInst(AddrPart);
2606 
2607     // Notice current instruction could be any index. Need to adjust the address
2608     // to the member of index 0.
2609     //
2610     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2611     //       b = A[i];       // Member of index 0
2612     // Current pointer is pointed to A[i+1], adjust it to A[i].
2613     //
2614     // E.g.  A[i+1] = a;     // Member of index 1
2615     //       A[i]   = b;     // Member of index 0
2616     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2617     // Current pointer is pointed to A[i+2], adjust it to A[i].
2618 
2619     bool InBounds = false;
2620     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2621       InBounds = gep->isInBounds();
2622     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2623     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2624 
2625     // Cast to the vector pointer type.
2626     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2627     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2628     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2629   }
2630 
2631   setDebugLocFromInst(Instr);
2632   Value *PoisonVec = PoisonValue::get(VecTy);
2633 
2634   Value *MaskForGaps = nullptr;
2635   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2636     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2637     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2638   }
2639 
2640   // Vectorize the interleaved load group.
2641   if (isa<LoadInst>(Instr)) {
2642     // For each unroll part, create a wide load for the group.
2643     SmallVector<Value *, 2> NewLoads;
2644     for (unsigned Part = 0; Part < UF; Part++) {
2645       Instruction *NewLoad;
2646       if (BlockInMask || MaskForGaps) {
2647         assert(useMaskedInterleavedAccesses(*TTI) &&
2648                "masked interleaved groups are not allowed.");
2649         Value *GroupMask = MaskForGaps;
2650         if (BlockInMask) {
2651           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2652           Value *ShuffledMask = Builder.CreateShuffleVector(
2653               BlockInMaskPart,
2654               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2655               "interleaved.mask");
2656           GroupMask = MaskForGaps
2657                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2658                                                 MaskForGaps)
2659                           : ShuffledMask;
2660         }
2661         NewLoad =
2662             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2663                                      GroupMask, PoisonVec, "wide.masked.vec");
2664       }
2665       else
2666         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2667                                             Group->getAlign(), "wide.vec");
2668       Group->addMetadata(NewLoad);
2669       NewLoads.push_back(NewLoad);
2670     }
2671 
2672     // For each member in the group, shuffle out the appropriate data from the
2673     // wide loads.
2674     unsigned J = 0;
2675     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2676       Instruction *Member = Group->getMember(I);
2677 
2678       // Skip the gaps in the group.
2679       if (!Member)
2680         continue;
2681 
2682       auto StrideMask =
2683           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2684       for (unsigned Part = 0; Part < UF; Part++) {
2685         Value *StridedVec = Builder.CreateShuffleVector(
2686             NewLoads[Part], StrideMask, "strided.vec");
2687 
2688         // If this member has different type, cast the result type.
2689         if (Member->getType() != ScalarTy) {
2690           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2691           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2692           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2693         }
2694 
2695         if (Group->isReverse())
2696           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2697 
2698         State.set(VPDefs[J], StridedVec, Part);
2699       }
2700       ++J;
2701     }
2702     return;
2703   }
2704 
2705   // The sub vector type for current instruction.
2706   auto *SubVT = VectorType::get(ScalarTy, VF);
2707 
2708   // Vectorize the interleaved store group.
2709   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2710   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2711          "masked interleaved groups are not allowed.");
2712   assert((!MaskForGaps || !VF.isScalable()) &&
2713          "masking gaps for scalable vectors is not yet supported.");
2714   for (unsigned Part = 0; Part < UF; Part++) {
2715     // Collect the stored vector from each member.
2716     SmallVector<Value *, 4> StoredVecs;
2717     for (unsigned i = 0; i < InterleaveFactor; i++) {
2718       assert((Group->getMember(i) || MaskForGaps) &&
2719              "Fail to get a member from an interleaved store group");
2720       Instruction *Member = Group->getMember(i);
2721 
2722       // Skip the gaps in the group.
2723       if (!Member) {
2724         Value *Undef = PoisonValue::get(SubVT);
2725         StoredVecs.push_back(Undef);
2726         continue;
2727       }
2728 
2729       Value *StoredVec = State.get(StoredValues[i], Part);
2730 
2731       if (Group->isReverse())
2732         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2733 
2734       // If this member has different type, cast it to a unified type.
2735 
2736       if (StoredVec->getType() != SubVT)
2737         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2738 
2739       StoredVecs.push_back(StoredVec);
2740     }
2741 
2742     // Concatenate all vectors into a wide vector.
2743     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2744 
2745     // Interleave the elements in the wide vector.
2746     Value *IVec = Builder.CreateShuffleVector(
2747         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2748         "interleaved.vec");
2749 
2750     Instruction *NewStoreInstr;
2751     if (BlockInMask || MaskForGaps) {
2752       Value *GroupMask = MaskForGaps;
2753       if (BlockInMask) {
2754         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2755         Value *ShuffledMask = Builder.CreateShuffleVector(
2756             BlockInMaskPart,
2757             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2758             "interleaved.mask");
2759         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2760                                                       ShuffledMask, MaskForGaps)
2761                                 : ShuffledMask;
2762       }
2763       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2764                                                 Group->getAlign(), GroupMask);
2765     } else
2766       NewStoreInstr =
2767           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2768 
2769     Group->addMetadata(NewStoreInstr);
2770   }
2771 }
2772 
2773 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2774                                                VPReplicateRecipe *RepRecipe,
2775                                                const VPIteration &Instance,
2776                                                bool IfPredicateInstr,
2777                                                VPTransformState &State) {
2778   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2779 
2780   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2781   // the first lane and part.
2782   if (isa<NoAliasScopeDeclInst>(Instr))
2783     if (!Instance.isFirstIteration())
2784       return;
2785 
2786   setDebugLocFromInst(Instr);
2787 
2788   // Does this instruction return a value ?
2789   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2790 
2791   Instruction *Cloned = Instr->clone();
2792   if (!IsVoidRetTy)
2793     Cloned->setName(Instr->getName() + ".cloned");
2794 
2795   // If the scalarized instruction contributes to the address computation of a
2796   // widen masked load/store which was in a basic block that needed predication
2797   // and is not predicated after vectorization, we can't propagate
2798   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2799   // instruction could feed a poison value to the base address of the widen
2800   // load/store.
2801   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2802     Cloned->dropPoisonGeneratingFlags();
2803 
2804   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2805                                Builder.GetInsertPoint());
2806   // Replace the operands of the cloned instructions with their scalar
2807   // equivalents in the new loop.
2808   for (auto &I : enumerate(RepRecipe->operands())) {
2809     auto InputInstance = Instance;
2810     VPValue *Operand = I.value();
2811     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2812     if (OperandR && OperandR->isUniform())
2813       InputInstance.Lane = VPLane::getFirstLane();
2814     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2815   }
2816   addNewMetadata(Cloned, Instr);
2817 
2818   // Place the cloned scalar in the new loop.
2819   Builder.Insert(Cloned);
2820 
2821   State.set(RepRecipe, Cloned, Instance);
2822 
2823   // If we just cloned a new assumption, add it the assumption cache.
2824   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2825     AC->registerAssumption(II);
2826 
2827   // End if-block.
2828   if (IfPredicateInstr)
2829     PredicatedInstructions.push_back(Cloned);
2830 }
2831 
2832 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2833   if (TripCount)
2834     return TripCount;
2835 
2836   assert(InsertBlock);
2837   IRBuilder<> Builder(InsertBlock->getTerminator());
2838   // Find the loop boundaries.
2839   ScalarEvolution *SE = PSE.getSE();
2840   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2841   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2842          "Invalid loop count");
2843 
2844   Type *IdxTy = Legal->getWidestInductionType();
2845   assert(IdxTy && "No type for induction");
2846 
2847   // The exit count might have the type of i64 while the phi is i32. This can
2848   // happen if we have an induction variable that is sign extended before the
2849   // compare. The only way that we get a backedge taken count is that the
2850   // induction variable was signed and as such will not overflow. In such a case
2851   // truncation is legal.
2852   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2853       IdxTy->getPrimitiveSizeInBits())
2854     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2855   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2856 
2857   // Get the total trip count from the count by adding 1.
2858   const SCEV *ExitCount = SE->getAddExpr(
2859       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2860 
2861   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2862 
2863   // Expand the trip count and place the new instructions in the preheader.
2864   // Notice that the pre-header does not change, only the loop body.
2865   SCEVExpander Exp(*SE, DL, "induction");
2866 
2867   // Count holds the overall loop count (N).
2868   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2869                                 InsertBlock->getTerminator());
2870 
2871   if (TripCount->getType()->isPointerTy())
2872     TripCount =
2873         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2874                                     InsertBlock->getTerminator());
2875 
2876   return TripCount;
2877 }
2878 
2879 Value *
2880 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2881   if (VectorTripCount)
2882     return VectorTripCount;
2883 
2884   Value *TC = getOrCreateTripCount(InsertBlock);
2885   IRBuilder<> Builder(InsertBlock->getTerminator());
2886 
2887   Type *Ty = TC->getType();
2888   // This is where we can make the step a runtime constant.
2889   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2890 
2891   // If the tail is to be folded by masking, round the number of iterations N
2892   // up to a multiple of Step instead of rounding down. This is done by first
2893   // adding Step-1 and then rounding down. Note that it's ok if this addition
2894   // overflows: the vector induction variable will eventually wrap to zero given
2895   // that it starts at zero and its Step is a power of two; the loop will then
2896   // exit, with the last early-exit vector comparison also producing all-true.
2897   if (Cost->foldTailByMasking()) {
2898     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2899            "VF*UF must be a power of 2 when folding tail by masking");
2900     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2901     TC = Builder.CreateAdd(
2902         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2903   }
2904 
2905   // Now we need to generate the expression for the part of the loop that the
2906   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2907   // iterations are not required for correctness, or N - Step, otherwise. Step
2908   // is equal to the vectorization factor (number of SIMD elements) times the
2909   // unroll factor (number of SIMD instructions).
2910   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2911 
2912   // There are cases where we *must* run at least one iteration in the remainder
2913   // loop.  See the cost model for when this can happen.  If the step evenly
2914   // divides the trip count, we set the remainder to be equal to the step. If
2915   // the step does not evenly divide the trip count, no adjustment is necessary
2916   // since there will already be scalar iterations. Note that the minimum
2917   // iterations check ensures that N >= Step.
2918   if (Cost->requiresScalarEpilogue(VF)) {
2919     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2920     R = Builder.CreateSelect(IsZero, Step, R);
2921   }
2922 
2923   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2924 
2925   return VectorTripCount;
2926 }
2927 
2928 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2929                                                    const DataLayout &DL) {
2930   // Verify that V is a vector type with same number of elements as DstVTy.
2931   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2932   unsigned VF = DstFVTy->getNumElements();
2933   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2934   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2935   Type *SrcElemTy = SrcVecTy->getElementType();
2936   Type *DstElemTy = DstFVTy->getElementType();
2937   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2938          "Vector elements must have same size");
2939 
2940   // Do a direct cast if element types are castable.
2941   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2942     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2943   }
2944   // V cannot be directly casted to desired vector type.
2945   // May happen when V is a floating point vector but DstVTy is a vector of
2946   // pointers or vice-versa. Handle this using a two-step bitcast using an
2947   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2948   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2949          "Only one type should be a pointer type");
2950   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2951          "Only one type should be a floating point type");
2952   Type *IntTy =
2953       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2954   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2955   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2956   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2957 }
2958 
2959 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) {
2960   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2961   // Reuse existing vector loop preheader for TC checks.
2962   // Note that new preheader block is generated for vector loop.
2963   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2964   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2965 
2966   // Generate code to check if the loop's trip count is less than VF * UF, or
2967   // equal to it in case a scalar epilogue is required; this implies that the
2968   // vector trip count is zero. This check also covers the case where adding one
2969   // to the backedge-taken count overflowed leading to an incorrect trip count
2970   // of zero. In this case we will also jump to the scalar loop.
2971   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2972                                             : ICmpInst::ICMP_ULT;
2973 
2974   // If tail is to be folded, vector loop takes care of all iterations.
2975   Value *CheckMinIters = Builder.getFalse();
2976   if (!Cost->foldTailByMasking()) {
2977     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
2978     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2979   }
2980   // Create new preheader for vector loop.
2981   LoopVectorPreHeader =
2982       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2983                  "vector.ph");
2984 
2985   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2986                                DT->getNode(Bypass)->getIDom()) &&
2987          "TC check is expected to dominate Bypass");
2988 
2989   // Update dominator for Bypass & LoopExit (if needed).
2990   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2991   if (!Cost->requiresScalarEpilogue(VF))
2992     // If there is an epilogue which must run, there's no edge from the
2993     // middle block to exit blocks  and thus no need to update the immediate
2994     // dominator of the exit blocks.
2995     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2996 
2997   ReplaceInstWithInst(
2998       TCCheckBlock->getTerminator(),
2999       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3000   LoopBypassBlocks.push_back(TCCheckBlock);
3001 }
3002 
3003 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
3004 
3005   BasicBlock *const SCEVCheckBlock =
3006       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3007   if (!SCEVCheckBlock)
3008     return nullptr;
3009 
3010   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3011            (OptForSizeBasedOnProfile &&
3012             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3013          "Cannot SCEV check stride or overflow when optimizing for size");
3014 
3015 
3016   // Update dominator only if this is first RT check.
3017   if (LoopBypassBlocks.empty()) {
3018     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3019     if (!Cost->requiresScalarEpilogue(VF))
3020       // If there is an epilogue which must run, there's no edge from the
3021       // middle block to exit blocks  and thus no need to update the immediate
3022       // dominator of the exit blocks.
3023       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3024   }
3025 
3026   LoopBypassBlocks.push_back(SCEVCheckBlock);
3027   AddedSafetyChecks = true;
3028   return SCEVCheckBlock;
3029 }
3030 
3031 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3032   // VPlan-native path does not do any analysis for runtime checks currently.
3033   if (EnableVPlanNativePath)
3034     return nullptr;
3035 
3036   BasicBlock *const MemCheckBlock =
3037       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3038 
3039   // Check if we generated code that checks in runtime if arrays overlap. We put
3040   // the checks into a separate block to make the more common case of few
3041   // elements faster.
3042   if (!MemCheckBlock)
3043     return nullptr;
3044 
3045   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3046     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3047            "Cannot emit memory checks when optimizing for size, unless forced "
3048            "to vectorize.");
3049     ORE->emit([&]() {
3050       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3051                                         OrigLoop->getStartLoc(),
3052                                         OrigLoop->getHeader())
3053              << "Code-size may be reduced by not forcing "
3054                 "vectorization, or by source-code modifications "
3055                 "eliminating the need for runtime checks "
3056                 "(e.g., adding 'restrict').";
3057     });
3058   }
3059 
3060   LoopBypassBlocks.push_back(MemCheckBlock);
3061 
3062   AddedSafetyChecks = true;
3063 
3064   // We currently don't use LoopVersioning for the actual loop cloning but we
3065   // still use it to add the noalias metadata.
3066   LVer = std::make_unique<LoopVersioning>(
3067       *Legal->getLAI(),
3068       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3069       DT, PSE.getSE());
3070   LVer->prepareNoAliasMetadata();
3071   return MemCheckBlock;
3072 }
3073 
3074 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3075   LoopScalarBody = OrigLoop->getHeader();
3076   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3077   assert(LoopVectorPreHeader && "Invalid loop structure");
3078   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3079   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3080          "multiple exit loop without required epilogue?");
3081 
3082   LoopMiddleBlock =
3083       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3084                  LI, nullptr, Twine(Prefix) + "middle.block");
3085   LoopScalarPreHeader =
3086       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3087                  nullptr, Twine(Prefix) + "scalar.ph");
3088 
3089   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3090 
3091   // Set up the middle block terminator.  Two cases:
3092   // 1) If we know that we must execute the scalar epilogue, emit an
3093   //    unconditional branch.
3094   // 2) Otherwise, we must have a single unique exit block (due to how we
3095   //    implement the multiple exit case).  In this case, set up a conditonal
3096   //    branch from the middle block to the loop scalar preheader, and the
3097   //    exit block.  completeLoopSkeleton will update the condition to use an
3098   //    iteration check, if required to decide whether to execute the remainder.
3099   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3100     BranchInst::Create(LoopScalarPreHeader) :
3101     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3102                        Builder.getTrue());
3103   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3104   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3105 
3106   SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, LI,
3107              nullptr, Twine(Prefix) + "vector.body");
3108 
3109   // Update dominator for loop exit.
3110   if (!Cost->requiresScalarEpilogue(VF))
3111     // If there is an epilogue which must run, there's no edge from the
3112     // middle block to exit blocks  and thus no need to update the immediate
3113     // dominator of the exit blocks.
3114     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3115 }
3116 
3117 void InnerLoopVectorizer::createInductionResumeValues(
3118     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3119   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3120           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3121          "Inconsistent information about additional bypass.");
3122 
3123   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3124   assert(VectorTripCount && "Expected valid arguments");
3125   // We are going to resume the execution of the scalar loop.
3126   // Go over all of the induction variables that we found and fix the
3127   // PHIs that are left in the scalar version of the loop.
3128   // The starting values of PHI nodes depend on the counter of the last
3129   // iteration in the vectorized loop.
3130   // If we come from a bypass edge then we need to start from the original
3131   // start value.
3132   Instruction *OldInduction = Legal->getPrimaryInduction();
3133   for (auto &InductionEntry : Legal->getInductionVars()) {
3134     PHINode *OrigPhi = InductionEntry.first;
3135     InductionDescriptor II = InductionEntry.second;
3136 
3137     // Create phi nodes to merge from the  backedge-taken check block.
3138     PHINode *BCResumeVal =
3139         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3140                         LoopScalarPreHeader->getTerminator());
3141     // Copy original phi DL over to the new one.
3142     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3143     Value *&EndValue = IVEndValues[OrigPhi];
3144     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3145     if (OrigPhi == OldInduction) {
3146       // We know what the end value is.
3147       EndValue = VectorTripCount;
3148     } else {
3149       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3150 
3151       // Fast-math-flags propagate from the original induction instruction.
3152       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3153         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3154 
3155       Type *StepType = II.getStep()->getType();
3156       Instruction::CastOps CastOp =
3157           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3158       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3159       Value *Step =
3160           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3161       EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3162       EndValue->setName("ind.end");
3163 
3164       // Compute the end value for the additional bypass (if applicable).
3165       if (AdditionalBypass.first) {
3166         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3167         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3168                                          StepType, true);
3169         Value *Step =
3170             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3171         CRD =
3172             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3173         EndValueFromAdditionalBypass =
3174             emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3175         EndValueFromAdditionalBypass->setName("ind.end");
3176       }
3177     }
3178     // The new PHI merges the original incoming value, in case of a bypass,
3179     // or the value at the end of the vectorized loop.
3180     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3181 
3182     // Fix the scalar body counter (PHI node).
3183     // The old induction's phi node in the scalar body needs the truncated
3184     // value.
3185     for (BasicBlock *BB : LoopBypassBlocks)
3186       BCResumeVal->addIncoming(II.getStartValue(), BB);
3187 
3188     if (AdditionalBypass.first)
3189       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3190                                             EndValueFromAdditionalBypass);
3191 
3192     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3193   }
3194 }
3195 
3196 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3197   // The trip counts should be cached by now.
3198   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3199   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3200 
3201   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3202 
3203   // Add a check in the middle block to see if we have completed
3204   // all of the iterations in the first vector loop.  Three cases:
3205   // 1) If we require a scalar epilogue, there is no conditional branch as
3206   //    we unconditionally branch to the scalar preheader.  Do nothing.
3207   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3208   //    Thus if tail is to be folded, we know we don't need to run the
3209   //    remainder and we can use the previous value for the condition (true).
3210   // 3) Otherwise, construct a runtime check.
3211   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3212     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3213                                         Count, VectorTripCount, "cmp.n",
3214                                         LoopMiddleBlock->getTerminator());
3215 
3216     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3217     // of the corresponding compare because they may have ended up with
3218     // different line numbers and we want to avoid awkward line stepping while
3219     // debugging. Eg. if the compare has got a line number inside the loop.
3220     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3221     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3222   }
3223 
3224 #ifdef EXPENSIVE_CHECKS
3225   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3226 #endif
3227 
3228   return LoopVectorPreHeader;
3229 }
3230 
3231 std::pair<BasicBlock *, Value *>
3232 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3233   /*
3234    In this function we generate a new loop. The new loop will contain
3235    the vectorized instructions while the old loop will continue to run the
3236    scalar remainder.
3237 
3238        [ ] <-- loop iteration number check.
3239     /   |
3240    /    v
3241   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3242   |  /  |
3243   | /   v
3244   ||   [ ]     <-- vector pre header.
3245   |/    |
3246   |     v
3247   |    [  ] \
3248   |    [  ]_|   <-- vector loop.
3249   |     |
3250   |     v
3251   \   -[ ]   <--- middle-block.
3252    \/   |
3253    /\   v
3254    | ->[ ]     <--- new preheader.
3255    |    |
3256  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3257    |   [ ] \
3258    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3259     \   |
3260      \  v
3261       >[ ]     <-- exit block(s).
3262    ...
3263    */
3264 
3265   // Get the metadata of the original loop before it gets modified.
3266   MDNode *OrigLoopID = OrigLoop->getLoopID();
3267 
3268   // Workaround!  Compute the trip count of the original loop and cache it
3269   // before we start modifying the CFG.  This code has a systemic problem
3270   // wherein it tries to run analysis over partially constructed IR; this is
3271   // wrong, and not simply for SCEV.  The trip count of the original loop
3272   // simply happens to be prone to hitting this in practice.  In theory, we
3273   // can hit the same issue for any SCEV, or ValueTracking query done during
3274   // mutation.  See PR49900.
3275   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3276 
3277   // Create an empty vector loop, and prepare basic blocks for the runtime
3278   // checks.
3279   createVectorLoopSkeleton("");
3280 
3281   // Now, compare the new count to zero. If it is zero skip the vector loop and
3282   // jump to the scalar loop. This check also covers the case where the
3283   // backedge-taken count is uint##_max: adding one to it will overflow leading
3284   // to an incorrect trip count of zero. In this (rare) case we will also jump
3285   // to the scalar loop.
3286   emitMinimumIterationCountCheck(LoopScalarPreHeader);
3287 
3288   // Generate the code to check any assumptions that we've made for SCEV
3289   // expressions.
3290   emitSCEVChecks(LoopScalarPreHeader);
3291 
3292   // Generate the code that checks in runtime if arrays overlap. We put the
3293   // checks into a separate block to make the more common case of few elements
3294   // faster.
3295   emitMemRuntimeChecks(LoopScalarPreHeader);
3296 
3297   // Emit phis for the new starting index of the scalar loop.
3298   createInductionResumeValues();
3299 
3300   return {completeLoopSkeleton(OrigLoopID), nullptr};
3301 }
3302 
3303 // Fix up external users of the induction variable. At this point, we are
3304 // in LCSSA form, with all external PHIs that use the IV having one input value,
3305 // coming from the remainder loop. We need those PHIs to also have a correct
3306 // value for the IV when arriving directly from the middle block.
3307 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3308                                        const InductionDescriptor &II,
3309                                        Value *CountRoundDown, Value *EndValue,
3310                                        BasicBlock *MiddleBlock,
3311                                        BasicBlock *VectorHeader) {
3312   // There are two kinds of external IV usages - those that use the value
3313   // computed in the last iteration (the PHI) and those that use the penultimate
3314   // value (the value that feeds into the phi from the loop latch).
3315   // We allow both, but they, obviously, have different values.
3316 
3317   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3318 
3319   DenseMap<Value *, Value *> MissingVals;
3320 
3321   // An external user of the last iteration's value should see the value that
3322   // the remainder loop uses to initialize its own IV.
3323   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3324   for (User *U : PostInc->users()) {
3325     Instruction *UI = cast<Instruction>(U);
3326     if (!OrigLoop->contains(UI)) {
3327       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3328       MissingVals[UI] = EndValue;
3329     }
3330   }
3331 
3332   // An external user of the penultimate value need to see EndValue - Step.
3333   // The simplest way to get this is to recompute it from the constituent SCEVs,
3334   // that is Start + (Step * (CRD - 1)).
3335   for (User *U : OrigPhi->users()) {
3336     auto *UI = cast<Instruction>(U);
3337     if (!OrigLoop->contains(UI)) {
3338       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3339 
3340       IRBuilder<> B(MiddleBlock->getTerminator());
3341 
3342       // Fast-math-flags propagate from the original induction instruction.
3343       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3344         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3345 
3346       Value *CountMinusOne = B.CreateSub(
3347           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3348       Value *CMO =
3349           !II.getStep()->getType()->isIntegerTy()
3350               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3351                              II.getStep()->getType())
3352               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3353       CMO->setName("cast.cmo");
3354 
3355       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3356                                     VectorHeader->getTerminator());
3357       Value *Escape =
3358           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3359       Escape->setName("ind.escape");
3360       MissingVals[UI] = Escape;
3361     }
3362   }
3363 
3364   for (auto &I : MissingVals) {
3365     PHINode *PHI = cast<PHINode>(I.first);
3366     // One corner case we have to handle is two IVs "chasing" each-other,
3367     // that is %IV2 = phi [...], [ %IV1, %latch ]
3368     // In this case, if IV1 has an external use, we need to avoid adding both
3369     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3370     // don't already have an incoming value for the middle block.
3371     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3372       PHI->addIncoming(I.second, MiddleBlock);
3373   }
3374 }
3375 
3376 namespace {
3377 
3378 struct CSEDenseMapInfo {
3379   static bool canHandle(const Instruction *I) {
3380     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3381            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3382   }
3383 
3384   static inline Instruction *getEmptyKey() {
3385     return DenseMapInfo<Instruction *>::getEmptyKey();
3386   }
3387 
3388   static inline Instruction *getTombstoneKey() {
3389     return DenseMapInfo<Instruction *>::getTombstoneKey();
3390   }
3391 
3392   static unsigned getHashValue(const Instruction *I) {
3393     assert(canHandle(I) && "Unknown instruction!");
3394     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3395                                                            I->value_op_end()));
3396   }
3397 
3398   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3399     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3400         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3401       return LHS == RHS;
3402     return LHS->isIdenticalTo(RHS);
3403   }
3404 };
3405 
3406 } // end anonymous namespace
3407 
3408 ///Perform cse of induction variable instructions.
3409 static void cse(BasicBlock *BB) {
3410   // Perform simple cse.
3411   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3412   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3413     if (!CSEDenseMapInfo::canHandle(&In))
3414       continue;
3415 
3416     // Check if we can replace this instruction with any of the
3417     // visited instructions.
3418     if (Instruction *V = CSEMap.lookup(&In)) {
3419       In.replaceAllUsesWith(V);
3420       In.eraseFromParent();
3421       continue;
3422     }
3423 
3424     CSEMap[&In] = &In;
3425   }
3426 }
3427 
3428 InstructionCost
3429 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3430                                               bool &NeedToScalarize) const {
3431   Function *F = CI->getCalledFunction();
3432   Type *ScalarRetTy = CI->getType();
3433   SmallVector<Type *, 4> Tys, ScalarTys;
3434   for (auto &ArgOp : CI->args())
3435     ScalarTys.push_back(ArgOp->getType());
3436 
3437   // Estimate cost of scalarized vector call. The source operands are assumed
3438   // to be vectors, so we need to extract individual elements from there,
3439   // execute VF scalar calls, and then gather the result into the vector return
3440   // value.
3441   InstructionCost ScalarCallCost =
3442       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3443   if (VF.isScalar())
3444     return ScalarCallCost;
3445 
3446   // Compute corresponding vector type for return value and arguments.
3447   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3448   for (Type *ScalarTy : ScalarTys)
3449     Tys.push_back(ToVectorTy(ScalarTy, VF));
3450 
3451   // Compute costs of unpacking argument values for the scalar calls and
3452   // packing the return values to a vector.
3453   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3454 
3455   InstructionCost Cost =
3456       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3457 
3458   // If we can't emit a vector call for this function, then the currently found
3459   // cost is the cost we need to return.
3460   NeedToScalarize = true;
3461   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3462   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3463 
3464   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3465     return Cost;
3466 
3467   // If the corresponding vector cost is cheaper, return its cost.
3468   InstructionCost VectorCallCost =
3469       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3470   if (VectorCallCost < Cost) {
3471     NeedToScalarize = false;
3472     Cost = VectorCallCost;
3473   }
3474   return Cost;
3475 }
3476 
3477 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3478   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3479     return Elt;
3480   return VectorType::get(Elt, VF);
3481 }
3482 
3483 InstructionCost
3484 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3485                                                    ElementCount VF) const {
3486   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3487   assert(ID && "Expected intrinsic call!");
3488   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3489   FastMathFlags FMF;
3490   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3491     FMF = FPMO->getFastMathFlags();
3492 
3493   SmallVector<const Value *> Arguments(CI->args());
3494   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3495   SmallVector<Type *> ParamTys;
3496   std::transform(FTy->param_begin(), FTy->param_end(),
3497                  std::back_inserter(ParamTys),
3498                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3499 
3500   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3501                                     dyn_cast<IntrinsicInst>(CI));
3502   return TTI.getIntrinsicInstrCost(CostAttrs,
3503                                    TargetTransformInfo::TCK_RecipThroughput);
3504 }
3505 
3506 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3507   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3508   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3509   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3510 }
3511 
3512 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3513   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3514   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3515   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3516 }
3517 
3518 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3519   // For every instruction `I` in MinBWs, truncate the operands, create a
3520   // truncated version of `I` and reextend its result. InstCombine runs
3521   // later and will remove any ext/trunc pairs.
3522   SmallPtrSet<Value *, 4> Erased;
3523   for (const auto &KV : Cost->getMinimalBitwidths()) {
3524     // If the value wasn't vectorized, we must maintain the original scalar
3525     // type. The absence of the value from State indicates that it
3526     // wasn't vectorized.
3527     // FIXME: Should not rely on getVPValue at this point.
3528     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3529     if (!State.hasAnyVectorValue(Def))
3530       continue;
3531     for (unsigned Part = 0; Part < UF; ++Part) {
3532       Value *I = State.get(Def, Part);
3533       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3534         continue;
3535       Type *OriginalTy = I->getType();
3536       Type *ScalarTruncatedTy =
3537           IntegerType::get(OriginalTy->getContext(), KV.second);
3538       auto *TruncatedTy = VectorType::get(
3539           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3540       if (TruncatedTy == OriginalTy)
3541         continue;
3542 
3543       IRBuilder<> B(cast<Instruction>(I));
3544       auto ShrinkOperand = [&](Value *V) -> Value * {
3545         if (auto *ZI = dyn_cast<ZExtInst>(V))
3546           if (ZI->getSrcTy() == TruncatedTy)
3547             return ZI->getOperand(0);
3548         return B.CreateZExtOrTrunc(V, TruncatedTy);
3549       };
3550 
3551       // The actual instruction modification depends on the instruction type,
3552       // unfortunately.
3553       Value *NewI = nullptr;
3554       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3555         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3556                              ShrinkOperand(BO->getOperand(1)));
3557 
3558         // Any wrapping introduced by shrinking this operation shouldn't be
3559         // considered undefined behavior. So, we can't unconditionally copy
3560         // arithmetic wrapping flags to NewI.
3561         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3562       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3563         NewI =
3564             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3565                          ShrinkOperand(CI->getOperand(1)));
3566       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3567         NewI = B.CreateSelect(SI->getCondition(),
3568                               ShrinkOperand(SI->getTrueValue()),
3569                               ShrinkOperand(SI->getFalseValue()));
3570       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3571         switch (CI->getOpcode()) {
3572         default:
3573           llvm_unreachable("Unhandled cast!");
3574         case Instruction::Trunc:
3575           NewI = ShrinkOperand(CI->getOperand(0));
3576           break;
3577         case Instruction::SExt:
3578           NewI = B.CreateSExtOrTrunc(
3579               CI->getOperand(0),
3580               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3581           break;
3582         case Instruction::ZExt:
3583           NewI = B.CreateZExtOrTrunc(
3584               CI->getOperand(0),
3585               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3586           break;
3587         }
3588       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3589         auto Elements0 =
3590             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3591         auto *O0 = B.CreateZExtOrTrunc(
3592             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3593         auto Elements1 =
3594             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3595         auto *O1 = B.CreateZExtOrTrunc(
3596             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3597 
3598         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3599       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3600         // Don't do anything with the operands, just extend the result.
3601         continue;
3602       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3603         auto Elements =
3604             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3605         auto *O0 = B.CreateZExtOrTrunc(
3606             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3607         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3608         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3609       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3610         auto Elements =
3611             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3612         auto *O0 = B.CreateZExtOrTrunc(
3613             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3614         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3615       } else {
3616         // If we don't know what to do, be conservative and don't do anything.
3617         continue;
3618       }
3619 
3620       // Lastly, extend the result.
3621       NewI->takeName(cast<Instruction>(I));
3622       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3623       I->replaceAllUsesWith(Res);
3624       cast<Instruction>(I)->eraseFromParent();
3625       Erased.insert(I);
3626       State.reset(Def, Res, Part);
3627     }
3628   }
3629 
3630   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3631   for (const auto &KV : Cost->getMinimalBitwidths()) {
3632     // If the value wasn't vectorized, we must maintain the original scalar
3633     // type. The absence of the value from State indicates that it
3634     // wasn't vectorized.
3635     // FIXME: Should not rely on getVPValue at this point.
3636     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3637     if (!State.hasAnyVectorValue(Def))
3638       continue;
3639     for (unsigned Part = 0; Part < UF; ++Part) {
3640       Value *I = State.get(Def, Part);
3641       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3642       if (Inst && Inst->use_empty()) {
3643         Value *NewI = Inst->getOperand(0);
3644         Inst->eraseFromParent();
3645         State.reset(Def, NewI, Part);
3646       }
3647     }
3648   }
3649 }
3650 
3651 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3652   // Insert truncates and extends for any truncated instructions as hints to
3653   // InstCombine.
