1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 // There is a development effort going on to migrate loop vectorizer to the 30 // VPlan infrastructure and to introduce outer loop vectorization support (see 31 // docs/Proposal/VectorizationPlan.rst and 32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 33 // purpose, we temporarily introduced the VPlan-native vectorization path: an 34 // alternative vectorization path that is natively implemented on top of the 35 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // The reduction-variable vectorization is based on the paper: 40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 41 // 42 // Variable uniformity checks are inspired by: 43 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 44 // 45 // The interleaved access vectorization is based on the paper: 46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 47 // Data for SIMD 48 // 49 // Other ideas/concepts are from: 50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 51 // 52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 53 // Vectorizing Compilers. 54 // 55 //===----------------------------------------------------------------------===// 56 57 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 58 #include "LoopVectorizationPlanner.h" 59 #include "llvm/ADT/APInt.h" 60 #include "llvm/ADT/ArrayRef.h" 61 #include "llvm/ADT/DenseMap.h" 62 #include "llvm/ADT/DenseMapInfo.h" 63 #include "llvm/ADT/Hashing.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/None.h" 66 #include "llvm/ADT/Optional.h" 67 #include "llvm/ADT/STLExtras.h" 68 #include "llvm/ADT/SetVector.h" 69 #include "llvm/ADT/SmallPtrSet.h" 70 #include "llvm/ADT/SmallSet.h" 71 #include "llvm/ADT/SmallVector.h" 72 #include "llvm/ADT/Statistic.h" 73 #include "llvm/ADT/StringRef.h" 74 #include "llvm/ADT/Twine.h" 75 #include "llvm/ADT/iterator_range.h" 76 #include "llvm/Analysis/AssumptionCache.h" 77 #include "llvm/Analysis/BasicAliasAnalysis.h" 78 #include "llvm/Analysis/BlockFrequencyInfo.h" 79 #include "llvm/Analysis/CFG.h" 80 #include "llvm/Analysis/CodeMetrics.h" 81 #include "llvm/Analysis/DemandedBits.h" 82 #include "llvm/Analysis/GlobalsModRef.h" 83 #include "llvm/Analysis/LoopAccessAnalysis.h" 84 #include "llvm/Analysis/LoopAnalysisManager.h" 85 #include "llvm/Analysis/LoopInfo.h" 86 #include "llvm/Analysis/LoopIterator.h" 87 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 88 #include "llvm/Analysis/ScalarEvolution.h" 89 #include "llvm/Analysis/ScalarEvolutionExpander.h" 90 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 91 #include "llvm/Analysis/TargetLibraryInfo.h" 92 #include "llvm/Analysis/TargetTransformInfo.h" 93 #include "llvm/Analysis/VectorUtils.h" 94 #include "llvm/IR/Attributes.h" 95 #include "llvm/IR/BasicBlock.h" 96 #include "llvm/IR/CFG.h" 97 #include "llvm/IR/Constant.h" 98 #include "llvm/IR/Constants.h" 99 #include "llvm/IR/DataLayout.h" 100 #include "llvm/IR/DebugInfoMetadata.h" 101 #include "llvm/IR/DebugLoc.h" 102 #include "llvm/IR/DerivedTypes.h" 103 #include "llvm/IR/DiagnosticInfo.h" 104 #include "llvm/IR/Dominators.h" 105 #include "llvm/IR/Function.h" 106 #include "llvm/IR/IRBuilder.h" 107 #include "llvm/IR/InstrTypes.h" 108 #include "llvm/IR/Instruction.h" 109 #include "llvm/IR/Instructions.h" 110 #include "llvm/IR/IntrinsicInst.h" 111 #include "llvm/IR/Intrinsics.h" 112 #include "llvm/IR/LLVMContext.h" 113 #include "llvm/IR/Metadata.h" 114 #include "llvm/IR/Module.h" 115 #include "llvm/IR/Operator.h" 116 #include "llvm/IR/Type.h" 117 #include "llvm/IR/Use.h" 118 #include "llvm/IR/User.h" 119 #include "llvm/IR/Value.h" 120 #include "llvm/IR/ValueHandle.h" 121 #include "llvm/IR/Verifier.h" 122 #include "llvm/Pass.h" 123 #include "llvm/Support/Casting.h" 124 #include "llvm/Support/CommandLine.h" 125 #include "llvm/Support/Compiler.h" 126 #include "llvm/Support/Debug.h" 127 #include "llvm/Support/ErrorHandling.h" 128 #include "llvm/Support/MathExtras.h" 129 #include "llvm/Support/raw_ostream.h" 130 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 131 #include "llvm/Transforms/Utils/LoopSimplify.h" 132 #include "llvm/Transforms/Utils/LoopUtils.h" 133 #include "llvm/Transforms/Utils/LoopVersioning.h" 134 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 135 #include <algorithm> 136 #include <cassert> 137 #include <cstdint> 138 #include <cstdlib> 139 #include <functional> 140 #include <iterator> 141 #include <limits> 142 #include <memory> 143 #include <string> 144 #include <tuple> 145 #include <utility> 146 #include <vector> 147 148 using namespace llvm; 149 150 #define LV_NAME "loop-vectorize" 151 #define DEBUG_TYPE LV_NAME 152 153 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 154 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 155 156 /// Loops with a known constant trip count below this number are vectorized only 157 /// if no scalar iteration overheads are incurred. 158 static cl::opt<unsigned> TinyTripCountVectorThreshold( 159 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 160 cl::desc("Loops with a constant trip count that is smaller than this " 161 "value are vectorized only if no scalar iteration overheads " 162 "are incurred.")); 163 164 static cl::opt<bool> MaximizeBandwidth( 165 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 166 cl::desc("Maximize bandwidth when selecting vectorization factor which " 167 "will be determined by the smallest type in loop.")); 168 169 static cl::opt<bool> EnableInterleavedMemAccesses( 170 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 171 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 172 173 /// Maximum factor for an interleaved memory access. 174 static cl::opt<unsigned> MaxInterleaveGroupFactor( 175 "max-interleave-group-factor", cl::Hidden, 176 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 177 cl::init(8)); 178 179 /// We don't interleave loops with a known constant trip count below this 180 /// number. 181 static const unsigned TinyTripCountInterleaveThreshold = 128; 182 183 static cl::opt<unsigned> ForceTargetNumScalarRegs( 184 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's number of scalar registers.")); 186 187 static cl::opt<unsigned> ForceTargetNumVectorRegs( 188 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 189 cl::desc("A flag that overrides the target's number of vector registers.")); 190 191 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 192 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 193 cl::desc("A flag that overrides the target's max interleave factor for " 194 "scalar loops.")); 195 196 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 197 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 198 cl::desc("A flag that overrides the target's max interleave factor for " 199 "vectorized loops.")); 200 201 static cl::opt<unsigned> ForceTargetInstructionCost( 202 "force-target-instruction-cost", cl::init(0), cl::Hidden, 203 cl::desc("A flag that overrides the target's expected cost for " 204 "an instruction to a single constant value. Mostly " 205 "useful for getting consistent testing.")); 206 207 static cl::opt<unsigned> SmallLoopCost( 208 "small-loop-cost", cl::init(20), cl::Hidden, 209 cl::desc( 210 "The cost of a loop that is considered 'small' by the interleaver.")); 211 212 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 213 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 214 cl::desc("Enable the use of the block frequency analysis to access PGO " 215 "heuristics minimizing code growth in cold regions and being more " 216 "aggressive in hot regions.")); 217 218 // Runtime interleave loops for load/store throughput. 219 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 220 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 221 cl::desc( 222 "Enable runtime interleaving until load/store ports are saturated")); 223 224 /// The number of stores in a loop that are allowed to need predication. 225 static cl::opt<unsigned> NumberOfStoresToPredicate( 226 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 227 cl::desc("Max number of stores to be predicated behind an if.")); 228 229 static cl::opt<bool> EnableIndVarRegisterHeur( 230 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 231 cl::desc("Count the induction variable only once when interleaving")); 232 233 static cl::opt<bool> EnableCondStoresVectorization( 234 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 235 cl::desc("Enable if predication of stores during vectorization.")); 236 237 static cl::opt<unsigned> MaxNestedScalarReductionIC( 238 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 239 cl::desc("The maximum interleave count to use when interleaving a scalar " 240 "reduction in a nested loop.")); 241 242 static cl::opt<bool> EnableVPlanNativePath( 243 "enable-vplan-native-path", cl::init(false), cl::Hidden, 244 cl::desc("Enable VPlan-native vectorization path with " 245 "support for outer loop vectorization.")); 246 247 /// A helper function for converting Scalar types to vector types. 248 /// If the incoming type is void, we return void. If the VF is 1, we return 249 /// the scalar type. 250 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 251 if (Scalar->isVoidTy() || VF == 1) 252 return Scalar; 253 return VectorType::get(Scalar, VF); 254 } 255 256 // FIXME: The following helper functions have multiple implementations 257 // in the project. They can be effectively organized in a common Load/Store 258 // utilities unit. 259 260 /// A helper function that returns the type of loaded or stored value. 261 static Type *getMemInstValueType(Value *I) { 262 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 263 "Expected Load or Store instruction"); 264 if (auto *LI = dyn_cast<LoadInst>(I)) 265 return LI->getType(); 266 return cast<StoreInst>(I)->getValueOperand()->getType(); 267 } 268 269 /// A helper function that returns the alignment of load or store instruction. 270 static unsigned getMemInstAlignment(Value *I) { 271 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 272 "Expected Load or Store instruction"); 273 if (auto *LI = dyn_cast<LoadInst>(I)) 274 return LI->getAlignment(); 275 return cast<StoreInst>(I)->getAlignment(); 276 } 277 278 /// A helper function that returns the address space of the pointer operand of 279 /// load or store instruction. 280 static unsigned getMemInstAddressSpace(Value *I) { 281 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 282 "Expected Load or Store instruction"); 283 if (auto *LI = dyn_cast<LoadInst>(I)) 284 return LI->getPointerAddressSpace(); 285 return cast<StoreInst>(I)->getPointerAddressSpace(); 286 } 287 288 /// A helper function that returns true if the given type is irregular. The 289 /// type is irregular if its allocated size doesn't equal the store size of an 290 /// element of the corresponding vector type at the given vectorization factor. 291 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 292 // Determine if an array of VF elements of type Ty is "bitcast compatible" 293 // with a <VF x Ty> vector. 294 if (VF > 1) { 295 auto *VectorTy = VectorType::get(Ty, VF); 296 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 297 } 298 299 // If the vectorization factor is one, we just check if an array of type Ty 300 // requires padding between elements. 301 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 302 } 303 304 /// A helper function that returns the reciprocal of the block probability of 305 /// predicated blocks. If we return X, we are assuming the predicated block 306 /// will execute once for every X iterations of the loop header. 307 /// 308 /// TODO: We should use actual block probability here, if available. Currently, 309 /// we always assume predicated blocks have a 50% chance of executing. 310 static unsigned getReciprocalPredBlockProb() { return 2; } 311 312 /// A helper function that adds a 'fast' flag to floating-point operations. 313 static Value *addFastMathFlag(Value *V) { 314 if (isa<FPMathOperator>(V)) { 315 FastMathFlags Flags; 316 Flags.setFast(); 317 cast<Instruction>(V)->setFastMathFlags(Flags); 318 } 319 return V; 320 } 321 322 /// A helper function that returns an integer or floating-point constant with 323 /// value C. 324 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 325 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 326 : ConstantFP::get(Ty, C); 327 } 328 329 namespace llvm { 330 331 /// InnerLoopVectorizer vectorizes loops which contain only one basic 332 /// block to a specified vectorization factor (VF). 333 /// This class performs the widening of scalars into vectors, or multiple 334 /// scalars. This class also implements the following features: 335 /// * It inserts an epilogue loop for handling loops that don't have iteration 336 /// counts that are known to be a multiple of the vectorization factor. 337 /// * It handles the code generation for reduction variables. 338 /// * Scalarization (implementation using scalars) of un-vectorizable 339 /// instructions. 340 /// InnerLoopVectorizer does not perform any vectorization-legality 341 /// checks, and relies on the caller to check for the different legality 342 /// aspects. The InnerLoopVectorizer relies on the 343 /// LoopVectorizationLegality class to provide information about the induction 344 /// and reduction variables that were found to a given vectorization factor. 345 class InnerLoopVectorizer { 346 public: 347 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 348 LoopInfo *LI, DominatorTree *DT, 349 const TargetLibraryInfo *TLI, 350 const TargetTransformInfo *TTI, AssumptionCache *AC, 351 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 352 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 353 LoopVectorizationCostModel *CM) 354 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 355 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 356 Builder(PSE.getSE()->getContext()), 357 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 358 virtual ~InnerLoopVectorizer() = default; 359 360 /// Create a new empty loop. Unlink the old loop and connect the new one. 361 /// Return the pre-header block of the new loop. 362 BasicBlock *createVectorizedLoopSkeleton(); 363 364 /// Widen a single instruction within the innermost loop. 365 void widenInstruction(Instruction &I); 366 367 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 368 void fixVectorizedLoop(); 369 370 // Return true if any runtime check is added. 371 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 372 373 /// A type for vectorized values in the new loop. Each value from the 374 /// original loop, when vectorized, is represented by UF vector values in the 375 /// new unrolled loop, where UF is the unroll factor. 376 using VectorParts = SmallVector<Value *, 2>; 377 378 /// Vectorize a single PHINode in a block. This method handles the induction 379 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 380 /// arbitrary length vectors. 381 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 382 383 /// A helper function to scalarize a single Instruction in the innermost loop. 384 /// Generates a sequence of scalar instances for each lane between \p MinLane 385 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 386 /// inclusive.. 387 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 388 bool IfPredicateInstr); 389 390 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 391 /// is provided, the integer induction variable will first be truncated to 392 /// the corresponding type. 393 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 394 395 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 396 /// vector or scalar value on-demand if one is not yet available. When 397 /// vectorizing a loop, we visit the definition of an instruction before its 398 /// uses. When visiting the definition, we either vectorize or scalarize the 399 /// instruction, creating an entry for it in the corresponding map. (In some 400 /// cases, such as induction variables, we will create both vector and scalar 401 /// entries.) Then, as we encounter uses of the definition, we derive values 402 /// for each scalar or vector use unless such a value is already available. 403 /// For example, if we scalarize a definition and one of its uses is vector, 404 /// we build the required vector on-demand with an insertelement sequence 405 /// when visiting the use. Otherwise, if the use is scalar, we can use the 406 /// existing scalar definition. 407 /// 408 /// Return a value in the new loop corresponding to \p V from the original 409 /// loop at unroll index \p Part. If the value has already been vectorized, 410 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 411 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 412 /// a new vector value on-demand by inserting the scalar values into a vector 413 /// with an insertelement sequence. If the value has been neither vectorized 414 /// nor scalarized, it must be loop invariant, so we simply broadcast the 415 /// value into a vector. 416 Value *getOrCreateVectorValue(Value *V, unsigned Part); 417 418 /// Return a value in the new loop corresponding to \p V from the original 419 /// loop at unroll and vector indices \p Instance. If the value has been 420 /// vectorized but not scalarized, the necessary extractelement instruction 421 /// will be generated. 422 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 423 424 /// Construct the vector value of a scalarized value \p V one lane at a time. 425 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 426 427 /// Try to vectorize the interleaved access group that \p Instr belongs to. 428 void vectorizeInterleaveGroup(Instruction *Instr); 429 430 /// Vectorize Load and Store instructions, optionally masking the vector 431 /// operations if \p BlockInMask is non-null. 432 void vectorizeMemoryInstruction(Instruction *Instr, 433 VectorParts *BlockInMask = nullptr); 434 435 /// Set the debug location in the builder using the debug location in 436 /// the instruction. 437 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 438 439 protected: 440 friend class LoopVectorizationPlanner; 441 442 /// A small list of PHINodes. 443 using PhiVector = SmallVector<PHINode *, 4>; 444 445 /// A type for scalarized values in the new loop. Each value from the 446 /// original loop, when scalarized, is represented by UF x VF scalar values 447 /// in the new unrolled loop, where UF is the unroll factor and VF is the 448 /// vectorization factor. 449 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 450 451 /// Set up the values of the IVs correctly when exiting the vector loop. 452 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 453 Value *CountRoundDown, Value *EndValue, 454 BasicBlock *MiddleBlock); 455 456 /// Create a new induction variable inside L. 457 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 458 Value *Step, Instruction *DL); 459 460 /// Handle all cross-iteration phis in the header. 461 void fixCrossIterationPHIs(); 462 463 /// Fix a first-order recurrence. This is the second phase of vectorizing 464 /// this phi node. 465 void fixFirstOrderRecurrence(PHINode *Phi); 466 467 /// Fix a reduction cross-iteration phi. This is the second phase of 468 /// vectorizing this phi node. 469 void fixReduction(PHINode *Phi); 470 471 /// The Loop exit block may have single value PHI nodes with some 472 /// incoming value. While vectorizing we only handled real values 473 /// that were defined inside the loop and we should have one value for 474 /// each predecessor of its parent basic block. See PR14725. 475 void fixLCSSAPHIs(); 476 477 /// Iteratively sink the scalarized operands of a predicated instruction into 478 /// the block that was created for it. 479 void sinkScalarOperands(Instruction *PredInst); 480 481 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 482 /// represented as. 483 void truncateToMinimalBitwidths(); 484 485 /// Insert the new loop to the loop hierarchy and pass manager 486 /// and update the analysis passes. 487 void updateAnalysis(); 488 489 /// Create a broadcast instruction. This method generates a broadcast 490 /// instruction (shuffle) for loop invariant values and for the induction 491 /// value. If this is the induction variable then we extend it to N, N+1, ... 492 /// this is needed because each iteration in the loop corresponds to a SIMD 493 /// element. 494 virtual Value *getBroadcastInstrs(Value *V); 495 496 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 497 /// to each vector element of Val. The sequence starts at StartIndex. 498 /// \p Opcode is relevant for FP induction variable. 499 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 500 Instruction::BinaryOps Opcode = 501 Instruction::BinaryOpsEnd); 502 503 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 504 /// variable on which to base the steps, \p Step is the size of the step, and 505 /// \p EntryVal is the value from the original loop that maps to the steps. 506 /// Note that \p EntryVal doesn't have to be an induction variable - it 507 /// can also be a truncate instruction. 508 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 509 const InductionDescriptor &ID); 510 511 /// Create a vector induction phi node based on an existing scalar one. \p 512 /// EntryVal is the value from the original loop that maps to the vector phi 513 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 514 /// truncate instruction, instead of widening the original IV, we widen a 515 /// version of the IV truncated to \p EntryVal's type. 516 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 517 Value *Step, Instruction *EntryVal); 518 519 /// Returns true if an instruction \p I should be scalarized instead of 520 /// vectorized for the chosen vectorization factor. 521 bool shouldScalarizeInstruction(Instruction *I) const; 522 523 /// Returns true if we should generate a scalar version of \p IV. 524 bool needsScalarInduction(Instruction *IV) const; 525 526 /// If there is a cast involved in the induction variable \p ID, which should 527 /// be ignored in the vectorized loop body, this function records the 528 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 529 /// cast. We had already proved that the casted Phi is equal to the uncasted 530 /// Phi in the vectorized loop (under a runtime guard), and therefore 531 /// there is no need to vectorize the cast - the same value can be used in the 532 /// vector loop for both the Phi and the cast. 533 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 534 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 535 /// 536 /// \p EntryVal is the value from the original loop that maps to the vector 537 /// phi node and is used to distinguish what is the IV currently being 538 /// processed - original one (if \p EntryVal is a phi corresponding to the 539 /// original IV) or the "newly-created" one based on the proof mentioned above 540 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 541 /// latter case \p EntryVal is a TruncInst and we must not record anything for 542 /// that IV, but it's error-prone to expect callers of this routine to care 543 /// about that, hence this explicit parameter. 