1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 182 // that predication is preferred, and this lists all options. I.e., the 183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 184 // and predicate the instructions accordingly. If tail-folding fails, there are 185 // different fallback strategies depending on these values: 186 namespace PreferPredicateTy { 187 enum Option { 188 ScalarEpilogue = 0, 189 PredicateElseScalarEpilogue, 190 PredicateOrDontVectorize 191 }; 192 } // namespace PreferPredicateTy 193 194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 195 "prefer-predicate-over-epilogue", 196 cl::init(PreferPredicateTy::ScalarEpilogue), 197 cl::Hidden, 198 cl::desc("Tail-folding and predication preferences over creating a scalar " 199 "epilogue loop."), 200 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 201 "scalar-epilogue", 202 "Don't tail-predicate loops, create scalar epilogue"), 203 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 204 "predicate-else-scalar-epilogue", 205 "prefer tail-folding, create scalar epilogue if tail " 206 "folding fails."), 207 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 208 "predicate-dont-vectorize", 209 "prefers tail-folding, don't attempt vectorization if " 210 "tail-folding fails."))); 211 212 static cl::opt<bool> MaximizeBandwidth( 213 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 214 cl::desc("Maximize bandwidth when selecting vectorization factor which " 215 "will be determined by the smallest type in loop.")); 216 217 static cl::opt<bool> EnableInterleavedMemAccesses( 218 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 219 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 220 221 /// An interleave-group may need masking if it resides in a block that needs 222 /// predication, or in order to mask away gaps. 223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 224 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 225 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 226 227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 228 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 229 cl::desc("We don't interleave loops with a estimated constant trip count " 230 "below this number")); 231 232 static cl::opt<unsigned> ForceTargetNumScalarRegs( 233 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 234 cl::desc("A flag that overrides the target's number of scalar registers.")); 235 236 static cl::opt<unsigned> ForceTargetNumVectorRegs( 237 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 238 cl::desc("A flag that overrides the target's number of vector registers.")); 239 240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 241 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 242 cl::desc("A flag that overrides the target's max interleave factor for " 243 "scalar loops.")); 244 245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 246 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 247 cl::desc("A flag that overrides the target's max interleave factor for " 248 "vectorized loops.")); 249 250 static cl::opt<unsigned> ForceTargetInstructionCost( 251 "force-target-instruction-cost", cl::init(0), cl::Hidden, 252 cl::desc("A flag that overrides the target's expected cost for " 253 "an instruction to a single constant value. Mostly " 254 "useful for getting consistent testing.")); 255 256 static cl::opt<unsigned> SmallLoopCost( 257 "small-loop-cost", cl::init(20), cl::Hidden, 258 cl::desc( 259 "The cost of a loop that is considered 'small' by the interleaver.")); 260 261 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 262 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 263 cl::desc("Enable the use of the block frequency analysis to access PGO " 264 "heuristics minimizing code growth in cold regions and being more " 265 "aggressive in hot regions.")); 266 267 // Runtime interleave loops for load/store throughput. 268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 269 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 270 cl::desc( 271 "Enable runtime interleaving until load/store ports are saturated")); 272 273 /// Interleave small loops with scalar reductions. 274 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 275 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 276 cl::desc("Enable interleaving for loops with small iteration counts that " 277 "contain scalar reductions to expose ILP.")); 278 279 /// The number of stores in a loop that are allowed to need predication. 280 static cl::opt<unsigned> NumberOfStoresToPredicate( 281 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 282 cl::desc("Max number of stores to be predicated behind an if.")); 283 284 static cl::opt<bool> EnableIndVarRegisterHeur( 285 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 286 cl::desc("Count the induction variable only once when interleaving")); 287 288 static cl::opt<bool> EnableCondStoresVectorization( 289 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 290 cl::desc("Enable if predication of stores during vectorization.")); 291 292 static cl::opt<unsigned> MaxNestedScalarReductionIC( 293 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 294 cl::desc("The maximum interleave count to use when interleaving a scalar " 295 "reduction in a nested loop.")); 296 297 static cl::opt<bool> 298 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 299 cl::Hidden, 300 cl::desc("Prefer in-loop vector reductions, " 301 "overriding the targets preference.")); 302 303 static cl::opt<bool> PreferPredicatedReductionSelect( 304 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 305 cl::desc( 306 "Prefer predicating a reduction operation over an after loop select.")); 307 308 cl::opt<bool> EnableVPlanNativePath( 309 "enable-vplan-native-path", cl::init(false), cl::Hidden, 310 cl::desc("Enable VPlan-native vectorization path with " 311 "support for outer loop vectorization.")); 312 313 // FIXME: Remove this switch once we have divergence analysis. Currently we 314 // assume divergent non-backedge branches when this switch is true. 315 cl::opt<bool> EnableVPlanPredication( 316 "enable-vplan-predication", cl::init(false), cl::Hidden, 317 cl::desc("Enable VPlan-native vectorization path predicator with " 318 "support for outer loop vectorization.")); 319 320 // This flag enables the stress testing of the VPlan H-CFG construction in the 321 // VPlan-native vectorization path. It must be used in conjuction with 322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 323 // verification of the H-CFGs built. 324 static cl::opt<bool> VPlanBuildStressTest( 325 "vplan-build-stress-test", cl::init(false), cl::Hidden, 326 cl::desc( 327 "Build VPlan for every supported loop nest in the function and bail " 328 "out right after the build (stress test the VPlan H-CFG construction " 329 "in the VPlan-native vectorization path).")); 330 331 cl::opt<bool> llvm::EnableLoopInterleaving( 332 "interleave-loops", cl::init(true), cl::Hidden, 333 cl::desc("Enable loop interleaving in Loop vectorization passes")); 334 cl::opt<bool> llvm::EnableLoopVectorization( 335 "vectorize-loops", cl::init(true), cl::Hidden, 336 cl::desc("Run the Loop vectorization passes")); 337 338 /// A helper function that returns the type of loaded or stored value. 339 static Type *getMemInstValueType(Value *I) { 340 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 341 "Expected Load or Store instruction"); 342 if (auto *LI = dyn_cast<LoadInst>(I)) 343 return LI->getType(); 344 return cast<StoreInst>(I)->getValueOperand()->getType(); 345 } 346 347 /// A helper function that returns true if the given type is irregular. The 348 /// type is irregular if its allocated size doesn't equal the store size of an 349 /// element of the corresponding vector type at the given vectorization factor. 350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 351 assert(!VF.isScalable() && "scalable vectors not yet supported."); 352 // Determine if an array of VF elements of type Ty is "bitcast compatible" 353 // with a <VF x Ty> vector. 354 if (VF.isVector()) { 355 auto *VectorTy = VectorType::get(Ty, VF); 356 return TypeSize::get(VF.getKnownMinValue() * 357 DL.getTypeAllocSize(Ty).getFixedValue(), 358 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 359 } 360 361 // If the vectorization factor is one, we just check if an array of type Ty 362 // requires padding between elements. 363 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 364 } 365 366 /// A helper function that returns the reciprocal of the block probability of 367 /// predicated blocks. If we return X, we are assuming the predicated block 368 /// will execute once for every X iterations of the loop header. 369 /// 370 /// TODO: We should use actual block probability here, if available. Currently, 371 /// we always assume predicated blocks have a 50% chance of executing. 372 static unsigned getReciprocalPredBlockProb() { return 2; } 373 374 /// A helper function that adds a 'fast' flag to floating-point operations. 375 static Value *addFastMathFlag(Value *V) { 376 if (isa<FPMathOperator>(V)) 377 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 378 return V; 379 } 380 381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 382 if (isa<FPMathOperator>(V)) 383 cast<Instruction>(V)->setFastMathFlags(FMF); 384 return V; 385 } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 namespace llvm { 418 419 /// InnerLoopVectorizer vectorizes loops which contain only one basic 420 /// block to a specified vectorization factor (VF). 421 /// This class performs the widening of scalars into vectors, or multiple 422 /// scalars. This class also implements the following features: 423 /// * It inserts an epilogue loop for handling loops that don't have iteration 424 /// counts that are known to be a multiple of the vectorization factor. 425 /// * It handles the code generation for reduction variables. 426 /// * Scalarization (implementation using scalars) of un-vectorizable 427 /// instructions. 428 /// InnerLoopVectorizer does not perform any vectorization-legality 429 /// checks, and relies on the caller to check for the different legality 430 /// aspects. The InnerLoopVectorizer relies on the 431 /// LoopVectorizationLegality class to provide information about the induction 432 /// and reduction variables that were found to a given vectorization factor. 433 class InnerLoopVectorizer { 434 public: 435 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 436 LoopInfo *LI, DominatorTree *DT, 437 const TargetLibraryInfo *TLI, 438 const TargetTransformInfo *TTI, AssumptionCache *AC, 439 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 440 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 441 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 442 ProfileSummaryInfo *PSI) 443 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 444 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 445 Builder(PSE.getSE()->getContext()), 446 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 447 BFI(BFI), PSI(PSI) { 448 // Query this against the original loop and save it here because the profile 449 // of the original loop header may change as the transformation happens. 450 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 451 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 452 } 453 454 virtual ~InnerLoopVectorizer() = default; 455 456 /// Create a new empty loop that will contain vectorized instructions later 457 /// on, while the old loop will be used as the scalar remainder. Control flow 458 /// is generated around the vectorized (and scalar epilogue) loops consisting 459 /// of various checks and bypasses. Return the pre-header block of the new 460 /// loop. 461 BasicBlock *createVectorizedLoopSkeleton(); 462 463 /// Widen a single instruction within the innermost loop. 464 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 465 VPTransformState &State); 466 467 /// Widen a single call instruction within the innermost loop. 468 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 469 VPTransformState &State); 470 471 /// Widen a single select instruction within the innermost loop. 472 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 473 bool InvariantCond, VPTransformState &State); 474 475 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 476 void fixVectorizedLoop(); 477 478 // Return true if any runtime check is added. 479 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 480 481 /// A type for vectorized values in the new loop. Each value from the 482 /// original loop, when vectorized, is represented by UF vector values in the 483 /// new unrolled loop, where UF is the unroll factor. 484 using VectorParts = SmallVector<Value *, 2>; 485 486 /// Vectorize a single GetElementPtrInst based on information gathered and 487 /// decisions taken during planning. 488 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 489 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 490 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 491 492 /// Vectorize a single PHINode in a block. This method handles the induction 493 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 494 /// arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 496 497 /// A helper function to scalarize a single Instruction in the innermost loop. 498 /// Generates a sequence of scalar instances for each lane between \p MinLane 499 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 500 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 501 /// Instr's operands. 502 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 503 const VPIteration &Instance, bool IfPredicateInstr, 504 VPTransformState &State); 505 506 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 507 /// is provided, the integer induction variable will first be truncated to 508 /// the corresponding type. 509 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 510 511 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 512 /// vector or scalar value on-demand if one is not yet available. When 513 /// vectorizing a loop, we visit the definition of an instruction before its 514 /// uses. When visiting the definition, we either vectorize or scalarize the 515 /// instruction, creating an entry for it in the corresponding map. (In some 516 /// cases, such as induction variables, we will create both vector and scalar 517 /// entries.) Then, as we encounter uses of the definition, we derive values 518 /// for each scalar or vector use unless such a value is already available. 519 /// For example, if we scalarize a definition and one of its uses is vector, 520 /// we build the required vector on-demand with an insertelement sequence 521 /// when visiting the use. Otherwise, if the use is scalar, we can use the 522 /// existing scalar definition. 523 /// 524 /// Return a value in the new loop corresponding to \p V from the original 525 /// loop at unroll index \p Part. If the value has already been vectorized, 526 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 527 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 528 /// a new vector value on-demand by inserting the scalar values into a vector 529 /// with an insertelement sequence. If the value has been neither vectorized 530 /// nor scalarized, it must be loop invariant, so we simply broadcast the 531 /// value into a vector. 532 Value *getOrCreateVectorValue(Value *V, unsigned Part); 533 534 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 535 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 536 } 537 538 /// Return a value in the new loop corresponding to \p V from the original 539 /// loop at unroll and vector indices \p Instance. If the value has been 540 /// vectorized but not scalarized, the necessary extractelement instruction 541 /// will be generated. 542 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 543 544 /// Construct the vector value of a scalarized value \p V one lane at a time. 545 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 546 547 /// Try to vectorize interleaved access group \p Group with the base address 548 /// given in \p Addr, optionally masking the vector operations if \p 549 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 550 /// values in the vectorized loop. 551 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 552 VPTransformState &State, VPValue *Addr, 553 ArrayRef<VPValue *> StoredValues, 554 VPValue *BlockInMask = nullptr); 555 556 /// Vectorize Load and Store instructions with the base address given in \p 557 /// Addr, optionally masking the vector operations if \p BlockInMask is 558 /// non-null. Use \p State to translate given VPValues to IR values in the 559 /// vectorized loop. 560 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 561 VPValue *Def, VPValue *Addr, 562 VPValue *StoredValue, VPValue *BlockInMask); 563 564 /// Set the debug location in the builder using the debug location in 565 /// the instruction. 566 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 567 568 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 569 void fixNonInductionPHIs(void); 570 571 protected: 572 friend class LoopVectorizationPlanner; 573 574 /// A small list of PHINodes. 575 using PhiVector = SmallVector<PHINode *, 4>; 576 577 /// A type for scalarized values in the new loop. Each value from the 578 /// original loop, when scalarized, is represented by UF x VF scalar values 579 /// in the new unrolled loop, where UF is the unroll factor and VF is the 580 /// vectorization factor. 581 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 582 583 /// Set up the values of the IVs correctly when exiting the vector loop. 584 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 585 Value *CountRoundDown, Value *EndValue, 586 BasicBlock *MiddleBlock); 587 588 /// Create a new induction variable inside L. 589 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 590 Value *Step, Instruction *DL); 591 592 /// Handle all cross-iteration phis in the header. 593 void fixCrossIterationPHIs(); 594 595 /// Fix a first-order recurrence. This is the second phase of vectorizing 596 /// this phi node. 597 void fixFirstOrderRecurrence(PHINode *Phi); 598 599 /// Fix a reduction cross-iteration phi. This is the second phase of 600 /// vectorizing this phi node. 601 void fixReduction(PHINode *Phi); 602 603 /// Clear NSW/NUW flags from reduction instructions if necessary. 604 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 605 606 /// The Loop exit block may have single value PHI nodes with some 607 /// incoming value. While vectorizing we only handled real values 608 /// that were defined inside the loop and we should have one value for 609 /// each predecessor of its parent basic block. See PR14725. 610 void fixLCSSAPHIs(); 611 612 /// Iteratively sink the scalarized operands of a predicated instruction into 613 /// the block that was created for it. 614 void sinkScalarOperands(Instruction *PredInst); 615 616 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 617 /// represented as. 618 void truncateToMinimalBitwidths(); 619 620 /// Create a broadcast instruction. This method generates a broadcast 621 /// instruction (shuffle) for loop invariant values and for the induction 622 /// value. If this is the induction variable then we extend it to N, N+1, ... 623 /// this is needed because each iteration in the loop corresponds to a SIMD 624 /// element. 625 virtual Value *getBroadcastInstrs(Value *V); 626 627 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 628 /// to each vector element of Val. The sequence starts at StartIndex. 629 /// \p Opcode is relevant for FP induction variable. 630 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 631 Instruction::BinaryOps Opcode = 632 Instruction::BinaryOpsEnd); 633 634 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 635 /// variable on which to base the steps, \p Step is the size of the step, and 636 /// \p EntryVal is the value from the original loop that maps to the steps. 637 /// Note that \p EntryVal doesn't have to be an induction variable - it 638 /// can also be a truncate instruction. 639 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 640 const InductionDescriptor &ID); 641 642 /// Create a vector induction phi node based on an existing scalar one. \p 643 /// EntryVal is the value from the original loop that maps to the vector phi 644 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 645 /// truncate instruction, instead of widening the original IV, we widen a 646 /// version of the IV truncated to \p EntryVal's type. 647 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 648 Value *Step, Instruction *EntryVal); 649 650 /// Returns true if an instruction \p I should be scalarized instead of 651 /// vectorized for the chosen vectorization factor. 652 bool shouldScalarizeInstruction(Instruction *I) const; 653 654 /// Returns true if we should generate a scalar version of \p IV. 655 bool needsScalarInduction(Instruction *IV) const; 656 657 /// If there is a cast involved in the induction variable \p ID, which should 658 /// be ignored in the vectorized loop body, this function records the 659 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 660 /// cast. We had already proved that the casted Phi is equal to the uncasted 661 /// Phi in the vectorized loop (under a runtime guard), and therefore 662 /// there is no need to vectorize the cast - the same value can be used in the 663 /// vector loop for both the Phi and the cast. 664 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 665 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 666 /// 667 /// \p EntryVal is the value from the original loop that maps to the vector 668 /// phi node and is used to distinguish what is the IV currently being 669 /// processed - original one (if \p EntryVal is a phi corresponding to the 670 /// original IV) or the "newly-created" one based on the proof mentioned above 671 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 672 /// latter case \p EntryVal is a TruncInst and we must not record anything for 673 /// that IV, but it's error-prone to expect callers of this routine to care 674 /// about that, hence this explicit parameter. 675 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 676 const Instruction *EntryVal, 677 Value *VectorLoopValue, 678 unsigned Part, 679 unsigned Lane = UINT_MAX); 680 681 /// Generate a shuffle sequence that will reverse the vector Vec. 682 virtual Value *reverseVector(Value *Vec); 683 684 /// Returns (and creates if needed) the original loop trip count. 685 Value *getOrCreateTripCount(Loop *NewLoop); 686 687 /// Returns (and creates if needed) the trip count of the widened loop. 688 Value *getOrCreateVectorTripCount(Loop *NewLoop); 689 690 /// Returns a bitcasted value to the requested vector type. 691 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 692 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 693 const DataLayout &DL); 694 695 /// Emit a bypass check to see if the vector trip count is zero, including if 696 /// it overflows. 697 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 698 699 /// Emit a bypass check to see if all of the SCEV assumptions we've 700 /// had to make are correct. 701 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 702 703 /// Emit bypass checks to check any memory assumptions we may have made. 704 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 705 706 /// Compute the transformed value of Index at offset StartValue using step 707 /// StepValue. 708 /// For integer induction, returns StartValue + Index * StepValue. 709 /// For pointer induction, returns StartValue[Index * StepValue]. 710 /// FIXME: The newly created binary instructions should contain nsw/nuw 711 /// flags, which can be found from the original scalar operations. 712 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 713 const DataLayout &DL, 714 const InductionDescriptor &ID) const; 715 716 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 717 /// vector loop preheader, middle block and scalar preheader. Also 718 /// allocate a loop object for the new vector loop and return it. 719 Loop *createVectorLoopSkeleton(StringRef Prefix); 720 721 /// Create new phi nodes for the induction variables to resume iteration count 722 /// in the scalar epilogue, from where the vectorized loop left off (given by 723 /// \p VectorTripCount). 724 void createInductionResumeValues(Loop *L, Value *VectorTripCount); 725 726 /// Complete the loop skeleton by adding debug MDs, creating appropriate 727 /// conditional branches in the middle block, preparing the builder and 728 /// running the verifier. Take in the vector loop \p L as argument, and return 729 /// the preheader of the completed vector loop. 730 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 731 732 /// Add additional metadata to \p To that was not present on \p Orig. 733 /// 734 /// Currently this is used to add the noalias annotations based on the 735 /// inserted memchecks. Use this for instructions that are *cloned* into the 736 /// vector loop. 737 void addNewMetadata(Instruction *To, const Instruction *Orig); 738 739 /// Add metadata from one instruction to another. 740 /// 741 /// This includes both the original MDs from \p From and additional ones (\see 742 /// addNewMetadata). Use this for *newly created* instructions in the vector 743 /// loop. 744 void addMetadata(Instruction *To, Instruction *From); 745 746 /// Similar to the previous function but it adds the metadata to a 747 /// vector of instructions. 748 void addMetadata(ArrayRef<Value *> To, Instruction *From); 749 750 /// The original loop. 751 Loop *OrigLoop; 752 753 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 754 /// dynamic knowledge to simplify SCEV expressions and converts them to a 755 /// more usable form. 756 PredicatedScalarEvolution &PSE; 757 758 /// Loop Info. 759 LoopInfo *LI; 760 761 /// Dominator Tree. 762 DominatorTree *DT; 763 764 /// Alias Analysis. 765 AAResults *AA; 766 767 /// Target Library Info. 768 const TargetLibraryInfo *TLI; 769 770 /// Target Transform Info. 771 const TargetTransformInfo *TTI; 772 773 /// Assumption Cache. 774 AssumptionCache *AC; 775 776 /// Interface to emit optimization remarks. 777 OptimizationRemarkEmitter *ORE; 778 779 /// LoopVersioning. It's only set up (non-null) if memchecks were 780 /// used. 781 /// 782 /// This is currently only used to add no-alias metadata based on the 783 /// memchecks. The actually versioning is performed manually. 784 std::unique_ptr<LoopVersioning> LVer; 785 786 /// The vectorization SIMD factor to use. Each vector will have this many 787 /// vector elements. 788 ElementCount VF; 789 790 /// The vectorization unroll factor to use. Each scalar is vectorized to this 791 /// many different vector instructions. 792 unsigned UF; 793 794 /// The builder that we use 795 IRBuilder<> Builder; 796 797 // --- Vectorization state --- 798 799 /// The vector-loop preheader. 800 BasicBlock *LoopVectorPreHeader; 801 802 /// The scalar-loop preheader. 803 BasicBlock *LoopScalarPreHeader; 804 805 /// Middle Block between the vector and the scalar. 806 BasicBlock *LoopMiddleBlock; 807 808 /// The ExitBlock of the scalar loop. 809 BasicBlock *LoopExitBlock; 810 811 /// The vector loop body. 812 BasicBlock *LoopVectorBody; 813 814 /// The scalar loop body. 815 BasicBlock *LoopScalarBody; 816 817 /// A list of all bypass blocks. The first block is the entry of the loop. 818 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 819 820 /// The new Induction variable which was added to the new block. 821 PHINode *Induction = nullptr; 822 823 /// The induction variable of the old basic block. 824 PHINode *OldInduction = nullptr; 825 826 /// Maps values from the original loop to their corresponding values in the 827 /// vectorized loop. A key value can map to either vector values, scalar 828 /// values or both kinds of values, depending on whether the key was 829 /// vectorized and scalarized. 830 VectorizerValueMap VectorLoopValueMap; 831 832 /// Store instructions that were predicated. 833 SmallVector<Instruction *, 4> PredicatedInstructions; 834 835 /// Trip count of the original loop. 836 Value *TripCount = nullptr; 837 838 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 839 Value *VectorTripCount = nullptr; 840 841 /// The legality analysis. 842 LoopVectorizationLegality *Legal; 843 844 /// The profitablity analysis. 845 LoopVectorizationCostModel *Cost; 846 847 // Record whether runtime checks are added. 848 bool AddedSafetyChecks = false; 849 850 // Holds the end values for each induction variable. We save the end values 851 // so we can later fix-up the external users of the induction variables. 852 DenseMap<PHINode *, Value *> IVEndValues; 853 854 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 855 // fixed up at the end of vector code generation. 856 SmallVector<PHINode *, 8> OrigPHIsToFix; 857 858 /// BFI and PSI are used to check for profile guided size optimizations. 859 BlockFrequencyInfo *BFI; 860 ProfileSummaryInfo *PSI; 861 862 // Whether this loop should be optimized for size based on profile guided size 863 // optimizatios. 864 bool OptForSizeBasedOnProfile; 865 }; 866 867 class InnerLoopUnroller : public InnerLoopVectorizer { 868 public: 869 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 870 LoopInfo *LI, DominatorTree *DT, 871 const TargetLibraryInfo *TLI, 872 const TargetTransformInfo *TTI, AssumptionCache *AC, 873 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 874 LoopVectorizationLegality *LVL, 875 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 876 ProfileSummaryInfo *PSI) 877 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 878 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 879 BFI, PSI) {} 880 881 private: 882 Value *getBroadcastInstrs(Value *V) override; 883 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 884 Instruction::BinaryOps Opcode = 885 Instruction::BinaryOpsEnd) override; 886 Value *reverseVector(Value *Vec) override; 887 }; 888 889 } // end namespace llvm 890 891 /// Look for a meaningful debug location on the instruction or it's 892 /// operands. 893 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 894 if (!I) 895 return I; 896 897 DebugLoc Empty; 898 if (I->getDebugLoc() != Empty) 899 return I; 900 901 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 902 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 903 if (OpInst->getDebugLoc() != Empty) 904 return OpInst; 905 } 906 907 return I; 908 } 909 910 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 911 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 912 const DILocation *DIL = Inst->getDebugLoc(); 913 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 914 !isa<DbgInfoIntrinsic>(Inst)) { 915 assert(!VF.isScalable() && "scalable vectors not yet supported."); 916 auto NewDIL = 917 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 918 if (NewDIL) 919 B.SetCurrentDebugLocation(NewDIL.getValue()); 920 else 921 LLVM_DEBUG(dbgs() 922 << "Failed to create new discriminator: " 923 << DIL->getFilename() << " Line: " << DIL->getLine()); 924 } 925 else 926 B.SetCurrentDebugLocation(DIL); 927 } else 928 B.SetCurrentDebugLocation(DebugLoc()); 929 } 930 931 /// Write a record \p DebugMsg about vectorization failure to the debug 932 /// output stream. If \p I is passed, it is an instruction that prevents 933 /// vectorization. 934 #ifndef NDEBUG 935 static void debugVectorizationFailure(const StringRef DebugMsg, 936 Instruction *I) { 937 dbgs() << "LV: Not vectorizing: " << DebugMsg; 938 if (I != nullptr) 939 dbgs() << " " << *I; 940 else 941 dbgs() << '.'; 942 dbgs() << '\n'; 943 } 944 #endif 945 946 /// Create an analysis remark that explains why vectorization failed 947 /// 948 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 949 /// RemarkName is the identifier for the remark. If \p I is passed it is an 950 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 951 /// the location of the remark. \return the remark object that can be 952 /// streamed to. 953 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 954 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 955 Value *CodeRegion = TheLoop->getHeader(); 956 DebugLoc DL = TheLoop->getStartLoc(); 957 958 if (I) { 959 CodeRegion = I->getParent(); 960 // If there is no debug location attached to the instruction, revert back to 961 // using the loop's. 962 if (I->getDebugLoc()) 963 DL = I->getDebugLoc(); 964 } 965 966 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 967 R << "loop not vectorized: "; 968 return R; 969 } 970 971 namespace llvm { 972 973 void reportVectorizationFailure(const StringRef DebugMsg, 974 const StringRef OREMsg, const StringRef ORETag, 975 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 976 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 977 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 978 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 979 ORETag, TheLoop, I) << OREMsg); 980 } 981 982 } // end namespace llvm 983 984 #ifndef NDEBUG 985 /// \return string containing a file name and a line # for the given loop. 986 static std::string getDebugLocString(const Loop *L) { 987 std::string Result; 988 if (L) { 989 raw_string_ostream OS(Result); 990 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 991 LoopDbgLoc.print(OS); 992 else 993 // Just print the module name. 994 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 995 OS.flush(); 996 } 997 return Result; 998 } 999 #endif 1000 1001 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1002 const Instruction *Orig) { 1003 // If the loop was versioned with memchecks, add the corresponding no-alias 1004 // metadata. 1005 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1006 LVer->annotateInstWithNoAlias(To, Orig); 1007 } 1008 1009 void InnerLoopVectorizer::addMetadata(Instruction *To, 1010 Instruction *From) { 1011 propagateMetadata(To, From); 1012 addNewMetadata(To, From); 1013 } 1014 1015 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1016 Instruction *From) { 1017 for (Value *V : To) { 1018 if (Instruction *I = dyn_cast<Instruction>(V)) 1019 addMetadata(I, From); 1020 } 1021 } 1022 1023 namespace llvm { 1024 1025 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1026 // lowered. 1027 enum ScalarEpilogueLowering { 1028 1029 // The default: allowing scalar epilogues. 1030 CM_ScalarEpilogueAllowed, 1031 1032 // Vectorization with OptForSize: don't allow epilogues. 1033 CM_ScalarEpilogueNotAllowedOptSize, 1034 1035 // A special case of vectorisation with OptForSize: loops with a very small 1036 // trip count are considered for vectorization under OptForSize, thereby 1037 // making sure the cost of their loop body is dominant, free of runtime 1038 // guards and scalar iteration overheads. 1039 CM_ScalarEpilogueNotAllowedLowTripLoop, 1040 1041 // Loop hint predicate indicating an epilogue is undesired. 1042 CM_ScalarEpilogueNotNeededUsePredicate 1043 }; 1044 1045 /// LoopVectorizationCostModel - estimates the expected speedups due to 1046 /// vectorization. 1047 /// In many cases vectorization is not profitable. This can happen because of 1048 /// a number of reasons. In this class we mainly attempt to predict the 1049 /// expected speedup/slowdowns due to the supported instruction set. We use the 1050 /// TargetTransformInfo to query the different backends for the cost of 1051 /// different operations. 1052 class LoopVectorizationCostModel { 1053 public: 1054 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1055 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1056 LoopVectorizationLegality *Legal, 1057 const TargetTransformInfo &TTI, 1058 const TargetLibraryInfo *TLI, DemandedBits *DB, 1059 AssumptionCache *AC, 1060 OptimizationRemarkEmitter *ORE, const Function *F, 1061 const LoopVectorizeHints *Hints, 1062 InterleavedAccessInfo &IAI) 1063 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1064 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1065 Hints(Hints), InterleaveInfo(IAI) {} 1066 1067 /// \return An upper bound for the vectorization factor, or None if 1068 /// vectorization and interleaving should be avoided up front. 1069 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1070 1071 /// \return True if runtime checks are required for vectorization, and false 1072 /// otherwise. 1073 bool runtimeChecksRequired(); 1074 1075 /// \return The most profitable vectorization factor and the cost of that VF. 1076 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1077 /// then this vectorization factor will be selected if vectorization is 1078 /// possible. 1079 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1080 1081 /// Setup cost-based decisions for user vectorization factor. 1082 void selectUserVectorizationFactor(ElementCount UserVF) { 1083 collectUniformsAndScalars(UserVF); 1084 collectInstsToScalarize(UserVF); 1085 } 1086 1087 /// \return The size (in bits) of the smallest and widest types in the code 1088 /// that needs to be vectorized. We ignore values that remain scalar such as 1089 /// 64 bit loop indices. 1090 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1091 1092 /// \return The desired interleave count. 1093 /// If interleave count has been specified by metadata it will be returned. 1094 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1095 /// are the selected vectorization factor and the cost of the selected VF. 1096 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1097 1098 /// Memory access instruction may be vectorized in more than one way. 1099 /// Form of instruction after vectorization depends on cost. 1100 /// This function takes cost-based decisions for Load/Store instructions 1101 /// and collects them in a map. This decisions map is used for building 1102 /// the lists of loop-uniform and loop-scalar instructions. 1103 /// The calculated cost is saved with widening decision in order to 1104 /// avoid redundant calculations. 1105 void setCostBasedWideningDecision(ElementCount VF); 1106 1107 /// A struct that represents some properties of the register usage 1108 /// of a loop. 1109 struct RegisterUsage { 1110 /// Holds the number of loop invariant values that are used in the loop. 1111 /// The key is ClassID of target-provided register class. 1112 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1113 /// Holds the maximum number of concurrent live intervals in the loop. 1114 /// The key is ClassID of target-provided register class. 1115 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1116 }; 1117 1118 /// \return Returns information about the register usages of the loop for the 1119 /// given vectorization factors. 1120 SmallVector<RegisterUsage, 8> 1121 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1122 1123 /// Collect values we want to ignore in the cost model. 1124 void collectValuesToIgnore(); 1125 1126 /// Split reductions into those that happen in the loop, and those that happen 1127 /// outside. In loop reductions are collected into InLoopReductionChains. 1128 void collectInLoopReductions(); 1129 1130 /// \returns The smallest bitwidth each instruction can be represented with. 1131 /// The vector equivalents of these instructions should be truncated to this 1132 /// type. 1133 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1134 return MinBWs; 1135 } 1136 1137 /// \returns True if it is more profitable to scalarize instruction \p I for 1138 /// vectorization factor \p VF. 1139 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1140 assert(VF.isVector() && 1141 "Profitable to scalarize relevant only for VF > 1."); 1142 1143 // Cost model is not run in the VPlan-native path - return conservative 1144 // result until this changes. 1145 if (EnableVPlanNativePath) 1146 return false; 1147 1148 auto Scalars = InstsToScalarize.find(VF); 1149 assert(Scalars != InstsToScalarize.end() && 1150 "VF not yet analyzed for scalarization profitability"); 1151 return Scalars->second.find(I) != Scalars->second.end(); 1152 } 1153 1154 /// Returns true if \p I is known to be uniform after vectorization. 1155 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1156 if (VF.isScalar()) 1157 return true; 1158 1159 // Cost model is not run in the VPlan-native path - return conservative 1160 // result until this changes. 1161 if (EnableVPlanNativePath) 1162 return false; 1163 1164 auto UniformsPerVF = Uniforms.find(VF); 1165 assert(UniformsPerVF != Uniforms.end() && 1166 "VF not yet analyzed for uniformity"); 1167 return UniformsPerVF->second.count(I); 1168 } 1169 1170 /// Returns true if \p I is known to be scalar after vectorization. 1171 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1172 if (VF.isScalar()) 1173 return true; 1174 1175 // Cost model is not run in the VPlan-native path - return conservative 1176 // result until this changes. 1177 if (EnableVPlanNativePath) 1178 return false; 1179 1180 auto ScalarsPerVF = Scalars.find(VF); 1181 assert(ScalarsPerVF != Scalars.end() && 1182 "Scalar values are not calculated for VF"); 1183 return ScalarsPerVF->second.count(I); 1184 } 1185 1186 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1187 /// for vectorization factor \p VF. 1188 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1189 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1190 !isProfitableToScalarize(I, VF) && 1191 !isScalarAfterVectorization(I, VF); 1192 } 1193 1194 /// Decision that was taken during cost calculation for memory instruction. 1195 enum InstWidening { 1196 CM_Unknown, 1197 CM_Widen, // For consecutive accesses with stride +1. 1198 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1199 CM_Interleave, 1200 CM_GatherScatter, 1201 CM_Scalarize 1202 }; 1203 1204 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1205 /// instruction \p I and vector width \p VF. 1206 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1207 unsigned Cost) { 1208 assert(VF.isVector() && "Expected VF >=2"); 1209 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1210 } 1211 1212 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1213 /// interleaving group \p Grp and vector width \p VF. 1214 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1215 ElementCount VF, InstWidening W, unsigned Cost) { 1216 assert(VF.isVector() && "Expected VF >=2"); 1217 /// Broadcast this decicion to all instructions inside the group. 1218 /// But the cost will be assigned to one instruction only. 1219 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1220 if (auto *I = Grp->getMember(i)) { 1221 if (Grp->getInsertPos() == I) 1222 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1223 else 1224 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1225 } 1226 } 1227 } 1228 1229 /// Return the cost model decision for the given instruction \p I and vector 1230 /// width \p VF. Return CM_Unknown if this instruction did not pass 1231 /// through the cost modeling. 1232 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1233 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1234 assert(VF.isVector() && "Expected VF >=2"); 1235 1236 // Cost model is not run in the VPlan-native path - return conservative 1237 // result until this changes. 