3654   if (VF.isVector())
3655     truncateToMinimalBitwidths(State);
3656 
3657   // Fix widened non-induction PHIs by setting up the PHI operands.
3658   if (OrigPHIsToFix.size()) {
3659     assert(EnableVPlanNativePath &&
3660            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3661     fixNonInductionPHIs(State);
3662   }
3663 
3664   // At this point every instruction in the original loop is widened to a
3665   // vector form. Now we need to fix the recurrences in the loop. These PHI
3666   // nodes are currently empty because we did not want to introduce cycles.
3667   // This is the second stage of vectorizing recurrences.
3668   fixCrossIterationPHIs(State);
3669 
3670   // Forget the original basic block.
3671   PSE.getSE()->forgetLoop(OrigLoop);
3672 
3673   Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB);
3674   // If we inserted an edge from the middle block to the unique exit block,
3675   // update uses outside the loop (phis) to account for the newly inserted
3676   // edge.
3677   if (!Cost->requiresScalarEpilogue(VF)) {
3678     // Fix-up external users of the induction variables.
3679     for (auto &Entry : Legal->getInductionVars())
3680       fixupIVUsers(Entry.first, Entry.second,
3681                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3682                    IVEndValues[Entry.first], LoopMiddleBlock,
3683                    VectorLoop->getHeader());
3684 
3685     fixLCSSAPHIs(State);
3686   }
3687 
3688   for (Instruction *PI : PredicatedInstructions)
3689     sinkScalarOperands(&*PI);
3690 
3691   // Remove redundant induction instructions.
3692   cse(VectorLoop->getHeader());
3693 
3694   // Set/update profile weights for the vector and remainder loops as original
3695   // loop iterations are now distributed among them. Note that original loop
3696   // represented by LoopScalarBody becomes remainder loop after vectorization.
3697   //
3698   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3699   // end up getting slightly roughened result but that should be OK since
3700   // profile is not inherently precise anyway. Note also possible bypass of
3701   // vector code caused by legality checks is ignored, assigning all the weight
3702   // to the vector loop, optimistically.
3703   //
3704   // For scalable vectorization we can't know at compile time how many iterations
3705   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3706   // vscale of '1'.
3707   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3708                                LI->getLoopFor(LoopScalarBody),
3709                                VF.getKnownMinValue() * UF);
3710 }
3711 
3712 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3713   // In order to support recurrences we need to be able to vectorize Phi nodes.
3714   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3715   // stage #2: We now need to fix the recurrences by adding incoming edges to
3716   // the currently empty PHI nodes. At this point every instruction in the
3717   // original loop is widened to a vector form so we can use them to construct
3718   // the incoming edges.
3719   VPBasicBlock *Header =
3720       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3721   for (VPRecipeBase &R : Header->phis()) {
3722     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3723       fixReduction(ReductionPhi, State);
3724     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3725       fixFirstOrderRecurrence(FOR, State);
3726   }
3727 }
3728 
3729 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3730     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3731   // This is the second phase of vectorizing first-order recurrences. An
3732   // overview of the transformation is described below. Suppose we have the
3733   // following loop.
3734   //
3735   //   for (int i = 0; i < n; ++i)
3736   //     b[i] = a[i] - a[i - 1];
3737   //
3738   // There is a first-order recurrence on "a". For this loop, the shorthand
3739   // scalar IR looks like:
3740   //
3741   //   scalar.ph:
3742   //     s_init = a[-1]
3743   //     br scalar.body
3744   //
3745   //   scalar.body:
3746   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3747   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3748   //     s2 = a[i]
3749   //     b[i] = s2 - s1
3750   //     br cond, scalar.body, ...
3751   //
3752   // In this example, s1 is a recurrence because it's value depends on the
3753   // previous iteration. In the first phase of vectorization, we created a
3754   // vector phi v1 for s1. We now complete the vectorization and produce the
3755   // shorthand vector IR shown below (for VF = 4, UF = 1).
3756   //
3757   //   vector.ph:
3758   //     v_init = vector(..., ..., ..., a[-1])
3759   //     br vector.body
3760   //
3761   //   vector.body
3762   //     i = phi [0, vector.ph], [i+4, vector.body]
3763   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3764   //     v2 = a[i, i+1, i+2, i+3];
3765   //     v3 = vector(v1(3), v2(0, 1, 2))
3766   //     b[i, i+1, i+2, i+3] = v2 - v3
3767   //     br cond, vector.body, middle.block
3768   //
3769   //   middle.block:
3770   //     x = v2(3)
3771   //     br scalar.ph
3772   //
3773   //   scalar.ph:
3774   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3775   //     br scalar.body
3776   //
3777   // After execution completes the vector loop, we extract the next value of
3778   // the recurrence (x) to use as the initial value in the scalar loop.
3779 
3780   // Extract the last vector element in the middle block. This will be the
3781   // initial value for the recurrence when jumping to the scalar loop.
3782   VPValue *PreviousDef = PhiR->getBackedgeValue();
3783   Value *Incoming = State.get(PreviousDef, UF - 1);
3784   auto *ExtractForScalar = Incoming;
3785   auto *IdxTy = Builder.getInt32Ty();
3786   if (VF.isVector()) {
3787     auto *One = ConstantInt::get(IdxTy, 1);
3788     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3789     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3790     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3791     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3792                                                     "vector.recur.extract");
3793   }
3794   // Extract the second last element in the middle block if the
3795   // Phi is used outside the loop. We need to extract the phi itself
3796   // and not the last element (the phi update in the current iteration). This
3797   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3798   // when the scalar loop is not run at all.
3799   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3800   if (VF.isVector()) {
3801     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3802     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3803     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3804         Incoming, Idx, "vector.recur.extract.for.phi");
3805   } else if (UF > 1)
3806     // When loop is unrolled without vectorizing, initialize
3807     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3808     // of `Incoming`. This is analogous to the vectorized case above: extracting
3809     // the second last element when VF > 1.
3810     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3811 
3812   // Fix the initial value of the original recurrence in the scalar loop.
3813   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3814   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3815   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3816   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3817   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3818     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3819     Start->addIncoming(Incoming, BB);
3820   }
3821 
3822   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3823   Phi->setName("scalar.recur");
3824 
3825   // Finally, fix users of the recurrence outside the loop. The users will need
3826   // either the last value of the scalar recurrence or the last value of the
3827   // vector recurrence we extracted in the middle block. Since the loop is in
3828   // LCSSA form, we just need to find all the phi nodes for the original scalar
3829   // recurrence in the exit block, and then add an edge for the middle block.
3830   // Note that LCSSA does not imply single entry when the original scalar loop
3831   // had multiple exiting edges (as we always run the last iteration in the
3832   // scalar epilogue); in that case, there is no edge from middle to exit and
3833   // and thus no phis which needed updated.
3834   if (!Cost->requiresScalarEpilogue(VF))
3835     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3836       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
3837         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3838 }
3839 
3840 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3841                                        VPTransformState &State) {
3842   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3843   // Get it's reduction variable descriptor.
3844   assert(Legal->isReductionVariable(OrigPhi) &&
3845          "Unable to find the reduction variable");
3846   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3847 
3848   RecurKind RK = RdxDesc.getRecurrenceKind();
3849   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3850   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3851   setDebugLocFromInst(ReductionStartValue);
3852 
3853   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3854   // This is the vector-clone of the value that leaves the loop.
3855   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3856 
3857   // Wrap flags are in general invalid after vectorization, clear them.
3858   clearReductionWrapFlags(RdxDesc, State);
3859 
3860   // Before each round, move the insertion point right between
3861   // the PHIs and the values we are going to write.
3862   // This allows us to write both PHINodes and the extractelement
3863   // instructions.
3864   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3865 
3866   setDebugLocFromInst(LoopExitInst);
3867 
3868   Type *PhiTy = OrigPhi->getType();
3869   BasicBlock *VectorLoopLatch =
3870       LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
3871   // If tail is folded by masking, the vector value to leave the loop should be
3872   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3873   // instead of the former. For an inloop reduction the reduction will already
3874   // be predicated, and does not need to be handled here.
3875   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3876     for (unsigned Part = 0; Part < UF; ++Part) {
3877       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3878       Value *Sel = nullptr;
3879       for (User *U : VecLoopExitInst->users()) {
3880         if (isa<SelectInst>(U)) {
3881           assert(!Sel && "Reduction exit feeding two selects");
3882           Sel = U;
3883         } else
3884           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3885       }
3886       assert(Sel && "Reduction exit feeds no select");
3887       State.reset(LoopExitInstDef, Sel, Part);
3888 
3889       // If the target can create a predicated operator for the reduction at no
3890       // extra cost in the loop (for example a predicated vadd), it can be
3891       // cheaper for the select to remain in the loop than be sunk out of it,
3892       // and so use the select value for the phi instead of the old
3893       // LoopExitValue.
3894       if (PreferPredicatedReductionSelect ||
3895           TTI->preferPredicatedReductionSelect(
3896               RdxDesc.getOpcode(), PhiTy,
3897               TargetTransformInfo::ReductionFlags())) {
3898         auto *VecRdxPhi =
3899             cast<PHINode>(State.get(PhiR, Part));
3900         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3901       }
3902     }
3903   }
3904 
3905   // If the vector reduction can be performed in a smaller type, we truncate
3906   // then extend the loop exit value to enable InstCombine to evaluate the
3907   // entire expression in the smaller type.
3908   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3909     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3910     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3911     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3912     VectorParts RdxParts(UF);
3913     for (unsigned Part = 0; Part < UF; ++Part) {
3914       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3915       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3916       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3917                                         : Builder.CreateZExt(Trunc, VecTy);
3918       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3919         if (U != Trunc) {
3920           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3921           RdxParts[Part] = Extnd;
3922         }
3923     }
3924     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3925     for (unsigned Part = 0; Part < UF; ++Part) {
3926       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3927       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3928     }
3929   }
3930 
3931   // Reduce all of the unrolled parts into a single vector.
3932   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3933   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3934 
3935   // The middle block terminator has already been assigned a DebugLoc here (the
3936   // OrigLoop's single latch terminator). We want the whole middle block to
3937   // appear to execute on this line because: (a) it is all compiler generated,
3938   // (b) these instructions are always executed after evaluating the latch
3939   // conditional branch, and (c) other passes may add new predecessors which
3940   // terminate on this line. This is the easiest way to ensure we don't
3941   // accidentally cause an extra step back into the loop while debugging.
3942   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3943   if (PhiR->isOrdered())
3944     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3945   else {
3946     // Floating-point operations should have some FMF to enable the reduction.
3947     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3948     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3949     for (unsigned Part = 1; Part < UF; ++Part) {
3950       Value *RdxPart = State.get(LoopExitInstDef, Part);
3951       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3952         ReducedPartRdx = Builder.CreateBinOp(
3953             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3954       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3955         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3956                                            ReducedPartRdx, RdxPart);
3957       else
3958         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3959     }
3960   }
3961 
3962   // Create the reduction after the loop. Note that inloop reductions create the
3963   // target reduction in the loop using a Reduction recipe.
3964   if (VF.isVector() && !PhiR->isInLoop()) {
3965     ReducedPartRdx =
3966         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3967     // If the reduction can be performed in a smaller type, we need to extend
3968     // the reduction to the wider type before we branch to the original loop.
3969     if (PhiTy != RdxDesc.getRecurrenceType())
3970       ReducedPartRdx = RdxDesc.isSigned()
3971                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3972                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3973   }
3974 
3975   PHINode *ResumePhi =
3976       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3977 
3978   // Create a phi node that merges control-flow from the backedge-taken check
3979   // block and the middle block.
3980   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3981                                         LoopScalarPreHeader->getTerminator());
3982 
3983   // If we are fixing reductions in the epilogue loop then we should already
3984   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
3985   // we carry over the incoming values correctly.
3986   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
3987     if (Incoming == LoopMiddleBlock)
3988       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
3989     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
3990       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
3991                               Incoming);
3992     else
3993       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
3994   }
3995 
3996   // Set the resume value for this reduction
3997   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
3998 
3999   // Now, we need to fix the users of the reduction variable
4000   // inside and outside of the scalar remainder loop.
4001 
4002   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4003   // in the exit blocks.  See comment on analogous loop in
4004   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4005   if (!Cost->requiresScalarEpilogue(VF))
4006     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4007       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4008         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4009 
4010   // Fix the scalar loop reduction variable with the incoming reduction sum
4011   // from the vector body and from the backedge value.
4012   int IncomingEdgeBlockIdx =
4013       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4014   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4015   // Pick the other block.
4016   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4017   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4018   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4019 }
4020 
4021 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4022                                                   VPTransformState &State) {
4023   RecurKind RK = RdxDesc.getRecurrenceKind();
4024   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4025     return;
4026 
4027   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4028   assert(LoopExitInstr && "null loop exit instruction");
4029   SmallVector<Instruction *, 8> Worklist;
4030   SmallPtrSet<Instruction *, 8> Visited;
4031   Worklist.push_back(LoopExitInstr);
4032   Visited.insert(LoopExitInstr);
4033 
4034   while (!Worklist.empty()) {
4035     Instruction *Cur = Worklist.pop_back_val();
4036     if (isa<OverflowingBinaryOperator>(Cur))
4037       for (unsigned Part = 0; Part < UF; ++Part) {
4038         // FIXME: Should not rely on getVPValue at this point.
4039         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4040         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4041       }
4042 
4043     for (User *U : Cur->users()) {
4044       Instruction *UI = cast<Instruction>(U);
4045       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4046           Visited.insert(UI).second)
4047         Worklist.push_back(UI);
4048     }
4049   }
4050 }
4051 
4052 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4053   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4054     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4055       // Some phis were already hand updated by the reduction and recurrence
4056       // code above, leave them alone.
4057       continue;
4058 
4059     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4060     // Non-instruction incoming values will have only one value.
4061 
4062     VPLane Lane = VPLane::getFirstLane();
4063     if (isa<Instruction>(IncomingValue) &&
4064         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4065                                            VF))
4066       Lane = VPLane::getLastLaneForVF(VF);
4067 
4068     // Can be a loop invariant incoming value or the last scalar value to be
4069     // extracted from the vectorized loop.
4070     // FIXME: Should not rely on getVPValue at this point.
4071     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4072     Value *lastIncomingValue =
4073         OrigLoop->isLoopInvariant(IncomingValue)
4074             ? IncomingValue
4075             : State.get(State.Plan->getVPValue(IncomingValue, true),
4076                         VPIteration(UF - 1, Lane));
4077     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4078   }
4079 }
4080 
4081 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4082   // The basic block and loop containing the predicated instruction.
4083   auto *PredBB = PredInst->getParent();
4084   auto *VectorLoop = LI->getLoopFor(PredBB);
4085 
4086   // Initialize a worklist with the operands of the predicated instruction.
4087   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4088 
4089   // Holds instructions that we need to analyze again. An instruction may be
4090   // reanalyzed if we don't yet know if we can sink it or not.
4091   SmallVector<Instruction *, 8> InstsToReanalyze;
4092 
4093   // Returns true if a given use occurs in the predicated block. Phi nodes use
4094   // their operands in their corresponding predecessor blocks.
4095   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4096     auto *I = cast<Instruction>(U.getUser());
4097     BasicBlock *BB = I->getParent();
4098     if (auto *Phi = dyn_cast<PHINode>(I))
4099       BB = Phi->getIncomingBlock(
4100           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4101     return BB == PredBB;
4102   };
4103 
4104   // Iteratively sink the scalarized operands of the predicated instruction
4105   // into the block we created for it. When an instruction is sunk, it's
4106   // operands are then added to the worklist. The algorithm ends after one pass
4107   // through the worklist doesn't sink a single instruction.
4108   bool Changed;
4109   do {
4110     // Add the instructions that need to be reanalyzed to the worklist, and
4111     // reset the changed indicator.
4112     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4113     InstsToReanalyze.clear();
4114     Changed = false;
4115 
4116     while (!Worklist.empty()) {
4117       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4118 
4119       // We can't sink an instruction if it is a phi node, is not in the loop,
4120       // or may have side effects.
4121       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4122           I->mayHaveSideEffects())
4123         continue;
4124 
4125       // If the instruction is already in PredBB, check if we can sink its
4126       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4127       // sinking the scalar instruction I, hence it appears in PredBB; but it
4128       // may have failed to sink I's operands (recursively), which we try
4129       // (again) here.
4130       if (I->getParent() == PredBB) {
4131         Worklist.insert(I->op_begin(), I->op_end());
4132         continue;
4133       }
4134 
4135       // It's legal to sink the instruction if all its uses occur in the
4136       // predicated block. Otherwise, there's nothing to do yet, and we may
4137       // need to reanalyze the instruction.
4138       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4139         InstsToReanalyze.push_back(I);
4140         continue;
4141       }
4142 
4143       // Move the instruction to the beginning of the predicated block, and add
4144       // it's operands to the worklist.
4145       I->moveBefore(&*PredBB->getFirstInsertionPt());
4146       Worklist.insert(I->op_begin(), I->op_end());
4147 
4148       // The sinking may have enabled other instructions to be sunk, so we will
4149       // need to iterate.
4150       Changed = true;
4151     }
4152   } while (Changed);
4153 }
4154 
4155 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4156   for (PHINode *OrigPhi : OrigPHIsToFix) {
4157     VPWidenPHIRecipe *VPPhi =
4158         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4159     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4160     // Make sure the builder has a valid insert point.
4161     Builder.SetInsertPoint(NewPhi);
4162     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4163       VPValue *Inc = VPPhi->getIncomingValue(i);
4164       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4165       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4166     }
4167   }
4168 }
4169 
4170 bool InnerLoopVectorizer::useOrderedReductions(
4171     const RecurrenceDescriptor &RdxDesc) {
4172   return Cost->useOrderedReductions(RdxDesc);
4173 }
4174 
4175 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4176                                               VPWidenPHIRecipe *PhiR,
4177                                               VPTransformState &State) {
4178   assert(EnableVPlanNativePath &&
4179          "Non-native vplans are not expected to have VPWidenPHIRecipes.");
4180   // Currently we enter here in the VPlan-native path for non-induction
4181   // PHIs where all control flow is uniform. We simply widen these PHIs.
4182   // Create a vector phi with no operands - the vector phi operands will be
4183   // set at the end of vector code generation.
4184   Type *VecTy = (State.VF.isScalar())
4185                     ? PN->getType()
4186                     : VectorType::get(PN->getType(), State.VF);
4187   Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4188   State.set(PhiR, VecPhi, 0);
4189   OrigPHIsToFix.push_back(cast<PHINode>(PN));
4190 }
4191 
4192 /// A helper function for checking whether an integer division-related
4193 /// instruction may divide by zero (in which case it must be predicated if
4194 /// executed conditionally in the scalar code).
4195 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4196 /// Non-zero divisors that are non compile-time constants will not be
4197 /// converted into multiplication, so we will still end up scalarizing
4198 /// the division, but can do so w/o predication.
4199 static bool mayDivideByZero(Instruction &I) {
4200   assert((I.getOpcode() == Instruction::UDiv ||
4201           I.getOpcode() == Instruction::SDiv ||
4202           I.getOpcode() == Instruction::URem ||
4203           I.getOpcode() == Instruction::SRem) &&
4204          "Unexpected instruction");
4205   Value *Divisor = I.getOperand(1);
4206   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4207   return !CInt || CInt->isZero();
4208 }
4209 
4210 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4211                                                VPUser &ArgOperands,
4212                                                VPTransformState &State) {
4213   assert(!isa<DbgInfoIntrinsic>(I) &&
4214          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4215   setDebugLocFromInst(&I);
4216 
4217   Module *M = I.getParent()->getParent()->getParent();
4218   auto *CI = cast<CallInst>(&I);
4219 
4220   SmallVector<Type *, 4> Tys;
4221   for (Value *ArgOperand : CI->args())
4222     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4223 
4224   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4225 
4226   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4227   // version of the instruction.
4228   // Is it beneficial to perform intrinsic call compared to lib call?
4229   bool NeedToScalarize = false;
4230   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4231   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4232   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4233   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4234          "Instruction should be scalarized elsewhere.");
4235   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4236          "Either the intrinsic cost or vector call cost must be valid");
4237 
4238   for (unsigned Part = 0; Part < UF; ++Part) {
4239     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4240     SmallVector<Value *, 4> Args;
4241     for (auto &I : enumerate(ArgOperands.operands())) {
4242       // Some intrinsics have a scalar argument - don't replace it with a
4243       // vector.
4244       Value *Arg;
4245       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4246         Arg = State.get(I.value(), Part);
4247       else {
4248         Arg = State.get(I.value(), VPIteration(0, 0));
4249         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4250           TysForDecl.push_back(Arg->getType());
4251       }
4252       Args.push_back(Arg);
4253     }
4254 
4255     Function *VectorF;
4256     if (UseVectorIntrinsic) {
4257       // Use vector version of the intrinsic.
4258       if (VF.isVector())
4259         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4260       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4261       assert(VectorF && "Can't retrieve vector intrinsic.");
4262     } else {
4263       // Use vector version of the function call.
4264       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4265 #ifndef NDEBUG
4266       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4267              "Can't create vector function.");
4268 #endif
4269         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4270     }
4271       SmallVector<OperandBundleDef, 1> OpBundles;
4272       CI->getOperandBundlesAsDefs(OpBundles);
4273       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4274 
4275       if (isa<FPMathOperator>(V))
4276         V->copyFastMathFlags(CI);
4277 
4278       State.set(Def, V, Part);
4279       addMetadata(V, &I);
4280   }
4281 }
4282 
4283 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4284   // We should not collect Scalars more than once per VF. Right now, this
4285   // function is called from collectUniformsAndScalars(), which already does
4286   // this check. Collecting Scalars for VF=1 does not make any sense.
4287   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4288          "This function should not be visited twice for the same VF");
4289 
4290   // This avoids any chances of creating a REPLICATE recipe during planning
4291   // since that would result in generation of scalarized code during execution,
4292   // which is not supported for scalable vectors.
4293   if (VF.isScalable()) {
4294     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4295     return;
4296   }
4297 
4298   SmallSetVector<Instruction *, 8> Worklist;
4299 
4300   // These sets are used to seed the analysis with pointers used by memory
4301   // accesses that will remain scalar.
4302   SmallSetVector<Instruction *, 8> ScalarPtrs;
4303   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4304   auto *Latch = TheLoop->getLoopLatch();
4305 
4306   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4307   // The pointer operands of loads and stores will be scalar as long as the
4308   // memory access is not a gather or scatter operation. The value operand of a
4309   // store will remain scalar if the store is scalarized.
4310   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4311     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4312     assert(WideningDecision != CM_Unknown &&
4313            "Widening decision should be ready at this moment");
4314     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4315       if (Ptr == Store->getValueOperand())
4316         return WideningDecision == CM_Scalarize;
4317     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4318            "Ptr is neither a value or pointer operand");
4319     return WideningDecision != CM_GatherScatter;
4320   };
4321 
4322   // A helper that returns true if the given value is a bitcast or
4323   // getelementptr instruction contained in the loop.
4324   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4325     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4326             isa<GetElementPtrInst>(V)) &&
4327            !TheLoop->isLoopInvariant(V);
4328   };
4329 
4330   // A helper that evaluates a memory access's use of a pointer. If the use will
4331   // be a scalar use and the pointer is only used by memory accesses, we place
4332   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4333   // PossibleNonScalarPtrs.
4334   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4335     // We only care about bitcast and getelementptr instructions contained in
4336     // the loop.
4337     if (!isLoopVaryingBitCastOrGEP(Ptr))
4338       return;
4339 
4340     // If the pointer has already been identified as scalar (e.g., if it was
4341     // also identified as uniform), there's nothing to do.
4342     auto *I = cast<Instruction>(Ptr);
4343     if (Worklist.count(I))
4344       return;
4345 
4346     // If the use of the pointer will be a scalar use, and all users of the
4347     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4348     // place the pointer in PossibleNonScalarPtrs.
4349     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4350           return isa<LoadInst>(U) || isa<StoreInst>(U);
4351         }))
4352       ScalarPtrs.insert(I);
4353     else
4354       PossibleNonScalarPtrs.insert(I);
4355   };
4356 
4357   // We seed the scalars analysis with three classes of instructions: (1)
4358   // instructions marked uniform-after-vectorization and (2) bitcast,
4359   // getelementptr and (pointer) phi instructions used by memory accesses
4360   // requiring a scalar use.
4361   //
4362   // (1) Add to the worklist all instructions that have been identified as
4363   // uniform-after-vectorization.
4364   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4365 
4366   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4367   // memory accesses requiring a scalar use. The pointer operands of loads and
4368   // stores will be scalar as long as the memory accesses is not a gather or
4369   // scatter operation. The value operand of a store will remain scalar if the
4370   // store is scalarized.
4371   for (auto *BB : TheLoop->blocks())
4372     for (auto &I : *BB) {
4373       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4374         evaluatePtrUse(Load, Load->getPointerOperand());
4375       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4376         evaluatePtrUse(Store, Store->getPointerOperand());
4377         evaluatePtrUse(Store, Store->getValueOperand());
4378       }
4379     }
4380   for (auto *I : ScalarPtrs)
4381     if (!PossibleNonScalarPtrs.count(I)) {
4382       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4383       Worklist.insert(I);
4384     }
4385 
4386   // Insert the forced scalars.
4387   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4388   // induction variable when the PHI user is scalarized.
4389   auto ForcedScalar = ForcedScalars.find(VF);
4390   if (ForcedScalar != ForcedScalars.end())
4391     for (auto *I : ForcedScalar->second)
4392       Worklist.insert(I);
4393 
4394   // Expand the worklist by looking through any bitcasts and getelementptr
4395   // instructions we've already identified as scalar. This is similar to the
4396   // expansion step in collectLoopUniforms(); however, here we're only
4397   // expanding to include additional bitcasts and getelementptr instructions.
4398   unsigned Idx = 0;
4399   while (Idx != Worklist.size()) {
4400     Instruction *Dst = Worklist[Idx++];
4401     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4402       continue;
4403     auto *Src = cast<Instruction>(Dst->getOperand(0));
4404     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4405           auto *J = cast<Instruction>(U);
4406           return !TheLoop->contains(J) || Worklist.count(J) ||
4407                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4408                   isScalarUse(J, Src));
4409         })) {
4410       Worklist.insert(Src);
4411       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4412     }
4413   }
4414 
4415   // An induction variable will remain scalar if all users of the induction
4416   // variable and induction variable update remain scalar.
4417   for (auto &Induction : Legal->getInductionVars()) {
4418     auto *Ind = Induction.first;
4419     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4420 
4421     // If tail-folding is applied, the primary induction variable will be used
4422     // to feed a vector compare.
4423     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4424       continue;
4425 
4426     // Returns true if \p Indvar is a pointer induction that is used directly by
4427     // load/store instruction \p I.
4428     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4429                                               Instruction *I) {
4430       return Induction.second.getKind() ==
4431                  InductionDescriptor::IK_PtrInduction &&
4432              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4433              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4434     };
4435 
4436     // Determine if all users of the induction variable are scalar after
4437     // vectorization.
4438     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4439       auto *I = cast<Instruction>(U);
4440       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4441              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4442     });
4443     if (!ScalarInd)
4444       continue;
4445 
4446     // Determine if all users of the induction variable update instruction are
4447     // scalar after vectorization.
4448     auto ScalarIndUpdate =
4449         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4450           auto *I = cast<Instruction>(U);
4451           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4452                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4453         });
4454     if (!ScalarIndUpdate)
4455       continue;
4456 
4457     // The induction variable and its update instruction will remain scalar.
4458     Worklist.insert(Ind);
4459     Worklist.insert(IndUpdate);
4460     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4461     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4462                       << "\n");
4463   }
4464 
4465   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4466 }
4467 
4468 bool LoopVectorizationCostModel::isScalarWithPredication(
4469     Instruction *I, ElementCount VF) const {
4470   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4471     return false;
4472   switch(I->getOpcode()) {
4473   default:
4474     break;
4475   case Instruction::Load:
4476   case Instruction::Store: {
4477     if (!Legal->isMaskRequired(I))
4478       return false;
4479     auto *Ptr = getLoadStorePointerOperand(I);
4480     auto *Ty = getLoadStoreType(I);
4481     Type *VTy = Ty;
4482     if (VF.isVector())
4483       VTy = VectorType::get(Ty, VF);
4484     const Align Alignment = getLoadStoreAlignment(I);
4485     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4486                                 TTI.isLegalMaskedGather(VTy, Alignment))
4487                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4488                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4489   }
4490   case Instruction::UDiv:
4491   case Instruction::SDiv:
4492   case Instruction::SRem:
4493   case Instruction::URem:
4494     return mayDivideByZero(*I);
4495   }
4496   return false;
4497 }
4498 
4499 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4500     Instruction *I, ElementCount VF) {
4501   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4502   assert(getWideningDecision(I, VF) == CM_Unknown &&
4503          "Decision should not be set yet.");
4504   auto *Group = getInterleavedAccessGroup(I);
4505   assert(Group && "Must have a group.");
4506 
4507   // If the instruction's allocated size doesn't equal it's type size, it
4508   // requires padding and will be scalarized.
4509   auto &DL = I->getModule()->getDataLayout();
4510   auto *ScalarTy = getLoadStoreType(I);
4511   if (hasIrregularType(ScalarTy, DL))
4512     return false;
4513 
4514   // If the group involves a non-integral pointer, we may not be able to
4515   // losslessly cast all values to a common type.
4516   unsigned InterleaveFactor = Group->getFactor();
4517   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4518   for (unsigned i = 0; i < InterleaveFactor; i++) {
4519     Instruction *Member = Group->getMember(i);
4520     if (!Member)
4521       continue;
4522     auto *MemberTy = getLoadStoreType(Member);
4523     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4524     // Don't coerce non-integral pointers to integers or vice versa.
4525     if (MemberNI != ScalarNI) {
4526       // TODO: Consider adding special nullptr value case here
4527       return false;
4528     } else if (MemberNI && ScalarNI &&
4529                ScalarTy->getPointerAddressSpace() !=
4530                MemberTy->getPointerAddressSpace()) {
4531       return false;
4532     }
4533   }
4534 
4535   // Check if masking is required.
4536   // A Group may need masking for one of two reasons: it resides in a block that
4537   // needs predication, or it was decided to use masking to deal with gaps
4538   // (either a gap at the end of a load-access that may result in a speculative
4539   // load, or any gaps in a store-access).
4540   bool PredicatedAccessRequiresMasking =
4541       blockNeedsPredicationForAnyReason(I->getParent()) &&
4542       Legal->isMaskRequired(I);
4543   bool LoadAccessWithGapsRequiresEpilogMasking =
4544       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4545       !isScalarEpilogueAllowed();
4546   bool StoreAccessWithGapsRequiresMasking =
4547       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4548   if (!PredicatedAccessRequiresMasking &&
4549       !LoadAccessWithGapsRequiresEpilogMasking &&
4550       !StoreAccessWithGapsRequiresMasking)
4551     return true;
4552 
4553   // If masked interleaving is required, we expect that the user/target had
4554   // enabled it, because otherwise it either wouldn't have been created or
4555   // it should have been invalidated by the CostModel.
4556   assert(useMaskedInterleavedAccesses(TTI) &&
4557          "Masked interleave-groups for predicated accesses are not enabled.");
4558 
4559   if (Group->isReverse())
4560     return false;
4561 
4562   auto *Ty = getLoadStoreType(I);
4563   const Align Alignment = getLoadStoreAlignment(I);
4564   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4565                           : TTI.isLegalMaskedStore(Ty, Alignment);
4566 }
4567 
4568 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4569     Instruction *I, ElementCount VF) {
4570   // Get and ensure we have a valid memory instruction.
4571   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4572 
4573   auto *Ptr = getLoadStorePointerOperand(I);
4574   auto *ScalarTy = getLoadStoreType(I);
4575 
4576   // In order to be widened, the pointer should be consecutive, first of all.
4577   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4578     return false;
4579 
4580   // If the instruction is a store located in a predicated block, it will be
4581   // scalarized.
4582   if (isScalarWithPredication(I, VF))
4583     return false;
4584 
4585   // If the instruction's allocated size doesn't equal it's type size, it
4586   // requires padding and will be scalarized.
4587   auto &DL = I->getModule()->getDataLayout();
4588   if (hasIrregularType(ScalarTy, DL))
4589     return false;
4590 
4591   return true;
4592 }
4593 
4594 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4595   // We should not collect Uniforms more than once per VF. Right now,
4596   // this function is called from collectUniformsAndScalars(), which
4597   // already does this check. Collecting Uniforms for VF=1 does not make any
4598   // sense.
4599 
4600   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4601          "This function should not be visited twice for the same VF");
4602 
4603   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4604   // not analyze again.  Uniforms.count(VF) will return 1.
4605   Uniforms[VF].clear();
4606 
4607   // We now know that the loop is vectorizable!
4608   // Collect instructions inside the loop that will remain uniform after
4609   // vectorization.
4610 
4611   // Global values, params and instructions outside of current loop are out of
4612   // scope.
4613   auto isOutOfScope = [&](Value *V) -> bool {
4614     Instruction *I = dyn_cast<Instruction>(V);
4615     return (!I || !TheLoop->contains(I));
4616   };
4617 
4618   // Worklist containing uniform instructions demanding lane 0.
4619   SetVector<Instruction *> Worklist;
4620   BasicBlock *Latch = TheLoop->getLoopLatch();
4621 
4622   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4623   // that are scalar with predication must not be considered uniform after
4624   // vectorization, because that would create an erroneous replicating region
4625   // where only a single instance out of VF should be formed.