544 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 545 const Instruction *EntryVal, 546 Value *VectorLoopValue, 547 unsigned Part, 548 unsigned Lane = UINT_MAX); 549 550 /// Generate a shuffle sequence that will reverse the vector Vec. 551 virtual Value *reverseVector(Value *Vec); 552 553 /// Returns (and creates if needed) the original loop trip count. 554 Value *getOrCreateTripCount(Loop *NewLoop); 555 556 /// Returns (and creates if needed) the trip count of the widened loop. 557 Value *getOrCreateVectorTripCount(Loop *NewLoop); 558 559 /// Returns a bitcasted value to the requested vector type. 560 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 561 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 562 const DataLayout &DL); 563 564 /// Emit a bypass check to see if the vector trip count is zero, including if 565 /// it overflows. 566 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 567 568 /// Emit a bypass check to see if all of the SCEV assumptions we've 569 /// had to make are correct. 570 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 571 572 /// Emit bypass checks to check any memory assumptions we may have made. 573 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 574 575 /// Add additional metadata to \p To that was not present on \p Orig. 576 /// 577 /// Currently this is used to add the noalias annotations based on the 578 /// inserted memchecks. Use this for instructions that are *cloned* into the 579 /// vector loop. 580 void addNewMetadata(Instruction *To, const Instruction *Orig); 581 582 /// Add metadata from one instruction to another. 583 /// 584 /// This includes both the original MDs from \p From and additional ones (\see 585 /// addNewMetadata). Use this for *newly created* instructions in the vector 586 /// loop. 587 void addMetadata(Instruction *To, Instruction *From); 588 589 /// Similar to the previous function but it adds the metadata to a 590 /// vector of instructions. 591 void addMetadata(ArrayRef<Value *> To, Instruction *From); 592 593 /// The original loop. 594 Loop *OrigLoop; 595 596 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 597 /// dynamic knowledge to simplify SCEV expressions and converts them to a 598 /// more usable form. 599 PredicatedScalarEvolution &PSE; 600 601 /// Loop Info. 602 LoopInfo *LI; 603 604 /// Dominator Tree. 605 DominatorTree *DT; 606 607 /// Alias Analysis. 608 AliasAnalysis *AA; 609 610 /// Target Library Info. 611 const TargetLibraryInfo *TLI; 612 613 /// Target Transform Info. 614 const TargetTransformInfo *TTI; 615 616 /// Assumption Cache. 617 AssumptionCache *AC; 618 619 /// Interface to emit optimization remarks. 620 OptimizationRemarkEmitter *ORE; 621 622 /// LoopVersioning. It's only set up (non-null) if memchecks were 623 /// used. 624 /// 625 /// This is currently only used to add no-alias metadata based on the 626 /// memchecks. The actually versioning is performed manually. 627 std::unique_ptr<LoopVersioning> LVer; 628 629 /// The vectorization SIMD factor to use. Each vector will have this many 630 /// vector elements. 631 unsigned VF; 632 633 /// The vectorization unroll factor to use. Each scalar is vectorized to this 634 /// many different vector instructions. 635 unsigned UF; 636 637 /// The builder that we use 638 IRBuilder<> Builder; 639 640 // --- Vectorization state --- 641 642 /// The vector-loop preheader. 643 BasicBlock *LoopVectorPreHeader; 644 645 /// The scalar-loop preheader. 646 BasicBlock *LoopScalarPreHeader; 647 648 /// Middle Block between the vector and the scalar. 649 BasicBlock *LoopMiddleBlock; 650 651 /// The ExitBlock of the scalar loop. 652 BasicBlock *LoopExitBlock; 653 654 /// The vector loop body. 655 BasicBlock *LoopVectorBody; 656 657 /// The scalar loop body. 658 BasicBlock *LoopScalarBody; 659 660 /// A list of all bypass blocks. The first block is the entry of the loop. 661 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 662 663 /// The new Induction variable which was added to the new block. 664 PHINode *Induction = nullptr; 665 666 /// The induction variable of the old basic block. 667 PHINode *OldInduction = nullptr; 668 669 /// Maps values from the original loop to their corresponding values in the 670 /// vectorized loop. A key value can map to either vector values, scalar 671 /// values or both kinds of values, depending on whether the key was 672 /// vectorized and scalarized. 673 VectorizerValueMap VectorLoopValueMap; 674 675 /// Store instructions that were predicated. 676 SmallVector<Instruction *, 4> PredicatedInstructions; 677 678 /// Trip count of the original loop. 679 Value *TripCount = nullptr; 680 681 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 682 Value *VectorTripCount = nullptr; 683 684 /// The legality analysis. 685 LoopVectorizationLegality *Legal; 686 687 /// The profitablity analysis. 688 LoopVectorizationCostModel *Cost; 689 690 // Record whether runtime checks are added. 691 bool AddedSafetyChecks = false; 692 693 // Holds the end values for each induction variable. We save the end values 694 // so we can later fix-up the external users of the induction variables. 695 DenseMap<PHINode *, Value *> IVEndValues; 696 }; 697 698 class InnerLoopUnroller : public InnerLoopVectorizer { 699 public: 700 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 701 LoopInfo *LI, DominatorTree *DT, 702 const TargetLibraryInfo *TLI, 703 const TargetTransformInfo *TTI, AssumptionCache *AC, 704 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 705 LoopVectorizationLegality *LVL, 706 LoopVectorizationCostModel *CM) 707 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 708 UnrollFactor, LVL, CM) {} 709 710 private: 711 Value *getBroadcastInstrs(Value *V) override; 712 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 713 Instruction::BinaryOps Opcode = 714 Instruction::BinaryOpsEnd) override; 715 Value *reverseVector(Value *Vec) override; 716 }; 717 718 } // end namespace llvm 719 720 /// Look for a meaningful debug location on the instruction or it's 721 /// operands. 722 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 723 if (!I) 724 return I; 725 726 DebugLoc Empty; 727 if (I->getDebugLoc() != Empty) 728 return I; 729 730 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 731 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 732 if (OpInst->getDebugLoc() != Empty) 733 return OpInst; 734 } 735 736 return I; 737 } 738 739 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 740 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 741 const DILocation *DIL = Inst->getDebugLoc(); 742 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 743 !isa<DbgInfoIntrinsic>(Inst)) 744 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 745 else 746 B.SetCurrentDebugLocation(DIL); 747 } else 748 B.SetCurrentDebugLocation(DebugLoc()); 749 } 750 751 #ifndef NDEBUG 752 /// \return string containing a file name and a line # for the given loop. 753 static std::string getDebugLocString(const Loop *L) { 754 std::string Result; 755 if (L) { 756 raw_string_ostream OS(Result); 757 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 758 LoopDbgLoc.print(OS); 759 else 760 // Just print the module name. 761 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 762 OS.flush(); 763 } 764 return Result; 765 } 766 #endif 767 768 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 769 const Instruction *Orig) { 770 // If the loop was versioned with memchecks, add the corresponding no-alias 771 // metadata. 772 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 773 LVer->annotateInstWithNoAlias(To, Orig); 774 } 775 776 void InnerLoopVectorizer::addMetadata(Instruction *To, 777 Instruction *From) { 778 propagateMetadata(To, From); 779 addNewMetadata(To, From); 780 } 781 782 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 783 Instruction *From) { 784 for (Value *V : To) { 785 if (Instruction *I = dyn_cast<Instruction>(V)) 786 addMetadata(I, From); 787 } 788 } 789 790 namespace llvm { 791 792 /// The group of interleaved loads/stores sharing the same stride and 793 /// close to each other. 794 /// 795 /// Each member in this group has an index starting from 0, and the largest 796 /// index should be less than interleaved factor, which is equal to the absolute 797 /// value of the access's stride. 798 /// 799 /// E.g. An interleaved load group of factor 4: 800 /// for (unsigned i = 0; i < 1024; i+=4) { 801 /// a = A[i]; // Member of index 0 802 /// b = A[i+1]; // Member of index 1 803 /// d = A[i+3]; // Member of index 3 804 /// ... 805 /// } 806 /// 807 /// An interleaved store group of factor 4: 808 /// for (unsigned i = 0; i < 1024; i+=4) { 809 /// ... 810 /// A[i] = a; // Member of index 0 811 /// A[i+1] = b; // Member of index 1 812 /// A[i+2] = c; // Member of index 2 813 /// A[i+3] = d; // Member of index 3 814 /// } 815 /// 816 /// Note: the interleaved load group could have gaps (missing members), but 817 /// the interleaved store group doesn't allow gaps. 818 class InterleaveGroup { 819 public: 820 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 821 : Align(Align), InsertPos(Instr) { 822 assert(Align && "The alignment should be non-zero"); 823 824 Factor = std::abs(Stride); 825 assert(Factor > 1 && "Invalid interleave factor"); 826 827 Reverse = Stride < 0; 828 Members[0] = Instr; 829 } 830 831 bool isReverse() const { return Reverse; } 832 unsigned getFactor() const { return Factor; } 833 unsigned getAlignment() const { return Align; } 834 unsigned getNumMembers() const { return Members.size(); } 835 836 /// Try to insert a new member \p Instr with index \p Index and 837 /// alignment \p NewAlign. The index is related to the leader and it could be 838 /// negative if it is the new leader. 839 /// 840 /// \returns false if the instruction doesn't belong to the group. 841 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 842 assert(NewAlign && "The new member's alignment should be non-zero"); 843 844 int Key = Index + SmallestKey; 845 846 // Skip if there is already a member with the same index. 847 if (Members.count(Key)) 848 return false; 849 850 if (Key > LargestKey) { 851 // The largest index is always less than the interleave factor. 852 if (Index >= static_cast<int>(Factor)) 853 return false; 854 855 LargestKey = Key; 856 } else if (Key < SmallestKey) { 857 // The largest index is always less than the interleave factor. 858 if (LargestKey - Key >= static_cast<int>(Factor)) 859 return false; 860 861 SmallestKey = Key; 862 } 863 864 // It's always safe to select the minimum alignment. 865 Align = std::min(Align, NewAlign); 866 Members[Key] = Instr; 867 return true; 868 } 869 870 /// Get the member with the given index \p Index 871 /// 872 /// \returns nullptr if contains no such member. 873 Instruction *getMember(unsigned Index) const { 874 int Key = SmallestKey + Index; 875 if (!Members.count(Key)) 876 return nullptr; 877 878 return Members.find(Key)->second; 879 } 880 881 /// Get the index for the given member. Unlike the key in the member 882 /// map, the index starts from 0. 883 unsigned getIndex(Instruction *Instr) const { 884 for (auto I : Members) 885 if (I.second == Instr) 886 return I.first - SmallestKey; 887 888 llvm_unreachable("InterleaveGroup contains no such member"); 889 } 890 891 Instruction *getInsertPos() const { return InsertPos; } 892 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 893 894 /// Add metadata (e.g. alias info) from the instructions in this group to \p 895 /// NewInst. 896 /// 897 /// FIXME: this function currently does not add noalias metadata a'la 898 /// addNewMedata. To do that we need to compute the intersection of the 899 /// noalias info from all members. 900 void addMetadata(Instruction *NewInst) const { 901 SmallVector<Value *, 4> VL; 902 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 903 [](std::pair<int, Instruction *> p) { return p.second; }); 904 propagateMetadata(NewInst, VL); 905 } 906 907 private: 908 unsigned Factor; // Interleave Factor. 909 bool Reverse; 910 unsigned Align; 911 DenseMap<int, Instruction *> Members; 912 int SmallestKey = 0; 913 int LargestKey = 0; 914 915 // To avoid breaking dependences, vectorized instructions of an interleave 916 // group should be inserted at either the first load or the last store in 917 // program order. 918 // 919 // E.g. %even = load i32 // Insert Position 920 // %add = add i32 %even // Use of %even 921 // %odd = load i32 922 // 923 // store i32 %even 924 // %odd = add i32 // Def of %odd 925 // store i32 %odd // Insert Position 926 Instruction *InsertPos; 927 }; 928 } // end namespace llvm 929 930 namespace { 931 932 /// Drive the analysis of interleaved memory accesses in the loop. 933 /// 934 /// Use this class to analyze interleaved accesses only when we can vectorize 935 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 936 /// on interleaved accesses is unsafe. 937 /// 938 /// The analysis collects interleave groups and records the relationships 939 /// between the member and the group in a map. 940 class InterleavedAccessInfo { 941 public: 942 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 943 DominatorTree *DT, LoopInfo *LI, 944 const LoopAccessInfo *LAI) 945 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {} 946 947 ~InterleavedAccessInfo() { 948 SmallSet<InterleaveGroup *, 4> DelSet; 949 // Avoid releasing a pointer twice. 950 for (auto &I : InterleaveGroupMap) 951 DelSet.insert(I.second); 952 for (auto *Ptr : DelSet) 953 delete Ptr; 954 } 955 956 /// Analyze the interleaved accesses and collect them in interleave 957 /// groups. Substitute symbolic strides using \p Strides. 958 void analyzeInterleaving(); 959 960 /// Check if \p Instr belongs to any interleave group. 961 bool isInterleaved(Instruction *Instr) const { 962 return InterleaveGroupMap.count(Instr); 963 } 964 965 /// Get the interleave group that \p Instr belongs to. 966 /// 967 /// \returns nullptr if doesn't have such group. 968 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 969 if (InterleaveGroupMap.count(Instr)) 970 return InterleaveGroupMap.find(Instr)->second; 971 return nullptr; 972 } 973 974 /// Returns true if an interleaved group that may access memory 975 /// out-of-bounds requires a scalar epilogue iteration for correctness. 976 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 977 978 private: 979 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 980 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 981 /// The interleaved access analysis can also add new predicates (for example 982 /// by versioning strides of pointers). 983 PredicatedScalarEvolution &PSE; 984 985 Loop *TheLoop; 986 DominatorTree *DT; 987 LoopInfo *LI; 988 const LoopAccessInfo *LAI; 989 990 /// True if the loop may contain non-reversed interleaved groups with 991 /// out-of-bounds accesses. We ensure we don't speculatively access memory 992 /// out-of-bounds by executing at least one scalar epilogue iteration. 993 bool RequiresScalarEpilogue = false; 994 995 /// Holds the relationships between the members and the interleave group. 996 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 997 998 /// Holds dependences among the memory accesses in the loop. It maps a source 999 /// access to a set of dependent sink accesses. 1000 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1001 1002 /// The descriptor for a strided memory access. 1003 struct StrideDescriptor { 1004 StrideDescriptor() = default; 1005 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1006 unsigned Align) 1007 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1008 1009 // The access's stride. It is negative for a reverse access. 1010 int64_t Stride = 0; 1011 1012 // The scalar expression of this access. 1013 const SCEV *Scev = nullptr; 1014 1015 // The size of the memory object. 1016 uint64_t Size = 0; 1017 1018 // The alignment of this access. 1019 unsigned Align = 0; 1020 }; 1021 1022 /// A type for holding instructions and their stride descriptors. 1023 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1024 1025 /// Create a new interleave group with the given instruction \p Instr, 1026 /// stride \p Stride and alignment \p Align. 1027 /// 1028 /// \returns the newly created interleave group. 1029 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1030 unsigned Align) { 1031 assert(!InterleaveGroupMap.count(Instr) && 1032 "Already in an interleaved access group"); 1033 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1034 return InterleaveGroupMap[Instr]; 1035 } 1036 1037 /// Release the group and remove all the relationships. 1038 void releaseGroup(InterleaveGroup *Group) { 1039 for (unsigned i = 0; i < Group->getFactor(); i++) 1040 if (Instruction *Member = Group->getMember(i)) 1041 InterleaveGroupMap.erase(Member); 1042 1043 delete Group; 1044 } 1045 1046 /// Collect all the accesses with a constant stride in program order. 1047 void collectConstStrideAccesses( 1048 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1049 const ValueToValueMap &Strides); 1050 1051 /// Returns true if \p Stride is allowed in an interleaved group. 1052 static bool isStrided(int Stride) { 1053 unsigned Factor = std::abs(Stride); 1054 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1055 } 1056 1057 /// Returns true if \p BB is a predicated block. 1058 bool isPredicated(BasicBlock *BB) const { 1059 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1060 } 1061 1062 /// Returns true if LoopAccessInfo can be used for dependence queries. 1063 bool areDependencesValid() const { 1064 return LAI && LAI->getDepChecker().getDependences(); 1065 } 1066 1067 /// Returns true if memory accesses \p A and \p B can be reordered, if 1068 /// necessary, when constructing interleaved groups. 1069 /// 1070 /// \p A must precede \p B in program order. We return false if reordering is 1071 /// not necessary or is prevented because \p A and \p B may be dependent. 1072 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1073 StrideEntry *B) const { 1074 // Code motion for interleaved accesses can potentially hoist strided loads 1075 // and sink strided stores. The code below checks the legality of the 1076 // following two conditions: 1077 // 1078 // 1. Potentially moving a strided load (B) before any store (A) that 1079 // precedes B, or 1080 // 1081 // 2. Potentially moving a strided store (A) after any load or store (B) 1082 // that A precedes. 1083 // 1084 // It's legal to reorder A and B if we know there isn't a dependence from A 1085 // to B. Note that this determination is conservative since some 1086 // dependences could potentially be reordered safely. 1087 1088 // A is potentially the source of a dependence. 1089 auto *Src = A->first; 1090 auto SrcDes = A->second; 1091 1092 // B is potentially the sink of a dependence. 1093 auto *Sink = B->first; 1094 auto SinkDes = B->second; 1095 1096 // Code motion for interleaved accesses can't violate WAR dependences. 1097 // Thus, reordering is legal if the source isn't a write. 1098 if (!Src->mayWriteToMemory()) 1099 return true; 1100 1101 // At least one of the accesses must be strided. 1102 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1103 return true; 1104 1105 // If dependence information is not available from LoopAccessInfo, 1106 // conservatively assume the instructions can't be reordered. 1107 if (!areDependencesValid()) 1108 return false; 1109 1110 // If we know there is a dependence from source to sink, assume the 1111 // instructions can't be reordered. Otherwise, reordering is legal. 1112 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1113 } 1114 1115 /// Collect the dependences from LoopAccessInfo. 1116 /// 1117 /// We process the dependences once during the interleaved access analysis to 1118 /// enable constant-time dependence queries. 1119 void collectDependences() { 1120 if (!areDependencesValid()) 1121 return; 1122 auto *Deps = LAI->getDepChecker().getDependences(); 1123 for (auto Dep : *Deps) 1124 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1125 } 1126 }; 1127 1128 } // end anonymous namespace 1129 1130 static void emitMissedWarning(Function *F, Loop *L, 1131 const LoopVectorizeHints &LH, 1132 OptimizationRemarkEmitter *ORE) { 1133 LH.emitRemarkWithHints(); 1134 1135 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1136 if (LH.getWidth() != 1) 1137 ORE->emit(DiagnosticInfoOptimizationFailure( 1138 DEBUG_TYPE, "FailedRequestedVectorization", 1139 L->getStartLoc(), L->getHeader()) 1140 << "loop not vectorized: " 1141 << "failed explicitly specified loop vectorization"); 1142 else if (LH.getInterleave() != 1) 1143 ORE->emit(DiagnosticInfoOptimizationFailure( 1144 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1145 L->getHeader()) 1146 << "loop not interleaved: " 1147 << "failed explicitly specified loop interleaving"); 1148 } 1149 } 1150 1151 namespace llvm { 1152 1153 /// LoopVectorizationCostModel - estimates the expected speedups due to 1154 /// vectorization. 1155 /// In many cases vectorization is not profitable. This can happen because of 1156 /// a number of reasons. In this class we mainly attempt to predict the 1157 /// expected speedup/slowdowns due to the supported instruction set. We use the 1158 /// TargetTransformInfo to query the different backends for the cost of 1159 /// different operations. 1160 class LoopVectorizationCostModel { 1161 public: 1162 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1163 LoopInfo *LI, LoopVectorizationLegality *Legal, 1164 const TargetTransformInfo &TTI, 1165 const TargetLibraryInfo *TLI, DemandedBits *DB, 1166 AssumptionCache *AC, 1167 OptimizationRemarkEmitter *ORE, const Function *F, 1168 const LoopVectorizeHints *Hints, 1169 InterleavedAccessInfo &IAI) 1170 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1171 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 1172 1173 /// \return An upper bound for the vectorization factor, or None if 1174 /// vectorization should be avoided up front. 1175 Optional<unsigned> computeMaxVF(bool OptForSize); 1176 1177 /// \return The most profitable vectorization factor and the cost of that VF. 1178 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1179 /// then this vectorization factor will be selected if vectorization is 1180 /// possible. 1181 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1182 1183 /// Setup cost-based decisions for user vectorization factor. 