1238 if (EnableVPlanNativePath) 1239 return CM_GatherScatter; 1240 1241 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1242 auto Itr = WideningDecisions.find(InstOnVF); 1243 if (Itr == WideningDecisions.end()) 1244 return CM_Unknown; 1245 return Itr->second.first; 1246 } 1247 1248 /// Return the vectorization cost for the given instruction \p I and vector 1249 /// width \p VF. 1250 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1251 assert(VF.isVector() && "Expected VF >=2"); 1252 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1253 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1254 "The cost is not calculated"); 1255 return WideningDecisions[InstOnVF].second; 1256 } 1257 1258 /// Return True if instruction \p I is an optimizable truncate whose operand 1259 /// is an induction variable. Such a truncate will be removed by adding a new 1260 /// induction variable with the destination type. 1261 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1262 // If the instruction is not a truncate, return false. 1263 auto *Trunc = dyn_cast<TruncInst>(I); 1264 if (!Trunc) 1265 return false; 1266 1267 // Get the source and destination types of the truncate. 1268 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1269 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1270 1271 // If the truncate is free for the given types, return false. Replacing a 1272 // free truncate with an induction variable would add an induction variable 1273 // update instruction to each iteration of the loop. We exclude from this 1274 // check the primary induction variable since it will need an update 1275 // instruction regardless. 1276 Value *Op = Trunc->getOperand(0); 1277 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1278 return false; 1279 1280 // If the truncated value is not an induction variable, return false. 1281 return Legal->isInductionPhi(Op); 1282 } 1283 1284 /// Collects the instructions to scalarize for each predicated instruction in 1285 /// the loop. 1286 void collectInstsToScalarize(ElementCount VF); 1287 1288 /// Collect Uniform and Scalar values for the given \p VF. 1289 /// The sets depend on CM decision for Load/Store instructions 1290 /// that may be vectorized as interleave, gather-scatter or scalarized. 1291 void collectUniformsAndScalars(ElementCount VF) { 1292 // Do the analysis once. 1293 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1294 return; 1295 setCostBasedWideningDecision(VF); 1296 collectLoopUniforms(VF); 1297 collectLoopScalars(VF); 1298 } 1299 1300 /// Returns true if the target machine supports masked store operation 1301 /// for the given \p DataType and kind of access to \p Ptr. 1302 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1303 return Legal->isConsecutivePtr(Ptr) && 1304 TTI.isLegalMaskedStore(DataType, Alignment); 1305 } 1306 1307 /// Returns true if the target machine supports masked load operation 1308 /// for the given \p DataType and kind of access to \p Ptr. 1309 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1310 return Legal->isConsecutivePtr(Ptr) && 1311 TTI.isLegalMaskedLoad(DataType, Alignment); 1312 } 1313 1314 /// Returns true if the target machine supports masked scatter operation 1315 /// for the given \p DataType. 1316 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1317 return TTI.isLegalMaskedScatter(DataType, Alignment); 1318 } 1319 1320 /// Returns true if the target machine supports masked gather operation 1321 /// for the given \p DataType. 1322 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1323 return TTI.isLegalMaskedGather(DataType, Alignment); 1324 } 1325 1326 /// Returns true if the target machine can represent \p V as a masked gather 1327 /// or scatter operation. 1328 bool isLegalGatherOrScatter(Value *V) { 1329 bool LI = isa<LoadInst>(V); 1330 bool SI = isa<StoreInst>(V); 1331 if (!LI && !SI) 1332 return false; 1333 auto *Ty = getMemInstValueType(V); 1334 Align Align = getLoadStoreAlignment(V); 1335 return (LI && isLegalMaskedGather(Ty, Align)) || 1336 (SI && isLegalMaskedScatter(Ty, Align)); 1337 } 1338 1339 /// Returns true if \p I is an instruction that will be scalarized with 1340 /// predication. Such instructions include conditional stores and 1341 /// instructions that may divide by zero. 1342 /// If a non-zero VF has been calculated, we check if I will be scalarized 1343 /// predication for that VF. 1344 bool isScalarWithPredication(Instruction *I, 1345 ElementCount VF = ElementCount::getFixed(1)); 1346 1347 // Returns true if \p I is an instruction that will be predicated either 1348 // through scalar predication or masked load/store or masked gather/scatter. 1349 // Superset of instructions that return true for isScalarWithPredication. 1350 bool isPredicatedInst(Instruction *I) { 1351 if (!blockNeedsPredication(I->getParent())) 1352 return false; 1353 // Loads and stores that need some form of masked operation are predicated 1354 // instructions. 1355 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1356 return Legal->isMaskRequired(I); 1357 return isScalarWithPredication(I); 1358 } 1359 1360 /// Returns true if \p I is a memory instruction with consecutive memory 1361 /// access that can be widened. 1362 bool 1363 memoryInstructionCanBeWidened(Instruction *I, 1364 ElementCount VF = ElementCount::getFixed(1)); 1365 1366 /// Returns true if \p I is a memory instruction in an interleaved-group 1367 /// of memory accesses that can be vectorized with wide vector loads/stores 1368 /// and shuffles. 1369 bool 1370 interleavedAccessCanBeWidened(Instruction *I, 1371 ElementCount VF = ElementCount::getFixed(1)); 1372 1373 /// Check if \p Instr belongs to any interleaved access group. 1374 bool isAccessInterleaved(Instruction *Instr) { 1375 return InterleaveInfo.isInterleaved(Instr); 1376 } 1377 1378 /// Get the interleaved access group that \p Instr belongs to. 1379 const InterleaveGroup<Instruction> * 1380 getInterleavedAccessGroup(Instruction *Instr) { 1381 return InterleaveInfo.getInterleaveGroup(Instr); 1382 } 1383 1384 /// Returns true if an interleaved group requires a scalar iteration 1385 /// to handle accesses with gaps, and there is nothing preventing us from 1386 /// creating a scalar epilogue. 1387 bool requiresScalarEpilogue() const { 1388 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1389 } 1390 1391 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1392 /// loop hint annotation. 1393 bool isScalarEpilogueAllowed() const { 1394 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1395 } 1396 1397 /// Returns true if all loop blocks should be masked to fold tail loop. 1398 bool foldTailByMasking() const { return FoldTailByMasking; } 1399 1400 bool blockNeedsPredication(BasicBlock *BB) { 1401 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1402 } 1403 1404 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1405 /// nodes to the chain of instructions representing the reductions. Uses a 1406 /// MapVector to ensure deterministic iteration order. 1407 using ReductionChainMap = 1408 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1409 1410 /// Return the chain of instructions representing an inloop reduction. 1411 const ReductionChainMap &getInLoopReductionChains() const { 1412 return InLoopReductionChains; 1413 } 1414 1415 /// Returns true if the Phi is part of an inloop reduction. 1416 bool isInLoopReduction(PHINode *Phi) const { 1417 return InLoopReductionChains.count(Phi); 1418 } 1419 1420 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1421 /// with factor VF. Return the cost of the instruction, including 1422 /// scalarization overhead if it's needed. 1423 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1424 1425 /// Estimate cost of a call instruction CI if it were vectorized with factor 1426 /// VF. Return the cost of the instruction, including scalarization overhead 1427 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1428 /// scalarized - 1429 /// i.e. either vector version isn't available, or is too expensive. 1430 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1431 bool &NeedToScalarize); 1432 1433 /// Invalidates decisions already taken by the cost model. 1434 void invalidateCostModelingDecisions() { 1435 WideningDecisions.clear(); 1436 Uniforms.clear(); 1437 Scalars.clear(); 1438 } 1439 1440 private: 1441 unsigned NumPredStores = 0; 1442 1443 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1444 /// than zero. One is returned if vectorization should best be avoided due 1445 /// to cost. 1446 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1447 ElementCount UserVF); 1448 1449 /// The vectorization cost is a combination of the cost itself and a boolean 1450 /// indicating whether any of the contributing operations will actually 1451 /// operate on 1452 /// vector values after type legalization in the backend. If this latter value 1453 /// is 1454 /// false, then all operations will be scalarized (i.e. no vectorization has 1455 /// actually taken place). 1456 using VectorizationCostTy = std::pair<unsigned, bool>; 1457 1458 /// Returns the expected execution cost. The unit of the cost does 1459 /// not matter because we use the 'cost' units to compare different 1460 /// vector widths. The cost that is returned is *not* normalized by 1461 /// the factor width. 1462 VectorizationCostTy expectedCost(ElementCount VF); 1463 1464 /// Returns the execution time cost of an instruction for a given vector 1465 /// width. Vector width of one means scalar. 1466 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1467 1468 /// The cost-computation logic from getInstructionCost which provides 1469 /// the vector type as an output parameter. 1470 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1471 1472 /// Calculate vectorization cost of memory instruction \p I. 1473 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1474 1475 /// The cost computation for scalarized memory instruction. 1476 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1477 1478 /// The cost computation for interleaving group of memory instructions. 1479 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1480 1481 /// The cost computation for Gather/Scatter instruction. 1482 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1483 1484 /// The cost computation for widening instruction \p I with consecutive 1485 /// memory access. 1486 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1487 1488 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1489 /// Load: scalar load + broadcast. 1490 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1491 /// element) 1492 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1493 1494 /// Estimate the overhead of scalarizing an instruction. This is a 1495 /// convenience wrapper for the type-based getScalarizationOverhead API. 1496 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1497 1498 /// Returns whether the instruction is a load or store and will be a emitted 1499 /// as a vector operation. 1500 bool isConsecutiveLoadOrStore(Instruction *I); 1501 1502 /// Returns true if an artificially high cost for emulated masked memrefs 1503 /// should be used. 1504 bool useEmulatedMaskMemRefHack(Instruction *I); 1505 1506 /// Map of scalar integer values to the smallest bitwidth they can be legally 1507 /// represented as. The vector equivalents of these values should be truncated 1508 /// to this type. 1509 MapVector<Instruction *, uint64_t> MinBWs; 1510 1511 /// A type representing the costs for instructions if they were to be 1512 /// scalarized rather than vectorized. The entries are Instruction-Cost 1513 /// pairs. 1514 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1515 1516 /// A set containing all BasicBlocks that are known to present after 1517 /// vectorization as a predicated block. 1518 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1519 1520 /// Records whether it is allowed to have the original scalar loop execute at 1521 /// least once. This may be needed as a fallback loop in case runtime 1522 /// aliasing/dependence checks fail, or to handle the tail/remainder 1523 /// iterations when the trip count is unknown or doesn't divide by the VF, 1524 /// or as a peel-loop to handle gaps in interleave-groups. 1525 /// Under optsize and when the trip count is very small we don't allow any 1526 /// iterations to execute in the scalar loop. 1527 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1528 1529 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1530 bool FoldTailByMasking = false; 1531 1532 /// A map holding scalar costs for different vectorization factors. The 1533 /// presence of a cost for an instruction in the mapping indicates that the 1534 /// instruction will be scalarized when vectorizing with the associated 1535 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1536 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1537 1538 /// Holds the instructions known to be uniform after vectorization. 1539 /// The data is collected per VF. 1540 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1541 1542 /// Holds the instructions known to be scalar after vectorization. 1543 /// The data is collected per VF. 1544 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1545 1546 /// Holds the instructions (address computations) that are forced to be 1547 /// scalarized. 1548 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1549 1550 /// PHINodes of the reductions that should be expanded in-loop along with 1551 /// their associated chains of reduction operations, in program order from top 1552 /// (PHI) to bottom 1553 ReductionChainMap InLoopReductionChains; 1554 1555 /// Returns the expected difference in cost from scalarizing the expression 1556 /// feeding a predicated instruction \p PredInst. The instructions to 1557 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1558 /// non-negative return value implies the expression will be scalarized. 1559 /// Currently, only single-use chains are considered for scalarization. 1560 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1561 ElementCount VF); 1562 1563 /// Collect the instructions that are uniform after vectorization. An 1564 /// instruction is uniform if we represent it with a single scalar value in 1565 /// the vectorized loop corresponding to each vector iteration. Examples of 1566 /// uniform instructions include pointer operands of consecutive or 1567 /// interleaved memory accesses. Note that although uniformity implies an 1568 /// instruction will be scalar, the reverse is not true. In general, a 1569 /// scalarized instruction will be represented by VF scalar values in the 1570 /// vectorized loop, each corresponding to an iteration of the original 1571 /// scalar loop. 1572 void collectLoopUniforms(ElementCount VF); 1573 1574 /// Collect the instructions that are scalar after vectorization. An 1575 /// instruction is scalar if it is known to be uniform or will be scalarized 1576 /// during vectorization. Non-uniform scalarized instructions will be 1577 /// represented by VF values in the vectorized loop, each corresponding to an 1578 /// iteration of the original scalar loop. 1579 void collectLoopScalars(ElementCount VF); 1580 1581 /// Keeps cost model vectorization decision and cost for instructions. 1582 /// Right now it is used for memory instructions only. 1583 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1584 std::pair<InstWidening, unsigned>>; 1585 1586 DecisionList WideningDecisions; 1587 1588 /// Returns true if \p V is expected to be vectorized and it needs to be 1589 /// extracted. 1590 bool needsExtract(Value *V, ElementCount VF) const { 1591 Instruction *I = dyn_cast<Instruction>(V); 1592 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1593 TheLoop->isLoopInvariant(I)) 1594 return false; 1595 1596 // Assume we can vectorize V (and hence we need extraction) if the 1597 // scalars are not computed yet. This can happen, because it is called 1598 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1599 // the scalars are collected. That should be a safe assumption in most 1600 // cases, because we check if the operands have vectorizable types 1601 // beforehand in LoopVectorizationLegality. 1602 return Scalars.find(VF) == Scalars.end() || 1603 !isScalarAfterVectorization(I, VF); 1604 }; 1605 1606 /// Returns a range containing only operands needing to be extracted. 1607 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1608 ElementCount VF) { 1609 return SmallVector<Value *, 4>(make_filter_range( 1610 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1611 } 1612 1613 public: 1614 /// The loop that we evaluate. 1615 Loop *TheLoop; 1616 1617 /// Predicated scalar evolution analysis. 1618 PredicatedScalarEvolution &PSE; 1619 1620 /// Loop Info analysis. 1621 LoopInfo *LI; 1622 1623 /// Vectorization legality. 1624 LoopVectorizationLegality *Legal; 1625 1626 /// Vector target information. 1627 const TargetTransformInfo &TTI; 1628 1629 /// Target Library Info. 1630 const TargetLibraryInfo *TLI; 1631 1632 /// Demanded bits analysis. 1633 DemandedBits *DB; 1634 1635 /// Assumption cache. 1636 AssumptionCache *AC; 1637 1638 /// Interface to emit optimization remarks. 1639 OptimizationRemarkEmitter *ORE; 1640 1641 const Function *TheFunction; 1642 1643 /// Loop Vectorize Hint. 1644 const LoopVectorizeHints *Hints; 1645 1646 /// The interleave access information contains groups of interleaved accesses 1647 /// with the same stride and close to each other. 1648 InterleavedAccessInfo &InterleaveInfo; 1649 1650 /// Values to ignore in the cost model. 1651 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1652 1653 /// Values to ignore in the cost model when VF > 1. 1654 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1655 }; 1656 1657 } // end namespace llvm 1658 1659 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1660 // vectorization. The loop needs to be annotated with #pragma omp simd 1661 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1662 // vector length information is not provided, vectorization is not considered 1663 // explicit. Interleave hints are not allowed either. These limitations will be 1664 // relaxed in the future. 1665 // Please, note that we are currently forced to abuse the pragma 'clang 1666 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1667 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1668 // provides *explicit vectorization hints* (LV can bypass legal checks and 1669 // assume that vectorization is legal). However, both hints are implemented 1670 // using the same metadata (llvm.loop.vectorize, processed by 1671 // LoopVectorizeHints). This will be fixed in the future when the native IR 1672 // representation for pragma 'omp simd' is introduced. 1673 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1674 OptimizationRemarkEmitter *ORE) { 1675 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1676 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1677 1678 // Only outer loops with an explicit vectorization hint are supported. 1679 // Unannotated outer loops are ignored. 1680 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1681 return false; 1682 1683 Function *Fn = OuterLp->getHeader()->getParent(); 1684 if (!Hints.allowVectorization(Fn, OuterLp, 1685 true /*VectorizeOnlyWhenForced*/)) { 1686 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1687 return false; 1688 } 1689 1690 if (Hints.getInterleave() > 1) { 1691 // TODO: Interleave support is future work. 1692 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1693 "outer loops.\n"); 1694 Hints.emitRemarkWithHints(); 1695 return false; 1696 } 1697 1698 return true; 1699 } 1700 1701 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1702 OptimizationRemarkEmitter *ORE, 1703 SmallVectorImpl<Loop *> &V) { 1704 // Collect inner loops and outer loops without irreducible control flow. For 1705 // now, only collect outer loops that have explicit vectorization hints. If we 1706 // are stress testing the VPlan H-CFG construction, we collect the outermost 1707 // loop of every loop nest. 1708 if (L.isInnermost() || VPlanBuildStressTest || 1709 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1710 LoopBlocksRPO RPOT(&L); 1711 RPOT.perform(LI); 1712 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1713 V.push_back(&L); 1714 // TODO: Collect inner loops inside marked outer loops in case 1715 // vectorization fails for the outer loop. Do not invoke 1716 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1717 // already known to be reducible. We can use an inherited attribute for 1718 // that. 1719 return; 1720 } 1721 } 1722 for (Loop *InnerL : L) 1723 collectSupportedLoops(*InnerL, LI, ORE, V); 1724 } 1725 1726 namespace { 1727 1728 /// The LoopVectorize Pass. 1729 struct LoopVectorize : public FunctionPass { 1730 /// Pass identification, replacement for typeid 1731 static char ID; 1732 1733 LoopVectorizePass Impl; 1734 1735 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1736 bool VectorizeOnlyWhenForced = false) 1737 : FunctionPass(ID), 1738 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1739 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1740 } 1741 1742 bool runOnFunction(Function &F) override { 1743 if (skipFunction(F)) 1744 return false; 1745 1746 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1747 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1748 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1749 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1750 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1751 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1752 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1753 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1754 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1755 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1756 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1757 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1758 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1759 1760 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1761 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1762 1763 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1764 GetLAA, *ORE, PSI).MadeAnyChange; 1765 } 1766 1767 void getAnalysisUsage(AnalysisUsage &AU) const override { 1768 AU.addRequired<AssumptionCacheTracker>(); 1769 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1770 AU.addRequired<DominatorTreeWrapperPass>(); 1771 AU.addRequired<LoopInfoWrapperPass>(); 1772 AU.addRequired<ScalarEvolutionWrapperPass>(); 1773 AU.addRequired<TargetTransformInfoWrapperPass>(); 1774 AU.addRequired<AAResultsWrapperPass>(); 1775 AU.addRequired<LoopAccessLegacyAnalysis>(); 1776 AU.addRequired<DemandedBitsWrapperPass>(); 1777 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1778 AU.addRequired<InjectTLIMappingsLegacy>(); 1779 1780 // We currently do not preserve loopinfo/dominator analyses with outer loop 1781 // vectorization. Until this is addressed, mark these analyses as preserved 1782 // only for non-VPlan-native path. 1783 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1784 if (!EnableVPlanNativePath) { 1785 AU.addPreserved<LoopInfoWrapperPass>(); 1786 AU.addPreserved<DominatorTreeWrapperPass>(); 1787 } 1788 1789 AU.addPreserved<BasicAAWrapperPass>(); 1790 AU.addPreserved<GlobalsAAWrapperPass>(); 1791 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1792 } 1793 }; 1794 1795 } // end anonymous namespace 1796 1797 //===----------------------------------------------------------------------===// 1798 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1799 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1800 //===----------------------------------------------------------------------===// 1801 1802 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1803 // We need to place the broadcast of invariant variables outside the loop, 1804 // but only if it's proven safe to do so. Else, broadcast will be inside 1805 // vector loop body. 1806 Instruction *Instr = dyn_cast<Instruction>(V); 1807 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1808 (!Instr || 1809 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1810 // Place the code for broadcasting invariant variables in the new preheader. 1811 IRBuilder<>::InsertPointGuard Guard(Builder); 1812 if (SafeToHoist) 1813 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1814 1815 // Broadcast the scalar into all locations in the vector. 1816 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1817 1818 return Shuf; 1819 } 1820 1821 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1822 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1823 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1824 "Expected either an induction phi-node or a truncate of it!"); 1825 Value *Start = II.getStartValue(); 1826 1827 // Construct the initial value of the vector IV in the vector loop preheader 1828 auto CurrIP = Builder.saveIP(); 1829 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1830 if (isa<TruncInst>(EntryVal)) { 1831 assert(Start->getType()->isIntegerTy() && 1832 "Truncation requires an integer type"); 1833 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1834 Step = Builder.CreateTrunc(Step, TruncType); 1835 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1836 } 1837 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1838 Value *SteppedStart = 1839 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1840 1841 // We create vector phi nodes for both integer and floating-point induction 1842 // variables. Here, we determine the kind of arithmetic we will perform. 1843 Instruction::BinaryOps AddOp; 1844 Instruction::BinaryOps MulOp; 1845 if (Step->getType()->isIntegerTy()) { 1846 AddOp = Instruction::Add; 1847 MulOp = Instruction::Mul; 1848 } else { 1849 AddOp = II.getInductionOpcode(); 1850 MulOp = Instruction::FMul; 1851 } 1852 1853 // Multiply the vectorization factor by the step using integer or 1854 // floating-point arithmetic as appropriate. 1855 Value *ConstVF = 1856 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 1857 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1858 1859 // Create a vector splat to use in the induction update. 1860 // 1861 // FIXME: If the step is non-constant, we create the vector splat with 1862 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1863 // handle a constant vector splat. 1864 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1865 Value *SplatVF = isa<Constant>(Mul) 1866 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1867 : Builder.CreateVectorSplat(VF, Mul); 1868 Builder.restoreIP(CurrIP); 1869 1870 // We may need to add the step a number of times, depending on the unroll 1871 // factor. The last of those goes into the PHI. 1872 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1873 &*LoopVectorBody->getFirstInsertionPt()); 1874 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1875 Instruction *LastInduction = VecInd; 1876 for (unsigned Part = 0; Part < UF; ++Part) { 1877 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1878 1879 if (isa<TruncInst>(EntryVal)) 1880 addMetadata(LastInduction, EntryVal); 1881 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1882 1883 LastInduction = cast<Instruction>(addFastMathFlag( 1884 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1885 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1886 } 1887 1888 // Move the last step to the end of the latch block. This ensures consistent 1889 // placement of all induction updates. 1890 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1891 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1892 auto *ICmp = cast<Instruction>(Br->getCondition()); 1893 LastInduction->moveBefore(ICmp); 1894 LastInduction->setName("vec.ind.next"); 1895 1896 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1897 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1898 } 1899 1900 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1901 return Cost->isScalarAfterVectorization(I, VF) || 1902 Cost->isProfitableToScalarize(I, VF); 1903 } 1904 1905 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1906 if (shouldScalarizeInstruction(IV)) 1907 return true; 1908 auto isScalarInst = [&](User *U) -> bool { 1909 auto *I = cast<Instruction>(U); 1910 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1911 }; 1912 return llvm::any_of(IV->users(), isScalarInst); 1913 } 1914 1915 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1916 const InductionDescriptor &ID, const Instruction *EntryVal, 1917 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1918 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1919 "Expected either an induction phi-node or a truncate of it!"); 1920 1921 // This induction variable is not the phi from the original loop but the 1922 // newly-created IV based on the proof that casted Phi is equal to the 1923 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1924 // re-uses the same InductionDescriptor that original IV uses but we don't 1925 // have to do any recording in this case - that is done when original IV is 1926 // processed. 1927 if (isa<TruncInst>(EntryVal)) 1928 return; 1929 1930 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1931 if (Casts.empty()) 1932 return; 1933 // Only the first Cast instruction in the Casts vector is of interest. 1934 // The rest of the Casts (if exist) have no uses outside the 1935 // induction update chain itself. 1936 Instruction *CastInst = *Casts.begin(); 1937 if (Lane < UINT_MAX) 1938 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1939 else 1940 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1941 } 1942 1943 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1944 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1945 "Primary induction variable must have an integer type"); 1946 1947 auto II = Legal->getInductionVars().find(IV); 1948 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1949 1950 auto ID = II->second; 1951 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1952 1953 // The value from the original loop to which we are mapping the new induction 1954 // variable. 1955 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1956 1957 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1958 1959 // Generate code for the induction step. Note that induction steps are 1960 // required to be loop-invariant 1961 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1962 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1963 "Induction step should be loop invariant"); 1964 if (PSE.getSE()->isSCEVable(IV->getType())) { 1965 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1966 return Exp.expandCodeFor(Step, Step->getType(), 1967 LoopVectorPreHeader->getTerminator()); 1968 } 1969 return cast<SCEVUnknown>(Step)->getValue(); 1970 }; 1971 1972 // The scalar value to broadcast. This is derived from the canonical 1973 // induction variable. If a truncation type is given, truncate the canonical 1974 // induction variable and step. Otherwise, derive these values from the 1975 // induction descriptor. 1976 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1977 Value *ScalarIV = Induction; 1978 if (IV != OldInduction) { 1979 ScalarIV = IV->getType()->isIntegerTy() 1980 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1981 : Builder.CreateCast(Instruction::SIToFP, Induction, 1982 IV->getType()); 1983 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1984 ScalarIV->setName("offset.idx"); 1985 } 1986 if (Trunc) { 1987 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1988 assert(Step->getType()->isIntegerTy() && 1989 "Truncation requires an integer step"); 1990 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1991 Step = Builder.CreateTrunc(Step, TruncType); 1992 } 1993 return ScalarIV; 1994 }; 1995 1996 // Create the vector values from the scalar IV, in the absence of creating a 1997 // vector IV. 1998 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1999 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2000 for (unsigned Part = 0; Part < UF; ++Part) { 2001 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2002 Value *EntryPart = 2003 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2004 ID.getInductionOpcode()); 2005 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2006 if (Trunc) 2007 addMetadata(EntryPart, Trunc); 2008 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2009 } 2010 }; 2011 2012 // Now do the actual transformations, and start with creating the step value. 2013 Value *Step = CreateStepValue(ID.getStep()); 2014 if (VF.isZero() || VF.isScalar()) { 2015 Value *ScalarIV = CreateScalarIV(Step); 2016 CreateSplatIV(ScalarIV, Step); 2017 return; 2018 } 2019 2020 // Determine if we want a scalar version of the induction variable. This is 2021 // true if the induction variable itself is not widened, or if it has at 2022 // least one user in the loop that is not widened. 2023 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2024 if (!NeedsScalarIV) { 2025 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2026 return; 2027 } 2028 2029 // Try to create a new independent vector induction variable. If we can't 2030 // create the phi node, we will splat the scalar induction variable in each 2031 // loop iteration. 2032 if (!shouldScalarizeInstruction(EntryVal)) { 2033 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2034 Value *ScalarIV = CreateScalarIV(Step); 2035 // Create scalar steps that can be used by instructions we will later 2036 // scalarize. Note that the addition of the scalar steps will not increase 2037 // the number of instructions in the loop in the common case prior to 2038 // InstCombine. We will be trading one vector extract for each scalar step. 2039 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2040 return; 2041 } 2042 2043 // All IV users are scalar instructions, so only emit a scalar IV, not a 2044 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2045 // predicate used by the masked loads/stores. 2046 Value *ScalarIV = CreateScalarIV(Step); 2047 if (!Cost->isScalarEpilogueAllowed()) 2048 CreateSplatIV(ScalarIV, Step); 2049 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2050 } 2051 2052 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2053 Instruction::BinaryOps BinOp) { 2054 // Create and check the types. 2055 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2056 int VLen = ValVTy->getNumElements(); 2057 2058 Type *STy = Val->getType()->getScalarType(); 2059 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2060 "Induction Step must be an integer or FP"); 2061 assert(Step->getType() == STy && "Step has wrong type"); 2062 2063 SmallVector<Constant *, 8> Indices; 2064 2065 if (STy->isIntegerTy()) { 2066 // Create a vector of consecutive numbers from zero to VF. 2067 for (int i = 0; i < VLen; ++i) 2068 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2069 2070 // Add the consecutive indices to the vector value. 2071 Constant *Cv = ConstantVector::get(Indices); 2072 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2073 Step = Builder.CreateVectorSplat(VLen, Step); 2074 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2075 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2076 // which can be found from the original scalar operations. 2077 Step = Builder.CreateMul(Cv, Step); 2078 return Builder.CreateAdd(Val, Step, "induction"); 2079 } 2080 2081 // Floating point induction. 2082 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2083 "Binary Opcode should be specified for FP induction"); 2084 // Create a vector of consecutive numbers from zero to VF. 2085 for (int i = 0; i < VLen; ++i) 2086 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2087 2088 // Add the consecutive indices to the vector value. 2089 Constant *Cv = ConstantVector::get(Indices); 2090 2091 Step = Builder.CreateVectorSplat(VLen, Step); 2092 2093 // Floating point operations had to be 'fast' to enable the induction. 2094 FastMathFlags Flags; 2095 Flags.setFast(); 2096 2097 Value *MulOp = Builder.CreateFMul(Cv, Step); 2098 if (isa<Instruction>(MulOp)) 2099 // Have to check, MulOp may be a constant 2100 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2101 2102 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2103 if (isa<Instruction>(BOp)) 2104 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2105 return BOp; 2106 } 2107 2108 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2109 Instruction *EntryVal, 2110 const InductionDescriptor &ID) { 2111 // We shouldn't have to build scalar steps if we aren't vectorizing. 2112 assert(VF.isVector() && "VF should be greater than one"); 2113 assert(!VF.isScalable() && 2114 "the code below assumes a fixed number of elements at compile time"); 2115 // Get the value type and ensure it and the step have the same integer type. 2116 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2117 assert(ScalarIVTy == Step->getType() && 2118 "Val and Step should have the same type"); 2119 2120 // We build scalar steps for both integer and floating-point induction 2121 // variables. Here, we determine the kind of arithmetic we will perform. 2122 Instruction::BinaryOps AddOp; 2123 Instruction::BinaryOps MulOp; 2124 if (ScalarIVTy->isIntegerTy()) { 2125 AddOp = Instruction::Add; 2126 MulOp = Instruction::Mul; 2127 } else { 2128 AddOp = ID.getInductionOpcode(); 2129 MulOp = Instruction::FMul; 2130 } 2131 2132 // Determine the number of scalars we need to generate for each unroll 2133 // iteration. If EntryVal is uniform, we only need to generate the first 2134 // lane. Otherwise, we generate all VF values. 2135 unsigned Lanes = 2136 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2137 ? 1 2138 : VF.getKnownMinValue(); 2139 // Compute the scalar steps and save the results in VectorLoopValueMap. 2140 for (unsigned Part = 0; Part < UF; ++Part) { 2141 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2142 auto *StartIdx = getSignedIntOrFpConstant( 2143 ScalarIVTy, VF.getKnownMinValue() * Part + Lane); 2144 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2145 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2146 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2147 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2148 } 2149 } 2150 } 2151 2152 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2153 assert(V != Induction && "The new induction variable should not be used."); 2154 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2155 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2156 2157 // If we have a stride that is replaced by one, do it here. Defer this for 2158 // the VPlan-native path until we start running Legal checks in that path. 2159 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2160 V = ConstantInt::get(V->getType(), 1); 2161 2162 // If we have a vector mapped to this value, return it. 2163 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2164 return VectorLoopValueMap.getVectorValue(V, Part); 2165 2166 // If the value has not been vectorized, check if it has been scalarized 2167 // instead. If it has been scalarized, and we actually need the value in 2168 // vector form, we will construct the vector values on demand. 2169 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2170 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2171 2172 // If we've scalarized a value, that value should be an instruction. 2173 auto *I = cast<Instruction>(V); 2174 2175 // If we aren't vectorizing, we can just copy the scalar map values over to 2176 // the vector map. 2177 if (VF.isScalar()) { 2178 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2179 return ScalarValue; 2180 } 2181 2182 // Get the last scalar instruction we generated for V and Part. If the value 2183 // is known to be uniform after vectorization, this corresponds to lane zero 2184 // of the Part unroll iteration. Otherwise, the last instruction is the one 2185 // we created for the last vector lane of the Part unroll iteration. 2186 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2187 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2188 ? 0 2189 : VF.getKnownMinValue() - 1; 2190 auto *LastInst = cast<Instruction>( 2191 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2192 2193 // Set the insert point after the last scalarized instruction. This ensures 2194 // the insertelement sequence will directly follow the scalar definitions. 2195 auto OldIP = Builder.saveIP(); 2196 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2197 Builder.SetInsertPoint(&*NewIP); 2198 2199 // However, if we are vectorizing, we need to construct the vector values. 2200 // If the value is known to be uniform after vectorization, we can just 2201 // broadcast the scalar value corresponding to lane zero for each unroll 2202 // iteration. Otherwise, we construct the vector values using insertelement 2203 // instructions. Since the resulting vectors are stored in 2204 // VectorLoopValueMap, we will only generate the insertelements once. 2205 Value *VectorValue = nullptr; 2206 if (Cost->isUniformAfterVectorization(I, VF)) { 2207 VectorValue = getBroadcastInstrs(ScalarValue); 2208 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2209 } else { 2210 // Initialize packing with insertelements to start from undef. 2211 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2212 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2213 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2214 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2215 packScalarIntoVectorValue(V, {Part, Lane}); 2216 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2217 } 2218 Builder.restoreIP(OldIP); 2219 return VectorValue; 2220 } 2221 2222 // If this scalar is unknown, assume that it is a constant or that it is 2223 // loop invariant. Broadcast V and save the value for future uses. 2224 Value *B = getBroadcastInstrs(V); 2225 VectorLoopValueMap.setVectorValue(V, Part, B); 2226 return B; 2227 } 2228 2229 Value * 2230 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2231 const VPIteration &Instance) { 2232 // If the value is not an instruction contained in the loop, it should 2233 // already be scalar. 2234 if (OrigLoop->isLoopInvariant(V)) 2235 return V; 2236 2237 assert(Instance.Lane > 0 2238 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2239 : true && "Uniform values only have lane zero"); 2240 2241 // If the value from the original loop has not been vectorized, it is 2242 // represented by UF x VF scalar values in the new loop. Return the requested 2243 // scalar value. 2244 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2245 return VectorLoopValueMap.getScalarValue(V, Instance); 2246 2247 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2248 // for the given unroll part. If this entry is not a vector type (i.e., the 2249 // vectorization factor is one), there is no need to generate an 2250 // extractelement instruction. 