1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask);
548 
549   /// Set the debug location in the builder \p Ptr using the debug location in
550   /// \p V. If \p Ptr is None then it uses the class member's Builder.
551   void setDebugLocFromInst(const Value *V,
552                            Optional<IRBuilder<> *> CustomBuilder = None);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Create the exit value of first order recurrences in the middle block and
593   /// update their users.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Create code for the loop exit value of the reduction.
597   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
598 
599   /// Clear NSW/NUW flags from reduction instructions if necessary.
600   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
601                                VPTransformState &State);
602 
603   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
604   /// means we need to add the appropriate incoming value from the middle
605   /// block as exiting edges from the scalar epilogue loop (if present) are
606   /// already in place, and we exit the vector loop exclusively to the middle
607   /// block.
608   void fixLCSSAPHIs(VPTransformState &State);
609 
610   /// Iteratively sink the scalarized operands of a predicated instruction into
611   /// the block that was created for it.
612   void sinkScalarOperands(Instruction *PredInst);
613 
614   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
615   /// represented as.
616   void truncateToMinimalBitwidths(VPTransformState &State);
617 
618   /// This function adds
619   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
620   /// to each vector element of Val. The sequence starts at StartIndex.
621   /// \p Opcode is relevant for FP induction variable.
622   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
623                                Instruction::BinaryOps Opcode =
624                                Instruction::BinaryOpsEnd);
625 
626   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
627   /// variable on which to base the steps, \p Step is the size of the step, and
628   /// \p EntryVal is the value from the original loop that maps to the steps.
629   /// Note that \p EntryVal doesn't have to be an induction variable - it
630   /// can also be a truncate instruction.
631   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
632                         const InductionDescriptor &ID, VPValue *Def,
633                         VPValue *CastDef, VPTransformState &State);
634 
635   /// Create a vector induction phi node based on an existing scalar one. \p
636   /// EntryVal is the value from the original loop that maps to the vector phi
637   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
638   /// truncate instruction, instead of widening the original IV, we widen a
639   /// version of the IV truncated to \p EntryVal's type.
640   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
641                                        Value *Step, Value *Start,
642                                        Instruction *EntryVal, VPValue *Def,
643                                        VPValue *CastDef,
644                                        VPTransformState &State);
645 
646   /// Returns true if an instruction \p I should be scalarized instead of
647   /// vectorized for the chosen vectorization factor.
648   bool shouldScalarizeInstruction(Instruction *I) const;
649 
650   /// Returns true if we should generate a scalar version of \p IV.
651   bool needsScalarInduction(Instruction *IV) const;
652 
653   /// If there is a cast involved in the induction variable \p ID, which should
654   /// be ignored in the vectorized loop body, this function records the
655   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
656   /// cast. We had already proved that the casted Phi is equal to the uncasted
657   /// Phi in the vectorized loop (under a runtime guard), and therefore
658   /// there is no need to vectorize the cast - the same value can be used in the
659   /// vector loop for both the Phi and the cast.
660   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
661   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
662   ///
663   /// \p EntryVal is the value from the original loop that maps to the vector
664   /// phi node and is used to distinguish what is the IV currently being
665   /// processed - original one (if \p EntryVal is a phi corresponding to the
666   /// original IV) or the "newly-created" one based on the proof mentioned above
667   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
668   /// latter case \p EntryVal is a TruncInst and we must not record anything for
669   /// that IV, but it's error-prone to expect callers of this routine to care
670   /// about that, hence this explicit parameter.
671   void recordVectorLoopValueForInductionCast(
672       const InductionDescriptor &ID, const Instruction *EntryVal,
673       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
674       unsigned Part, unsigned Lane = UINT_MAX);
675 
676   /// Generate a shuffle sequence that will reverse the vector Vec.
677   virtual Value *reverseVector(Value *Vec);
678 
679   /// Returns (and creates if needed) the original loop trip count.
680   Value *getOrCreateTripCount(Loop *NewLoop);
681 
682   /// Returns (and creates if needed) the trip count of the widened loop.
683   Value *getOrCreateVectorTripCount(Loop *NewLoop);
684 
685   /// Returns a bitcasted value to the requested vector type.
686   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
687   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
688                                 const DataLayout &DL);
689 
690   /// Emit a bypass check to see if the vector trip count is zero, including if
691   /// it overflows.
692   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit a bypass check to see if all of the SCEV assumptions we've
695   /// had to make are correct. Returns the block containing the checks or
696   /// nullptr if no checks have been added.
697   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit bypass checks to check any memory assumptions we may have made.
700   /// Returns the block containing the checks or nullptr if no checks have been
701   /// added.
702   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Compute the transformed value of Index at offset StartValue using step
705   /// StepValue.
706   /// For integer induction, returns StartValue + Index * StepValue.
707   /// For pointer induction, returns StartValue[Index * StepValue].
708   /// FIXME: The newly created binary instructions should contain nsw/nuw
709   /// flags, which can be found from the original scalar operations.
710   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
711                               const DataLayout &DL,
712                               const InductionDescriptor &ID) const;
713 
714   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
715   /// vector loop preheader, middle block and scalar preheader. Also
716   /// allocate a loop object for the new vector loop and return it.
717   Loop *createVectorLoopSkeleton(StringRef Prefix);
718 
719   /// Create new phi nodes for the induction variables to resume iteration count
720   /// in the scalar epilogue, from where the vectorized loop left off (given by
721   /// \p VectorTripCount).
722   /// In cases where the loop skeleton is more complicated (eg. epilogue
723   /// vectorization) and the resume values can come from an additional bypass
724   /// block, the \p AdditionalBypass pair provides information about the bypass
725   /// block and the end value on the edge from bypass to this loop.
726   void createInductionResumeValues(
727       Loop *L, Value *VectorTripCount,
728       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
729 
730   /// Complete the loop skeleton by adding debug MDs, creating appropriate
731   /// conditional branches in the middle block, preparing the builder and
732   /// running the verifier. Take in the vector loop \p L as argument, and return
733   /// the preheader of the completed vector loop.
734   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
735 
736   /// Add additional metadata to \p To that was not present on \p Orig.
737   ///
738   /// Currently this is used to add the noalias annotations based on the
739   /// inserted memchecks.  Use this for instructions that are *cloned* into the
740   /// vector loop.
741   void addNewMetadata(Instruction *To, const Instruction *Orig);
742 
743   /// Add metadata from one instruction to another.
744   ///
745   /// This includes both the original MDs from \p From and additional ones (\see
746   /// addNewMetadata).  Use this for *newly created* instructions in the vector
747   /// loop.
748   void addMetadata(Instruction *To, Instruction *From);
749 
750   /// Similar to the previous function but it adds the metadata to a
751   /// vector of instructions.
752   void addMetadata(ArrayRef<Value *> To, Instruction *From);
753 
754   /// Allow subclasses to override and print debug traces before/after vplan
755   /// execution, when trace information is requested.
756   virtual void printDebugTracesAtStart(){};
757   virtual void printDebugTracesAtEnd(){};
758 
759   /// The original loop.
760   Loop *OrigLoop;
761 
762   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
763   /// dynamic knowledge to simplify SCEV expressions and converts them to a
764   /// more usable form.
765   PredicatedScalarEvolution &PSE;
766 
767   /// Loop Info.
768   LoopInfo *LI;
769 
770   /// Dominator Tree.
771   DominatorTree *DT;
772 
773   /// Alias Analysis.
774   AAResults *AA;
775 
776   /// Target Library Info.
777   const TargetLibraryInfo *TLI;
778 
779   /// Target Transform Info.
780   const TargetTransformInfo *TTI;
781 
782   /// Assumption Cache.
783   AssumptionCache *AC;
784 
785   /// Interface to emit optimization remarks.
786   OptimizationRemarkEmitter *ORE;
787 
788   /// LoopVersioning.  It's only set up (non-null) if memchecks were
789   /// used.
790   ///
791   /// This is currently only used to add no-alias metadata based on the
792   /// memchecks.  The actually versioning is performed manually.
793   std::unique_ptr<LoopVersioning> LVer;
794 
795   /// The vectorization SIMD factor to use. Each vector will have this many
796   /// vector elements.
797   ElementCount VF;
798 
799   /// The vectorization unroll factor to use. Each scalar is vectorized to this
800   /// many different vector instructions.
801   unsigned UF;
802 
803   /// The builder that we use
804   IRBuilder<> Builder;
805 
806   // --- Vectorization state ---
807 
808   /// The vector-loop preheader.
809   BasicBlock *LoopVectorPreHeader;
810 
811   /// The scalar-loop preheader.
812   BasicBlock *LoopScalarPreHeader;
813 
814   /// Middle Block between the vector and the scalar.
815   BasicBlock *LoopMiddleBlock;
816 
817   /// The unique ExitBlock of the scalar loop if one exists.  Note that
818   /// there can be multiple exiting edges reaching this block.
819   BasicBlock *LoopExitBlock;
820 
821   /// The vector loop body.
822   BasicBlock *LoopVectorBody;
823 
824   /// The scalar loop body.
825   BasicBlock *LoopScalarBody;
826 
827   /// A list of all bypass blocks. The first block is the entry of the loop.
828   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
829 
830   /// The new Induction variable which was added to the new block.
831   PHINode *Induction = nullptr;
832 
833   /// The induction variable of the old basic block.
834   PHINode *OldInduction = nullptr;
835 
836   /// Store instructions that were predicated.
837   SmallVector<Instruction *, 4> PredicatedInstructions;
838 
839   /// Trip count of the original loop.
840   Value *TripCount = nullptr;
841 
842   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
843   Value *VectorTripCount = nullptr;
844 
845   /// The legality analysis.
846   LoopVectorizationLegality *Legal;
847 
848   /// The profitablity analysis.
849   LoopVectorizationCostModel *Cost;
850 
851   // Record whether runtime checks are added.
852   bool AddedSafetyChecks = false;
853 
854   // Holds the end values for each induction variable. We save the end values
855   // so we can later fix-up the external users of the induction variables.
856   DenseMap<PHINode *, Value *> IVEndValues;
857 
858   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
859   // fixed up at the end of vector code generation.
860   SmallVector<PHINode *, 8> OrigPHIsToFix;
861 
862   /// BFI and PSI are used to check for profile guided size optimizations.
863   BlockFrequencyInfo *BFI;
864   ProfileSummaryInfo *PSI;
865 
866   // Whether this loop should be optimized for size based on profile guided size
867   // optimizatios.
868   bool OptForSizeBasedOnProfile;
869 
870   /// Structure to hold information about generated runtime checks, responsible
871   /// for cleaning the checks, if vectorization turns out unprofitable.
872   GeneratedRTChecks &RTChecks;
873 };
874 
875 class InnerLoopUnroller : public InnerLoopVectorizer {
876 public:
877   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
878                     LoopInfo *LI, DominatorTree *DT,
879                     const TargetLibraryInfo *TLI,
880                     const TargetTransformInfo *TTI, AssumptionCache *AC,
881                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
882                     LoopVectorizationLegality *LVL,
883                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
884                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
885       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
886                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
887                             BFI, PSI, Check) {}
888 
889 private:
890   Value *getBroadcastInstrs(Value *V) override;
891   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
892                        Instruction::BinaryOps Opcode =
893                        Instruction::BinaryOpsEnd) override;
894   Value *reverseVector(Value *Vec) override;
895 };
896 
897 /// Encapsulate information regarding vectorization of a loop and its epilogue.
898 /// This information is meant to be updated and used across two stages of
899 /// epilogue vectorization.
900 struct EpilogueLoopVectorizationInfo {
901   ElementCount MainLoopVF = ElementCount::getFixed(0);
902   unsigned MainLoopUF = 0;
903   ElementCount EpilogueVF = ElementCount::getFixed(0);
904   unsigned EpilogueUF = 0;
905   BasicBlock *MainLoopIterationCountCheck = nullptr;
906   BasicBlock *EpilogueIterationCountCheck = nullptr;
907   BasicBlock *SCEVSafetyCheck = nullptr;
908   BasicBlock *MemSafetyCheck = nullptr;
909   Value *TripCount = nullptr;
910   Value *VectorTripCount = nullptr;
911 
912   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
913                                 unsigned EUF)
914       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
915         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1107   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1108   Constant *StepVal = ConstantInt::get(
1109       Step->getType(),
1110       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1111   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1112 }
1113 
1114 namespace llvm {
1115 
1116 /// Return the runtime value for VF.
1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1118   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1119   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1120 }
1121 
1122 void reportVectorizationFailure(const StringRef DebugMsg,
1123                                 const StringRef OREMsg, const StringRef ORETag,
1124                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1125                                 Instruction *I) {
1126   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1127   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1128   ORE->emit(
1129       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1130       << "loop not vectorized: " << OREMsg);
1131 }
1132 
1133 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1134                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1135                              Instruction *I) {
1136   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1137   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1138   ORE->emit(
1139       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1140       << Msg);
1141 }
1142 
1143 } // end namespace llvm
1144 
1145 #ifndef NDEBUG
1146 /// \return string containing a file name and a line # for the given loop.
1147 static std::string getDebugLocString(const Loop *L) {
1148   std::string Result;
1149   if (L) {
1150     raw_string_ostream OS(Result);
1151     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1152       LoopDbgLoc.print(OS);
1153     else
1154       // Just print the module name.
1155       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1156     OS.flush();
1157   }
1158   return Result;
1159 }
1160 #endif
1161 
1162 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1163                                          const Instruction *Orig) {
1164   // If the loop was versioned with memchecks, add the corresponding no-alias
1165   // metadata.
1166   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1167     LVer->annotateInstWithNoAlias(To, Orig);
1168 }
1169 
1170 void InnerLoopVectorizer::addMetadata(Instruction *To,
1171                                       Instruction *From) {
1172   propagateMetadata(To, From);
1173   addNewMetadata(To, From);
1174 }
1175 
1176 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1177                                       Instruction *From) {
1178   for (Value *V : To) {
1179     if (Instruction *I = dyn_cast<Instruction>(V))
1180       addMetadata(I, From);
1181   }
1182 }
1183 
1184 namespace llvm {
1185 
1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1187 // lowered.
1188 enum ScalarEpilogueLowering {
1189 
1190   // The default: allowing scalar epilogues.
1191   CM_ScalarEpilogueAllowed,
1192 
1193   // Vectorization with OptForSize: don't allow epilogues.
1194   CM_ScalarEpilogueNotAllowedOptSize,
1195 
1196   // A special case of vectorisation with OptForSize: loops with a very small
1197   // trip count are considered for vectorization under OptForSize, thereby
1198   // making sure the cost of their loop body is dominant, free of runtime
1199   // guards and scalar iteration overheads.
1200   CM_ScalarEpilogueNotAllowedLowTripLoop,
1201 
1202   // Loop hint predicate indicating an epilogue is undesired.
1203   CM_ScalarEpilogueNotNeededUsePredicate,
1204 
1205   // Directive indicating we must either tail fold or not vectorize
1206   CM_ScalarEpilogueNotAllowedUsePredicate
1207 };
1208 
1209 /// ElementCountComparator creates a total ordering for ElementCount
1210 /// for the purposes of using it in a set structure.
1211 struct ElementCountComparator {
1212   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1213     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1214            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1215   }
1216 };
1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1218 
1219 /// LoopVectorizationCostModel - estimates the expected speedups due to
1220 /// vectorization.
1221 /// In many cases vectorization is not profitable. This can happen because of
1222 /// a number of reasons. In this class we mainly attempt to predict the
1223 /// expected speedup/slowdowns due to the supported instruction set. We use the
1224 /// TargetTransformInfo to query the different backends for the cost of
1225 /// different operations.
1226 class LoopVectorizationCostModel {
1227 public:
1228   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1229                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1230                              LoopVectorizationLegality *Legal,
1231                              const TargetTransformInfo &TTI,
1232                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1233                              AssumptionCache *AC,
1234                              OptimizationRemarkEmitter *ORE, const Function *F,
1235                              const LoopVectorizeHints *Hints,
1236                              InterleavedAccessInfo &IAI)
1237       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1238         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1239         Hints(Hints), InterleaveInfo(IAI) {}
1240 
1241   /// \return An upper bound for the vectorization factors (both fixed and
1242   /// scalable). If the factors are 0, vectorization and interleaving should be
1243   /// avoided up front.
1244   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1245 
1246   /// \return True if runtime checks are required for vectorization, and false
1247   /// otherwise.
1248   bool runtimeChecksRequired();
1249 
1250   /// \return The most profitable vectorization factor and the cost of that VF.
1251   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1252   /// then this vectorization factor will be selected if vectorization is
1253   /// possible.
1254   VectorizationFactor
1255   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1256 
1257   VectorizationFactor
1258   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1259                                     const LoopVectorizationPlanner &LVP);
1260 
1261   /// Setup cost-based decisions for user vectorization factor.
1262   /// \return true if the UserVF is a feasible VF to be chosen.
1263   bool selectUserVectorizationFactor(ElementCount UserVF) {
1264     collectUniformsAndScalars(UserVF);
1265     collectInstsToScalarize(UserVF);
1266     return expectedCost(UserVF).first.isValid();
1267   }
1268 
1269   /// \return The size (in bits) of the smallest and widest types in the code
1270   /// that needs to be vectorized. We ignore values that remain scalar such as
1271   /// 64 bit loop indices.
1272   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1273 
1274   /// \return The desired interleave count.
1275   /// If interleave count has been specified by metadata it will be returned.
1276   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1277   /// are the selected vectorization factor and the cost of the selected VF.
1278   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1279 
1280   /// Memory access instruction may be vectorized in more than one way.
1281   /// Form of instruction after vectorization depends on cost.
1282   /// This function takes cost-based decisions for Load/Store instructions
1283   /// and collects them in a map. This decisions map is used for building
1284   /// the lists of loop-uniform and loop-scalar instructions.
1285   /// The calculated cost is saved with widening decision in order to
1286   /// avoid redundant calculations.
1287   void setCostBasedWideningDecision(ElementCount VF);
1288 
1289   /// A struct that represents some properties of the register usage
1290   /// of a loop.
1291   struct RegisterUsage {
1292     /// Holds the number of loop invariant values that are used in the loop.
1293     /// The key is ClassID of target-provided register class.
1294     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1295     /// Holds the maximum number of concurrent live intervals in the loop.
1296     /// The key is ClassID of target-provided register class.
1297     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1298   };
1299 
1300   /// \return Returns information about the register usages of the loop for the
1301   /// given vectorization factors.
1302   SmallVector<RegisterUsage, 8>
1303   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1304 
1305   /// Collect values we want to ignore in the cost model.
1306   void collectValuesToIgnore();
1307 
1308   /// Collect all element types in the loop for which widening is needed.
1309   void collectElementTypesForWidening();
1310 
1311   /// Split reductions into those that happen in the loop, and those that happen
1312   /// outside. In loop reductions are collected into InLoopReductionChains.
1313   void collectInLoopReductions();
1314 
1315   /// Returns true if we should use strict in-order reductions for the given
1316   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1317   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1318   /// of FP operations.
1319   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1320     return ForceOrderedReductions && !Hints->allowReordering() &&
1321            RdxDesc.isOrdered();
1322   }
1323 
1324   /// \returns The smallest bitwidth each instruction can be represented with.
1325   /// The vector equivalents of these instructions should be truncated to this
1326   /// type.
1327   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1328     return MinBWs;
1329   }
1330 
1331   /// \returns True if it is more profitable to scalarize instruction \p I for
1332   /// vectorization factor \p VF.
1333   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1334     assert(VF.isVector() &&
1335            "Profitable to scalarize relevant only for VF > 1.");
1336 
1337     // Cost model is not run in the VPlan-native path - return conservative
1338     // result until this changes.
1339     if (EnableVPlanNativePath)
1340       return false;
1341 
1342     auto Scalars = InstsToScalarize.find(VF);
1343     assert(Scalars != InstsToScalarize.end() &&
1344            "VF not yet analyzed for scalarization profitability");
1345     return Scalars->second.find(I) != Scalars->second.end();
1346   }
1347 
1348   /// Returns true if \p I is known to be uniform after vectorization.
1349   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1350     if (VF.isScalar())
1351       return true;
1352 
1353     // Cost model is not run in the VPlan-native path - return conservative
1354     // result until this changes.
1355     if (EnableVPlanNativePath)
1356       return false;
1357 
1358     auto UniformsPerVF = Uniforms.find(VF);
1359     assert(UniformsPerVF != Uniforms.end() &&
1360            "VF not yet analyzed for uniformity");
1361     return UniformsPerVF->second.count(I);
1362   }
1363 
1364   /// Returns true if \p I is known to be scalar after vectorization.
1365   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1366     if (VF.isScalar())
1367       return true;
1368 
1369     // Cost model is not run in the VPlan-native path - return conservative
1370     // result until this changes.
1371     if (EnableVPlanNativePath)
1372       return false;
1373 
1374     auto ScalarsPerVF = Scalars.find(VF);
1375     assert(ScalarsPerVF != Scalars.end() &&
1376            "Scalar values are not calculated for VF");
1377     return ScalarsPerVF->second.count(I);
1378   }
1379 
1380   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1381   /// for vectorization factor \p VF.
1382   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1383     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1384            !isProfitableToScalarize(I, VF) &&
1385            !isScalarAfterVectorization(I, VF);
1386   }
1387 
1388   /// Decision that was taken during cost calculation for memory instruction.
1389   enum InstWidening {
1390     CM_Unknown,
1391     CM_Widen,         // For consecutive accesses with stride +1.
1392     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1393     CM_Interleave,
1394     CM_GatherScatter,
1395     CM_Scalarize
1396   };
1397 
1398   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1399   /// instruction \p I and vector width \p VF.
1400   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1401                            InstructionCost Cost) {
1402     assert(VF.isVector() && "Expected VF >=2");
1403     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1404   }
1405 
1406   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1407   /// interleaving group \p Grp and vector width \p VF.
1408   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1409                            ElementCount VF, InstWidening W,
1410                            InstructionCost Cost) {
1411     assert(VF.isVector() && "Expected VF >=2");
1412     /// Broadcast this decicion to all instructions inside the group.
1413     /// But the cost will be assigned to one instruction only.
1414     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1415       if (auto *I = Grp->getMember(i)) {
1416         if (Grp->getInsertPos() == I)
1417           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1418         else
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1420       }
1421     }
1422   }
1423 
1424   /// Return the cost model decision for the given instruction \p I and vector
1425   /// width \p VF. Return CM_Unknown if this instruction did not pass
1426   /// through the cost modeling.
1427   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1428     assert(VF.isVector() && "Expected VF to be a vector VF");
1429     // Cost model is not run in the VPlan-native path - return conservative
1430     // result until this changes.
1431     if (EnableVPlanNativePath)
1432       return CM_GatherScatter;
1433 
1434     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1435     auto Itr = WideningDecisions.find(InstOnVF);
1436     if (Itr == WideningDecisions.end())
1437       return CM_Unknown;
1438     return Itr->second.first;
1439   }
1440 
1441   /// Return the vectorization cost for the given instruction \p I and vector
1442   /// width \p VF.
1443   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1444     assert(VF.isVector() && "Expected VF >=2");
1445     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1446     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1447            "The cost is not calculated");
1448     return WideningDecisions[InstOnVF].second;
1449   }
1450 
1451   /// Return True if instruction \p I is an optimizable truncate whose operand
1452   /// is an induction variable. Such a truncate will be removed by adding a new
1453   /// induction variable with the destination type.
1454   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1455     // If the instruction is not a truncate, return false.
1456     auto *Trunc = dyn_cast<TruncInst>(I);
1457     if (!Trunc)
1458       return false;
1459 
1460     // Get the source and destination types of the truncate.
1461     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1462     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1463 
1464     // If the truncate is free for the given types, return false. Replacing a
1465     // free truncate with an induction variable would add an induction variable
1466     // update instruction to each iteration of the loop. We exclude from this
1467     // check the primary induction variable since it will need an update
1468     // instruction regardless.
1469     Value *Op = Trunc->getOperand(0);
1470     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1471       return false;
1472 
1473     // If the truncated value is not an induction variable, return false.
1474     return Legal->isInductionPhi(Op);
1475   }
1476 
1477   /// Collects the instructions to scalarize for each predicated instruction in
1478   /// the loop.
1479   void collectInstsToScalarize(ElementCount VF);
1480 
1481   /// Collect Uniform and Scalar values for the given \p VF.
1482   /// The sets depend on CM decision for Load/Store instructions
1483   /// that may be vectorized as interleave, gather-scatter or scalarized.
1484   void collectUniformsAndScalars(ElementCount VF) {
1485     // Do the analysis once.
1486     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1487       return;
1488     setCostBasedWideningDecision(VF);
1489     collectLoopUniforms(VF);
1490     collectLoopScalars(VF);
1491   }
1492 
1493   /// Returns true if the target machine supports masked store operation
1494   /// for the given \p DataType and kind of access to \p Ptr.
1495   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1496     return Legal->isConsecutivePtr(Ptr) &&
1497            TTI.isLegalMaskedStore(DataType, Alignment);
1498   }
1499 
1500   /// Returns true if the target machine supports masked load operation
1501   /// for the given \p DataType and kind of access to \p Ptr.
1502   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1503     return Legal->isConsecutivePtr(Ptr) &&
1504            TTI.isLegalMaskedLoad(DataType, Alignment);
1505   }
1506 
1507   /// Returns true if the target machine can represent \p V as a masked gather
1508   /// or scatter operation.
1509   bool isLegalGatherOrScatter(Value *V) {
1510     bool LI = isa<LoadInst>(V);
1511     bool SI = isa<StoreInst>(V);
1512     if (!LI && !SI)
1513       return false;
1514     auto *Ty = getLoadStoreType(V);
1515     Align Align = getLoadStoreAlignment(V);
1516     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1517            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1518   }
1519 
1520   /// Returns true if the target machine supports all of the reduction
1521   /// variables found for the given VF.
1522   bool canVectorizeReductions(ElementCount VF) const {
1523     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1524       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1525       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1526     }));
1527   }
1528 
1529   /// Returns true if \p I is an instruction that will be scalarized with
1530   /// predication. Such instructions include conditional stores and
1531   /// instructions that may divide by zero.
1532   /// If a non-zero VF has been calculated, we check if I will be scalarized
1533   /// predication for that VF.
1534   bool isScalarWithPredication(Instruction *I) const;
1535 
1536   // Returns true if \p I is an instruction that will be predicated either
1537   // through scalar predication or masked load/store or masked gather/scatter.
1538   // Superset of instructions that return true for isScalarWithPredication.
1539   bool isPredicatedInst(Instruction *I) {
1540     if (!blockNeedsPredication(I->getParent()))
1541       return false;
1542     // Loads and stores that need some form of masked operation are predicated
1543     // instructions.
1544     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1545       return Legal->isMaskRequired(I);
1546     return isScalarWithPredication(I);
1547   }
1548 
1549   /// Returns true if \p I is a memory instruction with consecutive memory
1550   /// access that can be widened.
1551   bool
1552   memoryInstructionCanBeWidened(Instruction *I,
1553                                 ElementCount VF = ElementCount::getFixed(1));
1554 
1555   /// Returns true if \p I is a memory instruction in an interleaved-group
1556   /// of memory accesses that can be vectorized with wide vector loads/stores
1557   /// and shuffles.
1558   bool
1559   interleavedAccessCanBeWidened(Instruction *I,
1560                                 ElementCount VF = ElementCount::getFixed(1));
1561 
1562   /// Check if \p Instr belongs to any interleaved access group.
1563   bool isAccessInterleaved(Instruction *Instr) {
1564     return InterleaveInfo.isInterleaved(Instr);
1565   }
1566 
1567   /// Get the interleaved access group that \p Instr belongs to.
1568   const InterleaveGroup<Instruction> *
1569   getInterleavedAccessGroup(Instruction *Instr) {
1570     return InterleaveInfo.getInterleaveGroup(Instr);
1571   }
1572 
1573   /// Returns true if we're required to use a scalar epilogue for at least
1574   /// the final iteration of the original loop.
1575   bool requiresScalarEpilogue(ElementCount VF) const {
1576     if (!isScalarEpilogueAllowed())
1577       return false;
1578     // If we might exit from anywhere but the latch, must run the exiting
1579     // iteration in scalar form.
1580     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1581       return true;
1582     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1583   }
1584 
1585   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1586   /// loop hint annotation.
1587   bool isScalarEpilogueAllowed() const {
1588     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1589   }
1590 
1591   /// Returns true if all loop blocks should be masked to fold tail loop.
1592   bool foldTailByMasking() const { return FoldTailByMasking; }
1593 
1594   bool blockNeedsPredication(BasicBlock *BB) const {
1595     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1596   }
1597 
1598   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1599   /// nodes to the chain of instructions representing the reductions. Uses a
1600   /// MapVector to ensure deterministic iteration order.
1601   using ReductionChainMap =
1602       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1603 
1604   /// Return the chain of instructions representing an inloop reduction.
1605   const ReductionChainMap &getInLoopReductionChains() const {
1606     return InLoopReductionChains;
1607   }
1608 
1609   /// Returns true if the Phi is part of an inloop reduction.
1610   bool isInLoopReduction(PHINode *Phi) const {
1611     return InLoopReductionChains.count(Phi);
1612   }
1613 
1614   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1615   /// with factor VF.  Return the cost of the instruction, including
1616   /// scalarization overhead if it's needed.
1617   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1618 
1619   /// Estimate cost of a call instruction CI if it were vectorized with factor
1620   /// VF. Return the cost of the instruction, including scalarization overhead
1621   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1622   /// scalarized -
1623   /// i.e. either vector version isn't available, or is too expensive.
1624   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1625                                     bool &NeedToScalarize) const;
1626 
1627   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1628   /// that of B.
1629   bool isMoreProfitable(const VectorizationFactor &A,
1630                         const VectorizationFactor &B) const;
1631 
1632   /// Invalidates decisions already taken by the cost model.
1633   void invalidateCostModelingDecisions() {
1634     WideningDecisions.clear();
1635     Uniforms.clear();
1636     Scalars.clear();
1637   }
1638 
1639 private:
1640   unsigned NumPredStores = 0;
1641 
1642   /// \return An upper bound for the vectorization factors for both
1643   /// fixed and scalable vectorization, where the minimum-known number of
1644   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1645   /// disabled or unsupported, then the scalable part will be equal to
1646   /// ElementCount::getScalable(0).
1647   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1648                                            ElementCount UserVF);
1649 
1650   /// \return the maximized element count based on the targets vector
1651   /// registers and the loop trip-count, but limited to a maximum safe VF.
1652   /// This is a helper function of computeFeasibleMaxVF.
1653   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1654   /// issue that occurred on one of the buildbots which cannot be reproduced
1655   /// without having access to the properietary compiler (see comments on
1656   /// D98509). The issue is currently under investigation and this workaround
1657   /// will be removed as soon as possible.
1658   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1659                                        unsigned SmallestType,
1660                                        unsigned WidestType,
1661                                        const ElementCount &MaxSafeVF);
1662 
1663   /// \return the maximum legal scalable VF, based on the safe max number
1664   /// of elements.
1665   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1666 
1667   /// The vectorization cost is a combination of the cost itself and a boolean
1668   /// indicating whether any of the contributing operations will actually
1669   /// operate on vector values after type legalization in the backend. If this
1670   /// latter value is false, then all operations will be scalarized (i.e. no
1671   /// vectorization has actually taken place).
1672   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1673 
1674   /// Returns the expected execution cost. The unit of the cost does
1675   /// not matter because we use the 'cost' units to compare different
1676   /// vector widths. The cost that is returned is *not* normalized by
1677   /// the factor width. If \p Invalid is not nullptr, this function
1678   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1679   /// each instruction that has an Invalid cost for the given VF.
1680   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1681   VectorizationCostTy
1682   expectedCost(ElementCount VF,
1683                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1684 
1685   /// Returns the execution time cost of an instruction for a given vector
1686   /// width. Vector width of one means scalar.
1687   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1688 
1689   /// The cost-computation logic from getInstructionCost which provides
1690   /// the vector type as an output parameter.
1691   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1692                                      Type *&VectorTy);
1693 
1694   /// Return the cost of instructions in an inloop reduction pattern, if I is
1695   /// part of that pattern.
1696   Optional<InstructionCost>
1697   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1698                           TTI::TargetCostKind CostKind);
1699 
1700   /// Calculate vectorization cost of memory instruction \p I.
1701   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1702 
1703   /// The cost computation for scalarized memory instruction.
1704   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1705 
1706   /// The cost computation for interleaving group of memory instructions.
1707   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1708 
1709   /// The cost computation for Gather/Scatter instruction.
1710   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1711 
1712   /// The cost computation for widening instruction \p I with consecutive
1713   /// memory access.
1714   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1715 
1716   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1717   /// Load: scalar load + broadcast.
1718   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1719   /// element)
1720   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1721 
1722   /// Estimate the overhead of scalarizing an instruction. This is a
1723   /// convenience wrapper for the type-based getScalarizationOverhead API.
1724   InstructionCost getScalarizationOverhead(Instruction *I,
1725                                            ElementCount VF) const;
1726 
1727   /// Returns whether the instruction is a load or store and will be a emitted
1728   /// as a vector operation.
1729   bool isConsecutiveLoadOrStore(Instruction *I);
1730 
1731   /// Returns true if an artificially high cost for emulated masked memrefs
1732   /// should be used.
1733   bool useEmulatedMaskMemRefHack(Instruction *I);
1734 
1735   /// Map of scalar integer values to the smallest bitwidth they can be legally
1736   /// represented as. The vector equivalents of these values should be truncated
1737   /// to this type.
1738   MapVector<Instruction *, uint64_t> MinBWs;
1739 
1740   /// A type representing the costs for instructions if they were to be
1741   /// scalarized rather than vectorized. The entries are Instruction-Cost
1742   /// pairs.
1743   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1744 
1745   /// A set containing all BasicBlocks that are known to present after
1746   /// vectorization as a predicated block.
1747   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1748 
1749   /// Records whether it is allowed to have the original scalar loop execute at
1750   /// least once. This may be needed as a fallback loop in case runtime
1751   /// aliasing/dependence checks fail, or to handle the tail/remainder
1752   /// iterations when the trip count is unknown or doesn't divide by the VF,
1753   /// or as a peel-loop to handle gaps in interleave-groups.
1754   /// Under optsize and when the trip count is very small we don't allow any
1755   /// iterations to execute in the scalar loop.
1756   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1757 
1758   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1759   bool FoldTailByMasking = false;
1760 
1761   /// A map holding scalar costs for different vectorization factors. The
1762   /// presence of a cost for an instruction in the mapping indicates that the
1763   /// instruction will be scalarized when vectorizing with the associated
1764   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1765   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1766 
1767   /// Holds the instructions known to be uniform after vectorization.
1768   /// The data is collected per VF.
1769   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1770 
1771   /// Holds the instructions known to be scalar after vectorization.
1772   /// The data is collected per VF.
1773   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1774 
1775   /// Holds the instructions (address computations) that are forced to be
1776   /// scalarized.
1777   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1778 
1779   /// PHINodes of the reductions that should be expanded in-loop along with
1780   /// their associated chains of reduction operations, in program order from top
1781   /// (PHI) to bottom
1782   ReductionChainMap InLoopReductionChains;
1783 
1784   /// A Map of inloop reduction operations and their immediate chain operand.
1785   /// FIXME: This can be removed once reductions can be costed correctly in
1786   /// vplan. This was added to allow quick lookup to the inloop operations,
1787   /// without having to loop through InLoopReductionChains.
1788   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1789 
1790   /// Returns the expected difference in cost from scalarizing the expression
1791   /// feeding a predicated instruction \p PredInst. The instructions to
1792   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1793   /// non-negative return value implies the expression will be scalarized.
1794   /// Currently, only single-use chains are considered for scalarization.
1795   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1796                               ElementCount VF);
1797 
1798   /// Collect the instructions that are uniform after vectorization. An
1799   /// instruction is uniform if we represent it with a single scalar value in
1800   /// the vectorized loop corresponding to each vector iteration. Examples of
1801   /// uniform instructions include pointer operands of consecutive or
1802   /// interleaved memory accesses. Note that although uniformity implies an
1803   /// instruction will be scalar, the reverse is not true. In general, a
1804   /// scalarized instruction will be represented by VF scalar values in the
1805   /// vectorized loop, each corresponding to an iteration of the original
1806   /// scalar loop.
1807   void collectLoopUniforms(ElementCount VF);
1808 
1809   /// Collect the instructions that are scalar after vectorization. An
1810   /// instruction is scalar if it is known to be uniform or will be scalarized
1811   /// during vectorization. Non-uniform scalarized instructions will be
1812   /// represented by VF values in the vectorized loop, each corresponding to an
1813   /// iteration of the original scalar loop.
1814   void collectLoopScalars(ElementCount VF);
1815 
1816   /// Keeps cost model vectorization decision and cost for instructions.
1817   /// Right now it is used for memory instructions only.
1818   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1819                                 std::pair<InstWidening, InstructionCost>>;
1820 
1821   DecisionList WideningDecisions;
1822 
1823   /// Returns true if \p V is expected to be vectorized and it needs to be
1824   /// extracted.
1825   bool needsExtract(Value *V, ElementCount VF) const {
1826     Instruction *I = dyn_cast<Instruction>(V);
1827     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1828         TheLoop->isLoopInvariant(I))
1829       return false;
1830 
1831     // Assume we can vectorize V (and hence we need extraction) if the
1832     // scalars are not computed yet. This can happen, because it is called
1833     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1834     // the scalars are collected. That should be a safe assumption in most
1835     // cases, because we check if the operands have vectorizable types
1836     // beforehand in LoopVectorizationLegality.
1837     return Scalars.find(VF) == Scalars.end() ||
1838            !isScalarAfterVectorization(I, VF);
1839   };
1840 
1841   /// Returns a range containing only operands needing to be extracted.
1842   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1843                                                    ElementCount VF) const {
1844     return SmallVector<Value *, 4>(make_filter_range(
1845         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1846   }
1847 
1848   /// Determines if we have the infrastructure to vectorize loop \p L and its
1849   /// epilogue, assuming the main loop is vectorized by \p VF.
1850   bool isCandidateForEpilogueVectorization(const Loop &L,
1851                                            const ElementCount VF) const;
1852 
1853   /// Returns true if epilogue vectorization is considered profitable, and
1854   /// false otherwise.
1855   /// \p VF is the vectorization factor chosen for the original loop.
1856   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1857 
1858 public:
1859   /// The loop that we evaluate.
1860   Loop *TheLoop;
1861 
1862   /// Predicated scalar evolution analysis.
1863   PredicatedScalarEvolution &PSE;
1864 
1865   /// Loop Info analysis.
1866   LoopInfo *LI;
1867 
1868   /// Vectorization legality.
1869   LoopVectorizationLegality *Legal;
1870 
1871   /// Vector target information.
1872   const TargetTransformInfo &TTI;
1873 
1874   /// Target Library Info.
1875   const TargetLibraryInfo *TLI;
1876 
1877   /// Demanded bits analysis.
1878   DemandedBits *DB;
1879 
1880   /// Assumption cache.
1881   AssumptionCache *AC;
1882 
1883   /// Interface to emit optimization remarks.
1884   OptimizationRemarkEmitter *ORE;
1885 
1886   const Function *TheFunction;
1887 
1888   /// Loop Vectorize Hint.
1889   const LoopVectorizeHints *Hints;
1890 
1891   /// The interleave access information contains groups of interleaved accesses
1892   /// with the same stride and close to each other.
1893   InterleavedAccessInfo &InterleaveInfo;
1894 
1895   /// Values to ignore in the cost model.
1896   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1897 
1898   /// Values to ignore in the cost model when VF > 1.
1899   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1900 
1901   /// All element types found in the loop.
1902   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1903 
1904   /// Profitable vector factors.
1905   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1906 };
1907 } // end namespace llvm
1908 
1909 /// Helper struct to manage generating runtime checks for vectorization.
1910 ///
1911 /// The runtime checks are created up-front in temporary blocks to allow better
1912 /// estimating the cost and un-linked from the existing IR. After deciding to
1913 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1914 /// temporary blocks are completely removed.
1915 class GeneratedRTChecks {
1916   /// Basic block which contains the generated SCEV checks, if any.
1917   BasicBlock *SCEVCheckBlock = nullptr;
1918 
1919   /// The value representing the result of the generated SCEV checks. If it is
1920   /// nullptr, either no SCEV checks have been generated or they have been used.
1921   Value *SCEVCheckCond = nullptr;
1922 
1923   /// Basic block which contains the generated memory runtime checks, if any.
1924   BasicBlock *MemCheckBlock = nullptr;
1925 
1926   /// The value representing the result of the generated memory runtime checks.
1927   /// If it is nullptr, either no memory runtime checks have been generated or
1928   /// they have been used.