1184 void selectUserVectorizationFactor(unsigned UserVF) { 1185 collectUniformsAndScalars(UserVF); 1186 collectInstsToScalarize(UserVF); 1187 } 1188 1189 /// \return The size (in bits) of the smallest and widest types in the code 1190 /// that needs to be vectorized. We ignore values that remain scalar such as 1191 /// 64 bit loop indices. 1192 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1193 1194 /// \return The desired interleave count. 1195 /// If interleave count has been specified by metadata it will be returned. 1196 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1197 /// are the selected vectorization factor and the cost of the selected VF. 1198 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1199 unsigned LoopCost); 1200 1201 /// Memory access instruction may be vectorized in more than one way. 1202 /// Form of instruction after vectorization depends on cost. 1203 /// This function takes cost-based decisions for Load/Store instructions 1204 /// and collects them in a map. This decisions map is used for building 1205 /// the lists of loop-uniform and loop-scalar instructions. 1206 /// The calculated cost is saved with widening decision in order to 1207 /// avoid redundant calculations. 1208 void setCostBasedWideningDecision(unsigned VF); 1209 1210 /// A struct that represents some properties of the register usage 1211 /// of a loop. 1212 struct RegisterUsage { 1213 /// Holds the number of loop invariant values that are used in the loop. 1214 unsigned LoopInvariantRegs; 1215 1216 /// Holds the maximum number of concurrent live intervals in the loop. 1217 unsigned MaxLocalUsers; 1218 }; 1219 1220 /// \return Returns information about the register usages of the loop for the 1221 /// given vectorization factors. 1222 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1223 1224 /// Collect values we want to ignore in the cost model. 1225 void collectValuesToIgnore(); 1226 1227 /// \returns The smallest bitwidth each instruction can be represented with. 1228 /// The vector equivalents of these instructions should be truncated to this 1229 /// type. 1230 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1231 return MinBWs; 1232 } 1233 1234 /// \returns True if it is more profitable to scalarize instruction \p I for 1235 /// vectorization factor \p VF. 1236 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1237 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1238 auto Scalars = InstsToScalarize.find(VF); 1239 assert(Scalars != InstsToScalarize.end() && 1240 "VF not yet analyzed for scalarization profitability"); 1241 return Scalars->second.count(I); 1242 } 1243 1244 /// Returns true if \p I is known to be uniform after vectorization. 1245 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1246 if (VF == 1) 1247 return true; 1248 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1249 auto UniformsPerVF = Uniforms.find(VF); 1250 return UniformsPerVF->second.count(I); 1251 } 1252 1253 /// Returns true if \p I is known to be scalar after vectorization. 1254 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1255 if (VF == 1) 1256 return true; 1257 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1258 auto ScalarsPerVF = Scalars.find(VF); 1259 return ScalarsPerVF->second.count(I); 1260 } 1261 1262 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1263 /// for vectorization factor \p VF. 1264 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1265 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1266 !isScalarAfterVectorization(I, VF); 1267 } 1268 1269 /// Decision that was taken during cost calculation for memory instruction. 1270 enum InstWidening { 1271 CM_Unknown, 1272 CM_Widen, // For consecutive accesses with stride +1. 1273 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1274 CM_Interleave, 1275 CM_GatherScatter, 1276 CM_Scalarize 1277 }; 1278 1279 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1280 /// instruction \p I and vector width \p VF. 1281 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1282 unsigned Cost) { 1283 assert(VF >= 2 && "Expected VF >=2"); 1284 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1285 } 1286 1287 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1288 /// interleaving group \p Grp and vector width \p VF. 1289 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1290 InstWidening W, unsigned Cost) { 1291 assert(VF >= 2 && "Expected VF >=2"); 1292 /// Broadcast this decicion to all instructions inside the group. 1293 /// But the cost will be assigned to one instruction only. 1294 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1295 if (auto *I = Grp->getMember(i)) { 1296 if (Grp->getInsertPos() == I) 1297 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1298 else 1299 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1300 } 1301 } 1302 } 1303 1304 /// Return the cost model decision for the given instruction \p I and vector 1305 /// width \p VF. Return CM_Unknown if this instruction did not pass 1306 /// through the cost modeling. 1307 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1308 assert(VF >= 2 && "Expected VF >=2"); 1309 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1310 auto Itr = WideningDecisions.find(InstOnVF); 1311 if (Itr == WideningDecisions.end()) 1312 return CM_Unknown; 1313 return Itr->second.first; 1314 } 1315 1316 /// Return the vectorization cost for the given instruction \p I and vector 1317 /// width \p VF. 1318 unsigned getWideningCost(Instruction *I, unsigned VF) { 1319 assert(VF >= 2 && "Expected VF >=2"); 1320 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1321 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1322 return WideningDecisions[InstOnVF].second; 1323 } 1324 1325 /// Return True if instruction \p I is an optimizable truncate whose operand 1326 /// is an induction variable. Such a truncate will be removed by adding a new 1327 /// induction variable with the destination type. 1328 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1329 // If the instruction is not a truncate, return false. 1330 auto *Trunc = dyn_cast<TruncInst>(I); 1331 if (!Trunc) 1332 return false; 1333 1334 // Get the source and destination types of the truncate. 1335 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1336 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1337 1338 // If the truncate is free for the given types, return false. Replacing a 1339 // free truncate with an induction variable would add an induction variable 1340 // update instruction to each iteration of the loop. We exclude from this 1341 // check the primary induction variable since it will need an update 1342 // instruction regardless. 1343 Value *Op = Trunc->getOperand(0); 1344 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1345 return false; 1346 1347 // If the truncated value is not an induction variable, return false. 1348 return Legal->isInductionPhi(Op); 1349 } 1350 1351 /// Collects the instructions to scalarize for each predicated instruction in 1352 /// the loop. 1353 void collectInstsToScalarize(unsigned VF); 1354 1355 /// Collect Uniform and Scalar values for the given \p VF. 1356 /// The sets depend on CM decision for Load/Store instructions 1357 /// that may be vectorized as interleave, gather-scatter or scalarized. 1358 void collectUniformsAndScalars(unsigned VF) { 1359 // Do the analysis once. 1360 if (VF == 1 || Uniforms.count(VF)) 1361 return; 1362 setCostBasedWideningDecision(VF); 1363 collectLoopUniforms(VF); 1364 collectLoopScalars(VF); 1365 } 1366 1367 /// Returns true if the target machine supports masked store operation 1368 /// for the given \p DataType and kind of access to \p Ptr. 1369 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1370 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1371 } 1372 1373 /// Returns true if the target machine supports masked load operation 1374 /// for the given \p DataType and kind of access to \p Ptr. 1375 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1376 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1377 } 1378 1379 /// Returns true if the target machine supports masked scatter operation 1380 /// for the given \p DataType. 1381 bool isLegalMaskedScatter(Type *DataType) { 1382 return TTI.isLegalMaskedScatter(DataType); 1383 } 1384 1385 /// Returns true if the target machine supports masked gather operation 1386 /// for the given \p DataType. 1387 bool isLegalMaskedGather(Type *DataType) { 1388 return TTI.isLegalMaskedGather(DataType); 1389 } 1390 1391 /// Returns true if the target machine can represent \p V as a masked gather 1392 /// or scatter operation. 1393 bool isLegalGatherOrScatter(Value *V) { 1394 bool LI = isa<LoadInst>(V); 1395 bool SI = isa<StoreInst>(V); 1396 if (!LI && !SI) 1397 return false; 1398 auto *Ty = getMemInstValueType(V); 1399 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1400 } 1401 1402 /// Returns true if \p I is an instruction that will be scalarized with 1403 /// predication. Such instructions include conditional stores and 1404 /// instructions that may divide by zero. 1405 bool isScalarWithPredication(Instruction *I); 1406 1407 /// Returns true if \p I is a memory instruction with consecutive memory 1408 /// access that can be widened. 1409 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1410 1411 /// Check if \p Instr belongs to any interleaved access group. 1412 bool isAccessInterleaved(Instruction *Instr) { 1413 return InterleaveInfo.isInterleaved(Instr); 1414 } 1415 1416 /// Get the interleaved access group that \p Instr belongs to. 1417 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1418 return InterleaveInfo.getInterleaveGroup(Instr); 1419 } 1420 1421 /// Returns true if an interleaved group requires a scalar iteration 1422 /// to handle accesses with gaps. 1423 bool requiresScalarEpilogue() const { 1424 return InterleaveInfo.requiresScalarEpilogue(); 1425 } 1426 1427 private: 1428 unsigned NumPredStores = 0; 1429 1430 /// \return An upper bound for the vectorization factor, larger than zero. 1431 /// One is returned if vectorization should best be avoided due to cost. 1432 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1433 1434 /// The vectorization cost is a combination of the cost itself and a boolean 1435 /// indicating whether any of the contributing operations will actually 1436 /// operate on 1437 /// vector values after type legalization in the backend. If this latter value 1438 /// is 1439 /// false, then all operations will be scalarized (i.e. no vectorization has 1440 /// actually taken place). 1441 using VectorizationCostTy = std::pair<unsigned, bool>; 1442 1443 /// Returns the expected execution cost. The unit of the cost does 1444 /// not matter because we use the 'cost' units to compare different 1445 /// vector widths. The cost that is returned is *not* normalized by 1446 /// the factor width. 1447 VectorizationCostTy expectedCost(unsigned VF); 1448 1449 /// Returns the execution time cost of an instruction for a given vector 1450 /// width. Vector width of one means scalar. 1451 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1452 1453 /// The cost-computation logic from getInstructionCost which provides 1454 /// the vector type as an output parameter. 1455 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1456 1457 /// Calculate vectorization cost of memory instruction \p I. 1458 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1459 1460 /// The cost computation for scalarized memory instruction. 1461 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1462 1463 /// The cost computation for interleaving group of memory instructions. 1464 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1465 1466 /// The cost computation for Gather/Scatter instruction. 1467 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1468 1469 /// The cost computation for widening instruction \p I with consecutive 1470 /// memory access. 1471 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1472 1473 /// The cost calculation for Load instruction \p I with uniform pointer - 1474 /// scalar load + broadcast. 1475 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1476 1477 /// Returns whether the instruction is a load or store and will be a emitted 1478 /// as a vector operation. 1479 bool isConsecutiveLoadOrStore(Instruction *I); 1480 1481 /// Returns true if an artificially high cost for emulated masked memrefs 1482 /// should be used. 1483 bool useEmulatedMaskMemRefHack(Instruction *I); 1484 1485 /// Create an analysis remark that explains why vectorization failed 1486 /// 1487 /// \p RemarkName is the identifier for the remark. \return the remark object 1488 /// that can be streamed to. 1489 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1490 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1491 RemarkName, TheLoop); 1492 } 1493 1494 /// Map of scalar integer values to the smallest bitwidth they can be legally 1495 /// represented as. The vector equivalents of these values should be truncated 1496 /// to this type. 1497 MapVector<Instruction *, uint64_t> MinBWs; 1498 1499 /// A type representing the costs for instructions if they were to be 1500 /// scalarized rather than vectorized. The entries are Instruction-Cost 1501 /// pairs. 1502 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1503 1504 /// A set containing all BasicBlocks that are known to present after 1505 /// vectorization as a predicated block. 1506 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1507 1508 /// A map holding scalar costs for different vectorization factors. The 1509 /// presence of a cost for an instruction in the mapping indicates that the 1510 /// instruction will be scalarized when vectorizing with the associated 1511 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1512 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1513 1514 /// Holds the instructions known to be uniform after vectorization. 1515 /// The data is collected per VF. 1516 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1517 1518 /// Holds the instructions known to be scalar after vectorization. 1519 /// The data is collected per VF. 1520 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1521 1522 /// Holds the instructions (address computations) that are forced to be 1523 /// scalarized. 1524 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1525 1526 /// Returns the expected difference in cost from scalarizing the expression 1527 /// feeding a predicated instruction \p PredInst. The instructions to 1528 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1529 /// non-negative return value implies the expression will be scalarized. 1530 /// Currently, only single-use chains are considered for scalarization. 1531 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1532 unsigned VF); 1533 1534 /// Collect the instructions that are uniform after vectorization. An 1535 /// instruction is uniform if we represent it with a single scalar value in 1536 /// the vectorized loop corresponding to each vector iteration. Examples of 1537 /// uniform instructions include pointer operands of consecutive or 1538 /// interleaved memory accesses. Note that although uniformity implies an 1539 /// instruction will be scalar, the reverse is not true. In general, a 1540 /// scalarized instruction will be represented by VF scalar values in the 1541 /// vectorized loop, each corresponding to an iteration of the original 1542 /// scalar loop. 1543 void collectLoopUniforms(unsigned VF); 1544 1545 /// Collect the instructions that are scalar after vectorization. An 1546 /// instruction is scalar if it is known to be uniform or will be scalarized 1547 /// during vectorization. Non-uniform scalarized instructions will be 1548 /// represented by VF values in the vectorized loop, each corresponding to an 1549 /// iteration of the original scalar loop. 1550 void collectLoopScalars(unsigned VF); 1551 1552 /// Keeps cost model vectorization decision and cost for instructions. 1553 /// Right now it is used for memory instructions only. 1554 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1555 std::pair<InstWidening, unsigned>>; 1556 1557 DecisionList WideningDecisions; 1558 1559 public: 1560 /// The loop that we evaluate. 1561 Loop *TheLoop; 1562 1563 /// Predicated scalar evolution analysis. 1564 PredicatedScalarEvolution &PSE; 1565 1566 /// Loop Info analysis. 1567 LoopInfo *LI; 1568 1569 /// Vectorization legality. 1570 LoopVectorizationLegality *Legal; 1571 1572 /// Vector target information. 1573 const TargetTransformInfo &TTI; 1574 1575 /// Target Library Info. 1576 const TargetLibraryInfo *TLI; 1577 1578 /// Demanded bits analysis. 1579 DemandedBits *DB; 1580 1581 /// Assumption cache. 1582 AssumptionCache *AC; 1583 1584 /// Interface to emit optimization remarks. 1585 OptimizationRemarkEmitter *ORE; 1586 1587 const Function *TheFunction; 1588 1589 /// Loop Vectorize Hint. 1590 const LoopVectorizeHints *Hints; 1591 1592 /// The interleave access information contains groups of interleaved accesses 1593 /// with the same stride and close to each other. 1594 InterleavedAccessInfo &InterleaveInfo; 1595 1596 /// Values to ignore in the cost model. 1597 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1598 1599 /// Values to ignore in the cost model when VF > 1. 1600 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1601 }; 1602 1603 } // end namespace llvm 1604 1605 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1606 // vectorization. The loop needs to be annotated with #pragma omp simd 1607 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1608 // vector length information is not provided, vectorization is not considered 1609 // explicit. Interleave hints are not allowed either. These limitations will be 1610 // relaxed in the future. 1611 // Please, note that we are currently forced to abuse the pragma 'clang 1612 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1613 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1614 // provides *explicit vectorization hints* (LV can bypass legal checks and 1615 // assume that vectorization is legal). However, both hints are implemented 1616 // using the same metadata (llvm.loop.vectorize, processed by 1617 // LoopVectorizeHints). This will be fixed in the future when the native IR 1618 // representation for pragma 'omp simd' is introduced. 1619 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1620 OptimizationRemarkEmitter *ORE) { 1621 assert(!OuterLp->empty() && "This is not an outer loop"); 1622 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1623 1624 // Only outer loops with an explicit vectorization hint are supported. 1625 // Unannotated outer loops are ignored. 1626 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1627 return false; 1628 1629 Function *Fn = OuterLp->getHeader()->getParent(); 1630 if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) { 1631 DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1632 return false; 1633 } 1634 1635 if (!Hints.getWidth()) { 1636 DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1637 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1638 return false; 1639 } 1640 1641 if (Hints.getInterleave() > 1) { 1642 // TODO: Interleave support is future work. 1643 DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1644 "outer loops.\n"); 1645 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1646 return false; 1647 } 1648 1649 return true; 1650 } 1651 1652 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1653 OptimizationRemarkEmitter *ORE, 1654 SmallVectorImpl<Loop *> &V) { 1655 // Collect inner loops and outer loops without irreducible control flow. For 1656 // now, only collect outer loops that have explicit vectorization hints. 1657 if (L.empty() || (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1658 LoopBlocksRPO RPOT(&L); 1659 RPOT.perform(LI); 1660 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1661 V.push_back(&L); 1662 // TODO: Collect inner loops inside marked outer loops in case 1663 // vectorization fails for the outer loop. Do not invoke 1664 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1665 // already known to be reducible. We can use an inherited attribute for 1666 // that. 1667 return; 1668 } 1669 } 1670 for (Loop *InnerL : L) 1671 collectSupportedLoops(*InnerL, LI, ORE, V); 1672 } 1673 1674 namespace { 1675 1676 /// The LoopVectorize Pass. 1677 struct LoopVectorize : public FunctionPass { 1678 /// Pass identification, replacement for typeid 1679 static char ID; 1680 1681 LoopVectorizePass Impl; 1682 1683 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1684 : FunctionPass(ID) { 1685 Impl.DisableUnrolling = NoUnrolling; 1686 Impl.AlwaysVectorize = AlwaysVectorize; 1687 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1688 } 1689 1690 bool runOnFunction(Function &F) override { 1691 if (skipFunction(F)) 1692 return false; 1693 1694 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1695 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1696 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1697 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1698 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1699 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1700 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1701 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1702 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1703 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1704 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1705 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1706 1707 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1708 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1709 1710 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1711 GetLAA, *ORE); 1712 } 1713 1714 void getAnalysisUsage(AnalysisUsage &AU) const override { 1715 AU.addRequired<AssumptionCacheTracker>(); 1716 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1717 AU.addRequired<DominatorTreeWrapperPass>(); 1718 AU.addRequired<LoopInfoWrapperPass>(); 1719 AU.addRequired<ScalarEvolutionWrapperPass>(); 1720 AU.addRequired<TargetTransformInfoWrapperPass>(); 1721 AU.addRequired<AAResultsWrapperPass>(); 1722 AU.addRequired<LoopAccessLegacyAnalysis>(); 1723 AU.addRequired<DemandedBitsWrapperPass>(); 1724 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1725 AU.addPreserved<LoopInfoWrapperPass>(); 1726 AU.addPreserved<DominatorTreeWrapperPass>(); 1727 AU.addPreserved<BasicAAWrapperPass>(); 1728 AU.addPreserved<GlobalsAAWrapperPass>(); 1729 } 1730 }; 1731 1732 } // end anonymous namespace 1733 1734 //===----------------------------------------------------------------------===// 1735 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1736 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1737 //===----------------------------------------------------------------------===// 1738 1739 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1740 // We need to place the broadcast of invariant variables outside the loop. 1741 Instruction *Instr = dyn_cast<Instruction>(V); 1742 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 1743 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1744 1745 // Place the code for broadcasting invariant variables in the new preheader. 