2251 auto *U = getOrCreateVectorValue(V, Instance.Part); 2252 if (!U->getType()->isVectorTy()) { 2253 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2254 return U; 2255 } 2256 2257 // Otherwise, the value from the original loop has been vectorized and is 2258 // represented by UF vector values. Extract and return the requested scalar 2259 // value from the appropriate vector lane. 2260 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2261 } 2262 2263 void InnerLoopVectorizer::packScalarIntoVectorValue( 2264 Value *V, const VPIteration &Instance) { 2265 assert(V != Induction && "The new induction variable should not be used."); 2266 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2267 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2268 2269 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2270 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2271 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2272 Builder.getInt32(Instance.Lane)); 2273 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2274 } 2275 2276 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2277 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2278 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2279 SmallVector<int, 8> ShuffleMask; 2280 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2281 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2282 2283 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2284 } 2285 2286 // Return whether we allow using masked interleave-groups (for dealing with 2287 // strided loads/stores that reside in predicated blocks, or for dealing 2288 // with gaps). 2289 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2290 // If an override option has been passed in for interleaved accesses, use it. 2291 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2292 return EnableMaskedInterleavedMemAccesses; 2293 2294 return TTI.enableMaskedInterleavedAccessVectorization(); 2295 } 2296 2297 // Try to vectorize the interleave group that \p Instr belongs to. 2298 // 2299 // E.g. Translate following interleaved load group (factor = 3): 2300 // for (i = 0; i < N; i+=3) { 2301 // R = Pic[i]; // Member of index 0 2302 // G = Pic[i+1]; // Member of index 1 2303 // B = Pic[i+2]; // Member of index 2 2304 // ... // do something to R, G, B 2305 // } 2306 // To: 2307 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2308 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2309 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2310 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2311 // 2312 // Or translate following interleaved store group (factor = 3): 2313 // for (i = 0; i < N; i+=3) { 2314 // ... do something to R, G, B 2315 // Pic[i] = R; // Member of index 0 2316 // Pic[i+1] = G; // Member of index 1 2317 // Pic[i+2] = B; // Member of index 2 2318 // } 2319 // To: 2320 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2321 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2322 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2323 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2324 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2325 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2326 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2327 VPValue *Addr, ArrayRef<VPValue *> StoredValues, VPValue *BlockInMask) { 2328 Instruction *Instr = Group->getInsertPos(); 2329 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2330 2331 // Prepare for the vector type of the interleaved load/store. 2332 Type *ScalarTy = getMemInstValueType(Instr); 2333 unsigned InterleaveFactor = Group->getFactor(); 2334 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2335 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2336 2337 // Prepare for the new pointers. 2338 SmallVector<Value *, 2> AddrParts; 2339 unsigned Index = Group->getIndex(Instr); 2340 2341 // TODO: extend the masked interleaved-group support to reversed access. 2342 assert((!BlockInMask || !Group->isReverse()) && 2343 "Reversed masked interleave-group not supported."); 2344 2345 // If the group is reverse, adjust the index to refer to the last vector lane 2346 // instead of the first. We adjust the index from the first vector lane, 2347 // rather than directly getting the pointer for lane VF - 1, because the 2348 // pointer operand of the interleaved access is supposed to be uniform. For 2349 // uniform instructions, we're only required to generate a value for the 2350 // first vector lane in each unroll iteration. 2351 assert(!VF.isScalable() && 2352 "scalable vector reverse operation is not implemented"); 2353 if (Group->isReverse()) 2354 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2355 2356 for (unsigned Part = 0; Part < UF; Part++) { 2357 Value *AddrPart = State.get(Addr, {Part, 0}); 2358 setDebugLocFromInst(Builder, AddrPart); 2359 2360 // Notice current instruction could be any index. Need to adjust the address 2361 // to the member of index 0. 2362 // 2363 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2364 // b = A[i]; // Member of index 0 2365 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2366 // 2367 // E.g. A[i+1] = a; // Member of index 1 2368 // A[i] = b; // Member of index 0 2369 // A[i+2] = c; // Member of index 2 (Current instruction) 2370 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2371 2372 bool InBounds = false; 2373 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2374 InBounds = gep->isInBounds(); 2375 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2376 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2377 2378 // Cast to the vector pointer type. 2379 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2380 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2381 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2382 } 2383 2384 setDebugLocFromInst(Builder, Instr); 2385 Value *UndefVec = UndefValue::get(VecTy); 2386 2387 Value *MaskForGaps = nullptr; 2388 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2389 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2390 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2391 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2392 } 2393 2394 // Vectorize the interleaved load group. 2395 if (isa<LoadInst>(Instr)) { 2396 // For each unroll part, create a wide load for the group. 2397 SmallVector<Value *, 2> NewLoads; 2398 for (unsigned Part = 0; Part < UF; Part++) { 2399 Instruction *NewLoad; 2400 if (BlockInMask || MaskForGaps) { 2401 assert(useMaskedInterleavedAccesses(*TTI) && 2402 "masked interleaved groups are not allowed."); 2403 Value *GroupMask = MaskForGaps; 2404 if (BlockInMask) { 2405 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2406 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2407 Value *ShuffledMask = Builder.CreateShuffleVector( 2408 BlockInMaskPart, 2409 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2410 "interleaved.mask"); 2411 GroupMask = MaskForGaps 2412 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2413 MaskForGaps) 2414 : ShuffledMask; 2415 } 2416 NewLoad = 2417 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2418 GroupMask, UndefVec, "wide.masked.vec"); 2419 } 2420 else 2421 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2422 Group->getAlign(), "wide.vec"); 2423 Group->addMetadata(NewLoad); 2424 NewLoads.push_back(NewLoad); 2425 } 2426 2427 // For each member in the group, shuffle out the appropriate data from the 2428 // wide loads. 2429 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2430 Instruction *Member = Group->getMember(I); 2431 2432 // Skip the gaps in the group. 2433 if (!Member) 2434 continue; 2435 2436 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2437 auto StrideMask = 2438 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2439 for (unsigned Part = 0; Part < UF; Part++) { 2440 Value *StridedVec = Builder.CreateShuffleVector( 2441 NewLoads[Part], StrideMask, "strided.vec"); 2442 2443 // If this member has different type, cast the result type. 2444 if (Member->getType() != ScalarTy) { 2445 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2446 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2447 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2448 } 2449 2450 if (Group->isReverse()) 2451 StridedVec = reverseVector(StridedVec); 2452 2453 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2454 } 2455 } 2456 return; 2457 } 2458 2459 // The sub vector type for current instruction. 2460 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2461 auto *SubVT = VectorType::get(ScalarTy, VF); 2462 2463 // Vectorize the interleaved store group. 2464 for (unsigned Part = 0; Part < UF; Part++) { 2465 // Collect the stored vector from each member. 2466 SmallVector<Value *, 4> StoredVecs; 2467 for (unsigned i = 0; i < InterleaveFactor; i++) { 2468 // Interleaved store group doesn't allow a gap, so each index has a member 2469 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2470 2471 Value *StoredVec = State.get(StoredValues[i], Part); 2472 2473 if (Group->isReverse()) 2474 StoredVec = reverseVector(StoredVec); 2475 2476 // If this member has different type, cast it to a unified type. 2477 2478 if (StoredVec->getType() != SubVT) 2479 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2480 2481 StoredVecs.push_back(StoredVec); 2482 } 2483 2484 // Concatenate all vectors into a wide vector. 2485 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2486 2487 // Interleave the elements in the wide vector. 2488 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2489 Value *IVec = Builder.CreateShuffleVector( 2490 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2491 "interleaved.vec"); 2492 2493 Instruction *NewStoreInstr; 2494 if (BlockInMask) { 2495 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2496 Value *ShuffledMask = Builder.CreateShuffleVector( 2497 BlockInMaskPart, 2498 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2499 "interleaved.mask"); 2500 NewStoreInstr = Builder.CreateMaskedStore( 2501 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2502 } 2503 else 2504 NewStoreInstr = 2505 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2506 2507 Group->addMetadata(NewStoreInstr); 2508 } 2509 } 2510 2511 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2512 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2513 VPValue *StoredValue, VPValue *BlockInMask) { 2514 // Attempt to issue a wide load. 2515 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2516 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2517 2518 assert((LI || SI) && "Invalid Load/Store instruction"); 2519 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2520 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2521 2522 LoopVectorizationCostModel::InstWidening Decision = 2523 Cost->getWideningDecision(Instr, VF); 2524 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2525 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2526 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2527 "CM decision is not to widen the memory instruction"); 2528 2529 Type *ScalarDataTy = getMemInstValueType(Instr); 2530 2531 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2532 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2533 const Align Alignment = getLoadStoreAlignment(Instr); 2534 2535 // Determine if the pointer operand of the access is either consecutive or 2536 // reverse consecutive. 2537 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2538 bool ConsecutiveStride = 2539 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2540 bool CreateGatherScatter = 2541 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2542 2543 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2544 // gather/scatter. Otherwise Decision should have been to Scalarize. 2545 assert((ConsecutiveStride || CreateGatherScatter) && 2546 "The instruction should be scalarized"); 2547 (void)ConsecutiveStride; 2548 2549 VectorParts BlockInMaskParts(UF); 2550 bool isMaskRequired = BlockInMask; 2551 if (isMaskRequired) 2552 for (unsigned Part = 0; Part < UF; ++Part) 2553 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2554 2555 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2556 // Calculate the pointer for the specific unroll-part. 2557 GetElementPtrInst *PartPtr = nullptr; 2558 2559 bool InBounds = false; 2560 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2561 InBounds = gep->isInBounds(); 2562 2563 if (Reverse) { 2564 // If the address is consecutive but reversed, then the 2565 // wide store needs to start at the last vector element. 2566 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2567 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2568 PartPtr->setIsInBounds(InBounds); 2569 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2570 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2571 PartPtr->setIsInBounds(InBounds); 2572 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2573 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2574 } else { 2575 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2576 ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue()))); 2577 PartPtr->setIsInBounds(InBounds); 2578 } 2579 2580 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2581 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2582 }; 2583 2584 // Handle Stores: 2585 if (SI) { 2586 setDebugLocFromInst(Builder, SI); 2587 2588 for (unsigned Part = 0; Part < UF; ++Part) { 2589 Instruction *NewSI = nullptr; 2590 Value *StoredVal = State.get(StoredValue, Part); 2591 if (CreateGatherScatter) { 2592 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2593 Value *VectorGep = State.get(Addr, Part); 2594 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2595 MaskPart); 2596 } else { 2597 if (Reverse) { 2598 // If we store to reverse consecutive memory locations, then we need 2599 // to reverse the order of elements in the stored value. 2600 StoredVal = reverseVector(StoredVal); 2601 // We don't want to update the value in the map as it might be used in 2602 // another expression. So don't call resetVectorValue(StoredVal). 2603 } 2604 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2605 if (isMaskRequired) 2606 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2607 BlockInMaskParts[Part]); 2608 else 2609 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2610 } 2611 addMetadata(NewSI, SI); 2612 } 2613 return; 2614 } 2615 2616 // Handle loads. 2617 assert(LI && "Must have a load instruction"); 2618 setDebugLocFromInst(Builder, LI); 2619 for (unsigned Part = 0; Part < UF; ++Part) { 2620 Value *NewLI; 2621 if (CreateGatherScatter) { 2622 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2623 Value *VectorGep = State.get(Addr, Part); 2624 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2625 nullptr, "wide.masked.gather"); 2626 addMetadata(NewLI, LI); 2627 } else { 2628 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2629 if (isMaskRequired) 2630 NewLI = Builder.CreateMaskedLoad( 2631 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2632 "wide.masked.load"); 2633 else 2634 NewLI = 2635 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2636 2637 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2638 addMetadata(NewLI, LI); 2639 if (Reverse) 2640 NewLI = reverseVector(NewLI); 2641 } 2642 2643 State.set(Def, Instr, NewLI, Part); 2644 } 2645 } 2646 2647 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2648 const VPIteration &Instance, 2649 bool IfPredicateInstr, 2650 VPTransformState &State) { 2651 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2652 2653 setDebugLocFromInst(Builder, Instr); 2654 2655 // Does this instruction return a value ? 2656 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2657 2658 Instruction *Cloned = Instr->clone(); 2659 if (!IsVoidRetTy) 2660 Cloned->setName(Instr->getName() + ".cloned"); 2661 2662 // Replace the operands of the cloned instructions with their scalar 2663 // equivalents in the new loop. 2664 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2665 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2666 auto InputInstance = Instance; 2667 if (!Operand || !OrigLoop->contains(Operand) || 2668 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2669 InputInstance.Lane = 0; 2670 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2671 Cloned->setOperand(op, NewOp); 2672 } 2673 addNewMetadata(Cloned, Instr); 2674 2675 // Place the cloned scalar in the new loop. 2676 Builder.Insert(Cloned); 2677 2678 // TODO: Set result for VPValue of VPReciplicateRecipe. This requires 2679 // representing scalar values in VPTransformState. Add the cloned scalar to 2680 // the scalar map entry. 2681 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2682 2683 // If we just cloned a new assumption, add it the assumption cache. 2684 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2685 if (II->getIntrinsicID() == Intrinsic::assume) 2686 AC->registerAssumption(II); 2687 2688 // End if-block. 2689 if (IfPredicateInstr) 2690 PredicatedInstructions.push_back(Cloned); 2691 } 2692 2693 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2694 Value *End, Value *Step, 2695 Instruction *DL) { 2696 BasicBlock *Header = L->getHeader(); 2697 BasicBlock *Latch = L->getLoopLatch(); 2698 // As we're just creating this loop, it's possible no latch exists 2699 // yet. If so, use the header as this will be a single block loop. 2700 if (!Latch) 2701 Latch = Header; 2702 2703 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2704 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2705 setDebugLocFromInst(Builder, OldInst); 2706 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2707 2708 Builder.SetInsertPoint(Latch->getTerminator()); 2709 setDebugLocFromInst(Builder, OldInst); 2710 2711 // Create i+1 and fill the PHINode. 2712 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2713 Induction->addIncoming(Start, L->getLoopPreheader()); 2714 Induction->addIncoming(Next, Latch); 2715 // Create the compare. 2716 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2717 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2718 2719 // Now we have two terminators. Remove the old one from the block. 2720 Latch->getTerminator()->eraseFromParent(); 2721 2722 return Induction; 2723 } 2724 2725 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2726 if (TripCount) 2727 return TripCount; 2728 2729 assert(L && "Create Trip Count for null loop."); 2730 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2731 // Find the loop boundaries. 2732 ScalarEvolution *SE = PSE.getSE(); 2733 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2734 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2735 "Invalid loop count"); 2736 2737 Type *IdxTy = Legal->getWidestInductionType(); 2738 assert(IdxTy && "No type for induction"); 2739 2740 // The exit count might have the type of i64 while the phi is i32. This can 2741 // happen if we have an induction variable that is sign extended before the 2742 // compare. The only way that we get a backedge taken count is that the 2743 // induction variable was signed and as such will not overflow. In such a case 2744 // truncation is legal. 2745 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2746 IdxTy->getPrimitiveSizeInBits()) 2747 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2748 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2749 2750 // Get the total trip count from the count by adding 1. 2751 const SCEV *ExitCount = SE->getAddExpr( 2752 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2753 2754 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2755 2756 // Expand the trip count and place the new instructions in the preheader. 2757 // Notice that the pre-header does not change, only the loop body. 2758 SCEVExpander Exp(*SE, DL, "induction"); 2759 2760 // Count holds the overall loop count (N). 2761 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2762 L->getLoopPreheader()->getTerminator()); 2763 2764 if (TripCount->getType()->isPointerTy()) 2765 TripCount = 2766 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2767 L->getLoopPreheader()->getTerminator()); 2768 2769 return TripCount; 2770 } 2771 2772 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2773 if (VectorTripCount) 2774 return VectorTripCount; 2775 2776 Value *TC = getOrCreateTripCount(L); 2777 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2778 2779 Type *Ty = TC->getType(); 2780 // This is where we can make the step a runtime constant. 2781 assert(!VF.isScalable() && "scalable vectorization is not supported yet"); 2782 Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF); 2783 2784 // If the tail is to be folded by masking, round the number of iterations N 2785 // up to a multiple of Step instead of rounding down. This is done by first 2786 // adding Step-1 and then rounding down. Note that it's ok if this addition 2787 // overflows: the vector induction variable will eventually wrap to zero given 2788 // that it starts at zero and its Step is a power of two; the loop will then 2789 // exit, with the last early-exit vector comparison also producing all-true. 2790 if (Cost->foldTailByMasking()) { 2791 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2792 "VF*UF must be a power of 2 when folding tail by masking"); 2793 TC = Builder.CreateAdd( 2794 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2795 } 2796 2797 // Now we need to generate the expression for the part of the loop that the 2798 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2799 // iterations are not required for correctness, or N - Step, otherwise. Step 2800 // is equal to the vectorization factor (number of SIMD elements) times the 2801 // unroll factor (number of SIMD instructions). 2802 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2803 2804 // If there is a non-reversed interleaved group that may speculatively access 2805 // memory out-of-bounds, we need to ensure that there will be at least one 2806 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2807 // the trip count, we set the remainder to be equal to the step. If the step 2808 // does not evenly divide the trip count, no adjustment is necessary since 2809 // there will already be scalar iterations. Note that the minimum iterations 2810 // check ensures that N >= Step. 2811 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2812 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2813 R = Builder.CreateSelect(IsZero, Step, R); 2814 } 2815 2816 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2817 2818 return VectorTripCount; 2819 } 2820 2821 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2822 const DataLayout &DL) { 2823 // Verify that V is a vector type with same number of elements as DstVTy. 2824 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2825 unsigned VF = DstFVTy->getNumElements(); 2826 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2827 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2828 Type *SrcElemTy = SrcVecTy->getElementType(); 2829 Type *DstElemTy = DstFVTy->getElementType(); 2830 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2831 "Vector elements must have same size"); 2832 2833 // Do a direct cast if element types are castable. 2834 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2835 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2836 } 2837 // V cannot be directly casted to desired vector type. 2838 // May happen when V is a floating point vector but DstVTy is a vector of 2839 // pointers or vice-versa. Handle this using a two-step bitcast using an 2840 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2841 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2842 "Only one type should be a pointer type"); 2843 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2844 "Only one type should be a floating point type"); 2845 Type *IntTy = 2846 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2847 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2848 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2849 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2850 } 2851 2852 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2853 BasicBlock *Bypass) { 2854 Value *Count = getOrCreateTripCount(L); 2855 // Reuse existing vector loop preheader for TC checks. 2856 // Note that new preheader block is generated for vector loop. 2857 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2858 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2859 2860 // Generate code to check if the loop's trip count is less than VF * UF, or 2861 // equal to it in case a scalar epilogue is required; this implies that the 2862 // vector trip count is zero. This check also covers the case where adding one 2863 // to the backedge-taken count overflowed leading to an incorrect trip count 2864 // of zero. In this case we will also jump to the scalar loop. 2865 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2866 : ICmpInst::ICMP_ULT; 2867 2868 // If tail is to be folded, vector loop takes care of all iterations. 2869 Value *CheckMinIters = Builder.getFalse(); 2870 if (!Cost->foldTailByMasking()) { 2871 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2872 CheckMinIters = Builder.CreateICmp( 2873 P, Count, 2874 ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF), 2875 "min.iters.check"); 2876 } 2877 // Create new preheader for vector loop. 2878 LoopVectorPreHeader = 2879 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2880 "vector.ph"); 2881 2882 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2883 DT->getNode(Bypass)->getIDom()) && 2884 "TC check is expected to dominate Bypass"); 2885 2886 // Update dominator for Bypass & LoopExit. 2887 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2888 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2889 2890 ReplaceInstWithInst( 2891 TCCheckBlock->getTerminator(), 2892 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2893 LoopBypassBlocks.push_back(TCCheckBlock); 2894 } 2895 2896 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2897 // Reuse existing vector loop preheader for SCEV checks. 2898 // Note that new preheader block is generated for vector loop. 2899 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2900 2901 // Generate the code to check that the SCEV assumptions that we made. 2902 // We want the new basic block to start at the first instruction in a 2903 // sequence of instructions that form a check. 2904 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2905 "scev.check"); 2906 Value *SCEVCheck = Exp.expandCodeForPredicate( 2907 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2908 2909 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2910 if (C->isZero()) 2911 return; 2912 2913 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2914 (OptForSizeBasedOnProfile && 2915 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2916 "Cannot SCEV check stride or overflow when optimizing for size"); 2917 2918 SCEVCheckBlock->setName("vector.scevcheck"); 2919 // Create new preheader for vector loop. 2920 LoopVectorPreHeader = 2921 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2922 nullptr, "vector.ph"); 2923 2924 // Update dominator only if this is first RT check. 2925 if (LoopBypassBlocks.empty()) { 2926 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2927 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2928 } 2929 2930 ReplaceInstWithInst( 2931 SCEVCheckBlock->getTerminator(), 2932 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2933 LoopBypassBlocks.push_back(SCEVCheckBlock); 2934 AddedSafetyChecks = true; 2935 } 2936 2937 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2938 // VPlan-native path does not do any analysis for runtime checks currently. 2939 if (EnableVPlanNativePath) 2940 return; 2941 2942 // Reuse existing vector loop preheader for runtime memory checks. 2943 // Note that new preheader block is generated for vector loop. 2944 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2945 2946 // Generate the code that checks in runtime if arrays overlap. We put the 2947 // checks into a separate block to make the more common case of few elements 2948 // faster. 2949 auto *LAI = Legal->getLAI(); 2950 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2951 if (!RtPtrChecking.Need) 2952 return; 2953 2954 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2955 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2956 "Cannot emit memory checks when optimizing for size, unless forced " 2957 "to vectorize."); 2958 ORE->emit([&]() { 2959 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2960 L->getStartLoc(), L->getHeader()) 2961 << "Code-size may be reduced by not forcing " 2962 "vectorization, or by source-code modifications " 2963 "eliminating the need for runtime checks " 2964 "(e.g., adding 'restrict')."; 2965 }); 2966 } 2967 2968 MemCheckBlock->setName("vector.memcheck"); 2969 // Create new preheader for vector loop. 2970 LoopVectorPreHeader = 2971 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2972 "vector.ph"); 2973 2974 auto *CondBranch = cast<BranchInst>( 2975 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 2976 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 2977 LoopBypassBlocks.push_back(MemCheckBlock); 2978 AddedSafetyChecks = true; 2979 2980 // Update dominator only if this is first RT check. 2981 if (LoopBypassBlocks.empty()) { 2982 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2983 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2984 } 2985 2986 Instruction *FirstCheckInst; 2987 Instruction *MemRuntimeCheck; 2988 std::tie(FirstCheckInst, MemRuntimeCheck) = 2989 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2990 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2991 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2992 "claimed checks are required"); 2993 CondBranch->setCondition(MemRuntimeCheck); 2994 2995 // We currently don't use LoopVersioning for the actual loop cloning but we 2996 // still use it to add the noalias metadata. 2997 LVer = std::make_unique<LoopVersioning>( 2998 *Legal->getLAI(), 2999 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3000 DT, PSE.getSE()); 3001 LVer->prepareNoAliasMetadata(); 3002 } 3003 3004 Value *InnerLoopVectorizer::emitTransformedIndex( 3005 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3006 const InductionDescriptor &ID) const { 3007 3008 SCEVExpander Exp(*SE, DL, "induction"); 3009 auto Step = ID.getStep(); 3010 auto StartValue = ID.getStartValue(); 3011 assert(Index->getType() == Step->getType() && 3012 "Index type does not match StepValue type"); 3013 3014 // Note: the IR at this point is broken. We cannot use SE to create any new 3015 // SCEV and then expand it, hoping that SCEV's simplification will give us 3016 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3017 // lead to various SCEV crashes. So all we can do is to use builder and rely 3018 // on InstCombine for future simplifications. Here we handle some trivial 3019 // cases only. 3020 auto CreateAdd = [&B](Value *X, Value *Y) { 3021 assert(X->getType() == Y->getType() && "Types don't match!"); 3022 if (auto *CX = dyn_cast<ConstantInt>(X)) 3023 if (CX->isZero()) 3024 return Y; 3025 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3026 if (CY->isZero()) 3027 return X; 3028 return B.CreateAdd(X, Y); 3029 }; 3030 3031 auto CreateMul = [&B](Value *X, Value *Y) { 3032 assert(X->getType() == Y->getType() && "Types don't match!"); 3033 if (auto *CX = dyn_cast<ConstantInt>(X)) 3034 if (CX->isOne()) 3035 return Y; 3036 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3037 if (CY->isOne()) 3038 return X; 3039 return B.CreateMul(X, Y); 3040 }; 3041 3042 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3043 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3044 // the DomTree is not kept up-to-date for additional blocks generated in the 3045 // vector loop. By using the header as insertion point, we guarantee that the 3046 // expanded instructions dominate all their uses. 3047 auto GetInsertPoint = [this, &B]() { 3048 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3049 if (InsertBB != LoopVectorBody && 3050 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3051 return LoopVectorBody->getTerminator(); 3052 return &*B.GetInsertPoint(); 3053 }; 3054 switch (ID.getKind()) { 3055 case InductionDescriptor::IK_IntInduction: { 3056 assert(Index->getType() == StartValue->getType() && 3057 "Index type does not match StartValue type"); 3058 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3059 return B.CreateSub(StartValue, Index); 3060 auto *Offset = CreateMul( 3061 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3062 return CreateAdd(StartValue, Offset); 3063 } 3064 case InductionDescriptor::IK_PtrInduction: { 3065 assert(isa<SCEVConstant>(Step) && 3066 "Expected constant step for pointer induction"); 3067 return B.CreateGEP( 3068 StartValue->getType()->getPointerElementType(), StartValue, 3069 CreateMul(Index, 3070 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3071 } 3072 case InductionDescriptor::IK_FpInduction: { 3073 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3074 auto InductionBinOp = ID.getInductionBinOp(); 3075 assert(InductionBinOp && 3076 (InductionBinOp->getOpcode() == Instruction::FAdd || 3077 InductionBinOp->getOpcode() == Instruction::FSub) && 3078 "Original bin op should be defined for FP induction"); 3079 3080 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3081 3082 // Floating point operations had to be 'fast' to enable the induction. 3083 FastMathFlags Flags; 3084 Flags.setFast(); 3085 3086 Value *MulExp = B.CreateFMul(StepValue, Index); 3087 if (isa<Instruction>(MulExp)) 3088 // We have to check, the MulExp may be a constant. 3089 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3090 3091 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3092 "induction"); 3093 if (isa<Instruction>(BOp)) 3094 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3095 3096 return BOp; 3097 } 3098 case InductionDescriptor::IK_NoInduction: 3099 return nullptr; 3100 } 3101 llvm_unreachable("invalid enum"); 3102 } 3103 3104 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3105 LoopScalarBody = OrigLoop->getHeader(); 3106 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3107 LoopExitBlock = OrigLoop->getExitBlock(); 3108 assert(LoopExitBlock && "Must have an exit block"); 3109 assert(LoopVectorPreHeader && "Invalid loop structure"); 3110 3111 LoopMiddleBlock = 3112 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3113 LI, nullptr, Twine(Prefix) + "middle.block"); 3114 LoopScalarPreHeader = 3115 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3116 nullptr, Twine(Prefix) + "scalar.ph"); 3117 // We intentionally don't let SplitBlock to update LoopInfo since 3118 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3119 // LoopVectorBody is explicitly added to the correct place few lines later. 3120 LoopVectorBody = 3121 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3122 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3123 3124 // Update dominator for loop exit. 3125 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3126 3127 // Create and register the new vector loop. 3128 Loop *Lp = LI->AllocateLoop(); 3129 Loop *ParentLoop = OrigLoop->getParentLoop(); 3130 3131 // Insert the new loop into the loop nest and register the new basic blocks 3132 // before calling any utilities such as SCEV that require valid LoopInfo. 3133 if (ParentLoop) { 3134 ParentLoop->addChildLoop(Lp); 3135 } else { 3136 LI->addTopLevelLoop(Lp); 3137 } 3138 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3139 return Lp; 3140 } 3141 3142 void InnerLoopVectorizer::createInductionResumeValues(Loop *L, 3143 Value *VectorTripCount) { 3144 assert(VectorTripCount && L && "Expected valid arguments"); 3145 // We are going to resume the execution of the scalar loop. 3146 // Go over all of the induction variables that we found and fix the 3147 // PHIs that are left in the scalar version of the loop. 3148 // The starting values of PHI nodes depend on the counter of the last 3149 // iteration in the vectorized loop. 3150 // If we come from a bypass edge then we need to start from the original 3151 // start value. 3152 for (auto &InductionEntry : Legal->getInductionVars()) { 3153 PHINode *OrigPhi = InductionEntry.first; 3154 InductionDescriptor II = InductionEntry.second; 3155 3156 // Create phi nodes to merge from the backedge-taken check block. 3157 PHINode *BCResumeVal = 3158 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3159 LoopScalarPreHeader->getTerminator()); 3160 // Copy original phi DL over to the new one. 3161 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3162 Value *&EndValue = IVEndValues[OrigPhi]; 3163 if (OrigPhi == OldInduction) { 3164 // We know what the end value is. 3165 EndValue = VectorTripCount; 3166 } else { 3167 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3168 Type *StepType = II.getStep()->getType(); 3169 Instruction::CastOps CastOp = 3170 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3171 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3172 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3173 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3174 EndValue->setName("ind.end"); 3175 } 3176 3177 // The new PHI merges the original incoming value, in case of a bypass, 3178 // or the value at the end of the vectorized loop. 3179 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3180 3181 // Fix the scalar body counter (PHI node). 3182 // The old induction's phi node in the scalar body needs the truncated 3183 // value. 3184 for (BasicBlock *BB : LoopBypassBlocks) 3185 BCResumeVal->addIncoming(II.getStartValue(), BB); 3186 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3187 } 3188 } 3189 3190 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3191 MDNode *OrigLoopID) { 3192 assert(L && "Expected valid loop."); 3193 3194 // The trip counts should be cached by now. 3195 Value *Count = getOrCreateTripCount(L); 3196 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3197 3198 // We need the OrigLoop (scalar loop part) latch terminator to help 3199 // produce correct debug info for the middle block BB instructions. 3200 // The legality check stage guarantees that the loop will have a single 3201 // latch. 3202 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3203 "Scalar loop latch terminator isn't a branch"); 3204 BranchInst *ScalarLatchBr = 3205 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3206 3207 // Add a check in the middle block to see if we have completed 3208 // all of the iterations in the first vector loop. 3209 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3210 // If tail is to be folded, we know we don't need to run the remainder. 3211 Value *CmpN = Builder.getTrue(); 3212 if (!Cost->foldTailByMasking()) { 3213 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3214 VectorTripCount, "cmp.n", 3215 LoopMiddleBlock->getTerminator()); 3216 3217 // Here we use the same DebugLoc as the scalar loop latch branch instead 3218 // of the corresponding compare because they may have ended up with 3219 // different line numbers and we want to avoid awkward line stepping while 3220 // debugging. Eg. if the compare has got a line number inside the loop. 3221 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3222 } 3223 3224 BranchInst *BrInst = 3225 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3226 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3227 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3228 3229 // Get ready to start creating new instructions into the vectorized body. 3230 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3231 "Inconsistent vector loop preheader"); 3232 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3233 3234 Optional<MDNode *> VectorizedLoopID = 3235 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3236 LLVMLoopVectorizeFollowupVectorized}); 3237 if (VectorizedLoopID.hasValue()) { 3238 L->setLoopID(VectorizedLoopID.getValue()); 3239 3240 // Do not setAlreadyVectorized if loop attributes have been defined 3241 // explicitly. 3242 return LoopVectorPreHeader; 3243 } 3244 3245 // Keep all loop hints from the original loop on the vector loop (we'll 3246 // replace the vectorizer-specific hints below). 3247 if (MDNode *LID = OrigLoop->getLoopID()) 3248 L->setLoopID(LID); 3249 3250 LoopVectorizeHints Hints(L, true, *ORE); 3251 Hints.setAlreadyVectorized(); 3252 3253 #ifdef EXPENSIVE_CHECKS 3254 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3255 LI->verify(*DT); 3256 #endif 3257 3258 return LoopVectorPreHeader; 3259 } 3260 3261 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3262 /* 3263 In this function we generate a new loop. The new loop will contain 3264 the vectorized instructions while the old loop will continue to run the 3265 scalar remainder. 3266 3267 [ ] <-- loop iteration number check. 3268 / | 3269 / v 3270 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3271 | / | 3272 | / v 3273 || [ ] <-- vector pre header. 3274 |/ | 3275 | v 3276 | [ ] \ 3277 | [ ]_| <-- vector loop. 3278 | | 3279 | v 3280 | -[ ] <--- middle-block. 3281 | / | 3282 | / v 3283 -|- >[ ] <--- new preheader. 3284 | | 3285 | v 3286 | [ ] \ 3287 | [ ]_| <-- old scalar loop to handle remainder. 3288 \ | 3289 \ v 3290 >[ ] <-- exit block. 3291 ... 3292 */ 3293 3294 // Get the metadata of the original loop before it gets modified. 3295 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3296 3297 // Create an empty vector loop, and prepare basic blocks for the runtime 3298 // checks. 3299 Loop *Lp = createVectorLoopSkeleton(""); 3300 3301 // Now, compare the new count to zero. If it is zero skip the vector loop and 3302 // jump to the scalar loop. This check also covers the case where the 3303 // backedge-taken count is uint##_max: adding one to it will overflow leading 3304 // to an incorrect trip count of zero. In this (rare) case we will also jump 3305 // to the scalar loop. 3306 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3307 3308 // Generate the code to check any assumptions that we've made for SCEV 3309 // expressions. 3310 emitSCEVChecks(Lp, LoopScalarPreHeader); 3311 3312 // Generate the code that checks in runtime if arrays overlap. We put the 3313 // checks into a separate block to make the more common case of few elements 3314 // faster. 3315 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3316 3317 // Some loops have a single integer induction variable, while other loops 3318 // don't. One example is c++ iterators that often have multiple pointer 3319 // induction variables. In the code below we also support a case where we 3320 // don't have a single induction variable. 3321 // 3322 // We try to obtain an induction variable from the original loop as hard 3323 // as possible. However if we don't find one that: 3324 // - is an integer 3325 // - counts from zero, stepping by one 3326 // - is the size of the widest induction variable type 3327 // then we create a new one. 3328 OldInduction = Legal->getPrimaryInduction(); 3329 Type *IdxTy = Legal->getWidestInductionType(); 3330 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3331 // The loop step is equal to the vectorization factor (num of SIMD elements) 3332 // times the unroll factor (num of SIMD instructions). 