1929   Instruction *MemRuntimeCheckCond = nullptr;
1930 
1931   DominatorTree *DT;
1932   LoopInfo *LI;
1933 
1934   SCEVExpander SCEVExp;
1935   SCEVExpander MemCheckExp;
1936 
1937 public:
1938   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1939                     const DataLayout &DL)
1940       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1941         MemCheckExp(SE, DL, "scev.check") {}
1942 
1943   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1944   /// accurately estimate the cost of the runtime checks. The blocks are
1945   /// un-linked from the IR and is added back during vector code generation. If
1946   /// there is no vector code generation, the check blocks are removed
1947   /// completely.
1948   void Create(Loop *L, const LoopAccessInfo &LAI,
1949               const SCEVUnionPredicate &UnionPred) {
1950 
1951     BasicBlock *LoopHeader = L->getHeader();
1952     BasicBlock *Preheader = L->getLoopPreheader();
1953 
1954     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1955     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1956     // may be used by SCEVExpander. The blocks will be un-linked from their
1957     // predecessors and removed from LI & DT at the end of the function.
1958     if (!UnionPred.isAlwaysTrue()) {
1959       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1960                                   nullptr, "vector.scevcheck");
1961 
1962       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1963           &UnionPred, SCEVCheckBlock->getTerminator());
1964     }
1965 
1966     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1967     if (RtPtrChecking.Need) {
1968       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1969       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1970                                  "vector.memcheck");
1971 
1972       std::tie(std::ignore, MemRuntimeCheckCond) =
1973           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1974                            RtPtrChecking.getChecks(), MemCheckExp);
1975       assert(MemRuntimeCheckCond &&
1976              "no RT checks generated although RtPtrChecking "
1977              "claimed checks are required");
1978     }
1979 
1980     if (!MemCheckBlock && !SCEVCheckBlock)
1981       return;
1982 
1983     // Unhook the temporary block with the checks, update various places
1984     // accordingly.
1985     if (SCEVCheckBlock)
1986       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1987     if (MemCheckBlock)
1988       MemCheckBlock->replaceAllUsesWith(Preheader);
1989 
1990     if (SCEVCheckBlock) {
1991       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1992       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1993       Preheader->getTerminator()->eraseFromParent();
1994     }
1995     if (MemCheckBlock) {
1996       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1997       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1998       Preheader->getTerminator()->eraseFromParent();
1999     }
2000 
2001     DT->changeImmediateDominator(LoopHeader, Preheader);
2002     if (MemCheckBlock) {
2003       DT->eraseNode(MemCheckBlock);
2004       LI->removeBlock(MemCheckBlock);
2005     }
2006     if (SCEVCheckBlock) {
2007       DT->eraseNode(SCEVCheckBlock);
2008       LI->removeBlock(SCEVCheckBlock);
2009     }
2010   }
2011 
2012   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2013   /// unused.
2014   ~GeneratedRTChecks() {
2015     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2016     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2017     if (!SCEVCheckCond)
2018       SCEVCleaner.markResultUsed();
2019 
2020     if (!MemRuntimeCheckCond)
2021       MemCheckCleaner.markResultUsed();
2022 
2023     if (MemRuntimeCheckCond) {
2024       auto &SE = *MemCheckExp.getSE();
2025       // Memory runtime check generation creates compares that use expanded
2026       // values. Remove them before running the SCEVExpanderCleaners.
2027       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2028         if (MemCheckExp.isInsertedInstruction(&I))
2029           continue;
2030         SE.forgetValue(&I);
2031         SE.eraseValueFromMap(&I);
2032         I.eraseFromParent();
2033       }
2034     }
2035     MemCheckCleaner.cleanup();
2036     SCEVCleaner.cleanup();
2037 
2038     if (SCEVCheckCond)
2039       SCEVCheckBlock->eraseFromParent();
2040     if (MemRuntimeCheckCond)
2041       MemCheckBlock->eraseFromParent();
2042   }
2043 
2044   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2045   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2046   /// depending on the generated condition.
2047   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2048                              BasicBlock *LoopVectorPreHeader,
2049                              BasicBlock *LoopExitBlock) {
2050     if (!SCEVCheckCond)
2051       return nullptr;
2052     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2053       if (C->isZero())
2054         return nullptr;
2055 
2056     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2057 
2058     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2059     // Create new preheader for vector loop.
2060     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2061       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2062 
2063     SCEVCheckBlock->getTerminator()->eraseFromParent();
2064     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2065     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2066                                                 SCEVCheckBlock);
2067 
2068     DT->addNewBlock(SCEVCheckBlock, Pred);
2069     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2070 
2071     ReplaceInstWithInst(
2072         SCEVCheckBlock->getTerminator(),
2073         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2074     // Mark the check as used, to prevent it from being removed during cleanup.
2075     SCEVCheckCond = nullptr;
2076     return SCEVCheckBlock;
2077   }
2078 
2079   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2080   /// the branches to branch to the vector preheader or \p Bypass, depending on
2081   /// the generated condition.
2082   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2083                                    BasicBlock *LoopVectorPreHeader) {
2084     // Check if we generated code that checks in runtime if arrays overlap.
2085     if (!MemRuntimeCheckCond)
2086       return nullptr;
2087 
2088     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2089     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2090                                                 MemCheckBlock);
2091 
2092     DT->addNewBlock(MemCheckBlock, Pred);
2093     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2094     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2095 
2096     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2097       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2098 
2099     ReplaceInstWithInst(
2100         MemCheckBlock->getTerminator(),
2101         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2102     MemCheckBlock->getTerminator()->setDebugLoc(
2103         Pred->getTerminator()->getDebugLoc());
2104 
2105     // Mark the check as used, to prevent it from being removed during cleanup.
2106     MemRuntimeCheckCond = nullptr;
2107     return MemCheckBlock;
2108   }
2109 };
2110 
2111 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2112 // vectorization. The loop needs to be annotated with #pragma omp simd
2113 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2114 // vector length information is not provided, vectorization is not considered
2115 // explicit. Interleave hints are not allowed either. These limitations will be
2116 // relaxed in the future.
2117 // Please, note that we are currently forced to abuse the pragma 'clang
2118 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2119 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2120 // provides *explicit vectorization hints* (LV can bypass legal checks and
2121 // assume that vectorization is legal). However, both hints are implemented
2122 // using the same metadata (llvm.loop.vectorize, processed by
2123 // LoopVectorizeHints). This will be fixed in the future when the native IR
2124 // representation for pragma 'omp simd' is introduced.
2125 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2126                                    OptimizationRemarkEmitter *ORE) {
2127   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2128   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2129 
2130   // Only outer loops with an explicit vectorization hint are supported.
2131   // Unannotated outer loops are ignored.
2132   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2133     return false;
2134 
2135   Function *Fn = OuterLp->getHeader()->getParent();
2136   if (!Hints.allowVectorization(Fn, OuterLp,
2137                                 true /*VectorizeOnlyWhenForced*/)) {
2138     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2139     return false;
2140   }
2141 
2142   if (Hints.getInterleave() > 1) {
2143     // TODO: Interleave support is future work.
2144     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2145                          "outer loops.\n");
2146     Hints.emitRemarkWithHints();
2147     return false;
2148   }
2149 
2150   return true;
2151 }
2152 
2153 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2154                                   OptimizationRemarkEmitter *ORE,
2155                                   SmallVectorImpl<Loop *> &V) {
2156   // Collect inner loops and outer loops without irreducible control flow. For
2157   // now, only collect outer loops that have explicit vectorization hints. If we
2158   // are stress testing the VPlan H-CFG construction, we collect the outermost
2159   // loop of every loop nest.
2160   if (L.isInnermost() || VPlanBuildStressTest ||
2161       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2162     LoopBlocksRPO RPOT(&L);
2163     RPOT.perform(LI);
2164     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2165       V.push_back(&L);
2166       // TODO: Collect inner loops inside marked outer loops in case
2167       // vectorization fails for the outer loop. Do not invoke
2168       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2169       // already known to be reducible. We can use an inherited attribute for
2170       // that.
2171       return;
2172     }
2173   }
2174   for (Loop *InnerL : L)
2175     collectSupportedLoops(*InnerL, LI, ORE, V);
2176 }
2177 
2178 namespace {
2179 
2180 /// The LoopVectorize Pass.
2181 struct LoopVectorize : public FunctionPass {
2182   /// Pass identification, replacement for typeid
2183   static char ID;
2184 
2185   LoopVectorizePass Impl;
2186 
2187   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2188                          bool VectorizeOnlyWhenForced = false)
2189       : FunctionPass(ID),
2190         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2191     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2192   }
2193 
2194   bool runOnFunction(Function &F) override {
2195     if (skipFunction(F))
2196       return false;
2197 
2198     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2199     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2200     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2201     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2202     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2203     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2204     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2205     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2206     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2207     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2208     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2209     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2210     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2211 
2212     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2213         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2214 
2215     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2216                         GetLAA, *ORE, PSI).MadeAnyChange;
2217   }
2218 
2219   void getAnalysisUsage(AnalysisUsage &AU) const override {
2220     AU.addRequired<AssumptionCacheTracker>();
2221     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2222     AU.addRequired<DominatorTreeWrapperPass>();
2223     AU.addRequired<LoopInfoWrapperPass>();
2224     AU.addRequired<ScalarEvolutionWrapperPass>();
2225     AU.addRequired<TargetTransformInfoWrapperPass>();
2226     AU.addRequired<AAResultsWrapperPass>();
2227     AU.addRequired<LoopAccessLegacyAnalysis>();
2228     AU.addRequired<DemandedBitsWrapperPass>();
2229     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2230     AU.addRequired<InjectTLIMappingsLegacy>();
2231 
2232     // We currently do not preserve loopinfo/dominator analyses with outer loop
2233     // vectorization. Until this is addressed, mark these analyses as preserved
2234     // only for non-VPlan-native path.
2235     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2236     if (!EnableVPlanNativePath) {
2237       AU.addPreserved<LoopInfoWrapperPass>();
2238       AU.addPreserved<DominatorTreeWrapperPass>();
2239     }
2240 
2241     AU.addPreserved<BasicAAWrapperPass>();
2242     AU.addPreserved<GlobalsAAWrapperPass>();
2243     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2244   }
2245 };
2246 
2247 } // end anonymous namespace
2248 
2249 //===----------------------------------------------------------------------===//
2250 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2251 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2252 //===----------------------------------------------------------------------===//
2253 
2254 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2255   // We need to place the broadcast of invariant variables outside the loop,
2256   // but only if it's proven safe to do so. Else, broadcast will be inside
2257   // vector loop body.
2258   Instruction *Instr = dyn_cast<Instruction>(V);
2259   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2260                      (!Instr ||
2261                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2262   // Place the code for broadcasting invariant variables in the new preheader.
2263   IRBuilder<>::InsertPointGuard Guard(Builder);
2264   if (SafeToHoist)
2265     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2266 
2267   // Broadcast the scalar into all locations in the vector.
2268   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2269 
2270   return Shuf;
2271 }
2272 
2273 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2274     const InductionDescriptor &II, Value *Step, Value *Start,
2275     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2276     VPTransformState &State) {
2277   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2278          "Expected either an induction phi-node or a truncate of it!");
2279 
2280   // Construct the initial value of the vector IV in the vector loop preheader
2281   auto CurrIP = Builder.saveIP();
2282   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2283   if (isa<TruncInst>(EntryVal)) {
2284     assert(Start->getType()->isIntegerTy() &&
2285            "Truncation requires an integer type");
2286     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2287     Step = Builder.CreateTrunc(Step, TruncType);
2288     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2289   }
2290   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2291   Value *SteppedStart =
2292       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2293 
2294   // We create vector phi nodes for both integer and floating-point induction
2295   // variables. Here, we determine the kind of arithmetic we will perform.
2296   Instruction::BinaryOps AddOp;
2297   Instruction::BinaryOps MulOp;
2298   if (Step->getType()->isIntegerTy()) {
2299     AddOp = Instruction::Add;
2300     MulOp = Instruction::Mul;
2301   } else {
2302     AddOp = II.getInductionOpcode();
2303     MulOp = Instruction::FMul;
2304   }
2305 
2306   // Multiply the vectorization factor by the step using integer or
2307   // floating-point arithmetic as appropriate.
2308   Type *StepType = Step->getType();
2309   if (Step->getType()->isFloatingPointTy())
2310     StepType = IntegerType::get(StepType->getContext(),
2311                                 StepType->getScalarSizeInBits());
2312   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2313   if (Step->getType()->isFloatingPointTy())
2314     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2315   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2316 
2317   // Create a vector splat to use in the induction update.
2318   //
2319   // FIXME: If the step is non-constant, we create the vector splat with
2320   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2321   //        handle a constant vector splat.
2322   Value *SplatVF = isa<Constant>(Mul)
2323                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2324                        : Builder.CreateVectorSplat(VF, Mul);
2325   Builder.restoreIP(CurrIP);
2326 
2327   // We may need to add the step a number of times, depending on the unroll
2328   // factor. The last of those goes into the PHI.
2329   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2330                                     &*LoopVectorBody->getFirstInsertionPt());
2331   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2332   Instruction *LastInduction = VecInd;
2333   for (unsigned Part = 0; Part < UF; ++Part) {
2334     State.set(Def, LastInduction, Part);
2335 
2336     if (isa<TruncInst>(EntryVal))
2337       addMetadata(LastInduction, EntryVal);
2338     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2339                                           State, Part);
2340 
2341     LastInduction = cast<Instruction>(
2342         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2343     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2344   }
2345 
2346   // Move the last step to the end of the latch block. This ensures consistent
2347   // placement of all induction updates.
2348   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2349   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2350   auto *ICmp = cast<Instruction>(Br->getCondition());
2351   LastInduction->moveBefore(ICmp);
2352   LastInduction->setName("vec.ind.next");
2353 
2354   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2355   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2356 }
2357 
2358 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2359   return Cost->isScalarAfterVectorization(I, VF) ||
2360          Cost->isProfitableToScalarize(I, VF);
2361 }
2362 
2363 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2364   if (shouldScalarizeInstruction(IV))
2365     return true;
2366   auto isScalarInst = [&](User *U) -> bool {
2367     auto *I = cast<Instruction>(U);
2368     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2369   };
2370   return llvm::any_of(IV->users(), isScalarInst);
2371 }
2372 
2373 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2374     const InductionDescriptor &ID, const Instruction *EntryVal,
2375     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2376     unsigned Part, unsigned Lane) {
2377   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2378          "Expected either an induction phi-node or a truncate of it!");
2379 
2380   // This induction variable is not the phi from the original loop but the
2381   // newly-created IV based on the proof that casted Phi is equal to the
2382   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2383   // re-uses the same InductionDescriptor that original IV uses but we don't
2384   // have to do any recording in this case - that is done when original IV is
2385   // processed.
2386   if (isa<TruncInst>(EntryVal))
2387     return;
2388 
2389   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2390   if (Casts.empty())
2391     return;
2392   // Only the first Cast instruction in the Casts vector is of interest.
2393   // The rest of the Casts (if exist) have no uses outside the
2394   // induction update chain itself.
2395   if (Lane < UINT_MAX)
2396     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2397   else
2398     State.set(CastDef, VectorLoopVal, Part);
2399 }
2400 
2401 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2402                                                 TruncInst *Trunc, VPValue *Def,
2403                                                 VPValue *CastDef,
2404                                                 VPTransformState &State) {
2405   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2406          "Primary induction variable must have an integer type");
2407 
2408   auto II = Legal->getInductionVars().find(IV);
2409   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2410 
2411   auto ID = II->second;
2412   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2413 
2414   // The value from the original loop to which we are mapping the new induction
2415   // variable.
2416   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2417 
2418   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2419 
2420   // Generate code for the induction step. Note that induction steps are
2421   // required to be loop-invariant
2422   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2423     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2424            "Induction step should be loop invariant");
2425     if (PSE.getSE()->isSCEVable(IV->getType())) {
2426       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2427       return Exp.expandCodeFor(Step, Step->getType(),
2428                                LoopVectorPreHeader->getTerminator());
2429     }
2430     return cast<SCEVUnknown>(Step)->getValue();
2431   };
2432 
2433   // The scalar value to broadcast. This is derived from the canonical
2434   // induction variable. If a truncation type is given, truncate the canonical
2435   // induction variable and step. Otherwise, derive these values from the
2436   // induction descriptor.
2437   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2438     Value *ScalarIV = Induction;
2439     if (IV != OldInduction) {
2440       ScalarIV = IV->getType()->isIntegerTy()
2441                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2442                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2443                                           IV->getType());
2444       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2445       ScalarIV->setName("offset.idx");
2446     }
2447     if (Trunc) {
2448       auto *TruncType = cast<IntegerType>(Trunc->getType());
2449       assert(Step->getType()->isIntegerTy() &&
2450              "Truncation requires an integer step");
2451       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2452       Step = Builder.CreateTrunc(Step, TruncType);
2453     }
2454     return ScalarIV;
2455   };
2456 
2457   // Create the vector values from the scalar IV, in the absence of creating a
2458   // vector IV.
2459   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2460     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2461     for (unsigned Part = 0; Part < UF; ++Part) {
2462       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2463       Value *EntryPart =
2464           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2465                         ID.getInductionOpcode());
2466       State.set(Def, EntryPart, Part);
2467       if (Trunc)
2468         addMetadata(EntryPart, Trunc);
2469       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2470                                             State, Part);
2471     }
2472   };
2473 
2474   // Fast-math-flags propagate from the original induction instruction.
2475   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2476   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2477     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2478 
2479   // Now do the actual transformations, and start with creating the step value.
2480   Value *Step = CreateStepValue(ID.getStep());
2481   if (VF.isZero() || VF.isScalar()) {
2482     Value *ScalarIV = CreateScalarIV(Step);
2483     CreateSplatIV(ScalarIV, Step);
2484     return;
2485   }
2486 
2487   // Determine if we want a scalar version of the induction variable. This is
2488   // true if the induction variable itself is not widened, or if it has at
2489   // least one user in the loop that is not widened.
2490   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2491   if (!NeedsScalarIV) {
2492     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2493                                     State);
2494     return;
2495   }
2496 
2497   // Try to create a new independent vector induction variable. If we can't
2498   // create the phi node, we will splat the scalar induction variable in each
2499   // loop iteration.
2500   if (!shouldScalarizeInstruction(EntryVal)) {
2501     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2502                                     State);
2503     Value *ScalarIV = CreateScalarIV(Step);
2504     // Create scalar steps that can be used by instructions we will later
2505     // scalarize. Note that the addition of the scalar steps will not increase
2506     // the number of instructions in the loop in the common case prior to
2507     // InstCombine. We will be trading one vector extract for each scalar step.
2508     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2509     return;
2510   }
2511 
2512   // All IV users are scalar instructions, so only emit a scalar IV, not a
2513   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2514   // predicate used by the masked loads/stores.
2515   Value *ScalarIV = CreateScalarIV(Step);
2516   if (!Cost->isScalarEpilogueAllowed())
2517     CreateSplatIV(ScalarIV, Step);
2518   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2519 }
2520 
2521 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2522                                           Instruction::BinaryOps BinOp) {
2523   // Create and check the types.
2524   auto *ValVTy = cast<VectorType>(Val->getType());
2525   ElementCount VLen = ValVTy->getElementCount();
2526 
2527   Type *STy = Val->getType()->getScalarType();
2528   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2529          "Induction Step must be an integer or FP");
2530   assert(Step->getType() == STy && "Step has wrong type");
2531 
2532   SmallVector<Constant *, 8> Indices;
2533 
2534   // Create a vector of consecutive numbers from zero to VF.
2535   VectorType *InitVecValVTy = ValVTy;
2536   Type *InitVecValSTy = STy;
2537   if (STy->isFloatingPointTy()) {
2538     InitVecValSTy =
2539         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2540     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2541   }
2542   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2543 
2544   // Add on StartIdx
2545   Value *StartIdxSplat = Builder.CreateVectorSplat(
2546       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2547   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2548 
2549   if (STy->isIntegerTy()) {
2550     Step = Builder.CreateVectorSplat(VLen, Step);
2551     assert(Step->getType() == Val->getType() && "Invalid step vec");
2552     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2553     // which can be found from the original scalar operations.
2554     Step = Builder.CreateMul(InitVec, Step);
2555     return Builder.CreateAdd(Val, Step, "induction");
2556   }
2557 
2558   // Floating point induction.
2559   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2560          "Binary Opcode should be specified for FP induction");
2561   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2562   Step = Builder.CreateVectorSplat(VLen, Step);
2563   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2564   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2565 }
2566 
2567 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2568                                            Instruction *EntryVal,
2569                                            const InductionDescriptor &ID,
2570                                            VPValue *Def, VPValue *CastDef,
2571                                            VPTransformState &State) {
2572   // We shouldn't have to build scalar steps if we aren't vectorizing.
2573   assert(VF.isVector() && "VF should be greater than one");
2574   // Get the value type and ensure it and the step have the same integer type.
2575   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2576   assert(ScalarIVTy == Step->getType() &&
2577          "Val and Step should have the same type");
2578 
2579   // We build scalar steps for both integer and floating-point induction
2580   // variables. Here, we determine the kind of arithmetic we will perform.
2581   Instruction::BinaryOps AddOp;
2582   Instruction::BinaryOps MulOp;
2583   if (ScalarIVTy->isIntegerTy()) {
2584     AddOp = Instruction::Add;
2585     MulOp = Instruction::Mul;
2586   } else {
2587     AddOp = ID.getInductionOpcode();
2588     MulOp = Instruction::FMul;
2589   }
2590 
2591   // Determine the number of scalars we need to generate for each unroll
2592   // iteration. If EntryVal is uniform, we only need to generate the first
2593   // lane. Otherwise, we generate all VF values.
2594   bool IsUniform =
2595       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2596   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2597   // Compute the scalar steps and save the results in State.
2598   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2599                                      ScalarIVTy->getScalarSizeInBits());
2600   Type *VecIVTy = nullptr;
2601   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2602   if (!IsUniform && VF.isScalable()) {
2603     VecIVTy = VectorType::get(ScalarIVTy, VF);
2604     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2605     SplatStep = Builder.CreateVectorSplat(VF, Step);
2606     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2607   }
2608 
2609   for (unsigned Part = 0; Part < UF; ++Part) {
2610     Value *StartIdx0 =
2611         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2612 
2613     if (!IsUniform && VF.isScalable()) {
2614       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2615       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2616       if (ScalarIVTy->isFloatingPointTy())
2617         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2618       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2619       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2620       State.set(Def, Add, Part);
2621       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2622                                             Part);
2623       // It's useful to record the lane values too for the known minimum number
2624       // of elements so we do those below. This improves the code quality when
2625       // trying to extract the first element, for example.
2626     }
2627 
2628     if (ScalarIVTy->isFloatingPointTy())
2629       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2630 
2631     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2632       Value *StartIdx = Builder.CreateBinOp(
2633           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2634       // The step returned by `createStepForVF` is a runtime-evaluated value
2635       // when VF is scalable. Otherwise, it should be folded into a Constant.
2636       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2637              "Expected StartIdx to be folded to a constant when VF is not "
2638              "scalable");
2639       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2640       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2641       State.set(Def, Add, VPIteration(Part, Lane));
2642       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2643                                             Part, Lane);
2644     }
2645   }
2646 }
2647 
2648 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2649                                                     const VPIteration &Instance,
2650                                                     VPTransformState &State) {
2651   Value *ScalarInst = State.get(Def, Instance);
2652   Value *VectorValue = State.get(Def, Instance.Part);
2653   VectorValue = Builder.CreateInsertElement(
2654       VectorValue, ScalarInst,
2655       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2656   State.set(Def, VectorValue, Instance.Part);
2657 }
2658 
2659 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2660   assert(Vec->getType()->isVectorTy() && "Invalid type");
2661   return Builder.CreateVectorReverse(Vec, "reverse");
2662 }
2663 
2664 // Return whether we allow using masked interleave-groups (for dealing with
2665 // strided loads/stores that reside in predicated blocks, or for dealing
2666 // with gaps).
2667 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2668   // If an override option has been passed in for interleaved accesses, use it.
2669   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2670     return EnableMaskedInterleavedMemAccesses;
2671 
2672   return TTI.enableMaskedInterleavedAccessVectorization();
2673 }
2674 
2675 // Try to vectorize the interleave group that \p Instr belongs to.
2676 //
2677 // E.g. Translate following interleaved load group (factor = 3):
2678 //   for (i = 0; i < N; i+=3) {
2679 //     R = Pic[i];             // Member of index 0
2680 //     G = Pic[i+1];           // Member of index 1
2681 //     B = Pic[i+2];           // Member of index 2
2682 //     ... // do something to R, G, B
2683 //   }
2684 // To:
2685 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2686 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2687 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2688 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2689 //
2690 // Or translate following interleaved store group (factor = 3):
2691 //   for (i = 0; i < N; i+=3) {
2692 //     ... do something to R, G, B
2693 //     Pic[i]   = R;           // Member of index 0
2694 //     Pic[i+1] = G;           // Member of index 1
2695 //     Pic[i+2] = B;           // Member of index 2
2696 //   }
2697 // To:
2698 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2699 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2700 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2701 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2702 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2703 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2704     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2705     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2706     VPValue *BlockInMask) {
2707   Instruction *Instr = Group->getInsertPos();
2708   const DataLayout &DL = Instr->getModule()->getDataLayout();
2709 
2710   // Prepare for the vector type of the interleaved load/store.
2711   Type *ScalarTy = getLoadStoreType(Instr);
2712   unsigned InterleaveFactor = Group->getFactor();
2713   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2714   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2715 
2716   // Prepare for the new pointers.
2717   SmallVector<Value *, 2> AddrParts;
2718   unsigned Index = Group->getIndex(Instr);
2719 
2720   // TODO: extend the masked interleaved-group support to reversed access.
2721   assert((!BlockInMask || !Group->isReverse()) &&
2722          "Reversed masked interleave-group not supported.");
2723 
2724   // If the group is reverse, adjust the index to refer to the last vector lane
2725   // instead of the first. We adjust the index from the first vector lane,
2726   // rather than directly getting the pointer for lane VF - 1, because the
2727   // pointer operand of the interleaved access is supposed to be uniform. For
2728   // uniform instructions, we're only required to generate a value for the
2729   // first vector lane in each unroll iteration.
2730   if (Group->isReverse())
2731     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2732 
2733   for (unsigned Part = 0; Part < UF; Part++) {
2734     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2735     setDebugLocFromInst(AddrPart);
2736 
2737     // Notice current instruction could be any index. Need to adjust the address
2738     // to the member of index 0.
2739     //
2740     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2741     //       b = A[i];       // Member of index 0
2742     // Current pointer is pointed to A[i+1], adjust it to A[i].
2743     //
2744     // E.g.  A[i+1] = a;     // Member of index 1
2745     //       A[i]   = b;     // Member of index 0
2746     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2747     // Current pointer is pointed to A[i+2], adjust it to A[i].
2748 
2749     bool InBounds = false;
2750     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2751       InBounds = gep->isInBounds();
2752     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2753     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2754 
2755     // Cast to the vector pointer type.
2756     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2757     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2758     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2759   }
2760 
2761   setDebugLocFromInst(Instr);
2762   Value *PoisonVec = PoisonValue::get(VecTy);
2763 
2764   Value *MaskForGaps = nullptr;
2765   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2766     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2767     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2768   }
2769 
2770   // Vectorize the interleaved load group.
2771   if (isa<LoadInst>(Instr)) {
2772     // For each unroll part, create a wide load for the group.
2773     SmallVector<Value *, 2> NewLoads;
2774     for (unsigned Part = 0; Part < UF; Part++) {
2775       Instruction *NewLoad;
2776       if (BlockInMask || MaskForGaps) {
2777         assert(useMaskedInterleavedAccesses(*TTI) &&
2778                "masked interleaved groups are not allowed.");
2779         Value *GroupMask = MaskForGaps;
2780         if (BlockInMask) {
2781           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2782           Value *ShuffledMask = Builder.CreateShuffleVector(
2783               BlockInMaskPart,
2784               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2785               "interleaved.mask");
2786           GroupMask = MaskForGaps
2787                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2788                                                 MaskForGaps)
2789                           : ShuffledMask;
2790         }
2791         NewLoad =
2792             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2793                                      GroupMask, PoisonVec, "wide.masked.vec");
2794       }
2795       else
2796         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2797                                             Group->getAlign(), "wide.vec");
2798       Group->addMetadata(NewLoad);
2799       NewLoads.push_back(NewLoad);
2800     }
2801 
2802     // For each member in the group, shuffle out the appropriate data from the
2803     // wide loads.
2804     unsigned J = 0;
2805     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2806       Instruction *Member = Group->getMember(I);
2807 
2808       // Skip the gaps in the group.
2809       if (!Member)
2810         continue;
2811 
2812       auto StrideMask =
2813           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2814       for (unsigned Part = 0; Part < UF; Part++) {
2815         Value *StridedVec = Builder.CreateShuffleVector(
2816             NewLoads[Part], StrideMask, "strided.vec");
2817 
2818         // If this member has different type, cast the result type.
2819         if (Member->getType() != ScalarTy) {
2820           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2821           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2822           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2823         }
2824 
2825         if (Group->isReverse())
2826           StridedVec = reverseVector(StridedVec);
2827 
2828         State.set(VPDefs[J], StridedVec, Part);
2829       }
2830       ++J;
2831     }
2832     return;
2833   }
2834 
2835   // The sub vector type for current instruction.
2836   auto *SubVT = VectorType::get(ScalarTy, VF);
2837 
2838   // Vectorize the interleaved store group.
2839   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2840   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2841          "masked interleaved groups are not allowed.");
2842   assert((!MaskForGaps || !VF.isScalable()) &&
2843          "masking gaps for scalable vectors is not yet supported.");
2844   for (unsigned Part = 0; Part < UF; Part++) {
2845     // Collect the stored vector from each member.
2846     SmallVector<Value *, 4> StoredVecs;
2847     for (unsigned i = 0; i < InterleaveFactor; i++) {
2848       assert((Group->getMember(i) || MaskForGaps) &&
2849              "Fail to get a member from an interleaved store group");
2850       Instruction *Member = Group->getMember(i);
2851 
2852       // Skip the gaps in the group.
2853       if (!Member) {
2854         Value *Undef = PoisonValue::get(SubVT);
2855         StoredVecs.push_back(Undef);
2856         continue;
2857       }
2858 
2859       Value *StoredVec = State.get(StoredValues[i], Part);
2860 
2861       if (Group->isReverse())
2862         StoredVec = reverseVector(StoredVec);
2863 
2864       // If this member has different type, cast it to a unified type.
2865 
2866       if (StoredVec->getType() != SubVT)
2867         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2868 
2869       StoredVecs.push_back(StoredVec);
2870     }
2871 
2872     // Concatenate all vectors into a wide vector.
2873     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2874 
2875     // Interleave the elements in the wide vector.
2876     Value *IVec = Builder.CreateShuffleVector(
2877         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2878         "interleaved.vec");
2879 
2880     Instruction *NewStoreInstr;
2881     if (BlockInMask || MaskForGaps) {
2882       Value *GroupMask = MaskForGaps;
2883       if (BlockInMask) {
2884         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2885         Value *ShuffledMask = Builder.CreateShuffleVector(
2886             BlockInMaskPart,
2887             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2888             "interleaved.mask");
2889         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2890                                                       ShuffledMask, MaskForGaps)
2891                                 : ShuffledMask;
2892       }
2893       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2894                                                 Group->getAlign(), GroupMask);
2895     } else
2896       NewStoreInstr =
2897           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2898 
2899     Group->addMetadata(NewStoreInstr);
2900   }
2901 }
2902 
2903 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2904     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2905     VPValue *StoredValue, VPValue *BlockInMask) {
2906   // Attempt to issue a wide load.
2907   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2908   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2909 
2910   assert((LI || SI) && "Invalid Load/Store instruction");
2911   assert((!SI || StoredValue) && "No stored value provided for widened store");
2912   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2913 
2914   LoopVectorizationCostModel::InstWidening Decision =
2915       Cost->getWideningDecision(Instr, VF);
2916   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2917           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2918           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2919          "CM decision is not to widen the memory instruction");
2920 
2921   Type *ScalarDataTy = getLoadStoreType(Instr);
2922 
2923   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2924   const Align Alignment = getLoadStoreAlignment(Instr);
2925 
2926   // Determine if the pointer operand of the access is either consecutive or
2927   // reverse consecutive.
2928   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2929   bool ConsecutiveStride =
2930       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2931   bool CreateGatherScatter =
2932       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2933 
2934   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2935   // gather/scatter. Otherwise Decision should have been to Scalarize.
2936   assert((ConsecutiveStride || CreateGatherScatter) &&
2937          "The instruction should be scalarized");
2938   (void)ConsecutiveStride;
2939 
2940   VectorParts BlockInMaskParts(UF);
2941   bool isMaskRequired = BlockInMask;
2942   if (isMaskRequired)
2943     for (unsigned Part = 0; Part < UF; ++Part)
2944       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2945 
2946   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2947     // Calculate the pointer for the specific unroll-part.
2948     GetElementPtrInst *PartPtr = nullptr;
2949 
2950     bool InBounds = false;
2951     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2952       InBounds = gep->isInBounds();
2953     if (Reverse) {
2954       // If the address is consecutive but reversed, then the
2955       // wide store needs to start at the last vector element.
2956       // RunTimeVF =  VScale * VF.getKnownMinValue()
2957       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2958       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2959       // NumElt = -Part * RunTimeVF
2960       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2961       // LastLane = 1 - RunTimeVF
2962       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2963       PartPtr =
2964           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2965       PartPtr->setIsInBounds(InBounds);
2966       PartPtr = cast<GetElementPtrInst>(
2967           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2968       PartPtr->setIsInBounds(InBounds);
2969       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2970         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2971     } else {
2972       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2973       PartPtr = cast<GetElementPtrInst>(
2974           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2975       PartPtr->setIsInBounds(InBounds);
2976     }
2977 
2978     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2979     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2980   };
2981 
2982   // Handle Stores:
2983   if (SI) {
2984     setDebugLocFromInst(SI);
2985 
2986     for (unsigned Part = 0; Part < UF; ++Part) {
2987       Instruction *NewSI = nullptr;
2988       Value *StoredVal = State.get(StoredValue, Part);
2989       if (CreateGatherScatter) {
2990         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2991         Value *VectorGep = State.get(Addr, Part);
2992         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2993                                             MaskPart);
2994       } else {
2995         if (Reverse) {
2996           // If we store to reverse consecutive memory locations, then we need
2997           // to reverse the order of elements in the stored value.
2998           StoredVal = reverseVector(StoredVal);
2999           // We don't want to update the value in the map as it might be used in
3000           // another expression. So don't call resetVectorValue(StoredVal).
3001         }
3002         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3003         if (isMaskRequired)
3004           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3005                                             BlockInMaskParts[Part]);
3006         else
3007           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3008       }
3009       addMetadata(NewSI, SI);
3010     }
3011     return;
3012   }
3013 
3014   // Handle loads.
3015   assert(LI && "Must have a load instruction");
3016   setDebugLocFromInst(LI);
3017   for (unsigned Part = 0; Part < UF; ++Part) {
3018     Value *NewLI;
3019     if (CreateGatherScatter) {
3020       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3021       Value *VectorGep = State.get(Addr, Part);
3022       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3023                                          nullptr, "wide.masked.gather");
3024       addMetadata(NewLI, LI);
3025     } else {
3026       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3027       if (isMaskRequired)
3028         NewLI = Builder.CreateMaskedLoad(
3029             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3030             PoisonValue::get(DataTy), "wide.masked.load");
3031       else
3032         NewLI =
3033             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3034 
3035       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3036       addMetadata(NewLI, LI);
3037       if (Reverse)
3038         NewLI = reverseVector(NewLI);
3039     }
3040 
3041     State.set(Def, NewLI, Part);
3042   }
3043 }
3044 
3045 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3046                                                VPUser &User,
3047                                                const VPIteration &Instance,
3048                                                bool IfPredicateInstr,
3049                                                VPTransformState &State) {
3050   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3051 
3052   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3053   // the first lane and part.
3054   if (isa<NoAliasScopeDeclInst>(Instr))
3055     if (!Instance.isFirstIteration())
3056       return;
3057 
3058   setDebugLocFromInst(Instr);
3059 
3060   // Does this instruction return a value ?
3061   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3062 
3063   Instruction *Cloned = Instr->clone();
3064   if (!IsVoidRetTy)
3065     Cloned->setName(Instr->getName() + ".cloned");
3066 
3067   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3068                                Builder.GetInsertPoint());
3069   // Replace the operands of the cloned instructions with their scalar
3070   // equivalents in the new loop.
3071   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3072     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3073     auto InputInstance = Instance;
3074     if (!Operand || !OrigLoop->contains(Operand) ||
3075         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3076       InputInstance.Lane = VPLane::getFirstLane();
3077     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3078     Cloned->setOperand(op, NewOp);
3079   }
3080   addNewMetadata(Cloned, Instr);
3081 
3082   // Place the cloned scalar in the new loop.
3083   Builder.Insert(Cloned);
3084 
3085   State.set(Def, Cloned, Instance);
3086 
3087   // If we just cloned a new assumption, add it the assumption cache.
3088   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3089     AC->registerAssumption(II);
3090 
3091   // End if-block.
3092   if (IfPredicateInstr)
3093     PredicatedInstructions.push_back(Cloned);
3094 }
3095 
3096 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3097                                                       Value *End, Value *Step,
3098                                                       Instruction *DL) {
3099   BasicBlock *Header = L->getHeader();
3100   BasicBlock *Latch = L->getLoopLatch();
3101   // As we're just creating this loop, it's possible no latch exists
3102   // yet. If so, use the header as this will be a single block loop.
3103   if (!Latch)
3104     Latch = Header;
3105 
3106   IRBuilder<> B(&*Header->getFirstInsertionPt());
3107   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3108   setDebugLocFromInst(OldInst, &B);
3109   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3110 
3111   B.SetInsertPoint(Latch->getTerminator());
3112   setDebugLocFromInst(OldInst, &B);
3113 
3114   // Create i+1 and fill the PHINode.
3115   //
3116   // If the tail is not folded, we know that End - Start >= Step (either
3117   // statically or through the minimum iteration checks). We also know that both
3118   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3119   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3120   // overflows and we can mark the induction increment as NUW.
3121   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3122                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3123   Induction->addIncoming(Start, L->getLoopPreheader());
3124   Induction->addIncoming(Next, Latch);
3125   // Create the compare.
3126   Value *ICmp = B.CreateICmpEQ(Next, End);
3127   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3128 
3129   // Now we have two terminators. Remove the old one from the block.
3130   Latch->getTerminator()->eraseFromParent();
3131 
3132   return Induction;
3133 }
3134 
3135 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3136   if (TripCount)
3137     return TripCount;
3138 
3139   assert(L && "Create Trip Count for null loop.");
3140   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3141   // Find the loop boundaries.
3142   ScalarEvolution *SE = PSE.getSE();
3143   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3144   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3145          "Invalid loop count");
3146 
3147   Type *IdxTy = Legal->getWidestInductionType();
3148   assert(IdxTy && "No type for induction");
3149 
3150   // The exit count might have the type of i64 while the phi is i32. This can
3151   // happen if we have an induction variable that is sign extended before the
3152   // compare. The only way that we get a backedge taken count is that the
3153   // induction variable was signed and as such will not overflow. In such a case
3154   // truncation is legal.
3155   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3156       IdxTy->getPrimitiveSizeInBits())
3157     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3158   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3159 
3160   // Get the total trip count from the count by adding 1.
3161   const SCEV *ExitCount = SE->getAddExpr(
3162       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3163 
3164   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3165 
3166   // Expand the trip count and place the new instructions in the preheader.
3167   // Notice that the pre-header does not change, only the loop body.
3168   SCEVExpander Exp(*SE, DL, "induction");
3169 
3170   // Count holds the overall loop count (N).
3171   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3172                                 L->getLoopPreheader()->getTerminator());
3173 
3174   if (TripCount->getType()->isPointerTy())
3175     TripCount =
3176         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3177                                     L->getLoopPreheader()->getTerminator());
3178 
3179   return TripCount;
3180 }
3181 
3182 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3183   if (VectorTripCount)
3184     return VectorTripCount;
3185 
3186   Value *TC = getOrCreateTripCount(L);
3187   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3188 
3189   Type *Ty = TC->getType();
3190   // This is where we can make the step a runtime constant.
3191   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3192 
3193   // If the tail is to be folded by masking, round the number of iterations N
3194   // up to a multiple of Step instead of rounding down. This is done by first
3195   // adding Step-1 and then rounding down. Note that it's ok if this addition
3196   // overflows: the vector induction variable will eventually wrap to zero given
3197   // that it starts at zero and its Step is a power of two; the loop will then
3198   // exit, with the last early-exit vector comparison also producing all-true.