1746 IRBuilder<>::InsertPointGuard Guard(Builder); 1747 if (Invariant) 1748 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1749 1750 // Broadcast the scalar into all locations in the vector. 1751 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1752 1753 return Shuf; 1754 } 1755 1756 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1757 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1758 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1759 "Expected either an induction phi-node or a truncate of it!"); 1760 Value *Start = II.getStartValue(); 1761 1762 // Construct the initial value of the vector IV in the vector loop preheader 1763 auto CurrIP = Builder.saveIP(); 1764 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1765 if (isa<TruncInst>(EntryVal)) { 1766 assert(Start->getType()->isIntegerTy() && 1767 "Truncation requires an integer type"); 1768 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1769 Step = Builder.CreateTrunc(Step, TruncType); 1770 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1771 } 1772 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1773 Value *SteppedStart = 1774 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1775 1776 // We create vector phi nodes for both integer and floating-point induction 1777 // variables. Here, we determine the kind of arithmetic we will perform. 1778 Instruction::BinaryOps AddOp; 1779 Instruction::BinaryOps MulOp; 1780 if (Step->getType()->isIntegerTy()) { 1781 AddOp = Instruction::Add; 1782 MulOp = Instruction::Mul; 1783 } else { 1784 AddOp = II.getInductionOpcode(); 1785 MulOp = Instruction::FMul; 1786 } 1787 1788 // Multiply the vectorization factor by the step using integer or 1789 // floating-point arithmetic as appropriate. 1790 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1791 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1792 1793 // Create a vector splat to use in the induction update. 1794 // 1795 // FIXME: If the step is non-constant, we create the vector splat with 1796 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1797 // handle a constant vector splat. 1798 Value *SplatVF = isa<Constant>(Mul) 1799 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1800 : Builder.CreateVectorSplat(VF, Mul); 1801 Builder.restoreIP(CurrIP); 1802 1803 // We may need to add the step a number of times, depending on the unroll 1804 // factor. The last of those goes into the PHI. 1805 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1806 &*LoopVectorBody->getFirstInsertionPt()); 1807 Instruction *LastInduction = VecInd; 1808 for (unsigned Part = 0; Part < UF; ++Part) { 1809 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1810 1811 if (isa<TruncInst>(EntryVal)) 1812 addMetadata(LastInduction, EntryVal); 1813 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1814 1815 LastInduction = cast<Instruction>(addFastMathFlag( 1816 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1817 } 1818 1819 // Move the last step to the end of the latch block. This ensures consistent 1820 // placement of all induction updates. 1821 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1822 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1823 auto *ICmp = cast<Instruction>(Br->getCondition()); 1824 LastInduction->moveBefore(ICmp); 1825 LastInduction->setName("vec.ind.next"); 1826 1827 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1828 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1829 } 1830 1831 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1832 return Cost->isScalarAfterVectorization(I, VF) || 1833 Cost->isProfitableToScalarize(I, VF); 1834 } 1835 1836 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1837 if (shouldScalarizeInstruction(IV)) 1838 return true; 1839 auto isScalarInst = [&](User *U) -> bool { 1840 auto *I = cast<Instruction>(U); 1841 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1842 }; 1843 return llvm::any_of(IV->users(), isScalarInst); 1844 } 1845 1846 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1847 const InductionDescriptor &ID, const Instruction *EntryVal, 1848 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1849 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1850 "Expected either an induction phi-node or a truncate of it!"); 1851 1852 // This induction variable is not the phi from the original loop but the 1853 // newly-created IV based on the proof that casted Phi is equal to the 1854 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1855 // re-uses the same InductionDescriptor that original IV uses but we don't 1856 // have to do any recording in this case - that is done when original IV is 1857 // processed. 1858 if (isa<TruncInst>(EntryVal)) 1859 return; 1860 1861 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1862 if (Casts.empty()) 1863 return; 1864 // Only the first Cast instruction in the Casts vector is of interest. 1865 // The rest of the Casts (if exist) have no uses outside the 1866 // induction update chain itself. 1867 Instruction *CastInst = *Casts.begin(); 1868 if (Lane < UINT_MAX) 1869 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1870 else 1871 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1872 } 1873 1874 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1875 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1876 "Primary induction variable must have an integer type"); 1877 1878 auto II = Legal->getInductionVars()->find(IV); 1879 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1880 1881 auto ID = II->second; 1882 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1883 1884 // The scalar value to broadcast. This will be derived from the canonical 1885 // induction variable. 1886 Value *ScalarIV = nullptr; 1887 1888 // The value from the original loop to which we are mapping the new induction 1889 // variable. 1890 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1891 1892 // True if we have vectorized the induction variable. 1893 auto VectorizedIV = false; 1894 1895 // Determine if we want a scalar version of the induction variable. This is 1896 // true if the induction variable itself is not widened, or if it has at 1897 // least one user in the loop that is not widened. 1898 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1899 1900 // Generate code for the induction step. Note that induction steps are 1901 // required to be loop-invariant 1902 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1903 "Induction step should be loop invariant"); 1904 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1905 Value *Step = nullptr; 1906 if (PSE.getSE()->isSCEVable(IV->getType())) { 1907 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1908 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1909 LoopVectorPreHeader->getTerminator()); 1910 } else { 1911 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1912 } 1913 1914 // Try to create a new independent vector induction variable. If we can't 1915 // create the phi node, we will splat the scalar induction variable in each 1916 // loop iteration. 1917 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1918 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1919 VectorizedIV = true; 1920 } 1921 1922 // If we haven't yet vectorized the induction variable, or if we will create 1923 // a scalar one, we need to define the scalar induction variable and step 1924 // values. If we were given a truncation type, truncate the canonical 1925 // induction variable and step. Otherwise, derive these values from the 1926 // induction descriptor. 1927 if (!VectorizedIV || NeedsScalarIV) { 1928 ScalarIV = Induction; 1929 if (IV != OldInduction) { 1930 ScalarIV = IV->getType()->isIntegerTy() 1931 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1932 : Builder.CreateCast(Instruction::SIToFP, Induction, 1933 IV->getType()); 1934 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 1935 ScalarIV->setName("offset.idx"); 1936 } 1937 if (Trunc) { 1938 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1939 assert(Step->getType()->isIntegerTy() && 1940 "Truncation requires an integer step"); 1941 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1942 Step = Builder.CreateTrunc(Step, TruncType); 1943 } 1944 } 1945 1946 // If we haven't yet vectorized the induction variable, splat the scalar 1947 // induction variable, and build the necessary step vectors. 1948 // TODO: Don't do it unless the vectorized IV is really required. 1949 if (!VectorizedIV) { 1950 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1951 for (unsigned Part = 0; Part < UF; ++Part) { 1952 Value *EntryPart = 1953 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1954 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1955 if (Trunc) 1956 addMetadata(EntryPart, Trunc); 1957 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1958 } 1959 } 1960 1961 // If an induction variable is only used for counting loop iterations or 1962 // calculating addresses, it doesn't need to be widened. Create scalar steps 1963 // that can be used by instructions we will later scalarize. Note that the 1964 // addition of the scalar steps will not increase the number of instructions 1965 // in the loop in the common case prior to InstCombine. We will be trading 1966 // one vector extract for each scalar step. 1967 if (NeedsScalarIV) 1968 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1969 } 1970 1971 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1972 Instruction::BinaryOps BinOp) { 1973 // Create and check the types. 1974 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1975 int VLen = Val->getType()->getVectorNumElements(); 1976 1977 Type *STy = Val->getType()->getScalarType(); 1978 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1979 "Induction Step must be an integer or FP"); 1980 assert(Step->getType() == STy && "Step has wrong type"); 1981 1982 SmallVector<Constant *, 8> Indices; 1983 1984 if (STy->isIntegerTy()) { 1985 // Create a vector of consecutive numbers from zero to VF. 1986 for (int i = 0; i < VLen; ++i) 1987 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1988 1989 // Add the consecutive indices to the vector value. 1990 Constant *Cv = ConstantVector::get(Indices); 1991 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1992 Step = Builder.CreateVectorSplat(VLen, Step); 1993 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1994 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1995 // which can be found from the original scalar operations. 1996 Step = Builder.CreateMul(Cv, Step); 1997 return Builder.CreateAdd(Val, Step, "induction"); 1998 } 1999 2000 // Floating point induction. 2001 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2002 "Binary Opcode should be specified for FP induction"); 2003 // Create a vector of consecutive numbers from zero to VF. 2004 for (int i = 0; i < VLen; ++i) 2005 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2006 2007 // Add the consecutive indices to the vector value. 2008 Constant *Cv = ConstantVector::get(Indices); 2009 2010 Step = Builder.CreateVectorSplat(VLen, Step); 2011 2012 // Floating point operations had to be 'fast' to enable the induction. 2013 FastMathFlags Flags; 2014 Flags.setFast(); 2015 2016 Value *MulOp = Builder.CreateFMul(Cv, Step); 2017 if (isa<Instruction>(MulOp)) 2018 // Have to check, MulOp may be a constant 2019 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2020 2021 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2022 if (isa<Instruction>(BOp)) 2023 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2024 return BOp; 2025 } 2026 2027 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2028 Instruction *EntryVal, 2029 const InductionDescriptor &ID) { 2030 // We shouldn't have to build scalar steps if we aren't vectorizing. 2031 assert(VF > 1 && "VF should be greater than one"); 2032 2033 // Get the value type and ensure it and the step have the same integer type. 2034 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2035 assert(ScalarIVTy == Step->getType() && 2036 "Val and Step should have the same type"); 2037 2038 // We build scalar steps for both integer and floating-point induction 2039 // variables. Here, we determine the kind of arithmetic we will perform. 2040 Instruction::BinaryOps AddOp; 2041 Instruction::BinaryOps MulOp; 2042 if (ScalarIVTy->isIntegerTy()) { 2043 AddOp = Instruction::Add; 2044 MulOp = Instruction::Mul; 2045 } else { 2046 AddOp = ID.getInductionOpcode(); 2047 MulOp = Instruction::FMul; 2048 } 2049 2050 // Determine the number of scalars we need to generate for each unroll 2051 // iteration. If EntryVal is uniform, we only need to generate the first 2052 // lane. Otherwise, we generate all VF values. 2053 unsigned Lanes = 2054 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2055 : VF; 2056 // Compute the scalar steps and save the results in VectorLoopValueMap. 2057 for (unsigned Part = 0; Part < UF; ++Part) { 2058 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2059 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2060 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2061 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2062 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2063 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2064 } 2065 } 2066 } 2067 2068 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2069 assert(V != Induction && "The new induction variable should not be used."); 2070 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2071 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2072 2073 // If we have a stride that is replaced by one, do it here. 2074 if (Legal->hasStride(V)) 2075 V = ConstantInt::get(V->getType(), 1); 2076 2077 // If we have a vector mapped to this value, return it. 2078 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2079 return VectorLoopValueMap.getVectorValue(V, Part); 2080 2081 // If the value has not been vectorized, check if it has been scalarized 2082 // instead. If it has been scalarized, and we actually need the value in 2083 // vector form, we will construct the vector values on demand. 2084 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2085 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2086 2087 // If we've scalarized a value, that value should be an instruction. 2088 auto *I = cast<Instruction>(V); 2089 2090 // If we aren't vectorizing, we can just copy the scalar map values over to 2091 // the vector map. 2092 if (VF == 1) { 2093 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2094 return ScalarValue; 2095 } 2096 2097 // Get the last scalar instruction we generated for V and Part. If the value 2098 // is known to be uniform after vectorization, this corresponds to lane zero 2099 // of the Part unroll iteration. Otherwise, the last instruction is the one 2100 // we created for the last vector lane of the Part unroll iteration. 2101 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2102 auto *LastInst = cast<Instruction>( 2103 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2104 2105 // Set the insert point after the last scalarized instruction. This ensures 2106 // the insertelement sequence will directly follow the scalar definitions. 2107 auto OldIP = Builder.saveIP(); 2108 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2109 Builder.SetInsertPoint(&*NewIP); 2110 2111 // However, if we are vectorizing, we need to construct the vector values. 2112 // If the value is known to be uniform after vectorization, we can just 2113 // broadcast the scalar value corresponding to lane zero for each unroll 2114 // iteration. Otherwise, we construct the vector values using insertelement 2115 // instructions. Since the resulting vectors are stored in 2116 // VectorLoopValueMap, we will only generate the insertelements once. 2117 Value *VectorValue = nullptr; 2118 if (Cost->isUniformAfterVectorization(I, VF)) { 2119 VectorValue = getBroadcastInstrs(ScalarValue); 2120 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2121 } else { 2122 // Initialize packing with insertelements to start from undef. 2123 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2124 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2125 for (unsigned Lane = 0; Lane < VF; ++Lane) 2126 packScalarIntoVectorValue(V, {Part, Lane}); 2127 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2128 } 2129 Builder.restoreIP(OldIP); 2130 return VectorValue; 2131 } 2132 2133 // If this scalar is unknown, assume that it is a constant or that it is 2134 // loop invariant. Broadcast V and save the value for future uses. 2135 Value *B = getBroadcastInstrs(V); 2136 VectorLoopValueMap.setVectorValue(V, Part, B); 2137 return B; 2138 } 2139 2140 Value * 2141 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2142 const VPIteration &Instance) { 2143 // If the value is not an instruction contained in the loop, it should 2144 // already be scalar. 2145 if (OrigLoop->isLoopInvariant(V)) 2146 return V; 2147 2148 assert(Instance.Lane > 0 2149 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2150 : true && "Uniform values only have lane zero"); 2151 2152 // If the value from the original loop has not been vectorized, it is 2153 // represented by UF x VF scalar values in the new loop. Return the requested 2154 // scalar value. 2155 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2156 return VectorLoopValueMap.getScalarValue(V, Instance); 2157 2158 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2159 // for the given unroll part. If this entry is not a vector type (i.e., the 2160 // vectorization factor is one), there is no need to generate an 2161 // extractelement instruction. 2162 auto *U = getOrCreateVectorValue(V, Instance.Part); 2163 if (!U->getType()->isVectorTy()) { 2164 assert(VF == 1 && "Value not scalarized has non-vector type"); 2165 return U; 2166 } 2167 2168 // Otherwise, the value from the original loop has been vectorized and is 2169 // represented by UF vector values. Extract and return the requested scalar 2170 // value from the appropriate vector lane. 2171 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2172 } 2173 2174 void InnerLoopVectorizer::packScalarIntoVectorValue( 2175 Value *V, const VPIteration &Instance) { 2176 assert(V != Induction && "The new induction variable should not be used."); 2177 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2178 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2179 2180 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2181 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2182 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2183 Builder.getInt32(Instance.Lane)); 2184 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2185 } 2186 2187 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2188 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2189 SmallVector<Constant *, 8> ShuffleMask; 2190 for (unsigned i = 0; i < VF; ++i) 2191 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2192 2193 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2194 ConstantVector::get(ShuffleMask), 2195 "reverse"); 2196 } 2197 2198 // Try to vectorize the interleave group that \p Instr belongs to. 2199 // 2200 // E.g. Translate following interleaved load group (factor = 3): 2201 // for (i = 0; i < N; i+=3) { 2202 // R = Pic[i]; // Member of index 0 2203 // G = Pic[i+1]; // Member of index 1 2204 // B = Pic[i+2]; // Member of index 2 2205 // ... // do something to R, G, B 2206 // } 2207 // To: 2208 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2209 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2210 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2211 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2212 // 2213 // Or translate following interleaved store group (factor = 3): 2214 // for (i = 0; i < N; i+=3) { 2215 // ... do something to R, G, B 2216 // Pic[i] = R; // Member of index 0 2217 // Pic[i+1] = G; // Member of index 1 2218 // Pic[i+2] = B; // Member of index 2 2219 // } 2220 // To: 2221 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2222 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2223 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2224 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2225 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2226 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2227 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr); 2228 assert(Group && "Fail to get an interleaved access group."); 2229 2230 // Skip if current instruction is not the insert position. 2231 if (Instr != Group->getInsertPos()) 2232 return; 2233 2234 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2235 Value *Ptr = getLoadStorePointerOperand(Instr); 2236 2237 // Prepare for the vector type of the interleaved load/store. 2238 Type *ScalarTy = getMemInstValueType(Instr); 2239 unsigned InterleaveFactor = Group->getFactor(); 2240 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2241 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2242 2243 // Prepare for the new pointers. 2244 setDebugLocFromInst(Builder, Ptr); 2245 SmallVector<Value *, 2> NewPtrs; 2246 unsigned Index = Group->getIndex(Instr); 2247 2248 // If the group is reverse, adjust the index to refer to the last vector lane 2249 // instead of the first. We adjust the index from the first vector lane, 2250 // rather than directly getting the pointer for lane VF - 1, because the 2251 // pointer operand of the interleaved access is supposed to be uniform. For 2252 // uniform instructions, we're only required to generate a value for the 2253 // first vector lane in each unroll iteration. 2254 if (Group->isReverse()) 2255 Index += (VF - 1) * Group->getFactor(); 2256 2257 bool InBounds = false; 2258 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2259 InBounds = gep->isInBounds(); 2260 2261 for (unsigned Part = 0; Part < UF; Part++) { 2262 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2263 2264 // Notice current instruction could be any index. Need to adjust the address 2265 // to the member of index 0. 