3333 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3334 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 3335 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3336 Induction = 3337 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3338 getDebugLocFromInstOrOperands(OldInduction)); 3339 3340 // Emit phis for the new starting index of the scalar loop. 3341 createInductionResumeValues(Lp, CountRoundDown); 3342 3343 return completeLoopSkeleton(Lp, OrigLoopID); 3344 } 3345 3346 // Fix up external users of the induction variable. At this point, we are 3347 // in LCSSA form, with all external PHIs that use the IV having one input value, 3348 // coming from the remainder loop. We need those PHIs to also have a correct 3349 // value for the IV when arriving directly from the middle block. 3350 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3351 const InductionDescriptor &II, 3352 Value *CountRoundDown, Value *EndValue, 3353 BasicBlock *MiddleBlock) { 3354 // There are two kinds of external IV usages - those that use the value 3355 // computed in the last iteration (the PHI) and those that use the penultimate 3356 // value (the value that feeds into the phi from the loop latch). 3357 // We allow both, but they, obviously, have different values. 3358 3359 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3360 3361 DenseMap<Value *, Value *> MissingVals; 3362 3363 // An external user of the last iteration's value should see the value that 3364 // the remainder loop uses to initialize its own IV. 3365 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3366 for (User *U : PostInc->users()) { 3367 Instruction *UI = cast<Instruction>(U); 3368 if (!OrigLoop->contains(UI)) { 3369 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3370 MissingVals[UI] = EndValue; 3371 } 3372 } 3373 3374 // An external user of the penultimate value need to see EndValue - Step. 3375 // The simplest way to get this is to recompute it from the constituent SCEVs, 3376 // that is Start + (Step * (CRD - 1)). 3377 for (User *U : OrigPhi->users()) { 3378 auto *UI = cast<Instruction>(U); 3379 if (!OrigLoop->contains(UI)) { 3380 const DataLayout &DL = 3381 OrigLoop->getHeader()->getModule()->getDataLayout(); 3382 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3383 3384 IRBuilder<> B(MiddleBlock->getTerminator()); 3385 Value *CountMinusOne = B.CreateSub( 3386 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3387 Value *CMO = 3388 !II.getStep()->getType()->isIntegerTy() 3389 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3390 II.getStep()->getType()) 3391 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3392 CMO->setName("cast.cmo"); 3393 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3394 Escape->setName("ind.escape"); 3395 MissingVals[UI] = Escape; 3396 } 3397 } 3398 3399 for (auto &I : MissingVals) { 3400 PHINode *PHI = cast<PHINode>(I.first); 3401 // One corner case we have to handle is two IVs "chasing" each-other, 3402 // that is %IV2 = phi [...], [ %IV1, %latch ] 3403 // In this case, if IV1 has an external use, we need to avoid adding both 3404 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3405 // don't already have an incoming value for the middle block. 3406 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3407 PHI->addIncoming(I.second, MiddleBlock); 3408 } 3409 } 3410 3411 namespace { 3412 3413 struct CSEDenseMapInfo { 3414 static bool canHandle(const Instruction *I) { 3415 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3416 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3417 } 3418 3419 static inline Instruction *getEmptyKey() { 3420 return DenseMapInfo<Instruction *>::getEmptyKey(); 3421 } 3422 3423 static inline Instruction *getTombstoneKey() { 3424 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3425 } 3426 3427 static unsigned getHashValue(const Instruction *I) { 3428 assert(canHandle(I) && "Unknown instruction!"); 3429 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3430 I->value_op_end())); 3431 } 3432 3433 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3434 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3435 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3436 return LHS == RHS; 3437 return LHS->isIdenticalTo(RHS); 3438 } 3439 }; 3440 3441 } // end anonymous namespace 3442 3443 ///Perform cse of induction variable instructions. 3444 static void cse(BasicBlock *BB) { 3445 // Perform simple cse. 3446 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3447 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3448 Instruction *In = &*I++; 3449 3450 if (!CSEDenseMapInfo::canHandle(In)) 3451 continue; 3452 3453 // Check if we can replace this instruction with any of the 3454 // visited instructions. 3455 if (Instruction *V = CSEMap.lookup(In)) { 3456 In->replaceAllUsesWith(V); 3457 In->eraseFromParent(); 3458 continue; 3459 } 3460 3461 CSEMap[In] = In; 3462 } 3463 } 3464 3465 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3466 ElementCount VF, 3467 bool &NeedToScalarize) { 3468 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3469 Function *F = CI->getCalledFunction(); 3470 Type *ScalarRetTy = CI->getType(); 3471 SmallVector<Type *, 4> Tys, ScalarTys; 3472 for (auto &ArgOp : CI->arg_operands()) 3473 ScalarTys.push_back(ArgOp->getType()); 3474 3475 // Estimate cost of scalarized vector call. The source operands are assumed 3476 // to be vectors, so we need to extract individual elements from there, 3477 // execute VF scalar calls, and then gather the result into the vector return 3478 // value. 3479 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3480 TTI::TCK_RecipThroughput); 3481 if (VF.isScalar()) 3482 return ScalarCallCost; 3483 3484 // Compute corresponding vector type for return value and arguments. 3485 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3486 for (Type *ScalarTy : ScalarTys) 3487 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3488 3489 // Compute costs of unpacking argument values for the scalar calls and 3490 // packing the return values to a vector. 3491 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3492 3493 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3494 3495 // If we can't emit a vector call for this function, then the currently found 3496 // cost is the cost we need to return. 3497 NeedToScalarize = true; 3498 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3499 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3500 3501 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3502 return Cost; 3503 3504 // If the corresponding vector cost is cheaper, return its cost. 3505 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3506 TTI::TCK_RecipThroughput); 3507 if (VectorCallCost < Cost) { 3508 NeedToScalarize = false; 3509 return VectorCallCost; 3510 } 3511 return Cost; 3512 } 3513 3514 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3515 ElementCount VF) { 3516 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3517 assert(ID && "Expected intrinsic call!"); 3518 3519 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3520 return TTI.getIntrinsicInstrCost(CostAttrs, 3521 TargetTransformInfo::TCK_RecipThroughput); 3522 } 3523 3524 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3525 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3526 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3527 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3528 } 3529 3530 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3531 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3532 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3533 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3534 } 3535 3536 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3537 // For every instruction `I` in MinBWs, truncate the operands, create a 3538 // truncated version of `I` and reextend its result. InstCombine runs 3539 // later and will remove any ext/trunc pairs. 3540 SmallPtrSet<Value *, 4> Erased; 3541 for (const auto &KV : Cost->getMinimalBitwidths()) { 3542 // If the value wasn't vectorized, we must maintain the original scalar 3543 // type. The absence of the value from VectorLoopValueMap indicates that it 3544 // wasn't vectorized. 3545 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3546 continue; 3547 for (unsigned Part = 0; Part < UF; ++Part) { 3548 Value *I = getOrCreateVectorValue(KV.first, Part); 3549 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3550 continue; 3551 Type *OriginalTy = I->getType(); 3552 Type *ScalarTruncatedTy = 3553 IntegerType::get(OriginalTy->getContext(), KV.second); 3554 auto *TruncatedTy = FixedVectorType::get( 3555 ScalarTruncatedTy, 3556 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3557 if (TruncatedTy == OriginalTy) 3558 continue; 3559 3560 IRBuilder<> B(cast<Instruction>(I)); 3561 auto ShrinkOperand = [&](Value *V) -> Value * { 3562 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3563 if (ZI->getSrcTy() == TruncatedTy) 3564 return ZI->getOperand(0); 3565 return B.CreateZExtOrTrunc(V, TruncatedTy); 3566 }; 3567 3568 // The actual instruction modification depends on the instruction type, 3569 // unfortunately. 3570 Value *NewI = nullptr; 3571 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3572 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3573 ShrinkOperand(BO->getOperand(1))); 3574 3575 // Any wrapping introduced by shrinking this operation shouldn't be 3576 // considered undefined behavior. So, we can't unconditionally copy 3577 // arithmetic wrapping flags to NewI. 3578 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3579 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3580 NewI = 3581 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3582 ShrinkOperand(CI->getOperand(1))); 3583 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3584 NewI = B.CreateSelect(SI->getCondition(), 3585 ShrinkOperand(SI->getTrueValue()), 3586 ShrinkOperand(SI->getFalseValue())); 3587 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3588 switch (CI->getOpcode()) { 3589 default: 3590 llvm_unreachable("Unhandled cast!"); 3591 case Instruction::Trunc: 3592 NewI = ShrinkOperand(CI->getOperand(0)); 3593 break; 3594 case Instruction::SExt: 3595 NewI = B.CreateSExtOrTrunc( 3596 CI->getOperand(0), 3597 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3598 break; 3599 case Instruction::ZExt: 3600 NewI = B.CreateZExtOrTrunc( 3601 CI->getOperand(0), 3602 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3603 break; 3604 } 3605 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3606 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3607 ->getNumElements(); 3608 auto *O0 = B.CreateZExtOrTrunc( 3609 SI->getOperand(0), 3610 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3611 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3612 ->getNumElements(); 3613 auto *O1 = B.CreateZExtOrTrunc( 3614 SI->getOperand(1), 3615 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3616 3617 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3618 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3619 // Don't do anything with the operands, just extend the result. 3620 continue; 3621 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3622 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3623 ->getNumElements(); 3624 auto *O0 = B.CreateZExtOrTrunc( 3625 IE->getOperand(0), 3626 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3627 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3628 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3629 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3630 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3631 ->getNumElements(); 3632 auto *O0 = B.CreateZExtOrTrunc( 3633 EE->getOperand(0), 3634 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3635 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3636 } else { 3637 // If we don't know what to do, be conservative and don't do anything. 3638 continue; 3639 } 3640 3641 // Lastly, extend the result. 3642 NewI->takeName(cast<Instruction>(I)); 3643 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3644 I->replaceAllUsesWith(Res); 3645 cast<Instruction>(I)->eraseFromParent(); 3646 Erased.insert(I); 3647 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3648 } 3649 } 3650 3651 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3652 for (const auto &KV : Cost->getMinimalBitwidths()) { 3653 // If the value wasn't vectorized, we must maintain the original scalar 3654 // type. The absence of the value from VectorLoopValueMap indicates that it 3655 // wasn't vectorized. 3656 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3657 continue; 3658 for (unsigned Part = 0; Part < UF; ++Part) { 3659 Value *I = getOrCreateVectorValue(KV.first, Part); 3660 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3661 if (Inst && Inst->use_empty()) { 3662 Value *NewI = Inst->getOperand(0); 3663 Inst->eraseFromParent(); 3664 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3665 } 3666 } 3667 } 3668 } 3669 3670 void InnerLoopVectorizer::fixVectorizedLoop() { 3671 // Insert truncates and extends for any truncated instructions as hints to 3672 // InstCombine. 3673 if (VF.isVector()) 3674 truncateToMinimalBitwidths(); 3675 3676 // Fix widened non-induction PHIs by setting up the PHI operands. 3677 if (OrigPHIsToFix.size()) { 3678 assert(EnableVPlanNativePath && 3679 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3680 fixNonInductionPHIs(); 3681 } 3682 3683 // At this point every instruction in the original loop is widened to a 3684 // vector form. Now we need to fix the recurrences in the loop. These PHI 3685 // nodes are currently empty because we did not want to introduce cycles. 3686 // This is the second stage of vectorizing recurrences. 3687 fixCrossIterationPHIs(); 3688 3689 // Forget the original basic block. 3690 PSE.getSE()->forgetLoop(OrigLoop); 3691 3692 // Fix-up external users of the induction variables. 3693 for (auto &Entry : Legal->getInductionVars()) 3694 fixupIVUsers(Entry.first, Entry.second, 3695 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3696 IVEndValues[Entry.first], LoopMiddleBlock); 3697 3698 fixLCSSAPHIs(); 3699 for (Instruction *PI : PredicatedInstructions) 3700 sinkScalarOperands(&*PI); 3701 3702 // Remove redundant induction instructions. 3703 cse(LoopVectorBody); 3704 3705 // Set/update profile weights for the vector and remainder loops as original 3706 // loop iterations are now distributed among them. Note that original loop 3707 // represented by LoopScalarBody becomes remainder loop after vectorization. 3708 // 3709 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3710 // end up getting slightly roughened result but that should be OK since 3711 // profile is not inherently precise anyway. Note also possible bypass of 3712 // vector code caused by legality checks is ignored, assigning all the weight 3713 // to the vector loop, optimistically. 3714 assert(!VF.isScalable() && 3715 "cannot use scalable ElementCount to determine unroll factor"); 3716 setProfileInfoAfterUnrolling( 3717 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3718 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3719 } 3720 3721 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3722 // In order to support recurrences we need to be able to vectorize Phi nodes. 3723 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3724 // stage #2: We now need to fix the recurrences by adding incoming edges to 3725 // the currently empty PHI nodes. At this point every instruction in the 3726 // original loop is widened to a vector form so we can use them to construct 3727 // the incoming edges. 3728 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3729 // Handle first-order recurrences and reductions that need to be fixed. 3730 if (Legal->isFirstOrderRecurrence(&Phi)) 3731 fixFirstOrderRecurrence(&Phi); 3732 else if (Legal->isReductionVariable(&Phi)) 3733 fixReduction(&Phi); 3734 } 3735 } 3736 3737 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3738 // This is the second phase of vectorizing first-order recurrences. An 3739 // overview of the transformation is described below. Suppose we have the 3740 // following loop. 3741 // 3742 // for (int i = 0; i < n; ++i) 3743 // b[i] = a[i] - a[i - 1]; 3744 // 3745 // There is a first-order recurrence on "a". For this loop, the shorthand 3746 // scalar IR looks like: 3747 // 3748 // scalar.ph: 3749 // s_init = a[-1] 3750 // br scalar.body 3751 // 3752 // scalar.body: 3753 // i = phi [0, scalar.ph], [i+1, scalar.body] 3754 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3755 // s2 = a[i] 3756 // b[i] = s2 - s1 3757 // br cond, scalar.body, ... 3758 // 3759 // In this example, s1 is a recurrence because it's value depends on the 3760 // previous iteration. In the first phase of vectorization, we created a 3761 // temporary value for s1. We now complete the vectorization and produce the 3762 // shorthand vector IR shown below (for VF = 4, UF = 1). 3763 // 3764 // vector.ph: 3765 // v_init = vector(..., ..., ..., a[-1]) 3766 // br vector.body 3767 // 3768 // vector.body 3769 // i = phi [0, vector.ph], [i+4, vector.body] 3770 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3771 // v2 = a[i, i+1, i+2, i+3]; 3772 // v3 = vector(v1(3), v2(0, 1, 2)) 3773 // b[i, i+1, i+2, i+3] = v2 - v3 3774 // br cond, vector.body, middle.block 3775 // 3776 // middle.block: 3777 // x = v2(3) 3778 // br scalar.ph 3779 // 3780 // scalar.ph: 3781 // s_init = phi [x, middle.block], [a[-1], otherwise] 3782 // br scalar.body 3783 // 3784 // After execution completes the vector loop, we extract the next value of 3785 // the recurrence (x) to use as the initial value in the scalar loop. 3786 3787 // Get the original loop preheader and single loop latch. 3788 auto *Preheader = OrigLoop->getLoopPreheader(); 3789 auto *Latch = OrigLoop->getLoopLatch(); 3790 3791 // Get the initial and previous values of the scalar recurrence. 3792 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3793 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3794 3795 // Create a vector from the initial value. 3796 auto *VectorInit = ScalarInit; 3797 if (VF.isVector()) { 3798 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3799 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3800 VectorInit = Builder.CreateInsertElement( 3801 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3802 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3803 } 3804 3805 // We constructed a temporary phi node in the first phase of vectorization. 3806 // This phi node will eventually be deleted. 3807 Builder.SetInsertPoint( 3808 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3809 3810 // Create a phi node for the new recurrence. The current value will either be 3811 // the initial value inserted into a vector or loop-varying vector value. 3812 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3813 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3814 3815 // Get the vectorized previous value of the last part UF - 1. It appears last 3816 // among all unrolled iterations, due to the order of their construction. 3817 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3818 3819 // Find and set the insertion point after the previous value if it is an 3820 // instruction. 3821 BasicBlock::iterator InsertPt; 3822 // Note that the previous value may have been constant-folded so it is not 3823 // guaranteed to be an instruction in the vector loop. 3824 // FIXME: Loop invariant values do not form recurrences. We should deal with 3825 // them earlier. 3826 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3827 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3828 else { 3829 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3830 if (isa<PHINode>(PreviousLastPart)) 3831 // If the previous value is a phi node, we should insert after all the phi 3832 // nodes in the block containing the PHI to avoid breaking basic block 3833 // verification. Note that the basic block may be different to 3834 // LoopVectorBody, in case we predicate the loop. 3835 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3836 else 3837 InsertPt = ++PreviousInst->getIterator(); 3838 } 3839 Builder.SetInsertPoint(&*InsertPt); 3840 3841 // We will construct a vector for the recurrence by combining the values for 3842 // the current and previous iterations. This is the required shuffle mask. 3843 assert(!VF.isScalable()); 3844 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3845 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3846 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3847 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3848 3849 // The vector from which to take the initial value for the current iteration 3850 // (actual or unrolled). Initially, this is the vector phi node. 3851 Value *Incoming = VecPhi; 3852 3853 // Shuffle the current and previous vector and update the vector parts. 3854 for (unsigned Part = 0; Part < UF; ++Part) { 3855 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3856 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3857 auto *Shuffle = 3858 VF.isVector() 3859 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3860 : Incoming; 3861 PhiPart->replaceAllUsesWith(Shuffle); 3862 cast<Instruction>(PhiPart)->eraseFromParent(); 3863 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3864 Incoming = PreviousPart; 3865 } 3866 3867 // Fix the latch value of the new recurrence in the vector loop. 3868 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3869 3870 // Extract the last vector element in the middle block. This will be the 3871 // initial value for the recurrence when jumping to the scalar loop. 3872 auto *ExtractForScalar = Incoming; 3873 if (VF.isVector()) { 3874 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3875 ExtractForScalar = Builder.CreateExtractElement( 3876 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 3877 "vector.recur.extract"); 3878 } 3879 // Extract the second last element in the middle block if the 3880 // Phi is used outside the loop. We need to extract the phi itself 3881 // and not the last element (the phi update in the current iteration). This 3882 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3883 // when the scalar loop is not run at all. 3884 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3885 if (VF.isVector()) 3886 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3887 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 3888 "vector.recur.extract.for.phi"); 3889 // When loop is unrolled without vectorizing, initialize 3890 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3891 // `Incoming`. This is analogous to the vectorized case above: extracting the 3892 // second last element when VF > 1. 3893 else if (UF > 1) 3894 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3895 3896 // Fix the initial value of the original recurrence in the scalar loop. 3897 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3898 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3899 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3900 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3901 Start->addIncoming(Incoming, BB); 3902 } 3903 3904 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3905 Phi->setName("scalar.recur"); 3906 3907 // Finally, fix users of the recurrence outside the loop. The users will need 3908 // either the last value of the scalar recurrence or the last value of the 3909 // vector recurrence we extracted in the middle block. Since the loop is in 3910 // LCSSA form, we just need to find all the phi nodes for the original scalar 3911 // recurrence in the exit block, and then add an edge for the middle block. 3912 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3913 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3914 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3915 } 3916 } 3917 } 3918 3919 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3920 Constant *Zero = Builder.getInt32(0); 3921 3922 // Get it's reduction variable descriptor. 3923 assert(Legal->isReductionVariable(Phi) && 3924 "Unable to find the reduction variable"); 3925 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3926 3927 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3928 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3929 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3930 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3931 RdxDesc.getMinMaxRecurrenceKind(); 3932 setDebugLocFromInst(Builder, ReductionStartValue); 3933 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 3934 3935 // We need to generate a reduction vector from the incoming scalar. 3936 // To do so, we need to generate the 'identity' vector and override 3937 // one of the elements with the incoming scalar reduction. We need 3938 // to do it in the vector-loop preheader. 3939 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3940 3941 // This is the vector-clone of the value that leaves the loop. 3942 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3943 3944 // Find the reduction identity variable. Zero for addition, or, xor, 3945 // one for multiplication, -1 for And. 3946 Value *Identity; 3947 Value *VectorStart; 3948 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3949 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3950 // MinMax reduction have the start value as their identify. 3951 if (VF.isScalar() || IsInLoopReductionPhi) { 3952 VectorStart = Identity = ReductionStartValue; 3953 } else { 3954 VectorStart = Identity = 3955 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3956 } 3957 } else { 3958 // Handle other reduction kinds: 3959 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3960 RK, MinMaxKind, VecTy->getScalarType()); 3961 if (VF.isScalar() || IsInLoopReductionPhi) { 3962 Identity = Iden; 3963 // This vector is the Identity vector where the first element is the 3964 // incoming scalar reduction. 3965 VectorStart = ReductionStartValue; 3966 } else { 3967 Identity = ConstantVector::getSplat(VF, Iden); 3968 3969 // This vector is the Identity vector where the first element is the 3970 // incoming scalar reduction. 3971 VectorStart = 3972 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3973 } 3974 } 3975 3976 // Wrap flags are in general invalid after vectorization, clear them. 3977 clearReductionWrapFlags(RdxDesc); 3978 3979 // Fix the vector-loop phi. 3980 3981 // Reductions do not have to start at zero. They can start with 3982 // any loop invariant values. 3983 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3984 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3985 3986 for (unsigned Part = 0; Part < UF; ++Part) { 3987 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3988 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3989 // Make sure to add the reduction start value only to the 3990 // first unroll part. 3991 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3992 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3993 cast<PHINode>(VecRdxPhi) 3994 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3995 } 3996 3997 // Before each round, move the insertion point right between 3998 // the PHIs and the values we are going to write. 3999 // This allows us to write both PHINodes and the extractelement 4000 // instructions. 4001 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4002 4003 setDebugLocFromInst(Builder, LoopExitInst); 4004 4005 // If tail is folded by masking, the vector value to leave the loop should be 4006 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4007 // instead of the former. For an inloop reduction the reduction will already 4008 // be predicated, and does not need to be handled here. 4009 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4010 for (unsigned Part = 0; Part < UF; ++Part) { 4011 Value *VecLoopExitInst = 4012 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4013 Value *Sel = nullptr; 4014 for (User *U : VecLoopExitInst->users()) { 4015 if (isa<SelectInst>(U)) { 4016 assert(!Sel && "Reduction exit feeding two selects"); 4017 Sel = U; 4018 } else 4019 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4020 } 4021 assert(Sel && "Reduction exit feeds no select"); 4022 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4023 4024 // If the target can create a predicated operator for the reduction at no 4025 // extra cost in the loop (for example a predicated vadd), it can be 4026 // cheaper for the select to remain in the loop than be sunk out of it, 4027 // and so use the select value for the phi instead of the old 4028 // LoopExitValue. 4029 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4030 if (PreferPredicatedReductionSelect || 4031 TTI->preferPredicatedReductionSelect( 4032 RdxDesc.getRecurrenceBinOp(), Phi->getType(), 4033 TargetTransformInfo::ReductionFlags())) { 4034 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4035 VecRdxPhi->setIncomingValueForBlock( 4036 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4037 } 4038 } 4039 } 4040 4041 // If the vector reduction can be performed in a smaller type, we truncate 4042 // then extend the loop exit value to enable InstCombine to evaluate the 4043 // entire expression in the smaller type. 4044 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4045 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4046 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4047 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4048 Builder.SetInsertPoint( 4049 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4050 VectorParts RdxParts(UF); 4051 for (unsigned Part = 0; Part < UF; ++Part) { 4052 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4053 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4054 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4055 : Builder.CreateZExt(Trunc, VecTy); 4056 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4057 UI != RdxParts[Part]->user_end();) 4058 if (*UI != Trunc) { 4059 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4060 RdxParts[Part] = Extnd; 4061 } else { 4062 ++UI; 4063 } 4064 } 4065 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4066 for (unsigned Part = 0; Part < UF; ++Part) { 4067 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4068 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4069 } 4070 } 4071 4072 // Reduce all of the unrolled parts into a single vector. 4073 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4074 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4075 4076 // The middle block terminator has already been assigned a DebugLoc here (the 4077 // OrigLoop's single latch terminator). We want the whole middle block to 4078 // appear to execute on this line because: (a) it is all compiler generated, 4079 // (b) these instructions are always executed after evaluating the latch 4080 // conditional branch, and (c) other passes may add new predecessors which 4081 // terminate on this line. This is the easiest way to ensure we don't 4082 // accidentally cause an extra step back into the loop while debugging. 4083 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4084 for (unsigned Part = 1; Part < UF; ++Part) { 4085 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4086 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4087 // Floating point operations had to be 'fast' to enable the reduction. 4088 ReducedPartRdx = addFastMathFlag( 4089 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4090 ReducedPartRdx, "bin.rdx"), 4091 RdxDesc.getFastMathFlags()); 4092 else 4093 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4094 RdxPart); 4095 } 4096 4097 // Create the reduction after the loop. Note that inloop reductions create the 4098 // target reduction in the loop using a Reduction recipe. 4099 if (VF.isVector() && !IsInLoopReductionPhi) { 4100 bool NoNaN = Legal->hasFunNoNaNAttr(); 4101 ReducedPartRdx = 4102 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4103 // If the reduction can be performed in a smaller type, we need to extend 4104 // the reduction to the wider type before we branch to the original loop. 4105 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4106 ReducedPartRdx = 4107 RdxDesc.isSigned() 4108 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4109 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4110 } 4111 4112 // Create a phi node that merges control-flow from the backedge-taken check 4113 // block and the middle block. 4114 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4115 LoopScalarPreHeader->getTerminator()); 4116 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4117 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4118 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4119 4120 // Now, we need to fix the users of the reduction variable 4121 // inside and outside of the scalar remainder loop. 4122 // We know that the loop is in LCSSA form. We need to update the 4123 // PHI nodes in the exit blocks. 4124 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4125 // All PHINodes need to have a single entry edge, or two if 4126 // we already fixed them. 4127 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4128 4129 // We found a reduction value exit-PHI. Update it with the 4130 // incoming bypass edge. 4131 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4132 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4133 } // end of the LCSSA phi scan. 4134 4135 // Fix the scalar loop reduction variable with the incoming reduction sum 4136 // from the vector body and from the backedge value. 4137 int IncomingEdgeBlockIdx = 4138 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4139 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4140 // Pick the other block. 4141 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4142 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4143 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4144 } 4145 4146 void InnerLoopVectorizer::clearReductionWrapFlags( 4147 RecurrenceDescriptor &RdxDesc) { 4148 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4149 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4150 RK != RecurrenceDescriptor::RK_IntegerMult) 4151 return; 4152 4153 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4154 assert(LoopExitInstr && "null loop exit instruction"); 4155 SmallVector<Instruction *, 8> Worklist; 4156 SmallPtrSet<Instruction *, 8> Visited; 4157 Worklist.push_back(LoopExitInstr); 4158 Visited.insert(LoopExitInstr); 4159 4160 while (!Worklist.empty()) { 4161 Instruction *Cur = Worklist.pop_back_val(); 4162 if (isa<OverflowingBinaryOperator>(Cur)) 4163 for (unsigned Part = 0; Part < UF; ++Part) { 4164 Value *V = getOrCreateVectorValue(Cur, Part); 4165 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4166 } 4167 4168 for (User *U : Cur->users()) { 4169 Instruction *UI = cast<Instruction>(U); 4170 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4171 Visited.insert(UI).second) 4172 Worklist.push_back(UI); 4173 } 4174 } 4175 } 4176 4177 void InnerLoopVectorizer::fixLCSSAPHIs() { 4178 assert(!VF.isScalable() && "the code below assumes fixed width vectors"); 4179 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4180 if (LCSSAPhi.getNumIncomingValues() == 1) { 4181 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4182 // Non-instruction incoming values will have only one value. 4183 unsigned LastLane = 0; 4184 if (isa<Instruction>(IncomingValue)) 4185 LastLane = Cost->isUniformAfterVectorization( 4186 cast<Instruction>(IncomingValue), VF) 4187 ? 0 4188 : VF.getKnownMinValue() - 1; 4189 // Can be a loop invariant incoming value or the last scalar value to be 4190 // extracted from the vectorized loop. 4191 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4192 Value *lastIncomingValue = 4193 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4194 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4195 } 4196 } 4197 } 4198 4199 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4200 // The basic block and loop containing the predicated instruction. 4201 auto *PredBB = PredInst->getParent(); 4202 auto *VectorLoop = LI->getLoopFor(PredBB); 4203 4204 // Initialize a worklist with the operands of the predicated instruction. 4205 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4206 4207 // Holds instructions that we need to analyze again. An instruction may be 4208 // reanalyzed if we don't yet know if we can sink it or not. 4209 SmallVector<Instruction *, 8> InstsToReanalyze; 4210 4211 // Returns true if a given use occurs in the predicated block. Phi nodes use 4212 // their operands in their corresponding predecessor blocks. 4213 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4214 auto *I = cast<Instruction>(U.getUser()); 4215 BasicBlock *BB = I->getParent(); 4216 if (auto *Phi = dyn_cast<PHINode>(I)) 4217 BB = Phi->getIncomingBlock( 4218 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4219 return BB == PredBB; 4220 }; 4221 4222 // Iteratively sink the scalarized operands of the predicated instruction 4223 // into the block we created for it. When an instruction is sunk, it's 4224 // operands are then added to the worklist. The algorithm ends after one pass 4225 // through the worklist doesn't sink a single instruction. 4226 bool Changed; 4227 do { 4228 // Add the instructions that need to be reanalyzed to the worklist, and 4229 // reset the changed indicator. 4230 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4231 InstsToReanalyze.clear(); 4232 Changed = false; 4233 4234 while (!Worklist.empty()) { 4235 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4236 4237 // We can't sink an instruction if it is a phi node, is already in the 4238 // predicated block, is not in the loop, or may have side effects. 4239 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4240 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4241 continue; 4242 4243 // It's legal to sink the instruction if all its uses occur in the 4244 // predicated block. Otherwise, there's nothing to do yet, and we may 4245 // need to reanalyze the instruction. 4246 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4247 InstsToReanalyze.push_back(I); 4248 continue; 4249 } 4250 4251 // Move the instruction to the beginning of the predicated block, and add 4252 // it's operands to the worklist. 4253 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4254 Worklist.insert(I->op_begin(), I->op_end()); 4255 4256 // The sinking may have enabled other instructions to be sunk, so we will 4257 // need to iterate. 4258 Changed = true; 4259 } 4260 } while (Changed); 4261 } 4262 4263 void InnerLoopVectorizer::fixNonInductionPHIs() { 4264 for (PHINode *OrigPhi : OrigPHIsToFix) { 4265 PHINode *NewPhi = 4266 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4267 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4268 4269 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4270 predecessors(OrigPhi->getParent())); 4271 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4272 predecessors(NewPhi->getParent())); 4273 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4274 "Scalar and Vector BB should have the same number of predecessors"); 4275 4276 // The insertion point in Builder may be invalidated by the time we get 4277 // here. Force the Builder insertion point to something valid so that we do 4278 // not run into issues during insertion point restore in 4279 // getOrCreateVectorValue calls below. 4280 Builder.SetInsertPoint(NewPhi); 4281 4282 // The predecessor order is preserved and we can rely on mapping between 4283 // scalar and vector block predecessors. 4284 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4285 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4286 4287 // When looking up the new scalar/vector values to fix up, use incoming 4288 // values from original phi. 4289 Value *ScIncV = 4290 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4291 4292 // Scalar incoming value may need a broadcast 4293 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4294 NewPhi->addIncoming(NewIncV, NewPredBB); 4295 } 4296 } 4297 } 4298 4299 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4300 VPUser &Operands, unsigned UF, 4301 ElementCount VF, bool IsPtrLoopInvariant, 4302 SmallBitVector &IsIndexLoopInvariant, 4303 VPTransformState &State) { 4304 // Construct a vector GEP by widening the operands of the scalar GEP as 4305 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4306 // results in a vector of pointers when at least one operand of the GEP 4307 // is vector-typed. Thus, to keep the representation compact, we only use 4308 // vector-typed operands for loop-varying values. 4309 4310 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4311 // If we are vectorizing, but the GEP has only loop-invariant operands, 4312 // the GEP we build (by only using vector-typed operands for 4313 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4314 // produce a vector of pointers, we need to either arbitrarily pick an 4315 // operand to broadcast, or broadcast a clone of the original GEP. 4316 // Here, we broadcast a clone of the original. 4317 // 4318 // TODO: If at some point we decide to scalarize instructions having 4319 // loop-invariant operands, this special case will no longer be 4320 // required. We would add the scalarization decision to 4321 // collectLoopScalars() and teach getVectorValue() to broadcast 4322 // the lane-zero scalar value. 4323 auto *Clone = Builder.Insert(GEP->clone()); 4324 for (unsigned Part = 0; Part < UF; ++Part) { 4325 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4326 State.set(VPDef, GEP, EntryPart, Part); 4327 addMetadata(EntryPart, GEP); 4328 } 4329 } else { 4330 // If the GEP has at least one loop-varying operand, we are sure to 4331 // produce a vector of pointers. But if we are only unrolling, we want 4332 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4333 // produce with the code below will be scalar (if VF == 1) or vector 4334 // (otherwise). Note that for the unroll-only case, we still maintain 4335 // values in the vector mapping with initVector, as we do for other 4336 // instructions. 4337 for (unsigned Part = 0; Part < UF; ++Part) { 4338 // The pointer operand of the new GEP. If it's loop-invariant, we 4339 // won't broadcast it. 4340 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4341 : State.get(Operands.getOperand(0), Part); 4342 4343 // Collect all the indices for the new GEP. If any index is 4344 // loop-invariant, we won't broadcast it. 4345 SmallVector<Value *, 4> Indices; 4346 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4347 VPValue *Operand = Operands.getOperand(I); 4348 if (IsIndexLoopInvariant[I - 1]) 4349 Indices.push_back(State.get(Operand, {0, 0})); 4350 else 4351 Indices.push_back(State.get(Operand, Part)); 4352 } 4353 4354 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4355 // but it should be a vector, otherwise. 4356 auto *NewGEP = 4357 GEP->isInBounds() 4358 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4359 Indices) 4360 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4361 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4362 "NewGEP is not a pointer vector"); 4363 State.set(VPDef, GEP, NewGEP, Part); 4364 addMetadata(NewGEP, GEP); 4365 } 4366 } 4367 } 4368 4369 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4370 ElementCount VF) { 4371 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4372 PHINode *P = cast<PHINode>(PN); 4373 if (EnableVPlanNativePath) { 4374 // Currently we enter here in the VPlan-native path for non-induction 4375 // PHIs where all control flow is uniform. We simply widen these PHIs. 4376 // Create a vector phi with no operands - the vector phi operands will be 4377 // set at the end of vector code generation. 