4626   // TODO: optimize such seldom cases if found important, see PR40816.
4627   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4628     if (isOutOfScope(I)) {
4629       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4630                         << *I << "\n");
4631       return;
4632     }
4633     if (isScalarWithPredication(I, VF)) {
4634       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4635                         << *I << "\n");
4636       return;
4637     }
4638     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4639     Worklist.insert(I);
4640   };
4641 
4642   // Start with the conditional branch. If the branch condition is an
4643   // instruction contained in the loop that is only used by the branch, it is
4644   // uniform.
4645   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4646   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4647     addToWorklistIfAllowed(Cmp);
4648 
4649   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4650     InstWidening WideningDecision = getWideningDecision(I, VF);
4651     assert(WideningDecision != CM_Unknown &&
4652            "Widening decision should be ready at this moment");
4653 
4654     // A uniform memory op is itself uniform.  We exclude uniform stores
4655     // here as they demand the last lane, not the first one.
4656     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4657       assert(WideningDecision == CM_Scalarize);
4658       return true;
4659     }
4660 
4661     return (WideningDecision == CM_Widen ||
4662             WideningDecision == CM_Widen_Reverse ||
4663             WideningDecision == CM_Interleave);
4664   };
4665 
4666 
4667   // Returns true if Ptr is the pointer operand of a memory access instruction
4668   // I, and I is known to not require scalarization.
4669   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4670     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4671   };
4672 
4673   // Holds a list of values which are known to have at least one uniform use.
4674   // Note that there may be other uses which aren't uniform.  A "uniform use"
4675   // here is something which only demands lane 0 of the unrolled iterations;
4676   // it does not imply that all lanes produce the same value (e.g. this is not
4677   // the usual meaning of uniform)
4678   SetVector<Value *> HasUniformUse;
4679 
4680   // Scan the loop for instructions which are either a) known to have only
4681   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4682   for (auto *BB : TheLoop->blocks())
4683     for (auto &I : *BB) {
4684       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4685         switch (II->getIntrinsicID()) {
4686         case Intrinsic::sideeffect:
4687         case Intrinsic::experimental_noalias_scope_decl:
4688         case Intrinsic::assume:
4689         case Intrinsic::lifetime_start:
4690         case Intrinsic::lifetime_end:
4691           if (TheLoop->hasLoopInvariantOperands(&I))
4692             addToWorklistIfAllowed(&I);
4693           break;
4694         default:
4695           break;
4696         }
4697       }
4698 
4699       // ExtractValue instructions must be uniform, because the operands are
4700       // known to be loop-invariant.
4701       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4702         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4703                "Expected aggregate value to be loop invariant");
4704         addToWorklistIfAllowed(EVI);
4705         continue;
4706       }
4707 
4708       // If there's no pointer operand, there's nothing to do.
4709       auto *Ptr = getLoadStorePointerOperand(&I);
4710       if (!Ptr)
4711         continue;
4712 
4713       // A uniform memory op is itself uniform.  We exclude uniform stores
4714       // here as they demand the last lane, not the first one.
4715       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4716         addToWorklistIfAllowed(&I);
4717 
4718       if (isUniformDecision(&I, VF)) {
4719         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4720         HasUniformUse.insert(Ptr);
4721       }
4722     }
4723 
4724   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4725   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4726   // disallows uses outside the loop as well.
4727   for (auto *V : HasUniformUse) {
4728     if (isOutOfScope(V))
4729       continue;
4730     auto *I = cast<Instruction>(V);
4731     auto UsersAreMemAccesses =
4732       llvm::all_of(I->users(), [&](User *U) -> bool {
4733         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4734       });
4735     if (UsersAreMemAccesses)
4736       addToWorklistIfAllowed(I);
4737   }
4738 
4739   // Expand Worklist in topological order: whenever a new instruction
4740   // is added , its users should be already inside Worklist.  It ensures
4741   // a uniform instruction will only be used by uniform instructions.
4742   unsigned idx = 0;
4743   while (idx != Worklist.size()) {
4744     Instruction *I = Worklist[idx++];
4745 
4746     for (auto OV : I->operand_values()) {
4747       // isOutOfScope operands cannot be uniform instructions.
4748       if (isOutOfScope(OV))
4749         continue;
4750       // First order recurrence Phi's should typically be considered
4751       // non-uniform.
4752       auto *OP = dyn_cast<PHINode>(OV);
4753       if (OP && Legal->isFirstOrderRecurrence(OP))
4754         continue;
4755       // If all the users of the operand are uniform, then add the
4756       // operand into the uniform worklist.
4757       auto *OI = cast<Instruction>(OV);
4758       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4759             auto *J = cast<Instruction>(U);
4760             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4761           }))
4762         addToWorklistIfAllowed(OI);
4763     }
4764   }
4765 
4766   // For an instruction to be added into Worklist above, all its users inside
4767   // the loop should also be in Worklist. However, this condition cannot be
4768   // true for phi nodes that form a cyclic dependence. We must process phi
4769   // nodes separately. An induction variable will remain uniform if all users
4770   // of the induction variable and induction variable update remain uniform.
4771   // The code below handles both pointer and non-pointer induction variables.
4772   for (auto &Induction : Legal->getInductionVars()) {
4773     auto *Ind = Induction.first;
4774     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4775 
4776     // Determine if all users of the induction variable are uniform after
4777     // vectorization.
4778     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4779       auto *I = cast<Instruction>(U);
4780       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4781              isVectorizedMemAccessUse(I, Ind);
4782     });
4783     if (!UniformInd)
4784       continue;
4785 
4786     // Determine if all users of the induction variable update instruction are
4787     // uniform after vectorization.
4788     auto UniformIndUpdate =
4789         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4790           auto *I = cast<Instruction>(U);
4791           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4792                  isVectorizedMemAccessUse(I, IndUpdate);
4793         });
4794     if (!UniformIndUpdate)
4795       continue;
4796 
4797     // The induction variable and its update instruction will remain uniform.
4798     addToWorklistIfAllowed(Ind);
4799     addToWorklistIfAllowed(IndUpdate);
4800   }
4801 
4802   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4803 }
4804 
4805 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4806   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4807 
4808   if (Legal->getRuntimePointerChecking()->Need) {
4809     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4810         "runtime pointer checks needed. Enable vectorization of this "
4811         "loop with '#pragma clang loop vectorize(enable)' when "
4812         "compiling with -Os/-Oz",
4813         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4814     return true;
4815   }
4816 
4817   if (!PSE.getPredicate().isAlwaysTrue()) {
4818     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4819         "runtime SCEV checks needed. Enable vectorization of this "
4820         "loop with '#pragma clang loop vectorize(enable)' when "
4821         "compiling with -Os/-Oz",
4822         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4823     return true;
4824   }
4825 
4826   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4827   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4828     reportVectorizationFailure("Runtime stride check for small trip count",
4829         "runtime stride == 1 checks needed. Enable vectorization of "
4830         "this loop without such check by compiling with -Os/-Oz",
4831         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4832     return true;
4833   }
4834 
4835   return false;
4836 }
4837 
4838 ElementCount
4839 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4840   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4841     return ElementCount::getScalable(0);
4842 
4843   if (Hints->isScalableVectorizationDisabled()) {
4844     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4845                             "ScalableVectorizationDisabled", ORE, TheLoop);
4846     return ElementCount::getScalable(0);
4847   }
4848 
4849   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4850 
4851   auto MaxScalableVF = ElementCount::getScalable(
4852       std::numeric_limits<ElementCount::ScalarTy>::max());
4853 
4854   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4855   // FIXME: While for scalable vectors this is currently sufficient, this should
4856   // be replaced by a more detailed mechanism that filters out specific VFs,
4857   // instead of invalidating vectorization for a whole set of VFs based on the
4858   // MaxVF.
4859 
4860   // Disable scalable vectorization if the loop contains unsupported reductions.
4861   if (!canVectorizeReductions(MaxScalableVF)) {
4862     reportVectorizationInfo(
4863         "Scalable vectorization not supported for the reduction "
4864         "operations found in this loop.",
4865         "ScalableVFUnfeasible", ORE, TheLoop);
4866     return ElementCount::getScalable(0);
4867   }
4868 
4869   // Disable scalable vectorization if the loop contains any instructions
4870   // with element types not supported for scalable vectors.
4871   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4872         return !Ty->isVoidTy() &&
4873                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4874       })) {
4875     reportVectorizationInfo("Scalable vectorization is not supported "
4876                             "for all element types found in this loop.",
4877                             "ScalableVFUnfeasible", ORE, TheLoop);
4878     return ElementCount::getScalable(0);
4879   }
4880 
4881   if (Legal->isSafeForAnyVectorWidth())
4882     return MaxScalableVF;
4883 
4884   // Limit MaxScalableVF by the maximum safe dependence distance.
4885   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4886   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4887     MaxVScale =
4888         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4889   MaxScalableVF = ElementCount::getScalable(
4890       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4891   if (!MaxScalableVF)
4892     reportVectorizationInfo(
4893         "Max legal vector width too small, scalable vectorization "
4894         "unfeasible.",
4895         "ScalableVFUnfeasible", ORE, TheLoop);
4896 
4897   return MaxScalableVF;
4898 }
4899 
4900 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4901     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4902   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4903   unsigned SmallestType, WidestType;
4904   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4905 
4906   // Get the maximum safe dependence distance in bits computed by LAA.
4907   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4908   // the memory accesses that is most restrictive (involved in the smallest
4909   // dependence distance).
4910   unsigned MaxSafeElements =
4911       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4912 
4913   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4914   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4915 
4916   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4917                     << ".\n");
4918   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4919                     << ".\n");
4920 
4921   // First analyze the UserVF, fall back if the UserVF should be ignored.
4922   if (UserVF) {
4923     auto MaxSafeUserVF =
4924         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4925 
4926     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4927       // If `VF=vscale x N` is safe, then so is `VF=N`
4928       if (UserVF.isScalable())
4929         return FixedScalableVFPair(
4930             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4931       else
4932         return UserVF;
4933     }
4934 
4935     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4936 
4937     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4938     // is better to ignore the hint and let the compiler choose a suitable VF.
4939     if (!UserVF.isScalable()) {
4940       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4941                         << " is unsafe, clamping to max safe VF="
4942                         << MaxSafeFixedVF << ".\n");
4943       ORE->emit([&]() {
4944         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4945                                           TheLoop->getStartLoc(),
4946                                           TheLoop->getHeader())
4947                << "User-specified vectorization factor "
4948                << ore::NV("UserVectorizationFactor", UserVF)
4949                << " is unsafe, clamping to maximum safe vectorization factor "
4950                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4951       });
4952       return MaxSafeFixedVF;
4953     }
4954 
4955     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4956       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4957                         << " is ignored because scalable vectors are not "
4958                            "available.\n");
4959       ORE->emit([&]() {
4960         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4961                                           TheLoop->getStartLoc(),
4962                                           TheLoop->getHeader())
4963                << "User-specified vectorization factor "
4964                << ore::NV("UserVectorizationFactor", UserVF)
4965                << " is ignored because the target does not support scalable "
4966                   "vectors. The compiler will pick a more suitable value.";
4967       });
4968     } else {
4969       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4970                         << " is unsafe. Ignoring scalable UserVF.\n");
4971       ORE->emit([&]() {
4972         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4973                                           TheLoop->getStartLoc(),
4974                                           TheLoop->getHeader())
4975                << "User-specified vectorization factor "
4976                << ore::NV("UserVectorizationFactor", UserVF)
4977                << " is unsafe. Ignoring the hint to let the compiler pick a "
4978                   "more suitable value.";
4979       });
4980     }
4981   }
4982 
4983   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4984                     << " / " << WidestType << " bits.\n");
4985 
4986   FixedScalableVFPair Result(ElementCount::getFixed(1),
4987                              ElementCount::getScalable(0));
4988   if (auto MaxVF =
4989           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4990                                   MaxSafeFixedVF, FoldTailByMasking))
4991     Result.FixedVF = MaxVF;
4992 
4993   if (auto MaxVF =
4994           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4995                                   MaxSafeScalableVF, FoldTailByMasking))
4996     if (MaxVF.isScalable()) {
4997       Result.ScalableVF = MaxVF;
4998       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4999                         << "\n");
5000     }
5001 
5002   return Result;
5003 }
5004 
5005 FixedScalableVFPair
5006 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5007   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5008     // TODO: It may by useful to do since it's still likely to be dynamically
5009     // uniform if the target can skip.
5010     reportVectorizationFailure(
5011         "Not inserting runtime ptr check for divergent target",
5012         "runtime pointer checks needed. Not enabled for divergent target",
5013         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5014     return FixedScalableVFPair::getNone();
5015   }
5016 
5017   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5018   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5019   if (TC == 1) {
5020     reportVectorizationFailure("Single iteration (non) loop",
5021         "loop trip count is one, irrelevant for vectorization",
5022         "SingleIterationLoop", ORE, TheLoop);
5023     return FixedScalableVFPair::getNone();
5024   }
5025 
5026   switch (ScalarEpilogueStatus) {
5027   case CM_ScalarEpilogueAllowed:
5028     return computeFeasibleMaxVF(TC, UserVF, false);
5029   case CM_ScalarEpilogueNotAllowedUsePredicate:
5030     LLVM_FALLTHROUGH;
5031   case CM_ScalarEpilogueNotNeededUsePredicate:
5032     LLVM_DEBUG(
5033         dbgs() << "LV: vector predicate hint/switch found.\n"
5034                << "LV: Not allowing scalar epilogue, creating predicated "
5035                << "vector loop.\n");
5036     break;
5037   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5038     // fallthrough as a special case of OptForSize
5039   case CM_ScalarEpilogueNotAllowedOptSize:
5040     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5041       LLVM_DEBUG(
5042           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5043     else
5044       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5045                         << "count.\n");
5046 
5047     // Bail if runtime checks are required, which are not good when optimising
5048     // for size.
5049     if (runtimeChecksRequired())
5050       return FixedScalableVFPair::getNone();
5051 
5052     break;
5053   }
5054 
5055   // The only loops we can vectorize without a scalar epilogue, are loops with
5056   // a bottom-test and a single exiting block. We'd have to handle the fact
5057   // that not every instruction executes on the last iteration.  This will
5058   // require a lane mask which varies through the vector loop body.  (TODO)
5059   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5060     // If there was a tail-folding hint/switch, but we can't fold the tail by
5061     // masking, fallback to a vectorization with a scalar epilogue.
5062     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5063       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5064                            "scalar epilogue instead.\n");
5065       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5066       return computeFeasibleMaxVF(TC, UserVF, false);
5067     }
5068     return FixedScalableVFPair::getNone();
5069   }
5070 
5071   // Now try the tail folding
5072 
5073   // Invalidate interleave groups that require an epilogue if we can't mask
5074   // the interleave-group.
5075   if (!useMaskedInterleavedAccesses(TTI)) {
5076     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5077            "No decisions should have been taken at this point");
5078     // Note: There is no need to invalidate any cost modeling decisions here, as
5079     // non where taken so far.
5080     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5081   }
5082 
5083   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5084   // Avoid tail folding if the trip count is known to be a multiple of any VF
5085   // we chose.
5086   // FIXME: The condition below pessimises the case for fixed-width vectors,
5087   // when scalable VFs are also candidates for vectorization.
5088   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5089     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5090     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5091            "MaxFixedVF must be a power of 2");
5092     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5093                                    : MaxFixedVF.getFixedValue();
5094     ScalarEvolution *SE = PSE.getSE();
5095     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5096     const SCEV *ExitCount = SE->getAddExpr(
5097         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5098     const SCEV *Rem = SE->getURemExpr(
5099         SE->applyLoopGuards(ExitCount, TheLoop),
5100         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5101     if (Rem->isZero()) {
5102       // Accept MaxFixedVF if we do not have a tail.
5103       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5104       return MaxFactors;
5105     }
5106   }
5107 
5108   // For scalable vectors don't use tail folding for low trip counts or
5109   // optimizing for code size. We only permit this if the user has explicitly
5110   // requested it.
5111   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5112       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5113       MaxFactors.ScalableVF.isVector())
5114     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5115 
5116   // If we don't know the precise trip count, or if the trip count that we
5117   // found modulo the vectorization factor is not zero, try to fold the tail
5118   // by masking.
5119   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5120   if (Legal->prepareToFoldTailByMasking()) {
5121     FoldTailByMasking = true;
5122     return MaxFactors;
5123   }
5124 
5125   // If there was a tail-folding hint/switch, but we can't fold the tail by
5126   // masking, fallback to a vectorization with a scalar epilogue.
5127   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5128     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5129                          "scalar epilogue instead.\n");
5130     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5131     return MaxFactors;
5132   }
5133 
5134   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5135     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5136     return FixedScalableVFPair::getNone();
5137   }
5138 
5139   if (TC == 0) {
5140     reportVectorizationFailure(
5141         "Unable to calculate the loop count due to complex control flow",
5142         "unable to calculate the loop count due to complex control flow",
5143         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5144     return FixedScalableVFPair::getNone();
5145   }
5146 
5147   reportVectorizationFailure(
5148       "Cannot optimize for size and vectorize at the same time.",
5149       "cannot optimize for size and vectorize at the same time. "
5150       "Enable vectorization of this loop with '#pragma clang loop "
5151       "vectorize(enable)' when compiling with -Os/-Oz",
5152       "NoTailLoopWithOptForSize", ORE, TheLoop);
5153   return FixedScalableVFPair::getNone();
5154 }
5155 
5156 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5157     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5158     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5159   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5160   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5161       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5162                            : TargetTransformInfo::RGK_FixedWidthVector);
5163 
5164   // Convenience function to return the minimum of two ElementCounts.
5165   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5166     assert((LHS.isScalable() == RHS.isScalable()) &&
5167            "Scalable flags must match");
5168     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5169   };
5170 
5171   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5172   // Note that both WidestRegister and WidestType may not be a powers of 2.
5173   auto MaxVectorElementCount = ElementCount::get(
5174       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5175       ComputeScalableMaxVF);
5176   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5177   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5178                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5179 
5180   if (!MaxVectorElementCount) {
5181     LLVM_DEBUG(dbgs() << "LV: The target has no "
5182                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5183                       << " vector registers.\n");
5184     return ElementCount::getFixed(1);
5185   }
5186 
5187   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5188   if (ConstTripCount &&
5189       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5190       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5191     // If loop trip count (TC) is known at compile time there is no point in
5192     // choosing VF greater than TC (as done in the loop below). Select maximum
5193     // power of two which doesn't exceed TC.
5194     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5195     // when the TC is less than or equal to the known number of lanes.
5196     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5197     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5198                          "exceeding the constant trip count: "
5199                       << ClampedConstTripCount << "\n");
5200     return ElementCount::getFixed(ClampedConstTripCount);
5201   }
5202 
5203   TargetTransformInfo::RegisterKind RegKind =
5204       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5205                            : TargetTransformInfo::RGK_FixedWidthVector;
5206   ElementCount MaxVF = MaxVectorElementCount;
5207   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5208                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5209     auto MaxVectorElementCountMaxBW = ElementCount::get(
5210         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5211         ComputeScalableMaxVF);
5212     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5213 
5214     // Collect all viable vectorization factors larger than the default MaxVF
5215     // (i.e. MaxVectorElementCount).
5216     SmallVector<ElementCount, 8> VFs;
5217     for (ElementCount VS = MaxVectorElementCount * 2;
5218          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5219       VFs.push_back(VS);
5220 
5221     // For each VF calculate its register usage.
5222     auto RUs = calculateRegisterUsage(VFs);
5223 
5224     // Select the largest VF which doesn't require more registers than existing
5225     // ones.
5226     for (int i = RUs.size() - 1; i >= 0; --i) {
5227       bool Selected = true;
5228       for (auto &pair : RUs[i].MaxLocalUsers) {
5229         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5230         if (pair.second > TargetNumRegisters)
5231           Selected = false;
5232       }
5233       if (Selected) {
5234         MaxVF = VFs[i];
5235         break;
5236       }
5237     }
5238     if (ElementCount MinVF =
5239             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5240       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5241         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5242                           << ") with target's minimum: " << MinVF << '\n');
5243         MaxVF = MinVF;
5244       }
5245     }
5246 
5247     // Invalidate any widening decisions we might have made, in case the loop
5248     // requires prediction (decided later), but we have already made some
5249     // load/store widening decisions.
5250     invalidateCostModelingDecisions();
5251   }
5252   return MaxVF;
5253 }
5254 
5255 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5256   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5257     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5258     auto Min = Attr.getVScaleRangeMin();
5259     auto Max = Attr.getVScaleRangeMax();
5260     if (Max && Min == Max)
5261       return Max;
5262   }
5263 
5264   return TTI.getVScaleForTuning();
5265 }
5266 
5267 bool LoopVectorizationCostModel::isMoreProfitable(
5268     const VectorizationFactor &A, const VectorizationFactor &B) const {
5269   InstructionCost CostA = A.Cost;
5270   InstructionCost CostB = B.Cost;
5271 
5272   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5273 
5274   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5275       MaxTripCount) {
5276     // If we are folding the tail and the trip count is a known (possibly small)
5277     // constant, the trip count will be rounded up to an integer number of
5278     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5279     // which we compare directly. When not folding the tail, the total cost will
5280     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5281     // approximated with the per-lane cost below instead of using the tripcount
5282     // as here.
5283     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5284     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5285     return RTCostA < RTCostB;
5286   }
5287 
5288   // Improve estimate for the vector width if it is scalable.
5289   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5290   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5291   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5292     if (A.Width.isScalable())
5293       EstimatedWidthA *= VScale.getValue();
5294     if (B.Width.isScalable())
5295       EstimatedWidthB *= VScale.getValue();
5296   }
5297 
5298   // Assume vscale may be larger than 1 (or the value being tuned for),
5299   // so that scalable vectorization is slightly favorable over fixed-width
5300   // vectorization.
5301   if (A.Width.isScalable() && !B.Width.isScalable())
5302     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5303 
5304   // To avoid the need for FP division:
5305   //      (CostA / A.Width) < (CostB / B.Width)
5306   // <=>  (CostA * B.Width) < (CostB * A.Width)
5307   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5308 }
5309 
5310 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5311     const ElementCountSet &VFCandidates) {
5312   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5313   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5314   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5315   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5316          "Expected Scalar VF to be a candidate");
5317 
5318   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5319   VectorizationFactor ChosenFactor = ScalarCost;
5320 
5321   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5322   if (ForceVectorization && VFCandidates.size() > 1) {
5323     // Ignore scalar width, because the user explicitly wants vectorization.
5324     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5325     // evaluation.
5326     ChosenFactor.Cost = InstructionCost::getMax();
5327   }
5328 
5329   SmallVector<InstructionVFPair> InvalidCosts;
5330   for (const auto &i : VFCandidates) {
5331     // The cost for scalar VF=1 is already calculated, so ignore it.
5332     if (i.isScalar())
5333       continue;
5334 
5335     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5336     VectorizationFactor Candidate(i, C.first);
5337 
5338 #ifndef NDEBUG
5339     unsigned AssumedMinimumVscale = 1;
5340     if (Optional<unsigned> VScale = getVScaleForTuning())
5341       AssumedMinimumVscale = VScale.getValue();
5342     unsigned Width =
5343         Candidate.Width.isScalable()
5344             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5345             : Candidate.Width.getFixedValue();
5346     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5347                       << " costs: " << (Candidate.Cost / Width));
5348     if (i.isScalable())
5349       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5350                         << AssumedMinimumVscale << ")");
5351     LLVM_DEBUG(dbgs() << ".\n");
5352 #endif
5353 
5354     if (!C.second && !ForceVectorization) {
5355       LLVM_DEBUG(
5356           dbgs() << "LV: Not considering vector loop of width " << i
5357                  << " because it will not generate any vector instructions.\n");
5358       continue;
5359     }
5360 
5361     // If profitable add it to ProfitableVF list.
5362     if (isMoreProfitable(Candidate, ScalarCost))
5363       ProfitableVFs.push_back(Candidate);
5364 
5365     if (isMoreProfitable(Candidate, ChosenFactor))
5366       ChosenFactor = Candidate;
5367   }
5368 
5369   // Emit a report of VFs with invalid costs in the loop.
5370   if (!InvalidCosts.empty()) {
5371     // Group the remarks per instruction, keeping the instruction order from
5372     // InvalidCosts.
5373     std::map<Instruction *, unsigned> Numbering;
5374     unsigned I = 0;
5375     for (auto &Pair : InvalidCosts)
5376       if (!Numbering.count(Pair.first))
5377         Numbering[Pair.first] = I++;
5378 
5379     // Sort the list, first on instruction(number) then on VF.
5380     llvm::sort(InvalidCosts,
5381                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5382                  if (Numbering[A.first] != Numbering[B.first])
5383                    return Numbering[A.first] < Numbering[B.first];
5384                  ElementCountComparator ECC;
5385                  return ECC(A.second, B.second);
5386                });
5387 
5388     // For a list of ordered instruction-vf pairs:
5389     //   [(load, vf1), (load, vf2), (store, vf1)]
5390     // Group the instructions together to emit separate remarks for:
5391     //   load  (vf1, vf2)
5392     //   store (vf1)
5393     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5394     auto Subset = ArrayRef<InstructionVFPair>();
5395     do {
5396       if (Subset.empty())
5397         Subset = Tail.take_front(1);
5398 
5399       Instruction *I = Subset.front().first;
5400 
5401       // If the next instruction is different, or if there are no other pairs,
5402       // emit a remark for the collated subset. e.g.
5403       //   [(load, vf1), (load, vf2))]
5404       // to emit:
5405       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5406       if (Subset == Tail || Tail[Subset.size()].first != I) {
5407         std::string OutString;
5408         raw_string_ostream OS(OutString);
5409         assert(!Subset.empty() && "Unexpected empty range");
5410         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5411         for (auto &Pair : Subset)
5412           OS << (Pair.second == Subset.front().second ? "" : ", ")
5413              << Pair.second;
5414         OS << "):";
5415         if (auto *CI = dyn_cast<CallInst>(I))
5416           OS << " call to " << CI->getCalledFunction()->getName();
5417         else
5418           OS << " " << I->getOpcodeName();
5419         OS.flush();
5420         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5421         Tail = Tail.drop_front(Subset.size());
5422         Subset = {};
5423       } else
5424         // Grow the subset by one element
5425         Subset = Tail.take_front(Subset.size() + 1);
5426     } while (!Tail.empty());
5427   }
5428 
5429   if (!EnableCondStoresVectorization && NumPredStores) {
5430     reportVectorizationFailure("There are conditional stores.",
5431         "store that is conditionally executed prevents vectorization",
5432         "ConditionalStore", ORE, TheLoop);
5433     ChosenFactor = ScalarCost;
5434   }
5435 
5436   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5437                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5438              << "LV: Vectorization seems to be not beneficial, "
5439              << "but was forced by a user.\n");
5440   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5441   return ChosenFactor;
5442 }
5443 
5444 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5445     const Loop &L, ElementCount VF) const {
5446   // Cross iteration phis such as reductions need special handling and are
5447   // currently unsupported.
5448   if (any_of(L.getHeader()->phis(),
5449              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5450     return false;
5451 
5452   // Phis with uses outside of the loop require special handling and are
5453   // currently unsupported.
5454   for (auto &Entry : Legal->getInductionVars()) {
5455     // Look for uses of the value of the induction at the last iteration.
5456     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5457     for (User *U : PostInc->users())
5458       if (!L.contains(cast<Instruction>(U)))
5459         return false;
5460     // Look for uses of penultimate value of the induction.
5461     for (User *U : Entry.first->users())
5462       if (!L.contains(cast<Instruction>(U)))
5463         return false;
5464   }
5465 
5466   // Induction variables that are widened require special handling that is
5467   // currently not supported.
5468   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5469         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5470                  this->isProfitableToScalarize(Entry.first, VF));
5471       }))
5472     return false;
5473 
5474   // Epilogue vectorization code has not been auditted to ensure it handles
5475   // non-latch exits properly.  It may be fine, but it needs auditted and
5476   // tested.
5477   if (L.getExitingBlock() != L.getLoopLatch())
5478     return false;
5479 
5480   return true;
5481 }
5482 
5483 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5484     const ElementCount VF) const {
5485   // FIXME: We need a much better cost-model to take different parameters such
5486   // as register pressure, code size increase and cost of extra branches into
5487   // account. For now we apply a very crude heuristic and only consider loops
5488   // with vectorization factors larger than a certain value.
5489   // We also consider epilogue vectorization unprofitable for targets that don't
5490   // consider interleaving beneficial (eg. MVE).
5491   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5492     return false;
5493   // FIXME: We should consider changing the threshold for scalable
5494   // vectors to take VScaleForTuning into account.
5495   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5496     return true;
5497   return false;
5498 }
5499 
5500 VectorizationFactor
5501 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5502     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5503   VectorizationFactor Result = VectorizationFactor::Disabled();
5504   if (!EnableEpilogueVectorization) {
5505     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5506     return Result;
5507   }
5508 
5509   if (!isScalarEpilogueAllowed()) {
5510     LLVM_DEBUG(
5511         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5512                   "allowed.\n";);
5513     return Result;
5514   }
5515 
5516   // Not really a cost consideration, but check for unsupported cases here to
5517   // simplify the logic.
5518   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5519     LLVM_DEBUG(
5520         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5521                   "not a supported candidate.\n";);
5522     return Result;
5523   }
5524 
5525   if (EpilogueVectorizationForceVF > 1) {
5526     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5527     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5528     if (LVP.hasPlanWithVF(ForcedEC))
5529       return {ForcedEC, 0};
5530     else {
5531       LLVM_DEBUG(
5532           dbgs()
5533               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5534       return Result;
5535     }
5536   }
5537 
5538   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5539       TheLoop->getHeader()->getParent()->hasMinSize()) {
5540     LLVM_DEBUG(
5541         dbgs()
5542             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5543     return Result;
5544   }
5545 
5546   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5547     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5548                          "this loop\n");
5549     return Result;
5550   }
5551 
5552   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5553   // the main loop handles 8 lanes per iteration. We could still benefit from
5554   // vectorizing the epilogue loop with VF=4.
5555   ElementCount EstimatedRuntimeVF = MainLoopVF;
5556   if (MainLoopVF.isScalable()) {
5557     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5558     if (Optional<unsigned> VScale = getVScaleForTuning())
5559       EstimatedRuntimeVF *= VScale.getValue();
5560   }
5561 
5562   for (auto &NextVF : ProfitableVFs)
5563     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5564           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5565          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5566         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5567         LVP.hasPlanWithVF(NextVF.Width))
5568       Result = NextVF;
5569 
5570   if (Result != VectorizationFactor::Disabled())
5571     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5572                       << Result.Width << "\n";);
5573   return Result;
5574 }
5575 
5576 std::pair<unsigned, unsigned>
5577 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5578   unsigned MinWidth = -1U;
5579   unsigned MaxWidth = 8;
5580   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5581   // For in-loop reductions, no element types are added to ElementTypesInLoop
5582   // if there are no loads/stores in the loop. In this case, check through the
5583   // reduction variables to determine the maximum width.
5584   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5585     // Reset MaxWidth so that we can find the smallest type used by recurrences
5586     // in the loop.
5587     MaxWidth = -1U;
5588     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5589       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5590       // When finding the min width used by the recurrence we need to account
5591       // for casts on the input operands of the recurrence.
5592       MaxWidth = std::min<unsigned>(
5593           MaxWidth, std::min<unsigned>(
5594                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5595                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5596     }
5597   } else {
5598     for (Type *T : ElementTypesInLoop) {
5599       MinWidth = std::min<unsigned>(
5600           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5601       MaxWidth = std::max<unsigned>(
5602           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5603     }
5604   }
5605   return {MinWidth, MaxWidth};
5606 }
5607 
5608 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5609   ElementTypesInLoop.clear();
5610   // For each block.
5611   for (BasicBlock *BB : TheLoop->blocks()) {
5612     // For each instruction in the loop.
5613     for (Instruction &I : BB->instructionsWithoutDebug()) {
5614       Type *T = I.getType();
5615 
5616       // Skip ignored values.
5617       if (ValuesToIgnore.count(&I))
5618         continue;
5619 
5620       // Only examine Loads, Stores and PHINodes.
5621       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5622         continue;
5623 
5624       // Examine PHI nodes that are reduction variables. Update the type to
5625       // account for the recurrence type.
5626       if (auto *PN = dyn_cast<PHINode>(&I)) {
5627         if (!Legal->isReductionVariable(PN))
5628           continue;
5629         const RecurrenceDescriptor &RdxDesc =
5630             Legal->getReductionVars().find(PN)->second;
5631         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5632             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5633                                       RdxDesc.getRecurrenceType(),
5634                                       TargetTransformInfo::ReductionFlags()))
5635           continue;
5636         T = RdxDesc.getRecurrenceType();
5637       }
5638 
5639       // Examine the stored values.
5640       if (auto *ST = dyn_cast<StoreInst>(&I))
5641         T = ST->getValueOperand()->getType();
5642 
5643       assert(T->isSized() &&
5644              "Expected the load/store/recurrence type to be sized");
5645 
5646       ElementTypesInLoop.insert(T);
5647     }
5648   }
5649 }
5650 
5651 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5652                                                            unsigned LoopCost) {
5653   // -- The interleave heuristics --
5654   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5655   // There are many micro-architectural considerations that we can't predict
5656   // at this level. For example, frontend pressure (on decode or fetch) due to
5657   // code size, or the number and capabilities of the execution ports.
5658   //
5659   // We use the following heuristics to select the interleave count:
5660   // 1. If the code has reductions, then we interleave to break the cross
5661   // iteration dependency.