2266 // 2267 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2268 // b = A[i]; // Member of index 0 2269 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2270 // 2271 // E.g. A[i+1] = a; // Member of index 1 2272 // A[i] = b; // Member of index 0 2273 // A[i+2] = c; // Member of index 2 (Current instruction) 2274 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2275 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2276 if (InBounds) 2277 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2278 2279 // Cast to the vector pointer type. 2280 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2281 } 2282 2283 setDebugLocFromInst(Builder, Instr); 2284 Value *UndefVec = UndefValue::get(VecTy); 2285 2286 // Vectorize the interleaved load group. 2287 if (isa<LoadInst>(Instr)) { 2288 // For each unroll part, create a wide load for the group. 2289 SmallVector<Value *, 2> NewLoads; 2290 for (unsigned Part = 0; Part < UF; Part++) { 2291 auto *NewLoad = Builder.CreateAlignedLoad( 2292 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2293 Group->addMetadata(NewLoad); 2294 NewLoads.push_back(NewLoad); 2295 } 2296 2297 // For each member in the group, shuffle out the appropriate data from the 2298 // wide loads. 2299 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2300 Instruction *Member = Group->getMember(I); 2301 2302 // Skip the gaps in the group. 2303 if (!Member) 2304 continue; 2305 2306 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2307 for (unsigned Part = 0; Part < UF; Part++) { 2308 Value *StridedVec = Builder.CreateShuffleVector( 2309 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2310 2311 // If this member has different type, cast the result type. 2312 if (Member->getType() != ScalarTy) { 2313 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2314 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2315 } 2316 2317 if (Group->isReverse()) 2318 StridedVec = reverseVector(StridedVec); 2319 2320 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2321 } 2322 } 2323 return; 2324 } 2325 2326 // The sub vector type for current instruction. 2327 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2328 2329 // Vectorize the interleaved store group. 2330 for (unsigned Part = 0; Part < UF; Part++) { 2331 // Collect the stored vector from each member. 2332 SmallVector<Value *, 4> StoredVecs; 2333 for (unsigned i = 0; i < InterleaveFactor; i++) { 2334 // Interleaved store group doesn't allow a gap, so each index has a member 2335 Instruction *Member = Group->getMember(i); 2336 assert(Member && "Fail to get a member from an interleaved store group"); 2337 2338 Value *StoredVec = getOrCreateVectorValue( 2339 cast<StoreInst>(Member)->getValueOperand(), Part); 2340 if (Group->isReverse()) 2341 StoredVec = reverseVector(StoredVec); 2342 2343 // If this member has different type, cast it to a unified type. 2344 2345 if (StoredVec->getType() != SubVT) 2346 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2347 2348 StoredVecs.push_back(StoredVec); 2349 } 2350 2351 // Concatenate all vectors into a wide vector. 2352 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2353 2354 // Interleave the elements in the wide vector. 2355 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2356 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2357 "interleaved.vec"); 2358 2359 Instruction *NewStoreInstr = 2360 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2361 2362 Group->addMetadata(NewStoreInstr); 2363 } 2364 } 2365 2366 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2367 VectorParts *BlockInMask) { 2368 // Attempt to issue a wide load. 2369 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2370 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2371 2372 assert((LI || SI) && "Invalid Load/Store instruction"); 2373 2374 LoopVectorizationCostModel::InstWidening Decision = 2375 Cost->getWideningDecision(Instr, VF); 2376 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2377 "CM decision should be taken at this point"); 2378 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2379 return vectorizeInterleaveGroup(Instr); 2380 2381 Type *ScalarDataTy = getMemInstValueType(Instr); 2382 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2383 Value *Ptr = getLoadStorePointerOperand(Instr); 2384 unsigned Alignment = getMemInstAlignment(Instr); 2385 // An alignment of 0 means target abi alignment. We need to use the scalar's 2386 // target abi alignment in such a case. 2387 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2388 if (!Alignment) 2389 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2390 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2391 2392 // Determine if the pointer operand of the access is either consecutive or 2393 // reverse consecutive. 2394 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2395 bool ConsecutiveStride = 2396 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2397 bool CreateGatherScatter = 2398 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2399 2400 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2401 // gather/scatter. Otherwise Decision should have been to Scalarize. 2402 assert((ConsecutiveStride || CreateGatherScatter) && 2403 "The instruction should be scalarized"); 2404 2405 // Handle consecutive loads/stores. 2406 if (ConsecutiveStride) 2407 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2408 2409 VectorParts Mask; 2410 bool isMaskRequired = BlockInMask; 2411 if (isMaskRequired) 2412 Mask = *BlockInMask; 2413 2414 bool InBounds = false; 2415 if (auto *gep = dyn_cast<GetElementPtrInst>( 2416 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2417 InBounds = gep->isInBounds(); 2418 2419 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2420 // Calculate the pointer for the specific unroll-part. 2421 GetElementPtrInst *PartPtr = nullptr; 2422 2423 if (Reverse) { 2424 // If the address is consecutive but reversed, then the 2425 // wide store needs to start at the last vector element. 2426 PartPtr = cast<GetElementPtrInst>( 2427 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2428 PartPtr->setIsInBounds(InBounds); 2429 PartPtr = cast<GetElementPtrInst>( 2430 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2431 PartPtr->setIsInBounds(InBounds); 2432 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2433 Mask[Part] = reverseVector(Mask[Part]); 2434 } else { 2435 PartPtr = cast<GetElementPtrInst>( 2436 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2437 PartPtr->setIsInBounds(InBounds); 2438 } 2439 2440 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2441 }; 2442 2443 // Handle Stores: 2444 if (SI) { 2445 setDebugLocFromInst(Builder, SI); 2446 2447 for (unsigned Part = 0; Part < UF; ++Part) { 2448 Instruction *NewSI = nullptr; 2449 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2450 if (CreateGatherScatter) { 2451 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2452 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2453 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2454 MaskPart); 2455 } else { 2456 if (Reverse) { 2457 // If we store to reverse consecutive memory locations, then we need 2458 // to reverse the order of elements in the stored value. 2459 StoredVal = reverseVector(StoredVal); 2460 // We don't want to update the value in the map as it might be used in 2461 // another expression. So don't call resetVectorValue(StoredVal). 2462 } 2463 auto *VecPtr = CreateVecPtr(Part, Ptr); 2464 if (isMaskRequired) 2465 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2466 Mask[Part]); 2467 else 2468 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2469 } 2470 addMetadata(NewSI, SI); 2471 } 2472 return; 2473 } 2474 2475 // Handle loads. 2476 assert(LI && "Must have a load instruction"); 2477 setDebugLocFromInst(Builder, LI); 2478 for (unsigned Part = 0; Part < UF; ++Part) { 2479 Value *NewLI; 2480 if (CreateGatherScatter) { 2481 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2482 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2483 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2484 nullptr, "wide.masked.gather"); 2485 addMetadata(NewLI, LI); 2486 } else { 2487 auto *VecPtr = CreateVecPtr(Part, Ptr); 2488 if (isMaskRequired) 2489 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2490 UndefValue::get(DataTy), 2491 "wide.masked.load"); 2492 else 2493 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2494 2495 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2496 addMetadata(NewLI, LI); 2497 if (Reverse) 2498 NewLI = reverseVector(NewLI); 2499 } 2500 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2501 } 2502 } 2503 2504 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2505 const VPIteration &Instance, 2506 bool IfPredicateInstr) { 2507 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2508 2509 setDebugLocFromInst(Builder, Instr); 2510 2511 // Does this instruction return a value ? 2512 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2513 2514 Instruction *Cloned = Instr->clone(); 2515 if (!IsVoidRetTy) 2516 Cloned->setName(Instr->getName() + ".cloned"); 2517 2518 // Replace the operands of the cloned instructions with their scalar 2519 // equivalents in the new loop. 2520 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2521 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2522 Cloned->setOperand(op, NewOp); 2523 } 2524 addNewMetadata(Cloned, Instr); 2525 2526 // Place the cloned scalar in the new loop. 2527 Builder.Insert(Cloned); 2528 2529 // Add the cloned scalar to the scalar map entry. 2530 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2531 2532 // If we just cloned a new assumption, add it the assumption cache. 2533 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2534 if (II->getIntrinsicID() == Intrinsic::assume) 2535 AC->registerAssumption(II); 2536 2537 // End if-block. 2538 if (IfPredicateInstr) 2539 PredicatedInstructions.push_back(Cloned); 2540 } 2541 2542 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2543 Value *End, Value *Step, 2544 Instruction *DL) { 2545 BasicBlock *Header = L->getHeader(); 2546 BasicBlock *Latch = L->getLoopLatch(); 2547 // As we're just creating this loop, it's possible no latch exists 2548 // yet. If so, use the header as this will be a single block loop. 2549 if (!Latch) 2550 Latch = Header; 2551 2552 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2553 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2554 setDebugLocFromInst(Builder, OldInst); 2555 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2556 2557 Builder.SetInsertPoint(Latch->getTerminator()); 2558 setDebugLocFromInst(Builder, OldInst); 2559 2560 // Create i+1 and fill the PHINode. 2561 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2562 Induction->addIncoming(Start, L->getLoopPreheader()); 2563 Induction->addIncoming(Next, Latch); 2564 // Create the compare. 2565 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2566 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2567 2568 // Now we have two terminators. Remove the old one from the block. 2569 Latch->getTerminator()->eraseFromParent(); 2570 2571 return Induction; 2572 } 2573 2574 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2575 if (TripCount) 2576 return TripCount; 2577 2578 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2579 // Find the loop boundaries. 2580 ScalarEvolution *SE = PSE.getSE(); 2581 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2582 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2583 "Invalid loop count"); 2584 2585 Type *IdxTy = Legal->getWidestInductionType(); 2586 2587 // The exit count might have the type of i64 while the phi is i32. This can 2588 // happen if we have an induction variable that is sign extended before the 2589 // compare. The only way that we get a backedge taken count is that the 2590 // induction variable was signed and as such will not overflow. In such a case 2591 // truncation is legal. 2592 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2593 IdxTy->getPrimitiveSizeInBits()) 2594 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2595 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2596 2597 // Get the total trip count from the count by adding 1. 2598 const SCEV *ExitCount = SE->getAddExpr( 2599 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2600 2601 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2602 2603 // Expand the trip count and place the new instructions in the preheader. 2604 // Notice that the pre-header does not change, only the loop body. 2605 SCEVExpander Exp(*SE, DL, "induction"); 2606 2607 // Count holds the overall loop count (N). 2608 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2609 L->getLoopPreheader()->getTerminator()); 2610 2611 if (TripCount->getType()->isPointerTy()) 2612 TripCount = 2613 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2614 L->getLoopPreheader()->getTerminator()); 2615 2616 return TripCount; 2617 } 2618 2619 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2620 if (VectorTripCount) 2621 return VectorTripCount; 2622 2623 Value *TC = getOrCreateTripCount(L); 2624 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2625 2626 // Now we need to generate the expression for the part of the loop that the 2627 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2628 // iterations are not required for correctness, or N - Step, otherwise. Step 2629 // is equal to the vectorization factor (number of SIMD elements) times the 2630 // unroll factor (number of SIMD instructions). 2631 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2632 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2633 2634 // If there is a non-reversed interleaved group that may speculatively access 2635 // memory out-of-bounds, we need to ensure that there will be at least one 2636 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2637 // the trip count, we set the remainder to be equal to the step. If the step 2638 // does not evenly divide the trip count, no adjustment is necessary since 2639 // there will already be scalar iterations. Note that the minimum iterations 2640 // check ensures that N >= Step. 2641 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2642 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2643 R = Builder.CreateSelect(IsZero, Step, R); 2644 } 2645 2646 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2647 2648 return VectorTripCount; 2649 } 2650 2651 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2652 const DataLayout &DL) { 2653 // Verify that V is a vector type with same number of elements as DstVTy. 2654 unsigned VF = DstVTy->getNumElements(); 2655 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2656 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2657 Type *SrcElemTy = SrcVecTy->getElementType(); 2658 Type *DstElemTy = DstVTy->getElementType(); 2659 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2660 "Vector elements must have same size"); 2661 2662 // Do a direct cast if element types are castable. 2663 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2664 return Builder.CreateBitOrPointerCast(V, DstVTy); 2665 } 2666 // V cannot be directly casted to desired vector type. 2667 // May happen when V is a floating point vector but DstVTy is a vector of 2668 // pointers or vice-versa. Handle this using a two-step bitcast using an 2669 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2670 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2671 "Only one type should be a pointer type"); 2672 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2673 "Only one type should be a floating point type"); 2674 Type *IntTy = 2675 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2676 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2677 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2678 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2679 } 2680 2681 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2682 BasicBlock *Bypass) { 2683 Value *Count = getOrCreateTripCount(L); 2684 BasicBlock *BB = L->getLoopPreheader(); 2685 IRBuilder<> Builder(BB->getTerminator()); 2686 2687 // Generate code to check if the loop's trip count is less than VF * UF, or 2688 // equal to it in case a scalar epilogue is required; this implies that the 2689 // vector trip count is zero. This check also covers the case where adding one 2690 // to the backedge-taken count overflowed leading to an incorrect trip count 2691 // of zero. In this case we will also jump to the scalar loop. 2692 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2693 : ICmpInst::ICMP_ULT; 2694 Value *CheckMinIters = Builder.CreateICmp( 2695 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2696 2697 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2698 // Update dominator tree immediately if the generated block is a 2699 // LoopBypassBlock because SCEV expansions to generate loop bypass 2700 // checks may query it before the current function is finished. 2701 DT->addNewBlock(NewBB, BB); 2702 if (L->getParentLoop()) 2703 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2704 ReplaceInstWithInst(BB->getTerminator(), 2705 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2706 LoopBypassBlocks.push_back(BB); 2707 } 2708 2709 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2710 BasicBlock *BB = L->getLoopPreheader(); 2711 2712 // Generate the code to check that the SCEV assumptions that we made. 2713 // We want the new basic block to start at the first instruction in a 2714 // sequence of instructions that form a check. 2715 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2716 "scev.check"); 2717 Value *SCEVCheck = 2718 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2719 2720 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2721 if (C->isZero()) 2722 return; 2723 2724 // Create a new block containing the stride check. 2725 BB->setName("vector.scevcheck"); 2726 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2727 // Update dominator tree immediately if the generated block is a 2728 // LoopBypassBlock because SCEV expansions to generate loop bypass 2729 // checks may query it before the current function is finished. 2730 DT->addNewBlock(NewBB, BB); 2731 if (L->getParentLoop()) 2732 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2733 ReplaceInstWithInst(BB->getTerminator(), 2734 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2735 LoopBypassBlocks.push_back(BB); 2736 AddedSafetyChecks = true; 2737 } 2738 2739 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2740 BasicBlock *BB = L->getLoopPreheader(); 2741 2742 // Generate the code that checks in runtime if arrays overlap. We put the 2743 // checks into a separate block to make the more common case of few elements 2744 // faster. 2745 Instruction *FirstCheckInst; 2746 Instruction *MemRuntimeCheck; 2747 std::tie(FirstCheckInst, MemRuntimeCheck) = 2748 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2749 if (!MemRuntimeCheck) 2750 return; 2751 2752 // Create a new block containing the memory check. 2753 BB->setName("vector.memcheck"); 2754 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2755 // Update dominator tree immediately if the generated block is a 2756 // LoopBypassBlock because SCEV expansions to generate loop bypass 2757 // checks may query it before the current function is finished. 2758 DT->addNewBlock(NewBB, BB); 2759 if (L->getParentLoop()) 2760 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2761 ReplaceInstWithInst(BB->getTerminator(), 2762 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2763 LoopBypassBlocks.push_back(BB); 2764 AddedSafetyChecks = true; 2765 2766 // We currently don't use LoopVersioning for the actual loop cloning but we 2767 // still use it to add the noalias metadata. 2768 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2769 PSE.getSE()); 2770 LVer->prepareNoAliasMetadata(); 2771 } 2772 2773 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2774 /* 2775 In this function we generate a new loop. The new loop will contain 2776 the vectorized instructions while the old loop will continue to run the 2777 scalar remainder. 2778 2779 [ ] <-- loop iteration number check. 2780 / | 2781 / v 2782 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2783 | / | 2784 | / v 2785 || [ ] <-- vector pre header. 2786 |/ | 2787 | v 2788 | [ ] \ 2789 | [ ]_| <-- vector loop. 2790 | | 2791 | v 2792 | -[ ] <--- middle-block. 2793 | / | 2794 | / v 2795 -|- >[ ] <--- new preheader. 2796 | | 2797 | v 2798 | [ ] \ 2799 | [ ]_| <-- old scalar loop to handle remainder. 2800 \ | 2801 \ v 2802 >[ ] <-- exit block. 2803 ... 2804 */ 2805 2806 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2807 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2808 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2809 assert(VectorPH && "Invalid loop structure"); 2810 assert(ExitBlock && "Must have an exit block"); 2811 2812 // Some loops have a single integer induction variable, while other loops 2813 // don't. One example is c++ iterators that often have multiple pointer 2814 // induction variables. In the code below we also support a case where we 2815 // don't have a single induction variable. 2816 // 2817 // We try to obtain an induction variable from the original loop as hard 2818 // as possible. However if we don't find one that: 2819 // - is an integer 2820 // - counts from zero, stepping by one 2821 // - is the size of the widest induction variable type 2822 // then we create a new one. 2823 OldInduction = Legal->getPrimaryInduction(); 2824 Type *IdxTy = Legal->getWidestInductionType(); 2825 2826 // Split the single block loop into the two loop structure described above. 2827 BasicBlock *VecBody = 2828 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2829 BasicBlock *MiddleBlock = 2830 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2831 BasicBlock *ScalarPH = 2832 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2833 2834 // Create and register the new vector loop. 2835 Loop *Lp = LI->AllocateLoop(); 2836 Loop *ParentLoop = OrigLoop->getParentLoop(); 2837 2838 // Insert the new loop into the loop nest and register the new basic blocks 2839 // before calling any utilities such as SCEV that require valid LoopInfo. 2840 if (ParentLoop) { 2841 ParentLoop->addChildLoop(Lp); 2842 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2843 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2844 } else { 2845 LI->addTopLevelLoop(Lp); 2846 } 2847 Lp->addBasicBlockToLoop(VecBody, *LI); 2848 2849 // Find the loop boundaries. 