4378 Type *VecTy = 4379 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4380 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4381 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4382 OrigPHIsToFix.push_back(P); 4383 4384 return; 4385 } 4386 4387 assert(PN->getParent() == OrigLoop->getHeader() && 4388 "Non-header phis should have been handled elsewhere"); 4389 4390 // In order to support recurrences we need to be able to vectorize Phi nodes. 4391 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4392 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4393 // this value when we vectorize all of the instructions that use the PHI. 4394 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4395 for (unsigned Part = 0; Part < UF; ++Part) { 4396 // This is phase one of vectorizing PHIs. 4397 bool ScalarPHI = 4398 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4399 Type *VecTy = 4400 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4401 Value *EntryPart = PHINode::Create( 4402 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4403 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4404 } 4405 return; 4406 } 4407 4408 setDebugLocFromInst(Builder, P); 4409 4410 // This PHINode must be an induction variable. 4411 // Make sure that we know about it. 4412 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4413 4414 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4415 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4416 4417 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4418 // which can be found from the original scalar operations. 4419 switch (II.getKind()) { 4420 case InductionDescriptor::IK_NoInduction: 4421 llvm_unreachable("Unknown induction"); 4422 case InductionDescriptor::IK_IntInduction: 4423 case InductionDescriptor::IK_FpInduction: 4424 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4425 case InductionDescriptor::IK_PtrInduction: { 4426 // Handle the pointer induction variable case. 4427 assert(P->getType()->isPointerTy() && "Unexpected type."); 4428 4429 if (Cost->isScalarAfterVectorization(P, VF)) { 4430 // This is the normalized GEP that starts counting at zero. 4431 Value *PtrInd = 4432 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4433 // Determine the number of scalars we need to generate for each unroll 4434 // iteration. If the instruction is uniform, we only need to generate the 4435 // first lane. Otherwise, we generate all VF values. 4436 unsigned Lanes = 4437 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4438 for (unsigned Part = 0; Part < UF; ++Part) { 4439 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4440 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4441 Lane + Part * VF.getKnownMinValue()); 4442 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4443 Value *SclrGep = 4444 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4445 SclrGep->setName("next.gep"); 4446 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4447 } 4448 } 4449 return; 4450 } 4451 assert(isa<SCEVConstant>(II.getStep()) && 4452 "Induction step not a SCEV constant!"); 4453 Type *PhiType = II.getStep()->getType(); 4454 4455 // Build a pointer phi 4456 Value *ScalarStartValue = II.getStartValue(); 4457 Type *ScStValueType = ScalarStartValue->getType(); 4458 PHINode *NewPointerPhi = 4459 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4460 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4461 4462 // A pointer induction, performed by using a gep 4463 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4464 Instruction *InductionLoc = LoopLatch->getTerminator(); 4465 const SCEV *ScalarStep = II.getStep(); 4466 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4467 Value *ScalarStepValue = 4468 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4469 Value *InductionGEP = GetElementPtrInst::Create( 4470 ScStValueType->getPointerElementType(), NewPointerPhi, 4471 Builder.CreateMul( 4472 ScalarStepValue, 4473 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4474 "ptr.ind", InductionLoc); 4475 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4476 4477 // Create UF many actual address geps that use the pointer 4478 // phi as base and a vectorized version of the step value 4479 // (<step*0, ..., step*N>) as offset. 4480 for (unsigned Part = 0; Part < UF; ++Part) { 4481 SmallVector<Constant *, 8> Indices; 4482 // Create a vector of consecutive numbers from zero to VF. 4483 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4484 Indices.push_back( 4485 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4486 Constant *StartOffset = ConstantVector::get(Indices); 4487 4488 Value *GEP = Builder.CreateGEP( 4489 ScStValueType->getPointerElementType(), NewPointerPhi, 4490 Builder.CreateMul( 4491 StartOffset, 4492 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4493 "vector.gep")); 4494 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4495 } 4496 } 4497 } 4498 } 4499 4500 /// A helper function for checking whether an integer division-related 4501 /// instruction may divide by zero (in which case it must be predicated if 4502 /// executed conditionally in the scalar code). 4503 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4504 /// Non-zero divisors that are non compile-time constants will not be 4505 /// converted into multiplication, so we will still end up scalarizing 4506 /// the division, but can do so w/o predication. 4507 static bool mayDivideByZero(Instruction &I) { 4508 assert((I.getOpcode() == Instruction::UDiv || 4509 I.getOpcode() == Instruction::SDiv || 4510 I.getOpcode() == Instruction::URem || 4511 I.getOpcode() == Instruction::SRem) && 4512 "Unexpected instruction"); 4513 Value *Divisor = I.getOperand(1); 4514 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4515 return !CInt || CInt->isZero(); 4516 } 4517 4518 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4519 VPUser &User, 4520 VPTransformState &State) { 4521 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4522 switch (I.getOpcode()) { 4523 case Instruction::Call: 4524 case Instruction::Br: 4525 case Instruction::PHI: 4526 case Instruction::GetElementPtr: 4527 case Instruction::Select: 4528 llvm_unreachable("This instruction is handled by a different recipe."); 4529 case Instruction::UDiv: 4530 case Instruction::SDiv: 4531 case Instruction::SRem: 4532 case Instruction::URem: 4533 case Instruction::Add: 4534 case Instruction::FAdd: 4535 case Instruction::Sub: 4536 case Instruction::FSub: 4537 case Instruction::FNeg: 4538 case Instruction::Mul: 4539 case Instruction::FMul: 4540 case Instruction::FDiv: 4541 case Instruction::FRem: 4542 case Instruction::Shl: 4543 case Instruction::LShr: 4544 case Instruction::AShr: 4545 case Instruction::And: 4546 case Instruction::Or: 4547 case Instruction::Xor: { 4548 // Just widen unops and binops. 4549 setDebugLocFromInst(Builder, &I); 4550 4551 for (unsigned Part = 0; Part < UF; ++Part) { 4552 SmallVector<Value *, 2> Ops; 4553 for (VPValue *VPOp : User.operands()) 4554 Ops.push_back(State.get(VPOp, Part)); 4555 4556 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4557 4558 if (auto *VecOp = dyn_cast<Instruction>(V)) 4559 VecOp->copyIRFlags(&I); 4560 4561 // Use this vector value for all users of the original instruction. 4562 State.set(Def, &I, V, Part); 4563 addMetadata(V, &I); 4564 } 4565 4566 break; 4567 } 4568 case Instruction::ICmp: 4569 case Instruction::FCmp: { 4570 // Widen compares. Generate vector compares. 4571 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4572 auto *Cmp = cast<CmpInst>(&I); 4573 setDebugLocFromInst(Builder, Cmp); 4574 for (unsigned Part = 0; Part < UF; ++Part) { 4575 Value *A = State.get(User.getOperand(0), Part); 4576 Value *B = State.get(User.getOperand(1), Part); 4577 Value *C = nullptr; 4578 if (FCmp) { 4579 // Propagate fast math flags. 4580 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4581 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4582 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4583 } else { 4584 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4585 } 4586 State.set(Def, &I, C, Part); 4587 addMetadata(C, &I); 4588 } 4589 4590 break; 4591 } 4592 4593 case Instruction::ZExt: 4594 case Instruction::SExt: 4595 case Instruction::FPToUI: 4596 case Instruction::FPToSI: 4597 case Instruction::FPExt: 4598 case Instruction::PtrToInt: 4599 case Instruction::IntToPtr: 4600 case Instruction::SIToFP: 4601 case Instruction::UIToFP: 4602 case Instruction::Trunc: 4603 case Instruction::FPTrunc: 4604 case Instruction::BitCast: { 4605 auto *CI = cast<CastInst>(&I); 4606 setDebugLocFromInst(Builder, CI); 4607 4608 /// Vectorize casts. 4609 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4610 Type *DestTy = 4611 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4612 4613 for (unsigned Part = 0; Part < UF; ++Part) { 4614 Value *A = State.get(User.getOperand(0), Part); 4615 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4616 State.set(Def, &I, Cast, Part); 4617 addMetadata(Cast, &I); 4618 } 4619 break; 4620 } 4621 default: 4622 // This instruction is not vectorized by simple widening. 4623 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4624 llvm_unreachable("Unhandled instruction!"); 4625 } // end of switch. 4626 } 4627 4628 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4629 VPUser &ArgOperands, 4630 VPTransformState &State) { 4631 assert(!isa<DbgInfoIntrinsic>(I) && 4632 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4633 setDebugLocFromInst(Builder, &I); 4634 4635 Module *M = I.getParent()->getParent()->getParent(); 4636 auto *CI = cast<CallInst>(&I); 4637 4638 SmallVector<Type *, 4> Tys; 4639 for (Value *ArgOperand : CI->arg_operands()) 4640 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4641 4642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4643 4644 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4645 // version of the instruction. 4646 // Is it beneficial to perform intrinsic call compared to lib call? 4647 bool NeedToScalarize = false; 4648 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4649 bool UseVectorIntrinsic = 4650 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4651 assert((UseVectorIntrinsic || !NeedToScalarize) && 4652 "Instruction should be scalarized elsewhere."); 4653 4654 for (unsigned Part = 0; Part < UF; ++Part) { 4655 SmallVector<Value *, 4> Args; 4656 for (auto &I : enumerate(ArgOperands.operands())) { 4657 // Some intrinsics have a scalar argument - don't replace it with a 4658 // vector. 4659 Value *Arg; 4660 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4661 Arg = State.get(I.value(), Part); 4662 else 4663 Arg = State.get(I.value(), {0, 0}); 4664 Args.push_back(Arg); 4665 } 4666 4667 Function *VectorF; 4668 if (UseVectorIntrinsic) { 4669 // Use vector version of the intrinsic. 4670 Type *TysForDecl[] = {CI->getType()}; 4671 if (VF.isVector()) { 4672 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4673 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4674 } 4675 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4676 assert(VectorF && "Can't retrieve vector intrinsic."); 4677 } else { 4678 // Use vector version of the function call. 4679 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4680 #ifndef NDEBUG 4681 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4682 "Can't create vector function."); 4683 #endif 4684 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4685 } 4686 SmallVector<OperandBundleDef, 1> OpBundles; 4687 CI->getOperandBundlesAsDefs(OpBundles); 4688 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4689 4690 if (isa<FPMathOperator>(V)) 4691 V->copyFastMathFlags(CI); 4692 4693 State.set(Def, &I, V, Part); 4694 addMetadata(V, &I); 4695 } 4696 } 4697 4698 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4699 VPUser &Operands, 4700 bool InvariantCond, 4701 VPTransformState &State) { 4702 setDebugLocFromInst(Builder, &I); 4703 4704 // The condition can be loop invariant but still defined inside the 4705 // loop. This means that we can't just use the original 'cond' value. 4706 // We have to take the 'vectorized' value and pick the first lane. 4707 // Instcombine will make this a no-op. 4708 auto *InvarCond = 4709 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4710 4711 for (unsigned Part = 0; Part < UF; ++Part) { 4712 Value *Cond = 4713 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4714 Value *Op0 = State.get(Operands.getOperand(1), Part); 4715 Value *Op1 = State.get(Operands.getOperand(2), Part); 4716 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4717 State.set(VPDef, &I, Sel, Part); 4718 addMetadata(Sel, &I); 4719 } 4720 } 4721 4722 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4723 // We should not collect Scalars more than once per VF. Right now, this 4724 // function is called from collectUniformsAndScalars(), which already does 4725 // this check. Collecting Scalars for VF=1 does not make any sense. 4726 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4727 "This function should not be visited twice for the same VF"); 4728 4729 SmallSetVector<Instruction *, 8> Worklist; 4730 4731 // These sets are used to seed the analysis with pointers used by memory 4732 // accesses that will remain scalar. 4733 SmallSetVector<Instruction *, 8> ScalarPtrs; 4734 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4735 auto *Latch = TheLoop->getLoopLatch(); 4736 4737 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4738 // The pointer operands of loads and stores will be scalar as long as the 4739 // memory access is not a gather or scatter operation. The value operand of a 4740 // store will remain scalar if the store is scalarized. 4741 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4742 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4743 assert(WideningDecision != CM_Unknown && 4744 "Widening decision should be ready at this moment"); 4745 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4746 if (Ptr == Store->getValueOperand()) 4747 return WideningDecision == CM_Scalarize; 4748 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4749 "Ptr is neither a value or pointer operand"); 4750 return WideningDecision != CM_GatherScatter; 4751 }; 4752 4753 // A helper that returns true if the given value is a bitcast or 4754 // getelementptr instruction contained in the loop. 4755 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4756 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4757 isa<GetElementPtrInst>(V)) && 4758 !TheLoop->isLoopInvariant(V); 4759 }; 4760 4761 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4762 if (!isa<PHINode>(Ptr) || 4763 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4764 return false; 4765 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4766 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4767 return false; 4768 return isScalarUse(MemAccess, Ptr); 4769 }; 4770 4771 // A helper that evaluates a memory access's use of a pointer. If the 4772 // pointer is actually the pointer induction of a loop, it is being 4773 // inserted into Worklist. If the use will be a scalar use, and the 4774 // pointer is only used by memory accesses, we place the pointer in 4775 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4776 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4777 if (isScalarPtrInduction(MemAccess, Ptr)) { 4778 Worklist.insert(cast<Instruction>(Ptr)); 4779 Instruction *Update = cast<Instruction>( 4780 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4781 Worklist.insert(Update); 4782 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4783 << "\n"); 4784 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4785 << "\n"); 4786 return; 4787 } 4788 // We only care about bitcast and getelementptr instructions contained in 4789 // the loop. 4790 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4791 return; 4792 4793 // If the pointer has already been identified as scalar (e.g., if it was 4794 // also identified as uniform), there's nothing to do. 4795 auto *I = cast<Instruction>(Ptr); 4796 if (Worklist.count(I)) 4797 return; 4798 4799 // If the use of the pointer will be a scalar use, and all users of the 4800 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4801 // place the pointer in PossibleNonScalarPtrs. 4802 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4803 return isa<LoadInst>(U) || isa<StoreInst>(U); 4804 })) 4805 ScalarPtrs.insert(I); 4806 else 4807 PossibleNonScalarPtrs.insert(I); 4808 }; 4809 4810 // We seed the scalars analysis with three classes of instructions: (1) 4811 // instructions marked uniform-after-vectorization and (2) bitcast, 4812 // getelementptr and (pointer) phi instructions used by memory accesses 4813 // requiring a scalar use. 4814 // 4815 // (1) Add to the worklist all instructions that have been identified as 4816 // uniform-after-vectorization. 4817 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4818 4819 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4820 // memory accesses requiring a scalar use. The pointer operands of loads and 4821 // stores will be scalar as long as the memory accesses is not a gather or 4822 // scatter operation. The value operand of a store will remain scalar if the 4823 // store is scalarized. 4824 for (auto *BB : TheLoop->blocks()) 4825 for (auto &I : *BB) { 4826 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4827 evaluatePtrUse(Load, Load->getPointerOperand()); 4828 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4829 evaluatePtrUse(Store, Store->getPointerOperand()); 4830 evaluatePtrUse(Store, Store->getValueOperand()); 4831 } 4832 } 4833 for (auto *I : ScalarPtrs) 4834 if (!PossibleNonScalarPtrs.count(I)) { 4835 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4836 Worklist.insert(I); 4837 } 4838 4839 // Insert the forced scalars. 4840 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4841 // induction variable when the PHI user is scalarized. 4842 auto ForcedScalar = ForcedScalars.find(VF); 4843 if (ForcedScalar != ForcedScalars.end()) 4844 for (auto *I : ForcedScalar->second) 4845 Worklist.insert(I); 4846 4847 // Expand the worklist by looking through any bitcasts and getelementptr 4848 // instructions we've already identified as scalar. This is similar to the 4849 // expansion step in collectLoopUniforms(); however, here we're only 4850 // expanding to include additional bitcasts and getelementptr instructions. 4851 unsigned Idx = 0; 4852 while (Idx != Worklist.size()) { 4853 Instruction *Dst = Worklist[Idx++]; 4854 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4855 continue; 4856 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4857 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4858 auto *J = cast<Instruction>(U); 4859 return !TheLoop->contains(J) || Worklist.count(J) || 4860 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4861 isScalarUse(J, Src)); 4862 })) { 4863 Worklist.insert(Src); 4864 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4865 } 4866 } 4867 4868 // An induction variable will remain scalar if all users of the induction 4869 // variable and induction variable update remain scalar. 4870 for (auto &Induction : Legal->getInductionVars()) { 4871 auto *Ind = Induction.first; 4872 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4873 4874 // If tail-folding is applied, the primary induction variable will be used 4875 // to feed a vector compare. 4876 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4877 continue; 4878 4879 // Determine if all users of the induction variable are scalar after 4880 // vectorization. 4881 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4882 auto *I = cast<Instruction>(U); 4883 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4884 }); 4885 if (!ScalarInd) 4886 continue; 4887 4888 // Determine if all users of the induction variable update instruction are 4889 // scalar after vectorization. 4890 auto ScalarIndUpdate = 4891 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4892 auto *I = cast<Instruction>(U); 4893 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4894 }); 4895 if (!ScalarIndUpdate) 4896 continue; 4897 4898 // The induction variable and its update instruction will remain scalar. 4899 Worklist.insert(Ind); 4900 Worklist.insert(IndUpdate); 4901 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4902 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4903 << "\n"); 4904 } 4905 4906 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4907 } 4908 4909 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 4910 ElementCount VF) { 4911 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4912 if (!blockNeedsPredication(I->getParent())) 4913 return false; 4914 switch(I->getOpcode()) { 4915 default: 4916 break; 4917 case Instruction::Load: 4918 case Instruction::Store: { 4919 if (!Legal->isMaskRequired(I)) 4920 return false; 4921 auto *Ptr = getLoadStorePointerOperand(I); 4922 auto *Ty = getMemInstValueType(I); 4923 // We have already decided how to vectorize this instruction, get that 4924 // result. 4925 if (VF.isVector()) { 4926 InstWidening WideningDecision = getWideningDecision(I, VF); 4927 assert(WideningDecision != CM_Unknown && 4928 "Widening decision should be ready at this moment"); 4929 return WideningDecision == CM_Scalarize; 4930 } 4931 const Align Alignment = getLoadStoreAlignment(I); 4932 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4933 isLegalMaskedGather(Ty, Alignment)) 4934 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4935 isLegalMaskedScatter(Ty, Alignment)); 4936 } 4937 case Instruction::UDiv: 4938 case Instruction::SDiv: 4939 case Instruction::SRem: 4940 case Instruction::URem: 4941 return mayDivideByZero(*I); 4942 } 4943 return false; 4944 } 4945 4946 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4947 Instruction *I, ElementCount VF) { 4948 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4949 assert(getWideningDecision(I, VF) == CM_Unknown && 4950 "Decision should not be set yet."); 4951 auto *Group = getInterleavedAccessGroup(I); 4952 assert(Group && "Must have a group."); 4953 4954 // If the instruction's allocated size doesn't equal it's type size, it 4955 // requires padding and will be scalarized. 4956 auto &DL = I->getModule()->getDataLayout(); 4957 auto *ScalarTy = getMemInstValueType(I); 4958 if (hasIrregularType(ScalarTy, DL, VF)) 4959 return false; 4960 4961 // Check if masking is required. 4962 // A Group may need masking for one of two reasons: it resides in a block that 4963 // needs predication, or it was decided to use masking to deal with gaps. 4964 bool PredicatedAccessRequiresMasking = 4965 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4966 bool AccessWithGapsRequiresMasking = 4967 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4968 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4969 return true; 4970 4971 // If masked interleaving is required, we expect that the user/target had 4972 // enabled it, because otherwise it either wouldn't have been created or 4973 // it should have been invalidated by the CostModel. 4974 assert(useMaskedInterleavedAccesses(TTI) && 4975 "Masked interleave-groups for predicated accesses are not enabled."); 4976 4977 auto *Ty = getMemInstValueType(I); 4978 const Align Alignment = getLoadStoreAlignment(I); 4979 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4980 : TTI.isLegalMaskedStore(Ty, Alignment); 4981 } 4982 4983 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4984 Instruction *I, ElementCount VF) { 4985 // Get and ensure we have a valid memory instruction. 4986 LoadInst *LI = dyn_cast<LoadInst>(I); 4987 StoreInst *SI = dyn_cast<StoreInst>(I); 4988 assert((LI || SI) && "Invalid memory instruction"); 4989 4990 auto *Ptr = getLoadStorePointerOperand(I); 4991 4992 // In order to be widened, the pointer should be consecutive, first of all. 4993 if (!Legal->isConsecutivePtr(Ptr)) 4994 return false; 4995 4996 // If the instruction is a store located in a predicated block, it will be 4997 // scalarized. 4998 if (isScalarWithPredication(I)) 4999 return false; 5000 5001 // If the instruction's allocated size doesn't equal it's type size, it 5002 // requires padding and will be scalarized. 5003 auto &DL = I->getModule()->getDataLayout(); 5004 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5005 if (hasIrregularType(ScalarTy, DL, VF)) 5006 return false; 5007 5008 return true; 5009 } 5010 5011 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5012 // We should not collect Uniforms more than once per VF. Right now, 5013 // this function is called from collectUniformsAndScalars(), which 5014 // already does this check. Collecting Uniforms for VF=1 does not make any 5015 // sense. 5016 5017 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5018 "This function should not be visited twice for the same VF"); 5019 5020 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5021 // not analyze again. Uniforms.count(VF) will return 1. 5022 Uniforms[VF].clear(); 5023 5024 // We now know that the loop is vectorizable! 5025 // Collect instructions inside the loop that will remain uniform after 5026 // vectorization. 5027 5028 // Global values, params and instructions outside of current loop are out of 5029 // scope. 5030 auto isOutOfScope = [&](Value *V) -> bool { 5031 Instruction *I = dyn_cast<Instruction>(V); 5032 return (!I || !TheLoop->contains(I)); 5033 }; 5034 5035 SetVector<Instruction *> Worklist; 5036 BasicBlock *Latch = TheLoop->getLoopLatch(); 5037 5038 // Instructions that are scalar with predication must not be considered 5039 // uniform after vectorization, because that would create an erroneous 5040 // replicating region where only a single instance out of VF should be formed. 5041 // TODO: optimize such seldom cases if found important, see PR40816. 5042 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5043 if (isOutOfScope(I)) { 5044 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5045 << *I << "\n"); 5046 return; 5047 } 5048 if (isScalarWithPredication(I, VF)) { 5049 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5050 << *I << "\n"); 5051 return; 5052 } 5053 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5054 Worklist.insert(I); 5055 }; 5056 5057 // Start with the conditional branch. If the branch condition is an 5058 // instruction contained in the loop that is only used by the branch, it is 5059 // uniform. 5060 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5061 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5062 addToWorklistIfAllowed(Cmp); 5063 5064 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5065 // are pointers that are treated like consecutive pointers during 5066 // vectorization. The pointer operands of interleaved accesses are an 5067 // example. 5068 SmallSetVector<Value *, 8> ConsecutiveLikePtrs; 5069 5070 // Holds pointer operands of instructions that are possibly non-uniform. 5071 SmallPtrSet<Value *, 8> PossibleNonUniformPtrs; 5072 5073 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5074 InstWidening WideningDecision = getWideningDecision(I, VF); 5075 assert(WideningDecision != CM_Unknown && 5076 "Widening decision should be ready at this moment"); 5077 5078 // The address of a uniform mem op is itself uniform. We exclude stores 5079 // here as there's an assumption in the current code that all uses of 5080 // uniform instructions are uniform and, as noted below, uniform stores are 5081 // still handled via replication (i.e. aren't uniform after vectorization). 5082 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5083 assert(WideningDecision == CM_Scalarize); 5084 return true; 5085 } 5086 5087 return (WideningDecision == CM_Widen || 5088 WideningDecision == CM_Widen_Reverse || 5089 WideningDecision == CM_Interleave); 5090 }; 5091 5092 5093 // Returns true if Ptr is the pointer operand of a memory access instruction 5094 // I, and I is known to not require scalarization. 5095 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5096 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5097 }; 5098 5099 // Iterate over the instructions in the loop, and collect all 5100 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5101 // that a consecutive-like pointer operand will be scalarized, we collect it 5102 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5103 // getelementptr instruction can be used by both vectorized and scalarized 5104 // memory instructions. For example, if a loop loads and stores from the same 5105 // location, but the store is conditional, the store will be scalarized, and 5106 // the getelementptr won't remain uniform. 5107 for (auto *BB : TheLoop->blocks()) 5108 for (auto &I : *BB) { 5109 // If there's no pointer operand, there's nothing to do. 5110 auto *Ptr = getLoadStorePointerOperand(&I); 5111 if (!Ptr) 5112 continue; 5113 5114 // For now, avoid walking use lists in other functions. 5115 // TODO: Rewrite this algorithm from uses up. 5116 if (!isa<Instruction>(Ptr) && !isa<Argument>(Ptr)) 5117 continue; 5118 5119 // A uniform memory op is itself uniform. We exclude stores here as we 5120 // haven't yet added dedicated logic in the CLONE path and rely on 5121 // REPLICATE + DSE for correctness. 5122 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5123 addToWorklistIfAllowed(&I); 5124 5125 // True if all users of Ptr are memory accesses that have Ptr as their 5126 // pointer operand. Since loops are assumed to be in LCSSA form, this 5127 // disallows uses outside the loop as well. 5128 auto UsersAreMemAccesses = 5129 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5130 return getLoadStorePointerOperand(U) == Ptr; 5131 }); 5132 5133 // Ensure the memory instruction will not be scalarized or used by 5134 // gather/scatter, making its pointer operand non-uniform. If the pointer 5135 // operand is used by any instruction other than a memory access, we 5136 // conservatively assume the pointer operand may be non-uniform. 5137 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5138 PossibleNonUniformPtrs.insert(Ptr); 5139 5140 // If the memory instruction will be vectorized and its pointer operand 5141 // is consecutive-like, or interleaving - the pointer operand should 5142 // remain uniform. 5143 else 5144 ConsecutiveLikePtrs.insert(Ptr); 5145 } 5146 5147 // Add to the Worklist all consecutive and consecutive-like pointers that 5148 // aren't also identified as possibly non-uniform. 5149 for (auto *V : ConsecutiveLikePtrs) 5150 if (!PossibleNonUniformPtrs.count(V)) 5151 if (auto *I = dyn_cast<Instruction>(V)) 5152 addToWorklistIfAllowed(I); 5153 5154 // Expand Worklist in topological order: whenever a new instruction 5155 // is added , its users should be already inside Worklist. It ensures 5156 // a uniform instruction will only be used by uniform instructions. 5157 unsigned idx = 0; 5158 while (idx != Worklist.size()) { 5159 Instruction *I = Worklist[idx++]; 5160 5161 for (auto OV : I->operand_values()) { 5162 // isOutOfScope operands cannot be uniform instructions. 5163 if (isOutOfScope(OV)) 5164 continue; 5165 // First order recurrence Phi's should typically be considered 5166 // non-uniform. 5167 auto *OP = dyn_cast<PHINode>(OV); 5168 if (OP && Legal->isFirstOrderRecurrence(OP)) 5169 continue; 5170 // If all the users of the operand are uniform, then add the 5171 // operand into the uniform worklist. 5172 auto *OI = cast<Instruction>(OV); 5173 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5174 auto *J = cast<Instruction>(U); 5175 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5176 })) 5177 addToWorklistIfAllowed(OI); 5178 } 5179 } 5180 5181 // For an instruction to be added into Worklist above, all its users inside 5182 // the loop should also be in Worklist. However, this condition cannot be 5183 // true for phi nodes that form a cyclic dependence. We must process phi 5184 // nodes separately. An induction variable will remain uniform if all users 5185 // of the induction variable and induction variable update remain uniform. 5186 // The code below handles both pointer and non-pointer induction variables. 5187 for (auto &Induction : Legal->getInductionVars()) { 5188 auto *Ind = Induction.first; 5189 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5190 5191 // Determine if all users of the induction variable are uniform after 5192 // vectorization. 5193 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5194 auto *I = cast<Instruction>(U); 5195 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5196 isVectorizedMemAccessUse(I, Ind); 5197 }); 5198 if (!UniformInd) 5199 continue; 5200 5201 // Determine if all users of the induction variable update instruction are 5202 // uniform after vectorization. 5203 auto UniformIndUpdate = 5204 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5205 auto *I = cast<Instruction>(U); 5206 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5207 isVectorizedMemAccessUse(I, IndUpdate); 5208 }); 5209 if (!UniformIndUpdate) 5210 continue; 5211 5212 // The induction variable and its update instruction will remain uniform. 5213 addToWorklistIfAllowed(Ind); 5214 addToWorklistIfAllowed(IndUpdate); 5215 } 5216 5217 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5218 } 5219 5220 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5221 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5222 5223 if (Legal->getRuntimePointerChecking()->Need) { 5224 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5225 "runtime pointer checks needed. Enable vectorization of this " 5226 "loop with '#pragma clang loop vectorize(enable)' when " 5227 "compiling with -Os/-Oz", 5228 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5229 return true; 5230 } 5231 5232 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5233 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5234 "runtime SCEV checks needed. Enable vectorization of this " 5235 "loop with '#pragma clang loop vectorize(enable)' when " 5236 "compiling with -Os/-Oz", 5237 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5238 return true; 5239 } 5240 5241 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5242 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5243 reportVectorizationFailure("Runtime stride check for small trip count", 5244 "runtime stride == 1 checks needed. Enable vectorization of " 5245 "this loop without such check by compiling with -Os/-Oz", 5246 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5247 return true; 5248 } 5249 5250 return false; 5251 } 5252 5253 Optional<ElementCount> 5254 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5255 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5256 // TODO: It may by useful to do since it's still likely to be dynamically 5257 // uniform if the target can skip. 5258 reportVectorizationFailure( 5259 "Not inserting runtime ptr check for divergent target", 5260 "runtime pointer checks needed. Not enabled for divergent target", 5261 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5262 return None; 5263 } 5264 5265 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5266 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5267 if (TC == 1) { 5268 reportVectorizationFailure("Single iteration (non) loop", 5269 "loop trip count is one, irrelevant for vectorization", 5270 "SingleIterationLoop", ORE, TheLoop); 5271 return None; 5272 } 5273 5274 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5275 5276 switch (ScalarEpilogueStatus) { 5277 case CM_ScalarEpilogueAllowed: 5278 return MaxVF; 5279 case CM_ScalarEpilogueNotNeededUsePredicate: 5280 LLVM_DEBUG( 5281 dbgs() << "LV: vector predicate hint/switch found.\n" 5282 << "LV: Not allowing scalar epilogue, creating predicated " 5283 << "vector loop.\n"); 5284 break; 5285 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5286 // fallthrough as a special case of OptForSize 5287 case CM_ScalarEpilogueNotAllowedOptSize: 5288 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5289 LLVM_DEBUG( 5290 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5291 else 5292 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5293 << "count.\n"); 5294 5295 // Bail if runtime checks are required, which are not good when optimising 5296 // for size. 5297 if (runtimeChecksRequired()) 5298 return None; 5299 break; 5300 } 5301 5302 // Now try the tail folding 5303 5304 // Invalidate interleave groups that require an epilogue if we can't mask 5305 // the interleave-group. 5306 if (!useMaskedInterleavedAccesses(TTI)) { 5307 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5308 "No decisions should have been taken at this point"); 5309 // Note: There is no need to invalidate any cost modeling decisions here, as 5310 // non where taken so far. 5311 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5312 } 5313 5314 assert(!MaxVF.isScalable() && 5315 "Scalable vectors do not yet support tail folding"); 5316 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5317 "MaxVF must be a power of 2"); 5318 unsigned MaxVFtimesIC = 5319 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5320 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5321 // Accept MaxVF if we do not have a tail. 5322 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5323 return MaxVF; 5324 } 5325 5326 // If we don't know the precise trip count, or if the trip count that we 5327 // found modulo the vectorization factor is not zero, try to fold the tail 5328 // by masking. 5329 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5330 if (Legal->prepareToFoldTailByMasking()) { 5331 FoldTailByMasking = true; 5332 return MaxVF; 5333 } 5334 5335 // If there was a tail-folding hint/switch, but we can't fold the tail by 5336 // masking, fallback to a vectorization with a scalar epilogue. 5337 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5338 if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) { 5339 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5340 return None; 5341 } 5342 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5343 "scalar epilogue instead.\n"); 5344 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5345 return MaxVF; 5346 } 5347 5348 if (TC == 0) { 5349 reportVectorizationFailure( 5350 "Unable to calculate the loop count due to complex control flow", 5351 "unable to calculate the loop count due to complex control flow", 5352 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5353 return None; 5354 } 5355 5356 reportVectorizationFailure( 5357 "Cannot optimize for size and vectorize at the same time.", 5358 "cannot optimize for size and vectorize at the same time. " 5359 "Enable vectorization of this loop with '#pragma clang loop " 5360 "vectorize(enable)' when compiling with -Os/-Oz", 5361 "NoTailLoopWithOptForSize", ORE, TheLoop); 5362 return None; 5363 } 5364 5365 ElementCount 5366 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5367 ElementCount UserVF) { 5368 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 5369 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5370 unsigned SmallestType, WidestType; 5371 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5372 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5373 5374 // Get the maximum safe dependence distance in bits computed by LAA. 5375 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5376 // the memory accesses that is most restrictive (involved in the smallest 5377 // dependence distance). 5378 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5379 5380 if (UserVF.isNonZero()) { 5381 // If legally unsafe, clamp the user vectorization factor to a safe value. 5382 unsigned MaxSafeVF = PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5383 if (UserVF.getFixedValue() <= MaxSafeVF) 5384 return UserVF; 5385 5386 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5387 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5388 << ".\n"); 5389 ORE->emit([&]() { 5390 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5391 TheLoop->getStartLoc(), 5392 TheLoop->getHeader()) 5393 << "User-specified vectorization factor " 5394 << ore::NV("UserVectorizationFactor", UserVF) 5395 << " is unsafe, clamping to maximum safe vectorization factor " 5396 << ore::NV("VectorizationFactor", MaxSafeVF); 5397 }); 5398 return ElementCount::getFixed(MaxSafeVF); 5399 } 5400 5401 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5402 5403 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5404 // Note that both WidestRegister and WidestType may not be a powers of 2. 5405 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5406 5407 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5408 << " / " << WidestType << " bits.\n"); 5409 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5410 << WidestRegister << " bits.\n"); 5411 5412 assert(MaxVectorSize <= WidestRegister && 5413 "Did not expect to pack so many elements" 5414 " into one vector!"); 5415 if (MaxVectorSize == 0) { 5416 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5417 MaxVectorSize = 1; 5418 return ElementCount::getFixed(MaxVectorSize); 5419 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5420 isPowerOf2_32(ConstTripCount)) { 5421 // We need to clamp the VF to be the ConstTripCount. There is no point in 5422 // choosing a higher viable VF as done in the loop below. 5423 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5424 << ConstTripCount << "\n"); 5425 MaxVectorSize = ConstTripCount; 5426 return ElementCount::getFixed(MaxVectorSize); 5427 } 5428 5429 unsigned MaxVF = MaxVectorSize; 5430 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5431 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5432 // Collect all viable vectorization factors larger than the default MaxVF 5433 // (i.e. MaxVectorSize). 5434 SmallVector<ElementCount, 8> VFs; 5435 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5436 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5437 VFs.push_back(ElementCount::getFixed(VS)); 5438 5439 // For each VF calculate its register usage. 5440 auto RUs = calculateRegisterUsage(VFs); 5441 5442 // Select the largest VF which doesn't require more registers than existing 5443 // ones. 5444 for (int i = RUs.size() - 1; i >= 0; --i) { 5445 bool Selected = true; 5446 for (auto& pair : RUs[i].MaxLocalUsers) { 5447 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5448 if (pair.second > TargetNumRegisters) 5449 Selected = false; 5450 } 5451 if (Selected) { 5452 MaxVF = VFs[i].getKnownMinValue(); 5453 break; 5454 } 5455 } 5456 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5457 if (MaxVF < MinVF) { 5458 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5459 << ") with target's minimum: " << MinVF << '\n'); 5460 MaxVF = MinVF; 5461 } 5462 } 5463 } 5464 return ElementCount::getFixed(MaxVF); 5465 } 5466 5467 VectorizationFactor 5468 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5469 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5470 5471 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5472 const float ScalarCost = Cost; 5473 unsigned Width = 1; 5474 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5475 5476 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5477 if (ForceVectorization && MaxVF.isVector()) { 5478 // Ignore scalar width, because the user explicitly wants vectorization. 