3199   if (Cost->foldTailByMasking()) {
3200     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3201            "VF*UF must be a power of 2 when folding tail by masking");
3202     assert(!VF.isScalable() &&
3203            "Tail folding not yet supported for scalable vectors");
3204     TC = Builder.CreateAdd(
3205         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3206   }
3207 
3208   // Now we need to generate the expression for the part of the loop that the
3209   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3210   // iterations are not required for correctness, or N - Step, otherwise. Step
3211   // is equal to the vectorization factor (number of SIMD elements) times the
3212   // unroll factor (number of SIMD instructions).
3213   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3214 
3215   // There are cases where we *must* run at least one iteration in the remainder
3216   // loop.  See the cost model for when this can happen.  If the step evenly
3217   // divides the trip count, we set the remainder to be equal to the step. If
3218   // the step does not evenly divide the trip count, no adjustment is necessary
3219   // since there will already be scalar iterations. Note that the minimum
3220   // iterations check ensures that N >= Step.
3221   if (Cost->requiresScalarEpilogue(VF)) {
3222     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3223     R = Builder.CreateSelect(IsZero, Step, R);
3224   }
3225 
3226   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3227 
3228   return VectorTripCount;
3229 }
3230 
3231 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3232                                                    const DataLayout &DL) {
3233   // Verify that V is a vector type with same number of elements as DstVTy.
3234   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3235   unsigned VF = DstFVTy->getNumElements();
3236   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3237   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3238   Type *SrcElemTy = SrcVecTy->getElementType();
3239   Type *DstElemTy = DstFVTy->getElementType();
3240   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3241          "Vector elements must have same size");
3242 
3243   // Do a direct cast if element types are castable.
3244   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3245     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3246   }
3247   // V cannot be directly casted to desired vector type.
3248   // May happen when V is a floating point vector but DstVTy is a vector of
3249   // pointers or vice-versa. Handle this using a two-step bitcast using an
3250   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3251   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3252          "Only one type should be a pointer type");
3253   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3254          "Only one type should be a floating point type");
3255   Type *IntTy =
3256       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3257   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3258   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3259   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3260 }
3261 
3262 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3263                                                          BasicBlock *Bypass) {
3264   Value *Count = getOrCreateTripCount(L);
3265   // Reuse existing vector loop preheader for TC checks.
3266   // Note that new preheader block is generated for vector loop.
3267   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3268   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3269 
3270   // Generate code to check if the loop's trip count is less than VF * UF, or
3271   // equal to it in case a scalar epilogue is required; this implies that the
3272   // vector trip count is zero. This check also covers the case where adding one
3273   // to the backedge-taken count overflowed leading to an incorrect trip count
3274   // of zero. In this case we will also jump to the scalar loop.
3275   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3276                                             : ICmpInst::ICMP_ULT;
3277 
3278   // If tail is to be folded, vector loop takes care of all iterations.
3279   Value *CheckMinIters = Builder.getFalse();
3280   if (!Cost->foldTailByMasking()) {
3281     Value *Step =
3282         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3283     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3284   }
3285   // Create new preheader for vector loop.
3286   LoopVectorPreHeader =
3287       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3288                  "vector.ph");
3289 
3290   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3291                                DT->getNode(Bypass)->getIDom()) &&
3292          "TC check is expected to dominate Bypass");
3293 
3294   // Update dominator for Bypass & LoopExit (if needed).
3295   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3296   if (!Cost->requiresScalarEpilogue(VF))
3297     // If there is an epilogue which must run, there's no edge from the
3298     // middle block to exit blocks  and thus no need to update the immediate
3299     // dominator of the exit blocks.
3300     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3301 
3302   ReplaceInstWithInst(
3303       TCCheckBlock->getTerminator(),
3304       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3305   LoopBypassBlocks.push_back(TCCheckBlock);
3306 }
3307 
3308 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3309 
3310   BasicBlock *const SCEVCheckBlock =
3311       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3312   if (!SCEVCheckBlock)
3313     return nullptr;
3314 
3315   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3316            (OptForSizeBasedOnProfile &&
3317             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3318          "Cannot SCEV check stride or overflow when optimizing for size");
3319 
3320 
3321   // Update dominator only if this is first RT check.
3322   if (LoopBypassBlocks.empty()) {
3323     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3324     if (!Cost->requiresScalarEpilogue(VF))
3325       // If there is an epilogue which must run, there's no edge from the
3326       // middle block to exit blocks  and thus no need to update the immediate
3327       // dominator of the exit blocks.
3328       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3329   }
3330 
3331   LoopBypassBlocks.push_back(SCEVCheckBlock);
3332   AddedSafetyChecks = true;
3333   return SCEVCheckBlock;
3334 }
3335 
3336 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3337                                                       BasicBlock *Bypass) {
3338   // VPlan-native path does not do any analysis for runtime checks currently.
3339   if (EnableVPlanNativePath)
3340     return nullptr;
3341 
3342   BasicBlock *const MemCheckBlock =
3343       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3344 
3345   // Check if we generated code that checks in runtime if arrays overlap. We put
3346   // the checks into a separate block to make the more common case of few
3347   // elements faster.
3348   if (!MemCheckBlock)
3349     return nullptr;
3350 
3351   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3352     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3353            "Cannot emit memory checks when optimizing for size, unless forced "
3354            "to vectorize.");
3355     ORE->emit([&]() {
3356       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3357                                         L->getStartLoc(), L->getHeader())
3358              << "Code-size may be reduced by not forcing "
3359                 "vectorization, or by source-code modifications "
3360                 "eliminating the need for runtime checks "
3361                 "(e.g., adding 'restrict').";
3362     });
3363   }
3364 
3365   LoopBypassBlocks.push_back(MemCheckBlock);
3366 
3367   AddedSafetyChecks = true;
3368 
3369   // We currently don't use LoopVersioning for the actual loop cloning but we
3370   // still use it to add the noalias metadata.
3371   LVer = std::make_unique<LoopVersioning>(
3372       *Legal->getLAI(),
3373       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3374       DT, PSE.getSE());
3375   LVer->prepareNoAliasMetadata();
3376   return MemCheckBlock;
3377 }
3378 
3379 Value *InnerLoopVectorizer::emitTransformedIndex(
3380     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3381     const InductionDescriptor &ID) const {
3382 
3383   SCEVExpander Exp(*SE, DL, "induction");
3384   auto Step = ID.getStep();
3385   auto StartValue = ID.getStartValue();
3386   assert(Index->getType()->getScalarType() == Step->getType() &&
3387          "Index scalar type does not match StepValue type");
3388 
3389   // Note: the IR at this point is broken. We cannot use SE to create any new
3390   // SCEV and then expand it, hoping that SCEV's simplification will give us
3391   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3392   // lead to various SCEV crashes. So all we can do is to use builder and rely
3393   // on InstCombine for future simplifications. Here we handle some trivial
3394   // cases only.
3395   auto CreateAdd = [&B](Value *X, Value *Y) {
3396     assert(X->getType() == Y->getType() && "Types don't match!");
3397     if (auto *CX = dyn_cast<ConstantInt>(X))
3398       if (CX->isZero())
3399         return Y;
3400     if (auto *CY = dyn_cast<ConstantInt>(Y))
3401       if (CY->isZero())
3402         return X;
3403     return B.CreateAdd(X, Y);
3404   };
3405 
3406   // We allow X to be a vector type, in which case Y will potentially be
3407   // splatted into a vector with the same element count.
3408   auto CreateMul = [&B](Value *X, Value *Y) {
3409     assert(X->getType()->getScalarType() == Y->getType() &&
3410            "Types don't match!");
3411     if (auto *CX = dyn_cast<ConstantInt>(X))
3412       if (CX->isOne())
3413         return Y;
3414     if (auto *CY = dyn_cast<ConstantInt>(Y))
3415       if (CY->isOne())
3416         return X;
3417     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3418     if (XVTy && !isa<VectorType>(Y->getType()))
3419       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3420     return B.CreateMul(X, Y);
3421   };
3422 
3423   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3424   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3425   // the DomTree is not kept up-to-date for additional blocks generated in the
3426   // vector loop. By using the header as insertion point, we guarantee that the
3427   // expanded instructions dominate all their uses.
3428   auto GetInsertPoint = [this, &B]() {
3429     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3430     if (InsertBB != LoopVectorBody &&
3431         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3432       return LoopVectorBody->getTerminator();
3433     return &*B.GetInsertPoint();
3434   };
3435 
3436   switch (ID.getKind()) {
3437   case InductionDescriptor::IK_IntInduction: {
3438     assert(!isa<VectorType>(Index->getType()) &&
3439            "Vector indices not supported for integer inductions yet");
3440     assert(Index->getType() == StartValue->getType() &&
3441            "Index type does not match StartValue type");
3442     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3443       return B.CreateSub(StartValue, Index);
3444     auto *Offset = CreateMul(
3445         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3446     return CreateAdd(StartValue, Offset);
3447   }
3448   case InductionDescriptor::IK_PtrInduction: {
3449     assert(isa<SCEVConstant>(Step) &&
3450            "Expected constant step for pointer induction");
3451     return B.CreateGEP(
3452         StartValue->getType()->getPointerElementType(), StartValue,
3453         CreateMul(Index,
3454                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3455                                     GetInsertPoint())));
3456   }
3457   case InductionDescriptor::IK_FpInduction: {
3458     assert(!isa<VectorType>(Index->getType()) &&
3459            "Vector indices not supported for FP inductions yet");
3460     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3461     auto InductionBinOp = ID.getInductionBinOp();
3462     assert(InductionBinOp &&
3463            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3464             InductionBinOp->getOpcode() == Instruction::FSub) &&
3465            "Original bin op should be defined for FP induction");
3466 
3467     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3468     Value *MulExp = B.CreateFMul(StepValue, Index);
3469     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3470                          "induction");
3471   }
3472   case InductionDescriptor::IK_NoInduction:
3473     return nullptr;
3474   }
3475   llvm_unreachable("invalid enum");
3476 }
3477 
3478 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3479   LoopScalarBody = OrigLoop->getHeader();
3480   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3481   assert(LoopVectorPreHeader && "Invalid loop structure");
3482   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3483   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3484          "multiple exit loop without required epilogue?");
3485 
3486   LoopMiddleBlock =
3487       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3488                  LI, nullptr, Twine(Prefix) + "middle.block");
3489   LoopScalarPreHeader =
3490       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3491                  nullptr, Twine(Prefix) + "scalar.ph");
3492 
3493   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3494 
3495   // Set up the middle block terminator.  Two cases:
3496   // 1) If we know that we must execute the scalar epilogue, emit an
3497   //    unconditional branch.
3498   // 2) Otherwise, we must have a single unique exit block (due to how we
3499   //    implement the multiple exit case).  In this case, set up a conditonal
3500   //    branch from the middle block to the loop scalar preheader, and the
3501   //    exit block.  completeLoopSkeleton will update the condition to use an
3502   //    iteration check, if required to decide whether to execute the remainder.
3503   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3504     BranchInst::Create(LoopScalarPreHeader) :
3505     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3506                        Builder.getTrue());
3507   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3508   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3509 
3510   // We intentionally don't let SplitBlock to update LoopInfo since
3511   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3512   // LoopVectorBody is explicitly added to the correct place few lines later.
3513   LoopVectorBody =
3514       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3515                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3516 
3517   // Update dominator for loop exit.
3518   if (!Cost->requiresScalarEpilogue(VF))
3519     // If there is an epilogue which must run, there's no edge from the
3520     // middle block to exit blocks  and thus no need to update the immediate
3521     // dominator of the exit blocks.
3522     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3523 
3524   // Create and register the new vector loop.
3525   Loop *Lp = LI->AllocateLoop();
3526   Loop *ParentLoop = OrigLoop->getParentLoop();
3527 
3528   // Insert the new loop into the loop nest and register the new basic blocks
3529   // before calling any utilities such as SCEV that require valid LoopInfo.
3530   if (ParentLoop) {
3531     ParentLoop->addChildLoop(Lp);
3532   } else {
3533     LI->addTopLevelLoop(Lp);
3534   }
3535   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3536   return Lp;
3537 }
3538 
3539 void InnerLoopVectorizer::createInductionResumeValues(
3540     Loop *L, Value *VectorTripCount,
3541     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3542   assert(VectorTripCount && L && "Expected valid arguments");
3543   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3544           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3545          "Inconsistent information about additional bypass.");
3546   // We are going to resume the execution of the scalar loop.
3547   // Go over all of the induction variables that we found and fix the
3548   // PHIs that are left in the scalar version of the loop.
3549   // The starting values of PHI nodes depend on the counter of the last
3550   // iteration in the vectorized loop.
3551   // If we come from a bypass edge then we need to start from the original
3552   // start value.
3553   for (auto &InductionEntry : Legal->getInductionVars()) {
3554     PHINode *OrigPhi = InductionEntry.first;
3555     InductionDescriptor II = InductionEntry.second;
3556 
3557     // Create phi nodes to merge from the  backedge-taken check block.
3558     PHINode *BCResumeVal =
3559         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3560                         LoopScalarPreHeader->getTerminator());
3561     // Copy original phi DL over to the new one.
3562     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3563     Value *&EndValue = IVEndValues[OrigPhi];
3564     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3565     if (OrigPhi == OldInduction) {
3566       // We know what the end value is.
3567       EndValue = VectorTripCount;
3568     } else {
3569       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3570 
3571       // Fast-math-flags propagate from the original induction instruction.
3572       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3573         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3574 
3575       Type *StepType = II.getStep()->getType();
3576       Instruction::CastOps CastOp =
3577           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3578       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3579       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3580       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3581       EndValue->setName("ind.end");
3582 
3583       // Compute the end value for the additional bypass (if applicable).
3584       if (AdditionalBypass.first) {
3585         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3586         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3587                                          StepType, true);
3588         CRD =
3589             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3590         EndValueFromAdditionalBypass =
3591             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3592         EndValueFromAdditionalBypass->setName("ind.end");
3593       }
3594     }
3595     // The new PHI merges the original incoming value, in case of a bypass,
3596     // or the value at the end of the vectorized loop.
3597     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3598 
3599     // Fix the scalar body counter (PHI node).
3600     // The old induction's phi node in the scalar body needs the truncated
3601     // value.
3602     for (BasicBlock *BB : LoopBypassBlocks)
3603       BCResumeVal->addIncoming(II.getStartValue(), BB);
3604 
3605     if (AdditionalBypass.first)
3606       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3607                                             EndValueFromAdditionalBypass);
3608 
3609     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3610   }
3611 }
3612 
3613 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3614                                                       MDNode *OrigLoopID) {
3615   assert(L && "Expected valid loop.");
3616 
3617   // The trip counts should be cached by now.
3618   Value *Count = getOrCreateTripCount(L);
3619   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3620 
3621   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3622 
3623   // Add a check in the middle block to see if we have completed
3624   // all of the iterations in the first vector loop.  Three cases:
3625   // 1) If we require a scalar epilogue, there is no conditional branch as
3626   //    we unconditionally branch to the scalar preheader.  Do nothing.
3627   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3628   //    Thus if tail is to be folded, we know we don't need to run the
3629   //    remainder and we can use the previous value for the condition (true).
3630   // 3) Otherwise, construct a runtime check.
3631   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3632     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3633                                         Count, VectorTripCount, "cmp.n",
3634                                         LoopMiddleBlock->getTerminator());
3635 
3636     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3637     // of the corresponding compare because they may have ended up with
3638     // different line numbers and we want to avoid awkward line stepping while
3639     // debugging. Eg. if the compare has got a line number inside the loop.
3640     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3641     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3642   }
3643 
3644   // Get ready to start creating new instructions into the vectorized body.
3645   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3646          "Inconsistent vector loop preheader");
3647   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3648 
3649   Optional<MDNode *> VectorizedLoopID =
3650       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3651                                       LLVMLoopVectorizeFollowupVectorized});
3652   if (VectorizedLoopID.hasValue()) {
3653     L->setLoopID(VectorizedLoopID.getValue());
3654 
3655     // Do not setAlreadyVectorized if loop attributes have been defined
3656     // explicitly.
3657     return LoopVectorPreHeader;
3658   }
3659 
3660   // Keep all loop hints from the original loop on the vector loop (we'll
3661   // replace the vectorizer-specific hints below).
3662   if (MDNode *LID = OrigLoop->getLoopID())
3663     L->setLoopID(LID);
3664 
3665   LoopVectorizeHints Hints(L, true, *ORE);
3666   Hints.setAlreadyVectorized();
3667 
3668 #ifdef EXPENSIVE_CHECKS
3669   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3670   LI->verify(*DT);
3671 #endif
3672 
3673   return LoopVectorPreHeader;
3674 }
3675 
3676 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3677   /*
3678    In this function we generate a new loop. The new loop will contain
3679    the vectorized instructions while the old loop will continue to run the
3680    scalar remainder.
3681 
3682        [ ] <-- loop iteration number check.
3683     /   |
3684    /    v
3685   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3686   |  /  |
3687   | /   v
3688   ||   [ ]     <-- vector pre header.
3689   |/    |
3690   |     v
3691   |    [  ] \
3692   |    [  ]_|   <-- vector loop.
3693   |     |
3694   |     v
3695   \   -[ ]   <--- middle-block.
3696    \/   |
3697    /\   v
3698    | ->[ ]     <--- new preheader.
3699    |    |
3700  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3701    |   [ ] \
3702    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3703     \   |
3704      \  v
3705       >[ ]     <-- exit block(s).
3706    ...
3707    */
3708 
3709   // Get the metadata of the original loop before it gets modified.
3710   MDNode *OrigLoopID = OrigLoop->getLoopID();
3711 
3712   // Workaround!  Compute the trip count of the original loop and cache it
3713   // before we start modifying the CFG.  This code has a systemic problem
3714   // wherein it tries to run analysis over partially constructed IR; this is
3715   // wrong, and not simply for SCEV.  The trip count of the original loop
3716   // simply happens to be prone to hitting this in practice.  In theory, we
3717   // can hit the same issue for any SCEV, or ValueTracking query done during
3718   // mutation.  See PR49900.
3719   getOrCreateTripCount(OrigLoop);
3720 
3721   // Create an empty vector loop, and prepare basic blocks for the runtime
3722   // checks.
3723   Loop *Lp = createVectorLoopSkeleton("");
3724 
3725   // Now, compare the new count to zero. If it is zero skip the vector loop and
3726   // jump to the scalar loop. This check also covers the case where the
3727   // backedge-taken count is uint##_max: adding one to it will overflow leading
3728   // to an incorrect trip count of zero. In this (rare) case we will also jump
3729   // to the scalar loop.
3730   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3731 
3732   // Generate the code to check any assumptions that we've made for SCEV
3733   // expressions.
3734   emitSCEVChecks(Lp, LoopScalarPreHeader);
3735 
3736   // Generate the code that checks in runtime if arrays overlap. We put the
3737   // checks into a separate block to make the more common case of few elements
3738   // faster.
3739   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3740 
3741   // Some loops have a single integer induction variable, while other loops
3742   // don't. One example is c++ iterators that often have multiple pointer
3743   // induction variables. In the code below we also support a case where we
3744   // don't have a single induction variable.
3745   //
3746   // We try to obtain an induction variable from the original loop as hard
3747   // as possible. However if we don't find one that:
3748   //   - is an integer
3749   //   - counts from zero, stepping by one
3750   //   - is the size of the widest induction variable type
3751   // then we create a new one.
3752   OldInduction = Legal->getPrimaryInduction();
3753   Type *IdxTy = Legal->getWidestInductionType();
3754   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3755   // The loop step is equal to the vectorization factor (num of SIMD elements)
3756   // times the unroll factor (num of SIMD instructions).
3757   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3758   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3759   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3760   Induction =
3761       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3762                               getDebugLocFromInstOrOperands(OldInduction));
3763 
3764   // Emit phis for the new starting index of the scalar loop.
3765   createInductionResumeValues(Lp, CountRoundDown);
3766 
3767   return completeLoopSkeleton(Lp, OrigLoopID);
3768 }
3769 
3770 // Fix up external users of the induction variable. At this point, we are
3771 // in LCSSA form, with all external PHIs that use the IV having one input value,
3772 // coming from the remainder loop. We need those PHIs to also have a correct
3773 // value for the IV when arriving directly from the middle block.
3774 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3775                                        const InductionDescriptor &II,
3776                                        Value *CountRoundDown, Value *EndValue,
3777                                        BasicBlock *MiddleBlock) {
3778   // There are two kinds of external IV usages - those that use the value
3779   // computed in the last iteration (the PHI) and those that use the penultimate
3780   // value (the value that feeds into the phi from the loop latch).
3781   // We allow both, but they, obviously, have different values.
3782 
3783   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3784 
3785   DenseMap<Value *, Value *> MissingVals;
3786 
3787   // An external user of the last iteration's value should see the value that
3788   // the remainder loop uses to initialize its own IV.
3789   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3790   for (User *U : PostInc->users()) {
3791     Instruction *UI = cast<Instruction>(U);
3792     if (!OrigLoop->contains(UI)) {
3793       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3794       MissingVals[UI] = EndValue;
3795     }
3796   }
3797 
3798   // An external user of the penultimate value need to see EndValue - Step.
3799   // The simplest way to get this is to recompute it from the constituent SCEVs,
3800   // that is Start + (Step * (CRD - 1)).
3801   for (User *U : OrigPhi->users()) {
3802     auto *UI = cast<Instruction>(U);
3803     if (!OrigLoop->contains(UI)) {
3804       const DataLayout &DL =
3805           OrigLoop->getHeader()->getModule()->getDataLayout();
3806       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3807 
3808       IRBuilder<> B(MiddleBlock->getTerminator());
3809 
3810       // Fast-math-flags propagate from the original induction instruction.
3811       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3812         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3813 
3814       Value *CountMinusOne = B.CreateSub(
3815           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3816       Value *CMO =
3817           !II.getStep()->getType()->isIntegerTy()
3818               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3819                              II.getStep()->getType())
3820               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3821       CMO->setName("cast.cmo");
3822       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3823       Escape->setName("ind.escape");
3824       MissingVals[UI] = Escape;
3825     }
3826   }
3827 
3828   for (auto &I : MissingVals) {
3829     PHINode *PHI = cast<PHINode>(I.first);
3830     // One corner case we have to handle is two IVs "chasing" each-other,
3831     // that is %IV2 = phi [...], [ %IV1, %latch ]
3832     // In this case, if IV1 has an external use, we need to avoid adding both
3833     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3834     // don't already have an incoming value for the middle block.
3835     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3836       PHI->addIncoming(I.second, MiddleBlock);
3837   }
3838 }
3839 
3840 namespace {
3841 
3842 struct CSEDenseMapInfo {
3843   static bool canHandle(const Instruction *I) {
3844     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3845            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3846   }
3847 
3848   static inline Instruction *getEmptyKey() {
3849     return DenseMapInfo<Instruction *>::getEmptyKey();
3850   }
3851 
3852   static inline Instruction *getTombstoneKey() {
3853     return DenseMapInfo<Instruction *>::getTombstoneKey();
3854   }
3855 
3856   static unsigned getHashValue(const Instruction *I) {
3857     assert(canHandle(I) && "Unknown instruction!");
3858     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3859                                                            I->value_op_end()));
3860   }
3861 
3862   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3863     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3864         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3865       return LHS == RHS;
3866     return LHS->isIdenticalTo(RHS);
3867   }
3868 };
3869 
3870 } // end anonymous namespace
3871 
3872 ///Perform cse of induction variable instructions.
3873 static void cse(BasicBlock *BB) {
3874   // Perform simple cse.
3875   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3876   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3877     Instruction *In = &*I++;
3878 
3879     if (!CSEDenseMapInfo::canHandle(In))
3880       continue;
3881 
3882     // Check if we can replace this instruction with any of the
3883     // visited instructions.
3884     if (Instruction *V = CSEMap.lookup(In)) {
3885       In->replaceAllUsesWith(V);
3886       In->eraseFromParent();
3887       continue;
3888     }
3889 
3890     CSEMap[In] = In;
3891   }
3892 }
3893 
3894 InstructionCost
3895 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3896                                               bool &NeedToScalarize) const {
3897   Function *F = CI->getCalledFunction();
3898   Type *ScalarRetTy = CI->getType();
3899   SmallVector<Type *, 4> Tys, ScalarTys;
3900   for (auto &ArgOp : CI->arg_operands())
3901     ScalarTys.push_back(ArgOp->getType());
3902 
3903   // Estimate cost of scalarized vector call. The source operands are assumed
3904   // to be vectors, so we need to extract individual elements from there,
3905   // execute VF scalar calls, and then gather the result into the vector return
3906   // value.
3907   InstructionCost ScalarCallCost =
3908       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3909   if (VF.isScalar())
3910     return ScalarCallCost;
3911 
3912   // Compute corresponding vector type for return value and arguments.
3913   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3914   for (Type *ScalarTy : ScalarTys)
3915     Tys.push_back(ToVectorTy(ScalarTy, VF));
3916 
3917   // Compute costs of unpacking argument values for the scalar calls and
3918   // packing the return values to a vector.
3919   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3920 
3921   InstructionCost Cost =
3922       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3923 
3924   // If we can't emit a vector call for this function, then the currently found
3925   // cost is the cost we need to return.
3926   NeedToScalarize = true;
3927   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3928   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3929 
3930   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3931     return Cost;
3932 
3933   // If the corresponding vector cost is cheaper, return its cost.
3934   InstructionCost VectorCallCost =
3935       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3936   if (VectorCallCost < Cost) {
3937     NeedToScalarize = false;
3938     Cost = VectorCallCost;
3939   }
3940   return Cost;
3941 }
3942 
3943 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3944   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3945     return Elt;
3946   return VectorType::get(Elt, VF);
3947 }
3948 
3949 InstructionCost
3950 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3951                                                    ElementCount VF) const {
3952   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3953   assert(ID && "Expected intrinsic call!");
3954   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3955   FastMathFlags FMF;
3956   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3957     FMF = FPMO->getFastMathFlags();
3958 
3959   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3960   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3961   SmallVector<Type *> ParamTys;
3962   std::transform(FTy->param_begin(), FTy->param_end(),
3963                  std::back_inserter(ParamTys),
3964                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3965 
3966   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3967                                     dyn_cast<IntrinsicInst>(CI));
3968   return TTI.getIntrinsicInstrCost(CostAttrs,
3969                                    TargetTransformInfo::TCK_RecipThroughput);
3970 }
3971 
3972 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3973   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3974   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3975   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3976 }
3977 
3978 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3979   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3980   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3981   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3982 }
3983 
3984 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3985   // For every instruction `I` in MinBWs, truncate the operands, create a
3986   // truncated version of `I` and reextend its result. InstCombine runs
3987   // later and will remove any ext/trunc pairs.
3988   SmallPtrSet<Value *, 4> Erased;
3989   for (const auto &KV : Cost->getMinimalBitwidths()) {
3990     // If the value wasn't vectorized, we must maintain the original scalar
3991     // type. The absence of the value from State indicates that it
3992     // wasn't vectorized.
3993     VPValue *Def = State.Plan->getVPValue(KV.first);
3994     if (!State.hasAnyVectorValue(Def))
3995       continue;
3996     for (unsigned Part = 0; Part < UF; ++Part) {
3997       Value *I = State.get(Def, Part);
3998       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3999         continue;
4000       Type *OriginalTy = I->getType();
4001       Type *ScalarTruncatedTy =
4002           IntegerType::get(OriginalTy->getContext(), KV.second);
4003       auto *TruncatedTy = VectorType::get(
4004           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4005       if (TruncatedTy == OriginalTy)
4006         continue;
4007 
4008       IRBuilder<> B(cast<Instruction>(I));
4009       auto ShrinkOperand = [&](Value *V) -> Value * {
4010         if (auto *ZI = dyn_cast<ZExtInst>(V))
4011           if (ZI->getSrcTy() == TruncatedTy)
4012             return ZI->getOperand(0);
4013         return B.CreateZExtOrTrunc(V, TruncatedTy);
4014       };
4015 
4016       // The actual instruction modification depends on the instruction type,
4017       // unfortunately.
4018       Value *NewI = nullptr;
4019       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4020         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4021                              ShrinkOperand(BO->getOperand(1)));
4022 
4023         // Any wrapping introduced by shrinking this operation shouldn't be
4024         // considered undefined behavior. So, we can't unconditionally copy
4025         // arithmetic wrapping flags to NewI.
4026         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4027       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4028         NewI =
4029             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4030                          ShrinkOperand(CI->getOperand(1)));
4031       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4032         NewI = B.CreateSelect(SI->getCondition(),
4033                               ShrinkOperand(SI->getTrueValue()),
4034                               ShrinkOperand(SI->getFalseValue()));
4035       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4036         switch (CI->getOpcode()) {
4037         default:
4038           llvm_unreachable("Unhandled cast!");
4039         case Instruction::Trunc:
4040           NewI = ShrinkOperand(CI->getOperand(0));
4041           break;
4042         case Instruction::SExt:
4043           NewI = B.CreateSExtOrTrunc(
4044               CI->getOperand(0),
4045               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4046           break;
4047         case Instruction::ZExt:
4048           NewI = B.CreateZExtOrTrunc(
4049               CI->getOperand(0),
4050               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4051           break;
4052         }
4053       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4054         auto Elements0 =
4055             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4056         auto *O0 = B.CreateZExtOrTrunc(
4057             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4058         auto Elements1 =
4059             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4060         auto *O1 = B.CreateZExtOrTrunc(
4061             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4062 
4063         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4064       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4065         // Don't do anything with the operands, just extend the result.
4066         continue;
4067       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4068         auto Elements =
4069             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4070         auto *O0 = B.CreateZExtOrTrunc(
4071             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4072         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4073         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4074       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4075         auto Elements =
4076             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4077         auto *O0 = B.CreateZExtOrTrunc(
4078             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4079         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4080       } else {
4081         // If we don't know what to do, be conservative and don't do anything.
4082         continue;
4083       }
4084 
4085       // Lastly, extend the result.
4086       NewI->takeName(cast<Instruction>(I));
4087       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4088       I->replaceAllUsesWith(Res);
4089       cast<Instruction>(I)->eraseFromParent();
4090       Erased.insert(I);
4091       State.reset(Def, Res, Part);
4092     }
4093   }
4094 
4095   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4096   for (const auto &KV : Cost->getMinimalBitwidths()) {
4097     // If the value wasn't vectorized, we must maintain the original scalar
4098     // type. The absence of the value from State indicates that it
4099     // wasn't vectorized.
4100     VPValue *Def = State.Plan->getVPValue(KV.first);
4101     if (!State.hasAnyVectorValue(Def))
4102       continue;
4103     for (unsigned Part = 0; Part < UF; ++Part) {
4104       Value *I = State.get(Def, Part);
4105       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4106       if (Inst && Inst->use_empty()) {
4107         Value *NewI = Inst->getOperand(0);
4108         Inst->eraseFromParent();
4109         State.reset(Def, NewI, Part);
4110       }
4111     }
4112   }
4113 }
4114 
4115 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4116   // Insert truncates and extends for any truncated instructions as hints to
4117   // InstCombine.
4118   if (VF.isVector())
4119     truncateToMinimalBitwidths(State);
4120 
4121   // Fix widened non-induction PHIs by setting up the PHI operands.
4122   if (OrigPHIsToFix.size()) {
4123     assert(EnableVPlanNativePath &&
4124            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4125     fixNonInductionPHIs(State);
4126   }
4127 
4128   // At this point every instruction in the original loop is widened to a
4129   // vector form. Now we need to fix the recurrences in the loop. These PHI
4130   // nodes are currently empty because we did not want to introduce cycles.
4131   // This is the second stage of vectorizing recurrences.
4132   fixCrossIterationPHIs(State);
4133 
4134   // Forget the original basic block.
4135   PSE.getSE()->forgetLoop(OrigLoop);
4136 
4137   // If we inserted an edge from the middle block to the unique exit block,
4138   // update uses outside the loop (phis) to account for the newly inserted
4139   // edge.
4140   if (!Cost->requiresScalarEpilogue(VF)) {
4141     // Fix-up external users of the induction variables.
4142     for (auto &Entry : Legal->getInductionVars())
4143       fixupIVUsers(Entry.first, Entry.second,
4144                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4145                    IVEndValues[Entry.first], LoopMiddleBlock);
4146 
4147     fixLCSSAPHIs(State);
4148   }
4149 
4150   for (Instruction *PI : PredicatedInstructions)
4151     sinkScalarOperands(&*PI);
4152 
4153   // Remove redundant induction instructions.
4154   cse(LoopVectorBody);
4155 
4156   // Set/update profile weights for the vector and remainder loops as original
4157   // loop iterations are now distributed among them. Note that original loop
4158   // represented by LoopScalarBody becomes remainder loop after vectorization.
4159   //
4160   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4161   // end up getting slightly roughened result but that should be OK since
4162   // profile is not inherently precise anyway. Note also possible bypass of
4163   // vector code caused by legality checks is ignored, assigning all the weight
4164   // to the vector loop, optimistically.
4165   //
4166   // For scalable vectorization we can't know at compile time how many iterations
4167   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4168   // vscale of '1'.
4169   setProfileInfoAfterUnrolling(
4170       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4171       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4172 }
4173 
4174 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4175   // In order to support recurrences we need to be able to vectorize Phi nodes.
4176   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4177   // stage #2: We now need to fix the recurrences by adding incoming edges to
4178   // the currently empty PHI nodes. At this point every instruction in the
4179   // original loop is widened to a vector form so we can use them to construct
4180   // the incoming edges.
4181   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4182   for (VPRecipeBase &R : Header->phis()) {
4183     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4184       fixReduction(ReductionPhi, State);
4185     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4186       fixFirstOrderRecurrence(FOR, State);
4187   }
4188 }
4189 
4190 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4191                                                   VPTransformState &State) {
4192   // This is the second phase of vectorizing first-order recurrences. An
4193   // overview of the transformation is described below. Suppose we have the
4194   // following loop.
4195   //
4196   //   for (int i = 0; i < n; ++i)
4197   //     b[i] = a[i] - a[i - 1];
4198   //
4199   // There is a first-order recurrence on "a". For this loop, the shorthand
4200   // scalar IR looks like:
4201   //
4202   //   scalar.ph:
4203   //     s_init = a[-1]
4204   //     br scalar.body
4205   //
4206   //   scalar.body:
4207   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4208   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4209   //     s2 = a[i]
4210   //     b[i] = s2 - s1
4211   //     br cond, scalar.body, ...
4212   //
4213   // In this example, s1 is a recurrence because it's value depends on the
4214   // previous iteration. In the first phase of vectorization, we created a
4215   // vector phi v1 for s1. We now complete the vectorization and produce the
4216   // shorthand vector IR shown below (for VF = 4, UF = 1).
4217   //
4218   //   vector.ph:
4219   //     v_init = vector(..., ..., ..., a[-1])
4220   //     br vector.body
4221   //
4222   //   vector.body
4223   //     i = phi [0, vector.ph], [i+4, vector.body]
4224   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4225   //     v2 = a[i, i+1, i+2, i+3];
4226   //     v3 = vector(v1(3), v2(0, 1, 2))
4227   //     b[i, i+1, i+2, i+3] = v2 - v3
4228   //     br cond, vector.body, middle.block
4229   //
4230   //   middle.block:
4231   //     x = v2(3)
4232   //     br scalar.ph
4233   //
4234   //   scalar.ph:
4235   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4236   //     br scalar.body
4237   //
4238   // After execution completes the vector loop, we extract the next value of
4239   // the recurrence (x) to use as the initial value in the scalar loop.
4240 
4241   // Extract the last vector element in the middle block. This will be the
4242   // initial value for the recurrence when jumping to the scalar loop.
4243   VPValue *PreviousDef = PhiR->getBackedgeValue();
4244   Value *Incoming = State.get(PreviousDef, UF - 1);
4245   auto *ExtractForScalar = Incoming;
4246   auto *IdxTy = Builder.getInt32Ty();
4247   if (VF.isVector()) {
4248     auto *One = ConstantInt::get(IdxTy, 1);
4249     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4250     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4251     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4252     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4253                                                     "vector.recur.extract");
4254   }
4255   // Extract the second last element in the middle block if the
4256   // Phi is used outside the loop. We need to extract the phi itself
4257   // and not the last element (the phi update in the current iteration). This
4258   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4259   // when the scalar loop is not run at all.
4260   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4261   if (VF.isVector()) {
4262     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4263     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4264     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4265         Incoming, Idx, "vector.recur.extract.for.phi");
4266   } else if (UF > 1)
4267     // When loop is unrolled without vectorizing, initialize
4268     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4269     // of `Incoming`. This is analogous to the vectorized case above: extracting
4270     // the second last element when VF > 1.
4271     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4272 
4273   // Fix the initial value of the original recurrence in the scalar loop.
4274   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4275   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4276   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4277   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4278   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4279     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4280     Start->addIncoming(Incoming, BB);
4281   }
4282 
4283   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4284   Phi->setName("scalar.recur");
4285 
4286   // Finally, fix users of the recurrence outside the loop. The users will need
4287   // either the last value of the scalar recurrence or the last value of the
4288   // vector recurrence we extracted in the middle block. Since the loop is in
4289   // LCSSA form, we just need to find all the phi nodes for the original scalar
4290   // recurrence in the exit block, and then add an edge for the middle block.
4291   // Note that LCSSA does not imply single entry when the original scalar loop
4292   // had multiple exiting edges (as we always run the last iteration in the
4293   // scalar epilogue); in that case, there is no edge from middle to exit and
4294   // and thus no phis which needed updated.
4295   if (!Cost->requiresScalarEpilogue(VF))
4296     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4297       if (any_of(LCSSAPhi.incoming_values(),
4298                  [Phi](Value *V) { return V == Phi; }))
4299         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4300 }
4301 
4302 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4303                                        VPTransformState &State) {
4304   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4305   // Get it's reduction variable descriptor.
4306   assert(Legal->isReductionVariable(OrigPhi) &&
4307          "Unable to find the reduction variable");
4308   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4309 
4310   RecurKind RK = RdxDesc.getRecurrenceKind();
4311   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4312   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4313   setDebugLocFromInst(ReductionStartValue);
4314 
4315   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4316   // This is the vector-clone of the value that leaves the loop.
4317   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4318 
4319   // Wrap flags are in general invalid after vectorization, clear them.
4320   clearReductionWrapFlags(RdxDesc, State);
4321 
4322   // Before each round, move the insertion point right between
4323   // the PHIs and the values we are going to write.
4324   // This allows us to write both PHINodes and the extractelement
4325   // instructions.
4326   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4327 
4328   setDebugLocFromInst(LoopExitInst);
4329 
4330   Type *PhiTy = OrigPhi->getType();
4331   // If tail is folded by masking, the vector value to leave the loop should be
4332   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4333   // instead of the former. For an inloop reduction the reduction will already
4334   // be predicated, and does not need to be handled here.
4335   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4336     for (unsigned Part = 0; Part < UF; ++Part) {
4337       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4338       Value *Sel = nullptr;
4339       for (User *U : VecLoopExitInst->users()) {
4340         if (isa<SelectInst>(U)) {
4341           assert(!Sel && "Reduction exit feeding two selects");
4342           Sel = U;
4343         } else
4344           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4345       }
4346       assert(Sel && "Reduction exit feeds no select");
4347       State.reset(LoopExitInstDef, Sel, Part);
4348 
4349       // If the target can create a predicated operator for the reduction at no
4350       // extra cost in the loop (for example a predicated vadd), it can be
4351       // cheaper for the select to remain in the loop than be sunk out of it,
4352       // and so use the select value for the phi instead of the old
4353       // LoopExitValue.
4354       if (PreferPredicatedReductionSelect ||
4355           TTI->preferPredicatedReductionSelect(
4356               RdxDesc.getOpcode(), PhiTy,
4357               TargetTransformInfo::ReductionFlags())) {
4358         auto *VecRdxPhi =
4359             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4360         VecRdxPhi->setIncomingValueForBlock(
4361             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4362       }
4363     }
4364   }
4365 
4366   // If the vector reduction can be performed in a smaller type, we truncate
4367   // then extend the loop exit value to enable InstCombine to evaluate the
4368   // entire expression in the smaller type.
4369   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4370     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4371     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4372     Builder.SetInsertPoint(
4373         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4374     VectorParts RdxParts(UF);
4375     for (unsigned Part = 0; Part < UF; ++Part) {
4376       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4377       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4378       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4379                                         : Builder.CreateZExt(Trunc, VecTy);
4380       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4381            UI != RdxParts[Part]->user_end();)
4382         if (*UI != Trunc) {
4383           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4384           RdxParts[Part] = Extnd;
4385         } else {
4386           ++UI;
4387         }
4388     }
4389     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4390     for (unsigned Part = 0; Part < UF; ++Part) {
4391       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4392       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4393     }
4394   }
4395 
4396   // Reduce all of the unrolled parts into a single vector.