5662   // 2. If the loop is really small, then we interleave to reduce the loop
5663   // overhead.
5664   // 3. We don't interleave if we think that we will spill registers to memory
5665   // due to the increased register pressure.
5666 
5667   if (!isScalarEpilogueAllowed())
5668     return 1;
5669 
5670   // We used the distance for the interleave count.
5671   if (Legal->getMaxSafeDepDistBytes() != -1U)
5672     return 1;
5673 
5674   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5675   const bool HasReductions = !Legal->getReductionVars().empty();
5676   // Do not interleave loops with a relatively small known or estimated trip
5677   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5678   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5679   // because with the above conditions interleaving can expose ILP and break
5680   // cross iteration dependences for reductions.
5681   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5682       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5683     return 1;
5684 
5685   // If we did not calculate the cost for VF (because the user selected the VF)
5686   // then we calculate the cost of VF here.
5687   if (LoopCost == 0) {
5688     InstructionCost C = expectedCost(VF).first;
5689     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5690     LoopCost = *C.getValue();
5691 
5692     // Loop body is free and there is no need for interleaving.
5693     if (LoopCost == 0)
5694       return 1;
5695   }
5696 
5697   RegisterUsage R = calculateRegisterUsage({VF})[0];
5698   // We divide by these constants so assume that we have at least one
5699   // instruction that uses at least one register.
5700   for (auto& pair : R.MaxLocalUsers) {
5701     pair.second = std::max(pair.second, 1U);
5702   }
5703 
5704   // We calculate the interleave count using the following formula.
5705   // Subtract the number of loop invariants from the number of available
5706   // registers. These registers are used by all of the interleaved instances.
5707   // Next, divide the remaining registers by the number of registers that is
5708   // required by the loop, in order to estimate how many parallel instances
5709   // fit without causing spills. All of this is rounded down if necessary to be
5710   // a power of two. We want power of two interleave count to simplify any
5711   // addressing operations or alignment considerations.
5712   // We also want power of two interleave counts to ensure that the induction
5713   // variable of the vector loop wraps to zero, when tail is folded by masking;
5714   // this currently happens when OptForSize, in which case IC is set to 1 above.
5715   unsigned IC = UINT_MAX;
5716 
5717   for (auto& pair : R.MaxLocalUsers) {
5718     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5719     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5720                       << " registers of "
5721                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5722     if (VF.isScalar()) {
5723       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5724         TargetNumRegisters = ForceTargetNumScalarRegs;
5725     } else {
5726       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5727         TargetNumRegisters = ForceTargetNumVectorRegs;
5728     }
5729     unsigned MaxLocalUsers = pair.second;
5730     unsigned LoopInvariantRegs = 0;
5731     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5732       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5733 
5734     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5735     // Don't count the induction variable as interleaved.
5736     if (EnableIndVarRegisterHeur) {
5737       TmpIC =
5738           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5739                         std::max(1U, (MaxLocalUsers - 1)));
5740     }
5741 
5742     IC = std::min(IC, TmpIC);
5743   }
5744 
5745   // Clamp the interleave ranges to reasonable counts.
5746   unsigned MaxInterleaveCount =
5747       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5748 
5749   // Check if the user has overridden the max.
5750   if (VF.isScalar()) {
5751     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5752       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5753   } else {
5754     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5755       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5756   }
5757 
5758   // If trip count is known or estimated compile time constant, limit the
5759   // interleave count to be less than the trip count divided by VF, provided it
5760   // is at least 1.
5761   //
5762   // For scalable vectors we can't know if interleaving is beneficial. It may
5763   // not be beneficial for small loops if none of the lanes in the second vector
5764   // iterations is enabled. However, for larger loops, there is likely to be a
5765   // similar benefit as for fixed-width vectors. For now, we choose to leave
5766   // the InterleaveCount as if vscale is '1', although if some information about
5767   // the vector is known (e.g. min vector size), we can make a better decision.
5768   if (BestKnownTC) {
5769     MaxInterleaveCount =
5770         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5771     // Make sure MaxInterleaveCount is greater than 0.
5772     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5773   }
5774 
5775   assert(MaxInterleaveCount > 0 &&
5776          "Maximum interleave count must be greater than 0");
5777 
5778   // Clamp the calculated IC to be between the 1 and the max interleave count
5779   // that the target and trip count allows.
5780   if (IC > MaxInterleaveCount)
5781     IC = MaxInterleaveCount;
5782   else
5783     // Make sure IC is greater than 0.
5784     IC = std::max(1u, IC);
5785 
5786   assert(IC > 0 && "Interleave count must be greater than 0.");
5787 
5788   // Interleave if we vectorized this loop and there is a reduction that could
5789   // benefit from interleaving.
5790   if (VF.isVector() && HasReductions) {
5791     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5792     return IC;
5793   }
5794 
5795   // For any scalar loop that either requires runtime checks or predication we
5796   // are better off leaving this to the unroller. Note that if we've already
5797   // vectorized the loop we will have done the runtime check and so interleaving
5798   // won't require further checks.
5799   bool ScalarInterleavingRequiresPredication =
5800       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5801          return Legal->blockNeedsPredication(BB);
5802        }));
5803   bool ScalarInterleavingRequiresRuntimePointerCheck =
5804       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5805 
5806   // We want to interleave small loops in order to reduce the loop overhead and
5807   // potentially expose ILP opportunities.
5808   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5809                     << "LV: IC is " << IC << '\n'
5810                     << "LV: VF is " << VF << '\n');
5811   const bool AggressivelyInterleaveReductions =
5812       TTI.enableAggressiveInterleaving(HasReductions);
5813   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5814       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5815     // We assume that the cost overhead is 1 and we use the cost model
5816     // to estimate the cost of the loop and interleave until the cost of the
5817     // loop overhead is about 5% of the cost of the loop.
5818     unsigned SmallIC =
5819         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5820 
5821     // Interleave until store/load ports (estimated by max interleave count) are
5822     // saturated.
5823     unsigned NumStores = Legal->getNumStores();
5824     unsigned NumLoads = Legal->getNumLoads();
5825     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5826     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5827 
5828     // There is little point in interleaving for reductions containing selects
5829     // and compares when VF=1 since it may just create more overhead than it's
5830     // worth for loops with small trip counts. This is because we still have to
5831     // do the final reduction after the loop.
5832     bool HasSelectCmpReductions =
5833         HasReductions &&
5834         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5835           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5836           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5837               RdxDesc.getRecurrenceKind());
5838         });
5839     if (HasSelectCmpReductions) {
5840       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5841       return 1;
5842     }
5843 
5844     // If we have a scalar reduction (vector reductions are already dealt with
5845     // by this point), we can increase the critical path length if the loop
5846     // we're interleaving is inside another loop. For tree-wise reductions
5847     // set the limit to 2, and for ordered reductions it's best to disable
5848     // interleaving entirely.
5849     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5850       bool HasOrderedReductions =
5851           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5852             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5853             return RdxDesc.isOrdered();
5854           });
5855       if (HasOrderedReductions) {
5856         LLVM_DEBUG(
5857             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5858         return 1;
5859       }
5860 
5861       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5862       SmallIC = std::min(SmallIC, F);
5863       StoresIC = std::min(StoresIC, F);
5864       LoadsIC = std::min(LoadsIC, F);
5865     }
5866 
5867     if (EnableLoadStoreRuntimeInterleave &&
5868         std::max(StoresIC, LoadsIC) > SmallIC) {
5869       LLVM_DEBUG(
5870           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5871       return std::max(StoresIC, LoadsIC);
5872     }
5873 
5874     // If there are scalar reductions and TTI has enabled aggressive
5875     // interleaving for reductions, we will interleave to expose ILP.
5876     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5877         AggressivelyInterleaveReductions) {
5878       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5879       // Interleave no less than SmallIC but not as aggressive as the normal IC
5880       // to satisfy the rare situation when resources are too limited.
5881       return std::max(IC / 2, SmallIC);
5882     } else {
5883       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5884       return SmallIC;
5885     }
5886   }
5887 
5888   // Interleave if this is a large loop (small loops are already dealt with by
5889   // this point) that could benefit from interleaving.
5890   if (AggressivelyInterleaveReductions) {
5891     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5892     return IC;
5893   }
5894 
5895   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5896   return 1;
5897 }
5898 
5899 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5900 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5901   // This function calculates the register usage by measuring the highest number
5902   // of values that are alive at a single location. Obviously, this is a very
5903   // rough estimation. We scan the loop in a topological order in order and
5904   // assign a number to each instruction. We use RPO to ensure that defs are
5905   // met before their users. We assume that each instruction that has in-loop
5906   // users starts an interval. We record every time that an in-loop value is
5907   // used, so we have a list of the first and last occurrences of each
5908   // instruction. Next, we transpose this data structure into a multi map that
5909   // holds the list of intervals that *end* at a specific location. This multi
5910   // map allows us to perform a linear search. We scan the instructions linearly
5911   // and record each time that a new interval starts, by placing it in a set.
5912   // If we find this value in the multi-map then we remove it from the set.
5913   // The max register usage is the maximum size of the set.
5914   // We also search for instructions that are defined outside the loop, but are
5915   // used inside the loop. We need this number separately from the max-interval
5916   // usage number because when we unroll, loop-invariant values do not take
5917   // more register.
5918   LoopBlocksDFS DFS(TheLoop);
5919   DFS.perform(LI);
5920 
5921   RegisterUsage RU;
5922 
5923   // Each 'key' in the map opens a new interval. The values
5924   // of the map are the index of the 'last seen' usage of the
5925   // instruction that is the key.
5926   using IntervalMap = DenseMap<Instruction *, unsigned>;
5927 
5928   // Maps instruction to its index.
5929   SmallVector<Instruction *, 64> IdxToInstr;
5930   // Marks the end of each interval.
5931   IntervalMap EndPoint;
5932   // Saves the list of instruction indices that are used in the loop.
5933   SmallPtrSet<Instruction *, 8> Ends;
5934   // Saves the list of values that are used in the loop but are
5935   // defined outside the loop, such as arguments and constants.
5936   SmallPtrSet<Value *, 8> LoopInvariants;
5937 
5938   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5939     for (Instruction &I : BB->instructionsWithoutDebug()) {
5940       IdxToInstr.push_back(&I);
5941 
5942       // Save the end location of each USE.
5943       for (Value *U : I.operands()) {
5944         auto *Instr = dyn_cast<Instruction>(U);
5945 
5946         // Ignore non-instruction values such as arguments, constants, etc.
5947         if (!Instr)
5948           continue;
5949 
5950         // If this instruction is outside the loop then record it and continue.
5951         if (!TheLoop->contains(Instr)) {
5952           LoopInvariants.insert(Instr);
5953           continue;
5954         }
5955 
5956         // Overwrite previous end points.
5957         EndPoint[Instr] = IdxToInstr.size();
5958         Ends.insert(Instr);
5959       }
5960     }
5961   }
5962 
5963   // Saves the list of intervals that end with the index in 'key'.
5964   using InstrList = SmallVector<Instruction *, 2>;
5965   DenseMap<unsigned, InstrList> TransposeEnds;
5966 
5967   // Transpose the EndPoints to a list of values that end at each index.
5968   for (auto &Interval : EndPoint)
5969     TransposeEnds[Interval.second].push_back(Interval.first);
5970 
5971   SmallPtrSet<Instruction *, 8> OpenIntervals;
5972   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5973   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5974 
5975   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5976 
5977   // A lambda that gets the register usage for the given type and VF.
5978   const auto &TTICapture = TTI;
5979   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
5980     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5981       return 0;
5982     InstructionCost::CostType RegUsage =
5983         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
5984     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
5985            "Nonsensical values for register usage.");
5986     return RegUsage;
5987   };
5988 
5989   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5990     Instruction *I = IdxToInstr[i];
5991 
5992     // Remove all of the instructions that end at this location.
5993     InstrList &List = TransposeEnds[i];
5994     for (Instruction *ToRemove : List)
5995       OpenIntervals.erase(ToRemove);
5996 
5997     // Ignore instructions that are never used within the loop.
5998     if (!Ends.count(I))
5999       continue;
6000 
6001     // Skip ignored values.
6002     if (ValuesToIgnore.count(I))
6003       continue;
6004 
6005     // For each VF find the maximum usage of registers.
6006     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6007       // Count the number of live intervals.
6008       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6009 
6010       if (VFs[j].isScalar()) {
6011         for (auto Inst : OpenIntervals) {
6012           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6013           if (RegUsage.find(ClassID) == RegUsage.end())
6014             RegUsage[ClassID] = 1;
6015           else
6016             RegUsage[ClassID] += 1;
6017         }
6018       } else {
6019         collectUniformsAndScalars(VFs[j]);
6020         for (auto Inst : OpenIntervals) {
6021           // Skip ignored values for VF > 1.
6022           if (VecValuesToIgnore.count(Inst))
6023             continue;
6024           if (isScalarAfterVectorization(Inst, VFs[j])) {
6025             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6026             if (RegUsage.find(ClassID) == RegUsage.end())
6027               RegUsage[ClassID] = 1;
6028             else
6029               RegUsage[ClassID] += 1;
6030           } else {
6031             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6032             if (RegUsage.find(ClassID) == RegUsage.end())
6033               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6034             else
6035               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6036           }
6037         }
6038       }
6039 
6040       for (auto& pair : RegUsage) {
6041         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6042           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6043         else
6044           MaxUsages[j][pair.first] = pair.second;
6045       }
6046     }
6047 
6048     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6049                       << OpenIntervals.size() << '\n');
6050 
6051     // Add the current instruction to the list of open intervals.
6052     OpenIntervals.insert(I);
6053   }
6054 
6055   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6056     SmallMapVector<unsigned, unsigned, 4> Invariant;
6057 
6058     for (auto Inst : LoopInvariants) {
6059       unsigned Usage =
6060           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6061       unsigned ClassID =
6062           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6063       if (Invariant.find(ClassID) == Invariant.end())
6064         Invariant[ClassID] = Usage;
6065       else
6066         Invariant[ClassID] += Usage;
6067     }
6068 
6069     LLVM_DEBUG({
6070       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6071       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6072              << " item\n";
6073       for (const auto &pair : MaxUsages[i]) {
6074         dbgs() << "LV(REG): RegisterClass: "
6075                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6076                << " registers\n";
6077       }
6078       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6079              << " item\n";
6080       for (const auto &pair : Invariant) {
6081         dbgs() << "LV(REG): RegisterClass: "
6082                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6083                << " registers\n";
6084       }
6085     });
6086 
6087     RU.LoopInvariantRegs = Invariant;
6088     RU.MaxLocalUsers = MaxUsages[i];
6089     RUs[i] = RU;
6090   }
6091 
6092   return RUs;
6093 }
6094 
6095 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6096                                                            ElementCount VF) {
6097   // TODO: Cost model for emulated masked load/store is completely
6098   // broken. This hack guides the cost model to use an artificially
6099   // high enough value to practically disable vectorization with such
6100   // operations, except where previously deployed legality hack allowed
6101   // using very low cost values. This is to avoid regressions coming simply
6102   // from moving "masked load/store" check from legality to cost model.
6103   // Masked Load/Gather emulation was previously never allowed.
6104   // Limited number of Masked Store/Scatter emulation was allowed.
6105   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6106   return isa<LoadInst>(I) ||
6107          (isa<StoreInst>(I) &&
6108           NumPredStores > NumberOfStoresToPredicate);
6109 }
6110 
6111 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6112   // If we aren't vectorizing the loop, or if we've already collected the
6113   // instructions to scalarize, there's nothing to do. Collection may already
6114   // have occurred if we have a user-selected VF and are now computing the
6115   // expected cost for interleaving.
6116   if (VF.isScalar() || VF.isZero() ||
6117       InstsToScalarize.find(VF) != InstsToScalarize.end())
6118     return;
6119 
6120   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6121   // not profitable to scalarize any instructions, the presence of VF in the
6122   // map will indicate that we've analyzed it already.
6123   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6124 
6125   // Find all the instructions that are scalar with predication in the loop and
6126   // determine if it would be better to not if-convert the blocks they are in.
6127   // If so, we also record the instructions to scalarize.
6128   for (BasicBlock *BB : TheLoop->blocks()) {
6129     if (!blockNeedsPredicationForAnyReason(BB))
6130       continue;
6131     for (Instruction &I : *BB)
6132       if (isScalarWithPredication(&I, VF)) {
6133         ScalarCostsTy ScalarCosts;
6134         // Do not apply discount if scalable, because that would lead to
6135         // invalid scalarization costs.
6136         // Do not apply discount logic if hacked cost is needed
6137         // for emulated masked memrefs.
6138         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6139             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6140           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6141         // Remember that BB will remain after vectorization.
6142         PredicatedBBsAfterVectorization.insert(BB);
6143       }
6144   }
6145 }
6146 
6147 int LoopVectorizationCostModel::computePredInstDiscount(
6148     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6149   assert(!isUniformAfterVectorization(PredInst, VF) &&
6150          "Instruction marked uniform-after-vectorization will be predicated");
6151 
6152   // Initialize the discount to zero, meaning that the scalar version and the
6153   // vector version cost the same.
6154   InstructionCost Discount = 0;
6155 
6156   // Holds instructions to analyze. The instructions we visit are mapped in
6157   // ScalarCosts. Those instructions are the ones that would be scalarized if
6158   // we find that the scalar version costs less.
6159   SmallVector<Instruction *, 8> Worklist;
6160 
6161   // Returns true if the given instruction can be scalarized.
6162   auto canBeScalarized = [&](Instruction *I) -> bool {
6163     // We only attempt to scalarize instructions forming a single-use chain
6164     // from the original predicated block that would otherwise be vectorized.
6165     // Although not strictly necessary, we give up on instructions we know will
6166     // already be scalar to avoid traversing chains that are unlikely to be
6167     // beneficial.
6168     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6169         isScalarAfterVectorization(I, VF))
6170       return false;
6171 
6172     // If the instruction is scalar with predication, it will be analyzed
6173     // separately. We ignore it within the context of PredInst.
6174     if (isScalarWithPredication(I, VF))
6175       return false;
6176 
6177     // If any of the instruction's operands are uniform after vectorization,
6178     // the instruction cannot be scalarized. This prevents, for example, a
6179     // masked load from being scalarized.
6180     //
6181     // We assume we will only emit a value for lane zero of an instruction
6182     // marked uniform after vectorization, rather than VF identical values.
6183     // Thus, if we scalarize an instruction that uses a uniform, we would
6184     // create uses of values corresponding to the lanes we aren't emitting code
6185     // for. This behavior can be changed by allowing getScalarValue to clone
6186     // the lane zero values for uniforms rather than asserting.
6187     for (Use &U : I->operands())
6188       if (auto *J = dyn_cast<Instruction>(U.get()))
6189         if (isUniformAfterVectorization(J, VF))
6190           return false;
6191 
6192     // Otherwise, we can scalarize the instruction.
6193     return true;
6194   };
6195 
6196   // Compute the expected cost discount from scalarizing the entire expression
6197   // feeding the predicated instruction. We currently only consider expressions
6198   // that are single-use instruction chains.
6199   Worklist.push_back(PredInst);
6200   while (!Worklist.empty()) {
6201     Instruction *I = Worklist.pop_back_val();
6202 
6203     // If we've already analyzed the instruction, there's nothing to do.
6204     if (ScalarCosts.find(I) != ScalarCosts.end())
6205       continue;
6206 
6207     // Compute the cost of the vector instruction. Note that this cost already
6208     // includes the scalarization overhead of the predicated instruction.
6209     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6210 
6211     // Compute the cost of the scalarized instruction. This cost is the cost of
6212     // the instruction as if it wasn't if-converted and instead remained in the
6213     // predicated block. We will scale this cost by block probability after
6214     // computing the scalarization overhead.
6215     InstructionCost ScalarCost =
6216         VF.getFixedValue() *
6217         getInstructionCost(I, ElementCount::getFixed(1)).first;
6218 
6219     // Compute the scalarization overhead of needed insertelement instructions
6220     // and phi nodes.
6221     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6222       ScalarCost += TTI.getScalarizationOverhead(
6223           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6224           APInt::getAllOnes(VF.getFixedValue()), true, false);
6225       ScalarCost +=
6226           VF.getFixedValue() *
6227           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6228     }
6229 
6230     // Compute the scalarization overhead of needed extractelement
6231     // instructions. For each of the instruction's operands, if the operand can
6232     // be scalarized, add it to the worklist; otherwise, account for the
6233     // overhead.
6234     for (Use &U : I->operands())
6235       if (auto *J = dyn_cast<Instruction>(U.get())) {
6236         assert(VectorType::isValidElementType(J->getType()) &&
6237                "Instruction has non-scalar type");
6238         if (canBeScalarized(J))
6239           Worklist.push_back(J);
6240         else if (needsExtract(J, VF)) {
6241           ScalarCost += TTI.getScalarizationOverhead(
6242               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6243               APInt::getAllOnes(VF.getFixedValue()), false, true);
6244         }
6245       }
6246 
6247     // Scale the total scalar cost by block probability.
6248     ScalarCost /= getReciprocalPredBlockProb();
6249 
6250     // Compute the discount. A non-negative discount means the vector version
6251     // of the instruction costs more, and scalarizing would be beneficial.
6252     Discount += VectorCost - ScalarCost;
6253     ScalarCosts[I] = ScalarCost;
6254   }
6255 
6256   return *Discount.getValue();
6257 }
6258 
6259 LoopVectorizationCostModel::VectorizationCostTy
6260 LoopVectorizationCostModel::expectedCost(
6261     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6262   VectorizationCostTy Cost;
6263 
6264   // For each block.
6265   for (BasicBlock *BB : TheLoop->blocks()) {
6266     VectorizationCostTy BlockCost;
6267 
6268     // For each instruction in the old loop.
6269     for (Instruction &I : BB->instructionsWithoutDebug()) {
6270       // Skip ignored values.
6271       if (ValuesToIgnore.count(&I) ||
6272           (VF.isVector() && VecValuesToIgnore.count(&I)))
6273         continue;
6274 
6275       VectorizationCostTy C = getInstructionCost(&I, VF);
6276 
6277       // Check if we should override the cost.
6278       if (C.first.isValid() &&
6279           ForceTargetInstructionCost.getNumOccurrences() > 0)
6280         C.first = InstructionCost(ForceTargetInstructionCost);
6281 
6282       // Keep a list of instructions with invalid costs.
6283       if (Invalid && !C.first.isValid())
6284         Invalid->emplace_back(&I, VF);
6285 
6286       BlockCost.first += C.first;
6287       BlockCost.second |= C.second;
6288       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6289                         << " for VF " << VF << " For instruction: " << I
6290                         << '\n');
6291     }
6292 
6293     // If we are vectorizing a predicated block, it will have been
6294     // if-converted. This means that the block's instructions (aside from
6295     // stores and instructions that may divide by zero) will now be
6296     // unconditionally executed. For the scalar case, we may not always execute
6297     // the predicated block, if it is an if-else block. Thus, scale the block's
6298     // cost by the probability of executing it. blockNeedsPredication from
6299     // Legal is used so as to not include all blocks in tail folded loops.
6300     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6301       BlockCost.first /= getReciprocalPredBlockProb();
6302 
6303     Cost.first += BlockCost.first;
6304     Cost.second |= BlockCost.second;
6305   }
6306 
6307   return Cost;
6308 }
6309 
6310 /// Gets Address Access SCEV after verifying that the access pattern
6311 /// is loop invariant except the induction variable dependence.
6312 ///
6313 /// This SCEV can be sent to the Target in order to estimate the address
6314 /// calculation cost.
6315 static const SCEV *getAddressAccessSCEV(
6316               Value *Ptr,
6317               LoopVectorizationLegality *Legal,
6318               PredicatedScalarEvolution &PSE,
6319               const Loop *TheLoop) {
6320 
6321   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6322   if (!Gep)
6323     return nullptr;
6324 
6325   // We are looking for a gep with all loop invariant indices except for one
6326   // which should be an induction variable.
6327   auto SE = PSE.getSE();
6328   unsigned NumOperands = Gep->getNumOperands();
6329   for (unsigned i = 1; i < NumOperands; ++i) {
6330     Value *Opd = Gep->getOperand(i);
6331     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6332         !Legal->isInductionVariable(Opd))
6333       return nullptr;
6334   }
6335 
6336   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6337   return PSE.getSCEV(Ptr);
6338 }
6339 
6340 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6341   return Legal->hasStride(I->getOperand(0)) ||
6342          Legal->hasStride(I->getOperand(1));
6343 }
6344 
6345 InstructionCost
6346 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6347                                                         ElementCount VF) {
6348   assert(VF.isVector() &&
6349          "Scalarization cost of instruction implies vectorization.");
6350   if (VF.isScalable())
6351     return InstructionCost::getInvalid();
6352 
6353   Type *ValTy = getLoadStoreType(I);
6354   auto SE = PSE.getSE();
6355 
6356   unsigned AS = getLoadStoreAddressSpace(I);
6357   Value *Ptr = getLoadStorePointerOperand(I);
6358   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6359   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6360   //       that it is being called from this specific place.
6361 
6362   // Figure out whether the access is strided and get the stride value
6363   // if it's known in compile time
6364   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6365 
6366   // Get the cost of the scalar memory instruction and address computation.
6367   InstructionCost Cost =
6368       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6369 
6370   // Don't pass *I here, since it is scalar but will actually be part of a
6371   // vectorized loop where the user of it is a vectorized instruction.
6372   const Align Alignment = getLoadStoreAlignment(I);
6373   Cost += VF.getKnownMinValue() *
6374           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6375                               AS, TTI::TCK_RecipThroughput);
6376 
6377   // Get the overhead of the extractelement and insertelement instructions
6378   // we might create due to scalarization.
6379   Cost += getScalarizationOverhead(I, VF);
6380 
6381   // If we have a predicated load/store, it will need extra i1 extracts and
6382   // conditional branches, but may not be executed for each vector lane. Scale
6383   // the cost by the probability of executing the predicated block.
6384   if (isPredicatedInst(I, VF)) {
6385     Cost /= getReciprocalPredBlockProb();
6386 
6387     // Add the cost of an i1 extract and a branch
6388     auto *Vec_i1Ty =
6389         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6390     Cost += TTI.getScalarizationOverhead(
6391         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6392         /*Insert=*/false, /*Extract=*/true);
6393     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6394 
6395     if (useEmulatedMaskMemRefHack(I, VF))
6396       // Artificially setting to a high enough value to practically disable
6397       // vectorization with such operations.
6398       Cost = 3000000;
6399   }
6400 
6401   return Cost;
6402 }
6403 
6404 InstructionCost
6405 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6406                                                     ElementCount VF) {
6407   Type *ValTy = getLoadStoreType(I);
6408   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6409   Value *Ptr = getLoadStorePointerOperand(I);
6410   unsigned AS = getLoadStoreAddressSpace(I);
6411   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6412   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6413 
6414   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6415          "Stride should be 1 or -1 for consecutive memory access");
6416   const Align Alignment = getLoadStoreAlignment(I);
6417   InstructionCost Cost = 0;
6418   if (Legal->isMaskRequired(I))
6419     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6420                                       CostKind);
6421   else
6422     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6423                                 CostKind, I);
6424 
6425   bool Reverse = ConsecutiveStride < 0;
6426   if (Reverse)
6427     Cost +=
6428         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6429   return Cost;
6430 }
6431 
6432 InstructionCost
6433 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6434                                                 ElementCount VF) {
6435   assert(Legal->isUniformMemOp(*I));
6436 
6437   Type *ValTy = getLoadStoreType(I);
6438   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6439   const Align Alignment = getLoadStoreAlignment(I);
6440   unsigned AS = getLoadStoreAddressSpace(I);
6441   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6442   if (isa<LoadInst>(I)) {
6443     return TTI.getAddressComputationCost(ValTy) +
6444            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6445                                CostKind) +
6446            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6447   }
6448   StoreInst *SI = cast<StoreInst>(I);
6449 
6450   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6451   return TTI.getAddressComputationCost(ValTy) +
6452          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6453                              CostKind) +
6454          (isLoopInvariantStoreValue
6455               ? 0
6456               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6457                                        VF.getKnownMinValue() - 1));
6458 }
6459 
6460 InstructionCost
6461 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6462                                                  ElementCount VF) {
6463   Type *ValTy = getLoadStoreType(I);
6464   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6465   const Align Alignment = getLoadStoreAlignment(I);
6466   const Value *Ptr = getLoadStorePointerOperand(I);
6467 
6468   return TTI.getAddressComputationCost(VectorTy) +
6469          TTI.getGatherScatterOpCost(
6470              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6471              TargetTransformInfo::TCK_RecipThroughput, I);
6472 }
6473 
6474 InstructionCost
6475 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6476                                                    ElementCount VF) {
6477   // TODO: Once we have support for interleaving with scalable vectors
6478   // we can calculate the cost properly here.
6479   if (VF.isScalable())
6480     return InstructionCost::getInvalid();
6481 
6482   Type *ValTy = getLoadStoreType(I);
6483   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6484   unsigned AS = getLoadStoreAddressSpace(I);
6485 
6486   auto Group = getInterleavedAccessGroup(I);
6487   assert(Group && "Fail to get an interleaved access group.");
6488 
6489   unsigned InterleaveFactor = Group->getFactor();
6490   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6491 
6492   // Holds the indices of existing members in the interleaved group.
6493   SmallVector<unsigned, 4> Indices;
6494   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6495     if (Group->getMember(IF))
6496       Indices.push_back(IF);
6497 
6498   // Calculate the cost of the whole interleaved group.
6499   bool UseMaskForGaps =
6500       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6501       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6502   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6503       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6504       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6505 
6506   if (Group->isReverse()) {
6507     // TODO: Add support for reversed masked interleaved access.
6508     assert(!Legal->isMaskRequired(I) &&
6509            "Reverse masked interleaved access not supported.");
6510     Cost +=
6511         Group->getNumMembers() *
6512         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6513   }
6514   return Cost;
6515 }
6516 
6517 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6518     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6519   using namespace llvm::PatternMatch;
6520   // Early exit for no inloop reductions
6521   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6522     return None;
6523   auto *VectorTy = cast<VectorType>(Ty);
6524 
6525   // We are looking for a pattern of, and finding the minimal acceptable cost:
6526   //  reduce(mul(ext(A), ext(B))) or
6527   //  reduce(mul(A, B)) or
6528   //  reduce(ext(A)) or
6529   //  reduce(A).
6530   // The basic idea is that we walk down the tree to do that, finding the root
6531   // reduction instruction in InLoopReductionImmediateChains. From there we find
6532   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6533   // of the components. If the reduction cost is lower then we return it for the
6534   // reduction instruction and 0 for the other instructions in the pattern. If
6535   // it is not we return an invalid cost specifying the orignal cost method
6536   // should be used.
6537   Instruction *RetI = I;
6538   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6539     if (!RetI->hasOneUser())
6540       return None;
6541     RetI = RetI->user_back();
6542   }
6543   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6544       RetI->user_back()->getOpcode() == Instruction::Add) {
6545     if (!RetI->hasOneUser())
6546       return None;
6547     RetI = RetI->user_back();
6548   }
6549 
6550   // Test if the found instruction is a reduction, and if not return an invalid
6551   // cost specifying the parent to use the original cost modelling.
6552   if (!InLoopReductionImmediateChains.count(RetI))
6553     return None;
6554 
6555   // Find the reduction this chain is a part of and calculate the basic cost of
6556   // the reduction on its own.
6557   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6558   Instruction *ReductionPhi = LastChain;
6559   while (!isa<PHINode>(ReductionPhi))
6560     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6561 
6562   const RecurrenceDescriptor &RdxDesc =
6563       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6564 
6565   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6566       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6567 
6568   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6569   // normal fmul instruction to the cost of the fadd reduction.
6570   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6571     BaseCost +=
6572         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6573 
6574   // If we're using ordered reductions then we can just return the base cost
6575   // here, since getArithmeticReductionCost calculates the full ordered
6576   // reduction cost when FP reassociation is not allowed.
6577   if (useOrderedReductions(RdxDesc))
6578     return BaseCost;
6579 
6580   // Get the operand that was not the reduction chain and match it to one of the
6581   // patterns, returning the better cost if it is found.
6582   Instruction *RedOp = RetI->getOperand(1) == LastChain
6583                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6584                            : dyn_cast<Instruction>(RetI->getOperand(1));
6585 
6586   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6587 
6588   Instruction *Op0, *Op1;
6589   if (RedOp &&
6590       match(RedOp,
6591             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6592       match(Op0, m_ZExtOrSExt(m_Value())) &&
6593       Op0->getOpcode() == Op1->getOpcode() &&
6594       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6595       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6596       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6597 
6598     // Matched reduce(ext(mul(ext(A), ext(B)))
6599     // Note that the extend opcodes need to all match, or if A==B they will have
6600     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6601     // which is equally fine.