5479 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5480 // evaluation. 5481 Cost = std::numeric_limits<float>::max(); 5482 } 5483 5484 for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) { 5485 // Notice that the vector loop needs to be executed less times, so 5486 // we need to divide the cost of the vector loops by the width of 5487 // the vector elements. 5488 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5489 float VectorCost = C.first / (float)i; 5490 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5491 << " costs: " << (int)VectorCost << ".\n"); 5492 if (!C.second && !ForceVectorization) { 5493 LLVM_DEBUG( 5494 dbgs() << "LV: Not considering vector loop of width " << i 5495 << " because it will not generate any vector instructions.\n"); 5496 continue; 5497 } 5498 if (VectorCost < Cost) { 5499 Cost = VectorCost; 5500 Width = i; 5501 } 5502 } 5503 5504 if (!EnableCondStoresVectorization && NumPredStores) { 5505 reportVectorizationFailure("There are conditional stores.", 5506 "store that is conditionally executed prevents vectorization", 5507 "ConditionalStore", ORE, TheLoop); 5508 Width = 1; 5509 Cost = ScalarCost; 5510 } 5511 5512 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5513 << "LV: Vectorization seems to be not beneficial, " 5514 << "but was forced by a user.\n"); 5515 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5516 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5517 (unsigned)(Width * Cost)}; 5518 return Factor; 5519 } 5520 5521 std::pair<unsigned, unsigned> 5522 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5523 unsigned MinWidth = -1U; 5524 unsigned MaxWidth = 8; 5525 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5526 5527 // For each block. 5528 for (BasicBlock *BB : TheLoop->blocks()) { 5529 // For each instruction in the loop. 5530 for (Instruction &I : BB->instructionsWithoutDebug()) { 5531 Type *T = I.getType(); 5532 5533 // Skip ignored values. 5534 if (ValuesToIgnore.count(&I)) 5535 continue; 5536 5537 // Only examine Loads, Stores and PHINodes. 5538 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5539 continue; 5540 5541 // Examine PHI nodes that are reduction variables. Update the type to 5542 // account for the recurrence type. 5543 if (auto *PN = dyn_cast<PHINode>(&I)) { 5544 if (!Legal->isReductionVariable(PN)) 5545 continue; 5546 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5547 T = RdxDesc.getRecurrenceType(); 5548 } 5549 5550 // Examine the stored values. 5551 if (auto *ST = dyn_cast<StoreInst>(&I)) 5552 T = ST->getValueOperand()->getType(); 5553 5554 // Ignore loaded pointer types and stored pointer types that are not 5555 // vectorizable. 5556 // 5557 // FIXME: The check here attempts to predict whether a load or store will 5558 // be vectorized. We only know this for certain after a VF has 5559 // been selected. Here, we assume that if an access can be 5560 // vectorized, it will be. We should also look at extending this 5561 // optimization to non-pointer types. 5562 // 5563 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5564 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5565 continue; 5566 5567 MinWidth = std::min(MinWidth, 5568 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5569 MaxWidth = std::max(MaxWidth, 5570 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5571 } 5572 } 5573 5574 return {MinWidth, MaxWidth}; 5575 } 5576 5577 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5578 unsigned LoopCost) { 5579 // -- The interleave heuristics -- 5580 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5581 // There are many micro-architectural considerations that we can't predict 5582 // at this level. For example, frontend pressure (on decode or fetch) due to 5583 // code size, or the number and capabilities of the execution ports. 5584 // 5585 // We use the following heuristics to select the interleave count: 5586 // 1. If the code has reductions, then we interleave to break the cross 5587 // iteration dependency. 5588 // 2. If the loop is really small, then we interleave to reduce the loop 5589 // overhead. 5590 // 3. We don't interleave if we think that we will spill registers to memory 5591 // due to the increased register pressure. 5592 5593 if (!isScalarEpilogueAllowed()) 5594 return 1; 5595 5596 // We used the distance for the interleave count. 5597 if (Legal->getMaxSafeDepDistBytes() != -1U) 5598 return 1; 5599 5600 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5601 const bool HasReductions = !Legal->getReductionVars().empty(); 5602 // Do not interleave loops with a relatively small known or estimated trip 5603 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5604 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5605 // because with the above conditions interleaving can expose ILP and break 5606 // cross iteration dependences for reductions. 5607 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5608 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5609 return 1; 5610 5611 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5612 // We divide by these constants so assume that we have at least one 5613 // instruction that uses at least one register. 5614 for (auto& pair : R.MaxLocalUsers) { 5615 pair.second = std::max(pair.second, 1U); 5616 } 5617 5618 // We calculate the interleave count using the following formula. 5619 // Subtract the number of loop invariants from the number of available 5620 // registers. These registers are used by all of the interleaved instances. 5621 // Next, divide the remaining registers by the number of registers that is 5622 // required by the loop, in order to estimate how many parallel instances 5623 // fit without causing spills. All of this is rounded down if necessary to be 5624 // a power of two. We want power of two interleave count to simplify any 5625 // addressing operations or alignment considerations. 5626 // We also want power of two interleave counts to ensure that the induction 5627 // variable of the vector loop wraps to zero, when tail is folded by masking; 5628 // this currently happens when OptForSize, in which case IC is set to 1 above. 5629 unsigned IC = UINT_MAX; 5630 5631 for (auto& pair : R.MaxLocalUsers) { 5632 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5633 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5634 << " registers of " 5635 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5636 if (VF.isScalar()) { 5637 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5638 TargetNumRegisters = ForceTargetNumScalarRegs; 5639 } else { 5640 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5641 TargetNumRegisters = ForceTargetNumVectorRegs; 5642 } 5643 unsigned MaxLocalUsers = pair.second; 5644 unsigned LoopInvariantRegs = 0; 5645 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5646 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5647 5648 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5649 // Don't count the induction variable as interleaved. 5650 if (EnableIndVarRegisterHeur) { 5651 TmpIC = 5652 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5653 std::max(1U, (MaxLocalUsers - 1))); 5654 } 5655 5656 IC = std::min(IC, TmpIC); 5657 } 5658 5659 // Clamp the interleave ranges to reasonable counts. 5660 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5661 unsigned MaxInterleaveCount = 5662 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5663 5664 // Check if the user has overridden the max. 5665 if (VF.isScalar()) { 5666 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5667 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5668 } else { 5669 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5670 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5671 } 5672 5673 // If trip count is known or estimated compile time constant, limit the 5674 // interleave count to be less than the trip count divided by VF, provided it 5675 // is at least 1. 5676 if (BestKnownTC) { 5677 MaxInterleaveCount = 5678 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5679 // Make sure MaxInterleaveCount is greater than 0. 5680 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5681 } 5682 5683 assert(MaxInterleaveCount > 0 && 5684 "Maximum interleave count must be greater than 0"); 5685 5686 // Clamp the calculated IC to be between the 1 and the max interleave count 5687 // that the target and trip count allows. 5688 if (IC > MaxInterleaveCount) 5689 IC = MaxInterleaveCount; 5690 else 5691 // Make sure IC is greater than 0. 5692 IC = std::max(1u, IC); 5693 5694 assert(IC > 0 && "Interleave count must be greater than 0."); 5695 5696 // If we did not calculate the cost for VF (because the user selected the VF) 5697 // then we calculate the cost of VF here. 5698 if (LoopCost == 0) 5699 LoopCost = expectedCost(VF).first; 5700 5701 assert(LoopCost && "Non-zero loop cost expected"); 5702 5703 // Interleave if we vectorized this loop and there is a reduction that could 5704 // benefit from interleaving. 5705 if (VF.isVector() && HasReductions) { 5706 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5707 return IC; 5708 } 5709 5710 // Note that if we've already vectorized the loop we will have done the 5711 // runtime check and so interleaving won't require further checks. 5712 bool InterleavingRequiresRuntimePointerCheck = 5713 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5714 5715 // We want to interleave small loops in order to reduce the loop overhead and 5716 // potentially expose ILP opportunities. 5717 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5718 << "LV: IC is " << IC << '\n' 5719 << "LV: VF is " << VF.getKnownMinValue() << '\n'); 5720 const bool AggressivelyInterleaveReductions = 5721 TTI.enableAggressiveInterleaving(HasReductions); 5722 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5723 // We assume that the cost overhead is 1 and we use the cost model 5724 // to estimate the cost of the loop and interleave until the cost of the 5725 // loop overhead is about 5% of the cost of the loop. 5726 unsigned SmallIC = 5727 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5728 5729 // Interleave until store/load ports (estimated by max interleave count) are 5730 // saturated. 5731 unsigned NumStores = Legal->getNumStores(); 5732 unsigned NumLoads = Legal->getNumLoads(); 5733 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5734 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5735 5736 // If we have a scalar reduction (vector reductions are already dealt with 5737 // by this point), we can increase the critical path length if the loop 5738 // we're interleaving is inside another loop. Limit, by default to 2, so the 5739 // critical path only gets increased by one reduction operation. 5740 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5741 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5742 SmallIC = std::min(SmallIC, F); 5743 StoresIC = std::min(StoresIC, F); 5744 LoadsIC = std::min(LoadsIC, F); 5745 } 5746 5747 if (EnableLoadStoreRuntimeInterleave && 5748 std::max(StoresIC, LoadsIC) > SmallIC) { 5749 LLVM_DEBUG( 5750 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5751 return std::max(StoresIC, LoadsIC); 5752 } 5753 5754 // If there are scalar reductions and TTI has enabled aggressive 5755 // interleaving for reductions, we will interleave to expose ILP. 5756 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5757 AggressivelyInterleaveReductions) { 5758 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5759 // Interleave no less than SmallIC but not as aggressive as the normal IC 5760 // to satisfy the rare situation when resources are too limited. 5761 return std::max(IC / 2, SmallIC); 5762 } else { 5763 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5764 return SmallIC; 5765 } 5766 } 5767 5768 // Interleave if this is a large loop (small loops are already dealt with by 5769 // this point) that could benefit from interleaving. 5770 if (AggressivelyInterleaveReductions) { 5771 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5772 return IC; 5773 } 5774 5775 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5776 return 1; 5777 } 5778 5779 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5780 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5781 // This function calculates the register usage by measuring the highest number 5782 // of values that are alive at a single location. Obviously, this is a very 5783 // rough estimation. We scan the loop in a topological order in order and 5784 // assign a number to each instruction. We use RPO to ensure that defs are 5785 // met before their users. We assume that each instruction that has in-loop 5786 // users starts an interval. We record every time that an in-loop value is 5787 // used, so we have a list of the first and last occurrences of each 5788 // instruction. Next, we transpose this data structure into a multi map that 5789 // holds the list of intervals that *end* at a specific location. This multi 5790 // map allows us to perform a linear search. We scan the instructions linearly 5791 // and record each time that a new interval starts, by placing it in a set. 5792 // If we find this value in the multi-map then we remove it from the set. 5793 // The max register usage is the maximum size of the set. 5794 // We also search for instructions that are defined outside the loop, but are 5795 // used inside the loop. We need this number separately from the max-interval 5796 // usage number because when we unroll, loop-invariant values do not take 5797 // more register. 5798 LoopBlocksDFS DFS(TheLoop); 5799 DFS.perform(LI); 5800 5801 RegisterUsage RU; 5802 5803 // Each 'key' in the map opens a new interval. The values 5804 // of the map are the index of the 'last seen' usage of the 5805 // instruction that is the key. 5806 using IntervalMap = DenseMap<Instruction *, unsigned>; 5807 5808 // Maps instruction to its index. 5809 SmallVector<Instruction *, 64> IdxToInstr; 5810 // Marks the end of each interval. 5811 IntervalMap EndPoint; 5812 // Saves the list of instruction indices that are used in the loop. 5813 SmallPtrSet<Instruction *, 8> Ends; 5814 // Saves the list of values that are used in the loop but are 5815 // defined outside the loop, such as arguments and constants. 5816 SmallPtrSet<Value *, 8> LoopInvariants; 5817 5818 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5819 for (Instruction &I : BB->instructionsWithoutDebug()) { 5820 IdxToInstr.push_back(&I); 5821 5822 // Save the end location of each USE. 5823 for (Value *U : I.operands()) { 5824 auto *Instr = dyn_cast<Instruction>(U); 5825 5826 // Ignore non-instruction values such as arguments, constants, etc. 5827 if (!Instr) 5828 continue; 5829 5830 // If this instruction is outside the loop then record it and continue. 5831 if (!TheLoop->contains(Instr)) { 5832 LoopInvariants.insert(Instr); 5833 continue; 5834 } 5835 5836 // Overwrite previous end points. 5837 EndPoint[Instr] = IdxToInstr.size(); 5838 Ends.insert(Instr); 5839 } 5840 } 5841 } 5842 5843 // Saves the list of intervals that end with the index in 'key'. 5844 using InstrList = SmallVector<Instruction *, 2>; 5845 DenseMap<unsigned, InstrList> TransposeEnds; 5846 5847 // Transpose the EndPoints to a list of values that end at each index. 5848 for (auto &Interval : EndPoint) 5849 TransposeEnds[Interval.second].push_back(Interval.first); 5850 5851 SmallPtrSet<Instruction *, 8> OpenIntervals; 5852 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5853 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5854 5855 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5856 5857 // A lambda that gets the register usage for the given type and VF. 5858 const auto &TTICapture = TTI; 5859 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 5860 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5861 return 0U; 5862 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5863 }; 5864 5865 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5866 Instruction *I = IdxToInstr[i]; 5867 5868 // Remove all of the instructions that end at this location. 5869 InstrList &List = TransposeEnds[i]; 5870 for (Instruction *ToRemove : List) 5871 OpenIntervals.erase(ToRemove); 5872 5873 // Ignore instructions that are never used within the loop. 5874 if (!Ends.count(I)) 5875 continue; 5876 5877 // Skip ignored values. 5878 if (ValuesToIgnore.count(I)) 5879 continue; 5880 5881 // For each VF find the maximum usage of registers. 5882 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5883 // Count the number of live intervals. 5884 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5885 5886 if (VFs[j].isScalar()) { 5887 for (auto Inst : OpenIntervals) { 5888 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5889 if (RegUsage.find(ClassID) == RegUsage.end()) 5890 RegUsage[ClassID] = 1; 5891 else 5892 RegUsage[ClassID] += 1; 5893 } 5894 } else { 5895 collectUniformsAndScalars(VFs[j]); 5896 for (auto Inst : OpenIntervals) { 5897 // Skip ignored values for VF > 1. 5898 if (VecValuesToIgnore.count(Inst)) 5899 continue; 5900 if (isScalarAfterVectorization(Inst, VFs[j])) { 5901 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5902 if (RegUsage.find(ClassID) == RegUsage.end()) 5903 RegUsage[ClassID] = 1; 5904 else 5905 RegUsage[ClassID] += 1; 5906 } else { 5907 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5908 if (RegUsage.find(ClassID) == RegUsage.end()) 5909 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5910 else 5911 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5912 } 5913 } 5914 } 5915 5916 for (auto& pair : RegUsage) { 5917 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5918 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5919 else 5920 MaxUsages[j][pair.first] = pair.second; 5921 } 5922 } 5923 5924 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5925 << OpenIntervals.size() << '\n'); 5926 5927 // Add the current instruction to the list of open intervals. 5928 OpenIntervals.insert(I); 5929 } 5930 5931 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5932 SmallMapVector<unsigned, unsigned, 4> Invariant; 5933 5934 for (auto Inst : LoopInvariants) { 5935 unsigned Usage = 5936 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5937 unsigned ClassID = 5938 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 5939 if (Invariant.find(ClassID) == Invariant.end()) 5940 Invariant[ClassID] = Usage; 5941 else 5942 Invariant[ClassID] += Usage; 5943 } 5944 5945 LLVM_DEBUG({ 5946 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5947 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5948 << " item\n"; 5949 for (const auto &pair : MaxUsages[i]) { 5950 dbgs() << "LV(REG): RegisterClass: " 5951 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5952 << " registers\n"; 5953 } 5954 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5955 << " item\n"; 5956 for (const auto &pair : Invariant) { 5957 dbgs() << "LV(REG): RegisterClass: " 5958 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5959 << " registers\n"; 5960 } 5961 }); 5962 5963 RU.LoopInvariantRegs = Invariant; 5964 RU.MaxLocalUsers = MaxUsages[i]; 5965 RUs[i] = RU; 5966 } 5967 5968 return RUs; 5969 } 5970 5971 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5972 // TODO: Cost model for emulated masked load/store is completely 5973 // broken. This hack guides the cost model to use an artificially 5974 // high enough value to practically disable vectorization with such 5975 // operations, except where previously deployed legality hack allowed 5976 // using very low cost values. This is to avoid regressions coming simply 5977 // from moving "masked load/store" check from legality to cost model. 5978 // Masked Load/Gather emulation was previously never allowed. 5979 // Limited number of Masked Store/Scatter emulation was allowed. 5980 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5981 return isa<LoadInst>(I) || 5982 (isa<StoreInst>(I) && 5983 NumPredStores > NumberOfStoresToPredicate); 5984 } 5985 5986 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5987 // If we aren't vectorizing the loop, or if we've already collected the 5988 // instructions to scalarize, there's nothing to do. Collection may already 5989 // have occurred if we have a user-selected VF and are now computing the 5990 // expected cost for interleaving. 5991 if (VF.isScalar() || VF.isZero() || 5992 InstsToScalarize.find(VF) != InstsToScalarize.end()) 5993 return; 5994 5995 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5996 // not profitable to scalarize any instructions, the presence of VF in the 5997 // map will indicate that we've analyzed it already. 5998 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5999 6000 // Find all the instructions that are scalar with predication in the loop and 6001 // determine if it would be better to not if-convert the blocks they are in. 6002 // If so, we also record the instructions to scalarize. 6003 for (BasicBlock *BB : TheLoop->blocks()) { 6004 if (!blockNeedsPredication(BB)) 6005 continue; 6006 for (Instruction &I : *BB) 6007 if (isScalarWithPredication(&I)) { 6008 ScalarCostsTy ScalarCosts; 6009 // Do not apply discount logic if hacked cost is needed 6010 // for emulated masked memrefs. 6011 if (!useEmulatedMaskMemRefHack(&I) && 6012 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6013 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6014 // Remember that BB will remain after vectorization. 6015 PredicatedBBsAfterVectorization.insert(BB); 6016 } 6017 } 6018 } 6019 6020 int LoopVectorizationCostModel::computePredInstDiscount( 6021 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6022 ElementCount VF) { 6023 assert(!isUniformAfterVectorization(PredInst, VF) && 6024 "Instruction marked uniform-after-vectorization will be predicated"); 6025 6026 // Initialize the discount to zero, meaning that the scalar version and the 6027 // vector version cost the same. 6028 int Discount = 0; 6029 6030 // Holds instructions to analyze. The instructions we visit are mapped in 6031 // ScalarCosts. Those instructions are the ones that would be scalarized if 6032 // we find that the scalar version costs less. 6033 SmallVector<Instruction *, 8> Worklist; 6034 6035 // Returns true if the given instruction can be scalarized. 6036 auto canBeScalarized = [&](Instruction *I) -> bool { 6037 // We only attempt to scalarize instructions forming a single-use chain 6038 // from the original predicated block that would otherwise be vectorized. 6039 // Although not strictly necessary, we give up on instructions we know will 6040 // already be scalar to avoid traversing chains that are unlikely to be 6041 // beneficial. 6042 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6043 isScalarAfterVectorization(I, VF)) 6044 return false; 6045 6046 // If the instruction is scalar with predication, it will be analyzed 6047 // separately. We ignore it within the context of PredInst. 6048 if (isScalarWithPredication(I)) 6049 return false; 6050 6051 // If any of the instruction's operands are uniform after vectorization, 6052 // the instruction cannot be scalarized. This prevents, for example, a 6053 // masked load from being scalarized. 6054 // 6055 // We assume we will only emit a value for lane zero of an instruction 6056 // marked uniform after vectorization, rather than VF identical values. 6057 // Thus, if we scalarize an instruction that uses a uniform, we would 6058 // create uses of values corresponding to the lanes we aren't emitting code 6059 // for. This behavior can be changed by allowing getScalarValue to clone 6060 // the lane zero values for uniforms rather than asserting. 6061 for (Use &U : I->operands()) 6062 if (auto *J = dyn_cast<Instruction>(U.get())) 6063 if (isUniformAfterVectorization(J, VF)) 6064 return false; 6065 6066 // Otherwise, we can scalarize the instruction. 6067 return true; 6068 }; 6069 6070 // Compute the expected cost discount from scalarizing the entire expression 6071 // feeding the predicated instruction. We currently only consider expressions 6072 // that are single-use instruction chains. 6073 Worklist.push_back(PredInst); 6074 while (!Worklist.empty()) { 6075 Instruction *I = Worklist.pop_back_val(); 6076 6077 // If we've already analyzed the instruction, there's nothing to do. 6078 if (ScalarCosts.find(I) != ScalarCosts.end()) 6079 continue; 6080 6081 // Compute the cost of the vector instruction. Note that this cost already 6082 // includes the scalarization overhead of the predicated instruction. 6083 unsigned VectorCost = getInstructionCost(I, VF).first; 6084 6085 // Compute the cost of the scalarized instruction. This cost is the cost of 6086 // the instruction as if it wasn't if-converted and instead remained in the 6087 // predicated block. We will scale this cost by block probability after 6088 // computing the scalarization overhead. 6089 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6090 unsigned ScalarCost = 6091 VF.getKnownMinValue() * 6092 getInstructionCost(I, ElementCount::getFixed(1)).first; 6093 6094 // Compute the scalarization overhead of needed insertelement instructions 6095 // and phi nodes. 6096 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6097 ScalarCost += TTI.getScalarizationOverhead( 6098 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6099 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6100 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6101 ScalarCost += 6102 VF.getKnownMinValue() * 6103 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6104 } 6105 6106 // Compute the scalarization overhead of needed extractelement 6107 // instructions. For each of the instruction's operands, if the operand can 6108 // be scalarized, add it to the worklist; otherwise, account for the 6109 // overhead. 6110 for (Use &U : I->operands()) 6111 if (auto *J = dyn_cast<Instruction>(U.get())) { 6112 assert(VectorType::isValidElementType(J->getType()) && 6113 "Instruction has non-scalar type"); 6114 if (canBeScalarized(J)) 6115 Worklist.push_back(J); 6116 else if (needsExtract(J, VF)) { 6117 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6118 ScalarCost += TTI.getScalarizationOverhead( 6119 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6120 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6121 } 6122 } 6123 6124 // Scale the total scalar cost by block probability. 6125 ScalarCost /= getReciprocalPredBlockProb(); 6126 6127 // Compute the discount. A non-negative discount means the vector version 6128 // of the instruction costs more, and scalarizing would be beneficial. 6129 Discount += VectorCost - ScalarCost; 6130 ScalarCosts[I] = ScalarCost; 6131 } 6132 6133 return Discount; 6134 } 6135 6136 LoopVectorizationCostModel::VectorizationCostTy 6137 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6138 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6139 VectorizationCostTy Cost; 6140 6141 // For each block. 6142 for (BasicBlock *BB : TheLoop->blocks()) { 6143 VectorizationCostTy BlockCost; 6144 6145 // For each instruction in the old loop. 6146 for (Instruction &I : BB->instructionsWithoutDebug()) { 6147 // Skip ignored values. 6148 if (ValuesToIgnore.count(&I) || 6149 (VF.isVector() && VecValuesToIgnore.count(&I))) 6150 continue; 6151 6152 VectorizationCostTy C = getInstructionCost(&I, VF); 6153 6154 // Check if we should override the cost. 6155 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6156 C.first = ForceTargetInstructionCost; 6157 6158 BlockCost.first += C.first; 6159 BlockCost.second |= C.second; 6160 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6161 << " for VF " << VF << " For instruction: " << I 6162 << '\n'); 6163 } 6164 6165 // If we are vectorizing a predicated block, it will have been 6166 // if-converted. This means that the block's instructions (aside from 6167 // stores and instructions that may divide by zero) will now be 6168 // unconditionally executed. For the scalar case, we may not always execute 6169 // the predicated block. Thus, scale the block's cost by the probability of 6170 // executing it. 6171 if (VF.isScalar() && blockNeedsPredication(BB)) 6172 BlockCost.first /= getReciprocalPredBlockProb(); 6173 6174 Cost.first += BlockCost.first; 6175 Cost.second |= BlockCost.second; 6176 } 6177 6178 return Cost; 6179 } 6180 6181 /// Gets Address Access SCEV after verifying that the access pattern 6182 /// is loop invariant except the induction variable dependence. 6183 /// 6184 /// This SCEV can be sent to the Target in order to estimate the address 6185 /// calculation cost. 6186 static const SCEV *getAddressAccessSCEV( 6187 Value *Ptr, 6188 LoopVectorizationLegality *Legal, 6189 PredicatedScalarEvolution &PSE, 6190 const Loop *TheLoop) { 6191 6192 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6193 if (!Gep) 6194 return nullptr; 6195 6196 // We are looking for a gep with all loop invariant indices except for one 6197 // which should be an induction variable. 6198 auto SE = PSE.getSE(); 6199 unsigned NumOperands = Gep->getNumOperands(); 6200 for (unsigned i = 1; i < NumOperands; ++i) { 6201 Value *Opd = Gep->getOperand(i); 6202 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6203 !Legal->isInductionVariable(Opd)) 6204 return nullptr; 6205 } 6206 6207 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6208 return PSE.getSCEV(Ptr); 6209 } 6210 6211 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6212 return Legal->hasStride(I->getOperand(0)) || 6213 Legal->hasStride(I->getOperand(1)); 6214 } 6215 6216 unsigned 6217 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6218 ElementCount VF) { 6219 assert(VF.isVector() && 6220 "Scalarization cost of instruction implies vectorization."); 6221 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6222 Type *ValTy = getMemInstValueType(I); 6223 auto SE = PSE.getSE(); 6224 6225 unsigned AS = getLoadStoreAddressSpace(I); 6226 Value *Ptr = getLoadStorePointerOperand(I); 6227 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6228 6229 // Figure out whether the access is strided and get the stride value 6230 // if it's known in compile time 6231 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6232 6233 // Get the cost of the scalar memory instruction and address computation. 6234 unsigned Cost = 6235 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6236 6237 // Don't pass *I here, since it is scalar but will actually be part of a 6238 // vectorized loop where the user of it is a vectorized instruction. 6239 const Align Alignment = getLoadStoreAlignment(I); 6240 Cost += VF.getKnownMinValue() * 6241 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6242 AS, TTI::TCK_RecipThroughput); 6243 6244 // Get the overhead of the extractelement and insertelement instructions 6245 // we might create due to scalarization. 6246 Cost += getScalarizationOverhead(I, VF); 6247 6248 // If we have a predicated store, it may not be executed for each vector 6249 // lane. Scale the cost by the probability of executing the predicated 6250 // block. 6251 if (isPredicatedInst(I)) { 6252 Cost /= getReciprocalPredBlockProb(); 6253 6254 if (useEmulatedMaskMemRefHack(I)) 6255 // Artificially setting to a high enough value to practically disable 6256 // vectorization with such operations. 6257 Cost = 3000000; 6258 } 6259 6260 return Cost; 6261 } 6262 6263 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6264 ElementCount VF) { 6265 Type *ValTy = getMemInstValueType(I); 6266 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6267 Value *Ptr = getLoadStorePointerOperand(I); 6268 unsigned AS = getLoadStoreAddressSpace(I); 6269 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6270 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6271 6272 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6273 "Stride should be 1 or -1 for consecutive memory access"); 6274 const Align Alignment = getLoadStoreAlignment(I); 6275 unsigned Cost = 0; 6276 if (Legal->isMaskRequired(I)) 6277 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6278 CostKind); 6279 else 6280 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6281 CostKind, I); 6282 6283 bool Reverse = ConsecutiveStride < 0; 6284 if (Reverse) 6285 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6286 return Cost; 6287 } 6288 6289 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6290 ElementCount VF) { 6291 assert(Legal->isUniformMemOp(*I)); 6292 6293 Type *ValTy = getMemInstValueType(I); 6294 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6295 const Align Alignment = getLoadStoreAlignment(I); 6296 unsigned AS = getLoadStoreAddressSpace(I); 6297 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6298 if (isa<LoadInst>(I)) { 6299 return TTI.getAddressComputationCost(ValTy) + 6300 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6301 CostKind) + 6302 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6303 } 6304 StoreInst *SI = cast<StoreInst>(I); 6305 6306 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6307 return TTI.getAddressComputationCost(ValTy) + 6308 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6309 CostKind) + 6310 (isLoopInvariantStoreValue 6311 ? 0 6312 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6313 VF.getKnownMinValue() - 1)); 6314 } 6315 6316 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6317 ElementCount VF) { 6318 Type *ValTy = getMemInstValueType(I); 6319 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6320 const Align Alignment = getLoadStoreAlignment(I); 6321 const Value *Ptr = getLoadStorePointerOperand(I); 6322 6323 return TTI.getAddressComputationCost(VectorTy) + 6324 TTI.getGatherScatterOpCost( 6325 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6326 TargetTransformInfo::TCK_RecipThroughput, I); 6327 } 6328 6329 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6330 ElementCount VF) { 6331 Type *ValTy = getMemInstValueType(I); 6332 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6333 unsigned AS = getLoadStoreAddressSpace(I); 6334 6335 auto Group = getInterleavedAccessGroup(I); 6336 assert(Group && "Fail to get an interleaved access group."); 6337 6338 unsigned InterleaveFactor = Group->getFactor(); 6339 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6340 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6341 6342 // Holds the indices of existing members in an interleaved load group. 6343 // An interleaved store group doesn't need this as it doesn't allow gaps. 6344 SmallVector<unsigned, 4> Indices; 6345 if (isa<LoadInst>(I)) { 6346 for (unsigned i = 0; i < InterleaveFactor; i++) 6347 if (Group->getMember(i)) 6348 Indices.push_back(i); 6349 } 6350 6351 // Calculate the cost of the whole interleaved group. 6352 bool UseMaskForGaps = 6353 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6354 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6355 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6356 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6357 6358 if (Group->isReverse()) { 6359 // TODO: Add support for reversed masked interleaved access. 6360 assert(!Legal->isMaskRequired(I) && 6361 "Reverse masked interleaved access not supported."); 6362 Cost += Group->getNumMembers() * 6363 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6364 } 6365 return Cost; 6366 } 6367 6368 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6369 ElementCount VF) { 6370 // Calculate scalar cost only. Vectorization cost should be ready at this 6371 // moment. 6372 if (VF.isScalar()) { 6373 Type *ValTy = getMemInstValueType(I); 6374 const Align Alignment = getLoadStoreAlignment(I); 6375 unsigned AS = getLoadStoreAddressSpace(I); 6376 6377 return TTI.getAddressComputationCost(ValTy) + 6378 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6379 TTI::TCK_RecipThroughput, I); 6380 } 6381 return getWideningCost(I, VF); 6382 } 6383 6384 LoopVectorizationCostModel::VectorizationCostTy 6385 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6386 ElementCount VF) { 6387 assert(!VF.isScalable() && 6388 "the cost model is not yet implemented for scalable vectorization"); 6389 // If we know that this instruction will remain uniform, check the cost of 6390 // the scalar version. 6391 if (isUniformAfterVectorization(I, VF)) 6392 VF = ElementCount::getFixed(1); 6393 6394 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6395 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6396 6397 // Forced scalars do not have any scalarization overhead. 6398 auto ForcedScalar = ForcedScalars.find(VF); 6399 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6400 auto InstSet = ForcedScalar->second; 6401 if (InstSet.count(I)) 6402 return VectorizationCostTy( 6403 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6404 VF.getKnownMinValue()), 6405 false); 6406 } 6407 6408 Type *VectorTy; 6409 unsigned C = getInstructionCost(I, VF, VectorTy); 6410 6411 bool TypeNotScalarized = 6412 VF.isVector() && VectorTy->isVectorTy() && 6413 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6414 return VectorizationCostTy(C, TypeNotScalarized); 6415 } 6416 6417 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6418 ElementCount VF) { 6419 6420 assert(!VF.isScalable() && 6421 "cannot compute scalarization overhead for scalable vectorization"); 6422 if (VF.isScalar()) 6423 return 0; 6424 6425 unsigned Cost = 0; 6426 Type *RetTy = ToVectorTy(I->getType(), VF); 6427 if (!RetTy->isVoidTy() && 6428 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6429 Cost += TTI.getScalarizationOverhead( 6430 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6431 true, false); 6432 6433 // Some targets keep addresses scalar. 6434 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6435 return Cost; 6436 6437 // Some targets support efficient element stores. 6438 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6439 return Cost; 6440 6441 // Collect operands to consider. 6442 CallInst *CI = dyn_cast<CallInst>(I); 6443 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6444 6445 // Skip operands that do not require extraction/scalarization and do not incur 6446 // any overhead. 6447 return Cost + TTI.getOperandsScalarizationOverhead( 6448 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6449 } 6450 6451 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6452 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6453 if (VF.isScalar()) 6454 return; 6455 NumPredStores = 0; 6456 for (BasicBlock *BB : TheLoop->blocks()) { 6457 // For each instruction in the old loop. 6458 for (Instruction &I : *BB) { 6459 Value *Ptr = getLoadStorePointerOperand(&I); 6460 if (!Ptr) 6461 continue; 6462 6463 // TODO: We should generate better code and update the cost model for 6464 // predicated uniform stores. Today they are treated as any other 6465 // predicated store (see added test cases in 6466 // invariant-store-vectorization.ll). 6467 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6468 NumPredStores++; 6469 6470 if (Legal->isUniformMemOp(I)) { 6471 // TODO: Avoid replicating loads and stores instead of 6472 // relying on instcombine to remove them. 6473 // Load: Scalar load + broadcast 6474 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6475 unsigned Cost = getUniformMemOpCost(&I, VF); 6476 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6477 continue; 6478 } 6479 6480 // We assume that widening is the best solution when possible. 6481 if (memoryInstructionCanBeWidened(&I, VF)) { 6482 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6483 int ConsecutiveStride = 6484 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6485 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6486 "Expected consecutive stride."); 6487 InstWidening Decision = 6488 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6489 setWideningDecision(&I, VF, Decision, Cost); 6490 continue; 6491 } 6492 6493 // Choose between Interleaving, Gather/Scatter or Scalarization. 6494 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6495 unsigned NumAccesses = 1; 6496 if (isAccessInterleaved(&I)) { 6497 auto Group = getInterleavedAccessGroup(&I); 6498 assert(Group && "Fail to get an interleaved access group."); 6499 6500 // Make one decision for the whole group. 6501 if (getWideningDecision(&I, VF) != CM_Unknown) 6502 continue; 6503 6504 NumAccesses = Group->getNumMembers(); 6505 if (interleavedAccessCanBeWidened(&I, VF)) 6506 InterleaveCost = getInterleaveGroupCost(&I, VF); 6507 } 6508 6509 unsigned GatherScatterCost = 6510 isLegalGatherOrScatter(&I) 6511 ? getGatherScatterCost(&I, VF) * NumAccesses 6512 : std::numeric_limits<unsigned>::max(); 6513 6514 unsigned ScalarizationCost = 6515 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6516 6517 // Choose better solution for the current VF, 6518 // write down this decision and use it during vectorization. 6519 unsigned Cost; 6520 InstWidening Decision; 6521 if (InterleaveCost <= GatherScatterCost && 6522 InterleaveCost < ScalarizationCost) { 6523 Decision = CM_Interleave; 6524 Cost = InterleaveCost; 6525 } else if (GatherScatterCost < ScalarizationCost) { 6526 Decision = CM_GatherScatter; 6527 Cost = GatherScatterCost; 6528 } else { 6529 Decision = CM_Scalarize; 6530 Cost = ScalarizationCost; 6531 } 6532 // If the instructions belongs to an interleave group, the whole group 6533 // receives the same decision. The whole group receives the cost, but 6534 // the cost will actually be assigned to one instruction. 6535 if (auto Group = getInterleavedAccessGroup(&I)) 6536 setWideningDecision(Group, VF, Decision, Cost); 6537 else 6538 setWideningDecision(&I, VF, Decision, Cost); 6539 } 6540 } 6541 6542 // Make sure that any load of address and any other address computation 6543 // remains scalar unless there is gather/scatter support. This avoids 6544 // inevitable extracts into address registers, and also has the benefit of 6545 // activating LSR more, since that pass can't optimize vectorized 6546 // addresses. 6547 if (TTI.prefersVectorizedAddressing()) 6548 return; 6549 6550 // Start with all scalar pointer uses. 6551 SmallPtrSet<Instruction *, 8> AddrDefs; 6552 for (BasicBlock *BB : TheLoop->blocks()) 6553 for (Instruction &I : *BB) { 6554 Instruction *PtrDef = 6555 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6556 if (PtrDef && TheLoop->contains(PtrDef) && 6557 getWideningDecision(&I, VF) != CM_GatherScatter) 6558 AddrDefs.insert(PtrDef); 6559 } 6560 6561 // Add all instructions used to generate the addresses. 6562 SmallVector<Instruction *, 4> Worklist; 6563 for (auto *I : AddrDefs) 6564 Worklist.push_back(I); 6565 while (!Worklist.empty()) { 6566 Instruction *I = Worklist.pop_back_val(); 6567 for (auto &Op : I->operands()) 6568 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6569 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6570 AddrDefs.insert(InstOp).second) 6571 Worklist.push_back(InstOp); 6572 } 6573 6574 for (auto *I : AddrDefs) { 6575 if (isa<LoadInst>(I)) { 6576 // Setting the desired widening decision should ideally be handled in 6577 // by cost functions, but since this involves the task of finding out 6578 // if the loaded register is involved in an address computation, it is 6579 // instead changed here when we know this is the case. 6580 InstWidening Decision = getWideningDecision(I, VF); 6581 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6582 // Scalarize a widened load of address. 