4397   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4398   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4399 
4400   // The middle block terminator has already been assigned a DebugLoc here (the
4401   // OrigLoop's single latch terminator). We want the whole middle block to
4402   // appear to execute on this line because: (a) it is all compiler generated,
4403   // (b) these instructions are always executed after evaluating the latch
4404   // conditional branch, and (c) other passes may add new predecessors which
4405   // terminate on this line. This is the easiest way to ensure we don't
4406   // accidentally cause an extra step back into the loop while debugging.
4407   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4408   if (PhiR->isOrdered())
4409     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4410   else {
4411     // Floating-point operations should have some FMF to enable the reduction.
4412     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4413     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4414     for (unsigned Part = 1; Part < UF; ++Part) {
4415       Value *RdxPart = State.get(LoopExitInstDef, Part);
4416       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4417         ReducedPartRdx = Builder.CreateBinOp(
4418             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4419       } else {
4420         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4421       }
4422     }
4423   }
4424 
4425   // Create the reduction after the loop. Note that inloop reductions create the
4426   // target reduction in the loop using a Reduction recipe.
4427   if (VF.isVector() && !PhiR->isInLoop()) {
4428     ReducedPartRdx =
4429         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4430     // If the reduction can be performed in a smaller type, we need to extend
4431     // the reduction to the wider type before we branch to the original loop.
4432     if (PhiTy != RdxDesc.getRecurrenceType())
4433       ReducedPartRdx = RdxDesc.isSigned()
4434                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4435                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4436   }
4437 
4438   // Create a phi node that merges control-flow from the backedge-taken check
4439   // block and the middle block.
4440   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4441                                         LoopScalarPreHeader->getTerminator());
4442   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4443     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4444   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4445 
4446   // Now, we need to fix the users of the reduction variable
4447   // inside and outside of the scalar remainder loop.
4448 
4449   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4450   // in the exit blocks.  See comment on analogous loop in
4451   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4452   if (!Cost->requiresScalarEpilogue(VF))
4453     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4454       if (any_of(LCSSAPhi.incoming_values(),
4455                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4456         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4457 
4458   // Fix the scalar loop reduction variable with the incoming reduction sum
4459   // from the vector body and from the backedge value.
4460   int IncomingEdgeBlockIdx =
4461       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4462   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4463   // Pick the other block.
4464   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4465   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4466   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4467 }
4468 
4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4470                                                   VPTransformState &State) {
4471   RecurKind RK = RdxDesc.getRecurrenceKind();
4472   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4473     return;
4474 
4475   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4476   assert(LoopExitInstr && "null loop exit instruction");
4477   SmallVector<Instruction *, 8> Worklist;
4478   SmallPtrSet<Instruction *, 8> Visited;
4479   Worklist.push_back(LoopExitInstr);
4480   Visited.insert(LoopExitInstr);
4481 
4482   while (!Worklist.empty()) {
4483     Instruction *Cur = Worklist.pop_back_val();
4484     if (isa<OverflowingBinaryOperator>(Cur))
4485       for (unsigned Part = 0; Part < UF; ++Part) {
4486         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4487         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4488       }
4489 
4490     for (User *U : Cur->users()) {
4491       Instruction *UI = cast<Instruction>(U);
4492       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4493           Visited.insert(UI).second)
4494         Worklist.push_back(UI);
4495     }
4496   }
4497 }
4498 
4499 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4500   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4501     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4502       // Some phis were already hand updated by the reduction and recurrence
4503       // code above, leave them alone.
4504       continue;
4505 
4506     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4507     // Non-instruction incoming values will have only one value.
4508 
4509     VPLane Lane = VPLane::getFirstLane();
4510     if (isa<Instruction>(IncomingValue) &&
4511         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4512                                            VF))
4513       Lane = VPLane::getLastLaneForVF(VF);
4514 
4515     // Can be a loop invariant incoming value or the last scalar value to be
4516     // extracted from the vectorized loop.
4517     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4518     Value *lastIncomingValue =
4519         OrigLoop->isLoopInvariant(IncomingValue)
4520             ? IncomingValue
4521             : State.get(State.Plan->getVPValue(IncomingValue),
4522                         VPIteration(UF - 1, Lane));
4523     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4524   }
4525 }
4526 
4527 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4528   // The basic block and loop containing the predicated instruction.
4529   auto *PredBB = PredInst->getParent();
4530   auto *VectorLoop = LI->getLoopFor(PredBB);
4531 
4532   // Initialize a worklist with the operands of the predicated instruction.
4533   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4534 
4535   // Holds instructions that we need to analyze again. An instruction may be
4536   // reanalyzed if we don't yet know if we can sink it or not.
4537   SmallVector<Instruction *, 8> InstsToReanalyze;
4538 
4539   // Returns true if a given use occurs in the predicated block. Phi nodes use
4540   // their operands in their corresponding predecessor blocks.
4541   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4542     auto *I = cast<Instruction>(U.getUser());
4543     BasicBlock *BB = I->getParent();
4544     if (auto *Phi = dyn_cast<PHINode>(I))
4545       BB = Phi->getIncomingBlock(
4546           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4547     return BB == PredBB;
4548   };
4549 
4550   // Iteratively sink the scalarized operands of the predicated instruction
4551   // into the block we created for it. When an instruction is sunk, it's
4552   // operands are then added to the worklist. The algorithm ends after one pass
4553   // through the worklist doesn't sink a single instruction.
4554   bool Changed;
4555   do {
4556     // Add the instructions that need to be reanalyzed to the worklist, and
4557     // reset the changed indicator.
4558     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4559     InstsToReanalyze.clear();
4560     Changed = false;
4561 
4562     while (!Worklist.empty()) {
4563       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4564 
4565       // We can't sink an instruction if it is a phi node, is not in the loop,
4566       // or may have side effects.
4567       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4568           I->mayHaveSideEffects())
4569         continue;
4570 
4571       // If the instruction is already in PredBB, check if we can sink its
4572       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4573       // sinking the scalar instruction I, hence it appears in PredBB; but it
4574       // may have failed to sink I's operands (recursively), which we try
4575       // (again) here.
4576       if (I->getParent() == PredBB) {
4577         Worklist.insert(I->op_begin(), I->op_end());
4578         continue;
4579       }
4580 
4581       // It's legal to sink the instruction if all its uses occur in the
4582       // predicated block. Otherwise, there's nothing to do yet, and we may
4583       // need to reanalyze the instruction.
4584       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4585         InstsToReanalyze.push_back(I);
4586         continue;
4587       }
4588 
4589       // Move the instruction to the beginning of the predicated block, and add
4590       // it's operands to the worklist.
4591       I->moveBefore(&*PredBB->getFirstInsertionPt());
4592       Worklist.insert(I->op_begin(), I->op_end());
4593 
4594       // The sinking may have enabled other instructions to be sunk, so we will
4595       // need to iterate.
4596       Changed = true;
4597     }
4598   } while (Changed);
4599 }
4600 
4601 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4602   for (PHINode *OrigPhi : OrigPHIsToFix) {
4603     VPWidenPHIRecipe *VPPhi =
4604         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4605     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4606     // Make sure the builder has a valid insert point.
4607     Builder.SetInsertPoint(NewPhi);
4608     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4609       VPValue *Inc = VPPhi->getIncomingValue(i);
4610       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4611       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4612     }
4613   }
4614 }
4615 
4616 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4617   return Cost->useOrderedReductions(RdxDesc);
4618 }
4619 
4620 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4621                                    VPUser &Operands, unsigned UF,
4622                                    ElementCount VF, bool IsPtrLoopInvariant,
4623                                    SmallBitVector &IsIndexLoopInvariant,
4624                                    VPTransformState &State) {
4625   // Construct a vector GEP by widening the operands of the scalar GEP as
4626   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4627   // results in a vector of pointers when at least one operand of the GEP
4628   // is vector-typed. Thus, to keep the representation compact, we only use
4629   // vector-typed operands for loop-varying values.
4630 
4631   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4632     // If we are vectorizing, but the GEP has only loop-invariant operands,
4633     // the GEP we build (by only using vector-typed operands for
4634     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4635     // produce a vector of pointers, we need to either arbitrarily pick an
4636     // operand to broadcast, or broadcast a clone of the original GEP.
4637     // Here, we broadcast a clone of the original.
4638     //
4639     // TODO: If at some point we decide to scalarize instructions having
4640     //       loop-invariant operands, this special case will no longer be
4641     //       required. We would add the scalarization decision to
4642     //       collectLoopScalars() and teach getVectorValue() to broadcast
4643     //       the lane-zero scalar value.
4644     auto *Clone = Builder.Insert(GEP->clone());
4645     for (unsigned Part = 0; Part < UF; ++Part) {
4646       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4647       State.set(VPDef, EntryPart, Part);
4648       addMetadata(EntryPart, GEP);
4649     }
4650   } else {
4651     // If the GEP has at least one loop-varying operand, we are sure to
4652     // produce a vector of pointers. But if we are only unrolling, we want
4653     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4654     // produce with the code below will be scalar (if VF == 1) or vector
4655     // (otherwise). Note that for the unroll-only case, we still maintain
4656     // values in the vector mapping with initVector, as we do for other
4657     // instructions.
4658     for (unsigned Part = 0; Part < UF; ++Part) {
4659       // The pointer operand of the new GEP. If it's loop-invariant, we
4660       // won't broadcast it.
4661       auto *Ptr = IsPtrLoopInvariant
4662                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4663                       : State.get(Operands.getOperand(0), Part);
4664 
4665       // Collect all the indices for the new GEP. If any index is
4666       // loop-invariant, we won't broadcast it.
4667       SmallVector<Value *, 4> Indices;
4668       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4669         VPValue *Operand = Operands.getOperand(I);
4670         if (IsIndexLoopInvariant[I - 1])
4671           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4672         else
4673           Indices.push_back(State.get(Operand, Part));
4674       }
4675 
4676       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4677       // but it should be a vector, otherwise.
4678       auto *NewGEP =
4679           GEP->isInBounds()
4680               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4681                                           Indices)
4682               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4683       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4684              "NewGEP is not a pointer vector");
4685       State.set(VPDef, NewGEP, Part);
4686       addMetadata(NewGEP, GEP);
4687     }
4688   }
4689 }
4690 
4691 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4692                                               VPWidenPHIRecipe *PhiR,
4693                                               VPTransformState &State) {
4694   PHINode *P = cast<PHINode>(PN);
4695   if (EnableVPlanNativePath) {
4696     // Currently we enter here in the VPlan-native path for non-induction
4697     // PHIs where all control flow is uniform. We simply widen these PHIs.
4698     // Create a vector phi with no operands - the vector phi operands will be
4699     // set at the end of vector code generation.
4700     Type *VecTy = (State.VF.isScalar())
4701                       ? PN->getType()
4702                       : VectorType::get(PN->getType(), State.VF);
4703     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4704     State.set(PhiR, VecPhi, 0);
4705     OrigPHIsToFix.push_back(P);
4706 
4707     return;
4708   }
4709 
4710   assert(PN->getParent() == OrigLoop->getHeader() &&
4711          "Non-header phis should have been handled elsewhere");
4712 
4713   // In order to support recurrences we need to be able to vectorize Phi nodes.
4714   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4715   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4716   // this value when we vectorize all of the instructions that use the PHI.
4717 
4718   assert(!Legal->isReductionVariable(P) &&
4719          "reductions should be handled elsewhere");
4720 
4721   setDebugLocFromInst(P);
4722 
4723   // This PHINode must be an induction variable.
4724   // Make sure that we know about it.
4725   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4726 
4727   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4728   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4729 
4730   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4731   // which can be found from the original scalar operations.
4732   switch (II.getKind()) {
4733   case InductionDescriptor::IK_NoInduction:
4734     llvm_unreachable("Unknown induction");
4735   case InductionDescriptor::IK_IntInduction:
4736   case InductionDescriptor::IK_FpInduction:
4737     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4738   case InductionDescriptor::IK_PtrInduction: {
4739     // Handle the pointer induction variable case.
4740     assert(P->getType()->isPointerTy() && "Unexpected type.");
4741 
4742     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4743       // This is the normalized GEP that starts counting at zero.
4744       Value *PtrInd =
4745           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4746       // Determine the number of scalars we need to generate for each unroll
4747       // iteration. If the instruction is uniform, we only need to generate the
4748       // first lane. Otherwise, we generate all VF values.
4749       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4750       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4751 
4752       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4753       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4754       if (NeedsVectorIndex) {
4755         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4756         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4757         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4758       }
4759 
4760       for (unsigned Part = 0; Part < UF; ++Part) {
4761         Value *PartStart = createStepForVF(
4762             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4763 
4764         if (NeedsVectorIndex) {
4765           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4766           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4767           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4768           Value *SclrGep =
4769               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4770           SclrGep->setName("next.gep");
4771           State.set(PhiR, SclrGep, Part);
4772           // We've cached the whole vector, which means we can support the
4773           // extraction of any lane.
4774           continue;
4775         }
4776 
4777         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4778           Value *Idx = Builder.CreateAdd(
4779               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4780           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4781           Value *SclrGep =
4782               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4783           SclrGep->setName("next.gep");
4784           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4785         }
4786       }
4787       return;
4788     }
4789     assert(isa<SCEVConstant>(II.getStep()) &&
4790            "Induction step not a SCEV constant!");
4791     Type *PhiType = II.getStep()->getType();
4792 
4793     // Build a pointer phi
4794     Value *ScalarStartValue = II.getStartValue();
4795     Type *ScStValueType = ScalarStartValue->getType();
4796     PHINode *NewPointerPhi =
4797         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4798     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4799 
4800     // A pointer induction, performed by using a gep
4801     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4802     Instruction *InductionLoc = LoopLatch->getTerminator();
4803     const SCEV *ScalarStep = II.getStep();
4804     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4805     Value *ScalarStepValue =
4806         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4807     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4808     Value *NumUnrolledElems =
4809         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4810     Value *InductionGEP = GetElementPtrInst::Create(
4811         ScStValueType->getPointerElementType(), NewPointerPhi,
4812         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4813         InductionLoc);
4814     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4815 
4816     // Create UF many actual address geps that use the pointer
4817     // phi as base and a vectorized version of the step value
4818     // (<step*0, ..., step*N>) as offset.
4819     for (unsigned Part = 0; Part < State.UF; ++Part) {
4820       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4821       Value *StartOffsetScalar =
4822           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4823       Value *StartOffset =
4824           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4825       // Create a vector of consecutive numbers from zero to VF.
4826       StartOffset =
4827           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4828 
4829       Value *GEP = Builder.CreateGEP(
4830           ScStValueType->getPointerElementType(), NewPointerPhi,
4831           Builder.CreateMul(
4832               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4833               "vector.gep"));
4834       State.set(PhiR, GEP, Part);
4835     }
4836   }
4837   }
4838 }
4839 
4840 /// A helper function for checking whether an integer division-related
4841 /// instruction may divide by zero (in which case it must be predicated if
4842 /// executed conditionally in the scalar code).
4843 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4844 /// Non-zero divisors that are non compile-time constants will not be
4845 /// converted into multiplication, so we will still end up scalarizing
4846 /// the division, but can do so w/o predication.
4847 static bool mayDivideByZero(Instruction &I) {
4848   assert((I.getOpcode() == Instruction::UDiv ||
4849           I.getOpcode() == Instruction::SDiv ||
4850           I.getOpcode() == Instruction::URem ||
4851           I.getOpcode() == Instruction::SRem) &&
4852          "Unexpected instruction");
4853   Value *Divisor = I.getOperand(1);
4854   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4855   return !CInt || CInt->isZero();
4856 }
4857 
4858 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4859                                            VPUser &User,
4860                                            VPTransformState &State) {
4861   switch (I.getOpcode()) {
4862   case Instruction::Call:
4863   case Instruction::Br:
4864   case Instruction::PHI:
4865   case Instruction::GetElementPtr:
4866   case Instruction::Select:
4867     llvm_unreachable("This instruction is handled by a different recipe.");
4868   case Instruction::UDiv:
4869   case Instruction::SDiv:
4870   case Instruction::SRem:
4871   case Instruction::URem:
4872   case Instruction::Add:
4873   case Instruction::FAdd:
4874   case Instruction::Sub:
4875   case Instruction::FSub:
4876   case Instruction::FNeg:
4877   case Instruction::Mul:
4878   case Instruction::FMul:
4879   case Instruction::FDiv:
4880   case Instruction::FRem:
4881   case Instruction::Shl:
4882   case Instruction::LShr:
4883   case Instruction::AShr:
4884   case Instruction::And:
4885   case Instruction::Or:
4886   case Instruction::Xor: {
4887     // Just widen unops and binops.
4888     setDebugLocFromInst(&I);
4889 
4890     for (unsigned Part = 0; Part < UF; ++Part) {
4891       SmallVector<Value *, 2> Ops;
4892       for (VPValue *VPOp : User.operands())
4893         Ops.push_back(State.get(VPOp, Part));
4894 
4895       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4896 
4897       if (auto *VecOp = dyn_cast<Instruction>(V))
4898         VecOp->copyIRFlags(&I);
4899 
4900       // Use this vector value for all users of the original instruction.
4901       State.set(Def, V, Part);
4902       addMetadata(V, &I);
4903     }
4904 
4905     break;
4906   }
4907   case Instruction::ICmp:
4908   case Instruction::FCmp: {
4909     // Widen compares. Generate vector compares.
4910     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4911     auto *Cmp = cast<CmpInst>(&I);
4912     setDebugLocFromInst(Cmp);
4913     for (unsigned Part = 0; Part < UF; ++Part) {
4914       Value *A = State.get(User.getOperand(0), Part);
4915       Value *B = State.get(User.getOperand(1), Part);
4916       Value *C = nullptr;
4917       if (FCmp) {
4918         // Propagate fast math flags.
4919         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4920         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4921         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4922       } else {
4923         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4924       }
4925       State.set(Def, C, Part);
4926       addMetadata(C, &I);
4927     }
4928 
4929     break;
4930   }
4931 
4932   case Instruction::ZExt:
4933   case Instruction::SExt:
4934   case Instruction::FPToUI:
4935   case Instruction::FPToSI:
4936   case Instruction::FPExt:
4937   case Instruction::PtrToInt:
4938   case Instruction::IntToPtr:
4939   case Instruction::SIToFP:
4940   case Instruction::UIToFP:
4941   case Instruction::Trunc:
4942   case Instruction::FPTrunc:
4943   case Instruction::BitCast: {
4944     auto *CI = cast<CastInst>(&I);
4945     setDebugLocFromInst(CI);
4946 
4947     /// Vectorize casts.
4948     Type *DestTy =
4949         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4950 
4951     for (unsigned Part = 0; Part < UF; ++Part) {
4952       Value *A = State.get(User.getOperand(0), Part);
4953       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4954       State.set(Def, Cast, Part);
4955       addMetadata(Cast, &I);
4956     }
4957     break;
4958   }
4959   default:
4960     // This instruction is not vectorized by simple widening.
4961     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4962     llvm_unreachable("Unhandled instruction!");
4963   } // end of switch.
4964 }
4965 
4966 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4967                                                VPUser &ArgOperands,
4968                                                VPTransformState &State) {
4969   assert(!isa<DbgInfoIntrinsic>(I) &&
4970          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4971   setDebugLocFromInst(&I);
4972 
4973   Module *M = I.getParent()->getParent()->getParent();
4974   auto *CI = cast<CallInst>(&I);
4975 
4976   SmallVector<Type *, 4> Tys;
4977   for (Value *ArgOperand : CI->arg_operands())
4978     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4979 
4980   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4981 
4982   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4983   // version of the instruction.
4984   // Is it beneficial to perform intrinsic call compared to lib call?
4985   bool NeedToScalarize = false;
4986   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4987   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4988   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4989   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4990          "Instruction should be scalarized elsewhere.");
4991   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4992          "Either the intrinsic cost or vector call cost must be valid");
4993 
4994   for (unsigned Part = 0; Part < UF; ++Part) {
4995     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4996     SmallVector<Value *, 4> Args;
4997     for (auto &I : enumerate(ArgOperands.operands())) {
4998       // Some intrinsics have a scalar argument - don't replace it with a
4999       // vector.
5000       Value *Arg;
5001       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5002         Arg = State.get(I.value(), Part);
5003       else {
5004         Arg = State.get(I.value(), VPIteration(0, 0));
5005         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5006           TysForDecl.push_back(Arg->getType());
5007       }
5008       Args.push_back(Arg);
5009     }
5010 
5011     Function *VectorF;
5012     if (UseVectorIntrinsic) {
5013       // Use vector version of the intrinsic.
5014       if (VF.isVector())
5015         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5016       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5017       assert(VectorF && "Can't retrieve vector intrinsic.");
5018     } else {
5019       // Use vector version of the function call.
5020       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5021 #ifndef NDEBUG
5022       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5023              "Can't create vector function.");
5024 #endif
5025         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5026     }
5027       SmallVector<OperandBundleDef, 1> OpBundles;
5028       CI->getOperandBundlesAsDefs(OpBundles);
5029       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5030 
5031       if (isa<FPMathOperator>(V))
5032         V->copyFastMathFlags(CI);
5033 
5034       State.set(Def, V, Part);
5035       addMetadata(V, &I);
5036   }
5037 }
5038 
5039 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5040                                                  VPUser &Operands,
5041                                                  bool InvariantCond,
5042                                                  VPTransformState &State) {
5043   setDebugLocFromInst(&I);
5044 
5045   // The condition can be loop invariant  but still defined inside the
5046   // loop. This means that we can't just use the original 'cond' value.
5047   // We have to take the 'vectorized' value and pick the first lane.
5048   // Instcombine will make this a no-op.
5049   auto *InvarCond = InvariantCond
5050                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5051                         : nullptr;
5052 
5053   for (unsigned Part = 0; Part < UF; ++Part) {
5054     Value *Cond =
5055         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5056     Value *Op0 = State.get(Operands.getOperand(1), Part);
5057     Value *Op1 = State.get(Operands.getOperand(2), Part);
5058     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5059     State.set(VPDef, Sel, Part);
5060     addMetadata(Sel, &I);
5061   }
5062 }
5063 
5064 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5065   // We should not collect Scalars more than once per VF. Right now, this
5066   // function is called from collectUniformsAndScalars(), which already does
5067   // this check. Collecting Scalars for VF=1 does not make any sense.
5068   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5069          "This function should not be visited twice for the same VF");
5070 
5071   SmallSetVector<Instruction *, 8> Worklist;
5072 
5073   // These sets are used to seed the analysis with pointers used by memory
5074   // accesses that will remain scalar.
5075   SmallSetVector<Instruction *, 8> ScalarPtrs;
5076   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5077   auto *Latch = TheLoop->getLoopLatch();
5078 
5079   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5080   // The pointer operands of loads and stores will be scalar as long as the
5081   // memory access is not a gather or scatter operation. The value operand of a
5082   // store will remain scalar if the store is scalarized.
5083   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5084     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5085     assert(WideningDecision != CM_Unknown &&
5086            "Widening decision should be ready at this moment");
5087     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5088       if (Ptr == Store->getValueOperand())
5089         return WideningDecision == CM_Scalarize;
5090     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5091            "Ptr is neither a value or pointer operand");
5092     return WideningDecision != CM_GatherScatter;
5093   };
5094 
5095   // A helper that returns true if the given value is a bitcast or
5096   // getelementptr instruction contained in the loop.
5097   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5098     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5099             isa<GetElementPtrInst>(V)) &&
5100            !TheLoop->isLoopInvariant(V);
5101   };
5102 
5103   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5104     if (!isa<PHINode>(Ptr) ||
5105         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5106       return false;
5107     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5108     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5109       return false;
5110     return isScalarUse(MemAccess, Ptr);
5111   };
5112 
5113   // A helper that evaluates a memory access's use of a pointer. If the
5114   // pointer is actually the pointer induction of a loop, it is being
5115   // inserted into Worklist. If the use will be a scalar use, and the
5116   // pointer is only used by memory accesses, we place the pointer in
5117   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5118   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5119     if (isScalarPtrInduction(MemAccess, Ptr)) {
5120       Worklist.insert(cast<Instruction>(Ptr));
5121       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5122                         << "\n");
5123 
5124       Instruction *Update = cast<Instruction>(
5125           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5126       ScalarPtrs.insert(Update);
5127       return;
5128     }
5129     // We only care about bitcast and getelementptr instructions contained in
5130     // the loop.
5131     if (!isLoopVaryingBitCastOrGEP(Ptr))
5132       return;
5133 
5134     // If the pointer has already been identified as scalar (e.g., if it was
5135     // also identified as uniform), there's nothing to do.
5136     auto *I = cast<Instruction>(Ptr);
5137     if (Worklist.count(I))
5138       return;
5139 
5140     // If the use of the pointer will be a scalar use, and all users of the
5141     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5142     // place the pointer in PossibleNonScalarPtrs.
5143     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5144           return isa<LoadInst>(U) || isa<StoreInst>(U);
5145         }))
5146       ScalarPtrs.insert(I);
5147     else
5148       PossibleNonScalarPtrs.insert(I);
5149   };
5150 
5151   // We seed the scalars analysis with three classes of instructions: (1)
5152   // instructions marked uniform-after-vectorization and (2) bitcast,
5153   // getelementptr and (pointer) phi instructions used by memory accesses
5154   // requiring a scalar use.
5155   //
5156   // (1) Add to the worklist all instructions that have been identified as
5157   // uniform-after-vectorization.
5158   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5159 
5160   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5161   // memory accesses requiring a scalar use. The pointer operands of loads and
5162   // stores will be scalar as long as the memory accesses is not a gather or
5163   // scatter operation. The value operand of a store will remain scalar if the
5164   // store is scalarized.
5165   for (auto *BB : TheLoop->blocks())
5166     for (auto &I : *BB) {
5167       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5168         evaluatePtrUse(Load, Load->getPointerOperand());
5169       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5170         evaluatePtrUse(Store, Store->getPointerOperand());
5171         evaluatePtrUse(Store, Store->getValueOperand());
5172       }
5173     }
5174   for (auto *I : ScalarPtrs)
5175     if (!PossibleNonScalarPtrs.count(I)) {
5176       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5177       Worklist.insert(I);
5178     }
5179 
5180   // Insert the forced scalars.
5181   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5182   // induction variable when the PHI user is scalarized.
5183   auto ForcedScalar = ForcedScalars.find(VF);
5184   if (ForcedScalar != ForcedScalars.end())
5185     for (auto *I : ForcedScalar->second)
5186       Worklist.insert(I);
5187 
5188   // Expand the worklist by looking through any bitcasts and getelementptr
5189   // instructions we've already identified as scalar. This is similar to the
5190   // expansion step in collectLoopUniforms(); however, here we're only
5191   // expanding to include additional bitcasts and getelementptr instructions.
5192   unsigned Idx = 0;
5193   while (Idx != Worklist.size()) {
5194     Instruction *Dst = Worklist[Idx++];
5195     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5196       continue;
5197     auto *Src = cast<Instruction>(Dst->getOperand(0));
5198     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5199           auto *J = cast<Instruction>(U);
5200           return !TheLoop->contains(J) || Worklist.count(J) ||
5201                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5202                   isScalarUse(J, Src));
5203         })) {
5204       Worklist.insert(Src);
5205       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5206     }
5207   }
5208 
5209   // An induction variable will remain scalar if all users of the induction
5210   // variable and induction variable update remain scalar.
5211   for (auto &Induction : Legal->getInductionVars()) {
5212     auto *Ind = Induction.first;
5213     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5214 
5215     // If tail-folding is applied, the primary induction variable will be used
5216     // to feed a vector compare.
5217     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5218       continue;
5219 
5220     // Determine if all users of the induction variable are scalar after
5221     // vectorization.
5222     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5223       auto *I = cast<Instruction>(U);
5224       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5225     });
5226     if (!ScalarInd)
5227       continue;
5228 
5229     // Determine if all users of the induction variable update instruction are
5230     // scalar after vectorization.
5231     auto ScalarIndUpdate =
5232         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5233           auto *I = cast<Instruction>(U);
5234           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5235         });
5236     if (!ScalarIndUpdate)
5237       continue;
5238 
5239     // The induction variable and its update instruction will remain scalar.
5240     Worklist.insert(Ind);
5241     Worklist.insert(IndUpdate);
5242     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5243     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5244                       << "\n");
5245   }
5246 
5247   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5248 }
5249 
5250 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5251   if (!blockNeedsPredication(I->getParent()))
5252     return false;
5253   switch(I->getOpcode()) {
5254   default:
5255     break;
5256   case Instruction::Load:
5257   case Instruction::Store: {
5258     if (!Legal->isMaskRequired(I))
5259       return false;
5260     auto *Ptr = getLoadStorePointerOperand(I);
5261     auto *Ty = getLoadStoreType(I);
5262     const Align Alignment = getLoadStoreAlignment(I);
5263     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5264                                 TTI.isLegalMaskedGather(Ty, Alignment))
5265                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5266                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5267   }
5268   case Instruction::UDiv:
5269   case Instruction::SDiv:
5270   case Instruction::SRem:
5271   case Instruction::URem:
5272     return mayDivideByZero(*I);
5273   }
5274   return false;
5275 }
5276 
5277 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5278     Instruction *I, ElementCount VF) {
5279   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5280   assert(getWideningDecision(I, VF) == CM_Unknown &&
5281          "Decision should not be set yet.");
5282   auto *Group = getInterleavedAccessGroup(I);
5283   assert(Group && "Must have a group.");
5284 
5285   // If the instruction's allocated size doesn't equal it's type size, it
5286   // requires padding and will be scalarized.
5287   auto &DL = I->getModule()->getDataLayout();
5288   auto *ScalarTy = getLoadStoreType(I);
5289   if (hasIrregularType(ScalarTy, DL))
5290     return false;
5291 
5292   // Check if masking is required.
5293   // A Group may need masking for one of two reasons: it resides in a block that
5294   // needs predication, or it was decided to use masking to deal with gaps
5295   // (either a gap at the end of a load-access that may result in a speculative
5296   // load, or any gaps in a store-access).
5297   bool PredicatedAccessRequiresMasking =
5298       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5299   bool LoadAccessWithGapsRequiresEpilogMasking =
5300       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5301       !isScalarEpilogueAllowed();
5302   bool StoreAccessWithGapsRequiresMasking =
5303       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5304   if (!PredicatedAccessRequiresMasking &&
5305       !LoadAccessWithGapsRequiresEpilogMasking &&
5306       !StoreAccessWithGapsRequiresMasking)
5307     return true;
5308 
5309   // If masked interleaving is required, we expect that the user/target had
5310   // enabled it, because otherwise it either wouldn't have been created or
5311   // it should have been invalidated by the CostModel.
5312   assert(useMaskedInterleavedAccesses(TTI) &&
5313          "Masked interleave-groups for predicated accesses are not enabled.");
5314 
5315   auto *Ty = getLoadStoreType(I);
5316   const Align Alignment = getLoadStoreAlignment(I);
5317   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5318                           : TTI.isLegalMaskedStore(Ty, Alignment);
5319 }
5320 
5321 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5322     Instruction *I, ElementCount VF) {
5323   // Get and ensure we have a valid memory instruction.
5324   LoadInst *LI = dyn_cast<LoadInst>(I);
5325   StoreInst *SI = dyn_cast<StoreInst>(I);
5326   assert((LI || SI) && "Invalid memory instruction");
5327 
5328   auto *Ptr = getLoadStorePointerOperand(I);
5329 
5330   // In order to be widened, the pointer should be consecutive, first of all.
5331   if (!Legal->isConsecutivePtr(Ptr))
5332     return false;
5333 
5334   // If the instruction is a store located in a predicated block, it will be
5335   // scalarized.
5336   if (isScalarWithPredication(I))
5337     return false;
5338 
5339   // If the instruction's allocated size doesn't equal it's type size, it
5340   // requires padding and will be scalarized.
5341   auto &DL = I->getModule()->getDataLayout();
5342   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5343   if (hasIrregularType(ScalarTy, DL))
5344     return false;
5345 
5346   return true;
5347 }
5348 
5349 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5350   // We should not collect Uniforms more than once per VF. Right now,
5351   // this function is called from collectUniformsAndScalars(), which
5352   // already does this check. Collecting Uniforms for VF=1 does not make any
5353   // sense.
5354 
5355   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5356          "This function should not be visited twice for the same VF");
5357 
5358   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5359   // not analyze again.  Uniforms.count(VF) will return 1.
5360   Uniforms[VF].clear();
5361 
5362   // We now know that the loop is vectorizable!
5363   // Collect instructions inside the loop that will remain uniform after
5364   // vectorization.
5365 
5366   // Global values, params and instructions outside of current loop are out of
5367   // scope.
5368   auto isOutOfScope = [&](Value *V) -> bool {
5369     Instruction *I = dyn_cast<Instruction>(V);
5370     return (!I || !TheLoop->contains(I));
5371   };
5372 
5373   SetVector<Instruction *> Worklist;
5374   BasicBlock *Latch = TheLoop->getLoopLatch();
5375 
5376   // Instructions that are scalar with predication must not be considered
5377   // uniform after vectorization, because that would create an erroneous
5378   // replicating region where only a single instance out of VF should be formed.
5379   // TODO: optimize such seldom cases if found important, see PR40816.
5380   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5381     if (isOutOfScope(I)) {
5382       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5383                         << *I << "\n");
5384       return;
5385     }
5386     if (isScalarWithPredication(I)) {
5387       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5388                         << *I << "\n");
5389       return;
5390     }
5391     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5392     Worklist.insert(I);
5393   };
5394 
5395   // Start with the conditional branch. If the branch condition is an
5396   // instruction contained in the loop that is only used by the branch, it is
5397   // uniform.
5398   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5399   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5400     addToWorklistIfAllowed(Cmp);
5401 
5402   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5403     InstWidening WideningDecision = getWideningDecision(I, VF);
5404     assert(WideningDecision != CM_Unknown &&
5405            "Widening decision should be ready at this moment");
5406 
5407     // A uniform memory op is itself uniform.  We exclude uniform stores
5408     // here as they demand the last lane, not the first one.
5409     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5410       assert(WideningDecision == CM_Scalarize);
5411       return true;
5412     }
5413 
5414     return (WideningDecision == CM_Widen ||
5415             WideningDecision == CM_Widen_Reverse ||
5416             WideningDecision == CM_Interleave);
5417   };
5418 
5419 
5420   // Returns true if Ptr is the pointer operand of a memory access instruction
5421   // I, and I is known to not require scalarization.
5422   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5423     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5424   };
5425 
5426   // Holds a list of values which are known to have at least one uniform use.
5427   // Note that there may be other uses which aren't uniform.  A "uniform use"
5428   // here is something which only demands lane 0 of the unrolled iterations;
5429   // it does not imply that all lanes produce the same value (e.g. this is not
5430   // the usual meaning of uniform)
5431   SetVector<Value *> HasUniformUse;
5432 
5433   // Scan the loop for instructions which are either a) known to have only
5434   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5435   for (auto *BB : TheLoop->blocks())
5436     for (auto &I : *BB) {
5437       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5438         switch (II->getIntrinsicID()) {
5439         case Intrinsic::sideeffect:
5440         case Intrinsic::experimental_noalias_scope_decl:
5441         case Intrinsic::assume:
5442         case Intrinsic::lifetime_start:
5443         case Intrinsic::lifetime_end:
5444           if (TheLoop->hasLoopInvariantOperands(&I))
5445             addToWorklistIfAllowed(&I);
5446           break;
5447         default:
5448           break;
5449         }
5450       }
5451 
5452       // ExtractValue instructions must be uniform, because the operands are
5453       // known to be loop-invariant.
5454       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5455         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5456                "Expected aggregate value to be loop invariant");
5457         addToWorklistIfAllowed(EVI);
5458         continue;
5459       }
5460 
5461       // If there's no pointer operand, there's nothing to do.
5462       auto *Ptr = getLoadStorePointerOperand(&I);
5463       if (!Ptr)
5464         continue;
5465 
5466       // A uniform memory op is itself uniform.  We exclude uniform stores
5467       // here as they demand the last lane, not the first one.
5468       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5469         addToWorklistIfAllowed(&I);
5470 
5471       if (isUniformDecision(&I, VF)) {
5472         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5473         HasUniformUse.insert(Ptr);
5474       }
5475     }
5476 
5477   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5478   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5479   // disallows uses outside the loop as well.
5480   for (auto *V : HasUniformUse) {
5481     if (isOutOfScope(V))
5482       continue;
5483     auto *I = cast<Instruction>(V);
5484     auto UsersAreMemAccesses =
5485       llvm::all_of(I->users(), [&](User *U) -> bool {
5486         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5487       });
5488     if (UsersAreMemAccesses)
5489       addToWorklistIfAllowed(I);
5490   }
5491 
5492   // Expand Worklist in topological order: whenever a new instruction
5493   // is added , its users should be already inside Worklist.  It ensures
5494   // a uniform instruction will only be used by uniform instructions.
5495   unsigned idx = 0;
5496   while (idx != Worklist.size()) {
5497     Instruction *I = Worklist[idx++];
5498 
5499     for (auto OV : I->operand_values()) {
5500       // isOutOfScope operands cannot be uniform instructions.
5501       if (isOutOfScope(OV))
5502         continue;
5503       // First order recurrence Phi's should typically be considered
5504       // non-uniform.
5505       auto *OP = dyn_cast<PHINode>(OV);
5506       if (OP && Legal->isFirstOrderRecurrence(OP))
5507         continue;
5508       // If all the users of the operand are uniform, then add the
5509       // operand into the uniform worklist.
5510       auto *OI = cast<Instruction>(OV);
5511       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5512             auto *J = cast<Instruction>(U);
5513             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5514           }))
5515         addToWorklistIfAllowed(OI);
5516     }
5517   }
5518 
5519   // For an instruction to be added into Worklist above, all its users inside
5520   // the loop should also be in Worklist. However, this condition cannot be
5521   // true for phi nodes that form a cyclic dependence. We must process phi
5522   // nodes separately. An induction variable will remain uniform if all users
5523   // of the induction variable and induction variable update remain uniform.
5524   // The code below handles both pointer and non-pointer induction variables.
5525   for (auto &Induction : Legal->getInductionVars()) {
5526     auto *Ind = Induction.first;
5527     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5528 
5529     // Determine if all users of the induction variable are uniform after
5530     // vectorization.
5531     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5532       auto *I = cast<Instruction>(U);
5533       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5534              isVectorizedMemAccessUse(I, Ind);
5535     });
5536     if (!UniformInd)
5537       continue;
5538 
5539     // Determine if all users of the induction variable update instruction are
5540     // uniform after vectorization.
5541     auto UniformIndUpdate =
5542         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5543           auto *I = cast<Instruction>(U);
5544           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5545                  isVectorizedMemAccessUse(I, IndUpdate);
5546         });
5547     if (!UniformIndUpdate)
5548       continue;
5549 
5550     // The induction variable and its update instruction will remain uniform.
5551     addToWorklistIfAllowed(Ind);
5552     addToWorklistIfAllowed(IndUpdate);
5553   }
5554 
5555   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5556 }
5557 
5558 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5559   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5560 
5561   if (Legal->getRuntimePointerChecking()->Need) {
5562     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5563         "runtime pointer checks needed. Enable vectorization of this "
5564         "loop with '#pragma clang loop vectorize(enable)' when "
5565         "compiling with -Os/-Oz",
5566         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5567     return true;
5568   }
5569 
5570   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5571     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5572         "runtime SCEV checks needed. Enable vectorization of this "
5573         "loop with '#pragma clang loop vectorize(enable)' when "
5574         "compiling with -Os/-Oz",
5575         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5576     return true;
5577   }
5578 
5579   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5580   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5581     reportVectorizationFailure("Runtime stride check for small trip count",
5582         "runtime stride == 1 checks needed. Enable vectorization of "
5583         "this loop without such check by compiling with -Os/-Oz",
5584         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5585     return true;
5586   }
5587 
5588   return false;
5589 }
5590 
5591 ElementCount
5592 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5593   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5594     return ElementCount::getScalable(0);
5595 
5596   if (Hints->isScalableVectorizationDisabled()) {
5597     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5598                             "ScalableVectorizationDisabled", ORE, TheLoop);
5599     return ElementCount::getScalable(0);
5600   }
5601 
5602   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5603 
5604   auto MaxScalableVF = ElementCount::getScalable(
5605       std::numeric_limits<ElementCount::ScalarTy>::max());
5606 
5607   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5608   // FIXME: While for scalable vectors this is currently sufficient, this should
5609   // be replaced by a more detailed mechanism that filters out specific VFs,
5610   // instead of invalidating vectorization for a whole set of VFs based on the
5611   // MaxVF.
5612 
5613   // Disable scalable vectorization if the loop contains unsupported reductions.