6602     bool IsUnsigned = isa<ZExtInst>(Op0);
6603     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6604     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6605 
6606     InstructionCost ExtCost =
6607         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6608                              TTI::CastContextHint::None, CostKind, Op0);
6609     InstructionCost MulCost =
6610         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6611     InstructionCost Ext2Cost =
6612         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6613                              TTI::CastContextHint::None, CostKind, RedOp);
6614 
6615     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6616         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6617         CostKind);
6618 
6619     if (RedCost.isValid() &&
6620         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6621       return I == RetI ? RedCost : 0;
6622   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6623              !TheLoop->isLoopInvariant(RedOp)) {
6624     // Matched reduce(ext(A))
6625     bool IsUnsigned = isa<ZExtInst>(RedOp);
6626     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6627     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6628         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6629         CostKind);
6630 
6631     InstructionCost ExtCost =
6632         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6633                              TTI::CastContextHint::None, CostKind, RedOp);
6634     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6635       return I == RetI ? RedCost : 0;
6636   } else if (RedOp &&
6637              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6638     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6639         Op0->getOpcode() == Op1->getOpcode() &&
6640         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6641       bool IsUnsigned = isa<ZExtInst>(Op0);
6642       Type *Op0Ty = Op0->getOperand(0)->getType();
6643       Type *Op1Ty = Op1->getOperand(0)->getType();
6644       Type *LargestOpTy =
6645           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6646                                                                     : Op0Ty;
6647       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6648 
6649       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6650       // different sizes. We take the largest type as the ext to reduce, and add
6651       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6652       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6653           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6654           TTI::CastContextHint::None, CostKind, Op0);
6655       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6656           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6657           TTI::CastContextHint::None, CostKind, Op1);
6658       InstructionCost MulCost =
6659           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6660 
6661       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6662           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6663           CostKind);
6664       InstructionCost ExtraExtCost = 0;
6665       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6666         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6667         ExtraExtCost = TTI.getCastInstrCost(
6668             ExtraExtOp->getOpcode(), ExtType,
6669             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6670             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6671       }
6672 
6673       if (RedCost.isValid() &&
6674           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6675         return I == RetI ? RedCost : 0;
6676     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6677       // Matched reduce(mul())
6678       InstructionCost MulCost =
6679           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6680 
6681       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6682           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6683           CostKind);
6684 
6685       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6686         return I == RetI ? RedCost : 0;
6687     }
6688   }
6689 
6690   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6691 }
6692 
6693 InstructionCost
6694 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6695                                                      ElementCount VF) {
6696   // Calculate scalar cost only. Vectorization cost should be ready at this
6697   // moment.
6698   if (VF.isScalar()) {
6699     Type *ValTy = getLoadStoreType(I);
6700     const Align Alignment = getLoadStoreAlignment(I);
6701     unsigned AS = getLoadStoreAddressSpace(I);
6702 
6703     return TTI.getAddressComputationCost(ValTy) +
6704            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6705                                TTI::TCK_RecipThroughput, I);
6706   }
6707   return getWideningCost(I, VF);
6708 }
6709 
6710 LoopVectorizationCostModel::VectorizationCostTy
6711 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6712                                                ElementCount VF) {
6713   // If we know that this instruction will remain uniform, check the cost of
6714   // the scalar version.
6715   if (isUniformAfterVectorization(I, VF))
6716     VF = ElementCount::getFixed(1);
6717 
6718   if (VF.isVector() && isProfitableToScalarize(I, VF))
6719     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6720 
6721   // Forced scalars do not have any scalarization overhead.
6722   auto ForcedScalar = ForcedScalars.find(VF);
6723   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6724     auto InstSet = ForcedScalar->second;
6725     if (InstSet.count(I))
6726       return VectorizationCostTy(
6727           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6728            VF.getKnownMinValue()),
6729           false);
6730   }
6731 
6732   Type *VectorTy;
6733   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6734 
6735   bool TypeNotScalarized = false;
6736   if (VF.isVector() && VectorTy->isVectorTy()) {
6737     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6738     if (NumParts)
6739       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6740     else
6741       C = InstructionCost::getInvalid();
6742   }
6743   return VectorizationCostTy(C, TypeNotScalarized);
6744 }
6745 
6746 InstructionCost
6747 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6748                                                      ElementCount VF) const {
6749 
6750   // There is no mechanism yet to create a scalable scalarization loop,
6751   // so this is currently Invalid.
6752   if (VF.isScalable())
6753     return InstructionCost::getInvalid();
6754 
6755   if (VF.isScalar())
6756     return 0;
6757 
6758   InstructionCost Cost = 0;
6759   Type *RetTy = ToVectorTy(I->getType(), VF);
6760   if (!RetTy->isVoidTy() &&
6761       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6762     Cost += TTI.getScalarizationOverhead(
6763         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6764         false);
6765 
6766   // Some targets keep addresses scalar.
6767   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6768     return Cost;
6769 
6770   // Some targets support efficient element stores.
6771   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6772     return Cost;
6773 
6774   // Collect operands to consider.
6775   CallInst *CI = dyn_cast<CallInst>(I);
6776   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6777 
6778   // Skip operands that do not require extraction/scalarization and do not incur
6779   // any overhead.
6780   SmallVector<Type *> Tys;
6781   for (auto *V : filterExtractingOperands(Ops, VF))
6782     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6783   return Cost + TTI.getOperandsScalarizationOverhead(
6784                     filterExtractingOperands(Ops, VF), Tys);
6785 }
6786 
6787 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6788   if (VF.isScalar())
6789     return;
6790   NumPredStores = 0;
6791   for (BasicBlock *BB : TheLoop->blocks()) {
6792     // For each instruction in the old loop.
6793     for (Instruction &I : *BB) {
6794       Value *Ptr =  getLoadStorePointerOperand(&I);
6795       if (!Ptr)
6796         continue;
6797 
6798       // TODO: We should generate better code and update the cost model for
6799       // predicated uniform stores. Today they are treated as any other
6800       // predicated store (see added test cases in
6801       // invariant-store-vectorization.ll).
6802       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6803         NumPredStores++;
6804 
6805       if (Legal->isUniformMemOp(I)) {
6806         // TODO: Avoid replicating loads and stores instead of
6807         // relying on instcombine to remove them.
6808         // Load: Scalar load + broadcast
6809         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6810         InstructionCost Cost;
6811         if (isa<StoreInst>(&I) && VF.isScalable() &&
6812             isLegalGatherOrScatter(&I, VF)) {
6813           Cost = getGatherScatterCost(&I, VF);
6814           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6815         } else {
6816           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
6817                  "Cannot yet scalarize uniform stores");
6818           Cost = getUniformMemOpCost(&I, VF);
6819           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6820         }
6821         continue;
6822       }
6823 
6824       // We assume that widening is the best solution when possible.
6825       if (memoryInstructionCanBeWidened(&I, VF)) {
6826         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6827         int ConsecutiveStride = Legal->isConsecutivePtr(
6828             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6829         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6830                "Expected consecutive stride.");
6831         InstWidening Decision =
6832             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6833         setWideningDecision(&I, VF, Decision, Cost);
6834         continue;
6835       }
6836 
6837       // Choose between Interleaving, Gather/Scatter or Scalarization.
6838       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6839       unsigned NumAccesses = 1;
6840       if (isAccessInterleaved(&I)) {
6841         auto Group = getInterleavedAccessGroup(&I);
6842         assert(Group && "Fail to get an interleaved access group.");
6843 
6844         // Make one decision for the whole group.
6845         if (getWideningDecision(&I, VF) != CM_Unknown)
6846           continue;
6847 
6848         NumAccesses = Group->getNumMembers();
6849         if (interleavedAccessCanBeWidened(&I, VF))
6850           InterleaveCost = getInterleaveGroupCost(&I, VF);
6851       }
6852 
6853       InstructionCost GatherScatterCost =
6854           isLegalGatherOrScatter(&I, VF)
6855               ? getGatherScatterCost(&I, VF) * NumAccesses
6856               : InstructionCost::getInvalid();
6857 
6858       InstructionCost ScalarizationCost =
6859           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6860 
6861       // Choose better solution for the current VF,
6862       // write down this decision and use it during vectorization.
6863       InstructionCost Cost;
6864       InstWidening Decision;
6865       if (InterleaveCost <= GatherScatterCost &&
6866           InterleaveCost < ScalarizationCost) {
6867         Decision = CM_Interleave;
6868         Cost = InterleaveCost;
6869       } else if (GatherScatterCost < ScalarizationCost) {
6870         Decision = CM_GatherScatter;
6871         Cost = GatherScatterCost;
6872       } else {
6873         Decision = CM_Scalarize;
6874         Cost = ScalarizationCost;
6875       }
6876       // If the instructions belongs to an interleave group, the whole group
6877       // receives the same decision. The whole group receives the cost, but
6878       // the cost will actually be assigned to one instruction.
6879       if (auto Group = getInterleavedAccessGroup(&I))
6880         setWideningDecision(Group, VF, Decision, Cost);
6881       else
6882         setWideningDecision(&I, VF, Decision, Cost);
6883     }
6884   }
6885 
6886   // Make sure that any load of address and any other address computation
6887   // remains scalar unless there is gather/scatter support. This avoids
6888   // inevitable extracts into address registers, and also has the benefit of
6889   // activating LSR more, since that pass can't optimize vectorized
6890   // addresses.
6891   if (TTI.prefersVectorizedAddressing())
6892     return;
6893 
6894   // Start with all scalar pointer uses.
6895   SmallPtrSet<Instruction *, 8> AddrDefs;
6896   for (BasicBlock *BB : TheLoop->blocks())
6897     for (Instruction &I : *BB) {
6898       Instruction *PtrDef =
6899         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6900       if (PtrDef && TheLoop->contains(PtrDef) &&
6901           getWideningDecision(&I, VF) != CM_GatherScatter)
6902         AddrDefs.insert(PtrDef);
6903     }
6904 
6905   // Add all instructions used to generate the addresses.
6906   SmallVector<Instruction *, 4> Worklist;
6907   append_range(Worklist, AddrDefs);
6908   while (!Worklist.empty()) {
6909     Instruction *I = Worklist.pop_back_val();
6910     for (auto &Op : I->operands())
6911       if (auto *InstOp = dyn_cast<Instruction>(Op))
6912         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6913             AddrDefs.insert(InstOp).second)
6914           Worklist.push_back(InstOp);
6915   }
6916 
6917   for (auto *I : AddrDefs) {
6918     if (isa<LoadInst>(I)) {
6919       // Setting the desired widening decision should ideally be handled in
6920       // by cost functions, but since this involves the task of finding out
6921       // if the loaded register is involved in an address computation, it is
6922       // instead changed here when we know this is the case.
6923       InstWidening Decision = getWideningDecision(I, VF);
6924       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6925         // Scalarize a widened load of address.
6926         setWideningDecision(
6927             I, VF, CM_Scalarize,
6928             (VF.getKnownMinValue() *
6929              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6930       else if (auto Group = getInterleavedAccessGroup(I)) {
6931         // Scalarize an interleave group of address loads.
6932         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6933           if (Instruction *Member = Group->getMember(I))
6934             setWideningDecision(
6935                 Member, VF, CM_Scalarize,
6936                 (VF.getKnownMinValue() *
6937                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6938         }
6939       }
6940     } else
6941       // Make sure I gets scalarized and a cost estimate without
6942       // scalarization overhead.
6943       ForcedScalars[VF].insert(I);
6944   }
6945 }
6946 
6947 InstructionCost
6948 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6949                                                Type *&VectorTy) {
6950   Type *RetTy = I->getType();
6951   if (canTruncateToMinimalBitwidth(I, VF))
6952     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6953   auto SE = PSE.getSE();
6954   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6955 
6956   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6957                                                 ElementCount VF) -> bool {
6958     if (VF.isScalar())
6959       return true;
6960 
6961     auto Scalarized = InstsToScalarize.find(VF);
6962     assert(Scalarized != InstsToScalarize.end() &&
6963            "VF not yet analyzed for scalarization profitability");
6964     return !Scalarized->second.count(I) &&
6965            llvm::all_of(I->users(), [&](User *U) {
6966              auto *UI = cast<Instruction>(U);
6967              return !Scalarized->second.count(UI);
6968            });
6969   };
6970   (void) hasSingleCopyAfterVectorization;
6971 
6972   if (isScalarAfterVectorization(I, VF)) {
6973     // With the exception of GEPs and PHIs, after scalarization there should
6974     // only be one copy of the instruction generated in the loop. This is
6975     // because the VF is either 1, or any instructions that need scalarizing
6976     // have already been dealt with by the the time we get here. As a result,
6977     // it means we don't have to multiply the instruction cost by VF.
6978     assert(I->getOpcode() == Instruction::GetElementPtr ||
6979            I->getOpcode() == Instruction::PHI ||
6980            (I->getOpcode() == Instruction::BitCast &&
6981             I->getType()->isPointerTy()) ||
6982            hasSingleCopyAfterVectorization(I, VF));
6983     VectorTy = RetTy;
6984   } else
6985     VectorTy = ToVectorTy(RetTy, VF);
6986 
6987   // TODO: We need to estimate the cost of intrinsic calls.
6988   switch (I->getOpcode()) {
6989   case Instruction::GetElementPtr:
6990     // We mark this instruction as zero-cost because the cost of GEPs in
6991     // vectorized code depends on whether the corresponding memory instruction
6992     // is scalarized or not. Therefore, we handle GEPs with the memory
6993     // instruction cost.
6994     return 0;
6995   case Instruction::Br: {
6996     // In cases of scalarized and predicated instructions, there will be VF
6997     // predicated blocks in the vectorized loop. Each branch around these
6998     // blocks requires also an extract of its vector compare i1 element.
6999     bool ScalarPredicatedBB = false;
7000     BranchInst *BI = cast<BranchInst>(I);
7001     if (VF.isVector() && BI->isConditional() &&
7002         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7003          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7004       ScalarPredicatedBB = true;
7005 
7006     if (ScalarPredicatedBB) {
7007       // Not possible to scalarize scalable vector with predicated instructions.
7008       if (VF.isScalable())
7009         return InstructionCost::getInvalid();
7010       // Return cost for branches around scalarized and predicated blocks.
7011       auto *Vec_i1Ty =
7012           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7013       return (
7014           TTI.getScalarizationOverhead(
7015               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7016           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7017     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7018       // The back-edge branch will remain, as will all scalar branches.
7019       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7020     else
7021       // This branch will be eliminated by if-conversion.
7022       return 0;
7023     // Note: We currently assume zero cost for an unconditional branch inside
7024     // a predicated block since it will become a fall-through, although we
7025     // may decide in the future to call TTI for all branches.
7026   }
7027   case Instruction::PHI: {
7028     auto *Phi = cast<PHINode>(I);
7029 
7030     // First-order recurrences are replaced by vector shuffles inside the loop.
7031     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7032     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7033       return TTI.getShuffleCost(
7034           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7035           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7036 
7037     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7038     // converted into select instructions. We require N - 1 selects per phi
7039     // node, where N is the number of incoming values.
7040     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7041       return (Phi->getNumIncomingValues() - 1) *
7042              TTI.getCmpSelInstrCost(
7043                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7044                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7045                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7046 
7047     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7048   }
7049   case Instruction::UDiv:
7050   case Instruction::SDiv:
7051   case Instruction::URem:
7052   case Instruction::SRem:
7053     // If we have a predicated instruction, it may not be executed for each
7054     // vector lane. Get the scalarization cost and scale this amount by the
7055     // probability of executing the predicated block. If the instruction is not
7056     // predicated, we fall through to the next case.
7057     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7058       InstructionCost Cost = 0;
7059 
7060       // These instructions have a non-void type, so account for the phi nodes
7061       // that we will create. This cost is likely to be zero. The phi node
7062       // cost, if any, should be scaled by the block probability because it
7063       // models a copy at the end of each predicated block.
7064       Cost += VF.getKnownMinValue() *
7065               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7066 
7067       // The cost of the non-predicated instruction.
7068       Cost += VF.getKnownMinValue() *
7069               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7070 
7071       // The cost of insertelement and extractelement instructions needed for
7072       // scalarization.
7073       Cost += getScalarizationOverhead(I, VF);
7074 
7075       // Scale the cost by the probability of executing the predicated blocks.
7076       // This assumes the predicated block for each vector lane is equally
7077       // likely.
7078       return Cost / getReciprocalPredBlockProb();
7079     }
7080     LLVM_FALLTHROUGH;
7081   case Instruction::Add:
7082   case Instruction::FAdd:
7083   case Instruction::Sub:
7084   case Instruction::FSub:
7085   case Instruction::Mul:
7086   case Instruction::FMul:
7087   case Instruction::FDiv:
7088   case Instruction::FRem:
7089   case Instruction::Shl:
7090   case Instruction::LShr:
7091   case Instruction::AShr:
7092   case Instruction::And:
7093   case Instruction::Or:
7094   case Instruction::Xor: {
7095     // Since we will replace the stride by 1 the multiplication should go away.
7096     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7097       return 0;
7098 
7099     // Detect reduction patterns
7100     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7101       return *RedCost;
7102 
7103     // Certain instructions can be cheaper to vectorize if they have a constant
7104     // second vector operand. One example of this are shifts on x86.
7105     Value *Op2 = I->getOperand(1);
7106     TargetTransformInfo::OperandValueProperties Op2VP;
7107     TargetTransformInfo::OperandValueKind Op2VK =
7108         TTI.getOperandInfo(Op2, Op2VP);
7109     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7110       Op2VK = TargetTransformInfo::OK_UniformValue;
7111 
7112     SmallVector<const Value *, 4> Operands(I->operand_values());
7113     return TTI.getArithmeticInstrCost(
7114         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7115         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7116   }
7117   case Instruction::FNeg: {
7118     return TTI.getArithmeticInstrCost(
7119         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7120         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7121         TargetTransformInfo::OP_None, I->getOperand(0), I);
7122   }
7123   case Instruction::Select: {
7124     SelectInst *SI = cast<SelectInst>(I);
7125     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7126     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7127 
7128     const Value *Op0, *Op1;
7129     using namespace llvm::PatternMatch;
7130     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7131                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7132       // select x, y, false --> x & y
7133       // select x, true, y --> x | y
7134       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7135       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7136       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7137       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7138       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7139               Op1->getType()->getScalarSizeInBits() == 1);
7140 
7141       SmallVector<const Value *, 2> Operands{Op0, Op1};
7142       return TTI.getArithmeticInstrCost(
7143           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7144           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7145     }
7146 
7147     Type *CondTy = SI->getCondition()->getType();
7148     if (!ScalarCond)
7149       CondTy = VectorType::get(CondTy, VF);
7150 
7151     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7152     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7153       Pred = Cmp->getPredicate();
7154     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7155                                   CostKind, I);
7156   }
7157   case Instruction::ICmp:
7158   case Instruction::FCmp: {
7159     Type *ValTy = I->getOperand(0)->getType();
7160     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7161     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7162       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7163     VectorTy = ToVectorTy(ValTy, VF);
7164     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7165                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7166                                   I);
7167   }
7168   case Instruction::Store:
7169   case Instruction::Load: {
7170     ElementCount Width = VF;
7171     if (Width.isVector()) {
7172       InstWidening Decision = getWideningDecision(I, Width);
7173       assert(Decision != CM_Unknown &&
7174              "CM decision should be taken at this point");
7175       if (Decision == CM_Scalarize)
7176         Width = ElementCount::getFixed(1);
7177     }
7178     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7179     return getMemoryInstructionCost(I, VF);
7180   }
7181   case Instruction::BitCast:
7182     if (I->getType()->isPointerTy())
7183       return 0;
7184     LLVM_FALLTHROUGH;
7185   case Instruction::ZExt:
7186   case Instruction::SExt:
7187   case Instruction::FPToUI:
7188   case Instruction::FPToSI:
7189   case Instruction::FPExt:
7190   case Instruction::PtrToInt:
7191   case Instruction::IntToPtr:
7192   case Instruction::SIToFP:
7193   case Instruction::UIToFP:
7194   case Instruction::Trunc:
7195   case Instruction::FPTrunc: {
7196     // Computes the CastContextHint from a Load/Store instruction.
7197     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7198       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7199              "Expected a load or a store!");
7200 
7201       if (VF.isScalar() || !TheLoop->contains(I))
7202         return TTI::CastContextHint::Normal;
7203 
7204       switch (getWideningDecision(I, VF)) {
7205       case LoopVectorizationCostModel::CM_GatherScatter:
7206         return TTI::CastContextHint::GatherScatter;
7207       case LoopVectorizationCostModel::CM_Interleave:
7208         return TTI::CastContextHint::Interleave;
7209       case LoopVectorizationCostModel::CM_Scalarize:
7210       case LoopVectorizationCostModel::CM_Widen:
7211         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7212                                         : TTI::CastContextHint::Normal;
7213       case LoopVectorizationCostModel::CM_Widen_Reverse:
7214         return TTI::CastContextHint::Reversed;
7215       case LoopVectorizationCostModel::CM_Unknown:
7216         llvm_unreachable("Instr did not go through cost modelling?");
7217       }
7218 
7219       llvm_unreachable("Unhandled case!");
7220     };
7221 
7222     unsigned Opcode = I->getOpcode();
7223     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7224     // For Trunc, the context is the only user, which must be a StoreInst.
7225     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7226       if (I->hasOneUse())
7227         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7228           CCH = ComputeCCH(Store);
7229     }
7230     // For Z/Sext, the context is the operand, which must be a LoadInst.
7231     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7232              Opcode == Instruction::FPExt) {
7233       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7234         CCH = ComputeCCH(Load);
7235     }
7236 
7237     // We optimize the truncation of induction variables having constant
7238     // integer steps. The cost of these truncations is the same as the scalar
7239     // operation.
7240     if (isOptimizableIVTruncate(I, VF)) {
7241       auto *Trunc = cast<TruncInst>(I);
7242       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7243                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7244     }
7245 
7246     // Detect reduction patterns
7247     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7248       return *RedCost;
7249 
7250     Type *SrcScalarTy = I->getOperand(0)->getType();
7251     Type *SrcVecTy =
7252         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7253     if (canTruncateToMinimalBitwidth(I, VF)) {
7254       // This cast is going to be shrunk. This may remove the cast or it might
7255       // turn it into slightly different cast. For example, if MinBW == 16,
7256       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7257       //
7258       // Calculate the modified src and dest types.
7259       Type *MinVecTy = VectorTy;
7260       if (Opcode == Instruction::Trunc) {
7261         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7262         VectorTy =
7263             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7264       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7265         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7266         VectorTy =
7267             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7268       }
7269     }
7270 
7271     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7272   }
7273   case Instruction::Call: {
7274     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7275       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7276         return *RedCost;
7277     bool NeedToScalarize;
7278     CallInst *CI = cast<CallInst>(I);
7279     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7280     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7281       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7282       return std::min(CallCost, IntrinsicCost);
7283     }
7284     return CallCost;
7285   }
7286   case Instruction::ExtractValue:
7287     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7288   case Instruction::Alloca:
7289     // We cannot easily widen alloca to a scalable alloca, as
7290     // the result would need to be a vector of pointers.
7291     if (VF.isScalable())
7292       return InstructionCost::getInvalid();
7293     LLVM_FALLTHROUGH;
7294   default:
7295     // This opcode is unknown. Assume that it is the same as 'mul'.
7296     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7297   } // end of switch.
7298 }
7299 
7300 char LoopVectorize::ID = 0;
7301 
7302 static const char lv_name[] = "Loop Vectorization";
7303 
7304 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7305 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7306 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7307 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7308 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7309 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7310 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7311 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7312 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7313 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7314 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7315 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7316 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7317 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7318 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7319 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7320 
7321 namespace llvm {
7322 
7323 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7324 
7325 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7326                               bool VectorizeOnlyWhenForced) {
7327   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7328 }
7329 
7330 } // end namespace llvm
7331 
7332 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7333   // Check if the pointer operand of a load or store instruction is
7334   // consecutive.
7335   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7336     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7337   return false;
7338 }
7339 
7340 void LoopVectorizationCostModel::collectValuesToIgnore() {
7341   // Ignore ephemeral values.
7342   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7343 
7344   // Ignore type-promoting instructions we identified during reduction
7345   // detection.
7346   for (auto &Reduction : Legal->getReductionVars()) {
7347     const RecurrenceDescriptor &RedDes = Reduction.second;
7348     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7349     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7350   }
7351   // Ignore type-casting instructions we identified during induction
7352   // detection.
7353   for (auto &Induction : Legal->getInductionVars()) {
7354     const InductionDescriptor &IndDes = Induction.second;
7355     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7356     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7357   }
7358 }
7359 
7360 void LoopVectorizationCostModel::collectInLoopReductions() {
7361   for (auto &Reduction : Legal->getReductionVars()) {
7362     PHINode *Phi = Reduction.first;
7363     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7364 
7365     // We don't collect reductions that are type promoted (yet).
7366     if (RdxDesc.getRecurrenceType() != Phi->getType())
7367       continue;
7368 
7369     // If the target would prefer this reduction to happen "in-loop", then we
7370     // want to record it as such.
7371     unsigned Opcode = RdxDesc.getOpcode();
7372     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7373         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7374                                    TargetTransformInfo::ReductionFlags()))
7375       continue;
7376 
7377     // Check that we can correctly put the reductions into the loop, by
7378     // finding the chain of operations that leads from the phi to the loop
7379     // exit value.
7380     SmallVector<Instruction *, 4> ReductionOperations =
7381         RdxDesc.getReductionOpChain(Phi, TheLoop);
7382     bool InLoop = !ReductionOperations.empty();
7383     if (InLoop) {
7384       InLoopReductionChains[Phi] = ReductionOperations;
7385       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7386       Instruction *LastChain = Phi;
7387       for (auto *I : ReductionOperations) {
7388         InLoopReductionImmediateChains[I] = LastChain;
7389         LastChain = I;
7390       }
7391     }
7392     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7393                       << " reduction for phi: " << *Phi << "\n");
7394   }
7395 }
7396 
7397 // TODO: we could return a pair of values that specify the max VF and
7398 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7399 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7400 // doesn't have a cost model that can choose which plan to execute if
7401 // more than one is generated.
7402 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7403                                  LoopVectorizationCostModel &CM) {
7404   unsigned WidestType;
7405   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7406   return WidestVectorRegBits / WidestType;
7407 }
7408 
7409 VectorizationFactor
7410 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7411   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7412   ElementCount VF = UserVF;
7413   // Outer loop handling: They may require CFG and instruction level
7414   // transformations before even evaluating whether vectorization is profitable.
7415   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7416   // the vectorization pipeline.
7417   if (!OrigLoop->isInnermost()) {
7418     // If the user doesn't provide a vectorization factor, determine a
7419     // reasonable one.
7420     if (UserVF.isZero()) {
7421       VF = ElementCount::getFixed(determineVPlanVF(
7422           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7423               .getFixedSize(),
7424           CM));
7425       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7426 
7427       // Make sure we have a VF > 1 for stress testing.
7428       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7429         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7430                           << "overriding computed VF.\n");
7431         VF = ElementCount::getFixed(4);
7432       }
7433     }
7434     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7435     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7436            "VF needs to be a power of two");
7437     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7438                       << "VF " << VF << " to build VPlans.\n");
7439     buildVPlans(VF, VF);
7440 
7441     // For VPlan build stress testing, we bail out after VPlan construction.
7442     if (VPlanBuildStressTest)
7443       return VectorizationFactor::Disabled();
7444 
7445     return {VF, 0 /*Cost*/};
7446   }
7447 
7448   LLVM_DEBUG(
7449       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7450                 "VPlan-native path.\n");
7451   return VectorizationFactor::Disabled();
7452 }
7453 
7454 Optional<VectorizationFactor>
7455 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7456   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7457   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7458   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7459     return None;
7460 
7461   // Invalidate interleave groups if all blocks of loop will be predicated.
7462   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7463       !useMaskedInterleavedAccesses(*TTI)) {
7464     LLVM_DEBUG(
7465         dbgs()
7466         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7467            "which requires masked-interleaved support.\n");
7468     if (CM.InterleaveInfo.invalidateGroups())
7469       // Invalidating interleave groups also requires invalidating all decisions
7470       // based on them, which includes widening decisions and uniform and scalar
7471       // values.
7472       CM.invalidateCostModelingDecisions();
7473   }
7474 
7475   ElementCount MaxUserVF =
7476       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7477   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7478   if (!UserVF.isZero() && UserVFIsLegal) {
7479     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7480            "VF needs to be a power of two");
7481     // Collect the instructions (and their associated costs) that will be more
7482     // profitable to scalarize.
7483     if (CM.selectUserVectorizationFactor(UserVF)) {
7484       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7485       CM.collectInLoopReductions();
7486       buildVPlansWithVPRecipes(UserVF, UserVF);
7487       LLVM_DEBUG(printPlans(dbgs()));
7488       return {{UserVF, 0}};
7489     } else
7490       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7491                               "InvalidCost", ORE, OrigLoop);
7492   }
7493 
7494   // Populate the set of Vectorization Factor Candidates.
7495   ElementCountSet VFCandidates;
7496   for (auto VF = ElementCount::getFixed(1);
7497        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7498     VFCandidates.insert(VF);
7499   for (auto VF = ElementCount::getScalable(1);
7500        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7501     VFCandidates.insert(VF);
7502 
7503   for (const auto &VF : VFCandidates) {
7504     // Collect Uniform and Scalar instructions after vectorization with VF.
7505     CM.collectUniformsAndScalars(VF);
7506 
7507     // Collect the instructions (and their associated costs) that will be more
7508     // profitable to scalarize.
7509     if (VF.isVector())
7510       CM.collectInstsToScalarize(VF);
7511   }
7512 
7513   CM.collectInLoopReductions();
7514   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7515   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7516 
7517   LLVM_DEBUG(printPlans(dbgs()));
7518   if (!MaxFactors.hasVector())
7519     return VectorizationFactor::Disabled();
7520 
7521   // Select the optimal vectorization factor.
7522   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7523 
7524   // Check if it is profitable to vectorize with runtime checks.
7525   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7526   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7527     bool PragmaThresholdReached =
7528         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7529     bool ThresholdReached =
7530         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7531     if ((ThresholdReached && !Hints.allowReordering()) ||
7532         PragmaThresholdReached) {
7533       ORE->emit([&]() {
7534         return OptimizationRemarkAnalysisAliasing(
7535                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7536                    OrigLoop->getHeader())
7537                << "loop not vectorized: cannot prove it is safe to reorder "
7538                   "memory operations";
7539       });
7540       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7541       Hints.emitRemarkWithHints();
7542       return VectorizationFactor::Disabled();
7543     }
7544   }
7545   return SelectedVF;
7546 }
7547 
7548 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7549   assert(count_if(VPlans,
7550                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7551              1 &&
7552          "Best VF has not a single VPlan.");
7553 
7554   for (const VPlanPtr &Plan : VPlans) {
7555     if (Plan->hasVF(VF))
7556       return *Plan.get();
7557   }
7558   llvm_unreachable("No plan found!");
7559 }
7560 
7561 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7562   SmallVector<Metadata *, 4> MDs;
7563   // Reserve first location for self reference to the LoopID metadata node.
7564   MDs.push_back(nullptr);
7565   bool IsUnrollMetadata = false;
7566   MDNode *LoopID = L->getLoopID();
7567   if (LoopID) {
7568     // First find existing loop unrolling disable metadata.
7569     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7570       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7571       if (MD) {
7572         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7573         IsUnrollMetadata =
7574             S && S->getString().startswith("llvm.loop.unroll.disable");
7575       }
7576       MDs.push_back(LoopID->getOperand(i));
7577     }
7578   }
7579 
7580   if (!IsUnrollMetadata) {
7581     // Add runtime unroll disable metadata.
7582     LLVMContext &Context = L->getHeader()->getContext();
7583     SmallVector<Metadata *, 1> DisableOperands;
7584     DisableOperands.push_back(
7585         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7586     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7587     MDs.push_back(DisableNode);
7588     MDNode *NewLoopID = MDNode::get(Context, MDs);
7589     // Set operand 0 to refer to the loop id itself.
7590     NewLoopID->replaceOperandWith(0, NewLoopID);
7591     L->setLoopID(NewLoopID);
7592   }
7593 }
7594 
7595 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7596                                            VPlan &BestVPlan,
7597                                            InnerLoopVectorizer &ILV,
7598                                            DominatorTree *DT) {
7599   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7600                     << '\n');
7601 
7602   // Perform the actual loop transformation.
7603 
7604   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7605   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7606   Value *CanonicalIVStartValue;
7607   std::tie(State.CFG.VectorPreHeader, CanonicalIVStartValue) =
7608       ILV.createVectorizedLoopSkeleton();
7609   ILV.collectPoisonGeneratingRecipes(State);
7610 
7611   ILV.printDebugTracesAtStart();
7612 
7613   //===------------------------------------------------===//
7614   //
7615   // Notice: any optimization or new instruction that go
7616   // into the code below should also be implemented in
7617   // the cost-model.
7618   //
7619   //===------------------------------------------------===//
7620 
7621   // 2. Copy and widen instructions from the old loop into the new loop.
7622   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7623                              ILV.getOrCreateVectorTripCount(nullptr),
7624                              CanonicalIVStartValue, State);
7625   BestVPlan.execute(&State);
7626 
7627   // Keep all loop hints from the original loop on the vector loop (we'll
7628   // replace the vectorizer-specific hints below).
7629   MDNode *OrigLoopID = OrigLoop->getLoopID();
7630 
7631   Optional<MDNode *> VectorizedLoopID =
7632       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7633                                       LLVMLoopVectorizeFollowupVectorized});
7634 
7635   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7636   if (VectorizedLoopID.hasValue())
7637     L->setLoopID(VectorizedLoopID.getValue());
7638   else {
7639     // Keep all loop hints from the original loop on the vector loop (we'll
7640     // replace the vectorizer-specific hints below).
7641     if (MDNode *LID = OrigLoop->getLoopID())
7642       L->setLoopID(LID);
7643 
7644     LoopVectorizeHints Hints(L, true, *ORE);
7645     Hints.setAlreadyVectorized();
7646   }
7647   // Disable runtime unrolling when vectorizing the epilogue loop.
7648   if (CanonicalIVStartValue)
7649     AddRuntimeUnrollDisableMetaData(L);
7650 
7651   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7652   //    predication, updating analyses.