6583 setWideningDecision( 6584 I, VF, CM_Scalarize, 6585 (VF.getKnownMinValue() * 6586 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6587 else if (auto Group = getInterleavedAccessGroup(I)) { 6588 // Scalarize an interleave group of address loads. 6589 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6590 if (Instruction *Member = Group->getMember(I)) 6591 setWideningDecision( 6592 Member, VF, CM_Scalarize, 6593 (VF.getKnownMinValue() * 6594 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6595 } 6596 } 6597 } else 6598 // Make sure I gets scalarized and a cost estimate without 6599 // scalarization overhead. 6600 ForcedScalars[VF].insert(I); 6601 } 6602 } 6603 6604 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6605 ElementCount VF, 6606 Type *&VectorTy) { 6607 Type *RetTy = I->getType(); 6608 if (canTruncateToMinimalBitwidth(I, VF)) 6609 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6610 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6611 auto SE = PSE.getSE(); 6612 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6613 6614 // TODO: We need to estimate the cost of intrinsic calls. 6615 switch (I->getOpcode()) { 6616 case Instruction::GetElementPtr: 6617 // We mark this instruction as zero-cost because the cost of GEPs in 6618 // vectorized code depends on whether the corresponding memory instruction 6619 // is scalarized or not. Therefore, we handle GEPs with the memory 6620 // instruction cost. 6621 return 0; 6622 case Instruction::Br: { 6623 // In cases of scalarized and predicated instructions, there will be VF 6624 // predicated blocks in the vectorized loop. Each branch around these 6625 // blocks requires also an extract of its vector compare i1 element. 6626 bool ScalarPredicatedBB = false; 6627 BranchInst *BI = cast<BranchInst>(I); 6628 if (VF.isVector() && BI->isConditional() && 6629 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6630 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6631 ScalarPredicatedBB = true; 6632 6633 if (ScalarPredicatedBB) { 6634 // Return cost for branches around scalarized and predicated blocks. 6635 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6636 auto *Vec_i1Ty = 6637 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6638 return (TTI.getScalarizationOverhead( 6639 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6640 false, true) + 6641 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6642 VF.getKnownMinValue())); 6643 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6644 // The back-edge branch will remain, as will all scalar branches. 6645 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6646 else 6647 // This branch will be eliminated by if-conversion. 6648 return 0; 6649 // Note: We currently assume zero cost for an unconditional branch inside 6650 // a predicated block since it will become a fall-through, although we 6651 // may decide in the future to call TTI for all branches. 6652 } 6653 case Instruction::PHI: { 6654 auto *Phi = cast<PHINode>(I); 6655 6656 // First-order recurrences are replaced by vector shuffles inside the loop. 6657 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6658 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6659 return TTI.getShuffleCost( 6660 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6661 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6662 6663 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6664 // converted into select instructions. We require N - 1 selects per phi 6665 // node, where N is the number of incoming values. 6666 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 6667 return (Phi->getNumIncomingValues() - 1) * 6668 TTI.getCmpSelInstrCost( 6669 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6670 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6671 CmpInst::BAD_ICMP_PREDICATE, CostKind); 6672 6673 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6674 } 6675 case Instruction::UDiv: 6676 case Instruction::SDiv: 6677 case Instruction::URem: 6678 case Instruction::SRem: 6679 // If we have a predicated instruction, it may not be executed for each 6680 // vector lane. Get the scalarization cost and scale this amount by the 6681 // probability of executing the predicated block. If the instruction is not 6682 // predicated, we fall through to the next case. 6683 if (VF.isVector() && isScalarWithPredication(I)) { 6684 unsigned Cost = 0; 6685 6686 // These instructions have a non-void type, so account for the phi nodes 6687 // that we will create. This cost is likely to be zero. The phi node 6688 // cost, if any, should be scaled by the block probability because it 6689 // models a copy at the end of each predicated block. 6690 Cost += VF.getKnownMinValue() * 6691 TTI.getCFInstrCost(Instruction::PHI, CostKind); 6692 6693 // The cost of the non-predicated instruction. 6694 Cost += VF.getKnownMinValue() * 6695 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6696 6697 // The cost of insertelement and extractelement instructions needed for 6698 // scalarization. 6699 Cost += getScalarizationOverhead(I, VF); 6700 6701 // Scale the cost by the probability of executing the predicated blocks. 6702 // This assumes the predicated block for each vector lane is equally 6703 // likely. 6704 return Cost / getReciprocalPredBlockProb(); 6705 } 6706 LLVM_FALLTHROUGH; 6707 case Instruction::Add: 6708 case Instruction::FAdd: 6709 case Instruction::Sub: 6710 case Instruction::FSub: 6711 case Instruction::Mul: 6712 case Instruction::FMul: 6713 case Instruction::FDiv: 6714 case Instruction::FRem: 6715 case Instruction::Shl: 6716 case Instruction::LShr: 6717 case Instruction::AShr: 6718 case Instruction::And: 6719 case Instruction::Or: 6720 case Instruction::Xor: { 6721 // Since we will replace the stride by 1 the multiplication should go away. 6722 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6723 return 0; 6724 // Certain instructions can be cheaper to vectorize if they have a constant 6725 // second vector operand. One example of this are shifts on x86. 6726 Value *Op2 = I->getOperand(1); 6727 TargetTransformInfo::OperandValueProperties Op2VP; 6728 TargetTransformInfo::OperandValueKind Op2VK = 6729 TTI.getOperandInfo(Op2, Op2VP); 6730 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6731 Op2VK = TargetTransformInfo::OK_UniformValue; 6732 6733 SmallVector<const Value *, 4> Operands(I->operand_values()); 6734 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6735 return N * TTI.getArithmeticInstrCost( 6736 I->getOpcode(), VectorTy, CostKind, 6737 TargetTransformInfo::OK_AnyValue, 6738 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6739 } 6740 case Instruction::FNeg: { 6741 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6742 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6743 return N * TTI.getArithmeticInstrCost( 6744 I->getOpcode(), VectorTy, CostKind, 6745 TargetTransformInfo::OK_AnyValue, 6746 TargetTransformInfo::OK_AnyValue, 6747 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6748 I->getOperand(0), I); 6749 } 6750 case Instruction::Select: { 6751 SelectInst *SI = cast<SelectInst>(I); 6752 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6753 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6754 Type *CondTy = SI->getCondition()->getType(); 6755 if (!ScalarCond) { 6756 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6757 CondTy = VectorType::get(CondTy, VF); 6758 } 6759 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6760 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6761 } 6762 case Instruction::ICmp: 6763 case Instruction::FCmp: { 6764 Type *ValTy = I->getOperand(0)->getType(); 6765 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6766 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6767 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6768 VectorTy = ToVectorTy(ValTy, VF); 6769 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 6770 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6771 } 6772 case Instruction::Store: 6773 case Instruction::Load: { 6774 ElementCount Width = VF; 6775 if (Width.isVector()) { 6776 InstWidening Decision = getWideningDecision(I, Width); 6777 assert(Decision != CM_Unknown && 6778 "CM decision should be taken at this point"); 6779 if (Decision == CM_Scalarize) 6780 Width = ElementCount::getFixed(1); 6781 } 6782 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6783 return getMemoryInstructionCost(I, VF); 6784 } 6785 case Instruction::ZExt: 6786 case Instruction::SExt: 6787 case Instruction::FPToUI: 6788 case Instruction::FPToSI: 6789 case Instruction::FPExt: 6790 case Instruction::PtrToInt: 6791 case Instruction::IntToPtr: 6792 case Instruction::SIToFP: 6793 case Instruction::UIToFP: 6794 case Instruction::Trunc: 6795 case Instruction::FPTrunc: 6796 case Instruction::BitCast: { 6797 // Computes the CastContextHint from a Load/Store instruction. 6798 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6799 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6800 "Expected a load or a store!"); 6801 6802 if (VF.isScalar() || !TheLoop->contains(I)) 6803 return TTI::CastContextHint::Normal; 6804 6805 switch (getWideningDecision(I, VF)) { 6806 case LoopVectorizationCostModel::CM_GatherScatter: 6807 return TTI::CastContextHint::GatherScatter; 6808 case LoopVectorizationCostModel::CM_Interleave: 6809 return TTI::CastContextHint::Interleave; 6810 case LoopVectorizationCostModel::CM_Scalarize: 6811 case LoopVectorizationCostModel::CM_Widen: 6812 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6813 : TTI::CastContextHint::Normal; 6814 case LoopVectorizationCostModel::CM_Widen_Reverse: 6815 return TTI::CastContextHint::Reversed; 6816 case LoopVectorizationCostModel::CM_Unknown: 6817 llvm_unreachable("Instr did not go through cost modelling?"); 6818 } 6819 6820 llvm_unreachable("Unhandled case!"); 6821 }; 6822 6823 unsigned Opcode = I->getOpcode(); 6824 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6825 // For Trunc, the context is the only user, which must be a StoreInst. 6826 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6827 if (I->hasOneUse()) 6828 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6829 CCH = ComputeCCH(Store); 6830 } 6831 // For Z/Sext, the context is the operand, which must be a LoadInst. 6832 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6833 Opcode == Instruction::FPExt) { 6834 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6835 CCH = ComputeCCH(Load); 6836 } 6837 6838 // We optimize the truncation of induction variables having constant 6839 // integer steps. The cost of these truncations is the same as the scalar 6840 // operation. 6841 if (isOptimizableIVTruncate(I, VF)) { 6842 auto *Trunc = cast<TruncInst>(I); 6843 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6844 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6845 } 6846 6847 Type *SrcScalarTy = I->getOperand(0)->getType(); 6848 Type *SrcVecTy = 6849 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6850 if (canTruncateToMinimalBitwidth(I, VF)) { 6851 // This cast is going to be shrunk. This may remove the cast or it might 6852 // turn it into slightly different cast. For example, if MinBW == 16, 6853 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6854 // 6855 // Calculate the modified src and dest types. 6856 Type *MinVecTy = VectorTy; 6857 if (Opcode == Instruction::Trunc) { 6858 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6859 VectorTy = 6860 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6861 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 6862 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6863 VectorTy = 6864 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6865 } 6866 } 6867 6868 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 6869 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6870 return N * 6871 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6872 } 6873 case Instruction::Call: { 6874 bool NeedToScalarize; 6875 CallInst *CI = cast<CallInst>(I); 6876 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6877 if (getVectorIntrinsicIDForCall(CI, TLI)) 6878 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6879 return CallCost; 6880 } 6881 case Instruction::ExtractValue: 6882 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 6883 default: 6884 // The cost of executing VF copies of the scalar instruction. This opcode 6885 // is unknown. Assume that it is the same as 'mul'. 6886 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 6887 Instruction::Mul, VectorTy, CostKind) + 6888 getScalarizationOverhead(I, VF); 6889 } // end of switch. 6890 } 6891 6892 char LoopVectorize::ID = 0; 6893 6894 static const char lv_name[] = "Loop Vectorization"; 6895 6896 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6897 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6898 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6899 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6900 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6901 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6902 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6903 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6904 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6905 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6906 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6907 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6908 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6909 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6910 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6911 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6912 6913 namespace llvm { 6914 6915 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6916 6917 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6918 bool VectorizeOnlyWhenForced) { 6919 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6920 } 6921 6922 } // end namespace llvm 6923 6924 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6925 // Check if the pointer operand of a load or store instruction is 6926 // consecutive. 6927 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6928 return Legal->isConsecutivePtr(Ptr); 6929 return false; 6930 } 6931 6932 void LoopVectorizationCostModel::collectValuesToIgnore() { 6933 // Ignore ephemeral values. 6934 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6935 6936 // Ignore type-promoting instructions we identified during reduction 6937 // detection. 6938 for (auto &Reduction : Legal->getReductionVars()) { 6939 RecurrenceDescriptor &RedDes = Reduction.second; 6940 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6941 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6942 } 6943 // Ignore type-casting instructions we identified during induction 6944 // detection. 6945 for (auto &Induction : Legal->getInductionVars()) { 6946 InductionDescriptor &IndDes = Induction.second; 6947 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6948 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6949 } 6950 } 6951 6952 void LoopVectorizationCostModel::collectInLoopReductions() { 6953 for (auto &Reduction : Legal->getReductionVars()) { 6954 PHINode *Phi = Reduction.first; 6955 RecurrenceDescriptor &RdxDesc = Reduction.second; 6956 6957 // We don't collect reductions that are type promoted (yet). 6958 if (RdxDesc.getRecurrenceType() != Phi->getType()) 6959 continue; 6960 6961 // If the target would prefer this reduction to happen "in-loop", then we 6962 // want to record it as such. 6963 unsigned Opcode = RdxDesc.getRecurrenceBinOp(); 6964 if (!PreferInLoopReductions && 6965 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 6966 TargetTransformInfo::ReductionFlags())) 6967 continue; 6968 6969 // Check that we can correctly put the reductions into the loop, by 6970 // finding the chain of operations that leads from the phi to the loop 6971 // exit value. 6972 SmallVector<Instruction *, 4> ReductionOperations = 6973 RdxDesc.getReductionOpChain(Phi, TheLoop); 6974 bool InLoop = !ReductionOperations.empty(); 6975 if (InLoop) 6976 InLoopReductionChains[Phi] = ReductionOperations; 6977 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 6978 << " reduction for phi: " << *Phi << "\n"); 6979 } 6980 } 6981 6982 // TODO: we could return a pair of values that specify the max VF and 6983 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6984 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6985 // doesn't have a cost model that can choose which plan to execute if 6986 // more than one is generated. 6987 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6988 LoopVectorizationCostModel &CM) { 6989 unsigned WidestType; 6990 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6991 return WidestVectorRegBits / WidestType; 6992 } 6993 6994 VectorizationFactor 6995 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 6996 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 6997 ElementCount VF = UserVF; 6998 // Outer loop handling: They may require CFG and instruction level 6999 // transformations before even evaluating whether vectorization is profitable. 7000 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7001 // the vectorization pipeline. 7002 if (!OrigLoop->isInnermost()) { 7003 // If the user doesn't provide a vectorization factor, determine a 7004 // reasonable one. 7005 if (UserVF.isZero()) { 7006 VF = ElementCount::getFixed( 7007 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7008 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7009 7010 // Make sure we have a VF > 1 for stress testing. 7011 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7012 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7013 << "overriding computed VF.\n"); 7014 VF = ElementCount::getFixed(4); 7015 } 7016 } 7017 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7018 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7019 "VF needs to be a power of two"); 7020 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7021 << "VF " << VF << " to build VPlans.\n"); 7022 buildVPlans(VF, VF); 7023 7024 // For VPlan build stress testing, we bail out after VPlan construction. 7025 if (VPlanBuildStressTest) 7026 return VectorizationFactor::Disabled(); 7027 7028 return {VF, 0 /*Cost*/}; 7029 } 7030 7031 LLVM_DEBUG( 7032 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7033 "VPlan-native path.\n"); 7034 return VectorizationFactor::Disabled(); 7035 } 7036 7037 Optional<VectorizationFactor> 7038 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7039 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 7040 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7041 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7042 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7043 return None; 7044 7045 // Invalidate interleave groups if all blocks of loop will be predicated. 7046 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7047 !useMaskedInterleavedAccesses(*TTI)) { 7048 LLVM_DEBUG( 7049 dbgs() 7050 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7051 "which requires masked-interleaved support.\n"); 7052 if (CM.InterleaveInfo.invalidateGroups()) 7053 // Invalidating interleave groups also requires invalidating all decisions 7054 // based on them, which includes widening decisions and uniform and scalar 7055 // values. 7056 CM.invalidateCostModelingDecisions(); 7057 } 7058 7059 ElementCount MaxVF = MaybeMaxVF.getValue(); 7060 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7061 7062 if (!UserVF.isZero() && UserVF.getFixedValue() <= MaxVF.getFixedValue()) { 7063 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7064 assert(isPowerOf2_32(UserVF.getFixedValue()) && 7065 "VF needs to be a power of two"); 7066 // Collect the instructions (and their associated costs) that will be more 7067 // profitable to scalarize. 7068 CM.selectUserVectorizationFactor(UserVF); 7069 CM.collectInLoopReductions(); 7070 buildVPlansWithVPRecipes(UserVF, UserVF); 7071 LLVM_DEBUG(printPlans(dbgs())); 7072 return {{UserVF, 0}}; 7073 } 7074 7075 for (ElementCount VF = ElementCount::getFixed(1); 7076 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7077 // Collect Uniform and Scalar instructions after vectorization with VF. 7078 CM.collectUniformsAndScalars(VF); 7079 7080 // Collect the instructions (and their associated costs) that will be more 7081 // profitable to scalarize. 7082 if (VF.isVector()) 7083 CM.collectInstsToScalarize(VF); 7084 } 7085 7086 CM.collectInLoopReductions(); 7087 7088 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7089 LLVM_DEBUG(printPlans(dbgs())); 7090 if (MaxVF.isScalar()) 7091 return VectorizationFactor::Disabled(); 7092 7093 // Select the optimal vectorization factor. 7094 return CM.selectVectorizationFactor(MaxVF); 7095 } 7096 7097 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7098 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7099 << '\n'); 7100 BestVF = VF; 7101 BestUF = UF; 7102 7103 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7104 return !Plan->hasVF(VF); 7105 }); 7106 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7107 } 7108 7109 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7110 DominatorTree *DT) { 7111 // Perform the actual loop transformation. 7112 7113 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7114 VPCallbackILV CallbackILV(ILV); 7115 7116 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7117 7118 VPTransformState State{*BestVF, BestUF, LI, 7119 DT, ILV.Builder, ILV.VectorLoopValueMap, 7120 &ILV, CallbackILV}; 7121 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7122 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7123 State.CanonicalIV = ILV.Induction; 7124 7125 //===------------------------------------------------===// 7126 // 7127 // Notice: any optimization or new instruction that go 7128 // into the code below should also be implemented in 7129 // the cost-model. 7130 // 7131 //===------------------------------------------------===// 7132 7133 // 2. Copy and widen instructions from the old loop into the new loop. 7134 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7135 VPlans.front()->execute(&State); 7136 7137 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7138 // predication, updating analyses. 7139 ILV.fixVectorizedLoop(); 7140 } 7141 7142 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7143 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7144 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7145 7146 // We create new control-flow for the vectorized loop, so the original 7147 // condition will be dead after vectorization if it's only used by the 7148 // branch. 7149 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7150 if (Cmp && Cmp->hasOneUse()) { 7151 DeadInstructions.insert(Cmp); 7152 7153 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7154 for (Value *Op : Cmp->operands()) { 7155 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7156 DeadInstructions.insert(cast<Instruction>(Op)); 7157 } 7158 } 7159 7160 // We create new "steps" for induction variable updates to which the original 7161 // induction variables map. An original update instruction will be dead if 7162 // all its users except the induction variable are dead. 7163 for (auto &Induction : Legal->getInductionVars()) { 7164 PHINode *Ind = Induction.first; 7165 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7166 7167 // If the tail is to be folded by masking, the primary induction variable, 7168 // if exists, isn't dead: it will be used for masking. Don't kill it. 7169 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7170 continue; 7171 7172 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7173 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7174 })) 7175 DeadInstructions.insert(IndUpdate); 7176 7177 // We record as "Dead" also the type-casting instructions we had identified 7178 // during induction analysis. We don't need any handling for them in the 7179 // vectorized loop because we have proven that, under a proper runtime 7180 // test guarding the vectorized loop, the value of the phi, and the casted 7181 // value of the phi, are the same. The last instruction in this casting chain 7182 // will get its scalar/vector/widened def from the scalar/vector/widened def 7183 // of the respective phi node. Any other casts in the induction def-use chain 7184 // have no other uses outside the phi update chain, and will be ignored. 7185 InductionDescriptor &IndDes = Induction.second; 7186 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7187 DeadInstructions.insert(Casts.begin(), Casts.end()); 7188 } 7189 } 7190 7191 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7192 7193 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7194 7195 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7196 Instruction::BinaryOps BinOp) { 7197 // When unrolling and the VF is 1, we only need to add a simple scalar. 7198 Type *Ty = Val->getType(); 7199 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7200 7201 if (Ty->isFloatingPointTy()) { 7202 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7203 7204 // Floating point operations had to be 'fast' to enable the unrolling. 7205 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7206 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7207 } 7208 Constant *C = ConstantInt::get(Ty, StartIdx); 7209 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7210 } 7211 7212 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7213 SmallVector<Metadata *, 4> MDs; 7214 // Reserve first location for self reference to the LoopID metadata node. 7215 MDs.push_back(nullptr); 7216 bool IsUnrollMetadata = false; 7217 MDNode *LoopID = L->getLoopID(); 7218 if (LoopID) { 7219 // First find existing loop unrolling disable metadata. 7220 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7221 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7222 if (MD) { 7223 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7224 IsUnrollMetadata = 7225 S && S->getString().startswith("llvm.loop.unroll.disable"); 7226 } 7227 MDs.push_back(LoopID->getOperand(i)); 7228 } 7229 } 7230 7231 if (!IsUnrollMetadata) { 7232 // Add runtime unroll disable metadata. 7233 LLVMContext &Context = L->getHeader()->getContext(); 7234 SmallVector<Metadata *, 1> DisableOperands; 7235 DisableOperands.push_back( 7236 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7237 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7238 MDs.push_back(DisableNode); 7239 MDNode *NewLoopID = MDNode::get(Context, MDs); 7240 // Set operand 0 to refer to the loop id itself. 7241 NewLoopID->replaceOperandWith(0, NewLoopID); 7242 L->setLoopID(NewLoopID); 7243 } 7244 } 7245 7246 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7247 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7248 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7249 bool PredicateAtRangeStart = Predicate(Range.Start); 7250 7251 for (ElementCount TmpVF = Range.Start * 2; 7252 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7253 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7254 Range.End = TmpVF; 7255 break; 7256 } 7257 7258 return PredicateAtRangeStart; 7259 } 7260 7261 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7262 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7263 /// of VF's starting at a given VF and extending it as much as possible. Each 7264 /// vectorization decision can potentially shorten this sub-range during 7265 /// buildVPlan(). 7266 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7267 ElementCount MaxVF) { 7268 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7269 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7270 VFRange SubRange = {VF, MaxVFPlusOne}; 7271 VPlans.push_back(buildVPlan(SubRange)); 7272 VF = SubRange.End; 7273 } 7274 } 7275 7276 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7277 VPlanPtr &Plan) { 7278 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7279 7280 // Look for cached value. 7281 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7282 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7283 if (ECEntryIt != EdgeMaskCache.end()) 7284 return ECEntryIt->second; 7285 7286 VPValue *SrcMask = createBlockInMask(Src, Plan); 7287 7288 // The terminator has to be a branch inst! 7289 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7290 assert(BI && "Unexpected terminator found"); 7291 7292 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7293 return EdgeMaskCache[Edge] = SrcMask; 7294 7295 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 7296 assert(EdgeMask && "No Edge Mask found for condition"); 7297 7298 if (BI->getSuccessor(0) != Dst) 7299 EdgeMask = Builder.createNot(EdgeMask); 7300 7301 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7302 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7303 7304 return EdgeMaskCache[Edge] = EdgeMask; 7305 } 7306 7307 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7308 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7309 7310 // Look for cached value. 7311 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7312 if (BCEntryIt != BlockMaskCache.end()) 7313 return BCEntryIt->second; 7314 7315 // All-one mask is modelled as no-mask following the convention for masked 7316 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7317 VPValue *BlockMask = nullptr; 7318 7319 if (OrigLoop->getHeader() == BB) { 7320 if (!CM.blockNeedsPredication(BB)) 7321 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7322 7323 // Create the block in mask as the first non-phi instruction in the block. 7324 VPBuilder::InsertPointGuard Guard(Builder); 7325 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7326 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7327 7328 // Introduce the early-exit compare IV <= BTC to form header block mask. 7329 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7330 // Start by constructing the desired canonical IV. 7331 VPValue *IV = nullptr; 7332 if (Legal->getPrimaryInduction()) 7333 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 7334 else { 7335 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7336 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7337 IV = IVRecipe->getVPValue(); 7338 } 7339 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7340 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7341 7342 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7343 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7344 // as a second argument, we only pass the IV here and extract the 7345 // tripcount from the transform state where codegen of the VP instructions 7346 // happen. 7347 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7348 } else { 7349 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7350 } 7351 return BlockMaskCache[BB] = BlockMask; 7352 } 7353 7354 // This is the block mask. We OR all incoming edges. 7355 for (auto *Predecessor : predecessors(BB)) { 7356 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7357 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7358 return BlockMaskCache[BB] = EdgeMask; 7359 7360 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7361 BlockMask = EdgeMask; 7362 continue; 7363 } 7364 7365 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7366 } 7367 7368 return BlockMaskCache[BB] = BlockMask; 7369 } 7370 7371 VPWidenMemoryInstructionRecipe * 7372 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7373 VPlanPtr &Plan) { 7374 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7375 "Must be called with either a load or store"); 7376 7377 auto willWiden = [&](ElementCount VF) -> bool { 7378 assert(!VF.isScalable() && "unexpected scalable ElementCount"); 7379 if (VF.isScalar()) 7380 return false; 7381 LoopVectorizationCostModel::InstWidening Decision = 7382 CM.getWideningDecision(I, VF); 7383 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7384 "CM decision should be taken at this point."); 7385 if (Decision == LoopVectorizationCostModel::CM_Interleave) 7386 return true; 7387 if (CM.isScalarAfterVectorization(I, VF) || 7388 CM.isProfitableToScalarize(I, VF)) 7389 return false; 7390 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7391 }; 7392 7393 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7394 return nullptr; 7395 7396 VPValue *Mask = nullptr; 7397 if (Legal->isMaskRequired(I)) 7398 Mask = createBlockInMask(I->getParent(), Plan); 7399 7400 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 7401 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 7402 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 7403 7404 StoreInst *Store = cast<StoreInst>(I); 7405 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 7406 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 7407 } 7408 7409 VPWidenIntOrFpInductionRecipe * 7410 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 7411 // Check if this is an integer or fp induction. If so, build the recipe that 7412 // produces its scalar and vector values. 7413 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 7414 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7415 II.getKind() == InductionDescriptor::IK_FpInduction) 7416 return new VPWidenIntOrFpInductionRecipe(Phi); 7417 7418 return nullptr; 7419 } 7420 7421 VPWidenIntOrFpInductionRecipe * 7422 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 7423 VFRange &Range) const { 7424 // Optimize the special case where the source is a constant integer 7425 // induction variable. Notice that we can only optimize the 'trunc' case 7426 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7427 // (c) other casts depend on pointer size. 7428 7429 // Determine whether \p K is a truncation based on an induction variable that 7430 // can be optimized. 7431 auto isOptimizableIVTruncate = 7432 [&](Instruction *K) -> std::function<bool(ElementCount)> { 7433 return [=](ElementCount VF) -> bool { 7434 return CM.isOptimizableIVTruncate(K, VF); 7435 }; 7436 }; 7437 7438 if (LoopVectorizationPlanner::getDecisionAndClampRange( 7439 isOptimizableIVTruncate(I), Range)) 7440 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7441 I); 7442 return nullptr; 7443 } 7444 7445 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 7446 // We know that all PHIs in non-header blocks are converted into selects, so 7447 // we don't have to worry about the insertion order and we can just use the 7448 // builder. At this point we generate the predication tree. There may be 7449 // duplications since this is a simple recursive scan, but future 7450 // optimizations will clean it up. 7451 7452 SmallVector<VPValue *, 2> Operands; 7453 unsigned NumIncoming = Phi->getNumIncomingValues(); 7454 for (unsigned In = 0; In < NumIncoming; In++) { 7455 VPValue *EdgeMask = 7456 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7457 assert((EdgeMask || NumIncoming == 1) && 7458 "Multiple predecessors with one having a full mask"); 7459 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7460 if (EdgeMask) 7461 Operands.push_back(EdgeMask); 7462 } 7463 return new VPBlendRecipe(Phi, Operands); 7464 } 7465 7466 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7467 VPlan &Plan) const { 7468 7469 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7470 [this, CI](ElementCount VF) { 7471 return CM.isScalarWithPredication(CI, VF); 7472 }, 7473 Range); 7474 7475 if (IsPredicated) 7476 return nullptr; 7477 7478 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7479 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7480 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 7481 ID == Intrinsic::pseudoprobe)) 7482 return nullptr; 7483 7484 auto willWiden = [&](ElementCount VF) -> bool { 7485 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7486 // The following case may be scalarized depending on the VF. 7487 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7488 // version of the instruction. 7489 // Is it beneficial to perform intrinsic call compared to lib call? 7490 bool NeedToScalarize = false; 7491 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7492 bool UseVectorIntrinsic = 7493 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7494 return UseVectorIntrinsic || !NeedToScalarize; 7495 }; 7496 7497 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7498 return nullptr; 7499 7500 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7501 } 7502 7503 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7504 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7505 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7506 // Instruction should be widened, unless it is scalar after vectorization, 7507 // scalarization is profitable or it is predicated. 7508 auto WillScalarize = [this, I](ElementCount VF) -> bool { 7509 return CM.isScalarAfterVectorization(I, VF) || 7510 CM.isProfitableToScalarize(I, VF) || 7511 CM.isScalarWithPredication(I, VF); 7512 }; 7513 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7514 Range); 7515 } 7516 7517 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7518 auto IsVectorizableOpcode = [](unsigned Opcode) { 7519 switch (Opcode) { 7520 case Instruction::Add: 7521 case Instruction::And: 7522 case Instruction::AShr: 7523 case Instruction::BitCast: 7524 case Instruction::FAdd: 7525 case Instruction::FCmp: 7526 case Instruction::FDiv: 7527 case Instruction::FMul: 7528 case Instruction::FNeg: 7529 case Instruction::FPExt: 7530 case Instruction::FPToSI: 7531 case Instruction::FPToUI: 7532 case Instruction::FPTrunc: 7533 case Instruction::FRem: 7534 case Instruction::FSub: 7535 case Instruction::ICmp: 7536 case Instruction::IntToPtr: 7537 case Instruction::LShr: 7538 case Instruction::Mul: 7539 case Instruction::Or: 7540 case Instruction::PtrToInt: 7541 case Instruction::SDiv: 7542 case Instruction::Select: 7543 case Instruction::SExt: 7544 case Instruction::Shl: 7545 case Instruction::SIToFP: 7546 case Instruction::SRem: 7547 case Instruction::Sub: 7548 case Instruction::Trunc: 7549 case Instruction::UDiv: 7550 case Instruction::UIToFP: 7551 case Instruction::URem: 7552 case Instruction::Xor: 7553 case Instruction::ZExt: 7554 return true; 7555 } 7556 return false; 7557 }; 7558 7559 if (!IsVectorizableOpcode(I->getOpcode())) 7560 return nullptr; 7561 7562 // Success: widen this instruction. 7563 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7564 } 7565 7566 VPBasicBlock *VPRecipeBuilder::handleReplication( 7567 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7568 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7569 VPlanPtr &Plan) { 7570 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7571 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 7572 Range); 7573 7574 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7575 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 7576 Range); 7577 7578 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7579 IsUniform, IsPredicated); 7580 setRecipe(I, Recipe); 7581 Plan->addVPValue(I, Recipe); 7582 7583 // Find if I uses a predicated instruction. If so, it will use its scalar 7584 // value. Avoid hoisting the insert-element which packs the scalar value into 7585 // a vector value, as that happens iff all users use the vector value. 7586 for (auto &Op : I->operands()) 7587 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7588 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7589 PredInst2Recipe[PredInst]->setAlsoPack(false); 7590 7591 // Finalize the recipe for Instr, first if it is not predicated. 7592 if (!IsPredicated) { 7593 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7594 VPBB->appendRecipe(Recipe); 7595 return VPBB; 7596 } 7597 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7598 assert(VPBB->getSuccessors().empty() && 7599 "VPBB has successors when handling predicated replication."); 7600 // Record predicated instructions for above packing optimizations. 7601 PredInst2Recipe[I] = Recipe; 7602 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7603 VPBlockUtils::insertBlockAfter(Region, VPBB); 7604 auto *RegSucc = new VPBasicBlock(); 7605 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7606 return RegSucc; 7607 } 7608 7609 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7610 VPRecipeBase *PredRecipe, 7611 VPlanPtr &Plan) { 7612 // Instructions marked for predication are replicated and placed under an 7613 // if-then construct to prevent side-effects. 7614 7615 // Generate recipes to compute the block mask for this region. 7616 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7617 7618 // Build the triangular if-then region. 7619 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7620 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7621 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7622 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7623 auto *PHIRecipe = Instr->getType()->isVoidTy() 7624 ? nullptr 7625 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 7626 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7627 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7628 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7629 7630 // Note: first set Entry as region entry and then connect successors starting 7631 // from it in order, to propagate the "parent" of each VPBasicBlock. 7632 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7633 VPBlockUtils::connectBlocks(Pred, Exit); 7634 7635 return Region; 7636 } 7637 7638 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7639 VFRange &Range, 7640 VPlanPtr &Plan) { 7641 // First, check for specific widening recipes that deal with calls, memory 7642 // operations, inductions and Phi nodes. 7643 if (auto *CI = dyn_cast<CallInst>(Instr)) 7644 return tryToWidenCall(CI, Range, *Plan); 7645 7646 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7647 return tryToWidenMemory(Instr, Range, Plan); 7648 7649 VPRecipeBase *Recipe; 7650 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7651 if (Phi->getParent() != OrigLoop->getHeader()) 7652 return tryToBlend(Phi, Plan); 7653 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7654 return Recipe; 7655 return new VPWidenPHIRecipe(Phi); 7656 } 7657 7658 if (isa<TruncInst>(Instr) && 7659 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7660 return Recipe; 7661 7662 if (!shouldWiden(Instr, Range)) 7663 return nullptr; 7664 7665 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7666 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7667 OrigLoop); 7668 7669 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7670 bool InvariantCond = 7671 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7672 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7673 InvariantCond); 7674 } 7675 7676 return tryToWiden(Instr, *Plan); 7677 } 7678 7679 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 7680 ElementCount MaxVF) { 7681 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7682 7683 // Collect instructions from the original loop that will become trivially dead 7684 // in the vectorized loop. We don't need to vectorize these instructions. For 7685 // example, original induction update instructions can become dead because we 7686 // separately emit induction "steps" when generating code for the new loop. 7687 // Similarly, we create a new latch condition when setting up the structure 7688 // of the new loop, so the old one can become dead. 7689 SmallPtrSet<Instruction *, 4> DeadInstructions; 7690 collectTriviallyDeadInstructions(DeadInstructions); 7691 7692 // Add assume instructions we need to drop to DeadInstructions, to prevent 7693 // them from being added to the VPlan. 