5614   if (!canVectorizeReductions(MaxScalableVF)) {
5615     reportVectorizationInfo(
5616         "Scalable vectorization not supported for the reduction "
5617         "operations found in this loop.",
5618         "ScalableVFUnfeasible", ORE, TheLoop);
5619     return ElementCount::getScalable(0);
5620   }
5621 
5622   // Disable scalable vectorization if the loop contains any instructions
5623   // with element types not supported for scalable vectors.
5624   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5625         return !Ty->isVoidTy() &&
5626                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5627       })) {
5628     reportVectorizationInfo("Scalable vectorization is not supported "
5629                             "for all element types found in this loop.",
5630                             "ScalableVFUnfeasible", ORE, TheLoop);
5631     return ElementCount::getScalable(0);
5632   }
5633 
5634   if (Legal->isSafeForAnyVectorWidth())
5635     return MaxScalableVF;
5636 
5637   // Limit MaxScalableVF by the maximum safe dependence distance.
5638   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5639   MaxScalableVF = ElementCount::getScalable(
5640       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5641   if (!MaxScalableVF)
5642     reportVectorizationInfo(
5643         "Max legal vector width too small, scalable vectorization "
5644         "unfeasible.",
5645         "ScalableVFUnfeasible", ORE, TheLoop);
5646 
5647   return MaxScalableVF;
5648 }
5649 
5650 FixedScalableVFPair
5651 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5652                                                  ElementCount UserVF) {
5653   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5654   unsigned SmallestType, WidestType;
5655   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5656 
5657   // Get the maximum safe dependence distance in bits computed by LAA.
5658   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5659   // the memory accesses that is most restrictive (involved in the smallest
5660   // dependence distance).
5661   unsigned MaxSafeElements =
5662       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5663 
5664   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5665   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5666 
5667   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5668                     << ".\n");
5669   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5670                     << ".\n");
5671 
5672   // First analyze the UserVF, fall back if the UserVF should be ignored.
5673   if (UserVF) {
5674     auto MaxSafeUserVF =
5675         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5676 
5677     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5678       // If `VF=vscale x N` is safe, then so is `VF=N`
5679       if (UserVF.isScalable())
5680         return FixedScalableVFPair(
5681             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5682       else
5683         return UserVF;
5684     }
5685 
5686     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5687 
5688     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5689     // is better to ignore the hint and let the compiler choose a suitable VF.
5690     if (!UserVF.isScalable()) {
5691       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5692                         << " is unsafe, clamping to max safe VF="
5693                         << MaxSafeFixedVF << ".\n");
5694       ORE->emit([&]() {
5695         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5696                                           TheLoop->getStartLoc(),
5697                                           TheLoop->getHeader())
5698                << "User-specified vectorization factor "
5699                << ore::NV("UserVectorizationFactor", UserVF)
5700                << " is unsafe, clamping to maximum safe vectorization factor "
5701                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5702       });
5703       return MaxSafeFixedVF;
5704     }
5705 
5706     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5707       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5708                         << " is ignored because scalable vectors are not "
5709                            "available.\n");
5710       ORE->emit([&]() {
5711         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5712                                           TheLoop->getStartLoc(),
5713                                           TheLoop->getHeader())
5714                << "User-specified vectorization factor "
5715                << ore::NV("UserVectorizationFactor", UserVF)
5716                << " is ignored because the target does not support scalable "
5717                   "vectors. The compiler will pick a more suitable value.";
5718       });
5719     } else {
5720       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5721                         << " is unsafe. Ignoring scalable UserVF.\n");
5722       ORE->emit([&]() {
5723         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5724                                           TheLoop->getStartLoc(),
5725                                           TheLoop->getHeader())
5726                << "User-specified vectorization factor "
5727                << ore::NV("UserVectorizationFactor", UserVF)
5728                << " is unsafe. Ignoring the hint to let the compiler pick a "
5729                   "more suitable value.";
5730       });
5731     }
5732   }
5733 
5734   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5735                     << " / " << WidestType << " bits.\n");
5736 
5737   FixedScalableVFPair Result(ElementCount::getFixed(1),
5738                              ElementCount::getScalable(0));
5739   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5740                                            WidestType, MaxSafeFixedVF))
5741     Result.FixedVF = MaxVF;
5742 
5743   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5744                                            WidestType, MaxSafeScalableVF))
5745     if (MaxVF.isScalable()) {
5746       Result.ScalableVF = MaxVF;
5747       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5748                         << "\n");
5749     }
5750 
5751   return Result;
5752 }
5753 
5754 FixedScalableVFPair
5755 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5756   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5757     // TODO: It may by useful to do since it's still likely to be dynamically
5758     // uniform if the target can skip.
5759     reportVectorizationFailure(
5760         "Not inserting runtime ptr check for divergent target",
5761         "runtime pointer checks needed. Not enabled for divergent target",
5762         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5763     return FixedScalableVFPair::getNone();
5764   }
5765 
5766   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5767   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5768   if (TC == 1) {
5769     reportVectorizationFailure("Single iteration (non) loop",
5770         "loop trip count is one, irrelevant for vectorization",
5771         "SingleIterationLoop", ORE, TheLoop);
5772     return FixedScalableVFPair::getNone();
5773   }
5774 
5775   switch (ScalarEpilogueStatus) {
5776   case CM_ScalarEpilogueAllowed:
5777     return computeFeasibleMaxVF(TC, UserVF);
5778   case CM_ScalarEpilogueNotAllowedUsePredicate:
5779     LLVM_FALLTHROUGH;
5780   case CM_ScalarEpilogueNotNeededUsePredicate:
5781     LLVM_DEBUG(
5782         dbgs() << "LV: vector predicate hint/switch found.\n"
5783                << "LV: Not allowing scalar epilogue, creating predicated "
5784                << "vector loop.\n");
5785     break;
5786   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5787     // fallthrough as a special case of OptForSize
5788   case CM_ScalarEpilogueNotAllowedOptSize:
5789     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5790       LLVM_DEBUG(
5791           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5792     else
5793       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5794                         << "count.\n");
5795 
5796     // Bail if runtime checks are required, which are not good when optimising
5797     // for size.
5798     if (runtimeChecksRequired())
5799       return FixedScalableVFPair::getNone();
5800 
5801     break;
5802   }
5803 
5804   // The only loops we can vectorize without a scalar epilogue, are loops with
5805   // a bottom-test and a single exiting block. We'd have to handle the fact
5806   // that not every instruction executes on the last iteration.  This will
5807   // require a lane mask which varies through the vector loop body.  (TODO)
5808   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5809     // If there was a tail-folding hint/switch, but we can't fold the tail by
5810     // masking, fallback to a vectorization with a scalar epilogue.
5811     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5812       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5813                            "scalar epilogue instead.\n");
5814       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5815       return computeFeasibleMaxVF(TC, UserVF);
5816     }
5817     return FixedScalableVFPair::getNone();
5818   }
5819 
5820   // Now try the tail folding
5821 
5822   // Invalidate interleave groups that require an epilogue if we can't mask
5823   // the interleave-group.
5824   if (!useMaskedInterleavedAccesses(TTI)) {
5825     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5826            "No decisions should have been taken at this point");
5827     // Note: There is no need to invalidate any cost modeling decisions here, as
5828     // non where taken so far.
5829     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5830   }
5831 
5832   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5833   // Avoid tail folding if the trip count is known to be a multiple of any VF
5834   // we chose.
5835   // FIXME: The condition below pessimises the case for fixed-width vectors,
5836   // when scalable VFs are also candidates for vectorization.
5837   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5838     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5839     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5840            "MaxFixedVF must be a power of 2");
5841     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5842                                    : MaxFixedVF.getFixedValue();
5843     ScalarEvolution *SE = PSE.getSE();
5844     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5845     const SCEV *ExitCount = SE->getAddExpr(
5846         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5847     const SCEV *Rem = SE->getURemExpr(
5848         SE->applyLoopGuards(ExitCount, TheLoop),
5849         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5850     if (Rem->isZero()) {
5851       // Accept MaxFixedVF if we do not have a tail.
5852       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5853       return MaxFactors;
5854     }
5855   }
5856 
5857   // For scalable vectors, don't use tail folding as this is currently not yet
5858   // supported. The code is likely to have ended up here if the tripcount is
5859   // low, in which case it makes sense not to use scalable vectors.
5860   if (MaxFactors.ScalableVF.isVector())
5861     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5862 
5863   // If we don't know the precise trip count, or if the trip count that we
5864   // found modulo the vectorization factor is not zero, try to fold the tail
5865   // by masking.
5866   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5867   if (Legal->prepareToFoldTailByMasking()) {
5868     FoldTailByMasking = true;
5869     return MaxFactors;
5870   }
5871 
5872   // If there was a tail-folding hint/switch, but we can't fold the tail by
5873   // masking, fallback to a vectorization with a scalar epilogue.
5874   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5875     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5876                          "scalar epilogue instead.\n");
5877     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5878     return MaxFactors;
5879   }
5880 
5881   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5882     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5883     return FixedScalableVFPair::getNone();
5884   }
5885 
5886   if (TC == 0) {
5887     reportVectorizationFailure(
5888         "Unable to calculate the loop count due to complex control flow",
5889         "unable to calculate the loop count due to complex control flow",
5890         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5891     return FixedScalableVFPair::getNone();
5892   }
5893 
5894   reportVectorizationFailure(
5895       "Cannot optimize for size and vectorize at the same time.",
5896       "cannot optimize for size and vectorize at the same time. "
5897       "Enable vectorization of this loop with '#pragma clang loop "
5898       "vectorize(enable)' when compiling with -Os/-Oz",
5899       "NoTailLoopWithOptForSize", ORE, TheLoop);
5900   return FixedScalableVFPair::getNone();
5901 }
5902 
5903 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5904     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5905     const ElementCount &MaxSafeVF) {
5906   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5907   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5908       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5909                            : TargetTransformInfo::RGK_FixedWidthVector);
5910 
5911   // Convenience function to return the minimum of two ElementCounts.
5912   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5913     assert((LHS.isScalable() == RHS.isScalable()) &&
5914            "Scalable flags must match");
5915     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5916   };
5917 
5918   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5919   // Note that both WidestRegister and WidestType may not be a powers of 2.
5920   auto MaxVectorElementCount = ElementCount::get(
5921       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5922       ComputeScalableMaxVF);
5923   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5924   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5925                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5926 
5927   if (!MaxVectorElementCount) {
5928     LLVM_DEBUG(dbgs() << "LV: The target has no "
5929                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5930                       << " vector registers.\n");
5931     return ElementCount::getFixed(1);
5932   }
5933 
5934   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5935   if (ConstTripCount &&
5936       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5937       isPowerOf2_32(ConstTripCount)) {
5938     // We need to clamp the VF to be the ConstTripCount. There is no point in
5939     // choosing a higher viable VF as done in the loop below. If
5940     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5941     // the TC is less than or equal to the known number of lanes.
5942     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5943                       << ConstTripCount << "\n");
5944     return TripCountEC;
5945   }
5946 
5947   ElementCount MaxVF = MaxVectorElementCount;
5948   if (TTI.shouldMaximizeVectorBandwidth() ||
5949       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5950     auto MaxVectorElementCountMaxBW = ElementCount::get(
5951         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5952         ComputeScalableMaxVF);
5953     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5954 
5955     // Collect all viable vectorization factors larger than the default MaxVF
5956     // (i.e. MaxVectorElementCount).
5957     SmallVector<ElementCount, 8> VFs;
5958     for (ElementCount VS = MaxVectorElementCount * 2;
5959          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5960       VFs.push_back(VS);
5961 
5962     // For each VF calculate its register usage.
5963     auto RUs = calculateRegisterUsage(VFs);
5964 
5965     // Select the largest VF which doesn't require more registers than existing
5966     // ones.
5967     for (int i = RUs.size() - 1; i >= 0; --i) {
5968       bool Selected = true;
5969       for (auto &pair : RUs[i].MaxLocalUsers) {
5970         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5971         if (pair.second > TargetNumRegisters)
5972           Selected = false;
5973       }
5974       if (Selected) {
5975         MaxVF = VFs[i];
5976         break;
5977       }
5978     }
5979     if (ElementCount MinVF =
5980             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5981       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5982         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5983                           << ") with target's minimum: " << MinVF << '\n');
5984         MaxVF = MinVF;
5985       }
5986     }
5987   }
5988   return MaxVF;
5989 }
5990 
5991 bool LoopVectorizationCostModel::isMoreProfitable(
5992     const VectorizationFactor &A, const VectorizationFactor &B) const {
5993   InstructionCost CostA = A.Cost;
5994   InstructionCost CostB = B.Cost;
5995 
5996   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5997 
5998   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5999       MaxTripCount) {
6000     // If we are folding the tail and the trip count is a known (possibly small)
6001     // constant, the trip count will be rounded up to an integer number of
6002     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6003     // which we compare directly. When not folding the tail, the total cost will
6004     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6005     // approximated with the per-lane cost below instead of using the tripcount
6006     // as here.
6007     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6008     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6009     return RTCostA < RTCostB;
6010   }
6011 
6012   // When set to preferred, for now assume vscale may be larger than 1, so
6013   // that scalable vectorization is slightly favorable over fixed-width
6014   // vectorization.
6015   if (Hints->isScalableVectorizationPreferred())
6016     if (A.Width.isScalable() && !B.Width.isScalable())
6017       return (CostA * B.Width.getKnownMinValue()) <=
6018              (CostB * A.Width.getKnownMinValue());
6019 
6020   // To avoid the need for FP division:
6021   //      (CostA / A.Width) < (CostB / B.Width)
6022   // <=>  (CostA * B.Width) < (CostB * A.Width)
6023   return (CostA * B.Width.getKnownMinValue()) <
6024          (CostB * A.Width.getKnownMinValue());
6025 }
6026 
6027 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6028     const ElementCountSet &VFCandidates) {
6029   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6030   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6031   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6032   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6033          "Expected Scalar VF to be a candidate");
6034 
6035   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6036   VectorizationFactor ChosenFactor = ScalarCost;
6037 
6038   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6039   if (ForceVectorization && VFCandidates.size() > 1) {
6040     // Ignore scalar width, because the user explicitly wants vectorization.
6041     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6042     // evaluation.
6043     ChosenFactor.Cost = InstructionCost::getMax();
6044   }
6045 
6046   SmallVector<InstructionVFPair> InvalidCosts;
6047   for (const auto &i : VFCandidates) {
6048     // The cost for scalar VF=1 is already calculated, so ignore it.
6049     if (i.isScalar())
6050       continue;
6051 
6052     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6053     VectorizationFactor Candidate(i, C.first);
6054     LLVM_DEBUG(
6055         dbgs() << "LV: Vector loop of width " << i << " costs: "
6056                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6057                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6058                << ".\n");
6059 
6060     if (!C.second && !ForceVectorization) {
6061       LLVM_DEBUG(
6062           dbgs() << "LV: Not considering vector loop of width " << i
6063                  << " because it will not generate any vector instructions.\n");
6064       continue;
6065     }
6066 
6067     // If profitable add it to ProfitableVF list.
6068     if (isMoreProfitable(Candidate, ScalarCost))
6069       ProfitableVFs.push_back(Candidate);
6070 
6071     if (isMoreProfitable(Candidate, ChosenFactor))
6072       ChosenFactor = Candidate;
6073   }
6074 
6075   // Emit a report of VFs with invalid costs in the loop.
6076   if (!InvalidCosts.empty()) {
6077     // Group the remarks per instruction, keeping the instruction order from
6078     // InvalidCosts.
6079     std::map<Instruction *, unsigned> Numbering;
6080     unsigned I = 0;
6081     for (auto &Pair : InvalidCosts)
6082       if (!Numbering.count(Pair.first))
6083         Numbering[Pair.first] = I++;
6084 
6085     // Sort the list, first on instruction(number) then on VF.
6086     llvm::sort(InvalidCosts,
6087                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6088                  if (Numbering[A.first] != Numbering[B.first])
6089                    return Numbering[A.first] < Numbering[B.first];
6090                  ElementCountComparator ECC;
6091                  return ECC(A.second, B.second);
6092                });
6093 
6094     // For a list of ordered instruction-vf pairs:
6095     //   [(load, vf1), (load, vf2), (store, vf1)]
6096     // Group the instructions together to emit separate remarks for:
6097     //   load  (vf1, vf2)
6098     //   store (vf1)
6099     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6100     auto Subset = ArrayRef<InstructionVFPair>();
6101     do {
6102       if (Subset.empty())
6103         Subset = Tail.take_front(1);
6104 
6105       Instruction *I = Subset.front().first;
6106 
6107       // If the next instruction is different, or if there are no other pairs,
6108       // emit a remark for the collated subset. e.g.
6109       //   [(load, vf1), (load, vf2))]
6110       // to emit:
6111       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6112       if (Subset == Tail || Tail[Subset.size()].first != I) {
6113         std::string OutString;
6114         raw_string_ostream OS(OutString);
6115         assert(!Subset.empty() && "Unexpected empty range");
6116         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6117         for (auto &Pair : Subset)
6118           OS << (Pair.second == Subset.front().second ? "" : ", ")
6119              << Pair.second;
6120         OS << "):";
6121         if (auto *CI = dyn_cast<CallInst>(I))
6122           OS << " call to " << CI->getCalledFunction()->getName();
6123         else
6124           OS << " " << I->getOpcodeName();
6125         OS.flush();
6126         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6127         Tail = Tail.drop_front(Subset.size());
6128         Subset = {};
6129       } else
6130         // Grow the subset by one element
6131         Subset = Tail.take_front(Subset.size() + 1);
6132     } while (!Tail.empty());
6133   }
6134 
6135   if (!EnableCondStoresVectorization && NumPredStores) {
6136     reportVectorizationFailure("There are conditional stores.",
6137         "store that is conditionally executed prevents vectorization",
6138         "ConditionalStore", ORE, TheLoop);
6139     ChosenFactor = ScalarCost;
6140   }
6141 
6142   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6143                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6144              << "LV: Vectorization seems to be not beneficial, "
6145              << "but was forced by a user.\n");
6146   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6147   return ChosenFactor;
6148 }
6149 
6150 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6151     const Loop &L, ElementCount VF) const {
6152   // Cross iteration phis such as reductions need special handling and are
6153   // currently unsupported.
6154   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6155         return Legal->isFirstOrderRecurrence(&Phi) ||
6156                Legal->isReductionVariable(&Phi);
6157       }))
6158     return false;
6159 
6160   // Phis with uses outside of the loop require special handling and are
6161   // currently unsupported.
6162   for (auto &Entry : Legal->getInductionVars()) {
6163     // Look for uses of the value of the induction at the last iteration.
6164     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6165     for (User *U : PostInc->users())
6166       if (!L.contains(cast<Instruction>(U)))
6167         return false;
6168     // Look for uses of penultimate value of the induction.
6169     for (User *U : Entry.first->users())
6170       if (!L.contains(cast<Instruction>(U)))
6171         return false;
6172   }
6173 
6174   // Induction variables that are widened require special handling that is
6175   // currently not supported.
6176   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6177         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6178                  this->isProfitableToScalarize(Entry.first, VF));
6179       }))
6180     return false;
6181 
6182   // Epilogue vectorization code has not been auditted to ensure it handles
6183   // non-latch exits properly.  It may be fine, but it needs auditted and
6184   // tested.
6185   if (L.getExitingBlock() != L.getLoopLatch())
6186     return false;
6187 
6188   return true;
6189 }
6190 
6191 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6192     const ElementCount VF) const {
6193   // FIXME: We need a much better cost-model to take different parameters such
6194   // as register pressure, code size increase and cost of extra branches into
6195   // account. For now we apply a very crude heuristic and only consider loops
6196   // with vectorization factors larger than a certain value.
6197   // We also consider epilogue vectorization unprofitable for targets that don't
6198   // consider interleaving beneficial (eg. MVE).
6199   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6200     return false;
6201   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6202     return true;
6203   return false;
6204 }
6205 
6206 VectorizationFactor
6207 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6208     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6209   VectorizationFactor Result = VectorizationFactor::Disabled();
6210   if (!EnableEpilogueVectorization) {
6211     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6212     return Result;
6213   }
6214 
6215   if (!isScalarEpilogueAllowed()) {
6216     LLVM_DEBUG(
6217         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6218                   "allowed.\n";);
6219     return Result;
6220   }
6221 
6222   // FIXME: This can be fixed for scalable vectors later, because at this stage
6223   // the LoopVectorizer will only consider vectorizing a loop with scalable
6224   // vectors when the loop has a hint to enable vectorization for a given VF.
6225   if (MainLoopVF.isScalable()) {
6226     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6227                          "yet supported.\n");
6228     return Result;
6229   }
6230 
6231   // Not really a cost consideration, but check for unsupported cases here to
6232   // simplify the logic.
6233   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6234     LLVM_DEBUG(
6235         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6236                   "not a supported candidate.\n";);
6237     return Result;
6238   }
6239 
6240   if (EpilogueVectorizationForceVF > 1) {
6241     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6242     if (LVP.hasPlanWithVFs(
6243             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6244       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6245     else {
6246       LLVM_DEBUG(
6247           dbgs()
6248               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6249       return Result;
6250     }
6251   }
6252 
6253   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6254       TheLoop->getHeader()->getParent()->hasMinSize()) {
6255     LLVM_DEBUG(
6256         dbgs()
6257             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6258     return Result;
6259   }
6260 
6261   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6262     return Result;
6263 
6264   for (auto &NextVF : ProfitableVFs)
6265     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6266         (Result.Width.getFixedValue() == 1 ||
6267          isMoreProfitable(NextVF, Result)) &&
6268         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6269       Result = NextVF;
6270 
6271   if (Result != VectorizationFactor::Disabled())
6272     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6273                       << Result.Width.getFixedValue() << "\n";);
6274   return Result;
6275 }
6276 
6277 std::pair<unsigned, unsigned>
6278 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6279   unsigned MinWidth = -1U;
6280   unsigned MaxWidth = 8;
6281   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6282   for (Type *T : ElementTypesInLoop) {
6283     MinWidth = std::min<unsigned>(
6284         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6285     MaxWidth = std::max<unsigned>(
6286         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6287   }
6288   return {MinWidth, MaxWidth};
6289 }
6290 
6291 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6292   ElementTypesInLoop.clear();
6293   // For each block.
6294   for (BasicBlock *BB : TheLoop->blocks()) {
6295     // For each instruction in the loop.
6296     for (Instruction &I : BB->instructionsWithoutDebug()) {
6297       Type *T = I.getType();
6298 
6299       // Skip ignored values.
6300       if (ValuesToIgnore.count(&I))
6301         continue;
6302 
6303       // Only examine Loads, Stores and PHINodes.
6304       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6305         continue;
6306 
6307       // Examine PHI nodes that are reduction variables. Update the type to
6308       // account for the recurrence type.
6309       if (auto *PN = dyn_cast<PHINode>(&I)) {
6310         if (!Legal->isReductionVariable(PN))
6311           continue;
6312         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6313         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6314             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6315                                       RdxDesc.getRecurrenceType(),
6316                                       TargetTransformInfo::ReductionFlags()))
6317           continue;
6318         T = RdxDesc.getRecurrenceType();
6319       }
6320 
6321       // Examine the stored values.
6322       if (auto *ST = dyn_cast<StoreInst>(&I))
6323         T = ST->getValueOperand()->getType();
6324 
6325       // Ignore loaded pointer types and stored pointer types that are not
6326       // vectorizable.
6327       //
6328       // FIXME: The check here attempts to predict whether a load or store will
6329       //        be vectorized. We only know this for certain after a VF has
6330       //        been selected. Here, we assume that if an access can be
6331       //        vectorized, it will be. We should also look at extending this
6332       //        optimization to non-pointer types.
6333       //
6334       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6335           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6336         continue;
6337 
6338       ElementTypesInLoop.insert(T);
6339     }
6340   }
6341 }
6342 
6343 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6344                                                            unsigned LoopCost) {
6345   // -- The interleave heuristics --
6346   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6347   // There are many micro-architectural considerations that we can't predict
6348   // at this level. For example, frontend pressure (on decode or fetch) due to
6349   // code size, or the number and capabilities of the execution ports.
6350   //
6351   // We use the following heuristics to select the interleave count:
6352   // 1. If the code has reductions, then we interleave to break the cross
6353   // iteration dependency.
6354   // 2. If the loop is really small, then we interleave to reduce the loop
6355   // overhead.
6356   // 3. We don't interleave if we think that we will spill registers to memory
6357   // due to the increased register pressure.
6358 
6359   if (!isScalarEpilogueAllowed())
6360     return 1;
6361 
6362   // We used the distance for the interleave count.
6363   if (Legal->getMaxSafeDepDistBytes() != -1U)
6364     return 1;
6365 
6366   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6367   const bool HasReductions = !Legal->getReductionVars().empty();
6368   // Do not interleave loops with a relatively small known or estimated trip
6369   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6370   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6371   // because with the above conditions interleaving can expose ILP and break
6372   // cross iteration dependences for reductions.
6373   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6374       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6375     return 1;
6376 
6377   RegisterUsage R = calculateRegisterUsage({VF})[0];
6378   // We divide by these constants so assume that we have at least one
6379   // instruction that uses at least one register.
6380   for (auto& pair : R.MaxLocalUsers) {
6381     pair.second = std::max(pair.second, 1U);
6382   }
6383 
6384   // We calculate the interleave count using the following formula.
6385   // Subtract the number of loop invariants from the number of available
6386   // registers. These registers are used by all of the interleaved instances.
6387   // Next, divide the remaining registers by the number of registers that is
6388   // required by the loop, in order to estimate how many parallel instances
6389   // fit without causing spills. All of this is rounded down if necessary to be
6390   // a power of two. We want power of two interleave count to simplify any
6391   // addressing operations or alignment considerations.
6392   // We also want power of two interleave counts to ensure that the induction
6393   // variable of the vector loop wraps to zero, when tail is folded by masking;
6394   // this currently happens when OptForSize, in which case IC is set to 1 above.
6395   unsigned IC = UINT_MAX;
6396 
6397   for (auto& pair : R.MaxLocalUsers) {
6398     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6399     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6400                       << " registers of "
6401                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6402     if (VF.isScalar()) {
6403       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6404         TargetNumRegisters = ForceTargetNumScalarRegs;
6405     } else {
6406       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6407         TargetNumRegisters = ForceTargetNumVectorRegs;
6408     }
6409     unsigned MaxLocalUsers = pair.second;
6410     unsigned LoopInvariantRegs = 0;
6411     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6412       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6413 
6414     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6415     // Don't count the induction variable as interleaved.
6416     if (EnableIndVarRegisterHeur) {
6417       TmpIC =
6418           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6419                         std::max(1U, (MaxLocalUsers - 1)));
6420     }
6421 
6422     IC = std::min(IC, TmpIC);
6423   }
6424 
6425   // Clamp the interleave ranges to reasonable counts.
6426   unsigned MaxInterleaveCount =
6427       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6428 
6429   // Check if the user has overridden the max.
6430   if (VF.isScalar()) {
6431     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6432       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6433   } else {
6434     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6435       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6436   }
6437 
6438   // If trip count is known or estimated compile time constant, limit the
6439   // interleave count to be less than the trip count divided by VF, provided it
6440   // is at least 1.
6441   //
6442   // For scalable vectors we can't know if interleaving is beneficial. It may
6443   // not be beneficial for small loops if none of the lanes in the second vector
6444   // iterations is enabled. However, for larger loops, there is likely to be a
6445   // similar benefit as for fixed-width vectors. For now, we choose to leave
6446   // the InterleaveCount as if vscale is '1', although if some information about
6447   // the vector is known (e.g. min vector size), we can make a better decision.
6448   if (BestKnownTC) {
6449     MaxInterleaveCount =
6450         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6451     // Make sure MaxInterleaveCount is greater than 0.
6452     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6453   }
6454 
6455   assert(MaxInterleaveCount > 0 &&
6456          "Maximum interleave count must be greater than 0");
6457 
6458   // Clamp the calculated IC to be between the 1 and the max interleave count
6459   // that the target and trip count allows.
6460   if (IC > MaxInterleaveCount)
6461     IC = MaxInterleaveCount;
6462   else
6463     // Make sure IC is greater than 0.
6464     IC = std::max(1u, IC);
6465 
6466   assert(IC > 0 && "Interleave count must be greater than 0.");
6467 
6468   // If we did not calculate the cost for VF (because the user selected the VF)
6469   // then we calculate the cost of VF here.
6470   if (LoopCost == 0) {
6471     InstructionCost C = expectedCost(VF).first;
6472     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6473     LoopCost = *C.getValue();
6474   }
6475 
6476   assert(LoopCost && "Non-zero loop cost expected");
6477 
6478   // Interleave if we vectorized this loop and there is a reduction that could
6479   // benefit from interleaving.
6480   if (VF.isVector() && HasReductions) {
6481     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6482     return IC;
6483   }
6484 
6485   // Note that if we've already vectorized the loop we will have done the
6486   // runtime check and so interleaving won't require further checks.
6487   bool InterleavingRequiresRuntimePointerCheck =
6488       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6489 
6490   // We want to interleave small loops in order to reduce the loop overhead and
6491   // potentially expose ILP opportunities.
6492   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6493                     << "LV: IC is " << IC << '\n'
6494                     << "LV: VF is " << VF << '\n');
6495   const bool AggressivelyInterleaveReductions =
6496       TTI.enableAggressiveInterleaving(HasReductions);
6497   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6498     // We assume that the cost overhead is 1 and we use the cost model
6499     // to estimate the cost of the loop and interleave until the cost of the
6500     // loop overhead is about 5% of the cost of the loop.
6501     unsigned SmallIC =
6502         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6503 
6504     // Interleave until store/load ports (estimated by max interleave count) are
6505     // saturated.
6506     unsigned NumStores = Legal->getNumStores();
6507     unsigned NumLoads = Legal->getNumLoads();
6508     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6509     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6510 
6511     // If we have a scalar reduction (vector reductions are already dealt with
6512     // by this point), we can increase the critical path length if the loop
6513     // we're interleaving is inside another loop. For tree-wise reductions
6514     // set the limit to 2, and for ordered reductions it's best to disable
6515     // interleaving entirely.
6516     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6517       bool HasOrderedReductions =
6518           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6519             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6520             return RdxDesc.isOrdered();
6521           });
6522       if (HasOrderedReductions) {
6523         LLVM_DEBUG(
6524             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6525         return 1;
6526       }
6527 
6528       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6529       SmallIC = std::min(SmallIC, F);
6530       StoresIC = std::min(StoresIC, F);
6531       LoadsIC = std::min(LoadsIC, F);
6532     }
6533 
6534     if (EnableLoadStoreRuntimeInterleave &&
6535         std::max(StoresIC, LoadsIC) > SmallIC) {
6536       LLVM_DEBUG(
6537           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6538       return std::max(StoresIC, LoadsIC);
6539     }
6540 
6541     // If there are scalar reductions and TTI has enabled aggressive
6542     // interleaving for reductions, we will interleave to expose ILP.
6543     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6544         AggressivelyInterleaveReductions) {
6545       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6546       // Interleave no less than SmallIC but not as aggressive as the normal IC
6547       // to satisfy the rare situation when resources are too limited.
6548       return std::max(IC / 2, SmallIC);
6549     } else {
6550       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6551       return SmallIC;
6552     }
6553   }
6554 
6555   // Interleave if this is a large loop (small loops are already dealt with by
6556   // this point) that could benefit from interleaving.
6557   if (AggressivelyInterleaveReductions) {
6558     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6559     return IC;
6560   }
6561 
6562   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6563   return 1;
6564 }
6565 
6566 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6567 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6568   // This function calculates the register usage by measuring the highest number
6569   // of values that are alive at a single location. Obviously, this is a very
6570   // rough estimation. We scan the loop in a topological order in order and
6571   // assign a number to each instruction. We use RPO to ensure that defs are
6572   // met before their users. We assume that each instruction that has in-loop
6573   // users starts an interval. We record every time that an in-loop value is
6574   // used, so we have a list of the first and last occurrences of each
6575   // instruction. Next, we transpose this data structure into a multi map that
6576   // holds the list of intervals that *end* at a specific location. This multi
6577   // map allows us to perform a linear search. We scan the instructions linearly
6578   // and record each time that a new interval starts, by placing it in a set.
6579   // If we find this value in the multi-map then we remove it from the set.
6580   // The max register usage is the maximum size of the set.
6581   // We also search for instructions that are defined outside the loop, but are
6582   // used inside the loop. We need this number separately from the max-interval
6583   // usage number because when we unroll, loop-invariant values do not take
6584   // more register.
6585   LoopBlocksDFS DFS(TheLoop);
6586   DFS.perform(LI);
6587 
6588   RegisterUsage RU;
6589 
6590   // Each 'key' in the map opens a new interval. The values
6591   // of the map are the index of the 'last seen' usage of the
6592   // instruction that is the key.
6593   using IntervalMap = DenseMap<Instruction *, unsigned>;
6594 
6595   // Maps instruction to its index.
6596   SmallVector<Instruction *, 64> IdxToInstr;
6597   // Marks the end of each interval.
6598   IntervalMap EndPoint;
6599   // Saves the list of instruction indices that are used in the loop.
6600   SmallPtrSet<Instruction *, 8> Ends;
6601   // Saves the list of values that are used in the loop but are
6602   // defined outside the loop, such as arguments and constants.
6603   SmallPtrSet<Value *, 8> LoopInvariants;
6604 
6605   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6606     for (Instruction &I : BB->instructionsWithoutDebug()) {
6607       IdxToInstr.push_back(&I);
6608 
6609       // Save the end location of each USE.
6610       for (Value *U : I.operands()) {
6611         auto *Instr = dyn_cast<Instruction>(U);
6612 
6613         // Ignore non-instruction values such as arguments, constants, etc.
6614         if (!Instr)
6615           continue;
6616 
6617         // If this instruction is outside the loop then record it and continue.
6618         if (!TheLoop->contains(Instr)) {
6619           LoopInvariants.insert(Instr);
6620           continue;
6621         }
6622 
6623         // Overwrite previous end points.
6624         EndPoint[Instr] = IdxToInstr.size();
6625         Ends.insert(Instr);
6626       }
6627     }
6628   }
6629 
6630   // Saves the list of intervals that end with the index in 'key'.
6631   using InstrList = SmallVector<Instruction *, 2>;
6632   DenseMap<unsigned, InstrList> TransposeEnds;
6633 
6634   // Transpose the EndPoints to a list of values that end at each index.
6635   for (auto &Interval : EndPoint)
6636     TransposeEnds[Interval.second].push_back(Interval.first);
6637 
6638   SmallPtrSet<Instruction *, 8> OpenIntervals;
6639   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6640   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6641 
6642   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6643 
6644   // A lambda that gets the register usage for the given type and VF.
6645   const auto &TTICapture = TTI;
6646   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6647     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6648       return 0;
6649     InstructionCost::CostType RegUsage =
6650         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6651     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6652            "Nonsensical values for register usage.");
6653     return RegUsage;
6654   };
6655 
6656   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6657     Instruction *I = IdxToInstr[i];
6658 
6659     // Remove all of the instructions that end at this location.
6660     InstrList &List = TransposeEnds[i];
6661     for (Instruction *ToRemove : List)
6662       OpenIntervals.erase(ToRemove);
6663 
6664     // Ignore instructions that are never used within the loop.
6665     if (!Ends.count(I))
6666       continue;
6667 
6668     // Skip ignored values.
6669     if (ValuesToIgnore.count(I))
6670       continue;
6671 
6672     // For each VF find the maximum usage of registers.
6673     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6674       // Count the number of live intervals.
6675       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6676 
6677       if (VFs[j].isScalar()) {
6678         for (auto Inst : OpenIntervals) {
6679           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6680           if (RegUsage.find(ClassID) == RegUsage.end())
6681             RegUsage[ClassID] = 1;
6682           else
6683             RegUsage[ClassID] += 1;
6684         }
6685       } else {
6686         collectUniformsAndScalars(VFs[j]);
6687         for (auto Inst : OpenIntervals) {
6688           // Skip ignored values for VF > 1.
6689           if (VecValuesToIgnore.count(Inst))
6690             continue;
6691           if (isScalarAfterVectorization(Inst, VFs[j])) {
6692             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6693             if (RegUsage.find(ClassID) == RegUsage.end())
6694               RegUsage[ClassID] = 1;
6695             else
6696               RegUsage[ClassID] += 1;
6697           } else {
6698             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6699             if (RegUsage.find(ClassID) == RegUsage.end())
6700               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6701             else
6702               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6703           }
6704         }
6705       }
6706 
6707       for (auto& pair : RegUsage) {
6708         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6709           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6710         else
6711           MaxUsages[j][pair.first] = pair.second;
6712       }
6713     }
6714 
6715     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6716                       << OpenIntervals.size() << '\n');
6717 
6718     // Add the current instruction to the list of open intervals.
6719     OpenIntervals.insert(I);
6720   }
6721 
6722   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6723     SmallMapVector<unsigned, unsigned, 4> Invariant;
6724 
6725     for (auto Inst : LoopInvariants) {
6726       unsigned Usage =
6727           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6728       unsigned ClassID =
6729           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6730       if (Invariant.find(ClassID) == Invariant.end())
6731         Invariant[ClassID] = Usage;
6732       else
6733         Invariant[ClassID] += Usage;
6734     }
6735 
6736     LLVM_DEBUG({
6737       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6738       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6739              << " item\n";
6740       for (const auto &pair : MaxUsages[i]) {
6741         dbgs() << "LV(REG): RegisterClass: "
6742                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6743                << " registers\n";
6744       }
6745       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6746              << " item\n";
6747       for (const auto &pair : Invariant) {
6748         dbgs() << "LV(REG): RegisterClass: "
6749                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6750                << " registers\n";
6751       }
6752     });
6753 
6754     RU.LoopInvariantRegs = Invariant;
6755     RU.MaxLocalUsers = MaxUsages[i];
6756     RUs[i] = RU;
6757   }
6758 
6759   return RUs;
6760 }
6761 
6762 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6763   // TODO: Cost model for emulated masked load/store is completely
6764   // broken. This hack guides the cost model to use an artificially
6765   // high enough value to practically disable vectorization with such
6766   // operations, except where previously deployed legality hack allowed
6767   // using very low cost values. This is to avoid regressions coming simply
6768   // from moving "masked load/store" check from legality to cost model.
6769   // Masked Load/Gather emulation was previously never allowed.
6770   // Limited number of Masked Store/Scatter emulation was allowed.
6771   assert(isPredicatedInst(I) &&
6772          "Expecting a scalar emulated instruction");
6773   return isa<LoadInst>(I) ||
6774          (isa<StoreInst>(I) &&
6775           NumPredStores > NumberOfStoresToPredicate);
6776 }
6777 
6778 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6779   // If we aren't vectorizing the loop, or if we've already collected the
6780   // instructions to scalarize, there's nothing to do. Collection may already
6781   // have occurred if we have a user-selected VF and are now computing the
6782   // expected cost for interleaving.
6783   if (VF.isScalar() || VF.isZero() ||
6784       InstsToScalarize.find(VF) != InstsToScalarize.end())
6785     return;
6786 
6787   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6788   // not profitable to scalarize any instructions, the presence of VF in the
6789   // map will indicate that we've analyzed it already.
6790   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6791 
6792   // Find all the instructions that are scalar with predication in the loop and
6793   // determine if it would be better to not if-convert the blocks they are in.
6794   // If so, we also record the instructions to scalarize.
6795   for (BasicBlock *BB : TheLoop->blocks()) {
6796     if (!blockNeedsPredication(BB))
6797       continue;
6798     for (Instruction &I : *BB)
6799       if (isScalarWithPredication(&I)) {
6800         ScalarCostsTy ScalarCosts;
6801         // Do not apply discount if scalable, because that would lead to
6802         // invalid scalarization costs.
6803         // Do not apply discount logic if hacked cost is needed
6804         // for emulated masked memrefs.
6805         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6806             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6807           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6808         // Remember that BB will remain after vectorization.
6809         PredicatedBBsAfterVectorization.insert(BB);
6810       }
6811   }
6812 }
6813 
6814 int LoopVectorizationCostModel::computePredInstDiscount(
6815     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6816   assert(!isUniformAfterVectorization(PredInst, VF) &&
6817          "Instruction marked uniform-after-vectorization will be predicated");
6818 
6819   // Initialize the discount to zero, meaning that the scalar version and the
6820   // vector version cost the same.
6821   InstructionCost Discount = 0;
6822 
6823   // Holds instructions to analyze. The instructions we visit are mapped in
6824   // ScalarCosts. Those instructions are the ones that would be scalarized if
6825   // we find that the scalar version costs less.
6826   SmallVector<Instruction *, 8> Worklist;
6827 
6828   // Returns true if the given instruction can be scalarized.