7653   ILV.fixVectorizedLoop(State);
7654 
7655   ILV.printDebugTracesAtEnd();
7656 }
7657 
7658 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7659 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7660   for (const auto &Plan : VPlans)
7661     if (PrintVPlansInDotFormat)
7662       Plan->printDOT(O);
7663     else
7664       Plan->print(O);
7665 }
7666 #endif
7667 
7668 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7669     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7670 
7671   // We create new control-flow for the vectorized loop, so the original exit
7672   // conditions will be dead after vectorization if it's only used by the
7673   // terminator
7674   SmallVector<BasicBlock*> ExitingBlocks;
7675   OrigLoop->getExitingBlocks(ExitingBlocks);
7676   for (auto *BB : ExitingBlocks) {
7677     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7678     if (!Cmp || !Cmp->hasOneUse())
7679       continue;
7680 
7681     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7682     if (!DeadInstructions.insert(Cmp).second)
7683       continue;
7684 
7685     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7686     // TODO: can recurse through operands in general
7687     for (Value *Op : Cmp->operands()) {
7688       if (isa<TruncInst>(Op) && Op->hasOneUse())
7689           DeadInstructions.insert(cast<Instruction>(Op));
7690     }
7691   }
7692 
7693   // We create new "steps" for induction variable updates to which the original
7694   // induction variables map. An original update instruction will be dead if
7695   // all its users except the induction variable are dead.
7696   auto *Latch = OrigLoop->getLoopLatch();
7697   for (auto &Induction : Legal->getInductionVars()) {
7698     PHINode *Ind = Induction.first;
7699     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7700 
7701     // If the tail is to be folded by masking, the primary induction variable,
7702     // if exists, isn't dead: it will be used for masking. Don't kill it.
7703     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7704       continue;
7705 
7706     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7707           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7708         }))
7709       DeadInstructions.insert(IndUpdate);
7710   }
7711 }
7712 
7713 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7714 
7715 //===--------------------------------------------------------------------===//
7716 // EpilogueVectorizerMainLoop
7717 //===--------------------------------------------------------------------===//
7718 
7719 /// This function is partially responsible for generating the control flow
7720 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7721 std::pair<BasicBlock *, Value *>
7722 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7723   MDNode *OrigLoopID = OrigLoop->getLoopID();
7724 
7725   // Workaround!  Compute the trip count of the original loop and cache it
7726   // before we start modifying the CFG.  This code has a systemic problem
7727   // wherein it tries to run analysis over partially constructed IR; this is
7728   // wrong, and not simply for SCEV.  The trip count of the original loop
7729   // simply happens to be prone to hitting this in practice.  In theory, we
7730   // can hit the same issue for any SCEV, or ValueTracking query done during
7731   // mutation.  See PR49900.
7732   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7733   createVectorLoopSkeleton("");
7734 
7735   // Generate the code to check the minimum iteration count of the vector
7736   // epilogue (see below).
7737   EPI.EpilogueIterationCountCheck =
7738       emitMinimumIterationCountCheck(LoopScalarPreHeader, true);
7739   EPI.EpilogueIterationCountCheck->setName("iter.check");
7740 
7741   // Generate the code to check any assumptions that we've made for SCEV
7742   // expressions.
7743   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7744 
7745   // Generate the code that checks at runtime if arrays overlap. We put the
7746   // checks into a separate block to make the more common case of few elements
7747   // faster.
7748   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7749 
7750   // Generate the iteration count check for the main loop, *after* the check
7751   // for the epilogue loop, so that the path-length is shorter for the case
7752   // that goes directly through the vector epilogue. The longer-path length for
7753   // the main loop is compensated for, by the gain from vectorizing the larger
7754   // trip count. Note: the branch will get updated later on when we vectorize
7755   // the epilogue.
7756   EPI.MainLoopIterationCountCheck =
7757       emitMinimumIterationCountCheck(LoopScalarPreHeader, false);
7758 
7759   // Generate the induction variable.
7760   Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader);
7761   EPI.VectorTripCount = CountRoundDown;
7762 
7763   // Skip induction resume value creation here because they will be created in
7764   // the second pass. If we created them here, they wouldn't be used anyway,
7765   // because the vplan in the second pass still contains the inductions from the
7766   // original loop.
7767 
7768   return {completeLoopSkeleton(OrigLoopID), nullptr};
7769 }
7770 
7771 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7772   LLVM_DEBUG({
7773     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7774            << "Main Loop VF:" << EPI.MainLoopVF
7775            << ", Main Loop UF:" << EPI.MainLoopUF
7776            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7777            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7778   });
7779 }
7780 
7781 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7782   DEBUG_WITH_TYPE(VerboseDebug, {
7783     dbgs() << "intermediate fn:\n"
7784            << *OrigLoop->getHeader()->getParent() << "\n";
7785   });
7786 }
7787 
7788 BasicBlock *
7789 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass,
7790                                                            bool ForEpilogue) {
7791   assert(Bypass && "Expected valid bypass basic block.");
7792   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7793   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7794   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7795   // Reuse existing vector loop preheader for TC checks.
7796   // Note that new preheader block is generated for vector loop.
7797   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7798   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7799 
7800   // Generate code to check if the loop's trip count is less than VF * UF of the
7801   // main vector loop.
7802   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7803       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7804 
7805   Value *CheckMinIters = Builder.CreateICmp(
7806       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7807       "min.iters.check");
7808 
7809   if (!ForEpilogue)
7810     TCCheckBlock->setName("vector.main.loop.iter.check");
7811 
7812   // Create new preheader for vector loop.
7813   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7814                                    DT, LI, nullptr, "vector.ph");
7815 
7816   if (ForEpilogue) {
7817     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7818                                  DT->getNode(Bypass)->getIDom()) &&
7819            "TC check is expected to dominate Bypass");
7820 
7821     // Update dominator for Bypass & LoopExit.
7822     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7823     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7824       // For loops with multiple exits, there's no edge from the middle block
7825       // to exit blocks (as the epilogue must run) and thus no need to update
7826       // the immediate dominator of the exit blocks.
7827       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7828 
7829     LoopBypassBlocks.push_back(TCCheckBlock);
7830 
7831     // Save the trip count so we don't have to regenerate it in the
7832     // vec.epilog.iter.check. This is safe to do because the trip count
7833     // generated here dominates the vector epilog iter check.
7834     EPI.TripCount = Count;
7835   }
7836 
7837   ReplaceInstWithInst(
7838       TCCheckBlock->getTerminator(),
7839       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7840 
7841   return TCCheckBlock;
7842 }
7843 
7844 //===--------------------------------------------------------------------===//
7845 // EpilogueVectorizerEpilogueLoop
7846 //===--------------------------------------------------------------------===//
7847 
7848 /// This function is partially responsible for generating the control flow
7849 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7850 std::pair<BasicBlock *, Value *>
7851 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7852   MDNode *OrigLoopID = OrigLoop->getLoopID();
7853   createVectorLoopSkeleton("vec.epilog.");
7854 
7855   // Now, compare the remaining count and if there aren't enough iterations to
7856   // execute the vectorized epilogue skip to the scalar part.
7857   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7858   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7859   LoopVectorPreHeader =
7860       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7861                  LI, nullptr, "vec.epilog.ph");
7862   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7863                                           VecEpilogueIterationCountCheck);
7864 
7865   // Adjust the control flow taking the state info from the main loop
7866   // vectorization into account.
7867   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7868          "expected this to be saved from the previous pass.");
7869   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7870       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7871 
7872   DT->changeImmediateDominator(LoopVectorPreHeader,
7873                                EPI.MainLoopIterationCountCheck);
7874 
7875   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7876       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7877 
7878   if (EPI.SCEVSafetyCheck)
7879     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7880         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7881   if (EPI.MemSafetyCheck)
7882     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7883         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7884 
7885   DT->changeImmediateDominator(
7886       VecEpilogueIterationCountCheck,
7887       VecEpilogueIterationCountCheck->getSinglePredecessor());
7888 
7889   DT->changeImmediateDominator(LoopScalarPreHeader,
7890                                EPI.EpilogueIterationCountCheck);
7891   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7892     // If there is an epilogue which must run, there's no edge from the
7893     // middle block to exit blocks  and thus no need to update the immediate
7894     // dominator of the exit blocks.
7895     DT->changeImmediateDominator(LoopExitBlock,
7896                                  EPI.EpilogueIterationCountCheck);
7897 
7898   // Keep track of bypass blocks, as they feed start values to the induction
7899   // phis in the scalar loop preheader.
7900   if (EPI.SCEVSafetyCheck)
7901     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7902   if (EPI.MemSafetyCheck)
7903     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7904   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7905 
7906   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7907   // merge control-flow from the latch block and the middle block. Update the
7908   // incoming values here and move the Phi into the preheader.
7909   SmallVector<PHINode *, 4> PhisInBlock;
7910   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7911     PhisInBlock.push_back(&Phi);
7912 
7913   for (PHINode *Phi : PhisInBlock) {
7914     Phi->replaceIncomingBlockWith(
7915         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7916         VecEpilogueIterationCountCheck);
7917     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7918     if (EPI.SCEVSafetyCheck)
7919       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7920     if (EPI.MemSafetyCheck)
7921       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7922     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7923   }
7924 
7925   // Generate a resume induction for the vector epilogue and put it in the
7926   // vector epilogue preheader
7927   Type *IdxTy = Legal->getWidestInductionType();
7928   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7929                                          LoopVectorPreHeader->getFirstNonPHI());
7930   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7931   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7932                            EPI.MainLoopIterationCountCheck);
7933 
7934   // Generate induction resume values. These variables save the new starting
7935   // indexes for the scalar loop. They are used to test if there are any tail
7936   // iterations left once the vector loop has completed.
7937   // Note that when the vectorized epilogue is skipped due to iteration count
7938   // check, then the resume value for the induction variable comes from
7939   // the trip count of the main vector loop, hence passing the AdditionalBypass
7940   // argument.
7941   createInductionResumeValues({VecEpilogueIterationCountCheck,
7942                                EPI.VectorTripCount} /* AdditionalBypass */);
7943 
7944   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7945 }
7946 
7947 BasicBlock *
7948 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7949     BasicBlock *Bypass, BasicBlock *Insert) {
7950 
7951   assert(EPI.TripCount &&
7952          "Expected trip count to have been safed in the first pass.");
7953   assert(
7954       (!isa<Instruction>(EPI.TripCount) ||
7955        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7956       "saved trip count does not dominate insertion point.");
7957   Value *TC = EPI.TripCount;
7958   IRBuilder<> Builder(Insert->getTerminator());
7959   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7960 
7961   // Generate code to check if the loop's trip count is less than VF * UF of the
7962   // vector epilogue loop.
7963   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7964       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7965 
7966   Value *CheckMinIters =
7967       Builder.CreateICmp(P, Count,
7968                          createStepForVF(Builder, Count->getType(),
7969                                          EPI.EpilogueVF, EPI.EpilogueUF),
7970                          "min.epilog.iters.check");
7971 
7972   ReplaceInstWithInst(
7973       Insert->getTerminator(),
7974       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7975 
7976   LoopBypassBlocks.push_back(Insert);
7977   return Insert;
7978 }
7979 
7980 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7981   LLVM_DEBUG({
7982     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7983            << "Epilogue Loop VF:" << EPI.EpilogueVF
7984            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7985   });
7986 }
7987 
7988 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7989   DEBUG_WITH_TYPE(VerboseDebug, {
7990     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7991   });
7992 }
7993 
7994 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7995     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7996   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7997   bool PredicateAtRangeStart = Predicate(Range.Start);
7998 
7999   for (ElementCount TmpVF = Range.Start * 2;
8000        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8001     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8002       Range.End = TmpVF;
8003       break;
8004     }
8005 
8006   return PredicateAtRangeStart;
8007 }
8008 
8009 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8010 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8011 /// of VF's starting at a given VF and extending it as much as possible. Each
8012 /// vectorization decision can potentially shorten this sub-range during
8013 /// buildVPlan().
8014 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8015                                            ElementCount MaxVF) {
8016   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8017   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8018     VFRange SubRange = {VF, MaxVFPlusOne};
8019     VPlans.push_back(buildVPlan(SubRange));
8020     VF = SubRange.End;
8021   }
8022 }
8023 
8024 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8025                                          VPlanPtr &Plan) {
8026   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8027 
8028   // Look for cached value.
8029   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8030   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8031   if (ECEntryIt != EdgeMaskCache.end())
8032     return ECEntryIt->second;
8033 
8034   VPValue *SrcMask = createBlockInMask(Src, Plan);
8035 
8036   // The terminator has to be a branch inst!
8037   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8038   assert(BI && "Unexpected terminator found");
8039 
8040   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8041     return EdgeMaskCache[Edge] = SrcMask;
8042 
8043   // If source is an exiting block, we know the exit edge is dynamically dead
8044   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8045   // adding uses of an otherwise potentially dead instruction.
8046   if (OrigLoop->isLoopExiting(Src))
8047     return EdgeMaskCache[Edge] = SrcMask;
8048 
8049   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8050   assert(EdgeMask && "No Edge Mask found for condition");
8051 
8052   if (BI->getSuccessor(0) != Dst)
8053     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8054 
8055   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8056     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8057     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8058     // The select version does not introduce new UB if SrcMask is false and
8059     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8060     VPValue *False = Plan->getOrAddVPValue(
8061         ConstantInt::getFalse(BI->getCondition()->getType()));
8062     EdgeMask =
8063         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8064   }
8065 
8066   return EdgeMaskCache[Edge] = EdgeMask;
8067 }
8068 
8069 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8070   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8071 
8072   // Look for cached value.
8073   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8074   if (BCEntryIt != BlockMaskCache.end())
8075     return BCEntryIt->second;
8076 
8077   // All-one mask is modelled as no-mask following the convention for masked
8078   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8079   VPValue *BlockMask = nullptr;
8080 
8081   if (OrigLoop->getHeader() == BB) {
8082     if (!CM.blockNeedsPredicationForAnyReason(BB))
8083       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8084 
8085     // Introduce the early-exit compare IV <= BTC to form header block mask.
8086     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8087     // constructing the desired canonical IV in the header block as its first
8088     // non-phi instructions.
8089     assert(CM.foldTailByMasking() && "must fold the tail");
8090     VPBasicBlock *HeaderVPBB =
8091         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8092     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8093     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8094     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8095 
8096     VPBuilder::InsertPointGuard Guard(Builder);
8097     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8098     if (CM.TTI.emitGetActiveLaneMask()) {
8099       VPValue *TC = Plan->getOrCreateTripCount();
8100       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8101     } else {
8102       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8103       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8104     }
8105     return BlockMaskCache[BB] = BlockMask;
8106   }
8107 
8108   // This is the block mask. We OR all incoming edges.
8109   for (auto *Predecessor : predecessors(BB)) {
8110     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8111     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8112       return BlockMaskCache[BB] = EdgeMask;
8113 
8114     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8115       BlockMask = EdgeMask;
8116       continue;
8117     }
8118 
8119     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8120   }
8121 
8122   return BlockMaskCache[BB] = BlockMask;
8123 }
8124 
8125 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8126                                                 ArrayRef<VPValue *> Operands,
8127                                                 VFRange &Range,
8128                                                 VPlanPtr &Plan) {
8129   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8130          "Must be called with either a load or store");
8131 
8132   auto willWiden = [&](ElementCount VF) -> bool {
8133     if (VF.isScalar())
8134       return false;
8135     LoopVectorizationCostModel::InstWidening Decision =
8136         CM.getWideningDecision(I, VF);
8137     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8138            "CM decision should be taken at this point.");
8139     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8140       return true;
8141     if (CM.isScalarAfterVectorization(I, VF) ||
8142         CM.isProfitableToScalarize(I, VF))
8143       return false;
8144     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8145   };
8146 
8147   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8148     return nullptr;
8149 
8150   VPValue *Mask = nullptr;
8151   if (Legal->isMaskRequired(I))
8152     Mask = createBlockInMask(I->getParent(), Plan);
8153 
8154   // Determine if the pointer operand of the access is either consecutive or
8155   // reverse consecutive.
8156   LoopVectorizationCostModel::InstWidening Decision =
8157       CM.getWideningDecision(I, Range.Start);
8158   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8159   bool Consecutive =
8160       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8161 
8162   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8163     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8164                                               Consecutive, Reverse);
8165 
8166   StoreInst *Store = cast<StoreInst>(I);
8167   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8168                                             Mask, Consecutive, Reverse);
8169 }
8170 
8171 static VPWidenIntOrFpInductionRecipe *
8172 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8173                            VPValue *Start, const InductionDescriptor &IndDesc,
8174                            LoopVectorizationCostModel &CM, ScalarEvolution &SE,
8175                            Loop &OrigLoop, VFRange &Range) {
8176   // Returns true if an instruction \p I should be scalarized instead of
8177   // vectorized for the chosen vectorization factor.
8178   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8179     return CM.isScalarAfterVectorization(I, VF) ||
8180            CM.isProfitableToScalarize(I, VF);
8181   };
8182 
8183   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8184       [&](ElementCount VF) {
8185         // Returns true if we should generate a scalar version of \p IV.
8186         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8187           return true;
8188         auto isScalarInst = [&](User *U) -> bool {
8189           auto *I = cast<Instruction>(U);
8190           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8191         };
8192         return any_of(PhiOrTrunc->users(), isScalarInst);
8193       },
8194       Range);
8195   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8196       [&](ElementCount VF) {
8197         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8198       },
8199       Range);
8200   assert(IndDesc.getStartValue() ==
8201          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8202   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8203          "step must be loop invariant");
8204   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8205     return new VPWidenIntOrFpInductionRecipe(
8206         Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE);
8207   }
8208   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8209   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8210                                            !NeedsScalarIVOnly, SE);
8211 }
8212 
8213 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8214     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8215 
8216   // Check if this is an integer or fp induction. If so, build the recipe that
8217   // produces its scalar and vector values.
8218   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8219     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM,
8220                                       *PSE.getSE(), *OrigLoop, Range);
8221 
8222   // Check if this is pointer induction. If so, build the recipe for it.
8223   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8224     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8225                                              *PSE.getSE());
8226   return nullptr;
8227 }
8228 
8229 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8230     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8231     VPlan &Plan) const {
8232   // Optimize the special case where the source is a constant integer
8233   // induction variable. Notice that we can only optimize the 'trunc' case
8234   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8235   // (c) other casts depend on pointer size.
8236 
8237   // Determine whether \p K is a truncation based on an induction variable that
8238   // can be optimized.
8239   auto isOptimizableIVTruncate =
8240       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8241     return [=](ElementCount VF) -> bool {
8242       return CM.isOptimizableIVTruncate(K, VF);
8243     };
8244   };
8245 
8246   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8247           isOptimizableIVTruncate(I), Range)) {
8248 
8249     auto *Phi = cast<PHINode>(I->getOperand(0));
8250     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8251     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8252     return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(),
8253                                       *OrigLoop, Range);
8254   }
8255   return nullptr;
8256 }
8257 
8258 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8259                                                 ArrayRef<VPValue *> Operands,
8260                                                 VPlanPtr &Plan) {
8261   // If all incoming values are equal, the incoming VPValue can be used directly
8262   // instead of creating a new VPBlendRecipe.
8263   VPValue *FirstIncoming = Operands[0];
8264   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8265         return FirstIncoming == Inc;
8266       })) {
8267     return Operands[0];
8268   }
8269 
8270   unsigned NumIncoming = Phi->getNumIncomingValues();
8271   // For in-loop reductions, we do not need to create an additional select.
8272   VPValue *InLoopVal = nullptr;
8273   for (unsigned In = 0; In < NumIncoming; In++) {
8274     PHINode *PhiOp =
8275         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8276     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8277       assert(!InLoopVal && "Found more than one in-loop reduction!");
8278       InLoopVal = Operands[In];
8279     }
8280   }
8281 
8282   assert((!InLoopVal || NumIncoming == 2) &&
8283          "Found an in-loop reduction for PHI with unexpected number of "
8284          "incoming values");
8285   if (InLoopVal)
8286     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8287 
8288   // We know that all PHIs in non-header blocks are converted into selects, so
8289   // we don't have to worry about the insertion order and we can just use the
8290   // builder. At this point we generate the predication tree. There may be
8291   // duplications since this is a simple recursive scan, but future
8292   // optimizations will clean it up.
8293   SmallVector<VPValue *, 2> OperandsWithMask;
8294 
8295   for (unsigned In = 0; In < NumIncoming; In++) {
8296     VPValue *EdgeMask =
8297       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8298     assert((EdgeMask || NumIncoming == 1) &&
8299            "Multiple predecessors with one having a full mask");
8300     OperandsWithMask.push_back(Operands[In]);
8301     if (EdgeMask)
8302       OperandsWithMask.push_back(EdgeMask);
8303   }
8304   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8305 }
8306 
8307 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8308                                                    ArrayRef<VPValue *> Operands,
8309                                                    VFRange &Range) const {
8310 
8311   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8312       [this, CI](ElementCount VF) {
8313         return CM.isScalarWithPredication(CI, VF);
8314       },
8315       Range);
8316 
8317   if (IsPredicated)
8318     return nullptr;
8319 
8320   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8321   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8322              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8323              ID == Intrinsic::pseudoprobe ||
8324              ID == Intrinsic::experimental_noalias_scope_decl))
8325     return nullptr;
8326 
8327   auto willWiden = [&](ElementCount VF) -> bool {
8328     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8329     // The following case may be scalarized depending on the VF.
8330     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8331     // version of the instruction.
8332     // Is it beneficial to perform intrinsic call compared to lib call?
8333     bool NeedToScalarize = false;
8334     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8335     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8336     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8337     return UseVectorIntrinsic || !NeedToScalarize;
8338   };
8339 
8340   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8341     return nullptr;
8342 
8343   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8344   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8345 }
8346 
8347 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8348   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8349          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8350   // Instruction should be widened, unless it is scalar after vectorization,
8351   // scalarization is profitable or it is predicated.
8352   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8353     return CM.isScalarAfterVectorization(I, VF) ||
8354            CM.isProfitableToScalarize(I, VF) ||
8355            CM.isScalarWithPredication(I, VF);
8356   };
8357   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8358                                                              Range);
8359 }
8360 
8361 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8362                                            ArrayRef<VPValue *> Operands) const {
8363   auto IsVectorizableOpcode = [](unsigned Opcode) {
8364     switch (Opcode) {
8365     case Instruction::Add:
8366     case Instruction::And:
8367     case Instruction::AShr:
8368     case Instruction::BitCast:
8369     case Instruction::FAdd:
8370     case Instruction::FCmp:
8371     case Instruction::FDiv:
8372     case Instruction::FMul:
8373     case Instruction::FNeg:
8374     case Instruction::FPExt:
8375     case Instruction::FPToSI:
8376     case Instruction::FPToUI:
8377     case Instruction::FPTrunc:
8378     case Instruction::FRem:
8379     case Instruction::FSub:
8380     case Instruction::ICmp:
8381     case Instruction::IntToPtr:
8382     case Instruction::LShr:
8383     case Instruction::Mul:
8384     case Instruction::Or:
8385     case Instruction::PtrToInt:
8386     case Instruction::SDiv:
8387     case Instruction::Select:
8388     case Instruction::SExt:
8389     case Instruction::Shl:
8390     case Instruction::SIToFP:
8391     case Instruction::SRem:
8392     case Instruction::Sub:
8393     case Instruction::Trunc:
8394     case Instruction::UDiv:
8395     case Instruction::UIToFP:
8396     case Instruction::URem:
8397     case Instruction::Xor:
8398     case Instruction::ZExt:
8399       return true;
8400     }
8401     return false;
8402   };
8403 
8404   if (!IsVectorizableOpcode(I->getOpcode()))
8405     return nullptr;
8406 
8407   // Success: widen this instruction.
8408   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8409 }
8410 
8411 void VPRecipeBuilder::fixHeaderPhis() {
8412   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8413   for (VPHeaderPHIRecipe *R : PhisToFix) {
8414     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8415     VPRecipeBase *IncR =
8416         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8417     R->addOperand(IncR->getVPSingleValue());
8418   }
8419 }
8420 
8421 VPBasicBlock *VPRecipeBuilder::handleReplication(
8422     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8423     VPlanPtr &Plan) {
8424   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8425       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8426       Range);
8427 
8428   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8429       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8430       Range);
8431 
8432   // Even if the instruction is not marked as uniform, there are certain
8433   // intrinsic calls that can be effectively treated as such, so we check for
8434   // them here. Conservatively, we only do this for scalable vectors, since
8435   // for fixed-width VFs we can always fall back on full scalarization.
8436   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8437     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8438     case Intrinsic::assume:
8439     case Intrinsic::lifetime_start:
8440     case Intrinsic::lifetime_end:
8441       // For scalable vectors if one of the operands is variant then we still
8442       // want to mark as uniform, which will generate one instruction for just
8443       // the first lane of the vector. We can't scalarize the call in the same
8444       // way as for fixed-width vectors because we don't know how many lanes
8445       // there are.
8446       //
8447       // The reasons for doing it this way for scalable vectors are:
8448       //   1. For the assume intrinsic generating the instruction for the first
8449       //      lane is still be better than not generating any at all. For
8450       //      example, the input may be a splat across all lanes.
8451       //   2. For the lifetime start/end intrinsics the pointer operand only
8452       //      does anything useful when the input comes from a stack object,
8453       //      which suggests it should always be uniform. For non-stack objects
8454       //      the effect is to poison the object, which still allows us to
8455       //      remove the call.
8456       IsUniform = true;
8457       break;
8458     default:
8459       break;
8460     }
8461   }
8462 
8463   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8464                                        IsUniform, IsPredicated);
8465   setRecipe(I, Recipe);
8466   Plan->addVPValue(I, Recipe);
8467 
8468   // Find if I uses a predicated instruction. If so, it will use its scalar
8469   // value. Avoid hoisting the insert-element which packs the scalar value into
8470   // a vector value, as that happens iff all users use the vector value.
8471   for (VPValue *Op : Recipe->operands()) {
8472     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8473     if (!PredR)
8474       continue;
8475     auto *RepR =
8476         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8477     assert(RepR->isPredicated() &&
8478            "expected Replicate recipe to be predicated");
8479     RepR->setAlsoPack(false);
8480   }
8481 
8482   // Finalize the recipe for Instr, first if it is not predicated.
8483   if (!IsPredicated) {
8484     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8485     VPBB->appendRecipe(Recipe);
8486     return VPBB;
8487   }
8488   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8489 
8490   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8491   assert(SingleSucc && "VPBB must have a single successor when handling "
8492                        "predicated replication.");
8493   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8494   // Record predicated instructions for above packing optimizations.
8495   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8496   VPBlockUtils::insertBlockAfter(Region, VPBB);
8497   auto *RegSucc = new VPBasicBlock();
8498   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8499   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8500   return RegSucc;
8501 }
8502 
8503 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8504                                                       VPRecipeBase *PredRecipe,
8505                                                       VPlanPtr &Plan) {
8506   // Instructions marked for predication are replicated and placed under an
8507   // if-then construct to prevent side-effects.
8508 
8509   // Generate recipes to compute the block mask for this region.
8510   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8511 
8512   // Build the triangular if-then region.
8513   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8514   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8515   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8516   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8517   auto *PHIRecipe = Instr->getType()->isVoidTy()
8518                         ? nullptr
8519                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8520   if (PHIRecipe) {
8521     Plan->removeVPValueFor(Instr);
8522     Plan->addVPValue(Instr, PHIRecipe);
8523   }
8524   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8525   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8526   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8527 
8528   // Note: first set Entry as region entry and then connect successors starting
8529   // from it in order, to propagate the "parent" of each VPBasicBlock.
8530   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8531   VPBlockUtils::connectBlocks(Pred, Exit);
8532 
8533   return Region;
8534 }
8535 
8536 VPRecipeOrVPValueTy
8537 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8538                                         ArrayRef<VPValue *> Operands,
8539                                         VFRange &Range, VPlanPtr &Plan) {
8540   // First, check for specific widening recipes that deal with calls, memory
8541   // operations, inductions and Phi nodes.
8542   if (auto *CI = dyn_cast<CallInst>(Instr))
8543     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8544 
8545   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8546     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8547 
8548   VPRecipeBase *Recipe;
8549   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8550     if (Phi->getParent() != OrigLoop->getHeader())
8551       return tryToBlend(Phi, Operands, Plan);
8552     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8553       return toVPRecipeResult(Recipe);
8554 
8555     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8556     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8557       VPValue *StartV = Operands[0];
8558       if (Legal->isReductionVariable(Phi)) {
8559         const RecurrenceDescriptor &RdxDesc =
8560             Legal->getReductionVars().find(Phi)->second;
8561         assert(RdxDesc.getRecurrenceStartValue() ==
8562                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8563         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8564                                              CM.isInLoopReduction(Phi),
8565                                              CM.useOrderedReductions(RdxDesc));
8566       } else {
8567         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8568       }
8569 
8570       // Record the incoming value from the backedge, so we can add the incoming
8571       // value from the backedge after all recipes have been created.
8572       recordRecipeOf(cast<Instruction>(
8573           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8574       PhisToFix.push_back(PhiRecipe);
8575     } else {
8576       // TODO: record backedge value for remaining pointer induction phis.
8577       assert(Phi->getType()->isPointerTy() &&
8578              "only pointer phis should be handled here");
8579       assert(Legal->getInductionVars().count(Phi) &&
8580              "Not an induction variable");
8581       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8582       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8583       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8584     }
8585 
8586     return toVPRecipeResult(PhiRecipe);
8587   }
8588 
8589   if (isa<TruncInst>(Instr) &&
8590       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8591                                                Range, *Plan)))
8592     return toVPRecipeResult(Recipe);
8593 
8594   if (!shouldWiden(Instr, Range))
8595     return nullptr;
8596 
8597   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8598     return toVPRecipeResult(new VPWidenGEPRecipe(
8599         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8600 
8601   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8602     bool InvariantCond =
8603         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8604     return toVPRecipeResult(new VPWidenSelectRecipe(
8605         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8606   }
8607 
8608   return toVPRecipeResult(tryToWiden(Instr, Operands));
8609 }
8610 
8611 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8612                                                         ElementCount MaxVF) {
8613   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8614 
8615   // Collect instructions from the original loop that will become trivially dead
8616   // in the vectorized loop. We don't need to vectorize these instructions. For
8617   // example, original induction update instructions can become dead because we
8618   // separately emit induction "steps" when generating code for the new loop.
8619   // Similarly, we create a new latch condition when setting up the structure
8620   // of the new loop, so the old one can become dead.
8621   SmallPtrSet<Instruction *, 4> DeadInstructions;
8622   collectTriviallyDeadInstructions(DeadInstructions);
8623 
8624   // Add assume instructions we need to drop to DeadInstructions, to prevent
8625   // them from being added to the VPlan.
8626   // TODO: We only need to drop assumes in blocks that get flattend. If the
8627   // control flow is preserved, we should keep them.
8628   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8629   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8630 
8631   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8632   // Dead instructions do not need sinking. Remove them from SinkAfter.
8633   for (Instruction *I : DeadInstructions)
8634     SinkAfter.erase(I);
8635 
8636   // Cannot sink instructions after dead instructions (there won't be any
8637   // recipes for them). Instead, find the first non-dead previous instruction.
8638   for (auto &P : Legal->getSinkAfter()) {
8639     Instruction *SinkTarget = P.second;
8640     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8641     (void)FirstInst;
8642     while (DeadInstructions.contains(SinkTarget)) {
8643       assert(
8644           SinkTarget != FirstInst &&
8645           "Must find a live instruction (at least the one feeding the "
8646           "first-order recurrence PHI) before reaching beginning of the block");
8647       SinkTarget = SinkTarget->getPrevNode();
8648       assert(SinkTarget != P.first &&
8649              "sink source equals target, no sinking required");
8650     }
8651     P.second = SinkTarget;
8652   }
8653 
8654   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8655   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8656     VFRange SubRange = {VF, MaxVFPlusOne};
8657     VPlans.push_back(
8658         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8659     VF = SubRange.End;
8660   }
8661 }
8662 
8663 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8664 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8665 // BranchOnCount VPInstruction to the latch.
8666 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8667                                   bool HasNUW, bool IsVPlanNative) {
8668   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8669   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8670 
8671   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8672   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8673   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8674   if (IsVPlanNative)
8675     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8676   Header->insert(CanonicalIVPHI, Header->begin());
8677 
8678   auto *CanonicalIVIncrement =
8679       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8680                                : VPInstruction::CanonicalIVIncrement,
8681                         {CanonicalIVPHI}, DL);
8682   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8683 
8684   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8685   if (IsVPlanNative) {
8686     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
8687     EB->setCondBit(nullptr);
8688   }
8689   EB->appendRecipe(CanonicalIVIncrement);
8690 
8691   auto *BranchOnCount =
8692       new VPInstruction(VPInstruction::BranchOnCount,
8693                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8694   EB->appendRecipe(BranchOnCount);
8695 }
8696 
8697 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8698     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8699     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8700 
8701   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8702 
8703   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8704 
8705   // ---------------------------------------------------------------------------
8706   // Pre-construction: record ingredients whose recipes we'll need to further
8707   // process after constructing the initial VPlan.
8708   // ---------------------------------------------------------------------------
8709 
8710   // Mark instructions we'll need to sink later and their targets as
8711   // ingredients whose recipe we'll need to record.
8712   for (auto &Entry : SinkAfter) {
8713     RecipeBuilder.recordRecipeOf(Entry.first);
8714     RecipeBuilder.recordRecipeOf(Entry.second);
8715   }
8716   for (auto &Reduction : CM.getInLoopReductionChains()) {
8717     PHINode *Phi = Reduction.first;
8718     RecurKind Kind =
8719         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8720     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8721 
8722     RecipeBuilder.recordRecipeOf(Phi);
8723     for (auto &R : ReductionOperations) {
8724       RecipeBuilder.recordRecipeOf(R);
8725       // For min/max reductions, where we have a pair of icmp/select, we also
8726       // need to record the ICmp recipe, so it can be removed later.