2850 Value *Count = getOrCreateTripCount(Lp); 2851 2852 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2853 2854 // Now, compare the new count to zero. If it is zero skip the vector loop and 2855 // jump to the scalar loop. This check also covers the case where the 2856 // backedge-taken count is uint##_max: adding one to it will overflow leading 2857 // to an incorrect trip count of zero. In this (rare) case we will also jump 2858 // to the scalar loop. 2859 emitMinimumIterationCountCheck(Lp, ScalarPH); 2860 2861 // Generate the code to check any assumptions that we've made for SCEV 2862 // expressions. 2863 emitSCEVChecks(Lp, ScalarPH); 2864 2865 // Generate the code that checks in runtime if arrays overlap. We put the 2866 // checks into a separate block to make the more common case of few elements 2867 // faster. 2868 emitMemRuntimeChecks(Lp, ScalarPH); 2869 2870 // Generate the induction variable. 2871 // The loop step is equal to the vectorization factor (num of SIMD elements) 2872 // times the unroll factor (num of SIMD instructions). 2873 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2874 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2875 Induction = 2876 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2877 getDebugLocFromInstOrOperands(OldInduction)); 2878 2879 // We are going to resume the execution of the scalar loop. 2880 // Go over all of the induction variables that we found and fix the 2881 // PHIs that are left in the scalar version of the loop. 2882 // The starting values of PHI nodes depend on the counter of the last 2883 // iteration in the vectorized loop. 2884 // If we come from a bypass edge then we need to start from the original 2885 // start value. 2886 2887 // This variable saves the new starting index for the scalar loop. It is used 2888 // to test if there are any tail iterations left once the vector loop has 2889 // completed. 2890 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2891 for (auto &InductionEntry : *List) { 2892 PHINode *OrigPhi = InductionEntry.first; 2893 InductionDescriptor II = InductionEntry.second; 2894 2895 // Create phi nodes to merge from the backedge-taken check block. 2896 PHINode *BCResumeVal = PHINode::Create( 2897 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2898 Value *&EndValue = IVEndValues[OrigPhi]; 2899 if (OrigPhi == OldInduction) { 2900 // We know what the end value is. 2901 EndValue = CountRoundDown; 2902 } else { 2903 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2904 Type *StepType = II.getStep()->getType(); 2905 Instruction::CastOps CastOp = 2906 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2907 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2908 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2909 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 2910 EndValue->setName("ind.end"); 2911 } 2912 2913 // The new PHI merges the original incoming value, in case of a bypass, 2914 // or the value at the end of the vectorized loop. 2915 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2916 2917 // Fix the scalar body counter (PHI node). 2918 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2919 2920 // The old induction's phi node in the scalar body needs the truncated 2921 // value. 2922 for (BasicBlock *BB : LoopBypassBlocks) 2923 BCResumeVal->addIncoming(II.getStartValue(), BB); 2924 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2925 } 2926 2927 // Add a check in the middle block to see if we have completed 2928 // all of the iterations in the first vector loop. 2929 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2930 Value *CmpN = 2931 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2932 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2933 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2934 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2935 2936 // Get ready to start creating new instructions into the vectorized body. 2937 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2938 2939 // Save the state. 2940 LoopVectorPreHeader = Lp->getLoopPreheader(); 2941 LoopScalarPreHeader = ScalarPH; 2942 LoopMiddleBlock = MiddleBlock; 2943 LoopExitBlock = ExitBlock; 2944 LoopVectorBody = VecBody; 2945 LoopScalarBody = OldBasicBlock; 2946 2947 // Keep all loop hints from the original loop on the vector loop (we'll 2948 // replace the vectorizer-specific hints below). 2949 if (MDNode *LID = OrigLoop->getLoopID()) 2950 Lp->setLoopID(LID); 2951 2952 LoopVectorizeHints Hints(Lp, true, *ORE); 2953 Hints.setAlreadyVectorized(); 2954 2955 return LoopVectorPreHeader; 2956 } 2957 2958 // Fix up external users of the induction variable. At this point, we are 2959 // in LCSSA form, with all external PHIs that use the IV having one input value, 2960 // coming from the remainder loop. We need those PHIs to also have a correct 2961 // value for the IV when arriving directly from the middle block. 2962 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2963 const InductionDescriptor &II, 2964 Value *CountRoundDown, Value *EndValue, 2965 BasicBlock *MiddleBlock) { 2966 // There are two kinds of external IV usages - those that use the value 2967 // computed in the last iteration (the PHI) and those that use the penultimate 2968 // value (the value that feeds into the phi from the loop latch). 2969 // We allow both, but they, obviously, have different values. 2970 2971 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2972 2973 DenseMap<Value *, Value *> MissingVals; 2974 2975 // An external user of the last iteration's value should see the value that 2976 // the remainder loop uses to initialize its own IV. 2977 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2978 for (User *U : PostInc->users()) { 2979 Instruction *UI = cast<Instruction>(U); 2980 if (!OrigLoop->contains(UI)) { 2981 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2982 MissingVals[UI] = EndValue; 2983 } 2984 } 2985 2986 // An external user of the penultimate value need to see EndValue - Step. 2987 // The simplest way to get this is to recompute it from the constituent SCEVs, 2988 // that is Start + (Step * (CRD - 1)). 2989 for (User *U : OrigPhi->users()) { 2990 auto *UI = cast<Instruction>(U); 2991 if (!OrigLoop->contains(UI)) { 2992 const DataLayout &DL = 2993 OrigLoop->getHeader()->getModule()->getDataLayout(); 2994 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2995 2996 IRBuilder<> B(MiddleBlock->getTerminator()); 2997 Value *CountMinusOne = B.CreateSub( 2998 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2999 Value *CMO = 3000 !II.getStep()->getType()->isIntegerTy() 3001 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3002 II.getStep()->getType()) 3003 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3004 CMO->setName("cast.cmo"); 3005 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3006 Escape->setName("ind.escape"); 3007 MissingVals[UI] = Escape; 3008 } 3009 } 3010 3011 for (auto &I : MissingVals) { 3012 PHINode *PHI = cast<PHINode>(I.first); 3013 // One corner case we have to handle is two IVs "chasing" each-other, 3014 // that is %IV2 = phi [...], [ %IV1, %latch ] 3015 // In this case, if IV1 has an external use, we need to avoid adding both 3016 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3017 // don't already have an incoming value for the middle block. 3018 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3019 PHI->addIncoming(I.second, MiddleBlock); 3020 } 3021 } 3022 3023 namespace { 3024 3025 struct CSEDenseMapInfo { 3026 static bool canHandle(const Instruction *I) { 3027 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3028 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3029 } 3030 3031 static inline Instruction *getEmptyKey() { 3032 return DenseMapInfo<Instruction *>::getEmptyKey(); 3033 } 3034 3035 static inline Instruction *getTombstoneKey() { 3036 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3037 } 3038 3039 static unsigned getHashValue(const Instruction *I) { 3040 assert(canHandle(I) && "Unknown instruction!"); 3041 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3042 I->value_op_end())); 3043 } 3044 3045 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3046 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3047 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3048 return LHS == RHS; 3049 return LHS->isIdenticalTo(RHS); 3050 } 3051 }; 3052 3053 } // end anonymous namespace 3054 3055 ///Perform cse of induction variable instructions. 3056 static void cse(BasicBlock *BB) { 3057 // Perform simple cse. 3058 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3059 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3060 Instruction *In = &*I++; 3061 3062 if (!CSEDenseMapInfo::canHandle(In)) 3063 continue; 3064 3065 // Check if we can replace this instruction with any of the 3066 // visited instructions. 3067 if (Instruction *V = CSEMap.lookup(In)) { 3068 In->replaceAllUsesWith(V); 3069 In->eraseFromParent(); 3070 continue; 3071 } 3072 3073 CSEMap[In] = In; 3074 } 3075 } 3076 3077 /// Estimate the overhead of scalarizing an instruction. This is a 3078 /// convenience wrapper for the type-based getScalarizationOverhead API. 3079 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3080 const TargetTransformInfo &TTI) { 3081 if (VF == 1) 3082 return 0; 3083 3084 unsigned Cost = 0; 3085 Type *RetTy = ToVectorTy(I->getType(), VF); 3086 if (!RetTy->isVoidTy() && 3087 (!isa<LoadInst>(I) || 3088 !TTI.supportsEfficientVectorElementLoadStore())) 3089 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3090 3091 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3092 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3093 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3094 } 3095 else if (!isa<StoreInst>(I) || 3096 !TTI.supportsEfficientVectorElementLoadStore()) { 3097 SmallVector<const Value *, 4> Operands(I->operand_values()); 3098 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3099 } 3100 3101 return Cost; 3102 } 3103 3104 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3105 // Return the cost of the instruction, including scalarization overhead if it's 3106 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3107 // i.e. either vector version isn't available, or is too expensive. 3108 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3109 const TargetTransformInfo &TTI, 3110 const TargetLibraryInfo *TLI, 3111 bool &NeedToScalarize) { 3112 Function *F = CI->getCalledFunction(); 3113 StringRef FnName = CI->getCalledFunction()->getName(); 3114 Type *ScalarRetTy = CI->getType(); 3115 SmallVector<Type *, 4> Tys, ScalarTys; 3116 for (auto &ArgOp : CI->arg_operands()) 3117 ScalarTys.push_back(ArgOp->getType()); 3118 3119 // Estimate cost of scalarized vector call. The source operands are assumed 3120 // to be vectors, so we need to extract individual elements from there, 3121 // execute VF scalar calls, and then gather the result into the vector return 3122 // value. 3123 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3124 if (VF == 1) 3125 return ScalarCallCost; 3126 3127 // Compute corresponding vector type for return value and arguments. 3128 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3129 for (Type *ScalarTy : ScalarTys) 3130 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3131 3132 // Compute costs of unpacking argument values for the scalar calls and 3133 // packing the return values to a vector. 3134 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3135 3136 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3137 3138 // If we can't emit a vector call for this function, then the currently found 3139 // cost is the cost we need to return. 3140 NeedToScalarize = true; 3141 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3142 return Cost; 3143 3144 // If the corresponding vector cost is cheaper, return its cost. 3145 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3146 if (VectorCallCost < Cost) { 3147 NeedToScalarize = false; 3148 return VectorCallCost; 3149 } 3150 return Cost; 3151 } 3152 3153 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3154 // factor VF. Return the cost of the instruction, including scalarization 3155 // overhead if it's needed. 3156 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3157 const TargetTransformInfo &TTI, 3158 const TargetLibraryInfo *TLI) { 3159 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3160 assert(ID && "Expected intrinsic call!"); 3161 3162 FastMathFlags FMF; 3163 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3164 FMF = FPMO->getFastMathFlags(); 3165 3166 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3167 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3168 } 3169 3170 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3171 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3172 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3173 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3174 } 3175 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3176 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3177 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3178 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3179 } 3180 3181 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3182 // For every instruction `I` in MinBWs, truncate the operands, create a 3183 // truncated version of `I` and reextend its result. InstCombine runs 3184 // later and will remove any ext/trunc pairs. 3185 SmallPtrSet<Value *, 4> Erased; 3186 for (const auto &KV : Cost->getMinimalBitwidths()) { 3187 // If the value wasn't vectorized, we must maintain the original scalar 3188 // type. The absence of the value from VectorLoopValueMap indicates that it 3189 // wasn't vectorized. 3190 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3191 continue; 3192 for (unsigned Part = 0; Part < UF; ++Part) { 3193 Value *I = getOrCreateVectorValue(KV.first, Part); 3194 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3195 continue; 3196 Type *OriginalTy = I->getType(); 3197 Type *ScalarTruncatedTy = 3198 IntegerType::get(OriginalTy->getContext(), KV.second); 3199 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3200 OriginalTy->getVectorNumElements()); 3201 if (TruncatedTy == OriginalTy) 3202 continue; 3203 3204 IRBuilder<> B(cast<Instruction>(I)); 3205 auto ShrinkOperand = [&](Value *V) -> Value * { 3206 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3207 if (ZI->getSrcTy() == TruncatedTy) 3208 return ZI->getOperand(0); 3209 return B.CreateZExtOrTrunc(V, TruncatedTy); 3210 }; 3211 3212 // The actual instruction modification depends on the instruction type, 3213 // unfortunately. 3214 Value *NewI = nullptr; 3215 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3216 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3217 ShrinkOperand(BO->getOperand(1))); 3218 3219 // Any wrapping introduced by shrinking this operation shouldn't be 3220 // considered undefined behavior. So, we can't unconditionally copy 3221 // arithmetic wrapping flags to NewI. 3222 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3223 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3224 NewI = 3225 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3226 ShrinkOperand(CI->getOperand(1))); 3227 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3228 NewI = B.CreateSelect(SI->getCondition(), 3229 ShrinkOperand(SI->getTrueValue()), 3230 ShrinkOperand(SI->getFalseValue())); 3231 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3232 switch (CI->getOpcode()) { 3233 default: 3234 llvm_unreachable("Unhandled cast!"); 3235 case Instruction::Trunc: 3236 NewI = ShrinkOperand(CI->getOperand(0)); 3237 break; 3238 case Instruction::SExt: 3239 NewI = B.CreateSExtOrTrunc( 3240 CI->getOperand(0), 3241 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3242 break; 3243 case Instruction::ZExt: 3244 NewI = B.CreateZExtOrTrunc( 3245 CI->getOperand(0), 3246 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3247 break; 3248 } 3249 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3250 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3251 auto *O0 = B.CreateZExtOrTrunc( 3252 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3253 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3254 auto *O1 = B.CreateZExtOrTrunc( 3255 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3256 3257 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3258 } else if (isa<LoadInst>(I)) { 3259 // Don't do anything with the operands, just extend the result. 3260 continue; 3261 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3262 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3263 auto *O0 = B.CreateZExtOrTrunc( 3264 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3265 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3266 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3267 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3268 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3269 auto *O0 = B.CreateZExtOrTrunc( 3270 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3271 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3272 } else { 3273 llvm_unreachable("Unhandled instruction type!"); 3274 } 3275 3276 // Lastly, extend the result. 3277 NewI->takeName(cast<Instruction>(I)); 3278 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3279 I->replaceAllUsesWith(Res); 3280 cast<Instruction>(I)->eraseFromParent(); 3281 Erased.insert(I); 3282 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3283 } 3284 } 3285 3286 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3287 for (const auto &KV : Cost->getMinimalBitwidths()) { 3288 // If the value wasn't vectorized, we must maintain the original scalar 3289 // type. The absence of the value from VectorLoopValueMap indicates that it 3290 // wasn't vectorized. 3291 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3292 continue; 3293 for (unsigned Part = 0; Part < UF; ++Part) { 3294 Value *I = getOrCreateVectorValue(KV.first, Part); 3295 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3296 if (Inst && Inst->use_empty()) { 3297 Value *NewI = Inst->getOperand(0); 3298 Inst->eraseFromParent(); 3299 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3300 } 3301 } 3302 } 3303 } 3304 3305 void InnerLoopVectorizer::fixVectorizedLoop() { 3306 // Insert truncates and extends for any truncated instructions as hints to 3307 // InstCombine. 3308 if (VF > 1) 3309 truncateToMinimalBitwidths(); 3310 3311 // At this point every instruction in the original loop is widened to a 3312 // vector form. Now we need to fix the recurrences in the loop. These PHI 3313 // nodes are currently empty because we did not want to introduce cycles. 3314 // This is the second stage of vectorizing recurrences. 3315 fixCrossIterationPHIs(); 3316 3317 // Update the dominator tree. 3318 // 3319 // FIXME: After creating the structure of the new loop, the dominator tree is 3320 // no longer up-to-date, and it remains that way until we update it 3321 // here. An out-of-date dominator tree is problematic for SCEV, 3322 // because SCEVExpander uses it to guide code generation. The 3323 // vectorizer use SCEVExpanders in several places. Instead, we should 3324 // keep the dominator tree up-to-date as we go. 3325 updateAnalysis(); 3326 3327 // Fix-up external users of the induction variables. 3328 for (auto &Entry : *Legal->getInductionVars()) 3329 fixupIVUsers(Entry.first, Entry.second, 3330 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3331 IVEndValues[Entry.first], LoopMiddleBlock); 3332 3333 fixLCSSAPHIs(); 3334 for (Instruction *PI : PredicatedInstructions) 3335 sinkScalarOperands(&*PI); 3336 3337 // Remove redundant induction instructions. 3338 cse(LoopVectorBody); 3339 } 3340 3341 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3342 // In order to support recurrences we need to be able to vectorize Phi nodes. 3343 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3344 // stage #2: We now need to fix the recurrences by adding incoming edges to 3345 // the currently empty PHI nodes. At this point every instruction in the 3346 // original loop is widened to a vector form so we can use them to construct 3347 // the incoming edges. 3348 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3349 // Handle first-order recurrences and reductions that need to be fixed. 3350 if (Legal->isFirstOrderRecurrence(&Phi)) 3351 fixFirstOrderRecurrence(&Phi); 3352 else if (Legal->isReductionVariable(&Phi)) 3353 fixReduction(&Phi); 3354 } 3355 } 3356 3357 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3358 // This is the second phase of vectorizing first-order recurrences. An 3359 // overview of the transformation is described below. Suppose we have the 3360 // following loop. 3361 // 3362 // for (int i = 0; i < n; ++i) 3363 // b[i] = a[i] - a[i - 1]; 3364 // 3365 // There is a first-order recurrence on "a". For this loop, the shorthand 3366 // scalar IR looks like: 3367 // 3368 // scalar.ph: 3369 // s_init = a[-1] 3370 // br scalar.body 3371 // 3372 // scalar.body: 3373 // i = phi [0, scalar.ph], [i+1, scalar.body] 3374 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3375 // s2 = a[i] 3376 // b[i] = s2 - s1 3377 // br cond, scalar.body, ... 3378 // 3379 // In this example, s1 is a recurrence because it's value depends on the 3380 // previous iteration. In the first phase of vectorization, we created a 3381 // temporary value for s1. We now complete the vectorization and produce the 3382 // shorthand vector IR shown below (for VF = 4, UF = 1). 3383 // 3384 // vector.ph: 3385 // v_init = vector(..., ..., ..., a[-1]) 3386 // br vector.body 3387 // 3388 // vector.body 3389 // i = phi [0, vector.ph], [i+4, vector.body] 3390 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3391 // v2 = a[i, i+1, i+2, i+3]; 3392 // v3 = vector(v1(3), v2(0, 1, 2)) 3393 // b[i, i+1, i+2, i+3] = v2 - v3 3394 // br cond, vector.body, middle.block 3395 // 3396 // middle.block: 3397 // x = v2(3) 3398 // br scalar.ph 3399 // 3400 // scalar.ph: 3401 // s_init = phi [x, middle.block], [a[-1], otherwise] 3402 // br scalar.body 3403 // 3404 // After execution completes the vector loop, we extract the next value of 3405 // the recurrence (x) to use as the initial value in the scalar loop. 3406 3407 // Get the original loop preheader and single loop latch. 3408 auto *Preheader = OrigLoop->getLoopPreheader(); 3409 auto *Latch = OrigLoop->getLoopLatch(); 3410 3411 // Get the initial and previous values of the scalar recurrence. 3412 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3413 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3414 3415 // Create a vector from the initial value. 3416 auto *VectorInit = ScalarInit; 3417 if (VF > 1) { 3418 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3419 VectorInit = Builder.CreateInsertElement( 3420 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3421 Builder.getInt32(VF - 1), "vector.recur.init"); 3422 } 3423 3424 // We constructed a temporary phi node in the first phase of vectorization. 