6829   auto canBeScalarized = [&](Instruction *I) -> bool {
6830     // We only attempt to scalarize instructions forming a single-use chain
6831     // from the original predicated block that would otherwise be vectorized.
6832     // Although not strictly necessary, we give up on instructions we know will
6833     // already be scalar to avoid traversing chains that are unlikely to be
6834     // beneficial.
6835     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6836         isScalarAfterVectorization(I, VF))
6837       return false;
6838 
6839     // If the instruction is scalar with predication, it will be analyzed
6840     // separately. We ignore it within the context of PredInst.
6841     if (isScalarWithPredication(I))
6842       return false;
6843 
6844     // If any of the instruction's operands are uniform after vectorization,
6845     // the instruction cannot be scalarized. This prevents, for example, a
6846     // masked load from being scalarized.
6847     //
6848     // We assume we will only emit a value for lane zero of an instruction
6849     // marked uniform after vectorization, rather than VF identical values.
6850     // Thus, if we scalarize an instruction that uses a uniform, we would
6851     // create uses of values corresponding to the lanes we aren't emitting code
6852     // for. This behavior can be changed by allowing getScalarValue to clone
6853     // the lane zero values for uniforms rather than asserting.
6854     for (Use &U : I->operands())
6855       if (auto *J = dyn_cast<Instruction>(U.get()))
6856         if (isUniformAfterVectorization(J, VF))
6857           return false;
6858 
6859     // Otherwise, we can scalarize the instruction.
6860     return true;
6861   };
6862 
6863   // Compute the expected cost discount from scalarizing the entire expression
6864   // feeding the predicated instruction. We currently only consider expressions
6865   // that are single-use instruction chains.
6866   Worklist.push_back(PredInst);
6867   while (!Worklist.empty()) {
6868     Instruction *I = Worklist.pop_back_val();
6869 
6870     // If we've already analyzed the instruction, there's nothing to do.
6871     if (ScalarCosts.find(I) != ScalarCosts.end())
6872       continue;
6873 
6874     // Compute the cost of the vector instruction. Note that this cost already
6875     // includes the scalarization overhead of the predicated instruction.
6876     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6877 
6878     // Compute the cost of the scalarized instruction. This cost is the cost of
6879     // the instruction as if it wasn't if-converted and instead remained in the
6880     // predicated block. We will scale this cost by block probability after
6881     // computing the scalarization overhead.
6882     InstructionCost ScalarCost =
6883         VF.getFixedValue() *
6884         getInstructionCost(I, ElementCount::getFixed(1)).first;
6885 
6886     // Compute the scalarization overhead of needed insertelement instructions
6887     // and phi nodes.
6888     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6889       ScalarCost += TTI.getScalarizationOverhead(
6890           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6891           APInt::getAllOnesValue(VF.getFixedValue()), true, false);
6892       ScalarCost +=
6893           VF.getFixedValue() *
6894           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6895     }
6896 
6897     // Compute the scalarization overhead of needed extractelement
6898     // instructions. For each of the instruction's operands, if the operand can
6899     // be scalarized, add it to the worklist; otherwise, account for the
6900     // overhead.
6901     for (Use &U : I->operands())
6902       if (auto *J = dyn_cast<Instruction>(U.get())) {
6903         assert(VectorType::isValidElementType(J->getType()) &&
6904                "Instruction has non-scalar type");
6905         if (canBeScalarized(J))
6906           Worklist.push_back(J);
6907         else if (needsExtract(J, VF)) {
6908           ScalarCost += TTI.getScalarizationOverhead(
6909               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6910               APInt::getAllOnesValue(VF.getFixedValue()), false, true);
6911         }
6912       }
6913 
6914     // Scale the total scalar cost by block probability.
6915     ScalarCost /= getReciprocalPredBlockProb();
6916 
6917     // Compute the discount. A non-negative discount means the vector version
6918     // of the instruction costs more, and scalarizing would be beneficial.
6919     Discount += VectorCost - ScalarCost;
6920     ScalarCosts[I] = ScalarCost;
6921   }
6922 
6923   return *Discount.getValue();
6924 }
6925 
6926 LoopVectorizationCostModel::VectorizationCostTy
6927 LoopVectorizationCostModel::expectedCost(
6928     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6929   VectorizationCostTy Cost;
6930 
6931   // For each block.
6932   for (BasicBlock *BB : TheLoop->blocks()) {
6933     VectorizationCostTy BlockCost;
6934 
6935     // For each instruction in the old loop.
6936     for (Instruction &I : BB->instructionsWithoutDebug()) {
6937       // Skip ignored values.
6938       if (ValuesToIgnore.count(&I) ||
6939           (VF.isVector() && VecValuesToIgnore.count(&I)))
6940         continue;
6941 
6942       VectorizationCostTy C = getInstructionCost(&I, VF);
6943 
6944       // Check if we should override the cost.
6945       if (C.first.isValid() &&
6946           ForceTargetInstructionCost.getNumOccurrences() > 0)
6947         C.first = InstructionCost(ForceTargetInstructionCost);
6948 
6949       // Keep a list of instructions with invalid costs.
6950       if (Invalid && !C.first.isValid())
6951         Invalid->emplace_back(&I, VF);
6952 
6953       BlockCost.first += C.first;
6954       BlockCost.second |= C.second;
6955       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6956                         << " for VF " << VF << " For instruction: " << I
6957                         << '\n');
6958     }
6959 
6960     // If we are vectorizing a predicated block, it will have been
6961     // if-converted. This means that the block's instructions (aside from
6962     // stores and instructions that may divide by zero) will now be
6963     // unconditionally executed. For the scalar case, we may not always execute
6964     // the predicated block, if it is an if-else block. Thus, scale the block's
6965     // cost by the probability of executing it. blockNeedsPredication from
6966     // Legal is used so as to not include all blocks in tail folded loops.
6967     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6968       BlockCost.first /= getReciprocalPredBlockProb();
6969 
6970     Cost.first += BlockCost.first;
6971     Cost.second |= BlockCost.second;
6972   }
6973 
6974   return Cost;
6975 }
6976 
6977 /// Gets Address Access SCEV after verifying that the access pattern
6978 /// is loop invariant except the induction variable dependence.
6979 ///
6980 /// This SCEV can be sent to the Target in order to estimate the address
6981 /// calculation cost.
6982 static const SCEV *getAddressAccessSCEV(
6983               Value *Ptr,
6984               LoopVectorizationLegality *Legal,
6985               PredicatedScalarEvolution &PSE,
6986               const Loop *TheLoop) {
6987 
6988   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6989   if (!Gep)
6990     return nullptr;
6991 
6992   // We are looking for a gep with all loop invariant indices except for one
6993   // which should be an induction variable.
6994   auto SE = PSE.getSE();
6995   unsigned NumOperands = Gep->getNumOperands();
6996   for (unsigned i = 1; i < NumOperands; ++i) {
6997     Value *Opd = Gep->getOperand(i);
6998     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6999         !Legal->isInductionVariable(Opd))
7000       return nullptr;
7001   }
7002 
7003   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7004   return PSE.getSCEV(Ptr);
7005 }
7006 
7007 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7008   return Legal->hasStride(I->getOperand(0)) ||
7009          Legal->hasStride(I->getOperand(1));
7010 }
7011 
7012 InstructionCost
7013 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7014                                                         ElementCount VF) {
7015   assert(VF.isVector() &&
7016          "Scalarization cost of instruction implies vectorization.");
7017   if (VF.isScalable())
7018     return InstructionCost::getInvalid();
7019 
7020   Type *ValTy = getLoadStoreType(I);
7021   auto SE = PSE.getSE();
7022 
7023   unsigned AS = getLoadStoreAddressSpace(I);
7024   Value *Ptr = getLoadStorePointerOperand(I);
7025   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7026 
7027   // Figure out whether the access is strided and get the stride value
7028   // if it's known in compile time
7029   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7030 
7031   // Get the cost of the scalar memory instruction and address computation.
7032   InstructionCost Cost =
7033       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7034 
7035   // Don't pass *I here, since it is scalar but will actually be part of a
7036   // vectorized loop where the user of it is a vectorized instruction.
7037   const Align Alignment = getLoadStoreAlignment(I);
7038   Cost += VF.getKnownMinValue() *
7039           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7040                               AS, TTI::TCK_RecipThroughput);
7041 
7042   // Get the overhead of the extractelement and insertelement instructions
7043   // we might create due to scalarization.
7044   Cost += getScalarizationOverhead(I, VF);
7045 
7046   // If we have a predicated load/store, it will need extra i1 extracts and
7047   // conditional branches, but may not be executed for each vector lane. Scale
7048   // the cost by the probability of executing the predicated block.
7049   if (isPredicatedInst(I)) {
7050     Cost /= getReciprocalPredBlockProb();
7051 
7052     // Add the cost of an i1 extract and a branch
7053     auto *Vec_i1Ty =
7054         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7055     Cost += TTI.getScalarizationOverhead(
7056         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7057         /*Insert=*/false, /*Extract=*/true);
7058     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7059 
7060     if (useEmulatedMaskMemRefHack(I))
7061       // Artificially setting to a high enough value to practically disable
7062       // vectorization with such operations.
7063       Cost = 3000000;
7064   }
7065 
7066   return Cost;
7067 }
7068 
7069 InstructionCost
7070 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7071                                                     ElementCount VF) {
7072   Type *ValTy = getLoadStoreType(I);
7073   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7074   Value *Ptr = getLoadStorePointerOperand(I);
7075   unsigned AS = getLoadStoreAddressSpace(I);
7076   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7077   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7078 
7079   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7080          "Stride should be 1 or -1 for consecutive memory access");
7081   const Align Alignment = getLoadStoreAlignment(I);
7082   InstructionCost Cost = 0;
7083   if (Legal->isMaskRequired(I))
7084     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7085                                       CostKind);
7086   else
7087     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7088                                 CostKind, I);
7089 
7090   bool Reverse = ConsecutiveStride < 0;
7091   if (Reverse)
7092     Cost +=
7093         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7094   return Cost;
7095 }
7096 
7097 InstructionCost
7098 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7099                                                 ElementCount VF) {
7100   assert(Legal->isUniformMemOp(*I));
7101 
7102   Type *ValTy = getLoadStoreType(I);
7103   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7104   const Align Alignment = getLoadStoreAlignment(I);
7105   unsigned AS = getLoadStoreAddressSpace(I);
7106   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7107   if (isa<LoadInst>(I)) {
7108     return TTI.getAddressComputationCost(ValTy) +
7109            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7110                                CostKind) +
7111            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7112   }
7113   StoreInst *SI = cast<StoreInst>(I);
7114 
7115   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7116   return TTI.getAddressComputationCost(ValTy) +
7117          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7118                              CostKind) +
7119          (isLoopInvariantStoreValue
7120               ? 0
7121               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7122                                        VF.getKnownMinValue() - 1));
7123 }
7124 
7125 InstructionCost
7126 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7127                                                  ElementCount VF) {
7128   Type *ValTy = getLoadStoreType(I);
7129   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7130   const Align Alignment = getLoadStoreAlignment(I);
7131   const Value *Ptr = getLoadStorePointerOperand(I);
7132 
7133   return TTI.getAddressComputationCost(VectorTy) +
7134          TTI.getGatherScatterOpCost(
7135              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7136              TargetTransformInfo::TCK_RecipThroughput, I);
7137 }
7138 
7139 InstructionCost
7140 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7141                                                    ElementCount VF) {
7142   // TODO: Once we have support for interleaving with scalable vectors
7143   // we can calculate the cost properly here.
7144   if (VF.isScalable())
7145     return InstructionCost::getInvalid();
7146 
7147   Type *ValTy = getLoadStoreType(I);
7148   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7149   unsigned AS = getLoadStoreAddressSpace(I);
7150 
7151   auto Group = getInterleavedAccessGroup(I);
7152   assert(Group && "Fail to get an interleaved access group.");
7153 
7154   unsigned InterleaveFactor = Group->getFactor();
7155   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7156 
7157   // Holds the indices of existing members in the interleaved group.
7158   SmallVector<unsigned, 4> Indices;
7159   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7160     if (Group->getMember(IF))
7161       Indices.push_back(IF);
7162 
7163   // Calculate the cost of the whole interleaved group.
7164   bool UseMaskForGaps =
7165       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7166       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7167   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7168       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7169       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7170 
7171   if (Group->isReverse()) {
7172     // TODO: Add support for reversed masked interleaved access.
7173     assert(!Legal->isMaskRequired(I) &&
7174            "Reverse masked interleaved access not supported.");
7175     Cost +=
7176         Group->getNumMembers() *
7177         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7178   }
7179   return Cost;
7180 }
7181 
7182 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7183     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7184   using namespace llvm::PatternMatch;
7185   // Early exit for no inloop reductions
7186   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7187     return None;
7188   auto *VectorTy = cast<VectorType>(Ty);
7189 
7190   // We are looking for a pattern of, and finding the minimal acceptable cost:
7191   //  reduce(mul(ext(A), ext(B))) or
7192   //  reduce(mul(A, B)) or
7193   //  reduce(ext(A)) or
7194   //  reduce(A).
7195   // The basic idea is that we walk down the tree to do that, finding the root
7196   // reduction instruction in InLoopReductionImmediateChains. From there we find
7197   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7198   // of the components. If the reduction cost is lower then we return it for the
7199   // reduction instruction and 0 for the other instructions in the pattern. If
7200   // it is not we return an invalid cost specifying the orignal cost method
7201   // should be used.
7202   Instruction *RetI = I;
7203   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7204     if (!RetI->hasOneUser())
7205       return None;
7206     RetI = RetI->user_back();
7207   }
7208   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7209       RetI->user_back()->getOpcode() == Instruction::Add) {
7210     if (!RetI->hasOneUser())
7211       return None;
7212     RetI = RetI->user_back();
7213   }
7214 
7215   // Test if the found instruction is a reduction, and if not return an invalid
7216   // cost specifying the parent to use the original cost modelling.
7217   if (!InLoopReductionImmediateChains.count(RetI))
7218     return None;
7219 
7220   // Find the reduction this chain is a part of and calculate the basic cost of
7221   // the reduction on its own.
7222   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7223   Instruction *ReductionPhi = LastChain;
7224   while (!isa<PHINode>(ReductionPhi))
7225     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7226 
7227   const RecurrenceDescriptor &RdxDesc =
7228       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7229 
7230   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7231       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7232 
7233   // If we're using ordered reductions then we can just return the base cost
7234   // here, since getArithmeticReductionCost calculates the full ordered
7235   // reduction cost when FP reassociation is not allowed.
7236   if (useOrderedReductions(RdxDesc))
7237     return BaseCost;
7238 
7239   // Get the operand that was not the reduction chain and match it to one of the
7240   // patterns, returning the better cost if it is found.
7241   Instruction *RedOp = RetI->getOperand(1) == LastChain
7242                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7243                            : dyn_cast<Instruction>(RetI->getOperand(1));
7244 
7245   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7246 
7247   Instruction *Op0, *Op1;
7248   if (RedOp &&
7249       match(RedOp,
7250             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7251       match(Op0, m_ZExtOrSExt(m_Value())) &&
7252       Op0->getOpcode() == Op1->getOpcode() &&
7253       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7254       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7255       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7256 
7257     // Matched reduce(ext(mul(ext(A), ext(B)))
7258     // Note that the extend opcodes need to all match, or if A==B they will have
7259     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7260     // which is equally fine.
7261     bool IsUnsigned = isa<ZExtInst>(Op0);
7262     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7263     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7264 
7265     InstructionCost ExtCost =
7266         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7267                              TTI::CastContextHint::None, CostKind, Op0);
7268     InstructionCost MulCost =
7269         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7270     InstructionCost Ext2Cost =
7271         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7272                              TTI::CastContextHint::None, CostKind, RedOp);
7273 
7274     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7275         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7276         CostKind);
7277 
7278     if (RedCost.isValid() &&
7279         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7280       return I == RetI ? RedCost : 0;
7281   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7282              !TheLoop->isLoopInvariant(RedOp)) {
7283     // Matched reduce(ext(A))
7284     bool IsUnsigned = isa<ZExtInst>(RedOp);
7285     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7286     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7287         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7288         CostKind);
7289 
7290     InstructionCost ExtCost =
7291         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7292                              TTI::CastContextHint::None, CostKind, RedOp);
7293     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7294       return I == RetI ? RedCost : 0;
7295   } else if (RedOp &&
7296              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7297     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7298         Op0->getOpcode() == Op1->getOpcode() &&
7299         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7300         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7301       bool IsUnsigned = isa<ZExtInst>(Op0);
7302       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7303       // Matched reduce(mul(ext, ext))
7304       InstructionCost ExtCost =
7305           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7306                                TTI::CastContextHint::None, CostKind, Op0);
7307       InstructionCost MulCost =
7308           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7309 
7310       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7311           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7312           CostKind);
7313 
7314       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7315         return I == RetI ? RedCost : 0;
7316     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7317       // Matched reduce(mul())
7318       InstructionCost MulCost =
7319           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7320 
7321       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7322           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7323           CostKind);
7324 
7325       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7326         return I == RetI ? RedCost : 0;
7327     }
7328   }
7329 
7330   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7331 }
7332 
7333 InstructionCost
7334 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7335                                                      ElementCount VF) {
7336   // Calculate scalar cost only. Vectorization cost should be ready at this
7337   // moment.
7338   if (VF.isScalar()) {
7339     Type *ValTy = getLoadStoreType(I);
7340     const Align Alignment = getLoadStoreAlignment(I);
7341     unsigned AS = getLoadStoreAddressSpace(I);
7342 
7343     return TTI.getAddressComputationCost(ValTy) +
7344            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7345                                TTI::TCK_RecipThroughput, I);
7346   }
7347   return getWideningCost(I, VF);
7348 }
7349 
7350 LoopVectorizationCostModel::VectorizationCostTy
7351 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7352                                                ElementCount VF) {
7353   // If we know that this instruction will remain uniform, check the cost of
7354   // the scalar version.
7355   if (isUniformAfterVectorization(I, VF))
7356     VF = ElementCount::getFixed(1);
7357 
7358   if (VF.isVector() && isProfitableToScalarize(I, VF))
7359     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7360 
7361   // Forced scalars do not have any scalarization overhead.
7362   auto ForcedScalar = ForcedScalars.find(VF);
7363   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7364     auto InstSet = ForcedScalar->second;
7365     if (InstSet.count(I))
7366       return VectorizationCostTy(
7367           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7368            VF.getKnownMinValue()),
7369           false);
7370   }
7371 
7372   Type *VectorTy;
7373   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7374 
7375   bool TypeNotScalarized =
7376       VF.isVector() && VectorTy->isVectorTy() &&
7377       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7378   return VectorizationCostTy(C, TypeNotScalarized);
7379 }
7380 
7381 InstructionCost
7382 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7383                                                      ElementCount VF) const {
7384 
7385   // There is no mechanism yet to create a scalable scalarization loop,
7386   // so this is currently Invalid.
7387   if (VF.isScalable())
7388     return InstructionCost::getInvalid();
7389 
7390   if (VF.isScalar())
7391     return 0;
7392 
7393   InstructionCost Cost = 0;
7394   Type *RetTy = ToVectorTy(I->getType(), VF);
7395   if (!RetTy->isVoidTy() &&
7396       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7397     Cost += TTI.getScalarizationOverhead(
7398         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7399         true, false);
7400 
7401   // Some targets keep addresses scalar.
7402   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7403     return Cost;
7404 
7405   // Some targets support efficient element stores.
7406   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7407     return Cost;
7408 
7409   // Collect operands to consider.
7410   CallInst *CI = dyn_cast<CallInst>(I);
7411   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7412 
7413   // Skip operands that do not require extraction/scalarization and do not incur
7414   // any overhead.
7415   SmallVector<Type *> Tys;
7416   for (auto *V : filterExtractingOperands(Ops, VF))
7417     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7418   return Cost + TTI.getOperandsScalarizationOverhead(
7419                     filterExtractingOperands(Ops, VF), Tys);
7420 }
7421 
7422 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7423   if (VF.isScalar())
7424     return;
7425   NumPredStores = 0;
7426   for (BasicBlock *BB : TheLoop->blocks()) {
7427     // For each instruction in the old loop.
7428     for (Instruction &I : *BB) {
7429       Value *Ptr =  getLoadStorePointerOperand(&I);
7430       if (!Ptr)
7431         continue;
7432 
7433       // TODO: We should generate better code and update the cost model for
7434       // predicated uniform stores. Today they are treated as any other
7435       // predicated store (see added test cases in
7436       // invariant-store-vectorization.ll).
7437       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7438         NumPredStores++;
7439 
7440       if (Legal->isUniformMemOp(I)) {
7441         // TODO: Avoid replicating loads and stores instead of
7442         // relying on instcombine to remove them.
7443         // Load: Scalar load + broadcast
7444         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7445         InstructionCost Cost;
7446         if (isa<StoreInst>(&I) && VF.isScalable() &&
7447             isLegalGatherOrScatter(&I)) {
7448           Cost = getGatherScatterCost(&I, VF);
7449           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7450         } else {
7451           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7452                  "Cannot yet scalarize uniform stores");
7453           Cost = getUniformMemOpCost(&I, VF);
7454           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7455         }
7456         continue;
7457       }
7458 
7459       // We assume that widening is the best solution when possible.
7460       if (memoryInstructionCanBeWidened(&I, VF)) {
7461         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7462         int ConsecutiveStride =
7463                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7464         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7465                "Expected consecutive stride.");
7466         InstWidening Decision =
7467             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7468         setWideningDecision(&I, VF, Decision, Cost);
7469         continue;
7470       }
7471 
7472       // Choose between Interleaving, Gather/Scatter or Scalarization.
7473       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7474       unsigned NumAccesses = 1;
7475       if (isAccessInterleaved(&I)) {
7476         auto Group = getInterleavedAccessGroup(&I);
7477         assert(Group && "Fail to get an interleaved access group.");
7478 
7479         // Make one decision for the whole group.
7480         if (getWideningDecision(&I, VF) != CM_Unknown)
7481           continue;
7482 
7483         NumAccesses = Group->getNumMembers();
7484         if (interleavedAccessCanBeWidened(&I, VF))
7485           InterleaveCost = getInterleaveGroupCost(&I, VF);
7486       }
7487 
7488       InstructionCost GatherScatterCost =
7489           isLegalGatherOrScatter(&I)
7490               ? getGatherScatterCost(&I, VF) * NumAccesses
7491               : InstructionCost::getInvalid();
7492 
7493       InstructionCost ScalarizationCost =
7494           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7495 
7496       // Choose better solution for the current VF,
7497       // write down this decision and use it during vectorization.
7498       InstructionCost Cost;
7499       InstWidening Decision;
7500       if (InterleaveCost <= GatherScatterCost &&
7501           InterleaveCost < ScalarizationCost) {
7502         Decision = CM_Interleave;
7503         Cost = InterleaveCost;
7504       } else if (GatherScatterCost < ScalarizationCost) {
7505         Decision = CM_GatherScatter;
7506         Cost = GatherScatterCost;
7507       } else {
7508         Decision = CM_Scalarize;
7509         Cost = ScalarizationCost;
7510       }
7511       // If the instructions belongs to an interleave group, the whole group
7512       // receives the same decision. The whole group receives the cost, but
7513       // the cost will actually be assigned to one instruction.
7514       if (auto Group = getInterleavedAccessGroup(&I))
7515         setWideningDecision(Group, VF, Decision, Cost);
7516       else
7517         setWideningDecision(&I, VF, Decision, Cost);
7518     }
7519   }
7520 
7521   // Make sure that any load of address and any other address computation
7522   // remains scalar unless there is gather/scatter support. This avoids
7523   // inevitable extracts into address registers, and also has the benefit of
7524   // activating LSR more, since that pass can't optimize vectorized
7525   // addresses.
7526   if (TTI.prefersVectorizedAddressing())
7527     return;
7528 
7529   // Start with all scalar pointer uses.
7530   SmallPtrSet<Instruction *, 8> AddrDefs;
7531   for (BasicBlock *BB : TheLoop->blocks())
7532     for (Instruction &I : *BB) {
7533       Instruction *PtrDef =
7534         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7535       if (PtrDef && TheLoop->contains(PtrDef) &&
7536           getWideningDecision(&I, VF) != CM_GatherScatter)
7537         AddrDefs.insert(PtrDef);
7538     }
7539 
7540   // Add all instructions used to generate the addresses.
7541   SmallVector<Instruction *, 4> Worklist;
7542   append_range(Worklist, AddrDefs);
7543   while (!Worklist.empty()) {
7544     Instruction *I = Worklist.pop_back_val();
7545     for (auto &Op : I->operands())
7546       if (auto *InstOp = dyn_cast<Instruction>(Op))
7547         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7548             AddrDefs.insert(InstOp).second)
7549           Worklist.push_back(InstOp);
7550   }
7551 
7552   for (auto *I : AddrDefs) {
7553     if (isa<LoadInst>(I)) {
7554       // Setting the desired widening decision should ideally be handled in
7555       // by cost functions, but since this involves the task of finding out
7556       // if the loaded register is involved in an address computation, it is
7557       // instead changed here when we know this is the case.
7558       InstWidening Decision = getWideningDecision(I, VF);
7559       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7560         // Scalarize a widened load of address.
7561         setWideningDecision(
7562             I, VF, CM_Scalarize,
7563             (VF.getKnownMinValue() *
7564              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7565       else if (auto Group = getInterleavedAccessGroup(I)) {
7566         // Scalarize an interleave group of address loads.
7567         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7568           if (Instruction *Member = Group->getMember(I))
7569             setWideningDecision(
7570                 Member, VF, CM_Scalarize,
7571                 (VF.getKnownMinValue() *
7572                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7573         }
7574       }
7575     } else
7576       // Make sure I gets scalarized and a cost estimate without
7577       // scalarization overhead.
7578       ForcedScalars[VF].insert(I);
7579   }
7580 }
7581 
7582 InstructionCost
7583 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7584                                                Type *&VectorTy) {
7585   Type *RetTy = I->getType();
7586   if (canTruncateToMinimalBitwidth(I, VF))
7587     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7588   auto SE = PSE.getSE();
7589   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7590 
7591   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7592                                                 ElementCount VF) -> bool {
7593     if (VF.isScalar())
7594       return true;
7595 
7596     auto Scalarized = InstsToScalarize.find(VF);
7597     assert(Scalarized != InstsToScalarize.end() &&
7598            "VF not yet analyzed for scalarization profitability");
7599     return !Scalarized->second.count(I) &&
7600            llvm::all_of(I->users(), [&](User *U) {
7601              auto *UI = cast<Instruction>(U);
7602              return !Scalarized->second.count(UI);
7603            });
7604   };
7605   (void) hasSingleCopyAfterVectorization;
7606 
7607   if (isScalarAfterVectorization(I, VF)) {
7608     // With the exception of GEPs and PHIs, after scalarization there should
7609     // only be one copy of the instruction generated in the loop. This is
7610     // because the VF is either 1, or any instructions that need scalarizing
7611     // have already been dealt with by the the time we get here. As a result,
7612     // it means we don't have to multiply the instruction cost by VF.
7613     assert(I->getOpcode() == Instruction::GetElementPtr ||
7614            I->getOpcode() == Instruction::PHI ||
7615            (I->getOpcode() == Instruction::BitCast &&
7616             I->getType()->isPointerTy()) ||
7617            hasSingleCopyAfterVectorization(I, VF));
7618     VectorTy = RetTy;
7619   } else
7620     VectorTy = ToVectorTy(RetTy, VF);
7621 
7622   // TODO: We need to estimate the cost of intrinsic calls.
7623   switch (I->getOpcode()) {
7624   case Instruction::GetElementPtr:
7625     // We mark this instruction as zero-cost because the cost of GEPs in
7626     // vectorized code depends on whether the corresponding memory instruction
7627     // is scalarized or not. Therefore, we handle GEPs with the memory
7628     // instruction cost.
7629     return 0;
7630   case Instruction::Br: {
7631     // In cases of scalarized and predicated instructions, there will be VF
7632     // predicated blocks in the vectorized loop. Each branch around these
7633     // blocks requires also an extract of its vector compare i1 element.
7634     bool ScalarPredicatedBB = false;
7635     BranchInst *BI = cast<BranchInst>(I);
7636     if (VF.isVector() && BI->isConditional() &&
7637         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7638          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7639       ScalarPredicatedBB = true;
7640 
7641     if (ScalarPredicatedBB) {
7642       // Not possible to scalarize scalable vector with predicated instructions.
7643       if (VF.isScalable())
7644         return InstructionCost::getInvalid();
7645       // Return cost for branches around scalarized and predicated blocks.
7646       auto *Vec_i1Ty =
7647           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7648       return (
7649           TTI.getScalarizationOverhead(
7650               Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false,
7651               true) +
7652           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7653     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7654       // The back-edge branch will remain, as will all scalar branches.
7655       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7656     else
7657       // This branch will be eliminated by if-conversion.
7658       return 0;
7659     // Note: We currently assume zero cost for an unconditional branch inside
7660     // a predicated block since it will become a fall-through, although we
7661     // may decide in the future to call TTI for all branches.
7662   }
7663   case Instruction::PHI: {
7664     auto *Phi = cast<PHINode>(I);
7665 
7666     // First-order recurrences are replaced by vector shuffles inside the loop.
7667     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7668     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7669       return TTI.getShuffleCost(
7670           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7671           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7672 
7673     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7674     // converted into select instructions. We require N - 1 selects per phi
7675     // node, where N is the number of incoming values.
7676     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7677       return (Phi->getNumIncomingValues() - 1) *
7678              TTI.getCmpSelInstrCost(
7679                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7680                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7681                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7682 
7683     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7684   }
7685   case Instruction::UDiv:
7686   case Instruction::SDiv:
7687   case Instruction::URem:
7688   case Instruction::SRem:
7689     // If we have a predicated instruction, it may not be executed for each
7690     // vector lane. Get the scalarization cost and scale this amount by the
7691     // probability of executing the predicated block. If the instruction is not
7692     // predicated, we fall through to the next case.
7693     if (VF.isVector() && isScalarWithPredication(I)) {
7694       InstructionCost Cost = 0;
7695 
7696       // These instructions have a non-void type, so account for the phi nodes
7697       // that we will create. This cost is likely to be zero. The phi node
7698       // cost, if any, should be scaled by the block probability because it
7699       // models a copy at the end of each predicated block.
7700       Cost += VF.getKnownMinValue() *
7701               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7702 
7703       // The cost of the non-predicated instruction.
7704       Cost += VF.getKnownMinValue() *
7705               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7706 
7707       // The cost of insertelement and extractelement instructions needed for
7708       // scalarization.
7709       Cost += getScalarizationOverhead(I, VF);
7710 
7711       // Scale the cost by the probability of executing the predicated blocks.
7712       // This assumes the predicated block for each vector lane is equally
7713       // likely.
7714       return Cost / getReciprocalPredBlockProb();
7715     }
7716     LLVM_FALLTHROUGH;
7717   case Instruction::Add:
7718   case Instruction::FAdd:
7719   case Instruction::Sub:
7720   case Instruction::FSub:
7721   case Instruction::Mul:
7722   case Instruction::FMul:
7723   case Instruction::FDiv:
7724   case Instruction::FRem:
7725   case Instruction::Shl:
7726   case Instruction::LShr:
7727   case Instruction::AShr:
7728   case Instruction::And:
7729   case Instruction::Or:
7730   case Instruction::Xor: {
7731     // Since we will replace the stride by 1 the multiplication should go away.
7732     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7733       return 0;
7734 
7735     // Detect reduction patterns
7736     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7737       return *RedCost;
7738 
7739     // Certain instructions can be cheaper to vectorize if they have a constant
7740     // second vector operand. One example of this are shifts on x86.
7741     Value *Op2 = I->getOperand(1);
7742     TargetTransformInfo::OperandValueProperties Op2VP;
7743     TargetTransformInfo::OperandValueKind Op2VK =
7744         TTI.getOperandInfo(Op2, Op2VP);
7745     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7746       Op2VK = TargetTransformInfo::OK_UniformValue;
7747 
7748     SmallVector<const Value *, 4> Operands(I->operand_values());
7749     return TTI.getArithmeticInstrCost(
7750         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7751         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7752   }
7753   case Instruction::FNeg: {
7754     return TTI.getArithmeticInstrCost(
7755         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7756         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7757         TargetTransformInfo::OP_None, I->getOperand(0), I);
7758   }
7759   case Instruction::Select: {
7760     SelectInst *SI = cast<SelectInst>(I);
7761     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7762     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7763 
7764     const Value *Op0, *Op1;
7765     using namespace llvm::PatternMatch;
7766     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7767                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7768       // select x, y, false --> x & y
7769       // select x, true, y --> x | y
7770       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7771       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7772       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7773       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7774       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7775               Op1->getType()->getScalarSizeInBits() == 1);
7776 
7777       SmallVector<const Value *, 2> Operands{Op0, Op1};
7778       return TTI.getArithmeticInstrCost(
7779           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7780           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7781     }
7782 
7783     Type *CondTy = SI->getCondition()->getType();
7784     if (!ScalarCond)
7785       CondTy = VectorType::get(CondTy, VF);
7786     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7787                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7788   }
7789   case Instruction::ICmp:
7790   case Instruction::FCmp: {
7791     Type *ValTy = I->getOperand(0)->getType();
7792     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7793     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7794       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7795     VectorTy = ToVectorTy(ValTy, VF);
7796     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7797                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7798   }
7799   case Instruction::Store:
7800   case Instruction::Load: {
7801     ElementCount Width = VF;
7802     if (Width.isVector()) {
7803       InstWidening Decision = getWideningDecision(I, Width);
7804       assert(Decision != CM_Unknown &&
7805              "CM decision should be taken at this point");
7806       if (Decision == CM_Scalarize)
7807         Width = ElementCount::getFixed(1);
7808     }
7809     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7810     return getMemoryInstructionCost(I, VF);
7811   }
7812   case Instruction::BitCast:
7813     if (I->getType()->isPointerTy())
7814       return 0;
7815     LLVM_FALLTHROUGH;
7816   case Instruction::ZExt:
7817   case Instruction::SExt:
7818   case Instruction::FPToUI:
7819   case Instruction::FPToSI:
7820   case Instruction::FPExt:
7821   case Instruction::PtrToInt:
7822   case Instruction::IntToPtr:
7823   case Instruction::SIToFP:
7824   case Instruction::UIToFP:
7825   case Instruction::Trunc:
7826   case Instruction::FPTrunc: {
7827     // Computes the CastContextHint from a Load/Store instruction.
7828     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7829       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7830              "Expected a load or a store!");
7831 
7832       if (VF.isScalar() || !TheLoop->contains(I))
7833         return TTI::CastContextHint::Normal;
7834 
7835       switch (getWideningDecision(I, VF)) {
7836       case LoopVectorizationCostModel::CM_GatherScatter:
7837         return TTI::CastContextHint::GatherScatter;
7838       case LoopVectorizationCostModel::CM_Interleave:
7839         return TTI::CastContextHint::Interleave;
7840       case LoopVectorizationCostModel::CM_Scalarize:
7841       case LoopVectorizationCostModel::CM_Widen:
7842         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7843                                         : TTI::CastContextHint::Normal;
7844       case LoopVectorizationCostModel::CM_Widen_Reverse:
7845         return TTI::CastContextHint::Reversed;
7846       case LoopVectorizationCostModel::CM_Unknown:
7847         llvm_unreachable("Instr did not go through cost modelling?");
7848       }
7849 
7850       llvm_unreachable("Unhandled case!");
7851     };
7852 
7853     unsigned Opcode = I->getOpcode();
7854     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7855     // For Trunc, the context is the only user, which must be a StoreInst.
7856     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7857       if (I->hasOneUse())
7858         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7859           CCH = ComputeCCH(Store);
7860     }
7861     // For Z/Sext, the context is the operand, which must be a LoadInst.
7862     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7863              Opcode == Instruction::FPExt) {
7864       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7865         CCH = ComputeCCH(Load);
7866     }
7867 
7868     // We optimize the truncation of induction variables having constant
7869     // integer steps. The cost of these truncations is the same as the scalar
7870     // operation.
7871     if (isOptimizableIVTruncate(I, VF)) {
7872       auto *Trunc = cast<TruncInst>(I);
7873       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7874                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7875     }
7876 
7877     // Detect reduction patterns
7878     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7879       return *RedCost;
7880 
7881     Type *SrcScalarTy = I->getOperand(0)->getType();
7882     Type *SrcVecTy =
7883         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7884     if (canTruncateToMinimalBitwidth(I, VF)) {
7885       // This cast is going to be shrunk. This may remove the cast or it might
7886       // turn it into slightly different cast. For example, if MinBW == 16,
7887       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7888       //
7889       // Calculate the modified src and dest types.
7890       Type *MinVecTy = VectorTy;
7891       if (Opcode == Instruction::Trunc) {
7892         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7893         VectorTy =
7894             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7895       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7896         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7897         VectorTy =
7898             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7899       }
7900     }
7901 
7902     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7903   }
7904   case Instruction::Call: {
7905     bool NeedToScalarize;
7906     CallInst *CI = cast<CallInst>(I);
7907     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7908     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7909       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7910       return std::min(CallCost, IntrinsicCost);
7911     }
7912     return CallCost;
7913   }
7914   case Instruction::ExtractValue:
7915     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7916   case Instruction::Alloca:
7917     // We cannot easily widen alloca to a scalable alloca, as
7918     // the result would need to be a vector of pointers.
7919     if (VF.isScalable())
7920       return InstructionCost::getInvalid();
7921     LLVM_FALLTHROUGH;
7922   default:
7923     // This opcode is unknown. Assume that it is the same as 'mul'.
7924     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7925   } // end of switch.
7926 }
7927 
7928 char LoopVectorize::ID = 0;
7929 
7930 static const char lv_name[] = "Loop Vectorization";
7931 
7932 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7933 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7934 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7935 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7936 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7937 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7938 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7939 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7940 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7941 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7942 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7943 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7944 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7945 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7946 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7947 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7948 
7949 namespace llvm {
7950 
7951 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7952 
7953 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7954                               bool VectorizeOnlyWhenForced) {
7955   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7956 }
7957 
7958 } // end namespace llvm
7959 
7960 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7961   // Check if the pointer operand of a load or store instruction is
7962   // consecutive.
7963   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7964     return Legal->isConsecutivePtr(Ptr);
7965   return false;
7966 }
7967 
7968 void LoopVectorizationCostModel::collectValuesToIgnore() {
7969   // Ignore ephemeral values.
7970   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7971 
7972   // Ignore type-promoting instructions we identified during reduction
7973   // detection.
7974   for (auto &Reduction : Legal->getReductionVars()) {
7975     RecurrenceDescriptor &RedDes = Reduction.second;
7976     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7977     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7978   }
7979   // Ignore type-casting instructions we identified during induction
7980   // detection.
7981   for (auto &Induction : Legal->getInductionVars()) {
7982     InductionDescriptor &IndDes = Induction.second;
7983     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7984     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7985   }
7986 }
7987 
7988 void LoopVectorizationCostModel::collectInLoopReductions() {
7989   for (auto &Reduction : Legal->getReductionVars()) {
7990     PHINode *Phi = Reduction.first;
7991     RecurrenceDescriptor &RdxDesc = Reduction.second;
7992 
7993     // We don't collect reductions that are type promoted (yet).
7994     if (RdxDesc.getRecurrenceType() != Phi->getType())
7995       continue;
7996 
7997     // If the target would prefer this reduction to happen "in-loop", then we
7998     // want to record it as such.
7999     unsigned Opcode = RdxDesc.getOpcode();
8000     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8001         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8002                                    TargetTransformInfo::ReductionFlags()))
8003       continue;
8004 
8005     // Check that we can correctly put the reductions into the loop, by
8006     // finding the chain of operations that leads from the phi to the loop
8007     // exit value.
8008     SmallVector<Instruction *, 4> ReductionOperations =
8009         RdxDesc.getReductionOpChain(Phi, TheLoop);
8010     bool InLoop = !ReductionOperations.empty();
8011     if (InLoop) {
8012       InLoopReductionChains[Phi] = ReductionOperations;
8013       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8014       Instruction *LastChain = Phi;
8015       for (auto *I : ReductionOperations) {
8016         InLoopReductionImmediateChains[I] = LastChain;
8017         LastChain = I;
8018       }
8019     }
8020     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8021                       << " reduction for phi: " << *Phi << "\n");
8022   }
8023 }
8024 
8025 // TODO: we could return a pair of values that specify the max VF and
8026 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8027 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8028 // doesn't have a cost model that can choose which plan to execute if
8029 // more than one is generated.
8030 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8031                                  LoopVectorizationCostModel &CM) {
8032   unsigned WidestType;
8033   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8034   return WidestVectorRegBits / WidestType;
8035 }
8036 
8037 VectorizationFactor
8038 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8039   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8040   ElementCount VF = UserVF;
8041   // Outer loop handling: They may require CFG and instruction level
8042   // transformations before even evaluating whether vectorization is profitable.