8727       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8728              "Only min/max recurrences allowed for inloop reductions");
8729       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8730         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8731     }
8732   }
8733 
8734   // For each interleave group which is relevant for this (possibly trimmed)
8735   // Range, add it to the set of groups to be later applied to the VPlan and add
8736   // placeholders for its members' Recipes which we'll be replacing with a
8737   // single VPInterleaveRecipe.
8738   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8739     auto applyIG = [IG, this](ElementCount VF) -> bool {
8740       return (VF.isVector() && // Query is illegal for VF == 1
8741               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8742                   LoopVectorizationCostModel::CM_Interleave);
8743     };
8744     if (!getDecisionAndClampRange(applyIG, Range))
8745       continue;
8746     InterleaveGroups.insert(IG);
8747     for (unsigned i = 0; i < IG->getFactor(); i++)
8748       if (Instruction *Member = IG->getMember(i))
8749         RecipeBuilder.recordRecipeOf(Member);
8750   };
8751 
8752   // ---------------------------------------------------------------------------
8753   // Build initial VPlan: Scan the body of the loop in a topological order to
8754   // visit each basic block after having visited its predecessor basic blocks.
8755   // ---------------------------------------------------------------------------
8756 
8757   // Create initial VPlan skeleton, with separate header and latch blocks.
8758   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
8759   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8760   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8761   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8762   auto Plan = std::make_unique<VPlan>(TopRegion);
8763 
8764   Instruction *DLInst =
8765       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8766   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8767                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8768                         !CM.foldTailByMasking(), false);
8769 
8770   // Scan the body of the loop in a topological order to visit each basic block
8771   // after having visited its predecessor basic blocks.
8772   LoopBlocksDFS DFS(OrigLoop);
8773   DFS.perform(LI);
8774 
8775   VPBasicBlock *VPBB = HeaderVPBB;
8776   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8777   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8778     // Relevant instructions from basic block BB will be grouped into VPRecipe
8779     // ingredients and fill a new VPBasicBlock.
8780     unsigned VPBBsForBB = 0;
8781     VPBB->setName(BB->getName());
8782     Builder.setInsertPoint(VPBB);
8783 
8784     // Introduce each ingredient into VPlan.
8785     // TODO: Model and preserve debug instrinsics in VPlan.
8786     for (Instruction &I : BB->instructionsWithoutDebug()) {
8787       Instruction *Instr = &I;
8788 
8789       // First filter out irrelevant instructions, to ensure no recipes are
8790       // built for them.
8791       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8792         continue;
8793 
8794       SmallVector<VPValue *, 4> Operands;
8795       auto *Phi = dyn_cast<PHINode>(Instr);
8796       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8797         Operands.push_back(Plan->getOrAddVPValue(
8798             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8799       } else {
8800         auto OpRange = Plan->mapToVPValues(Instr->operands());
8801         Operands = {OpRange.begin(), OpRange.end()};
8802       }
8803       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8804               Instr, Operands, Range, Plan)) {
8805         // If Instr can be simplified to an existing VPValue, use it.
8806         if (RecipeOrValue.is<VPValue *>()) {
8807           auto *VPV = RecipeOrValue.get<VPValue *>();
8808           Plan->addVPValue(Instr, VPV);
8809           // If the re-used value is a recipe, register the recipe for the
8810           // instruction, in case the recipe for Instr needs to be recorded.
8811           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8812             RecipeBuilder.setRecipe(Instr, R);
8813           continue;
8814         }
8815         // Otherwise, add the new recipe.
8816         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8817         for (auto *Def : Recipe->definedValues()) {
8818           auto *UV = Def->getUnderlyingValue();
8819           Plan->addVPValue(UV, Def);
8820         }
8821 
8822         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8823             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8824           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8825           // of the header block. That can happen for truncates of induction
8826           // variables. Those recipes are moved to the phi section of the header
8827           // block after applying SinkAfter, which relies on the original
8828           // position of the trunc.
8829           assert(isa<TruncInst>(Instr));
8830           InductionsToMove.push_back(
8831               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8832         }
8833         RecipeBuilder.setRecipe(Instr, Recipe);
8834         VPBB->appendRecipe(Recipe);
8835         continue;
8836       }
8837 
8838       // Otherwise, if all widening options failed, Instruction is to be
8839       // replicated. This may create a successor for VPBB.
8840       VPBasicBlock *NextVPBB =
8841           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8842       if (NextVPBB != VPBB) {
8843         VPBB = NextVPBB;
8844         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8845                                     : "");
8846       }
8847     }
8848 
8849     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8850     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8851   }
8852 
8853   HeaderVPBB->setName("vector.body");
8854 
8855   // Fold the last, empty block into its predecessor.
8856   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8857   assert(VPBB && "expected to fold last (empty) block");
8858   // After here, VPBB should not be used.
8859   VPBB = nullptr;
8860 
8861   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8862          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8863          "entry block must be set to a VPRegionBlock having a non-empty entry "
8864          "VPBasicBlock");
8865   RecipeBuilder.fixHeaderPhis();
8866 
8867   // ---------------------------------------------------------------------------
8868   // Transform initial VPlan: Apply previously taken decisions, in order, to
8869   // bring the VPlan to its final state.
8870   // ---------------------------------------------------------------------------
8871 
8872   // Apply Sink-After legal constraints.
8873   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8874     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8875     if (Region && Region->isReplicator()) {
8876       assert(Region->getNumSuccessors() == 1 &&
8877              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8878       assert(R->getParent()->size() == 1 &&
8879              "A recipe in an original replicator region must be the only "
8880              "recipe in its block");
8881       return Region;
8882     }
8883     return nullptr;
8884   };
8885   for (auto &Entry : SinkAfter) {
8886     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8887     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8888 
8889     auto *TargetRegion = GetReplicateRegion(Target);
8890     auto *SinkRegion = GetReplicateRegion(Sink);
8891     if (!SinkRegion) {
8892       // If the sink source is not a replicate region, sink the recipe directly.
8893       if (TargetRegion) {
8894         // The target is in a replication region, make sure to move Sink to
8895         // the block after it, not into the replication region itself.
8896         VPBasicBlock *NextBlock =
8897             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8898         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8899       } else
8900         Sink->moveAfter(Target);
8901       continue;
8902     }
8903 
8904     // The sink source is in a replicate region. Unhook the region from the CFG.
8905     auto *SinkPred = SinkRegion->getSinglePredecessor();
8906     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8907     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8908     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8909     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8910 
8911     if (TargetRegion) {
8912       // The target recipe is also in a replicate region, move the sink region
8913       // after the target region.
8914       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8915       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8916       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8917       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8918     } else {
8919       // The sink source is in a replicate region, we need to move the whole
8920       // replicate region, which should only contain a single recipe in the
8921       // main block.
8922       auto *SplitBlock =
8923           Target->getParent()->splitAt(std::next(Target->getIterator()));
8924 
8925       auto *SplitPred = SplitBlock->getSinglePredecessor();
8926 
8927       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8928       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8929       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8930     }
8931   }
8932 
8933   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8934   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8935 
8936   // Now that sink-after is done, move induction recipes for optimized truncates
8937   // to the phi section of the header block.
8938   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8939     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8940 
8941   // Adjust the recipes for any inloop reductions.
8942   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
8943                              RecipeBuilder, Range.Start);
8944 
8945   // Introduce a recipe to combine the incoming and previous values of a
8946   // first-order recurrence.
8947   for (VPRecipeBase &R :
8948        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8949     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8950     if (!RecurPhi)
8951       continue;
8952 
8953     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8954     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8955     auto *Region = GetReplicateRegion(PrevRecipe);
8956     if (Region)
8957       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
8958     if (Region || PrevRecipe->isPhi())
8959       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8960     else
8961       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8962 
8963     auto *RecurSplice = cast<VPInstruction>(
8964         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8965                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8966 
8967     RecurPhi->replaceAllUsesWith(RecurSplice);
8968     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8969     // all users.
8970     RecurSplice->setOperand(0, RecurPhi);
8971   }
8972 
8973   // Interleave memory: for each Interleave Group we marked earlier as relevant
8974   // for this VPlan, replace the Recipes widening its memory instructions with a
8975   // single VPInterleaveRecipe at its insertion point.
8976   for (auto IG : InterleaveGroups) {
8977     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8978         RecipeBuilder.getRecipe(IG->getInsertPos()));
8979     SmallVector<VPValue *, 4> StoredValues;
8980     for (unsigned i = 0; i < IG->getFactor(); ++i)
8981       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8982         auto *StoreR =
8983             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8984         StoredValues.push_back(StoreR->getStoredValue());
8985       }
8986 
8987     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8988                                         Recipe->getMask());
8989     VPIG->insertBefore(Recipe);
8990     unsigned J = 0;
8991     for (unsigned i = 0; i < IG->getFactor(); ++i)
8992       if (Instruction *Member = IG->getMember(i)) {
8993         if (!Member->getType()->isVoidTy()) {
8994           VPValue *OriginalV = Plan->getVPValue(Member);
8995           Plan->removeVPValueFor(Member);
8996           Plan->addVPValue(Member, VPIG->getVPValue(J));
8997           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8998           J++;
8999         }
9000         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9001       }
9002   }
9003 
9004   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9005   // in ways that accessing values using original IR values is incorrect.
9006   Plan->disableValue2VPValue();
9007 
9008   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9009   VPlanTransforms::sinkScalarOperands(*Plan);
9010   VPlanTransforms::mergeReplicateRegions(*Plan);
9011   VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop);
9012 
9013   std::string PlanName;
9014   raw_string_ostream RSO(PlanName);
9015   ElementCount VF = Range.Start;
9016   Plan->addVF(VF);
9017   RSO << "Initial VPlan for VF={" << VF;
9018   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9019     Plan->addVF(VF);
9020     RSO << "," << VF;
9021   }
9022   RSO << "},UF>=1";
9023   RSO.flush();
9024   Plan->setName(PlanName);
9025 
9026   // Fold Exit block into its predecessor if possible.
9027   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9028   // VPBasicBlock as exit.
9029   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9030 
9031   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9032   return Plan;
9033 }
9034 
9035 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9036   // Outer loop handling: They may require CFG and instruction level
9037   // transformations before even evaluating whether vectorization is profitable.
9038   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9039   // the vectorization pipeline.
9040   assert(!OrigLoop->isInnermost());
9041   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9042 
9043   // Create new empty VPlan
9044   auto Plan = std::make_unique<VPlan>();
9045 
9046   // Build hierarchical CFG
9047   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9048   HCFGBuilder.buildHierarchicalCFG();
9049 
9050   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9051        VF *= 2)
9052     Plan->addVF(VF);
9053 
9054   if (EnableVPlanPredication) {
9055     VPlanPredicator VPP(*Plan);
9056     VPP.predicate();
9057 
9058     // Avoid running transformation to recipes until masked code generation in
9059     // VPlan-native path is in place.
9060     return Plan;
9061   }
9062 
9063   SmallPtrSet<Instruction *, 1> DeadInstructions;
9064   VPlanTransforms::VPInstructionsToVPRecipes(
9065       OrigLoop, Plan,
9066       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9067       DeadInstructions, *PSE.getSE());
9068 
9069   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9070                         true, true);
9071   return Plan;
9072 }
9073 
9074 // Adjust the recipes for reductions. For in-loop reductions the chain of
9075 // instructions leading from the loop exit instr to the phi need to be converted
9076 // to reductions, with one operand being vector and the other being the scalar
9077 // reduction chain. For other reductions, a select is introduced between the phi
9078 // and live-out recipes when folding the tail.
9079 void LoopVectorizationPlanner::adjustRecipesForReductions(
9080     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9081     ElementCount MinVF) {
9082   for (auto &Reduction : CM.getInLoopReductionChains()) {
9083     PHINode *Phi = Reduction.first;
9084     const RecurrenceDescriptor &RdxDesc =
9085         Legal->getReductionVars().find(Phi)->second;
9086     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9087 
9088     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9089       continue;
9090 
9091     // ReductionOperations are orders top-down from the phi's use to the
9092     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9093     // which of the two operands will remain scalar and which will be reduced.
9094     // For minmax the chain will be the select instructions.
9095     Instruction *Chain = Phi;
9096     for (Instruction *R : ReductionOperations) {
9097       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9098       RecurKind Kind = RdxDesc.getRecurrenceKind();
9099 
9100       VPValue *ChainOp = Plan->getVPValue(Chain);
9101       unsigned FirstOpId;
9102       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9103              "Only min/max recurrences allowed for inloop reductions");
9104       // Recognize a call to the llvm.fmuladd intrinsic.
9105       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9106       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9107              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9108       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9109         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9110                "Expected to replace a VPWidenSelectSC");
9111         FirstOpId = 1;
9112       } else {
9113         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9114                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9115                "Expected to replace a VPWidenSC");
9116         FirstOpId = 0;
9117       }
9118       unsigned VecOpId =
9119           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9120       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9121 
9122       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9123                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9124                          : nullptr;
9125 
9126       if (IsFMulAdd) {
9127         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9128         // need to create an fmul recipe to use as the vector operand for the
9129         // fadd reduction.
9130         VPInstruction *FMulRecipe = new VPInstruction(
9131             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9132         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9133         WidenRecipe->getParent()->insert(FMulRecipe,
9134                                          WidenRecipe->getIterator());
9135         VecOp = FMulRecipe;
9136       }
9137       VPReductionRecipe *RedRecipe =
9138           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9139       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9140       Plan->removeVPValueFor(R);
9141       Plan->addVPValue(R, RedRecipe);
9142       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9143       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9144       WidenRecipe->eraseFromParent();
9145 
9146       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9147         VPRecipeBase *CompareRecipe =
9148             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9149         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9150                "Expected to replace a VPWidenSC");
9151         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9152                "Expected no remaining users");
9153         CompareRecipe->eraseFromParent();
9154       }
9155       Chain = R;
9156     }
9157   }
9158 
9159   // If tail is folded by masking, introduce selects between the phi
9160   // and the live-out instruction of each reduction, at the beginning of the
9161   // dedicated latch block.
9162   if (CM.foldTailByMasking()) {
9163     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9164     for (VPRecipeBase &R :
9165          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9166       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9167       if (!PhiR || PhiR->isInLoop())
9168         continue;
9169       VPValue *Cond =
9170           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9171       VPValue *Red = PhiR->getBackedgeValue();
9172       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9173              "reduction recipe must be defined before latch");
9174       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9175     }
9176   }
9177 }
9178 
9179 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9180 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9181                                VPSlotTracker &SlotTracker) const {
9182   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9183   IG->getInsertPos()->printAsOperand(O, false);
9184   O << ", ";
9185   getAddr()->printAsOperand(O, SlotTracker);
9186   VPValue *Mask = getMask();
9187   if (Mask) {
9188     O << ", ";
9189     Mask->printAsOperand(O, SlotTracker);
9190   }
9191 
9192   unsigned OpIdx = 0;
9193   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9194     if (!IG->getMember(i))
9195       continue;
9196     if (getNumStoreOperands() > 0) {
9197       O << "\n" << Indent << "  store ";
9198       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9199       O << " to index " << i;
9200     } else {
9201       O << "\n" << Indent << "  ";
9202       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9203       O << " = load from index " << i;
9204     }
9205     ++OpIdx;
9206   }
9207 }
9208 #endif
9209 
9210 void VPWidenCallRecipe::execute(VPTransformState &State) {
9211   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9212                                   *this, State);
9213 }
9214 
9215 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9216   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9217   State.ILV->setDebugLocFromInst(&I);
9218 
9219   // The condition can be loop invariant  but still defined inside the
9220   // loop. This means that we can't just use the original 'cond' value.
9221   // We have to take the 'vectorized' value and pick the first lane.
9222   // Instcombine will make this a no-op.
9223   auto *InvarCond =
9224       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9225 
9226   for (unsigned Part = 0; Part < State.UF; ++Part) {
9227     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9228     Value *Op0 = State.get(getOperand(1), Part);
9229     Value *Op1 = State.get(getOperand(2), Part);
9230     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9231     State.set(this, Sel, Part);
9232     State.ILV->addMetadata(Sel, &I);
9233   }
9234 }
9235 
9236 void VPWidenRecipe::execute(VPTransformState &State) {
9237   auto &I = *cast<Instruction>(getUnderlyingValue());
9238   auto &Builder = State.Builder;
9239   switch (I.getOpcode()) {
9240   case Instruction::Call:
9241   case Instruction::Br:
9242   case Instruction::PHI:
9243   case Instruction::GetElementPtr:
9244   case Instruction::Select:
9245     llvm_unreachable("This instruction is handled by a different recipe.");
9246   case Instruction::UDiv:
9247   case Instruction::SDiv:
9248   case Instruction::SRem:
9249   case Instruction::URem:
9250   case Instruction::Add:
9251   case Instruction::FAdd:
9252   case Instruction::Sub:
9253   case Instruction::FSub:
9254   case Instruction::FNeg:
9255   case Instruction::Mul:
9256   case Instruction::FMul:
9257   case Instruction::FDiv:
9258   case Instruction::FRem:
9259   case Instruction::Shl:
9260   case Instruction::LShr:
9261   case Instruction::AShr:
9262   case Instruction::And:
9263   case Instruction::Or:
9264   case Instruction::Xor: {
9265     // Just widen unops and binops.
9266     State.ILV->setDebugLocFromInst(&I);
9267 
9268     for (unsigned Part = 0; Part < State.UF; ++Part) {
9269       SmallVector<Value *, 2> Ops;
9270       for (VPValue *VPOp : operands())
9271         Ops.push_back(State.get(VPOp, Part));
9272 
9273       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9274 
9275       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9276         VecOp->copyIRFlags(&I);
9277 
9278         // If the instruction is vectorized and was in a basic block that needed
9279         // predication, we can't propagate poison-generating flags (nuw/nsw,
9280         // exact, etc.). The control flow has been linearized and the
9281         // instruction is no longer guarded by the predicate, which could make
9282         // the flag properties to no longer hold.
9283         if (State.MayGeneratePoisonRecipes.contains(this))
9284           VecOp->dropPoisonGeneratingFlags();
9285       }
9286 
9287       // Use this vector value for all users of the original instruction.
9288       State.set(this, V, Part);
9289       State.ILV->addMetadata(V, &I);
9290     }
9291 
9292     break;
9293   }
9294   case Instruction::ICmp:
9295   case Instruction::FCmp: {
9296     // Widen compares. Generate vector compares.
9297     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9298     auto *Cmp = cast<CmpInst>(&I);
9299     State.ILV->setDebugLocFromInst(Cmp);
9300     for (unsigned Part = 0; Part < State.UF; ++Part) {
9301       Value *A = State.get(getOperand(0), Part);
9302       Value *B = State.get(getOperand(1), Part);
9303       Value *C = nullptr;
9304       if (FCmp) {
9305         // Propagate fast math flags.
9306         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9307         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9308         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9309       } else {
9310         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9311       }
9312       State.set(this, C, Part);
9313       State.ILV->addMetadata(C, &I);
9314     }
9315 
9316     break;
9317   }
9318 
9319   case Instruction::ZExt:
9320   case Instruction::SExt:
9321   case Instruction::FPToUI:
9322   case Instruction::FPToSI:
9323   case Instruction::FPExt:
9324   case Instruction::PtrToInt:
9325   case Instruction::IntToPtr:
9326   case Instruction::SIToFP:
9327   case Instruction::UIToFP:
9328   case Instruction::Trunc:
9329   case Instruction::FPTrunc:
9330   case Instruction::BitCast: {
9331     auto *CI = cast<CastInst>(&I);
9332     State.ILV->setDebugLocFromInst(CI);
9333 
9334     /// Vectorize casts.
9335     Type *DestTy = (State.VF.isScalar())
9336                        ? CI->getType()
9337                        : VectorType::get(CI->getType(), State.VF);
9338 
9339     for (unsigned Part = 0; Part < State.UF; ++Part) {
9340       Value *A = State.get(getOperand(0), Part);
9341       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9342       State.set(this, Cast, Part);
9343       State.ILV->addMetadata(Cast, &I);
9344     }
9345     break;
9346   }
9347   default:
9348     // This instruction is not vectorized by simple widening.
9349     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9350     llvm_unreachable("Unhandled instruction!");
9351   } // end of switch.
9352 }
9353 
9354 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9355   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9356   // Construct a vector GEP by widening the operands of the scalar GEP as
9357   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9358   // results in a vector of pointers when at least one operand of the GEP
9359   // is vector-typed. Thus, to keep the representation compact, we only use
9360   // vector-typed operands for loop-varying values.
9361 
9362   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9363     // If we are vectorizing, but the GEP has only loop-invariant operands,
9364     // the GEP we build (by only using vector-typed operands for
9365     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9366     // produce a vector of pointers, we need to either arbitrarily pick an
9367     // operand to broadcast, or broadcast a clone of the original GEP.
9368     // Here, we broadcast a clone of the original.
9369     //
9370     // TODO: If at some point we decide to scalarize instructions having
9371     //       loop-invariant operands, this special case will no longer be
9372     //       required. We would add the scalarization decision to
9373     //       collectLoopScalars() and teach getVectorValue() to broadcast
9374     //       the lane-zero scalar value.
9375     auto *Clone = State.Builder.Insert(GEP->clone());
9376     for (unsigned Part = 0; Part < State.UF; ++Part) {
9377       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9378       State.set(this, EntryPart, Part);
9379       State.ILV->addMetadata(EntryPart, GEP);
9380     }
9381   } else {
9382     // If the GEP has at least one loop-varying operand, we are sure to
9383     // produce a vector of pointers. But if we are only unrolling, we want
9384     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9385     // produce with the code below will be scalar (if VF == 1) or vector
9386     // (otherwise). Note that for the unroll-only case, we still maintain
9387     // values in the vector mapping with initVector, as we do for other
9388     // instructions.
9389     for (unsigned Part = 0; Part < State.UF; ++Part) {
9390       // The pointer operand of the new GEP. If it's loop-invariant, we
9391       // won't broadcast it.
9392       auto *Ptr = IsPtrLoopInvariant
9393                       ? State.get(getOperand(0), VPIteration(0, 0))
9394                       : State.get(getOperand(0), Part);
9395 
9396       // Collect all the indices for the new GEP. If any index is
9397       // loop-invariant, we won't broadcast it.
9398       SmallVector<Value *, 4> Indices;
9399       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9400         VPValue *Operand = getOperand(I);
9401         if (IsIndexLoopInvariant[I - 1])
9402           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9403         else
9404           Indices.push_back(State.get(Operand, Part));
9405       }
9406 
9407       // If the GEP instruction is vectorized and was in a basic block that
9408       // needed predication, we can't propagate the poison-generating 'inbounds'
9409       // flag. The control flow has been linearized and the GEP is no longer
9410       // guarded by the predicate, which could make the 'inbounds' properties to
9411       // no longer hold.
9412       bool IsInBounds =
9413           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9414 
9415       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9416       // but it should be a vector, otherwise.
9417       auto *NewGEP = IsInBounds
9418                          ? State.Builder.CreateInBoundsGEP(
9419                                GEP->getSourceElementType(), Ptr, Indices)
9420                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9421                                                    Ptr, Indices);
9422       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9423              "NewGEP is not a pointer vector");
9424       State.set(this, NewGEP, Part);
9425       State.ILV->addMetadata(NewGEP, GEP);
9426     }
9427   }
9428 }
9429 
9430 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9431   assert(!State.Instance && "Int or FP induction being replicated.");
9432 
9433   Value *Start = getStartValue()->getLiveInIRValue();
9434   const InductionDescriptor &ID = getInductionDescriptor();
9435   TruncInst *Trunc = getTruncInst();
9436   IRBuilderBase &Builder = State.Builder;
9437   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9438   assert(State.VF.isVector() && "must have vector VF");
9439 
9440   // The value from the original loop to which we are mapping the new induction
9441   // variable.
9442   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9443 
9444   auto &DL = EntryVal->getModule()->getDataLayout();
9445 
9446   // Generate code for the induction step. Note that induction steps are
9447   // required to be loop-invariant
9448   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
9449     if (SE.isSCEVable(IV->getType())) {
9450       SCEVExpander Exp(SE, DL, "induction");
9451       return Exp.expandCodeFor(Step, Step->getType(),
9452                                State.CFG.VectorPreHeader->getTerminator());
9453     }
9454     return cast<SCEVUnknown>(Step)->getValue();
9455   };
9456 
9457   // Fast-math-flags propagate from the original induction instruction.
9458   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9459   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9460     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9461 
9462   // Now do the actual transformations, and start with creating the step value.
9463   Value *Step = CreateStepValue(ID.getStep());
9464 
9465   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9466          "Expected either an induction phi-node or a truncate of it!");
9467 
9468   // Construct the initial value of the vector IV in the vector loop preheader
9469   auto CurrIP = Builder.saveIP();
9470   Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
9471   if (isa<TruncInst>(EntryVal)) {
9472     assert(Start->getType()->isIntegerTy() &&
9473            "Truncation requires an integer type");
9474     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9475     Step = Builder.CreateTrunc(Step, TruncType);
9476     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9477   }
9478 
9479   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9480   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9481   Value *SteppedStart = getStepVector(
9482       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9483 
9484   // We create vector phi nodes for both integer and floating-point induction
9485   // variables. Here, we determine the kind of arithmetic we will perform.
9486   Instruction::BinaryOps AddOp;
9487   Instruction::BinaryOps MulOp;
9488   if (Step->getType()->isIntegerTy()) {
9489     AddOp = Instruction::Add;
9490     MulOp = Instruction::Mul;
9491   } else {
9492     AddOp = ID.getInductionOpcode();
9493     MulOp = Instruction::FMul;
9494   }
9495 
9496   // Multiply the vectorization factor by the step using integer or
9497   // floating-point arithmetic as appropriate.
9498   Type *StepType = Step->getType();
9499   Value *RuntimeVF;
9500   if (Step->getType()->isFloatingPointTy())
9501     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9502   else
9503     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9504   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9505 
9506   // Create a vector splat to use in the induction update.
9507   //
9508   // FIXME: If the step is non-constant, we create the vector splat with
9509   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9510   //        handle a constant vector splat.
9511   Value *SplatVF = isa<Constant>(Mul)
9512                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9513                        : Builder.CreateVectorSplat(State.VF, Mul);
9514   Builder.restoreIP(CurrIP);
9515 
9516   // We may need to add the step a number of times, depending on the unroll
9517   // factor. The last of those goes into the PHI.
9518   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9519                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9520   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9521   Instruction *LastInduction = VecInd;
9522   for (unsigned Part = 0; Part < State.UF; ++Part) {
9523     State.set(this, LastInduction, Part);
9524 
9525     if (isa<TruncInst>(EntryVal))
9526       State.ILV->addMetadata(LastInduction, EntryVal);
9527 
9528     LastInduction = cast<Instruction>(
9529         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9530     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9531   }
9532 
9533   LastInduction->setName("vec.ind.next");
9534   VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader);
9535   // Add induction update using an incorrect block temporarily. The phi node
9536   // will be fixed after VPlan execution. Note that at this point the latch
9537   // block cannot be used, as it does not exist yet.
9538   // TODO: Model increment value in VPlan, by turning the recipe into a
9539   // multi-def and a subclass of VPHeaderPHIRecipe.
9540   VecInd->addIncoming(LastInduction, State.CFG.VectorPreHeader);
9541 }
9542 
9543 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9544   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9545          "Not a pointer induction according to InductionDescriptor!");
9546   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9547          "Unexpected type.");
9548 
9549   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9550   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9551 
9552   if (all_of(users(), [this](const VPUser *U) {
9553         return cast<VPRecipeBase>(U)->usesScalars(this);
9554       })) {
9555     // This is the normalized GEP that starts counting at zero.
9556     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9557         CanonicalIV, IndDesc.getStep()->getType());
9558     // Determine the number of scalars we need to generate for each unroll
9559     // iteration. If the instruction is uniform, we only need to generate the
9560     // first lane. Otherwise, we generate all VF values.
9561     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9562     assert((IsUniform || !State.VF.isScalable()) &&
9563            "Cannot scalarize a scalable VF");
9564     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9565 
9566     for (unsigned Part = 0; Part < State.UF; ++Part) {
9567       Value *PartStart =
9568           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9569 
9570       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9571         Value *Idx = State.Builder.CreateAdd(
9572             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9573         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9574 
9575         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9576                                       State.CFG.PrevBB->getTerminator());
9577         Value *SclrGep = emitTransformedIndex(
9578             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9579         SclrGep->setName("next.gep");
9580         State.set(this, SclrGep, VPIteration(Part, Lane));
9581       }
9582     }
9583     return;
9584   }
9585 
9586   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9587          "Induction step not a SCEV constant!");
9588   Type *PhiType = IndDesc.getStep()->getType();
9589 
9590   // Build a pointer phi
9591   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9592   Type *ScStValueType = ScalarStartValue->getType();
9593   PHINode *NewPointerPhi =
9594       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9595   NewPointerPhi->addIncoming(ScalarStartValue, State.CFG.VectorPreHeader);
9596 
9597   // A pointer induction, performed by using a gep
9598   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9599   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9600 
9601   const SCEV *ScalarStep = IndDesc.getStep();
9602   SCEVExpander Exp(SE, DL, "induction");
9603   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9604   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9605   Value *NumUnrolledElems =
9606       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9607   Value *InductionGEP = GetElementPtrInst::Create(
9608       IndDesc.getElementType(), NewPointerPhi,
9609       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9610       InductionLoc);
9611   // Add induction update using an incorrect block temporarily. The phi node
9612   // will be fixed after VPlan execution. Note that at this point the latch
9613   // block cannot be used, as it does not exist yet.
9614   // TODO: Model increment value in VPlan, by turning the recipe into a
9615   // multi-def and a subclass of VPHeaderPHIRecipe.
9616   NewPointerPhi->addIncoming(InductionGEP, State.CFG.VectorPreHeader);
9617 
9618   // Create UF many actual address geps that use the pointer
9619   // phi as base and a vectorized version of the step value
9620   // (<step*0, ..., step*N>) as offset.
9621   for (unsigned Part = 0; Part < State.UF; ++Part) {
9622     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9623     Value *StartOffsetScalar =
9624         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9625     Value *StartOffset =
9626         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9627     // Create a vector of consecutive numbers from zero to VF.
9628     StartOffset = State.Builder.CreateAdd(
9629         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9630 
9631     Value *GEP = State.Builder.CreateGEP(
9632         IndDesc.getElementType(), NewPointerPhi,
9633         State.Builder.CreateMul(
9634             StartOffset,
9635             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9636             "vector.gep"));
9637     State.set(this, GEP, Part);
9638   }
9639 }
9640 
9641 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9642   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9643 
9644   // Fast-math-flags propagate from the original induction instruction.
9645   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9646   if (IndDesc.getInductionBinOp() &&
9647       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9648     State.Builder.setFastMathFlags(
9649         IndDesc.getInductionBinOp()->getFastMathFlags());
9650 
9651   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9652   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9653     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9654     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9655     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9656       ScalarIV =
9657           Ty->isIntegerTy()
9658               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9659               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9660       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9661                                       getStartValue()->getLiveInIRValue(), Step,
9662                                       IndDesc);
9663       ScalarIV->setName("offset.idx");
9664     }
9665     if (TruncToTy) {
9666       assert(Step->getType()->isIntegerTy() &&
9667              "Truncation requires an integer step");
9668       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9669       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9670     }
9671     return ScalarIV;
9672   };
9673 
9674   Value *ScalarIV = CreateScalarIV(Step);
9675   if (State.VF.isVector()) {
9676     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9677     return;
9678   }
9679 
9680   for (unsigned Part = 0; Part < State.UF; ++Part) {
9681     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9682     Value *EntryPart;
9683     if (Step->getType()->isFloatingPointTy()) {
9684       Value *StartIdx =
9685           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9686       // Floating-point operations inherit FMF via the builder's flags.
9687       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9688       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9689                                             ScalarIV, MulOp);
9690     } else {
9691       Value *StartIdx =
9692           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9693       EntryPart = State.Builder.CreateAdd(
9694           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9695     }
9696     State.set(this, EntryPart, Part);
9697   }
9698 }
9699 
9700 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9701   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9702                                  State);
9703 }
9704 
9705 void VPBlendRecipe::execute(VPTransformState &State) {
9706   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9707   // We know that all PHIs in non-header blocks are converted into
9708   // selects, so we don't have to worry about the insertion order and we
9709   // can just use the builder.
9710   // At this point we generate the predication tree. There may be
9711   // duplications since this is a simple recursive scan, but future
9712   // optimizations will clean it up.
9713 
9714   unsigned NumIncoming = getNumIncomingValues();
9715 
9716   // Generate a sequence of selects of the form:
9717   // SELECT(Mask3, In3,
9718   //        SELECT(Mask2, In2,
9719   //               SELECT(Mask1, In1,
9720   //                      In0)))
9721   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9722   // are essentially undef are taken from In0.
9723   InnerLoopVectorizer::VectorParts Entry(State.UF);
9724   for (unsigned In = 0; In < NumIncoming; ++In) {
9725     for (unsigned Part = 0; Part < State.UF; ++Part) {
9726       // We might have single edge PHIs (blocks) - use an identity
9727       // 'select' for the first PHI operand.
9728       Value *In0 = State.get(getIncomingValue(In), Part);
9729       if (In == 0)
9730         Entry[Part] = In0; // Initialize with the first incoming value.
9731       else {
9732         // Select between the current value and the previous incoming edge
9733         // based on the incoming mask.