3425 // This phi node will eventually be deleted. 3426 Builder.SetInsertPoint( 3427 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3428 3429 // Create a phi node for the new recurrence. The current value will either be 3430 // the initial value inserted into a vector or loop-varying vector value. 3431 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3432 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3433 3434 // Get the vectorized previous value of the last part UF - 1. It appears last 3435 // among all unrolled iterations, due to the order of their construction. 3436 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3437 3438 // Set the insertion point after the previous value if it is an instruction. 3439 // Note that the previous value may have been constant-folded so it is not 3440 // guaranteed to be an instruction in the vector loop. Also, if the previous 3441 // value is a phi node, we should insert after all the phi nodes to avoid 3442 // breaking basic block verification. 3443 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3444 isa<PHINode>(PreviousLastPart)) 3445 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3446 else 3447 Builder.SetInsertPoint( 3448 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3449 3450 // We will construct a vector for the recurrence by combining the values for 3451 // the current and previous iterations. This is the required shuffle mask. 3452 SmallVector<Constant *, 8> ShuffleMask(VF); 3453 ShuffleMask[0] = Builder.getInt32(VF - 1); 3454 for (unsigned I = 1; I < VF; ++I) 3455 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3456 3457 // The vector from which to take the initial value for the current iteration 3458 // (actual or unrolled). Initially, this is the vector phi node. 3459 Value *Incoming = VecPhi; 3460 3461 // Shuffle the current and previous vector and update the vector parts. 3462 for (unsigned Part = 0; Part < UF; ++Part) { 3463 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3464 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3465 auto *Shuffle = 3466 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3467 ConstantVector::get(ShuffleMask)) 3468 : Incoming; 3469 PhiPart->replaceAllUsesWith(Shuffle); 3470 cast<Instruction>(PhiPart)->eraseFromParent(); 3471 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3472 Incoming = PreviousPart; 3473 } 3474 3475 // Fix the latch value of the new recurrence in the vector loop. 3476 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3477 3478 // Extract the last vector element in the middle block. This will be the 3479 // initial value for the recurrence when jumping to the scalar loop. 3480 auto *ExtractForScalar = Incoming; 3481 if (VF > 1) { 3482 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3483 ExtractForScalar = Builder.CreateExtractElement( 3484 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3485 } 3486 // Extract the second last element in the middle block if the 3487 // Phi is used outside the loop. We need to extract the phi itself 3488 // and not the last element (the phi update in the current iteration). This 3489 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3490 // when the scalar loop is not run at all. 3491 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3492 if (VF > 1) 3493 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3494 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3495 // When loop is unrolled without vectorizing, initialize 3496 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3497 // `Incoming`. This is analogous to the vectorized case above: extracting the 3498 // second last element when VF > 1. 3499 else if (UF > 1) 3500 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3501 3502 // Fix the initial value of the original recurrence in the scalar loop. 3503 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3504 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3505 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3506 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3507 Start->addIncoming(Incoming, BB); 3508 } 3509 3510 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3511 Phi->setName("scalar.recur"); 3512 3513 // Finally, fix users of the recurrence outside the loop. The users will need 3514 // either the last value of the scalar recurrence or the last value of the 3515 // vector recurrence we extracted in the middle block. Since the loop is in 3516 // LCSSA form, we just need to find the phi node for the original scalar 3517 // recurrence in the exit block, and then add an edge for the middle block. 3518 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3519 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3520 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3521 break; 3522 } 3523 } 3524 } 3525 3526 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3527 Constant *Zero = Builder.getInt32(0); 3528 3529 // Get it's reduction variable descriptor. 3530 assert(Legal->isReductionVariable(Phi) && 3531 "Unable to find the reduction variable"); 3532 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3533 3534 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3535 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3536 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3537 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3538 RdxDesc.getMinMaxRecurrenceKind(); 3539 setDebugLocFromInst(Builder, ReductionStartValue); 3540 3541 // We need to generate a reduction vector from the incoming scalar. 3542 // To do so, we need to generate the 'identity' vector and override 3543 // one of the elements with the incoming scalar reduction. We need 3544 // to do it in the vector-loop preheader. 3545 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3546 3547 // This is the vector-clone of the value that leaves the loop. 3548 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3549 3550 // Find the reduction identity variable. Zero for addition, or, xor, 3551 // one for multiplication, -1 for And. 3552 Value *Identity; 3553 Value *VectorStart; 3554 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3555 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3556 // MinMax reduction have the start value as their identify. 3557 if (VF == 1) { 3558 VectorStart = Identity = ReductionStartValue; 3559 } else { 3560 VectorStart = Identity = 3561 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3562 } 3563 } else { 3564 // Handle other reduction kinds: 3565 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3566 RK, VecTy->getScalarType()); 3567 if (VF == 1) { 3568 Identity = Iden; 3569 // This vector is the Identity vector where the first element is the 3570 // incoming scalar reduction. 3571 VectorStart = ReductionStartValue; 3572 } else { 3573 Identity = ConstantVector::getSplat(VF, Iden); 3574 3575 // This vector is the Identity vector where the first element is the 3576 // incoming scalar reduction. 3577 VectorStart = 3578 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3579 } 3580 } 3581 3582 // Fix the vector-loop phi. 3583 3584 // Reductions do not have to start at zero. They can start with 3585 // any loop invariant values. 3586 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3587 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3588 for (unsigned Part = 0; Part < UF; ++Part) { 3589 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3590 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3591 // Make sure to add the reduction stat value only to the 3592 // first unroll part. 3593 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3594 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3595 cast<PHINode>(VecRdxPhi) 3596 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3597 } 3598 3599 // Before each round, move the insertion point right between 3600 // the PHIs and the values we are going to write. 3601 // This allows us to write both PHINodes and the extractelement 3602 // instructions. 3603 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3604 3605 setDebugLocFromInst(Builder, LoopExitInst); 3606 3607 // If the vector reduction can be performed in a smaller type, we truncate 3608 // then extend the loop exit value to enable InstCombine to evaluate the 3609 // entire expression in the smaller type. 3610 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3611 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3612 Builder.SetInsertPoint( 3613 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3614 VectorParts RdxParts(UF); 3615 for (unsigned Part = 0; Part < UF; ++Part) { 3616 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3617 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3618 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3619 : Builder.CreateZExt(Trunc, VecTy); 3620 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3621 UI != RdxParts[Part]->user_end();) 3622 if (*UI != Trunc) { 3623 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3624 RdxParts[Part] = Extnd; 3625 } else { 3626 ++UI; 3627 } 3628 } 3629 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3630 for (unsigned Part = 0; Part < UF; ++Part) { 3631 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3632 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3633 } 3634 } 3635 3636 // Reduce all of the unrolled parts into a single vector. 3637 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3638 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3639 setDebugLocFromInst(Builder, ReducedPartRdx); 3640 for (unsigned Part = 1; Part < UF; ++Part) { 3641 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3642 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3643 // Floating point operations had to be 'fast' to enable the reduction. 3644 ReducedPartRdx = addFastMathFlag( 3645 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3646 ReducedPartRdx, "bin.rdx")); 3647 else 3648 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3649 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 3650 } 3651 3652 if (VF > 1) { 3653 bool NoNaN = Legal->hasFunNoNaNAttr(); 3654 ReducedPartRdx = 3655 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3656 // If the reduction can be performed in a smaller type, we need to extend 3657 // the reduction to the wider type before we branch to the original loop. 3658 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3659 ReducedPartRdx = 3660 RdxDesc.isSigned() 3661 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3662 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3663 } 3664 3665 // Create a phi node that merges control-flow from the backedge-taken check 3666 // block and the middle block. 3667 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3668 LoopScalarPreHeader->getTerminator()); 3669 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3670 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3671 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3672 3673 // Now, we need to fix the users of the reduction variable 3674 // inside and outside of the scalar remainder loop. 3675 // We know that the loop is in LCSSA form. We need to update the 3676 // PHI nodes in the exit blocks. 3677 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3678 // All PHINodes need to have a single entry edge, or two if 3679 // we already fixed them. 3680 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3681 3682 // We found a reduction value exit-PHI. Update it with the 3683 // incoming bypass edge. 3684 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3685 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3686 } // end of the LCSSA phi scan. 3687 3688 // Fix the scalar loop reduction variable with the incoming reduction sum 3689 // from the vector body and from the backedge value. 3690 int IncomingEdgeBlockIdx = 3691 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3692 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3693 // Pick the other block. 3694 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3695 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3696 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3697 } 3698 3699 void InnerLoopVectorizer::fixLCSSAPHIs() { 3700 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3701 if (LCSSAPhi.getNumIncomingValues() == 1) { 3702 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 3703 "Incoming value isn't loop invariant"); 3704 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 3705 } 3706 } 3707 } 3708 3709 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3710 // The basic block and loop containing the predicated instruction. 3711 auto *PredBB = PredInst->getParent(); 3712 auto *VectorLoop = LI->getLoopFor(PredBB); 3713 3714 // Initialize a worklist with the operands of the predicated instruction. 3715 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3716 3717 // Holds instructions that we need to analyze again. An instruction may be 3718 // reanalyzed if we don't yet know if we can sink it or not. 3719 SmallVector<Instruction *, 8> InstsToReanalyze; 3720 3721 // Returns true if a given use occurs in the predicated block. Phi nodes use 3722 // their operands in their corresponding predecessor blocks. 3723 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3724 auto *I = cast<Instruction>(U.getUser()); 3725 BasicBlock *BB = I->getParent(); 3726 if (auto *Phi = dyn_cast<PHINode>(I)) 3727 BB = Phi->getIncomingBlock( 3728 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3729 return BB == PredBB; 3730 }; 3731 3732 // Iteratively sink the scalarized operands of the predicated instruction 3733 // into the block we created for it. When an instruction is sunk, it's 3734 // operands are then added to the worklist. The algorithm ends after one pass 3735 // through the worklist doesn't sink a single instruction. 3736 bool Changed; 3737 do { 3738 // Add the instructions that need to be reanalyzed to the worklist, and 3739 // reset the changed indicator. 3740 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3741 InstsToReanalyze.clear(); 3742 Changed = false; 3743 3744 while (!Worklist.empty()) { 3745 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3746 3747 // We can't sink an instruction if it is a phi node, is already in the 3748 // predicated block, is not in the loop, or may have side effects. 3749 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3750 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3751 continue; 3752 3753 // It's legal to sink the instruction if all its uses occur in the 3754 // predicated block. Otherwise, there's nothing to do yet, and we may 3755 // need to reanalyze the instruction. 3756 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3757 InstsToReanalyze.push_back(I); 3758 continue; 3759 } 3760 3761 // Move the instruction to the beginning of the predicated block, and add 3762 // it's operands to the worklist. 3763 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3764 Worklist.insert(I->op_begin(), I->op_end()); 3765 3766 // The sinking may have enabled other instructions to be sunk, so we will 3767 // need to iterate. 3768 Changed = true; 3769 } 3770 } while (Changed); 3771 } 3772 3773 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3774 unsigned VF) { 3775 assert(PN->getParent() == OrigLoop->getHeader() && 3776 "Non-header phis should have been handled elsewhere"); 3777 3778 PHINode *P = cast<PHINode>(PN); 3779 // In order to support recurrences we need to be able to vectorize Phi nodes. 3780 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3781 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3782 // this value when we vectorize all of the instructions that use the PHI. 3783 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3784 for (unsigned Part = 0; Part < UF; ++Part) { 3785 // This is phase one of vectorizing PHIs. 3786 Type *VecTy = 3787 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3788 Value *EntryPart = PHINode::Create( 3789 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3790 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3791 } 3792 return; 3793 } 3794 3795 setDebugLocFromInst(Builder, P); 3796 3797 // This PHINode must be an induction variable. 3798 // Make sure that we know about it. 3799 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3800 3801 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3802 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3803 3804 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3805 // which can be found from the original scalar operations. 3806 switch (II.getKind()) { 3807 case InductionDescriptor::IK_NoInduction: 3808 llvm_unreachable("Unknown induction"); 3809 case InductionDescriptor::IK_IntInduction: 3810 case InductionDescriptor::IK_FpInduction: 3811 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3812 case InductionDescriptor::IK_PtrInduction: { 3813 // Handle the pointer induction variable case. 3814 assert(P->getType()->isPointerTy() && "Unexpected type."); 3815 // This is the normalized GEP that starts counting at zero. 3816 Value *PtrInd = Induction; 3817 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3818 // Determine the number of scalars we need to generate for each unroll 3819 // iteration. If the instruction is uniform, we only need to generate the 3820 // first lane. Otherwise, we generate all VF values. 3821 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3822 // These are the scalar results. Notice that we don't generate vector GEPs 3823 // because scalar GEPs result in better code. 3824 for (unsigned Part = 0; Part < UF; ++Part) { 3825 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3826 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3827 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3828 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 3829 SclrGep->setName("next.gep"); 3830 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3831 } 3832 } 3833 return; 3834 } 3835 } 3836 } 3837 3838 /// A helper function for checking whether an integer division-related 3839 /// instruction may divide by zero (in which case it must be predicated if 3840 /// executed conditionally in the scalar code). 3841 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3842 /// Non-zero divisors that are non compile-time constants will not be 3843 /// converted into multiplication, so we will still end up scalarizing 3844 /// the division, but can do so w/o predication. 3845 static bool mayDivideByZero(Instruction &I) { 3846 assert((I.getOpcode() == Instruction::UDiv || 3847 I.getOpcode() == Instruction::SDiv || 3848 I.getOpcode() == Instruction::URem || 3849 I.getOpcode() == Instruction::SRem) && 3850 "Unexpected instruction"); 3851 Value *Divisor = I.getOperand(1); 3852 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3853 return !CInt || CInt->isZero(); 3854 } 3855 3856 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3857 switch (I.getOpcode()) { 3858 case Instruction::Br: 3859 case Instruction::PHI: 3860 llvm_unreachable("This instruction is handled by a different recipe."); 3861 case Instruction::GetElementPtr: { 3862 // Construct a vector GEP by widening the operands of the scalar GEP as 3863 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3864 // results in a vector of pointers when at least one operand of the GEP 3865 // is vector-typed. Thus, to keep the representation compact, we only use 3866 // vector-typed operands for loop-varying values. 3867 auto *GEP = cast<GetElementPtrInst>(&I); 3868 3869 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3870 // If we are vectorizing, but the GEP has only loop-invariant operands, 3871 // the GEP we build (by only using vector-typed operands for 3872 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3873 // produce a vector of pointers, we need to either arbitrarily pick an 3874 // operand to broadcast, or broadcast a clone of the original GEP. 3875 // Here, we broadcast a clone of the original. 3876 // 3877 // TODO: If at some point we decide to scalarize instructions having 3878 // loop-invariant operands, this special case will no longer be 3879 // required. We would add the scalarization decision to 3880 // collectLoopScalars() and teach getVectorValue() to broadcast 3881 // the lane-zero scalar value. 3882 auto *Clone = Builder.Insert(GEP->clone()); 3883 for (unsigned Part = 0; Part < UF; ++Part) { 3884 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3885 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3886 addMetadata(EntryPart, GEP); 3887 } 3888 } else { 3889 // If the GEP has at least one loop-varying operand, we are sure to 3890 // produce a vector of pointers. But if we are only unrolling, we want 3891 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3892 // produce with the code below will be scalar (if VF == 1) or vector 3893 // (otherwise). Note that for the unroll-only case, we still maintain 3894 // values in the vector mapping with initVector, as we do for other 3895 // instructions. 3896 for (unsigned Part = 0; Part < UF; ++Part) { 3897 // The pointer operand of the new GEP. If it's loop-invariant, we 3898 // won't broadcast it. 3899 auto *Ptr = 3900 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3901 ? GEP->getPointerOperand() 3902 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3903 3904 // Collect all the indices for the new GEP. If any index is 3905 // loop-invariant, we won't broadcast it. 3906 SmallVector<Value *, 4> Indices; 3907 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3908 if (OrigLoop->isLoopInvariant(U.get())) 3909 Indices.push_back(U.get()); 3910 else 3911 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3912 } 3913 3914 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3915 // but it should be a vector, otherwise. 3916 auto *NewGEP = GEP->isInBounds() 3917 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3918 : Builder.CreateGEP(Ptr, Indices); 3919 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3920 "NewGEP is not a pointer vector"); 3921 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3922 addMetadata(NewGEP, GEP); 3923 } 3924 } 3925 3926 break; 3927 } 3928 case Instruction::UDiv: 3929 case Instruction::SDiv: 3930 case Instruction::SRem: 3931 case Instruction::URem: 3932 case Instruction::Add: 3933 case Instruction::FAdd: 3934 case Instruction::Sub: 3935 case Instruction::FSub: 3936 case Instruction::Mul: 3937 case Instruction::FMul: 3938 case Instruction::FDiv: 3939 case Instruction::FRem: 3940 case Instruction::Shl: 3941 case Instruction::LShr: 3942 case Instruction::AShr: 3943 case Instruction::And: 3944 case Instruction::Or: 3945 case Instruction::Xor: { 3946 // Just widen binops. 