8043   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8044   // the vectorization pipeline.
8045   if (!OrigLoop->isInnermost()) {
8046     // If the user doesn't provide a vectorization factor, determine a
8047     // reasonable one.
8048     if (UserVF.isZero()) {
8049       VF = ElementCount::getFixed(determineVPlanVF(
8050           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8051               .getFixedSize(),
8052           CM));
8053       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8054 
8055       // Make sure we have a VF > 1 for stress testing.
8056       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8057         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8058                           << "overriding computed VF.\n");
8059         VF = ElementCount::getFixed(4);
8060       }
8061     }
8062     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8063     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8064            "VF needs to be a power of two");
8065     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8066                       << "VF " << VF << " to build VPlans.\n");
8067     buildVPlans(VF, VF);
8068 
8069     // For VPlan build stress testing, we bail out after VPlan construction.
8070     if (VPlanBuildStressTest)
8071       return VectorizationFactor::Disabled();
8072 
8073     return {VF, 0 /*Cost*/};
8074   }
8075 
8076   LLVM_DEBUG(
8077       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8078                 "VPlan-native path.\n");
8079   return VectorizationFactor::Disabled();
8080 }
8081 
8082 Optional<VectorizationFactor>
8083 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8084   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8085   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8086   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8087     return None;
8088 
8089   // Invalidate interleave groups if all blocks of loop will be predicated.
8090   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8091       !useMaskedInterleavedAccesses(*TTI)) {
8092     LLVM_DEBUG(
8093         dbgs()
8094         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8095            "which requires masked-interleaved support.\n");
8096     if (CM.InterleaveInfo.invalidateGroups())
8097       // Invalidating interleave groups also requires invalidating all decisions
8098       // based on them, which includes widening decisions and uniform and scalar
8099       // values.
8100       CM.invalidateCostModelingDecisions();
8101   }
8102 
8103   ElementCount MaxUserVF =
8104       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8105   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8106   if (!UserVF.isZero() && UserVFIsLegal) {
8107     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8108            "VF needs to be a power of two");
8109     // Collect the instructions (and their associated costs) that will be more
8110     // profitable to scalarize.
8111     if (CM.selectUserVectorizationFactor(UserVF)) {
8112       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8113       CM.collectInLoopReductions();
8114       buildVPlansWithVPRecipes(UserVF, UserVF);
8115       LLVM_DEBUG(printPlans(dbgs()));
8116       return {{UserVF, 0}};
8117     } else
8118       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8119                               "InvalidCost", ORE, OrigLoop);
8120   }
8121 
8122   // Populate the set of Vectorization Factor Candidates.
8123   ElementCountSet VFCandidates;
8124   for (auto VF = ElementCount::getFixed(1);
8125        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8126     VFCandidates.insert(VF);
8127   for (auto VF = ElementCount::getScalable(1);
8128        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8129     VFCandidates.insert(VF);
8130 
8131   for (const auto &VF : VFCandidates) {
8132     // Collect Uniform and Scalar instructions after vectorization with VF.
8133     CM.collectUniformsAndScalars(VF);
8134 
8135     // Collect the instructions (and their associated costs) that will be more
8136     // profitable to scalarize.
8137     if (VF.isVector())
8138       CM.collectInstsToScalarize(VF);
8139   }
8140 
8141   CM.collectInLoopReductions();
8142   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8143   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8144 
8145   LLVM_DEBUG(printPlans(dbgs()));
8146   if (!MaxFactors.hasVector())
8147     return VectorizationFactor::Disabled();
8148 
8149   // Select the optimal vectorization factor.
8150   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8151 
8152   // Check if it is profitable to vectorize with runtime checks.
8153   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8154   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8155     bool PragmaThresholdReached =
8156         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8157     bool ThresholdReached =
8158         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8159     if ((ThresholdReached && !Hints.allowReordering()) ||
8160         PragmaThresholdReached) {
8161       ORE->emit([&]() {
8162         return OptimizationRemarkAnalysisAliasing(
8163                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8164                    OrigLoop->getHeader())
8165                << "loop not vectorized: cannot prove it is safe to reorder "
8166                   "memory operations";
8167       });
8168       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8169       Hints.emitRemarkWithHints();
8170       return VectorizationFactor::Disabled();
8171     }
8172   }
8173   return SelectedVF;
8174 }
8175 
8176 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8177   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8178                     << '\n');
8179   BestVF = VF;
8180   BestUF = UF;
8181 
8182   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8183     return !Plan->hasVF(VF);
8184   });
8185   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8186 }
8187 
8188 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8189                                            DominatorTree *DT) {
8190   // Perform the actual loop transformation.
8191 
8192   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8193   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8194   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8195 
8196   VPTransformState State{
8197       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8198   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8199   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8200   State.CanonicalIV = ILV.Induction;
8201 
8202   ILV.printDebugTracesAtStart();
8203 
8204   //===------------------------------------------------===//
8205   //
8206   // Notice: any optimization or new instruction that go
8207   // into the code below should also be implemented in
8208   // the cost-model.
8209   //
8210   //===------------------------------------------------===//
8211 
8212   // 2. Copy and widen instructions from the old loop into the new loop.
8213   VPlans.front()->execute(&State);
8214 
8215   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8216   //    predication, updating analyses.
8217   ILV.fixVectorizedLoop(State);
8218 
8219   ILV.printDebugTracesAtEnd();
8220 }
8221 
8222 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8223 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8224   for (const auto &Plan : VPlans)
8225     if (PrintVPlansInDotFormat)
8226       Plan->printDOT(O);
8227     else
8228       Plan->print(O);
8229 }
8230 #endif
8231 
8232 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8233     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8234 
8235   // We create new control-flow for the vectorized loop, so the original exit
8236   // conditions will be dead after vectorization if it's only used by the
8237   // terminator
8238   SmallVector<BasicBlock*> ExitingBlocks;
8239   OrigLoop->getExitingBlocks(ExitingBlocks);
8240   for (auto *BB : ExitingBlocks) {
8241     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8242     if (!Cmp || !Cmp->hasOneUse())
8243       continue;
8244 
8245     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8246     if (!DeadInstructions.insert(Cmp).second)
8247       continue;
8248 
8249     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8250     // TODO: can recurse through operands in general
8251     for (Value *Op : Cmp->operands()) {
8252       if (isa<TruncInst>(Op) && Op->hasOneUse())
8253           DeadInstructions.insert(cast<Instruction>(Op));
8254     }
8255   }
8256 
8257   // We create new "steps" for induction variable updates to which the original
8258   // induction variables map. An original update instruction will be dead if
8259   // all its users except the induction variable are dead.
8260   auto *Latch = OrigLoop->getLoopLatch();
8261   for (auto &Induction : Legal->getInductionVars()) {
8262     PHINode *Ind = Induction.first;
8263     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8264 
8265     // If the tail is to be folded by masking, the primary induction variable,
8266     // if exists, isn't dead: it will be used for masking. Don't kill it.
8267     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8268       continue;
8269 
8270     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8271           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8272         }))
8273       DeadInstructions.insert(IndUpdate);
8274 
8275     // We record as "Dead" also the type-casting instructions we had identified
8276     // during induction analysis. We don't need any handling for them in the
8277     // vectorized loop because we have proven that, under a proper runtime
8278     // test guarding the vectorized loop, the value of the phi, and the casted
8279     // value of the phi, are the same. The last instruction in this casting chain
8280     // will get its scalar/vector/widened def from the scalar/vector/widened def
8281     // of the respective phi node. Any other casts in the induction def-use chain
8282     // have no other uses outside the phi update chain, and will be ignored.
8283     InductionDescriptor &IndDes = Induction.second;
8284     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8285     DeadInstructions.insert(Casts.begin(), Casts.end());
8286   }
8287 }
8288 
8289 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8290 
8291 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8292 
8293 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8294                                         Instruction::BinaryOps BinOp) {
8295   // When unrolling and the VF is 1, we only need to add a simple scalar.
8296   Type *Ty = Val->getType();
8297   assert(!Ty->isVectorTy() && "Val must be a scalar");
8298 
8299   if (Ty->isFloatingPointTy()) {
8300     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8301 
8302     // Floating-point operations inherit FMF via the builder's flags.
8303     Value *MulOp = Builder.CreateFMul(C, Step);
8304     return Builder.CreateBinOp(BinOp, Val, MulOp);
8305   }
8306   Constant *C = ConstantInt::get(Ty, StartIdx);
8307   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8308 }
8309 
8310 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8311   SmallVector<Metadata *, 4> MDs;
8312   // Reserve first location for self reference to the LoopID metadata node.
8313   MDs.push_back(nullptr);
8314   bool IsUnrollMetadata = false;
8315   MDNode *LoopID = L->getLoopID();
8316   if (LoopID) {
8317     // First find existing loop unrolling disable metadata.
8318     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8319       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8320       if (MD) {
8321         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8322         IsUnrollMetadata =
8323             S && S->getString().startswith("llvm.loop.unroll.disable");
8324       }
8325       MDs.push_back(LoopID->getOperand(i));
8326     }
8327   }
8328 
8329   if (!IsUnrollMetadata) {
8330     // Add runtime unroll disable metadata.
8331     LLVMContext &Context = L->getHeader()->getContext();
8332     SmallVector<Metadata *, 1> DisableOperands;
8333     DisableOperands.push_back(
8334         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8335     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8336     MDs.push_back(DisableNode);
8337     MDNode *NewLoopID = MDNode::get(Context, MDs);
8338     // Set operand 0 to refer to the loop id itself.
8339     NewLoopID->replaceOperandWith(0, NewLoopID);
8340     L->setLoopID(NewLoopID);
8341   }
8342 }
8343 
8344 //===--------------------------------------------------------------------===//
8345 // EpilogueVectorizerMainLoop
8346 //===--------------------------------------------------------------------===//
8347 
8348 /// This function is partially responsible for generating the control flow
8349 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8350 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8351   MDNode *OrigLoopID = OrigLoop->getLoopID();
8352   Loop *Lp = createVectorLoopSkeleton("");
8353 
8354   // Generate the code to check the minimum iteration count of the vector
8355   // epilogue (see below).
8356   EPI.EpilogueIterationCountCheck =
8357       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8358   EPI.EpilogueIterationCountCheck->setName("iter.check");
8359 
8360   // Generate the code to check any assumptions that we've made for SCEV
8361   // expressions.
8362   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8363 
8364   // Generate the code that checks at runtime if arrays overlap. We put the
8365   // checks into a separate block to make the more common case of few elements
8366   // faster.
8367   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8368 
8369   // Generate the iteration count check for the main loop, *after* the check
8370   // for the epilogue loop, so that the path-length is shorter for the case
8371   // that goes directly through the vector epilogue. The longer-path length for
8372   // the main loop is compensated for, by the gain from vectorizing the larger
8373   // trip count. Note: the branch will get updated later on when we vectorize
8374   // the epilogue.
8375   EPI.MainLoopIterationCountCheck =
8376       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8377 
8378   // Generate the induction variable.
8379   OldInduction = Legal->getPrimaryInduction();
8380   Type *IdxTy = Legal->getWidestInductionType();
8381   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8382   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8383   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8384   EPI.VectorTripCount = CountRoundDown;
8385   Induction =
8386       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8387                               getDebugLocFromInstOrOperands(OldInduction));
8388 
8389   // Skip induction resume value creation here because they will be created in
8390   // the second pass. If we created them here, they wouldn't be used anyway,
8391   // because the vplan in the second pass still contains the inductions from the
8392   // original loop.
8393 
8394   return completeLoopSkeleton(Lp, OrigLoopID);
8395 }
8396 
8397 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8398   LLVM_DEBUG({
8399     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8400            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8401            << ", Main Loop UF:" << EPI.MainLoopUF
8402            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8403            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8404   });
8405 }
8406 
8407 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8408   DEBUG_WITH_TYPE(VerboseDebug, {
8409     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8410   });
8411 }
8412 
8413 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8414     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8415   assert(L && "Expected valid Loop.");
8416   assert(Bypass && "Expected valid bypass basic block.");
8417   unsigned VFactor =
8418       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8419   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8420   Value *Count = getOrCreateTripCount(L);
8421   // Reuse existing vector loop preheader for TC checks.
8422   // Note that new preheader block is generated for vector loop.
8423   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8424   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8425 
8426   // Generate code to check if the loop's trip count is less than VF * UF of the
8427   // main vector loop.
8428   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8429       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8430 
8431   Value *CheckMinIters = Builder.CreateICmp(
8432       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8433       "min.iters.check");
8434 
8435   if (!ForEpilogue)
8436     TCCheckBlock->setName("vector.main.loop.iter.check");
8437 
8438   // Create new preheader for vector loop.
8439   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8440                                    DT, LI, nullptr, "vector.ph");
8441 
8442   if (ForEpilogue) {
8443     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8444                                  DT->getNode(Bypass)->getIDom()) &&
8445            "TC check is expected to dominate Bypass");
8446 
8447     // Update dominator for Bypass & LoopExit.
8448     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8449     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8450       // For loops with multiple exits, there's no edge from the middle block
8451       // to exit blocks (as the epilogue must run) and thus no need to update
8452       // the immediate dominator of the exit blocks.
8453       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8454 
8455     LoopBypassBlocks.push_back(TCCheckBlock);
8456 
8457     // Save the trip count so we don't have to regenerate it in the
8458     // vec.epilog.iter.check. This is safe to do because the trip count
8459     // generated here dominates the vector epilog iter check.
8460     EPI.TripCount = Count;
8461   }
8462 
8463   ReplaceInstWithInst(
8464       TCCheckBlock->getTerminator(),
8465       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8466 
8467   return TCCheckBlock;
8468 }
8469 
8470 //===--------------------------------------------------------------------===//
8471 // EpilogueVectorizerEpilogueLoop
8472 //===--------------------------------------------------------------------===//
8473 
8474 /// This function is partially responsible for generating the control flow
8475 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8476 BasicBlock *
8477 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8478   MDNode *OrigLoopID = OrigLoop->getLoopID();
8479   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8480 
8481   // Now, compare the remaining count and if there aren't enough iterations to
8482   // execute the vectorized epilogue skip to the scalar part.
8483   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8484   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8485   LoopVectorPreHeader =
8486       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8487                  LI, nullptr, "vec.epilog.ph");
8488   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8489                                           VecEpilogueIterationCountCheck);
8490 
8491   // Adjust the control flow taking the state info from the main loop
8492   // vectorization into account.
8493   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8494          "expected this to be saved from the previous pass.");
8495   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8496       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8497 
8498   DT->changeImmediateDominator(LoopVectorPreHeader,
8499                                EPI.MainLoopIterationCountCheck);
8500 
8501   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8502       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8503 
8504   if (EPI.SCEVSafetyCheck)
8505     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8506         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8507   if (EPI.MemSafetyCheck)
8508     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8509         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8510 
8511   DT->changeImmediateDominator(
8512       VecEpilogueIterationCountCheck,
8513       VecEpilogueIterationCountCheck->getSinglePredecessor());
8514 
8515   DT->changeImmediateDominator(LoopScalarPreHeader,
8516                                EPI.EpilogueIterationCountCheck);
8517   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8518     // If there is an epilogue which must run, there's no edge from the
8519     // middle block to exit blocks  and thus no need to update the immediate
8520     // dominator of the exit blocks.
8521     DT->changeImmediateDominator(LoopExitBlock,
8522                                  EPI.EpilogueIterationCountCheck);
8523 
8524   // Keep track of bypass blocks, as they feed start values to the induction
8525   // phis in the scalar loop preheader.
8526   if (EPI.SCEVSafetyCheck)
8527     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8528   if (EPI.MemSafetyCheck)
8529     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8530   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8531 
8532   // Generate a resume induction for the vector epilogue and put it in the
8533   // vector epilogue preheader
8534   Type *IdxTy = Legal->getWidestInductionType();
8535   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8536                                          LoopVectorPreHeader->getFirstNonPHI());
8537   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8538   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8539                            EPI.MainLoopIterationCountCheck);
8540 
8541   // Generate the induction variable.
8542   OldInduction = Legal->getPrimaryInduction();
8543   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8544   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8545   Value *StartIdx = EPResumeVal;
8546   Induction =
8547       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8548                               getDebugLocFromInstOrOperands(OldInduction));
8549 
8550   // Generate induction resume values. These variables save the new starting
8551   // indexes for the scalar loop. They are used to test if there are any tail
8552   // iterations left once the vector loop has completed.
8553   // Note that when the vectorized epilogue is skipped due to iteration count
8554   // check, then the resume value for the induction variable comes from
8555   // the trip count of the main vector loop, hence passing the AdditionalBypass
8556   // argument.
8557   createInductionResumeValues(Lp, CountRoundDown,
8558                               {VecEpilogueIterationCountCheck,
8559                                EPI.VectorTripCount} /* AdditionalBypass */);
8560 
8561   AddRuntimeUnrollDisableMetaData(Lp);
8562   return completeLoopSkeleton(Lp, OrigLoopID);
8563 }
8564 
8565 BasicBlock *
8566 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8567     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8568 
8569   assert(EPI.TripCount &&
8570          "Expected trip count to have been safed in the first pass.");
8571   assert(
8572       (!isa<Instruction>(EPI.TripCount) ||
8573        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8574       "saved trip count does not dominate insertion point.");
8575   Value *TC = EPI.TripCount;
8576   IRBuilder<> Builder(Insert->getTerminator());
8577   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8578 
8579   // Generate code to check if the loop's trip count is less than VF * UF of the
8580   // vector epilogue loop.
8581   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8582       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8583 
8584   Value *CheckMinIters = Builder.CreateICmp(
8585       P, Count,
8586       ConstantInt::get(Count->getType(),
8587                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8588       "min.epilog.iters.check");
8589 
8590   ReplaceInstWithInst(
8591       Insert->getTerminator(),
8592       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8593 
8594   LoopBypassBlocks.push_back(Insert);
8595   return Insert;
8596 }
8597 
8598 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8599   LLVM_DEBUG({
8600     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8601            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8602            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8603   });
8604 }
8605 
8606 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8607   DEBUG_WITH_TYPE(VerboseDebug, {
8608     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8609   });
8610 }
8611 
8612 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8613     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8614   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8615   bool PredicateAtRangeStart = Predicate(Range.Start);
8616 
8617   for (ElementCount TmpVF = Range.Start * 2;
8618        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8619     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8620       Range.End = TmpVF;
8621       break;
8622     }
8623 
8624   return PredicateAtRangeStart;
8625 }
8626 
8627 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8628 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8629 /// of VF's starting at a given VF and extending it as much as possible. Each
8630 /// vectorization decision can potentially shorten this sub-range during
8631 /// buildVPlan().
8632 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8633                                            ElementCount MaxVF) {
8634   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8635   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8636     VFRange SubRange = {VF, MaxVFPlusOne};
8637     VPlans.push_back(buildVPlan(SubRange));
8638     VF = SubRange.End;
8639   }
8640 }
8641 
8642 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8643                                          VPlanPtr &Plan) {
8644   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8645 
8646   // Look for cached value.
8647   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8648   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8649   if (ECEntryIt != EdgeMaskCache.end())
8650     return ECEntryIt->second;
8651 
8652   VPValue *SrcMask = createBlockInMask(Src, Plan);
8653 
8654   // The terminator has to be a branch inst!
8655   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8656   assert(BI && "Unexpected terminator found");
8657 
8658   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8659     return EdgeMaskCache[Edge] = SrcMask;
8660 
8661   // If source is an exiting block, we know the exit edge is dynamically dead
8662   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8663   // adding uses of an otherwise potentially dead instruction.
8664   if (OrigLoop->isLoopExiting(Src))
8665     return EdgeMaskCache[Edge] = SrcMask;
8666 
8667   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8668   assert(EdgeMask && "No Edge Mask found for condition");
8669 
8670   if (BI->getSuccessor(0) != Dst)
8671     EdgeMask = Builder.createNot(EdgeMask);
8672 
8673   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8674     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8675     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8676     // The select version does not introduce new UB if SrcMask is false and
8677     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8678     VPValue *False = Plan->getOrAddVPValue(
8679         ConstantInt::getFalse(BI->getCondition()->getType()));
8680     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8681   }
8682 
8683   return EdgeMaskCache[Edge] = EdgeMask;
8684 }
8685 
8686 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8687   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8688 
8689   // Look for cached value.
8690   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8691   if (BCEntryIt != BlockMaskCache.end())
8692     return BCEntryIt->second;
8693 
8694   // All-one mask is modelled as no-mask following the convention for masked
8695   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8696   VPValue *BlockMask = nullptr;
8697 
8698   if (OrigLoop->getHeader() == BB) {
8699     if (!CM.blockNeedsPredication(BB))
8700       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8701 
8702     // Create the block in mask as the first non-phi instruction in the block.
8703     VPBuilder::InsertPointGuard Guard(Builder);
8704     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8705     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8706 
8707     // Introduce the early-exit compare IV <= BTC to form header block mask.
8708     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8709     // Start by constructing the desired canonical IV.
8710     VPValue *IV = nullptr;
8711     if (Legal->getPrimaryInduction())
8712       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8713     else {
8714       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8715       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8716       IV = IVRecipe->getVPSingleValue();
8717     }
8718     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8719     bool TailFolded = !CM.isScalarEpilogueAllowed();
8720 
8721     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8722       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8723       // as a second argument, we only pass the IV here and extract the
8724       // tripcount from the transform state where codegen of the VP instructions
8725       // happen.
8726       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8727     } else {
8728       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8729     }
8730     return BlockMaskCache[BB] = BlockMask;
8731   }
8732 
8733   // This is the block mask. We OR all incoming edges.
8734   for (auto *Predecessor : predecessors(BB)) {
8735     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8736     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8737       return BlockMaskCache[BB] = EdgeMask;
8738 
8739     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8740       BlockMask = EdgeMask;
8741       continue;
8742     }
8743 
8744     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8745   }
8746 
8747   return BlockMaskCache[BB] = BlockMask;
8748 }
8749 
8750 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8751                                                 ArrayRef<VPValue *> Operands,
8752                                                 VFRange &Range,
8753                                                 VPlanPtr &Plan) {
8754   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8755          "Must be called with either a load or store");
8756 
8757   auto willWiden = [&](ElementCount VF) -> bool {
8758     if (VF.isScalar())
8759       return false;
8760     LoopVectorizationCostModel::InstWidening Decision =
8761         CM.getWideningDecision(I, VF);
8762     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8763            "CM decision should be taken at this point.");
8764     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8765       return true;
8766     if (CM.isScalarAfterVectorization(I, VF) ||
8767         CM.isProfitableToScalarize(I, VF))
8768       return false;
8769     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8770   };
8771 
8772   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8773     return nullptr;
8774 
8775   VPValue *Mask = nullptr;
8776   if (Legal->isMaskRequired(I))
8777     Mask = createBlockInMask(I->getParent(), Plan);
8778 
8779   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8780     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8781 
8782   StoreInst *Store = cast<StoreInst>(I);
8783   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8784                                             Mask);
8785 }
8786 
8787 VPWidenIntOrFpInductionRecipe *
8788 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8789                                            ArrayRef<VPValue *> Operands) const {
8790   // Check if this is an integer or fp induction. If so, build the recipe that
8791   // produces its scalar and vector values.
8792   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8793   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8794       II.getKind() == InductionDescriptor::IK_FpInduction) {
8795     assert(II.getStartValue() ==
8796            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8797     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8798     return new VPWidenIntOrFpInductionRecipe(
8799         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8800   }
8801 
8802   return nullptr;
8803 }
8804 
8805 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8806     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8807     VPlan &Plan) const {
8808   // Optimize the special case where the source is a constant integer
8809   // induction variable. Notice that we can only optimize the 'trunc' case
8810   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8811   // (c) other casts depend on pointer size.
8812 
8813   // Determine whether \p K is a truncation based on an induction variable that
8814   // can be optimized.
8815   auto isOptimizableIVTruncate =
8816       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8817     return [=](ElementCount VF) -> bool {
8818       return CM.isOptimizableIVTruncate(K, VF);
8819     };
8820   };
8821 
8822   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8823           isOptimizableIVTruncate(I), Range)) {
8824 
8825     InductionDescriptor II =
8826         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8827     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8828     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8829                                              Start, nullptr, I);
8830   }
8831   return nullptr;
8832 }
8833 
8834 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8835                                                 ArrayRef<VPValue *> Operands,
8836                                                 VPlanPtr &Plan) {
8837   // If all incoming values are equal, the incoming VPValue can be used directly
8838   // instead of creating a new VPBlendRecipe.
8839   VPValue *FirstIncoming = Operands[0];
8840   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8841         return FirstIncoming == Inc;
8842       })) {
8843     return Operands[0];
8844   }
8845 
8846   // We know that all PHIs in non-header blocks are converted into selects, so
8847   // we don't have to worry about the insertion order and we can just use the
8848   // builder. At this point we generate the predication tree. There may be
8849   // duplications since this is a simple recursive scan, but future
8850   // optimizations will clean it up.
8851   SmallVector<VPValue *, 2> OperandsWithMask;
8852   unsigned NumIncoming = Phi->getNumIncomingValues();
8853 
8854   for (unsigned In = 0; In < NumIncoming; In++) {
8855     VPValue *EdgeMask =
8856       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8857     assert((EdgeMask || NumIncoming == 1) &&
8858            "Multiple predecessors with one having a full mask");
8859     OperandsWithMask.push_back(Operands[In]);
8860     if (EdgeMask)
8861       OperandsWithMask.push_back(EdgeMask);
8862   }
8863   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8864 }
8865 
8866 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8867                                                    ArrayRef<VPValue *> Operands,
8868                                                    VFRange &Range) const {
8869 
8870   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8871       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8872       Range);
8873 
8874   if (IsPredicated)
8875     return nullptr;
8876 
8877   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8878   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8879              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8880              ID == Intrinsic::pseudoprobe ||
8881              ID == Intrinsic::experimental_noalias_scope_decl))
8882     return nullptr;
8883 
8884   auto willWiden = [&](ElementCount VF) -> bool {
8885     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8886     // The following case may be scalarized depending on the VF.
8887     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8888     // version of the instruction.
8889     // Is it beneficial to perform intrinsic call compared to lib call?
8890     bool NeedToScalarize = false;
8891     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8892     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8893     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8894     return UseVectorIntrinsic || !NeedToScalarize;
8895   };
8896 
8897   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8898     return nullptr;
8899 
8900   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8901   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8902 }
8903 
8904 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8905   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8906          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8907   // Instruction should be widened, unless it is scalar after vectorization,
8908   // scalarization is profitable or it is predicated.
8909   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8910     return CM.isScalarAfterVectorization(I, VF) ||
8911            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8912   };
8913   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8914                                                              Range);
8915 }
8916 
8917 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8918                                            ArrayRef<VPValue *> Operands) const {
8919   auto IsVectorizableOpcode = [](unsigned Opcode) {
8920     switch (Opcode) {
8921     case Instruction::Add:
8922     case Instruction::And:
8923     case Instruction::AShr:
8924     case Instruction::BitCast:
8925     case Instruction::FAdd:
8926     case Instruction::FCmp:
8927     case Instruction::FDiv:
8928     case Instruction::FMul:
8929     case Instruction::FNeg:
8930     case Instruction::FPExt:
8931     case Instruction::FPToSI:
8932     case Instruction::FPToUI:
8933     case Instruction::FPTrunc:
8934     case Instruction::FRem:
8935     case Instruction::FSub:
8936     case Instruction::ICmp:
8937     case Instruction::IntToPtr:
8938     case Instruction::LShr:
8939     case Instruction::Mul:
8940     case Instruction::Or:
8941     case Instruction::PtrToInt:
8942     case Instruction::SDiv:
8943     case Instruction::Select:
8944     case Instruction::SExt:
8945     case Instruction::Shl:
8946     case Instruction::SIToFP:
8947     case Instruction::SRem:
8948     case Instruction::Sub:
8949     case Instruction::Trunc:
8950     case Instruction::UDiv:
8951     case Instruction::UIToFP:
8952     case Instruction::URem:
8953     case Instruction::Xor:
8954     case Instruction::ZExt:
8955       return true;
8956     }
8957     return false;
8958   };
8959 
8960   if (!IsVectorizableOpcode(I->getOpcode()))
8961     return nullptr;
8962 
8963   // Success: widen this instruction.
8964   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8965 }
8966 
8967 void VPRecipeBuilder::fixHeaderPhis() {
8968   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8969   for (VPWidenPHIRecipe *R : PhisToFix) {
8970     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8971     VPRecipeBase *IncR =
8972         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8973     R->addOperand(IncR->getVPSingleValue());
8974   }
8975 }
8976 
8977 VPBasicBlock *VPRecipeBuilder::handleReplication(
8978     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8979     VPlanPtr &Plan) {
8980   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8981       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8982       Range);
8983 
8984   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8985       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8986 
8987   // Even if the instruction is not marked as uniform, there are certain
8988   // intrinsic calls that can be effectively treated as such, so we check for
8989   // them here. Conservatively, we only do this for scalable vectors, since
8990   // for fixed-width VFs we can always fall back on full scalarization.
8991   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8992     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8993     case Intrinsic::assume:
8994     case Intrinsic::lifetime_start:
8995     case Intrinsic::lifetime_end:
8996       // For scalable vectors if one of the operands is variant then we still
8997       // want to mark as uniform, which will generate one instruction for just
8998       // the first lane of the vector. We can't scalarize the call in the same
8999       // way as for fixed-width vectors because we don't know how many lanes
9000       // there are.
9001       //
9002       // The reasons for doing it this way for scalable vectors are:
9003       //   1. For the assume intrinsic generating the instruction for the first
9004       //      lane is still be better than not generating any at all. For
9005       //      example, the input may be a splat across all lanes.
9006       //   2. For the lifetime start/end intrinsics the pointer operand only
9007       //      does anything useful when the input comes from a stack object,
9008       //      which suggests it should always be uniform. For non-stack objects
9009       //      the effect is to poison the object, which still allows us to
9010       //      remove the call.
9011       IsUniform = true;
9012       break;
9013     default:
9014       break;
9015     }
9016   }
9017 
9018   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9019                                        IsUniform, IsPredicated);
9020   setRecipe(I, Recipe);
9021   Plan->addVPValue(I, Recipe);
9022 
9023   // Find if I uses a predicated instruction. If so, it will use its scalar
9024   // value. Avoid hoisting the insert-element which packs the scalar value into
9025   // a vector value, as that happens iff all users use the vector value.
9026   for (VPValue *Op : Recipe->operands()) {
9027     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9028     if (!PredR)
9029       continue;
9030     auto *RepR =
9031         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9032     assert(RepR->isPredicated() &&
9033            "expected Replicate recipe to be predicated");
9034     RepR->setAlsoPack(false);
9035   }
9036 
9037   // Finalize the recipe for Instr, first if it is not predicated.
9038   if (!IsPredicated) {
9039     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9040     VPBB->appendRecipe(Recipe);
9041     return VPBB;
9042   }
9043   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9044   assert(VPBB->getSuccessors().empty() &&
9045          "VPBB has successors when handling predicated replication.");
9046   // Record predicated instructions for above packing optimizations.
9047   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9048   VPBlockUtils::insertBlockAfter(Region, VPBB);
9049   auto *RegSucc = new VPBasicBlock();
9050   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9051   return RegSucc;
9052 }
9053 
9054 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9055                                                       VPRecipeBase *PredRecipe,
9056                                                       VPlanPtr &Plan) {
9057   // Instructions marked for predication are replicated and placed under an
9058   // if-then construct to prevent side-effects.
9059 
9060   // Generate recipes to compute the block mask for this region.
9061   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9062 
9063   // Build the triangular if-then region.
9064   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9065   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9066   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9067   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9068   auto *PHIRecipe = Instr->getType()->isVoidTy()
9069                         ? nullptr
9070                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9071   if (PHIRecipe) {
9072     Plan->removeVPValueFor(Instr);
9073     Plan->addVPValue(Instr, PHIRecipe);
9074   }
9075   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9076   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9077   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9078 
9079   // Note: first set Entry as region entry and then connect successors starting
9080   // from it in order, to propagate the "parent" of each VPBasicBlock.
9081   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9082   VPBlockUtils::connectBlocks(Pred, Exit);
9083 
9084   return Region;
9085 }
9086 
9087 VPRecipeOrVPValueTy
9088 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9089                                         ArrayRef<VPValue *> Operands,
9090                                         VFRange &Range, VPlanPtr &Plan) {
9091   // First, check for specific widening recipes that deal with calls, memory
9092   // operations, inductions and Phi nodes.
9093   if (auto *CI = dyn_cast<CallInst>(Instr))
9094     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9095 
9096   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9097     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9098 
9099   VPRecipeBase *Recipe;
9100   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9101     if (Phi->getParent() != OrigLoop->getHeader())
9102       return tryToBlend(Phi, Operands, Plan);
9103     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9104       return toVPRecipeResult(Recipe);
9105 
9106     VPWidenPHIRecipe *PhiRecipe = nullptr;
9107     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9108       VPValue *StartV = Operands[0];
9109       if (Legal->isReductionVariable(Phi)) {
9110         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9111         assert(RdxDesc.getRecurrenceStartValue() ==
9112                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9113         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9114                                              CM.isInLoopReduction(Phi),
9115                                              CM.useOrderedReductions(RdxDesc));
9116       } else {
9117         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9118       }
9119 
9120       // Record the incoming value from the backedge, so we can add the incoming
9121       // value from the backedge after all recipes have been created.
9122       recordRecipeOf(cast<Instruction>(
9123           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9124       PhisToFix.push_back(PhiRecipe);
9125     } else {
9126       // TODO: record start and backedge value for remaining pointer induction
9127       // phis.
9128       assert(Phi->getType()->isPointerTy() &&
9129              "only pointer phis should be handled here");
9130       PhiRecipe = new VPWidenPHIRecipe(Phi);
9131     }
9132 
9133     return toVPRecipeResult(PhiRecipe);
9134   }
9135 
9136   if (isa<TruncInst>(Instr) &&
9137       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9138                                                Range, *Plan)))
9139     return toVPRecipeResult(Recipe);
9140 
9141   if (!shouldWiden(Instr, Range))
9142     return nullptr;
9143 
9144   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9145     return toVPRecipeResult(new VPWidenGEPRecipe(
9146         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9147 
9148   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9149     bool InvariantCond =
9150         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9151     return toVPRecipeResult(new VPWidenSelectRecipe(
9152         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9153   }
9154 
9155   return toVPRecipeResult(tryToWiden(Instr, Operands));
9156 }
9157 
9158 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9159                                                         ElementCount MaxVF) {
9160   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9161 
9162   // Collect instructions from the original loop that will become trivially dead
9163   // in the vectorized loop. We don't need to vectorize these instructions. For
9164   // example, original induction update instructions can become dead because we
9165   // separately emit induction "steps" when generating code for the new loop.
9166   // Similarly, we create a new latch condition when setting up the structure
9167   // of the new loop, so the old one can become dead.
9168   SmallPtrSet<Instruction *, 4> DeadInstructions;
9169   collectTriviallyDeadInstructions(DeadInstructions);
9170 
9171   // Add assume instructions we need to drop to DeadInstructions, to prevent
9172   // them from being added to the VPlan.
9173   // TODO: We only need to drop assumes in blocks that get flattend. If the
9174   // control flow is preserved, we should keep them.
9175   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9176   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9177 
9178   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9179   // Dead instructions do not need sinking. Remove them from SinkAfter.
9180   for (Instruction *I : DeadInstructions)
9181     SinkAfter.erase(I);
9182 
9183   // Cannot sink instructions after dead instructions (there won't be any
9184   // recipes for them). Instead, find the first non-dead previous instruction.
9185   for (auto &P : Legal->getSinkAfter()) {
9186     Instruction *SinkTarget = P.second;
9187     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9188     (void)FirstInst;
9189     while (DeadInstructions.contains(SinkTarget)) {
9190       assert(
9191           SinkTarget != FirstInst &&
9192           "Must find a live instruction (at least the one feeding the "
9193           "first-order recurrence PHI) before reaching beginning of the block");
9194       SinkTarget = SinkTarget->getPrevNode();
9195       assert(SinkTarget != P.first &&
9196              "sink source equals target, no sinking required");
9197     }
9198     P.second = SinkTarget;
9199   }
9200 
9201   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9202   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9203     VFRange SubRange = {VF, MaxVFPlusOne};
9204     VPlans.push_back(
9205         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9206     VF = SubRange.End;
9207   }
9208 }
9209 
9210 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9211     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9212     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9213 
9214   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9215 
9216   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9217 
9218   // ---------------------------------------------------------------------------
9219   // Pre-construction: record ingredients whose recipes we'll need to further
9220   // process after constructing the initial VPlan.
9221   // ---------------------------------------------------------------------------
9222 
9223   // Mark instructions we'll need to sink later and their targets as
9224   // ingredients whose recipe we'll need to record.
9225   for (auto &Entry : SinkAfter) {
9226     RecipeBuilder.recordRecipeOf(Entry.first);
9227     RecipeBuilder.recordRecipeOf(Entry.second);
9228   }
9229   for (auto &Reduction : CM.getInLoopReductionChains()) {
9230     PHINode *Phi = Reduction.first;
9231     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9232     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9233 
9234     RecipeBuilder.recordRecipeOf(Phi);
9235     for (auto &R : ReductionOperations) {
9236       RecipeBuilder.recordRecipeOf(R);
9237       // For min/max reducitons, where we have a pair of icmp/select, we also
9238       // need to record the ICmp recipe, so it can be removed later.
9239       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9240         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9241     }
9242   }
9243 
9244   // For each interleave group which is relevant for this (possibly trimmed)
9245   // Range, add it to the set of groups to be later applied to the VPlan and add
9246   // placeholders for its members' Recipes which we'll be replacing with a
9247   // single VPInterleaveRecipe.
9248   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9249     auto applyIG = [IG, this](ElementCount VF) -> bool {
9250       return (VF.isVector() && // Query is illegal for VF == 1
9251               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9252                   LoopVectorizationCostModel::CM_Interleave);
9253     };
9254     if (!getDecisionAndClampRange(applyIG, Range))
9255       continue;
9256     InterleaveGroups.insert(IG);
9257     for (unsigned i = 0; i < IG->getFactor(); i++)
9258       if (Instruction *Member = IG->getMember(i))
9259         RecipeBuilder.recordRecipeOf(Member);
9260   };
9261 
9262   // ---------------------------------------------------------------------------
9263   // Build initial VPlan: Scan the body of the loop in a topological order to
9264   // visit each basic block after having visited its predecessor basic blocks.
9265   // ---------------------------------------------------------------------------
9266 
9267   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9268   auto Plan = std::make_unique<VPlan>();
9269   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9270   Plan->setEntry(VPBB);
9271 
9272   // Scan the body of the loop in a topological order to visit each basic block
9273   // after having visited its predecessor basic blocks.
9274   LoopBlocksDFS DFS(OrigLoop);
9275   DFS.perform(LI);
9276 
9277   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9278     // Relevant instructions from basic block BB will be grouped into VPRecipe
9279     // ingredients and fill a new VPBasicBlock.
9280     unsigned VPBBsForBB = 0;
9281     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9282     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9283     VPBB = FirstVPBBForBB;
9284     Builder.setInsertPoint(VPBB);
9285 
9286     // Introduce each ingredient into VPlan.
9287     // TODO: Model and preserve debug instrinsics in VPlan.
9288     for (Instruction &I : BB->instructionsWithoutDebug()) {
9289       Instruction *Instr = &I;
9290 
9291       // First filter out irrelevant instructions, to ensure no recipes are
9292       // built for them.
9293       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9294         continue;
9295 
9296       SmallVector<VPValue *, 4> Operands;
9297       auto *Phi = dyn_cast<PHINode>(Instr);
9298       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9299         Operands.push_back(Plan->getOrAddVPValue(
9300             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9301       } else {
9302         auto OpRange = Plan->mapToVPValues(Instr->operands());
9303         Operands = {OpRange.begin(), OpRange.end()};
9304       }
9305       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9306               Instr, Operands, Range, Plan)) {
9307         // If Instr can be simplified to an existing VPValue, use it.
9308         if (RecipeOrValue.is<VPValue *>()) {
9309           auto *VPV = RecipeOrValue.get<VPValue *>();
9310           Plan->addVPValue(Instr, VPV);
9311           // If the re-used value is a recipe, register the recipe for the
9312           // instruction, in case the recipe for Instr needs to be recorded.
9313           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9314             RecipeBuilder.setRecipe(Instr, R);
9315           continue;
9316         }
9317         // Otherwise, add the new recipe.