9734         Value *Cond = State.get(getMask(In), Part);
9735         Entry[Part] =
9736             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9737       }
9738     }
9739   }
9740   for (unsigned Part = 0; Part < State.UF; ++Part)
9741     State.set(this, Entry[Part], Part);
9742 }
9743 
9744 void VPInterleaveRecipe::execute(VPTransformState &State) {
9745   assert(!State.Instance && "Interleave group being replicated.");
9746   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9747                                       getStoredValues(), getMask());
9748 }
9749 
9750 void VPReductionRecipe::execute(VPTransformState &State) {
9751   assert(!State.Instance && "Reduction being replicated.");
9752   Value *PrevInChain = State.get(getChainOp(), 0);
9753   RecurKind Kind = RdxDesc->getRecurrenceKind();
9754   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9755   // Propagate the fast-math flags carried by the underlying instruction.
9756   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9757   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9758   for (unsigned Part = 0; Part < State.UF; ++Part) {
9759     Value *NewVecOp = State.get(getVecOp(), Part);
9760     if (VPValue *Cond = getCondOp()) {
9761       Value *NewCond = State.get(Cond, Part);
9762       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9763       Value *Iden = RdxDesc->getRecurrenceIdentity(
9764           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9765       Value *IdenVec =
9766           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9767       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9768       NewVecOp = Select;
9769     }
9770     Value *NewRed;
9771     Value *NextInChain;
9772     if (IsOrdered) {
9773       if (State.VF.isVector())
9774         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9775                                         PrevInChain);
9776       else
9777         NewRed = State.Builder.CreateBinOp(
9778             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9779             NewVecOp);
9780       PrevInChain = NewRed;
9781     } else {
9782       PrevInChain = State.get(getChainOp(), Part);
9783       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9784     }
9785     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9786       NextInChain =
9787           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9788                          NewRed, PrevInChain);
9789     } else if (IsOrdered)
9790       NextInChain = NewRed;
9791     else
9792       NextInChain = State.Builder.CreateBinOp(
9793           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9794           PrevInChain);
9795     State.set(this, NextInChain, Part);
9796   }
9797 }
9798 
9799 void VPReplicateRecipe::execute(VPTransformState &State) {
9800   if (State.Instance) { // Generate a single instance.
9801     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9802     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9803                                     IsPredicated, State);
9804     // Insert scalar instance packing it into a vector.
9805     if (AlsoPack && State.VF.isVector()) {
9806       // If we're constructing lane 0, initialize to start from poison.
9807       if (State.Instance->Lane.isFirstLane()) {
9808         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9809         Value *Poison = PoisonValue::get(
9810             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9811         State.set(this, Poison, State.Instance->Part);
9812       }
9813       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9814     }
9815     return;
9816   }
9817 
9818   // Generate scalar instances for all VF lanes of all UF parts, unless the
9819   // instruction is uniform inwhich case generate only the first lane for each
9820   // of the UF parts.
9821   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9822   assert((!State.VF.isScalable() || IsUniform) &&
9823          "Can't scalarize a scalable vector");
9824   for (unsigned Part = 0; Part < State.UF; ++Part)
9825     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9826       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9827                                       VPIteration(Part, Lane), IsPredicated,
9828                                       State);
9829 }
9830 
9831 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9832   assert(State.Instance && "Branch on Mask works only on single instance.");
9833 
9834   unsigned Part = State.Instance->Part;
9835   unsigned Lane = State.Instance->Lane.getKnownLane();
9836 
9837   Value *ConditionBit = nullptr;
9838   VPValue *BlockInMask = getMask();
9839   if (BlockInMask) {
9840     ConditionBit = State.get(BlockInMask, Part);
9841     if (ConditionBit->getType()->isVectorTy())
9842       ConditionBit = State.Builder.CreateExtractElement(
9843           ConditionBit, State.Builder.getInt32(Lane));
9844   } else // Block in mask is all-one.
9845     ConditionBit = State.Builder.getTrue();
9846 
9847   // Replace the temporary unreachable terminator with a new conditional branch,
9848   // whose two destinations will be set later when they are created.
9849   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9850   assert(isa<UnreachableInst>(CurrentTerminator) &&
9851          "Expected to replace unreachable terminator with conditional branch.");
9852   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9853   CondBr->setSuccessor(0, nullptr);
9854   ReplaceInstWithInst(CurrentTerminator, CondBr);
9855 }
9856 
9857 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9858   assert(State.Instance && "Predicated instruction PHI works per instance.");
9859   Instruction *ScalarPredInst =
9860       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9861   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9862   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9863   assert(PredicatingBB && "Predicated block has no single predecessor.");
9864   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9865          "operand must be VPReplicateRecipe");
9866 
9867   // By current pack/unpack logic we need to generate only a single phi node: if
9868   // a vector value for the predicated instruction exists at this point it means
9869   // the instruction has vector users only, and a phi for the vector value is
9870   // needed. In this case the recipe of the predicated instruction is marked to
9871   // also do that packing, thereby "hoisting" the insert-element sequence.
9872   // Otherwise, a phi node for the scalar value is needed.
9873   unsigned Part = State.Instance->Part;
9874   if (State.hasVectorValue(getOperand(0), Part)) {
9875     Value *VectorValue = State.get(getOperand(0), Part);
9876     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9877     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9878     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9879     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9880     if (State.hasVectorValue(this, Part))
9881       State.reset(this, VPhi, Part);
9882     else
9883       State.set(this, VPhi, Part);
9884     // NOTE: Currently we need to update the value of the operand, so the next
9885     // predicated iteration inserts its generated value in the correct vector.
9886     State.reset(getOperand(0), VPhi, Part);
9887   } else {
9888     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9889     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9890     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9891                      PredicatingBB);
9892     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9893     if (State.hasScalarValue(this, *State.Instance))
9894       State.reset(this, Phi, *State.Instance);
9895     else
9896       State.set(this, Phi, *State.Instance);
9897     // NOTE: Currently we need to update the value of the operand, so the next
9898     // predicated iteration inserts its generated value in the correct vector.
9899     State.reset(getOperand(0), Phi, *State.Instance);
9900   }
9901 }
9902 
9903 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9904   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9905 
9906   // Attempt to issue a wide load.
9907   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9908   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9909 
9910   assert((LI || SI) && "Invalid Load/Store instruction");
9911   assert((!SI || StoredValue) && "No stored value provided for widened store");
9912   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9913 
9914   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9915 
9916   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9917   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9918   bool CreateGatherScatter = !Consecutive;
9919 
9920   auto &Builder = State.Builder;
9921   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9922   bool isMaskRequired = getMask();
9923   if (isMaskRequired)
9924     for (unsigned Part = 0; Part < State.UF; ++Part)
9925       BlockInMaskParts[Part] = State.get(getMask(), Part);
9926 
9927   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9928     // Calculate the pointer for the specific unroll-part.
9929     GetElementPtrInst *PartPtr = nullptr;
9930 
9931     bool InBounds = false;
9932     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9933       InBounds = gep->isInBounds();
9934     if (Reverse) {
9935       // If the address is consecutive but reversed, then the
9936       // wide store needs to start at the last vector element.
9937       // RunTimeVF =  VScale * VF.getKnownMinValue()
9938       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9939       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9940       // NumElt = -Part * RunTimeVF
9941       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9942       // LastLane = 1 - RunTimeVF
9943       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9944       PartPtr =
9945           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9946       PartPtr->setIsInBounds(InBounds);
9947       PartPtr = cast<GetElementPtrInst>(
9948           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9949       PartPtr->setIsInBounds(InBounds);
9950       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9951         BlockInMaskParts[Part] =
9952             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9953     } else {
9954       Value *Increment =
9955           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9956       PartPtr = cast<GetElementPtrInst>(
9957           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9958       PartPtr->setIsInBounds(InBounds);
9959     }
9960 
9961     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9962     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9963   };
9964 
9965   // Handle Stores:
9966   if (SI) {
9967     State.ILV->setDebugLocFromInst(SI);
9968 
9969     for (unsigned Part = 0; Part < State.UF; ++Part) {
9970       Instruction *NewSI = nullptr;
9971       Value *StoredVal = State.get(StoredValue, Part);
9972       if (CreateGatherScatter) {
9973         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9974         Value *VectorGep = State.get(getAddr(), Part);
9975         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9976                                             MaskPart);
9977       } else {
9978         if (Reverse) {
9979           // If we store to reverse consecutive memory locations, then we need
9980           // to reverse the order of elements in the stored value.
9981           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9982           // We don't want to update the value in the map as it might be used in
9983           // another expression. So don't call resetVectorValue(StoredVal).
9984         }
9985         auto *VecPtr =
9986             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9987         if (isMaskRequired)
9988           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9989                                             BlockInMaskParts[Part]);
9990         else
9991           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9992       }
9993       State.ILV->addMetadata(NewSI, SI);
9994     }
9995     return;
9996   }
9997 
9998   // Handle loads.
9999   assert(LI && "Must have a load instruction");
10000   State.ILV->setDebugLocFromInst(LI);
10001   for (unsigned Part = 0; Part < State.UF; ++Part) {
10002     Value *NewLI;
10003     if (CreateGatherScatter) {
10004       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10005       Value *VectorGep = State.get(getAddr(), Part);
10006       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10007                                          nullptr, "wide.masked.gather");
10008       State.ILV->addMetadata(NewLI, LI);
10009     } else {
10010       auto *VecPtr =
10011           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10012       if (isMaskRequired)
10013         NewLI = Builder.CreateMaskedLoad(
10014             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10015             PoisonValue::get(DataTy), "wide.masked.load");
10016       else
10017         NewLI =
10018             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10019 
10020       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10021       State.ILV->addMetadata(NewLI, LI);
10022       if (Reverse)
10023         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10024     }
10025 
10026     State.set(this, NewLI, Part);
10027   }
10028 }
10029 
10030 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10031 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10032 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10033 // for predication.
10034 static ScalarEpilogueLowering getScalarEpilogueLowering(
10035     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10036     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10037     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10038     LoopVectorizationLegality &LVL) {
10039   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10040   // don't look at hints or options, and don't request a scalar epilogue.
10041   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10042   // LoopAccessInfo (due to code dependency and not being able to reliably get
10043   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10044   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10045   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10046   // back to the old way and vectorize with versioning when forced. See D81345.)
10047   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10048                                                       PGSOQueryType::IRPass) &&
10049                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10050     return CM_ScalarEpilogueNotAllowedOptSize;
10051 
10052   // 2) If set, obey the directives
10053   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10054     switch (PreferPredicateOverEpilogue) {
10055     case PreferPredicateTy::ScalarEpilogue:
10056       return CM_ScalarEpilogueAllowed;
10057     case PreferPredicateTy::PredicateElseScalarEpilogue:
10058       return CM_ScalarEpilogueNotNeededUsePredicate;
10059     case PreferPredicateTy::PredicateOrDontVectorize:
10060       return CM_ScalarEpilogueNotAllowedUsePredicate;
10061     };
10062   }
10063 
10064   // 3) If set, obey the hints
10065   switch (Hints.getPredicate()) {
10066   case LoopVectorizeHints::FK_Enabled:
10067     return CM_ScalarEpilogueNotNeededUsePredicate;
10068   case LoopVectorizeHints::FK_Disabled:
10069     return CM_ScalarEpilogueAllowed;
10070   };
10071 
10072   // 4) if the TTI hook indicates this is profitable, request predication.
10073   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10074                                        LVL.getLAI()))
10075     return CM_ScalarEpilogueNotNeededUsePredicate;
10076 
10077   return CM_ScalarEpilogueAllowed;
10078 }
10079 
10080 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10081   // If Values have been set for this Def return the one relevant for \p Part.
10082   if (hasVectorValue(Def, Part))
10083     return Data.PerPartOutput[Def][Part];
10084 
10085   if (!hasScalarValue(Def, {Part, 0})) {
10086     Value *IRV = Def->getLiveInIRValue();
10087     Value *B = ILV->getBroadcastInstrs(IRV);
10088     set(Def, B, Part);
10089     return B;
10090   }
10091 
10092   Value *ScalarValue = get(Def, {Part, 0});
10093   // If we aren't vectorizing, we can just copy the scalar map values over
10094   // to the vector map.
10095   if (VF.isScalar()) {
10096     set(Def, ScalarValue, Part);
10097     return ScalarValue;
10098   }
10099 
10100   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10101   bool IsUniform = RepR && RepR->isUniform();
10102 
10103   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10104   // Check if there is a scalar value for the selected lane.
10105   if (!hasScalarValue(Def, {Part, LastLane})) {
10106     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10107     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10108             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10109            "unexpected recipe found to be invariant");
10110     IsUniform = true;
10111     LastLane = 0;
10112   }
10113 
10114   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10115   // Set the insert point after the last scalarized instruction or after the
10116   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10117   // will directly follow the scalar definitions.
10118   auto OldIP = Builder.saveIP();
10119   auto NewIP =
10120       isa<PHINode>(LastInst)
10121           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10122           : std::next(BasicBlock::iterator(LastInst));
10123   Builder.SetInsertPoint(&*NewIP);
10124 
10125   // However, if we are vectorizing, we need to construct the vector values.
10126   // If the value is known to be uniform after vectorization, we can just
10127   // broadcast the scalar value corresponding to lane zero for each unroll
10128   // iteration. Otherwise, we construct the vector values using
10129   // insertelement instructions. Since the resulting vectors are stored in
10130   // State, we will only generate the insertelements once.
10131   Value *VectorValue = nullptr;
10132   if (IsUniform) {
10133     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10134     set(Def, VectorValue, Part);
10135   } else {
10136     // Initialize packing with insertelements to start from undef.
10137     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10138     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10139     set(Def, Undef, Part);
10140     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10141       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10142     VectorValue = get(Def, Part);
10143   }
10144   Builder.restoreIP(OldIP);
10145   return VectorValue;
10146 }
10147 
10148 // Process the loop in the VPlan-native vectorization path. This path builds
10149 // VPlan upfront in the vectorization pipeline, which allows to apply
10150 // VPlan-to-VPlan transformations from the very beginning without modifying the
10151 // input LLVM IR.
10152 static bool processLoopInVPlanNativePath(
10153     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10154     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10155     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10156     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10157     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10158     LoopVectorizationRequirements &Requirements) {
10159 
10160   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10161     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10162     return false;
10163   }
10164   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10165   Function *F = L->getHeader()->getParent();
10166   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10167 
10168   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10169       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10170 
10171   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10172                                 &Hints, IAI);
10173   // Use the planner for outer loop vectorization.
10174   // TODO: CM is not used at this point inside the planner. Turn CM into an
10175   // optional argument if we don't need it in the future.
10176   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10177                                Requirements, ORE);
10178 
10179   // Get user vectorization factor.
10180   ElementCount UserVF = Hints.getWidth();
10181 
10182   CM.collectElementTypesForWidening();
10183 
10184   // Plan how to best vectorize, return the best VF and its cost.
10185   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10186 
10187   // If we are stress testing VPlan builds, do not attempt to generate vector
10188   // code. Masked vector code generation support will follow soon.
10189   // Also, do not attempt to vectorize if no vector code will be produced.
10190   if (VPlanBuildStressTest || EnableVPlanPredication ||
10191       VectorizationFactor::Disabled() == VF)
10192     return false;
10193 
10194   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10195 
10196   {
10197     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10198                              F->getParent()->getDataLayout());
10199     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10200                            &CM, BFI, PSI, Checks);
10201     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10202                       << L->getHeader()->getParent()->getName() << "\"\n");
10203     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10204   }
10205 
10206   // Mark the loop as already vectorized to avoid vectorizing again.
10207   Hints.setAlreadyVectorized();
10208   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10209   return true;
10210 }
10211 
10212 // Emit a remark if there are stores to floats that required a floating point
10213 // extension. If the vectorized loop was generated with floating point there
10214 // will be a performance penalty from the conversion overhead and the change in
10215 // the vector width.
10216 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10217   SmallVector<Instruction *, 4> Worklist;
10218   for (BasicBlock *BB : L->getBlocks()) {
10219     for (Instruction &Inst : *BB) {
10220       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10221         if (S->getValueOperand()->getType()->isFloatTy())
10222           Worklist.push_back(S);
10223       }
10224     }
10225   }
10226 
10227   // Traverse the floating point stores upwards searching, for floating point
10228   // conversions.
10229   SmallPtrSet<const Instruction *, 4> Visited;
10230   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10231   while (!Worklist.empty()) {
10232     auto *I = Worklist.pop_back_val();
10233     if (!L->contains(I))
10234       continue;
10235     if (!Visited.insert(I).second)
10236       continue;
10237 
10238     // Emit a remark if the floating point store required a floating
10239     // point conversion.
10240     // TODO: More work could be done to identify the root cause such as a
10241     // constant or a function return type and point the user to it.
10242     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10243       ORE->emit([&]() {
10244         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10245                                           I->getDebugLoc(), L->getHeader())
10246                << "floating point conversion changes vector width. "
10247                << "Mixed floating point precision requires an up/down "
10248                << "cast that will negatively impact performance.";
10249       });
10250 
10251     for (Use &Op : I->operands())
10252       if (auto *OpI = dyn_cast<Instruction>(Op))
10253         Worklist.push_back(OpI);
10254   }
10255 }
10256 
10257 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10258     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10259                                !EnableLoopInterleaving),
10260       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10261                               !EnableLoopVectorization) {}
10262 
10263 bool LoopVectorizePass::processLoop(Loop *L) {
10264   assert((EnableVPlanNativePath || L->isInnermost()) &&
10265          "VPlan-native path is not enabled. Only process inner loops.");
10266 
10267 #ifndef NDEBUG
10268   const std::string DebugLocStr = getDebugLocString(L);
10269 #endif /* NDEBUG */
10270 
10271   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10272                     << L->getHeader()->getParent()->getName() << "' from "
10273                     << DebugLocStr << "\n");
10274 
10275   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10276 
10277   LLVM_DEBUG(
10278       dbgs() << "LV: Loop hints:"
10279              << " force="
10280              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10281                      ? "disabled"
10282                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10283                             ? "enabled"
10284                             : "?"))
10285              << " width=" << Hints.getWidth()
10286              << " interleave=" << Hints.getInterleave() << "\n");
10287 
10288   // Function containing loop
10289   Function *F = L->getHeader()->getParent();
10290 
10291   // Looking at the diagnostic output is the only way to determine if a loop
10292   // was vectorized (other than looking at the IR or machine code), so it
10293   // is important to generate an optimization remark for each loop. Most of
10294   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10295   // generated as OptimizationRemark and OptimizationRemarkMissed are
10296   // less verbose reporting vectorized loops and unvectorized loops that may
10297   // benefit from vectorization, respectively.
10298 
10299   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10300     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10301     return false;
10302   }
10303 
10304   PredicatedScalarEvolution PSE(*SE, *L);
10305 
10306   // Check if it is legal to vectorize the loop.
10307   LoopVectorizationRequirements Requirements;
10308   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10309                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10310   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10311     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10312     Hints.emitRemarkWithHints();
10313     return false;
10314   }
10315 
10316   // Check the function attributes and profiles to find out if this function
10317   // should be optimized for size.
10318   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10319       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10320 
10321   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10322   // here. They may require CFG and instruction level transformations before
10323   // even evaluating whether vectorization is profitable. Since we cannot modify
10324   // the incoming IR, we need to build VPlan upfront in the vectorization
10325   // pipeline.
10326   if (!L->isInnermost())
10327     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10328                                         ORE, BFI, PSI, Hints, Requirements);
10329 
10330   assert(L->isInnermost() && "Inner loop expected.");
10331 
10332   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10333   // count by optimizing for size, to minimize overheads.
10334   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10335   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10336     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10337                       << "This loop is worth vectorizing only if no scalar "
10338                       << "iteration overheads are incurred.");
10339     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10340       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10341     else {
10342       LLVM_DEBUG(dbgs() << "\n");
10343       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10344     }
10345   }
10346 
10347   // Check the function attributes to see if implicit floats are allowed.
10348   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10349   // an integer loop and the vector instructions selected are purely integer
10350   // vector instructions?
10351   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10352     reportVectorizationFailure(
10353         "Can't vectorize when the NoImplicitFloat attribute is used",
10354         "loop not vectorized due to NoImplicitFloat attribute",
10355         "NoImplicitFloat", ORE, L);
10356     Hints.emitRemarkWithHints();
10357     return false;
10358   }
10359 
10360   // Check if the target supports potentially unsafe FP vectorization.
10361   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10362   // for the target we're vectorizing for, to make sure none of the
10363   // additional fp-math flags can help.
10364   if (Hints.isPotentiallyUnsafe() &&
10365       TTI->isFPVectorizationPotentiallyUnsafe()) {
10366     reportVectorizationFailure(
10367         "Potentially unsafe FP op prevents vectorization",
10368         "loop not vectorized due to unsafe FP support.",
10369         "UnsafeFP", ORE, L);
10370     Hints.emitRemarkWithHints();
10371     return false;
10372   }
10373 
10374   bool AllowOrderedReductions;
10375   // If the flag is set, use that instead and override the TTI behaviour.
10376   if (ForceOrderedReductions.getNumOccurrences() > 0)
10377     AllowOrderedReductions = ForceOrderedReductions;
10378   else
10379     AllowOrderedReductions = TTI->enableOrderedReductions();
10380   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10381     ORE->emit([&]() {
10382       auto *ExactFPMathInst = Requirements.getExactFPInst();
10383       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10384                                                  ExactFPMathInst->getDebugLoc(),
10385                                                  ExactFPMathInst->getParent())
10386              << "loop not vectorized: cannot prove it is safe to reorder "
10387                 "floating-point operations";
10388     });
10389     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10390                          "reorder floating-point operations\n");
10391     Hints.emitRemarkWithHints();
10392     return false;
10393   }
10394 
10395   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10396   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10397 
10398   // If an override option has been passed in for interleaved accesses, use it.
10399   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10400     UseInterleaved = EnableInterleavedMemAccesses;
10401 
10402   // Analyze interleaved memory accesses.
10403   if (UseInterleaved) {
10404     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10405   }
10406 
10407   // Use the cost model.
10408   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10409                                 F, &Hints, IAI);
10410   CM.collectValuesToIgnore();
10411   CM.collectElementTypesForWidening();
10412 
10413   // Use the planner for vectorization.
10414   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10415                                Requirements, ORE);
10416 
10417   // Get user vectorization factor and interleave count.
10418   ElementCount UserVF = Hints.getWidth();
10419   unsigned UserIC = Hints.getInterleave();
10420 
10421   // Plan how to best vectorize, return the best VF and its cost.
10422   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10423 
10424   VectorizationFactor VF = VectorizationFactor::Disabled();
10425   unsigned IC = 1;
10426 
10427   if (MaybeVF) {
10428     VF = *MaybeVF;
10429     // Select the interleave count.
10430     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10431   }
10432 
10433   // Identify the diagnostic messages that should be produced.
10434   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10435   bool VectorizeLoop = true, InterleaveLoop = true;
10436   if (VF.Width.isScalar()) {
10437     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10438     VecDiagMsg = std::make_pair(
10439         "VectorizationNotBeneficial",
10440         "the cost-model indicates that vectorization is not beneficial");
10441     VectorizeLoop = false;
10442   }
10443 
10444   if (!MaybeVF && UserIC > 1) {
10445     // Tell the user interleaving was avoided up-front, despite being explicitly
10446     // requested.
10447     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10448                          "interleaving should be avoided up front\n");
10449     IntDiagMsg = std::make_pair(
10450         "InterleavingAvoided",
10451         "Ignoring UserIC, because interleaving was avoided up front");
10452     InterleaveLoop = false;
10453   } else if (IC == 1 && UserIC <= 1) {
10454     // Tell the user interleaving is not beneficial.
10455     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10456     IntDiagMsg = std::make_pair(
10457         "InterleavingNotBeneficial",
10458         "the cost-model indicates that interleaving is not beneficial");
10459     InterleaveLoop = false;
10460     if (UserIC == 1) {
10461       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10462       IntDiagMsg.second +=
10463           " and is explicitly disabled or interleave count is set to 1";
10464     }
10465   } else if (IC > 1 && UserIC == 1) {
10466     // Tell the user interleaving is beneficial, but it explicitly disabled.
10467     LLVM_DEBUG(
10468         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10469     IntDiagMsg = std::make_pair(
10470         "InterleavingBeneficialButDisabled",
10471         "the cost-model indicates that interleaving is beneficial "
10472         "but is explicitly disabled or interleave count is set to 1");
10473     InterleaveLoop = false;
10474   }
10475 
10476   // Override IC if user provided an interleave count.
10477   IC = UserIC > 0 ? UserIC : IC;
10478 
10479   // Emit diagnostic messages, if any.
10480   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10481   if (!VectorizeLoop && !InterleaveLoop) {
10482     // Do not vectorize or interleaving the loop.
10483     ORE->emit([&]() {
10484       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10485                                       L->getStartLoc(), L->getHeader())
10486              << VecDiagMsg.second;
10487     });
10488     ORE->emit([&]() {
10489       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10490                                       L->getStartLoc(), L->getHeader())
10491              << IntDiagMsg.second;
10492     });
10493     return false;
10494   } else if (!VectorizeLoop && InterleaveLoop) {
10495     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10496     ORE->emit([&]() {
10497       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10498                                         L->getStartLoc(), L->getHeader())
10499              << VecDiagMsg.second;
10500     });
10501   } else if (VectorizeLoop && !InterleaveLoop) {
10502     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10503                       << ") in " << DebugLocStr << '\n');
10504     ORE->emit([&]() {
10505       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10506                                         L->getStartLoc(), L->getHeader())
10507              << IntDiagMsg.second;
10508     });
10509   } else if (VectorizeLoop && InterleaveLoop) {
10510     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10511                       << ") in " << DebugLocStr << '\n');
10512     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10513   }
10514 
10515   bool DisableRuntimeUnroll = false;
10516   MDNode *OrigLoopID = L->getLoopID();
10517   {
10518     // Optimistically generate runtime checks. Drop them if they turn out to not
10519     // be profitable. Limit the scope of Checks, so the cleanup happens
10520     // immediately after vector codegeneration is done.
10521     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10522                              F->getParent()->getDataLayout());
10523     if (!VF.Width.isScalar() || IC > 1)
10524       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate());
10525 
10526     using namespace ore;
10527     if (!VectorizeLoop) {
10528       assert(IC > 1 && "interleave count should not be 1 or 0");
10529       // If we decided that it is not legal to vectorize the loop, then
10530       // interleave it.
10531       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10532                                  &CM, BFI, PSI, Checks);
10533 
10534       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10535       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10536 
10537       ORE->emit([&]() {
10538         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10539                                   L->getHeader())
10540                << "interleaved loop (interleaved count: "
10541                << NV("InterleaveCount", IC) << ")";
10542       });
10543     } else {
10544       // If we decided that it is *legal* to vectorize the loop, then do it.
10545 
10546       // Consider vectorizing the epilogue too if it's profitable.
10547       VectorizationFactor EpilogueVF =
10548           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10549       if (EpilogueVF.Width.isVector()) {
10550 
10551         // The first pass vectorizes the main loop and creates a scalar epilogue
10552         // to be vectorized by executing the plan (potentially with a different
10553         // factor) again shortly afterwards.
10554         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10555         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10556                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10557 
10558         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10559         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10560                         DT);
10561         ++LoopsVectorized;
10562 
10563         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10564         formLCSSARecursively(*L, *DT, LI, SE);
10565 
10566         // Second pass vectorizes the epilogue and adjusts the control flow
10567         // edges from the first pass.
10568         EPI.MainLoopVF = EPI.EpilogueVF;
10569         EPI.MainLoopUF = EPI.EpilogueUF;
10570         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10571                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10572                                                  Checks);
10573 
10574         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10575         BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->setName(
10576             "vec.epilog.vector.body");
10577 
10578         // Ensure that the start values for any VPReductionPHIRecipes are
10579         // updated before vectorising the epilogue loop.
10580         VPBasicBlock *Header =
10581             BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock();
10582         for (VPRecipeBase &R : Header->phis()) {
10583           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10584             if (auto *Resume = MainILV.getReductionResumeValue(
10585                     ReductionPhi->getRecurrenceDescriptor())) {
10586               VPValue *StartVal = new VPValue(Resume);
10587               BestEpiPlan.addExternalDef(StartVal);
10588               ReductionPhi->setOperand(0, StartVal);
10589             }
10590           }
10591         }
10592 
10593         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10594                         DT);
10595         ++LoopsEpilogueVectorized;
10596 
10597         if (!MainILV.areSafetyChecksAdded())
10598           DisableRuntimeUnroll = true;
10599       } else {
10600         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10601                                &LVL, &CM, BFI, PSI, Checks);
10602 
10603         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10604         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10605         ++LoopsVectorized;
10606 
10607         // Add metadata to disable runtime unrolling a scalar loop when there
10608         // are no runtime checks about strides and memory. A scalar loop that is
10609         // rarely used is not worth unrolling.
10610         if (!LB.areSafetyChecksAdded())
10611           DisableRuntimeUnroll = true;
10612       }
10613       // Report the vectorization decision.
10614       ORE->emit([&]() {
10615         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10616                                   L->getHeader())
10617                << "vectorized loop (vectorization width: "
10618                << NV("VectorizationFactor", VF.Width)
10619                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10620       });
10621     }
10622 
10623     if (ORE->allowExtraAnalysis(LV_NAME))
10624       checkMixedPrecision(L, ORE);
10625   }
10626 
10627   Optional<MDNode *> RemainderLoopID =
10628       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10629                                       LLVMLoopVectorizeFollowupEpilogue});
10630   if (RemainderLoopID.hasValue()) {
10631     L->setLoopID(RemainderLoopID.getValue());
10632   } else {
10633     if (DisableRuntimeUnroll)
10634       AddRuntimeUnrollDisableMetaData(L);
10635 
10636     // Mark the loop as already vectorized to avoid vectorizing again.
10637     Hints.setAlreadyVectorized();
10638   }
10639 
10640   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10641   return true;
10642 }
10643 
10644 LoopVectorizeResult LoopVectorizePass::runImpl(
10645     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10646     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10647     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10648     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10649     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10650   SE = &SE_;
10651   LI = &LI_;
10652   TTI = &TTI_;
10653   DT = &DT_;
10654   BFI = &BFI_;
10655   TLI = TLI_;
10656   AA = &AA_;
10657   AC = &AC_;
10658   GetLAA = &GetLAA_;
10659   DB = &DB_;
10660   ORE = &ORE_;
10661   PSI = PSI_;
10662 
10663   // Don't attempt if
10664   // 1. the target claims to have no vector registers, and
10665   // 2. interleaving won't help ILP.
10666   //
10667   // The second condition is necessary because, even if the target has no
10668   // vector registers, loop vectorization may still enable scalar
10669   // interleaving.
10670   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10671       TTI->getMaxInterleaveFactor(1) < 2)
10672     return LoopVectorizeResult(false, false);
10673 
10674   bool Changed = false, CFGChanged = false;
10675 
10676   // The vectorizer requires loops to be in simplified form.
10677   // Since simplification may add new inner loops, it has to run before the
10678   // legality and profitability checks. This means running the loop vectorizer
10679   // will simplify all loops, regardless of whether anything end up being
10680   // vectorized.
10681   for (auto &L : *LI)
10682     Changed |= CFGChanged |=
10683         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10684 
10685   // Build up a worklist of inner-loops to vectorize. This is necessary as
10686   // the act of vectorizing or partially unrolling a loop creates new loops
10687   // and can invalidate iterators across the loops.
10688   SmallVector<Loop *, 8> Worklist;
10689 
10690   for (Loop *L : *LI)
10691     collectSupportedLoops(*L, LI, ORE, Worklist);
10692 
10693   LoopsAnalyzed += Worklist.size();
10694 
10695   // Now walk the identified inner loops.
10696   while (!Worklist.empty()) {
10697     Loop *L = Worklist.pop_back_val();
10698 
10699     // For the inner loops we actually process, form LCSSA to simplify the
10700     // transform.
10701     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10702 
10703     Changed |= CFGChanged |= processLoop(L);
10704   }
10705 
10706   // Process each loop nest in the function.
10707   return LoopVectorizeResult(Changed, CFGChanged);
10708 }
10709 
10710 PreservedAnalyses LoopVectorizePass::run(Function &F,
10711                                          FunctionAnalysisManager &AM) {
10712     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10713     auto &LI = AM.getResult<LoopAnalysis>(F);
10714     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10715     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10716     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10717     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10718     auto &AA = AM.getResult<AAManager>(F);
10719     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10720     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10721     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10722 
10723     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10724     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10725         [&](Loop &L) -> const LoopAccessInfo & {
10726       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10727                                         TLI, TTI, nullptr, nullptr, nullptr};
10728       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10729     };
10730     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10731     ProfileSummaryInfo *PSI =
10732         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10733     LoopVectorizeResult Result =
10734         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10735     if (!Result.MadeAnyChange)
10736       return PreservedAnalyses::all();
10737     PreservedAnalyses PA;
10738 
10739     // We currently do not preserve loopinfo/dominator analyses with outer loop
10740     // vectorization. Until this is addressed, mark these analyses as preserved
10741     // only for non-VPlan-native path.
10742     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10743     if (!EnableVPlanNativePath) {
10744       PA.preserve<LoopAnalysis>();
10745       PA.preserve<DominatorTreeAnalysis>();
10746     }
10747 
10748     if (Result.MadeCFGChange) {
10749       // Making CFG changes likely means a loop got vectorized. Indicate that
10750       // extra simplification passes should be run.
10751       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10752       // be run if runtime checks have been added.
10753       AM.getResult<ShouldRunExtraVectorPasses>(F);
10754       PA.preserve<ShouldRunExtraVectorPasses>();
10755     } else {
10756       PA.preserveSet<CFGAnalyses>();
10757     }
10758     return PA;
10759 }
10760 
10761 void LoopVectorizePass::printPipeline(
10762     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10763   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10764       OS, MapClassName2PassName);
10765 
10766   OS << "<";
10767   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10768   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10769   OS << ">";
10770 }
10771