7694 // TODO: We only need to drop assumes in blocks that get flattend. If the 7695 // control flow is preserved, we should keep them. 7696 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7697 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7698 7699 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7700 // Dead instructions do not need sinking. Remove them from SinkAfter. 7701 for (Instruction *I : DeadInstructions) 7702 SinkAfter.erase(I); 7703 7704 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7705 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7706 VFRange SubRange = {VF, MaxVFPlusOne}; 7707 VPlans.push_back( 7708 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 7709 VF = SubRange.End; 7710 } 7711 } 7712 7713 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7714 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 7715 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7716 7717 // Hold a mapping from predicated instructions to their recipes, in order to 7718 // fix their AlsoPack behavior if a user is determined to replicate and use a 7719 // scalar instead of vector value. 7720 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7721 7722 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7723 7724 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7725 7726 // --------------------------------------------------------------------------- 7727 // Pre-construction: record ingredients whose recipes we'll need to further 7728 // process after constructing the initial VPlan. 7729 // --------------------------------------------------------------------------- 7730 7731 // Mark instructions we'll need to sink later and their targets as 7732 // ingredients whose recipe we'll need to record. 7733 for (auto &Entry : SinkAfter) { 7734 RecipeBuilder.recordRecipeOf(Entry.first); 7735 RecipeBuilder.recordRecipeOf(Entry.second); 7736 } 7737 for (auto &Reduction : CM.getInLoopReductionChains()) { 7738 PHINode *Phi = Reduction.first; 7739 RecurrenceDescriptor::RecurrenceKind Kind = 7740 Legal->getReductionVars()[Phi].getRecurrenceKind(); 7741 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7742 7743 RecipeBuilder.recordRecipeOf(Phi); 7744 for (auto &R : ReductionOperations) { 7745 RecipeBuilder.recordRecipeOf(R); 7746 // For min/max reducitons, where we have a pair of icmp/select, we also 7747 // need to record the ICmp recipe, so it can be removed later. 7748 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7749 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7750 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 7751 } 7752 } 7753 } 7754 7755 // For each interleave group which is relevant for this (possibly trimmed) 7756 // Range, add it to the set of groups to be later applied to the VPlan and add 7757 // placeholders for its members' Recipes which we'll be replacing with a 7758 // single VPInterleaveRecipe. 7759 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7760 auto applyIG = [IG, this](ElementCount VF) -> bool { 7761 return (VF.isVector() && // Query is illegal for VF == 1 7762 CM.getWideningDecision(IG->getInsertPos(), VF) == 7763 LoopVectorizationCostModel::CM_Interleave); 7764 }; 7765 if (!getDecisionAndClampRange(applyIG, Range)) 7766 continue; 7767 InterleaveGroups.insert(IG); 7768 for (unsigned i = 0; i < IG->getFactor(); i++) 7769 if (Instruction *Member = IG->getMember(i)) 7770 RecipeBuilder.recordRecipeOf(Member); 7771 }; 7772 7773 // --------------------------------------------------------------------------- 7774 // Build initial VPlan: Scan the body of the loop in a topological order to 7775 // visit each basic block after having visited its predecessor basic blocks. 7776 // --------------------------------------------------------------------------- 7777 7778 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7779 auto Plan = std::make_unique<VPlan>(); 7780 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7781 Plan->setEntry(VPBB); 7782 7783 // Scan the body of the loop in a topological order to visit each basic block 7784 // after having visited its predecessor basic blocks. 7785 LoopBlocksDFS DFS(OrigLoop); 7786 DFS.perform(LI); 7787 7788 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7789 // Relevant instructions from basic block BB will be grouped into VPRecipe 7790 // ingredients and fill a new VPBasicBlock. 7791 unsigned VPBBsForBB = 0; 7792 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7793 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7794 VPBB = FirstVPBBForBB; 7795 Builder.setInsertPoint(VPBB); 7796 7797 // Introduce each ingredient into VPlan. 7798 // TODO: Model and preserve debug instrinsics in VPlan. 7799 for (Instruction &I : BB->instructionsWithoutDebug()) { 7800 Instruction *Instr = &I; 7801 7802 // First filter out irrelevant instructions, to ensure no recipes are 7803 // built for them. 7804 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7805 continue; 7806 7807 if (auto Recipe = 7808 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7809 // Check if the recipe can be converted to a VPValue. We need the extra 7810 // down-casting step until VPRecipeBase inherits from VPValue. 7811 VPValue *MaybeVPValue = Recipe->toVPValue(); 7812 if (!Instr->getType()->isVoidTy() && MaybeVPValue) 7813 Plan->addVPValue(Instr, MaybeVPValue); 7814 7815 RecipeBuilder.setRecipe(Instr, Recipe); 7816 VPBB->appendRecipe(Recipe); 7817 continue; 7818 } 7819 7820 // Otherwise, if all widening options failed, Instruction is to be 7821 // replicated. This may create a successor for VPBB. 7822 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7823 Instr, Range, VPBB, PredInst2Recipe, Plan); 7824 if (NextVPBB != VPBB) { 7825 VPBB = NextVPBB; 7826 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7827 : ""); 7828 } 7829 } 7830 } 7831 7832 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7833 // may also be empty, such as the last one VPBB, reflecting original 7834 // basic-blocks with no recipes. 7835 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7836 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7837 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7838 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7839 delete PreEntry; 7840 7841 // --------------------------------------------------------------------------- 7842 // Transform initial VPlan: Apply previously taken decisions, in order, to 7843 // bring the VPlan to its final state. 7844 // --------------------------------------------------------------------------- 7845 7846 // Apply Sink-After legal constraints. 7847 for (auto &Entry : SinkAfter) { 7848 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7849 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7850 Sink->moveAfter(Target); 7851 } 7852 7853 // Interleave memory: for each Interleave Group we marked earlier as relevant 7854 // for this VPlan, replace the Recipes widening its memory instructions with a 7855 // single VPInterleaveRecipe at its insertion point. 7856 for (auto IG : InterleaveGroups) { 7857 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7858 RecipeBuilder.getRecipe(IG->getInsertPos())); 7859 SmallVector<VPValue *, 4> StoredValues; 7860 for (unsigned i = 0; i < IG->getFactor(); ++i) 7861 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 7862 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 7863 7864 (new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 7865 Recipe->getMask())) 7866 ->insertBefore(Recipe); 7867 7868 for (unsigned i = 0; i < IG->getFactor(); ++i) 7869 if (Instruction *Member = IG->getMember(i)) { 7870 if (!Member->getType()->isVoidTy()) { 7871 VPValue *OriginalV = Plan->getVPValue(Member); 7872 Plan->removeVPValueFor(Member); 7873 OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member)); 7874 } 7875 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7876 } 7877 } 7878 7879 // Adjust the recipes for any inloop reductions. 7880 if (Range.Start.isVector()) 7881 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 7882 7883 // Finally, if tail is folded by masking, introduce selects between the phi 7884 // and the live-out instruction of each reduction, at the end of the latch. 7885 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 7886 Builder.setInsertPoint(VPBB); 7887 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7888 for (auto &Reduction : Legal->getReductionVars()) { 7889 if (CM.isInLoopReduction(Reduction.first)) 7890 continue; 7891 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 7892 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 7893 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7894 } 7895 } 7896 7897 std::string PlanName; 7898 raw_string_ostream RSO(PlanName); 7899 ElementCount VF = Range.Start; 7900 Plan->addVF(VF); 7901 RSO << "Initial VPlan for VF={" << VF; 7902 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 7903 Plan->addVF(VF); 7904 RSO << "," << VF; 7905 } 7906 RSO << "},UF>=1"; 7907 RSO.flush(); 7908 Plan->setName(PlanName); 7909 7910 return Plan; 7911 } 7912 7913 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7914 // Outer loop handling: They may require CFG and instruction level 7915 // transformations before even evaluating whether vectorization is profitable. 7916 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7917 // the vectorization pipeline. 7918 assert(!OrigLoop->isInnermost()); 7919 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7920 7921 // Create new empty VPlan 7922 auto Plan = std::make_unique<VPlan>(); 7923 7924 // Build hierarchical CFG 7925 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7926 HCFGBuilder.buildHierarchicalCFG(); 7927 7928 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 7929 VF *= 2) 7930 Plan->addVF(VF); 7931 7932 if (EnableVPlanPredication) { 7933 VPlanPredicator VPP(*Plan); 7934 VPP.predicate(); 7935 7936 // Avoid running transformation to recipes until masked code generation in 7937 // VPlan-native path is in place. 7938 return Plan; 7939 } 7940 7941 SmallPtrSet<Instruction *, 1> DeadInstructions; 7942 VPlanTransforms::VPInstructionsToVPRecipes( 7943 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7944 return Plan; 7945 } 7946 7947 // Adjust the recipes for any inloop reductions. The chain of instructions 7948 // leading from the loop exit instr to the phi need to be converted to 7949 // reductions, with one operand being vector and the other being the scalar 7950 // reduction chain. 7951 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 7952 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 7953 for (auto &Reduction : CM.getInLoopReductionChains()) { 7954 PHINode *Phi = Reduction.first; 7955 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 7956 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7957 7958 // ReductionOperations are orders top-down from the phi's use to the 7959 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 7960 // which of the two operands will remain scalar and which will be reduced. 7961 // For minmax the chain will be the select instructions. 7962 Instruction *Chain = Phi; 7963 for (Instruction *R : ReductionOperations) { 7964 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 7965 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 7966 7967 VPValue *ChainOp = Plan->getVPValue(Chain); 7968 unsigned FirstOpId; 7969 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7970 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7971 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 7972 "Expected to replace a VPWidenSelectSC"); 7973 FirstOpId = 1; 7974 } else { 7975 assert(isa<VPWidenRecipe>(WidenRecipe) && 7976 "Expected to replace a VPWidenSC"); 7977 FirstOpId = 0; 7978 } 7979 unsigned VecOpId = 7980 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 7981 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 7982 7983 auto *CondOp = CM.foldTailByMasking() 7984 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 7985 : nullptr; 7986 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 7987 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 7988 WidenRecipe->toVPValue()->replaceAllUsesWith(RedRecipe); 7989 Plan->removeVPValueFor(R); 7990 Plan->addVPValue(R, RedRecipe); 7991 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 7992 WidenRecipe->eraseFromParent(); 7993 7994 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7995 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7996 VPRecipeBase *CompareRecipe = 7997 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 7998 assert(isa<VPWidenRecipe>(CompareRecipe) && 7999 "Expected to replace a VPWidenSC"); 8000 assert(CompareRecipe->toVPValue()->getNumUsers() == 0 && 8001 "Expected no remaining users"); 8002 CompareRecipe->eraseFromParent(); 8003 } 8004 Chain = R; 8005 } 8006 } 8007 } 8008 8009 Value* LoopVectorizationPlanner::VPCallbackILV:: 8010 getOrCreateVectorValues(Value *V, unsigned Part) { 8011 return ILV.getOrCreateVectorValue(V, Part); 8012 } 8013 8014 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 8015 Value *V, const VPIteration &Instance) { 8016 return ILV.getOrCreateScalarValue(V, Instance); 8017 } 8018 8019 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 8020 VPSlotTracker &SlotTracker) const { 8021 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8022 IG->getInsertPos()->printAsOperand(O, false); 8023 O << ", "; 8024 getAddr()->printAsOperand(O, SlotTracker); 8025 VPValue *Mask = getMask(); 8026 if (Mask) { 8027 O << ", "; 8028 Mask->printAsOperand(O, SlotTracker); 8029 } 8030 for (unsigned i = 0; i < IG->getFactor(); ++i) 8031 if (Instruction *I = IG->getMember(i)) 8032 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 8033 } 8034 8035 void VPWidenCallRecipe::execute(VPTransformState &State) { 8036 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 8037 *this, State); 8038 } 8039 8040 void VPWidenSelectRecipe::execute(VPTransformState &State) { 8041 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 8042 this, *this, InvariantCond, State); 8043 } 8044 8045 void VPWidenRecipe::execute(VPTransformState &State) { 8046 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 8047 } 8048 8049 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8050 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 8051 *this, State.UF, State.VF, IsPtrLoopInvariant, 8052 IsIndexLoopInvariant, State); 8053 } 8054 8055 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8056 assert(!State.Instance && "Int or FP induction being replicated."); 8057 State.ILV->widenIntOrFpInduction(IV, Trunc); 8058 } 8059 8060 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8061 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8062 } 8063 8064 void VPBlendRecipe::execute(VPTransformState &State) { 8065 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8066 // We know that all PHIs in non-header blocks are converted into 8067 // selects, so we don't have to worry about the insertion order and we 8068 // can just use the builder. 8069 // At this point we generate the predication tree. There may be 8070 // duplications since this is a simple recursive scan, but future 8071 // optimizations will clean it up. 8072 8073 unsigned NumIncoming = getNumIncomingValues(); 8074 8075 // Generate a sequence of selects of the form: 8076 // SELECT(Mask3, In3, 8077 // SELECT(Mask2, In2, 8078 // SELECT(Mask1, In1, 8079 // In0))) 8080 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8081 // are essentially undef are taken from In0. 8082 InnerLoopVectorizer::VectorParts Entry(State.UF); 8083 for (unsigned In = 0; In < NumIncoming; ++In) { 8084 for (unsigned Part = 0; Part < State.UF; ++Part) { 8085 // We might have single edge PHIs (blocks) - use an identity 8086 // 'select' for the first PHI operand. 8087 Value *In0 = State.get(getIncomingValue(In), Part); 8088 if (In == 0) 8089 Entry[Part] = In0; // Initialize with the first incoming value. 8090 else { 8091 // Select between the current value and the previous incoming edge 8092 // based on the incoming mask. 8093 Value *Cond = State.get(getMask(In), Part); 8094 Entry[Part] = 8095 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8096 } 8097 } 8098 } 8099 for (unsigned Part = 0; Part < State.UF; ++Part) 8100 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8101 } 8102 8103 void VPInterleaveRecipe::execute(VPTransformState &State) { 8104 assert(!State.Instance && "Interleave group being replicated."); 8105 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getStoredValues(), 8106 getMask()); 8107 } 8108 8109 void VPReductionRecipe::execute(VPTransformState &State) { 8110 assert(!State.Instance && "Reduction being replicated."); 8111 for (unsigned Part = 0; Part < State.UF; ++Part) { 8112 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8113 Value *NewVecOp = State.get(getVecOp(), Part); 8114 if (VPValue *Cond = getCondOp()) { 8115 Value *NewCond = State.get(Cond, Part); 8116 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8117 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8118 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8119 Constant *IdenVec = 8120 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8121 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8122 NewVecOp = Select; 8123 } 8124 Value *NewRed = 8125 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8126 Value *PrevInChain = State.get(getChainOp(), Part); 8127 Value *NextInChain; 8128 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8129 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8130 NextInChain = 8131 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8132 NewRed, PrevInChain); 8133 } else { 8134 NextInChain = State.Builder.CreateBinOp( 8135 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 8136 PrevInChain); 8137 } 8138 State.set(this, getUnderlyingInstr(), NextInChain, Part); 8139 } 8140 } 8141 8142 void VPReplicateRecipe::execute(VPTransformState &State) { 8143 if (State.Instance) { // Generate a single instance. 8144 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, 8145 *State.Instance, IsPredicated, State); 8146 // Insert scalar instance packing it into a vector. 8147 if (AlsoPack && State.VF.isVector()) { 8148 // If we're constructing lane 0, initialize to start from undef. 8149 if (State.Instance->Lane == 0) { 8150 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8151 Value *Undef = UndefValue::get( 8152 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 8153 State.ValueMap.setVectorValue(getUnderlyingInstr(), 8154 State.Instance->Part, Undef); 8155 } 8156 State.ILV->packScalarIntoVectorValue(getUnderlyingInstr(), 8157 *State.Instance); 8158 } 8159 return; 8160 } 8161 8162 // Generate scalar instances for all VF lanes of all UF parts, unless the 8163 // instruction is uniform inwhich case generate only the first lane for each 8164 // of the UF parts. 8165 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8166 for (unsigned Part = 0; Part < State.UF; ++Part) 8167 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8168 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, {Part, Lane}, 8169 IsPredicated, State); 8170 } 8171 8172 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8173 assert(State.Instance && "Branch on Mask works only on single instance."); 8174 8175 unsigned Part = State.Instance->Part; 8176 unsigned Lane = State.Instance->Lane; 8177 8178 Value *ConditionBit = nullptr; 8179 VPValue *BlockInMask = getMask(); 8180 if (BlockInMask) { 8181 ConditionBit = State.get(BlockInMask, Part); 8182 if (ConditionBit->getType()->isVectorTy()) 8183 ConditionBit = State.Builder.CreateExtractElement( 8184 ConditionBit, State.Builder.getInt32(Lane)); 8185 } else // Block in mask is all-one. 8186 ConditionBit = State.Builder.getTrue(); 8187 8188 // Replace the temporary unreachable terminator with a new conditional branch, 8189 // whose two destinations will be set later when they are created. 8190 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8191 assert(isa<UnreachableInst>(CurrentTerminator) && 8192 "Expected to replace unreachable terminator with conditional branch."); 8193 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8194 CondBr->setSuccessor(0, nullptr); 8195 ReplaceInstWithInst(CurrentTerminator, CondBr); 8196 } 8197 8198 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8199 assert(State.Instance && "Predicated instruction PHI works per instance."); 8200 Instruction *ScalarPredInst = 8201 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 8202 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8203 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8204 assert(PredicatingBB && "Predicated block has no single predecessor."); 8205 8206 // By current pack/unpack logic we need to generate only a single phi node: if 8207 // a vector value for the predicated instruction exists at this point it means 8208 // the instruction has vector users only, and a phi for the vector value is 8209 // needed. In this case the recipe of the predicated instruction is marked to 8210 // also do that packing, thereby "hoisting" the insert-element sequence. 8211 // Otherwise, a phi node for the scalar value is needed. 8212 unsigned Part = State.Instance->Part; 8213 Instruction *PredInst = 8214 cast<Instruction>(getOperand(0)->getUnderlyingValue()); 8215 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8216 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8217 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8218 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8219 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8220 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8221 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8222 } else { 8223 Type *PredInstType = PredInst->getType(); 8224 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8225 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8226 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8227 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8228 } 8229 } 8230 8231 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8232 Instruction *Instr = getUnderlyingInstr(); 8233 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 8234 State.ILV->vectorizeMemoryInstruction(Instr, State, 8235 StoredValue ? nullptr : this, getAddr(), 8236 StoredValue, getMask()); 8237 } 8238 8239 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8240 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8241 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8242 // for predication. 8243 static ScalarEpilogueLowering getScalarEpilogueLowering( 8244 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8245 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8246 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8247 LoopVectorizationLegality &LVL) { 8248 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8249 // don't look at hints or options, and don't request a scalar epilogue. 8250 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8251 // LoopAccessInfo (due to code dependency and not being able to reliably get 8252 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8253 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8254 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8255 // back to the old way and vectorize with versioning when forced. See D81345.) 8256 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8257 PGSOQueryType::IRPass) && 8258 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8259 return CM_ScalarEpilogueNotAllowedOptSize; 8260 8261 bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() && 8262 !PreferPredicateOverEpilogue; 8263 8264 // 2) Next, if disabling predication is requested on the command line, honour 8265 // this and request a scalar epilogue. 8266 if (PredicateOptDisabled) 8267 return CM_ScalarEpilogueAllowed; 8268 8269 // 3) and 4) look if enabling predication is requested on the command line, 8270 // with a loop hint, or if the TTI hook indicates this is profitable, request 8271 // predication. 8272 if (PreferPredicateOverEpilogue || 8273 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 8274 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8275 LVL.getLAI()) && 8276 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 8277 return CM_ScalarEpilogueNotNeededUsePredicate; 8278 8279 return CM_ScalarEpilogueAllowed; 8280 } 8281 8282 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8283 unsigned Part) { 8284 set(Def, V, Part); 8285 ILV->setVectorValue(IRDef, Part, V); 8286 } 8287 8288 // Process the loop in the VPlan-native vectorization path. This path builds 8289 // VPlan upfront in the vectorization pipeline, which allows to apply 8290 // VPlan-to-VPlan transformations from the very beginning without modifying the 8291 // input LLVM IR. 8292 static bool processLoopInVPlanNativePath( 8293 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8294 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8295 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8296 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8297 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8298 8299 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 8300 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8301 return false; 8302 } 8303 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8304 Function *F = L->getHeader()->getParent(); 8305 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8306 8307 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8308 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8309 8310 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8311 &Hints, IAI); 8312 // Use the planner for outer loop vectorization. 8313 // TODO: CM is not used at this point inside the planner. Turn CM into an 8314 // optional argument if we don't need it in the future. 8315 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8316 8317 // Get user vectorization factor. 8318 const unsigned UserVF = Hints.getWidth(); 8319 8320 // Plan how to best vectorize, return the best VF and its cost. 8321 const VectorizationFactor VF = 8322 LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF)); 8323 8324 // If we are stress testing VPlan builds, do not attempt to generate vector 8325 // code. Masked vector code generation support will follow soon. 8326 // Also, do not attempt to vectorize if no vector code will be produced. 8327 if (VPlanBuildStressTest || EnableVPlanPredication || 8328 VectorizationFactor::Disabled() == VF) 8329 return false; 8330 8331 LVP.setBestPlan(VF.Width, 1); 8332 8333 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8334 &CM, BFI, PSI); 8335 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8336 << L->getHeader()->getParent()->getName() << "\"\n"); 8337 LVP.executePlan(LB, DT); 8338 8339 // Mark the loop as already vectorized to avoid vectorizing again. 8340 Hints.setAlreadyVectorized(); 8341 8342 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8343 return true; 8344 } 8345 8346 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8347 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8348 !EnableLoopInterleaving), 8349 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8350 !EnableLoopVectorization) {} 8351 8352 bool LoopVectorizePass::processLoop(Loop *L) { 8353 assert((EnableVPlanNativePath || L->isInnermost()) && 8354 "VPlan-native path is not enabled. Only process inner loops."); 8355 8356 #ifndef NDEBUG 8357 const std::string DebugLocStr = getDebugLocString(L); 8358 #endif /* NDEBUG */ 8359 8360 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8361 << L->getHeader()->getParent()->getName() << "\" from " 8362 << DebugLocStr << "\n"); 8363 8364 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8365 8366 LLVM_DEBUG( 8367 dbgs() << "LV: Loop hints:" 8368 << " force=" 8369 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8370 ? "disabled" 8371 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8372 ? "enabled" 8373 : "?")) 8374 << " width=" << Hints.getWidth() 8375 << " unroll=" << Hints.getInterleave() << "\n"); 8376 8377 // Function containing loop 8378 Function *F = L->getHeader()->getParent(); 8379 8380 // Looking at the diagnostic output is the only way to determine if a loop 8381 // was vectorized (other than looking at the IR or machine code), so it 8382 // is important to generate an optimization remark for each loop. Most of 8383 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8384 // generated as OptimizationRemark and OptimizationRemarkMissed are 8385 // less verbose reporting vectorized loops and unvectorized loops that may 8386 // benefit from vectorization, respectively. 8387 8388 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 8389 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8390 return false; 8391 } 8392 8393 PredicatedScalarEvolution PSE(*SE, *L); 8394 8395 // Check if it is legal to vectorize the loop. 8396 LoopVectorizationRequirements Requirements(*ORE); 8397 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 8398 &Requirements, &Hints, DB, AC, BFI, PSI); 8399 if (!LVL.canVectorize(EnableVPlanNativePath)) { 8400 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8401 Hints.emitRemarkWithHints(); 8402 return false; 8403 } 8404 8405 // Check the function attributes and profiles to find out if this function 8406 // should be optimized for size. 8407 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8408 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 8409 8410 // Entrance to the VPlan-native vectorization path. Outer loops are processed 8411 // here. They may require CFG and instruction level transformations before 8412 // even evaluating whether vectorization is profitable. Since we cannot modify 8413 // the incoming IR, we need to build VPlan upfront in the vectorization 8414 // pipeline. 8415 if (!L->isInnermost()) 8416 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 8417 ORE, BFI, PSI, Hints); 8418 8419 assert(L->isInnermost() && "Inner loop expected."); 8420 8421 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8422 // count by optimizing for size, to minimize overheads. 8423 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 8424 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 8425 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8426 << "This loop is worth vectorizing only if no scalar " 8427 << "iteration overheads are incurred."); 8428 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8429 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8430 else { 8431 LLVM_DEBUG(dbgs() << "\n"); 8432 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 8433 } 8434 } 8435 8436 // Check the function attributes to see if implicit floats are allowed. 8437 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8438 // an integer loop and the vector instructions selected are purely integer 8439 // vector instructions? 8440 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8441 reportVectorizationFailure( 8442 "Can't vectorize when the NoImplicitFloat attribute is used", 8443 "loop not vectorized due to NoImplicitFloat attribute", 8444 "NoImplicitFloat", ORE, L); 8445 Hints.emitRemarkWithHints(); 8446 return false; 8447 } 8448 8449 // Check if the target supports potentially unsafe FP vectorization. 8450 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8451 // for the target we're vectorizing for, to make sure none of the 8452 // additional fp-math flags can help. 8453 if (Hints.isPotentiallyUnsafe() && 8454 TTI->isFPVectorizationPotentiallyUnsafe()) { 8455 reportVectorizationFailure( 8456 "Potentially unsafe FP op prevents vectorization", 8457 "loop not vectorized due to unsafe FP support.", 8458 "UnsafeFP", ORE, L); 8459 Hints.emitRemarkWithHints(); 8460 return false; 8461 } 8462 8463 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8464 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8465 8466 // If an override option has been passed in for interleaved accesses, use it. 8467 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8468 UseInterleaved = EnableInterleavedMemAccesses; 8469 8470 // Analyze interleaved memory accesses. 8471 if (UseInterleaved) { 8472 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 8473 } 8474 8475 // Use the cost model. 8476 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 8477 F, &Hints, IAI); 8478 CM.collectValuesToIgnore(); 8479 8480 // Use the planner for vectorization. 8481 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 8482 8483 // Get user vectorization factor and interleave count. 8484 unsigned UserVF = Hints.getWidth(); 8485 unsigned UserIC = Hints.getInterleave(); 8486 8487 // Plan how to best vectorize, return the best VF and its cost. 8488 Optional<VectorizationFactor> MaybeVF = 8489 LVP.plan(ElementCount::getFixed(UserVF), UserIC); 8490 8491 VectorizationFactor VF = VectorizationFactor::Disabled(); 8492 unsigned IC = 1; 8493 8494 if (MaybeVF) { 8495 VF = *MaybeVF; 8496 // Select the interleave count. 8497 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 8498 } 8499 8500 // Identify the diagnostic messages that should be produced. 8501 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8502 bool VectorizeLoop = true, InterleaveLoop = true; 8503 if (Requirements.doesNotMeet(F, L, Hints)) { 8504 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8505 "requirements.\n"); 8506 Hints.emitRemarkWithHints(); 8507 return false; 8508 } 8509 8510 if (VF.Width.isScalar()) { 8511 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8512 VecDiagMsg = std::make_pair( 8513 "VectorizationNotBeneficial", 8514 "the cost-model indicates that vectorization is not beneficial"); 8515 VectorizeLoop = false; 8516 } 8517 8518 if (!MaybeVF && UserIC > 1) { 8519 // Tell the user interleaving was avoided up-front, despite being explicitly 8520 // requested. 8521 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 8522 "interleaving should be avoided up front\n"); 8523 IntDiagMsg = std::make_pair( 8524 "InterleavingAvoided", 8525 "Ignoring UserIC, because interleaving was avoided up front"); 8526 InterleaveLoop = false; 8527 } else if (IC == 1 && UserIC <= 1) { 8528 // Tell the user interleaving is not beneficial. 8529 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8530 IntDiagMsg = std::make_pair( 8531 "InterleavingNotBeneficial", 8532 "the cost-model indicates that interleaving is not beneficial"); 8533 InterleaveLoop = false; 8534 if (UserIC == 1) { 8535 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8536 IntDiagMsg.second += 8537 " and is explicitly disabled or interleave count is set to 1"; 8538 } 8539 } else if (IC > 1 && UserIC == 1) { 8540 // Tell the user interleaving is beneficial, but it explicitly disabled. 8541 LLVM_DEBUG( 8542 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 8543 IntDiagMsg = std::make_pair( 8544 "InterleavingBeneficialButDisabled", 8545 "the cost-model indicates that interleaving is beneficial " 8546 "but is explicitly disabled or interleave count is set to 1"); 8547 InterleaveLoop = false; 8548 } 8549 8550 // Override IC if user provided an interleave count. 8551 IC = UserIC > 0 ? UserIC : IC; 8552 8553 // Emit diagnostic messages, if any. 8554 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8555 if (!VectorizeLoop && !InterleaveLoop) { 8556 // Do not vectorize or interleaving the loop. 8557 ORE->emit([&]() { 8558 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8559 L->getStartLoc(), L->getHeader()) 8560 << VecDiagMsg.second; 8561 }); 8562 ORE->emit([&]() { 8563 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8564 L->getStartLoc(), L->getHeader()) 8565 << IntDiagMsg.second; 8566 }); 8567 return false; 8568 } else if (!VectorizeLoop && InterleaveLoop) { 8569 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8570 ORE->emit([&]() { 8571 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8572 L->getStartLoc(), L->getHeader()) 8573 << VecDiagMsg.second; 8574 }); 8575 } else if (VectorizeLoop && !InterleaveLoop) { 8576 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8577 << ") in " << DebugLocStr << '\n'); 8578 ORE->emit([&]() { 8579 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8580 L->getStartLoc(), L->getHeader()) 8581 << IntDiagMsg.second; 8582 }); 8583 } else if (VectorizeLoop && InterleaveLoop) { 8584 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8585 << ") in " << DebugLocStr << '\n'); 8586 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8587 } 8588 8589 LVP.setBestPlan(VF.Width, IC); 8590 8591 using namespace ore; 8592 bool DisableRuntimeUnroll = false; 8593 MDNode *OrigLoopID = L->getLoopID(); 8594 8595 if (!VectorizeLoop) { 8596 assert(IC > 1 && "interleave count should not be 1 or 0"); 8597 // If we decided that it is not legal to vectorize the loop, then 8598 // interleave it. 8599 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8600 BFI, PSI); 8601 LVP.executePlan(Unroller, DT); 8602 8603 ORE->emit([&]() { 8604 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8605 L->getHeader()) 8606 << "interleaved loop (interleaved count: " 8607 << NV("InterleaveCount", IC) << ")"; 8608 }); 8609 } else { 8610 // If we decided that it is *legal* to vectorize the loop, then do it. 8611 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8612 &LVL, &CM, BFI, PSI); 8613 LVP.executePlan(LB, DT); 8614 ++LoopsVectorized; 8615 8616 // Add metadata to disable runtime unrolling a scalar loop when there are 8617 // no runtime checks about strides and memory. A scalar loop that is 8618 // rarely used is not worth unrolling. 8619 if (!LB.areSafetyChecksAdded()) 8620 DisableRuntimeUnroll = true; 8621 8622 // Report the vectorization decision. 8623 ORE->emit([&]() { 8624 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8625 L->getHeader()) 8626 << "vectorized loop (vectorization width: " 8627 << NV("VectorizationFactor", VF.Width) 8628 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8629 }); 8630 } 8631 8632 Optional<MDNode *> RemainderLoopID = 8633 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8634 LLVMLoopVectorizeFollowupEpilogue}); 8635 if (RemainderLoopID.hasValue()) { 8636 L->setLoopID(RemainderLoopID.getValue()); 8637 } else { 8638 if (DisableRuntimeUnroll) 8639 AddRuntimeUnrollDisableMetaData(L); 8640 8641 // Mark the loop as already vectorized to avoid vectorizing again. 8642 Hints.setAlreadyVectorized(); 8643 } 8644 8645 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8646 return true; 8647 } 8648 8649 LoopVectorizeResult LoopVectorizePass::runImpl( 8650 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8651 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8652 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8653 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8654 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8655 SE = &SE_; 8656 LI = &LI_; 8657 TTI = &TTI_; 8658 DT = &DT_; 8659 BFI = &BFI_; 8660 TLI = TLI_; 8661 AA = &AA_; 8662 AC = &AC_; 8663 GetLAA = &GetLAA_; 8664 DB = &DB_; 8665 ORE = &ORE_; 8666 PSI = PSI_; 8667 8668 // Don't attempt if 8669 // 1. the target claims to have no vector registers, and 8670 // 2. interleaving won't help ILP. 8671 // 8672 // The second condition is necessary because, even if the target has no 8673 // vector registers, loop vectorization may still enable scalar 8674 // interleaving. 8675 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8676 TTI->getMaxInterleaveFactor(1) < 2) 8677 return LoopVectorizeResult(false, false); 8678 8679 bool Changed = false, CFGChanged = false; 8680 8681 // The vectorizer requires loops to be in simplified form. 8682 // Since simplification may add new inner loops, it has to run before the 8683 // legality and profitability checks. This means running the loop vectorizer 8684 // will simplify all loops, regardless of whether anything end up being 8685 // vectorized. 8686 for (auto &L : *LI) 8687 Changed |= CFGChanged |= 8688 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8689 8690 // Build up a worklist of inner-loops to vectorize. This is necessary as 8691 // the act of vectorizing or partially unrolling a loop creates new loops 8692 // and can invalidate iterators across the loops. 8693 SmallVector<Loop *, 8> Worklist; 8694 8695 for (Loop *L : *LI) 8696 collectSupportedLoops(*L, LI, ORE, Worklist); 8697 8698 LoopsAnalyzed += Worklist.size(); 8699 8700 // Now walk the identified inner loops. 8701 while (!Worklist.empty()) { 8702 Loop *L = Worklist.pop_back_val(); 8703 8704 // For the inner loops we actually process, form LCSSA to simplify the 8705 // transform. 8706 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8707 8708 Changed |= CFGChanged |= processLoop(L); 8709 } 8710 8711 // Process each loop nest in the function. 8712 return LoopVectorizeResult(Changed, CFGChanged); 8713 } 8714 8715 PreservedAnalyses LoopVectorizePass::run(Function &F, 8716 FunctionAnalysisManager &AM) { 8717 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8718 auto &LI = AM.getResult<LoopAnalysis>(F); 8719 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8720 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8721 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8722 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8723 auto &AA = AM.getResult<AAManager>(F); 8724 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8725 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8726 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8727 MemorySSA *MSSA = EnableMSSALoopDependency 8728 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8729 : nullptr; 8730 8731 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8732 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8733 [&](Loop &L) -> const LoopAccessInfo & { 8734 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 8735 TLI, TTI, nullptr, MSSA}; 8736 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8737 }; 8738 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8739 ProfileSummaryInfo *PSI = 8740 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8741 LoopVectorizeResult Result = 8742 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8743 if (!Result.MadeAnyChange) 8744 return PreservedAnalyses::all(); 8745 PreservedAnalyses PA; 8746 8747 // We currently do not preserve loopinfo/dominator analyses with outer loop 8748 // vectorization. Until this is addressed, mark these analyses as preserved 8749 // only for non-VPlan-native path. 8750 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8751 if (!EnableVPlanNativePath) { 8752 PA.preserve<LoopAnalysis>(); 8753 PA.preserve<DominatorTreeAnalysis>(); 8754 } 8755 PA.preserve<BasicAA>(); 8756 PA.preserve<GlobalsAA>(); 8757 if (!Result.MadeCFGChange) 8758 PA.preserveSet<CFGAnalyses>(); 8759 return PA; 8760 } 8761