9318         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9319         for (auto *Def : Recipe->definedValues()) {
9320           auto *UV = Def->getUnderlyingValue();
9321           Plan->addVPValue(UV, Def);
9322         }
9323 
9324         RecipeBuilder.setRecipe(Instr, Recipe);
9325         VPBB->appendRecipe(Recipe);
9326         continue;
9327       }
9328 
9329       // Otherwise, if all widening options failed, Instruction is to be
9330       // replicated. This may create a successor for VPBB.
9331       VPBasicBlock *NextVPBB =
9332           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9333       if (NextVPBB != VPBB) {
9334         VPBB = NextVPBB;
9335         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9336                                     : "");
9337       }
9338     }
9339   }
9340 
9341   RecipeBuilder.fixHeaderPhis();
9342 
9343   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9344   // may also be empty, such as the last one VPBB, reflecting original
9345   // basic-blocks with no recipes.
9346   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9347   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9348   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9349   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9350   delete PreEntry;
9351 
9352   // ---------------------------------------------------------------------------
9353   // Transform initial VPlan: Apply previously taken decisions, in order, to
9354   // bring the VPlan to its final state.
9355   // ---------------------------------------------------------------------------
9356 
9357   // Apply Sink-After legal constraints.
9358   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9359     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9360     if (Region && Region->isReplicator()) {
9361       assert(Region->getNumSuccessors() == 1 &&
9362              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9363       assert(R->getParent()->size() == 1 &&
9364              "A recipe in an original replicator region must be the only "
9365              "recipe in its block");
9366       return Region;
9367     }
9368     return nullptr;
9369   };
9370   for (auto &Entry : SinkAfter) {
9371     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9372     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9373 
9374     auto *TargetRegion = GetReplicateRegion(Target);
9375     auto *SinkRegion = GetReplicateRegion(Sink);
9376     if (!SinkRegion) {
9377       // If the sink source is not a replicate region, sink the recipe directly.
9378       if (TargetRegion) {
9379         // The target is in a replication region, make sure to move Sink to
9380         // the block after it, not into the replication region itself.
9381         VPBasicBlock *NextBlock =
9382             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9383         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9384       } else
9385         Sink->moveAfter(Target);
9386       continue;
9387     }
9388 
9389     // The sink source is in a replicate region. Unhook the region from the CFG.
9390     auto *SinkPred = SinkRegion->getSinglePredecessor();
9391     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9392     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9393     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9394     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9395 
9396     if (TargetRegion) {
9397       // The target recipe is also in a replicate region, move the sink region
9398       // after the target region.
9399       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9400       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9401       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9402       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9403     } else {
9404       // The sink source is in a replicate region, we need to move the whole
9405       // replicate region, which should only contain a single recipe in the
9406       // main block.
9407       auto *SplitBlock =
9408           Target->getParent()->splitAt(std::next(Target->getIterator()));
9409 
9410       auto *SplitPred = SplitBlock->getSinglePredecessor();
9411 
9412       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9413       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9414       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9415       if (VPBB == SplitPred)
9416         VPBB = SplitBlock;
9417     }
9418   }
9419 
9420   // Introduce a recipe to combine the incoming and previous values of a
9421   // first-order recurrence.
9422   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9423     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9424     if (!RecurPhi)
9425       continue;
9426 
9427     auto *RecurSplice = cast<VPInstruction>(
9428         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9429                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9430 
9431     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9432     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9433       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9434       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9435     } else
9436       RecurSplice->moveAfter(PrevRecipe);
9437     RecurPhi->replaceAllUsesWith(RecurSplice);
9438     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9439     // all users.
9440     RecurSplice->setOperand(0, RecurPhi);
9441   }
9442 
9443   // Interleave memory: for each Interleave Group we marked earlier as relevant
9444   // for this VPlan, replace the Recipes widening its memory instructions with a
9445   // single VPInterleaveRecipe at its insertion point.
9446   for (auto IG : InterleaveGroups) {
9447     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9448         RecipeBuilder.getRecipe(IG->getInsertPos()));
9449     SmallVector<VPValue *, 4> StoredValues;
9450     for (unsigned i = 0; i < IG->getFactor(); ++i)
9451       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9452         auto *StoreR =
9453             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9454         StoredValues.push_back(StoreR->getStoredValue());
9455       }
9456 
9457     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9458                                         Recipe->getMask());
9459     VPIG->insertBefore(Recipe);
9460     unsigned J = 0;
9461     for (unsigned i = 0; i < IG->getFactor(); ++i)
9462       if (Instruction *Member = IG->getMember(i)) {
9463         if (!Member->getType()->isVoidTy()) {
9464           VPValue *OriginalV = Plan->getVPValue(Member);
9465           Plan->removeVPValueFor(Member);
9466           Plan->addVPValue(Member, VPIG->getVPValue(J));
9467           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9468           J++;
9469         }
9470         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9471       }
9472   }
9473 
9474   // Adjust the recipes for any inloop reductions.
9475   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9476 
9477   VPlanTransforms::sinkScalarOperands(*Plan);
9478   VPlanTransforms::mergeReplicateRegions(*Plan);
9479 
9480   std::string PlanName;
9481   raw_string_ostream RSO(PlanName);
9482   ElementCount VF = Range.Start;
9483   Plan->addVF(VF);
9484   RSO << "Initial VPlan for VF={" << VF;
9485   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9486     Plan->addVF(VF);
9487     RSO << "," << VF;
9488   }
9489   RSO << "},UF>=1";
9490   RSO.flush();
9491   Plan->setName(PlanName);
9492 
9493   return Plan;
9494 }
9495 
9496 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9497   // Outer loop handling: They may require CFG and instruction level
9498   // transformations before even evaluating whether vectorization is profitable.
9499   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9500   // the vectorization pipeline.
9501   assert(!OrigLoop->isInnermost());
9502   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9503 
9504   // Create new empty VPlan
9505   auto Plan = std::make_unique<VPlan>();
9506 
9507   // Build hierarchical CFG
9508   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9509   HCFGBuilder.buildHierarchicalCFG();
9510 
9511   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9512        VF *= 2)
9513     Plan->addVF(VF);
9514 
9515   if (EnableVPlanPredication) {
9516     VPlanPredicator VPP(*Plan);
9517     VPP.predicate();
9518 
9519     // Avoid running transformation to recipes until masked code generation in
9520     // VPlan-native path is in place.
9521     return Plan;
9522   }
9523 
9524   SmallPtrSet<Instruction *, 1> DeadInstructions;
9525   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9526                                              Legal->getInductionVars(),
9527                                              DeadInstructions, *PSE.getSE());
9528   return Plan;
9529 }
9530 
9531 // Adjust the recipes for reductions. For in-loop reductions the chain of
9532 // instructions leading from the loop exit instr to the phi need to be converted
9533 // to reductions, with one operand being vector and the other being the scalar
9534 // reduction chain. For other reductions, a select is introduced between the phi
9535 // and live-out recipes when folding the tail.
9536 void LoopVectorizationPlanner::adjustRecipesForReductions(
9537     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9538     ElementCount MinVF) {
9539   for (auto &Reduction : CM.getInLoopReductionChains()) {
9540     PHINode *Phi = Reduction.first;
9541     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9542     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9543 
9544     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9545       continue;
9546 
9547     // ReductionOperations are orders top-down from the phi's use to the
9548     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9549     // which of the two operands will remain scalar and which will be reduced.
9550     // For minmax the chain will be the select instructions.
9551     Instruction *Chain = Phi;
9552     for (Instruction *R : ReductionOperations) {
9553       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9554       RecurKind Kind = RdxDesc.getRecurrenceKind();
9555 
9556       VPValue *ChainOp = Plan->getVPValue(Chain);
9557       unsigned FirstOpId;
9558       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9559         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9560                "Expected to replace a VPWidenSelectSC");
9561         FirstOpId = 1;
9562       } else {
9563         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9564                "Expected to replace a VPWidenSC");
9565         FirstOpId = 0;
9566       }
9567       unsigned VecOpId =
9568           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9569       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9570 
9571       auto *CondOp = CM.foldTailByMasking()
9572                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9573                          : nullptr;
9574       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9575           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9576       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9577       Plan->removeVPValueFor(R);
9578       Plan->addVPValue(R, RedRecipe);
9579       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9580       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9581       WidenRecipe->eraseFromParent();
9582 
9583       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9584         VPRecipeBase *CompareRecipe =
9585             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9586         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9587                "Expected to replace a VPWidenSC");
9588         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9589                "Expected no remaining users");
9590         CompareRecipe->eraseFromParent();
9591       }
9592       Chain = R;
9593     }
9594   }
9595 
9596   // If tail is folded by masking, introduce selects between the phi
9597   // and the live-out instruction of each reduction, at the end of the latch.
9598   if (CM.foldTailByMasking()) {
9599     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9600       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9601       if (!PhiR || PhiR->isInLoop())
9602         continue;
9603       Builder.setInsertPoint(LatchVPBB);
9604       VPValue *Cond =
9605           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9606       VPValue *Red = PhiR->getBackedgeValue();
9607       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9608     }
9609   }
9610 }
9611 
9612 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9613 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9614                                VPSlotTracker &SlotTracker) const {
9615   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9616   IG->getInsertPos()->printAsOperand(O, false);
9617   O << ", ";
9618   getAddr()->printAsOperand(O, SlotTracker);
9619   VPValue *Mask = getMask();
9620   if (Mask) {
9621     O << ", ";
9622     Mask->printAsOperand(O, SlotTracker);
9623   }
9624 
9625   unsigned OpIdx = 0;
9626   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9627     if (!IG->getMember(i))
9628       continue;
9629     if (getNumStoreOperands() > 0) {
9630       O << "\n" << Indent << "  store ";
9631       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9632       O << " to index " << i;
9633     } else {
9634       O << "\n" << Indent << "  ";
9635       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9636       O << " = load from index " << i;
9637     }
9638     ++OpIdx;
9639   }
9640 }
9641 #endif
9642 
9643 void VPWidenCallRecipe::execute(VPTransformState &State) {
9644   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9645                                   *this, State);
9646 }
9647 
9648 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9649   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9650                                     this, *this, InvariantCond, State);
9651 }
9652 
9653 void VPWidenRecipe::execute(VPTransformState &State) {
9654   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9655 }
9656 
9657 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9658   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9659                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9660                       IsIndexLoopInvariant, State);
9661 }
9662 
9663 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9664   assert(!State.Instance && "Int or FP induction being replicated.");
9665   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9666                                    getTruncInst(), getVPValue(0),
9667                                    getCastValue(), State);
9668 }
9669 
9670 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9671   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9672                                  State);
9673 }
9674 
9675 void VPBlendRecipe::execute(VPTransformState &State) {
9676   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9677   // We know that all PHIs in non-header blocks are converted into
9678   // selects, so we don't have to worry about the insertion order and we
9679   // can just use the builder.
9680   // At this point we generate the predication tree. There may be
9681   // duplications since this is a simple recursive scan, but future
9682   // optimizations will clean it up.
9683 
9684   unsigned NumIncoming = getNumIncomingValues();
9685 
9686   // Generate a sequence of selects of the form:
9687   // SELECT(Mask3, In3,
9688   //        SELECT(Mask2, In2,
9689   //               SELECT(Mask1, In1,
9690   //                      In0)))
9691   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9692   // are essentially undef are taken from In0.
9693   InnerLoopVectorizer::VectorParts Entry(State.UF);
9694   for (unsigned In = 0; In < NumIncoming; ++In) {
9695     for (unsigned Part = 0; Part < State.UF; ++Part) {
9696       // We might have single edge PHIs (blocks) - use an identity
9697       // 'select' for the first PHI operand.
9698       Value *In0 = State.get(getIncomingValue(In), Part);
9699       if (In == 0)
9700         Entry[Part] = In0; // Initialize with the first incoming value.
9701       else {
9702         // Select between the current value and the previous incoming edge
9703         // based on the incoming mask.
9704         Value *Cond = State.get(getMask(In), Part);
9705         Entry[Part] =
9706             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9707       }
9708     }
9709   }
9710   for (unsigned Part = 0; Part < State.UF; ++Part)
9711     State.set(this, Entry[Part], Part);
9712 }
9713 
9714 void VPInterleaveRecipe::execute(VPTransformState &State) {
9715   assert(!State.Instance && "Interleave group being replicated.");
9716   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9717                                       getStoredValues(), getMask());
9718 }
9719 
9720 void VPReductionRecipe::execute(VPTransformState &State) {
9721   assert(!State.Instance && "Reduction being replicated.");
9722   Value *PrevInChain = State.get(getChainOp(), 0);
9723   for (unsigned Part = 0; Part < State.UF; ++Part) {
9724     RecurKind Kind = RdxDesc->getRecurrenceKind();
9725     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9726     Value *NewVecOp = State.get(getVecOp(), Part);
9727     if (VPValue *Cond = getCondOp()) {
9728       Value *NewCond = State.get(Cond, Part);
9729       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9730       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9731           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9732       Constant *IdenVec =
9733           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9734       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9735       NewVecOp = Select;
9736     }
9737     Value *NewRed;
9738     Value *NextInChain;
9739     if (IsOrdered) {
9740       if (State.VF.isVector())
9741         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9742                                         PrevInChain);
9743       else
9744         NewRed = State.Builder.CreateBinOp(
9745             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9746             PrevInChain, NewVecOp);
9747       PrevInChain = NewRed;
9748     } else {
9749       PrevInChain = State.get(getChainOp(), Part);
9750       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9751     }
9752     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9753       NextInChain =
9754           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9755                          NewRed, PrevInChain);
9756     } else if (IsOrdered)
9757       NextInChain = NewRed;
9758     else {
9759       NextInChain = State.Builder.CreateBinOp(
9760           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9761           PrevInChain);
9762     }
9763     State.set(this, NextInChain, Part);
9764   }
9765 }
9766 
9767 void VPReplicateRecipe::execute(VPTransformState &State) {
9768   if (State.Instance) { // Generate a single instance.
9769     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9770     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9771                                     *State.Instance, IsPredicated, State);
9772     // Insert scalar instance packing it into a vector.
9773     if (AlsoPack && State.VF.isVector()) {
9774       // If we're constructing lane 0, initialize to start from poison.
9775       if (State.Instance->Lane.isFirstLane()) {
9776         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9777         Value *Poison = PoisonValue::get(
9778             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9779         State.set(this, Poison, State.Instance->Part);
9780       }
9781       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9782     }
9783     return;
9784   }
9785 
9786   // Generate scalar instances for all VF lanes of all UF parts, unless the
9787   // instruction is uniform inwhich case generate only the first lane for each
9788   // of the UF parts.
9789   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9790   assert((!State.VF.isScalable() || IsUniform) &&
9791          "Can't scalarize a scalable vector");
9792   for (unsigned Part = 0; Part < State.UF; ++Part)
9793     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9794       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9795                                       VPIteration(Part, Lane), IsPredicated,
9796                                       State);
9797 }
9798 
9799 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9800   assert(State.Instance && "Branch on Mask works only on single instance.");
9801 
9802   unsigned Part = State.Instance->Part;
9803   unsigned Lane = State.Instance->Lane.getKnownLane();
9804 
9805   Value *ConditionBit = nullptr;
9806   VPValue *BlockInMask = getMask();
9807   if (BlockInMask) {
9808     ConditionBit = State.get(BlockInMask, Part);
9809     if (ConditionBit->getType()->isVectorTy())
9810       ConditionBit = State.Builder.CreateExtractElement(
9811           ConditionBit, State.Builder.getInt32(Lane));
9812   } else // Block in mask is all-one.
9813     ConditionBit = State.Builder.getTrue();
9814 
9815   // Replace the temporary unreachable terminator with a new conditional branch,
9816   // whose two destinations will be set later when they are created.
9817   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9818   assert(isa<UnreachableInst>(CurrentTerminator) &&
9819          "Expected to replace unreachable terminator with conditional branch.");
9820   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9821   CondBr->setSuccessor(0, nullptr);
9822   ReplaceInstWithInst(CurrentTerminator, CondBr);
9823 }
9824 
9825 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9826   assert(State.Instance && "Predicated instruction PHI works per instance.");
9827   Instruction *ScalarPredInst =
9828       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9829   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9830   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9831   assert(PredicatingBB && "Predicated block has no single predecessor.");
9832   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9833          "operand must be VPReplicateRecipe");
9834 
9835   // By current pack/unpack logic we need to generate only a single phi node: if
9836   // a vector value for the predicated instruction exists at this point it means
9837   // the instruction has vector users only, and a phi for the vector value is
9838   // needed. In this case the recipe of the predicated instruction is marked to
9839   // also do that packing, thereby "hoisting" the insert-element sequence.
9840   // Otherwise, a phi node for the scalar value is needed.
9841   unsigned Part = State.Instance->Part;
9842   if (State.hasVectorValue(getOperand(0), Part)) {
9843     Value *VectorValue = State.get(getOperand(0), Part);
9844     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9845     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9846     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9847     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9848     if (State.hasVectorValue(this, Part))
9849       State.reset(this, VPhi, Part);
9850     else
9851       State.set(this, VPhi, Part);
9852     // NOTE: Currently we need to update the value of the operand, so the next
9853     // predicated iteration inserts its generated value in the correct vector.
9854     State.reset(getOperand(0), VPhi, Part);
9855   } else {
9856     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9857     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9858     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9859                      PredicatingBB);
9860     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9861     if (State.hasScalarValue(this, *State.Instance))
9862       State.reset(this, Phi, *State.Instance);
9863     else
9864       State.set(this, Phi, *State.Instance);
9865     // NOTE: Currently we need to update the value of the operand, so the next
9866     // predicated iteration inserts its generated value in the correct vector.
9867     State.reset(getOperand(0), Phi, *State.Instance);
9868   }
9869 }
9870 
9871 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9872   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9873   State.ILV->vectorizeMemoryInstruction(
9874       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9875       StoredValue, getMask());
9876 }
9877 
9878 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9879 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9880 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9881 // for predication.
9882 static ScalarEpilogueLowering getScalarEpilogueLowering(
9883     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9884     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9885     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9886     LoopVectorizationLegality &LVL) {
9887   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9888   // don't look at hints or options, and don't request a scalar epilogue.
9889   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9890   // LoopAccessInfo (due to code dependency and not being able to reliably get
9891   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9892   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9893   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9894   // back to the old way and vectorize with versioning when forced. See D81345.)
9895   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9896                                                       PGSOQueryType::IRPass) &&
9897                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9898     return CM_ScalarEpilogueNotAllowedOptSize;
9899 
9900   // 2) If set, obey the directives
9901   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9902     switch (PreferPredicateOverEpilogue) {
9903     case PreferPredicateTy::ScalarEpilogue:
9904       return CM_ScalarEpilogueAllowed;
9905     case PreferPredicateTy::PredicateElseScalarEpilogue:
9906       return CM_ScalarEpilogueNotNeededUsePredicate;
9907     case PreferPredicateTy::PredicateOrDontVectorize:
9908       return CM_ScalarEpilogueNotAllowedUsePredicate;
9909     };
9910   }
9911 
9912   // 3) If set, obey the hints
9913   switch (Hints.getPredicate()) {
9914   case LoopVectorizeHints::FK_Enabled:
9915     return CM_ScalarEpilogueNotNeededUsePredicate;
9916   case LoopVectorizeHints::FK_Disabled:
9917     return CM_ScalarEpilogueAllowed;
9918   };
9919 
9920   // 4) if the TTI hook indicates this is profitable, request predication.
9921   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9922                                        LVL.getLAI()))
9923     return CM_ScalarEpilogueNotNeededUsePredicate;
9924 
9925   return CM_ScalarEpilogueAllowed;
9926 }
9927 
9928 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9929   // If Values have been set for this Def return the one relevant for \p Part.
9930   if (hasVectorValue(Def, Part))
9931     return Data.PerPartOutput[Def][Part];
9932 
9933   if (!hasScalarValue(Def, {Part, 0})) {
9934     Value *IRV = Def->getLiveInIRValue();
9935     Value *B = ILV->getBroadcastInstrs(IRV);
9936     set(Def, B, Part);
9937     return B;
9938   }
9939 
9940   Value *ScalarValue = get(Def, {Part, 0});
9941   // If we aren't vectorizing, we can just copy the scalar map values over
9942   // to the vector map.
9943   if (VF.isScalar()) {
9944     set(Def, ScalarValue, Part);
9945     return ScalarValue;
9946   }
9947 
9948   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9949   bool IsUniform = RepR && RepR->isUniform();
9950 
9951   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9952   // Check if there is a scalar value for the selected lane.
9953   if (!hasScalarValue(Def, {Part, LastLane})) {
9954     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9955     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9956            "unexpected recipe found to be invariant");
9957     IsUniform = true;
9958     LastLane = 0;
9959   }
9960 
9961   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9962   // Set the insert point after the last scalarized instruction or after the
9963   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9964   // will directly follow the scalar definitions.
9965   auto OldIP = Builder.saveIP();
9966   auto NewIP =
9967       isa<PHINode>(LastInst)
9968           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9969           : std::next(BasicBlock::iterator(LastInst));
9970   Builder.SetInsertPoint(&*NewIP);
9971 
9972   // However, if we are vectorizing, we need to construct the vector values.
9973   // If the value is known to be uniform after vectorization, we can just
9974   // broadcast the scalar value corresponding to lane zero for each unroll
9975   // iteration. Otherwise, we construct the vector values using
9976   // insertelement instructions. Since the resulting vectors are stored in
9977   // State, we will only generate the insertelements once.
9978   Value *VectorValue = nullptr;
9979   if (IsUniform) {
9980     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9981     set(Def, VectorValue, Part);
9982   } else {
9983     // Initialize packing with insertelements to start from undef.
9984     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9985     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9986     set(Def, Undef, Part);
9987     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9988       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9989     VectorValue = get(Def, Part);
9990   }
9991   Builder.restoreIP(OldIP);
9992   return VectorValue;
9993 }
9994 
9995 // Process the loop in the VPlan-native vectorization path. This path builds
9996 // VPlan upfront in the vectorization pipeline, which allows to apply
9997 // VPlan-to-VPlan transformations from the very beginning without modifying the
9998 // input LLVM IR.
9999 static bool processLoopInVPlanNativePath(
10000     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10001     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10002     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10003     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10004     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10005     LoopVectorizationRequirements &Requirements) {
10006 
10007   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10008     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10009     return false;
10010   }
10011   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10012   Function *F = L->getHeader()->getParent();
10013   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10014 
10015   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10016       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10017 
10018   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10019                                 &Hints, IAI);
10020   // Use the planner for outer loop vectorization.
10021   // TODO: CM is not used at this point inside the planner. Turn CM into an
10022   // optional argument if we don't need it in the future.
10023   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10024                                Requirements, ORE);
10025 
10026   // Get user vectorization factor.
10027   ElementCount UserVF = Hints.getWidth();
10028 
10029   CM.collectElementTypesForWidening();
10030 
10031   // Plan how to best vectorize, return the best VF and its cost.
10032   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10033 
10034   // If we are stress testing VPlan builds, do not attempt to generate vector
10035   // code. Masked vector code generation support will follow soon.
10036   // Also, do not attempt to vectorize if no vector code will be produced.
10037   if (VPlanBuildStressTest || EnableVPlanPredication ||
10038       VectorizationFactor::Disabled() == VF)
10039     return false;
10040 
10041   LVP.setBestPlan(VF.Width, 1);
10042 
10043   {
10044     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10045                              F->getParent()->getDataLayout());
10046     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10047                            &CM, BFI, PSI, Checks);
10048     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10049                       << L->getHeader()->getParent()->getName() << "\"\n");
10050     LVP.executePlan(LB, DT);
10051   }
10052 
10053   // Mark the loop as already vectorized to avoid vectorizing again.
10054   Hints.setAlreadyVectorized();
10055   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10056   return true;
10057 }
10058 
10059 // Emit a remark if there are stores to floats that required a floating point
10060 // extension. If the vectorized loop was generated with floating point there
10061 // will be a performance penalty from the conversion overhead and the change in
10062 // the vector width.
10063 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10064   SmallVector<Instruction *, 4> Worklist;
10065   for (BasicBlock *BB : L->getBlocks()) {
10066     for (Instruction &Inst : *BB) {
10067       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10068         if (S->getValueOperand()->getType()->isFloatTy())
10069           Worklist.push_back(S);
10070       }
10071     }
10072   }
10073 
10074   // Traverse the floating point stores upwards searching, for floating point
10075   // conversions.
10076   SmallPtrSet<const Instruction *, 4> Visited;
10077   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10078   while (!Worklist.empty()) {
10079     auto *I = Worklist.pop_back_val();
10080     if (!L->contains(I))
10081       continue;
10082     if (!Visited.insert(I).second)
10083       continue;
10084 
10085     // Emit a remark if the floating point store required a floating
10086     // point conversion.
10087     // TODO: More work could be done to identify the root cause such as a
10088     // constant or a function return type and point the user to it.
10089     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10090       ORE->emit([&]() {
10091         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10092                                           I->getDebugLoc(), L->getHeader())
10093                << "floating point conversion changes vector width. "
10094                << "Mixed floating point precision requires an up/down "
10095                << "cast that will negatively impact performance.";
10096       });
10097 
10098     for (Use &Op : I->operands())
10099       if (auto *OpI = dyn_cast<Instruction>(Op))
10100         Worklist.push_back(OpI);
10101   }
10102 }
10103 
10104 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10105     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10106                                !EnableLoopInterleaving),
10107       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10108                               !EnableLoopVectorization) {}
10109 
10110 bool LoopVectorizePass::processLoop(Loop *L) {
10111   assert((EnableVPlanNativePath || L->isInnermost()) &&
10112          "VPlan-native path is not enabled. Only process inner loops.");
10113 
10114 #ifndef NDEBUG
10115   const std::string DebugLocStr = getDebugLocString(L);
10116 #endif /* NDEBUG */
10117 
10118   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10119                     << L->getHeader()->getParent()->getName() << "\" from "
10120                     << DebugLocStr << "\n");
10121 
10122   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10123 
10124   LLVM_DEBUG(
10125       dbgs() << "LV: Loop hints:"
10126              << " force="
10127              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10128                      ? "disabled"
10129                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10130                             ? "enabled"
10131                             : "?"))
10132              << " width=" << Hints.getWidth()
10133              << " interleave=" << Hints.getInterleave() << "\n");
10134 
10135   // Function containing loop
10136   Function *F = L->getHeader()->getParent();
10137 
10138   // Looking at the diagnostic output is the only way to determine if a loop
10139   // was vectorized (other than looking at the IR or machine code), so it
10140   // is important to generate an optimization remark for each loop. Most of
10141   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10142   // generated as OptimizationRemark and OptimizationRemarkMissed are
10143   // less verbose reporting vectorized loops and unvectorized loops that may
10144   // benefit from vectorization, respectively.
10145 
10146   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10147     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10148     return false;
10149   }
10150 
10151   PredicatedScalarEvolution PSE(*SE, *L);
10152 
10153   // Check if it is legal to vectorize the loop.
10154   LoopVectorizationRequirements Requirements;
10155   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10156                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10157   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10158     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10159     Hints.emitRemarkWithHints();
10160     return false;
10161   }
10162 
10163   // Check the function attributes and profiles to find out if this function
10164   // should be optimized for size.
10165   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10166       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10167 
10168   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10169   // here. They may require CFG and instruction level transformations before
10170   // even evaluating whether vectorization is profitable. Since we cannot modify
10171   // the incoming IR, we need to build VPlan upfront in the vectorization
10172   // pipeline.
10173   if (!L->isInnermost())
10174     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10175                                         ORE, BFI, PSI, Hints, Requirements);
10176 
10177   assert(L->isInnermost() && "Inner loop expected.");
10178 
10179   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10180   // count by optimizing for size, to minimize overheads.
10181   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10182   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10183     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10184                       << "This loop is worth vectorizing only if no scalar "
10185                       << "iteration overheads are incurred.");
10186     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10187       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10188     else {
10189       LLVM_DEBUG(dbgs() << "\n");
10190       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10191     }
10192   }
10193 
10194   // Check the function attributes to see if implicit floats are allowed.
10195   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10196   // an integer loop and the vector instructions selected are purely integer
10197   // vector instructions?
10198   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10199     reportVectorizationFailure(
10200         "Can't vectorize when the NoImplicitFloat attribute is used",
10201         "loop not vectorized due to NoImplicitFloat attribute",
10202         "NoImplicitFloat", ORE, L);
10203     Hints.emitRemarkWithHints();
10204     return false;
10205   }
10206 
10207   // Check if the target supports potentially unsafe FP vectorization.
10208   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10209   // for the target we're vectorizing for, to make sure none of the
10210   // additional fp-math flags can help.
10211   if (Hints.isPotentiallyUnsafe() &&
10212       TTI->isFPVectorizationPotentiallyUnsafe()) {
10213     reportVectorizationFailure(
10214         "Potentially unsafe FP op prevents vectorization",
10215         "loop not vectorized due to unsafe FP support.",
10216         "UnsafeFP", ORE, L);
10217     Hints.emitRemarkWithHints();
10218     return false;
10219   }
10220 
10221   if (!LVL.canVectorizeFPMath(ForceOrderedReductions)) {
10222     ORE->emit([&]() {
10223       auto *ExactFPMathInst = Requirements.getExactFPInst();
10224       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10225                                                  ExactFPMathInst->getDebugLoc(),
10226                                                  ExactFPMathInst->getParent())
10227              << "loop not vectorized: cannot prove it is safe to reorder "
10228                 "floating-point operations";
10229     });
10230     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10231                          "reorder floating-point operations\n");
10232     Hints.emitRemarkWithHints();
10233     return false;
10234   }
10235 
10236   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10237   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10238 
10239   // If an override option has been passed in for interleaved accesses, use it.
10240   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10241     UseInterleaved = EnableInterleavedMemAccesses;
10242 
10243   // Analyze interleaved memory accesses.
10244   if (UseInterleaved) {
10245     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10246   }
10247 
10248   // Use the cost model.
10249   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10250                                 F, &Hints, IAI);
10251   CM.collectValuesToIgnore();
10252   CM.collectElementTypesForWidening();
10253 
10254   // Use the planner for vectorization.
10255   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10256                                Requirements, ORE);
10257 
10258   // Get user vectorization factor and interleave count.
10259   ElementCount UserVF = Hints.getWidth();
10260   unsigned UserIC = Hints.getInterleave();
10261 
10262   // Plan how to best vectorize, return the best VF and its cost.
10263   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10264 
10265   VectorizationFactor VF = VectorizationFactor::Disabled();
10266   unsigned IC = 1;
10267 
10268   if (MaybeVF) {
10269     VF = *MaybeVF;
10270     // Select the interleave count.
10271     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10272   }
10273 
10274   // Identify the diagnostic messages that should be produced.
10275   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10276   bool VectorizeLoop = true, InterleaveLoop = true;
10277   if (VF.Width.isScalar()) {
10278     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10279     VecDiagMsg = std::make_pair(
10280         "VectorizationNotBeneficial",
10281         "the cost-model indicates that vectorization is not beneficial");
10282     VectorizeLoop = false;
10283   }
10284 
10285   if (!MaybeVF && UserIC > 1) {
10286     // Tell the user interleaving was avoided up-front, despite being explicitly
10287     // requested.
10288     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10289                          "interleaving should be avoided up front\n");
10290     IntDiagMsg = std::make_pair(
10291         "InterleavingAvoided",
10292         "Ignoring UserIC, because interleaving was avoided up front");
10293     InterleaveLoop = false;
10294   } else if (IC == 1 && UserIC <= 1) {
10295     // Tell the user interleaving is not beneficial.
10296     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10297     IntDiagMsg = std::make_pair(
10298         "InterleavingNotBeneficial",
10299         "the cost-model indicates that interleaving is not beneficial");
10300     InterleaveLoop = false;
10301     if (UserIC == 1) {
10302       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10303       IntDiagMsg.second +=
10304           " and is explicitly disabled or interleave count is set to 1";
10305     }
10306   } else if (IC > 1 && UserIC == 1) {
10307     // Tell the user interleaving is beneficial, but it explicitly disabled.
10308     LLVM_DEBUG(
10309         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10310     IntDiagMsg = std::make_pair(
10311         "InterleavingBeneficialButDisabled",
10312         "the cost-model indicates that interleaving is beneficial "
10313         "but is explicitly disabled or interleave count is set to 1");
10314     InterleaveLoop = false;
10315   }
10316 
10317   // Override IC if user provided an interleave count.
10318   IC = UserIC > 0 ? UserIC : IC;
10319 
10320   // Emit diagnostic messages, if any.
10321   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10322   if (!VectorizeLoop && !InterleaveLoop) {
10323     // Do not vectorize or interleaving the loop.
10324     ORE->emit([&]() {
10325       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10326                                       L->getStartLoc(), L->getHeader())
10327              << VecDiagMsg.second;
10328     });
10329     ORE->emit([&]() {
10330       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10331                                       L->getStartLoc(), L->getHeader())
10332              << IntDiagMsg.second;
10333     });
10334     return false;
10335   } else if (!VectorizeLoop && InterleaveLoop) {
10336     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10337     ORE->emit([&]() {
10338       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10339                                         L->getStartLoc(), L->getHeader())
10340              << VecDiagMsg.second;
10341     });
10342   } else if (VectorizeLoop && !InterleaveLoop) {
10343     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10344                       << ") in " << DebugLocStr << '\n');
10345     ORE->emit([&]() {
10346       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10347                                         L->getStartLoc(), L->getHeader())
10348              << IntDiagMsg.second;
10349     });
10350   } else if (VectorizeLoop && InterleaveLoop) {
10351     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10352                       << ") in " << DebugLocStr << '\n');
10353     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10354   }
10355 
10356   bool DisableRuntimeUnroll = false;
10357   MDNode *OrigLoopID = L->getLoopID();
10358   {
10359     // Optimistically generate runtime checks. Drop them if they turn out to not
10360     // be profitable. Limit the scope of Checks, so the cleanup happens
10361     // immediately after vector codegeneration is done.
10362     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10363                              F->getParent()->getDataLayout());
10364     if (!VF.Width.isScalar() || IC > 1)
10365       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10366     LVP.setBestPlan(VF.Width, IC);
10367 
10368     using namespace ore;
10369     if (!VectorizeLoop) {
10370       assert(IC > 1 && "interleave count should not be 1 or 0");
10371       // If we decided that it is not legal to vectorize the loop, then
10372       // interleave it.
10373       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10374                                  &CM, BFI, PSI, Checks);
10375       LVP.executePlan(Unroller, DT);
10376 
10377       ORE->emit([&]() {
10378         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10379                                   L->getHeader())
10380                << "interleaved loop (interleaved count: "
10381                << NV("InterleaveCount", IC) << ")";
10382       });
10383     } else {
10384       // If we decided that it is *legal* to vectorize the loop, then do it.
10385 
10386       // Consider vectorizing the epilogue too if it's profitable.
10387       VectorizationFactor EpilogueVF =
10388           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10389       if (EpilogueVF.Width.isVector()) {
10390 
10391         // The first pass vectorizes the main loop and creates a scalar epilogue
10392         // to be vectorized by executing the plan (potentially with a different
10393         // factor) again shortly afterwards.
10394         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10395                                           EpilogueVF.Width.getKnownMinValue(),
10396                                           1);
10397         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10398                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10399 
10400         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10401         LVP.executePlan(MainILV, DT);
10402         ++LoopsVectorized;
10403 
10404         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10405         formLCSSARecursively(*L, *DT, LI, SE);
10406 
10407         // Second pass vectorizes the epilogue and adjusts the control flow
10408         // edges from the first pass.
10409         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10410         EPI.MainLoopVF = EPI.EpilogueVF;
10411         EPI.MainLoopUF = EPI.EpilogueUF;
10412         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10413                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10414                                                  Checks);
10415         LVP.executePlan(EpilogILV, DT);
10416         ++LoopsEpilogueVectorized;
10417 
10418         if (!MainILV.areSafetyChecksAdded())
10419           DisableRuntimeUnroll = true;
10420       } else {
10421         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10422                                &LVL, &CM, BFI, PSI, Checks);
10423         LVP.executePlan(LB, DT);
10424         ++LoopsVectorized;
10425 
10426         // Add metadata to disable runtime unrolling a scalar loop when there
10427         // are no runtime checks about strides and memory. A scalar loop that is
10428         // rarely used is not worth unrolling.
10429         if (!LB.areSafetyChecksAdded())
10430           DisableRuntimeUnroll = true;
10431       }
10432       // Report the vectorization decision.
10433       ORE->emit([&]() {
10434         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10435                                   L->getHeader())
10436                << "vectorized loop (vectorization width: "
10437                << NV("VectorizationFactor", VF.Width)
10438                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10439       });
10440     }
10441 
10442     if (ORE->allowExtraAnalysis(LV_NAME))
10443       checkMixedPrecision(L, ORE);
10444   }
10445 
10446   Optional<MDNode *> RemainderLoopID =
10447       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10448                                       LLVMLoopVectorizeFollowupEpilogue});
10449   if (RemainderLoopID.hasValue()) {
10450     L->setLoopID(RemainderLoopID.getValue());
10451   } else {
10452     if (DisableRuntimeUnroll)
10453       AddRuntimeUnrollDisableMetaData(L);
10454 
10455     // Mark the loop as already vectorized to avoid vectorizing again.
10456     Hints.setAlreadyVectorized();
10457   }
10458 
10459   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10460   return true;
10461 }
10462 
10463 LoopVectorizeResult LoopVectorizePass::runImpl(
10464     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10465     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10466     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10467     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10468     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10469   SE = &SE_;
10470   LI = &LI_;
10471   TTI = &TTI_;
10472   DT = &DT_;
10473   BFI = &BFI_;
10474   TLI = TLI_;
10475   AA = &AA_;
10476   AC = &AC_;
10477   GetLAA = &GetLAA_;
10478   DB = &DB_;
10479   ORE = &ORE_;
10480   PSI = PSI_;
10481 
10482   // Don't attempt if
10483   // 1. the target claims to have no vector registers, and
10484   // 2. interleaving won't help ILP.
10485   //
10486   // The second condition is necessary because, even if the target has no
10487   // vector registers, loop vectorization may still enable scalar
10488   // interleaving.
10489   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10490       TTI->getMaxInterleaveFactor(1) < 2)
10491     return LoopVectorizeResult(false, false);
10492 
10493   bool Changed = false, CFGChanged = false;
10494 
10495   // The vectorizer requires loops to be in simplified form.
10496   // Since simplification may add new inner loops, it has to run before the
10497   // legality and profitability checks. This means running the loop vectorizer
10498   // will simplify all loops, regardless of whether anything end up being
10499   // vectorized.
10500   for (auto &L : *LI)
10501     Changed |= CFGChanged |=
10502         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10503 
10504   // Build up a worklist of inner-loops to vectorize. This is necessary as
10505   // the act of vectorizing or partially unrolling a loop creates new loops
10506   // and can invalidate iterators across the loops.
10507   SmallVector<Loop *, 8> Worklist;
10508 
10509   for (Loop *L : *LI)
10510     collectSupportedLoops(*L, LI, ORE, Worklist);
10511 
10512   LoopsAnalyzed += Worklist.size();
10513 
10514   // Now walk the identified inner loops.
10515   while (!Worklist.empty()) {
10516     Loop *L = Worklist.pop_back_val();
10517 
10518     // For the inner loops we actually process, form LCSSA to simplify the
10519     // transform.
10520     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10521 
10522     Changed |= CFGChanged |= processLoop(L);
10523   }
10524 
10525   // Process each loop nest in the function.
10526   return LoopVectorizeResult(Changed, CFGChanged);
10527 }
10528 
10529 PreservedAnalyses LoopVectorizePass::run(Function &F,
10530                                          FunctionAnalysisManager &AM) {
10531     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10532     auto &LI = AM.getResult<LoopAnalysis>(F);
10533     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10534     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10535     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10536     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10537     auto &AA = AM.getResult<AAManager>(F);
10538     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10539     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10540     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10541 
10542     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10543     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10544         [&](Loop &L) -> const LoopAccessInfo & {
10545       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10546                                         TLI, TTI, nullptr, nullptr};
10547       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10548     };
10549     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10550     ProfileSummaryInfo *PSI =
10551         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10552     LoopVectorizeResult Result =
10553         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10554     if (!Result.MadeAnyChange)
10555       return PreservedAnalyses::all();
10556     PreservedAnalyses PA;
10557 
10558     // We currently do not preserve loopinfo/dominator analyses with outer loop
10559     // vectorization. Until this is addressed, mark these analyses as preserved
10560     // only for non-VPlan-native path.
10561     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10562     if (!EnableVPlanNativePath) {
10563       PA.preserve<LoopAnalysis>();
10564       PA.preserve<DominatorTreeAnalysis>();
10565     }
10566     if (!Result.MadeCFGChange)
10567       PA.preserveSet<CFGAnalyses>();
10568     return PA;
10569 }
10570