3947 auto *BinOp = cast<BinaryOperator>(&I); 3948 setDebugLocFromInst(Builder, BinOp); 3949 3950 for (unsigned Part = 0; Part < UF; ++Part) { 3951 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3952 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3953 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3954 3955 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3956 VecOp->copyIRFlags(BinOp); 3957 3958 // Use this vector value for all users of the original instruction. 3959 VectorLoopValueMap.setVectorValue(&I, Part, V); 3960 addMetadata(V, BinOp); 3961 } 3962 3963 break; 3964 } 3965 case Instruction::Select: { 3966 // Widen selects. 3967 // If the selector is loop invariant we can create a select 3968 // instruction with a scalar condition. Otherwise, use vector-select. 3969 auto *SE = PSE.getSE(); 3970 bool InvariantCond = 3971 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 3972 setDebugLocFromInst(Builder, &I); 3973 3974 // The condition can be loop invariant but still defined inside the 3975 // loop. This means that we can't just use the original 'cond' value. 3976 // We have to take the 'vectorized' value and pick the first lane. 3977 // Instcombine will make this a no-op. 3978 3979 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 3980 3981 for (unsigned Part = 0; Part < UF; ++Part) { 3982 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 3983 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 3984 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 3985 Value *Sel = 3986 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 3987 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 3988 addMetadata(Sel, &I); 3989 } 3990 3991 break; 3992 } 3993 3994 case Instruction::ICmp: 3995 case Instruction::FCmp: { 3996 // Widen compares. Generate vector compares. 3997 bool FCmp = (I.getOpcode() == Instruction::FCmp); 3998 auto *Cmp = dyn_cast<CmpInst>(&I); 3999 setDebugLocFromInst(Builder, Cmp); 4000 for (unsigned Part = 0; Part < UF; ++Part) { 4001 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4002 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4003 Value *C = nullptr; 4004 if (FCmp) { 4005 // Propagate fast math flags. 4006 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4007 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4008 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4009 } else { 4010 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4011 } 4012 VectorLoopValueMap.setVectorValue(&I, Part, C); 4013 addMetadata(C, &I); 4014 } 4015 4016 break; 4017 } 4018 4019 case Instruction::ZExt: 4020 case Instruction::SExt: 4021 case Instruction::FPToUI: 4022 case Instruction::FPToSI: 4023 case Instruction::FPExt: 4024 case Instruction::PtrToInt: 4025 case Instruction::IntToPtr: 4026 case Instruction::SIToFP: 4027 case Instruction::UIToFP: 4028 case Instruction::Trunc: 4029 case Instruction::FPTrunc: 4030 case Instruction::BitCast: { 4031 auto *CI = dyn_cast<CastInst>(&I); 4032 setDebugLocFromInst(Builder, CI); 4033 4034 /// Vectorize casts. 4035 Type *DestTy = 4036 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4037 4038 for (unsigned Part = 0; Part < UF; ++Part) { 4039 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4040 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4041 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4042 addMetadata(Cast, &I); 4043 } 4044 break; 4045 } 4046 4047 case Instruction::Call: { 4048 // Ignore dbg intrinsics. 4049 if (isa<DbgInfoIntrinsic>(I)) 4050 break; 4051 setDebugLocFromInst(Builder, &I); 4052 4053 Module *M = I.getParent()->getParent()->getParent(); 4054 auto *CI = cast<CallInst>(&I); 4055 4056 StringRef FnName = CI->getCalledFunction()->getName(); 4057 Function *F = CI->getCalledFunction(); 4058 Type *RetTy = ToVectorTy(CI->getType(), VF); 4059 SmallVector<Type *, 4> Tys; 4060 for (Value *ArgOperand : CI->arg_operands()) 4061 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4062 4063 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4064 4065 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4066 // version of the instruction. 4067 // Is it beneficial to perform intrinsic call compared to lib call? 4068 bool NeedToScalarize; 4069 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4070 bool UseVectorIntrinsic = 4071 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4072 assert((UseVectorIntrinsic || !NeedToScalarize) && 4073 "Instruction should be scalarized elsewhere."); 4074 4075 for (unsigned Part = 0; Part < UF; ++Part) { 4076 SmallVector<Value *, 4> Args; 4077 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4078 Value *Arg = CI->getArgOperand(i); 4079 // Some intrinsics have a scalar argument - don't replace it with a 4080 // vector. 4081 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4082 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4083 Args.push_back(Arg); 4084 } 4085 4086 Function *VectorF; 4087 if (UseVectorIntrinsic) { 4088 // Use vector version of the intrinsic. 4089 Type *TysForDecl[] = {CI->getType()}; 4090 if (VF > 1) 4091 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4092 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4093 } else { 4094 // Use vector version of the library call. 4095 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4096 assert(!VFnName.empty() && "Vector function name is empty."); 4097 VectorF = M->getFunction(VFnName); 4098 if (!VectorF) { 4099 // Generate a declaration 4100 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4101 VectorF = 4102 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4103 VectorF->copyAttributesFrom(F); 4104 } 4105 } 4106 assert(VectorF && "Can't create vector function."); 4107 4108 SmallVector<OperandBundleDef, 1> OpBundles; 4109 CI->getOperandBundlesAsDefs(OpBundles); 4110 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4111 4112 if (isa<FPMathOperator>(V)) 4113 V->copyFastMathFlags(CI); 4114 4115 VectorLoopValueMap.setVectorValue(&I, Part, V); 4116 addMetadata(V, &I); 4117 } 4118 4119 break; 4120 } 4121 4122 default: 4123 // This instruction is not vectorized by simple widening. 4124 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4125 llvm_unreachable("Unhandled instruction!"); 4126 } // end of switch. 4127 } 4128 4129 void InnerLoopVectorizer::updateAnalysis() { 4130 // Forget the original basic block. 4131 PSE.getSE()->forgetLoop(OrigLoop); 4132 4133 // Update the dominator tree information. 4134 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4135 "Entry does not dominate exit."); 4136 4137 DT->addNewBlock(LoopMiddleBlock, 4138 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4139 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4140 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4141 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4142 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4143 } 4144 4145 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4146 // We should not collect Scalars more than once per VF. Right now, this 4147 // function is called from collectUniformsAndScalars(), which already does 4148 // this check. Collecting Scalars for VF=1 does not make any sense. 4149 assert(VF >= 2 && !Scalars.count(VF) && 4150 "This function should not be visited twice for the same VF"); 4151 4152 SmallSetVector<Instruction *, 8> Worklist; 4153 4154 // These sets are used to seed the analysis with pointers used by memory 4155 // accesses that will remain scalar. 4156 SmallSetVector<Instruction *, 8> ScalarPtrs; 4157 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4158 4159 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4160 // The pointer operands of loads and stores will be scalar as long as the 4161 // memory access is not a gather or scatter operation. The value operand of a 4162 // store will remain scalar if the store is scalarized. 4163 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4164 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4165 assert(WideningDecision != CM_Unknown && 4166 "Widening decision should be ready at this moment"); 4167 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4168 if (Ptr == Store->getValueOperand()) 4169 return WideningDecision == CM_Scalarize; 4170 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4171 "Ptr is neither a value or pointer operand"); 4172 return WideningDecision != CM_GatherScatter; 4173 }; 4174 4175 // A helper that returns true if the given value is a bitcast or 4176 // getelementptr instruction contained in the loop. 4177 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4178 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4179 isa<GetElementPtrInst>(V)) && 4180 !TheLoop->isLoopInvariant(V); 4181 }; 4182 4183 // A helper that evaluates a memory access's use of a pointer. If the use 4184 // will be a scalar use, and the pointer is only used by memory accesses, we 4185 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4186 // PossibleNonScalarPtrs. 4187 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4188 // We only care about bitcast and getelementptr instructions contained in 4189 // the loop. 4190 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4191 return; 4192 4193 // If the pointer has already been identified as scalar (e.g., if it was 4194 // also identified as uniform), there's nothing to do. 4195 auto *I = cast<Instruction>(Ptr); 4196 if (Worklist.count(I)) 4197 return; 4198 4199 // If the use of the pointer will be a scalar use, and all users of the 4200 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4201 // place the pointer in PossibleNonScalarPtrs. 4202 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4203 return isa<LoadInst>(U) || isa<StoreInst>(U); 4204 })) 4205 ScalarPtrs.insert(I); 4206 else 4207 PossibleNonScalarPtrs.insert(I); 4208 }; 4209 4210 // We seed the scalars analysis with three classes of instructions: (1) 4211 // instructions marked uniform-after-vectorization, (2) bitcast and 4212 // getelementptr instructions used by memory accesses requiring a scalar use, 4213 // and (3) pointer induction variables and their update instructions (we 4214 // currently only scalarize these). 4215 // 4216 // (1) Add to the worklist all instructions that have been identified as 4217 // uniform-after-vectorization. 4218 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4219 4220 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4221 // memory accesses requiring a scalar use. The pointer operands of loads and 4222 // stores will be scalar as long as the memory accesses is not a gather or 4223 // scatter operation. The value operand of a store will remain scalar if the 4224 // store is scalarized. 4225 for (auto *BB : TheLoop->blocks()) 4226 for (auto &I : *BB) { 4227 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4228 evaluatePtrUse(Load, Load->getPointerOperand()); 4229 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4230 evaluatePtrUse(Store, Store->getPointerOperand()); 4231 evaluatePtrUse(Store, Store->getValueOperand()); 4232 } 4233 } 4234 for (auto *I : ScalarPtrs) 4235 if (!PossibleNonScalarPtrs.count(I)) { 4236 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4237 Worklist.insert(I); 4238 } 4239 4240 // (3) Add to the worklist all pointer induction variables and their update 4241 // instructions. 4242 // 4243 // TODO: Once we are able to vectorize pointer induction variables we should 4244 // no longer insert them into the worklist here. 4245 auto *Latch = TheLoop->getLoopLatch(); 4246 for (auto &Induction : *Legal->getInductionVars()) { 4247 auto *Ind = Induction.first; 4248 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4249 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4250 continue; 4251 Worklist.insert(Ind); 4252 Worklist.insert(IndUpdate); 4253 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4254 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 4255 } 4256 4257 // Insert the forced scalars. 4258 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4259 // induction variable when the PHI user is scalarized. 4260 if (ForcedScalars.count(VF)) 4261 for (auto *I : ForcedScalars.find(VF)->second) 4262 Worklist.insert(I); 4263 4264 // Expand the worklist by looking through any bitcasts and getelementptr 4265 // instructions we've already identified as scalar. This is similar to the 4266 // expansion step in collectLoopUniforms(); however, here we're only 4267 // expanding to include additional bitcasts and getelementptr instructions. 4268 unsigned Idx = 0; 4269 while (Idx != Worklist.size()) { 4270 Instruction *Dst = Worklist[Idx++]; 4271 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4272 continue; 4273 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4274 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4275 auto *J = cast<Instruction>(U); 4276 return !TheLoop->contains(J) || Worklist.count(J) || 4277 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4278 isScalarUse(J, Src)); 4279 })) { 4280 Worklist.insert(Src); 4281 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4282 } 4283 } 4284 4285 // An induction variable will remain scalar if all users of the induction 4286 // variable and induction variable update remain scalar. 4287 for (auto &Induction : *Legal->getInductionVars()) { 4288 auto *Ind = Induction.first; 4289 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4290 4291 // We already considered pointer induction variables, so there's no reason 4292 // to look at their users again. 4293 // 4294 // TODO: Once we are able to vectorize pointer induction variables we 4295 // should no longer skip over them here. 4296 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4297 continue; 4298 4299 // Determine if all users of the induction variable are scalar after 4300 // vectorization. 4301 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4302 auto *I = cast<Instruction>(U); 4303 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4304 }); 4305 if (!ScalarInd) 4306 continue; 4307 4308 // Determine if all users of the induction variable update instruction are 4309 // scalar after vectorization. 4310 auto ScalarIndUpdate = 4311 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4312 auto *I = cast<Instruction>(U); 4313 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4314 }); 4315 if (!ScalarIndUpdate) 4316 continue; 4317 4318 // The induction variable and its update instruction will remain scalar. 4319 Worklist.insert(Ind); 4320 Worklist.insert(IndUpdate); 4321 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4322 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 4323 } 4324 4325 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4326 } 4327 4328 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) { 4329 if (!Legal->blockNeedsPredication(I->getParent())) 4330 return false; 4331 switch(I->getOpcode()) { 4332 default: 4333 break; 4334 case Instruction::Load: 4335 case Instruction::Store: { 4336 if (!Legal->isMaskRequired(I)) 4337 return false; 4338 auto *Ptr = getLoadStorePointerOperand(I); 4339 auto *Ty = getMemInstValueType(I); 4340 return isa<LoadInst>(I) ? 4341 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4342 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4343 } 4344 case Instruction::UDiv: 4345 case Instruction::SDiv: 4346 case Instruction::SRem: 4347 case Instruction::URem: 4348 return mayDivideByZero(*I); 4349 } 4350 return false; 4351 } 4352 4353 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4354 unsigned VF) { 4355 // Get and ensure we have a valid memory instruction. 4356 LoadInst *LI = dyn_cast<LoadInst>(I); 4357 StoreInst *SI = dyn_cast<StoreInst>(I); 4358 assert((LI || SI) && "Invalid memory instruction"); 4359 4360 auto *Ptr = getLoadStorePointerOperand(I); 4361 4362 // In order to be widened, the pointer should be consecutive, first of all. 4363 if (!Legal->isConsecutivePtr(Ptr)) 4364 return false; 4365 4366 // If the instruction is a store located in a predicated block, it will be 4367 // scalarized. 4368 if (isScalarWithPredication(I)) 4369 return false; 4370 4371 // If the instruction's allocated size doesn't equal it's type size, it 4372 // requires padding and will be scalarized. 4373 auto &DL = I->getModule()->getDataLayout(); 4374 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4375 if (hasIrregularType(ScalarTy, DL, VF)) 4376 return false; 4377 4378 return true; 4379 } 4380 4381 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4382 // We should not collect Uniforms more than once per VF. Right now, 4383 // this function is called from collectUniformsAndScalars(), which 4384 // already does this check. Collecting Uniforms for VF=1 does not make any 4385 // sense. 4386 4387 assert(VF >= 2 && !Uniforms.count(VF) && 4388 "This function should not be visited twice for the same VF"); 4389 4390 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4391 // not analyze again. Uniforms.count(VF) will return 1. 4392 Uniforms[VF].clear(); 4393 4394 // We now know that the loop is vectorizable! 4395 // Collect instructions inside the loop that will remain uniform after 4396 // vectorization. 4397 4398 // Global values, params and instructions outside of current loop are out of 4399 // scope. 4400 auto isOutOfScope = [&](Value *V) -> bool { 4401 Instruction *I = dyn_cast<Instruction>(V); 4402 return (!I || !TheLoop->contains(I)); 4403 }; 4404 4405 SetVector<Instruction *> Worklist; 4406 BasicBlock *Latch = TheLoop->getLoopLatch(); 4407 4408 // Start with the conditional branch. If the branch condition is an 4409 // instruction contained in the loop that is only used by the branch, it is 4410 // uniform. 4411 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4412 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4413 Worklist.insert(Cmp); 4414 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4415 } 4416 4417 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4418 // are pointers that are treated like consecutive pointers during 4419 // vectorization. The pointer operands of interleaved accesses are an 4420 // example. 4421 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4422 4423 // Holds pointer operands of instructions that are possibly non-uniform. 4424 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4425 4426 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4427 InstWidening WideningDecision = getWideningDecision(I, VF); 4428 assert(WideningDecision != CM_Unknown && 4429 "Widening decision should be ready at this moment"); 4430 4431 return (WideningDecision == CM_Widen || 4432 WideningDecision == CM_Widen_Reverse || 4433 WideningDecision == CM_Interleave); 4434 }; 4435 // Iterate over the instructions in the loop, and collect all 4436 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4437 // that a consecutive-like pointer operand will be scalarized, we collect it 4438 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4439 // getelementptr instruction can be used by both vectorized and scalarized 4440 // memory instructions. For example, if a loop loads and stores from the same 4441 // location, but the store is conditional, the store will be scalarized, and 4442 // the getelementptr won't remain uniform. 4443 for (auto *BB : TheLoop->blocks()) 4444 for (auto &I : *BB) { 4445 // If there's no pointer operand, there's nothing to do. 4446 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4447 if (!Ptr) 4448 continue; 4449 4450 // True if all users of Ptr are memory accesses that have Ptr as their 4451 // pointer operand. 4452 auto UsersAreMemAccesses = 4453 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4454 return getLoadStorePointerOperand(U) == Ptr; 4455 }); 4456 4457 // Ensure the memory instruction will not be scalarized or used by 4458 // gather/scatter, making its pointer operand non-uniform. If the pointer 4459 // operand is used by any instruction other than a memory access, we 4460 // conservatively assume the pointer operand may be non-uniform. 4461 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4462 PossibleNonUniformPtrs.insert(Ptr); 4463 4464 // If the memory instruction will be vectorized and its pointer operand 4465 // is consecutive-like, or interleaving - the pointer operand should 4466 // remain uniform. 4467 else 4468 ConsecutiveLikePtrs.insert(Ptr); 4469 } 4470 4471 // Add to the Worklist all consecutive and consecutive-like pointers that 4472 // aren't also identified as possibly non-uniform. 4473 for (auto *V : ConsecutiveLikePtrs) 4474 if (!PossibleNonUniformPtrs.count(V)) { 4475 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4476 Worklist.insert(V); 4477 } 4478 4479 // Expand Worklist in topological order: whenever a new instruction 4480 // is added , its users should be either already inside Worklist, or 4481 // out of scope. It ensures a uniform instruction will only be used 4482 // by uniform instructions or out of scope instructions. 4483 unsigned idx = 0; 4484 while (idx != Worklist.size()) { 4485 Instruction *I = Worklist[idx++]; 4486 4487 for (auto OV : I->operand_values()) { 4488 if (isOutOfScope(OV)) 4489 continue; 4490 auto *OI = cast<Instruction>(OV); 4491 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4492 auto *J = cast<Instruction>(U); 4493 return !TheLoop->contains(J) || Worklist.count(J) || 4494 (OI == getLoadStorePointerOperand(J) && 4495 isUniformDecision(J, VF)); 4496 })) { 4497 Worklist.insert(OI); 4498 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4499 } 4500 } 4501 } 4502 4503 // Returns true if Ptr is the pointer operand of a memory access instruction 4504 // I, and I is known to not require scalarization. 4505 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4506 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4507 }; 4508 4509 // For an instruction to be added into Worklist above, all its users inside 4510 // the loop should also be in Worklist. However, this condition cannot be 4511 // true for phi nodes that form a cyclic dependence. We must process phi 4512 // nodes separately. An induction variable will remain uniform if all users 4513 // of the induction variable and induction variable update remain uniform. 4514 // The code below handles both pointer and non-pointer induction variables. 4515 for (auto &Induction : *Legal->getInductionVars()) { 4516 auto *Ind = Induction.first; 4517 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4518 4519 // Determine if all users of the induction variable are uniform after 4520 // vectorization. 4521 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4522 auto *I = cast<Instruction>(U); 4523 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4524 isVectorizedMemAccessUse(I, Ind); 4525 }); 4526 if (!UniformInd) 4527 continue; 4528 4529 // Determine if all users of the induction variable update instruction are 4530 // uniform after vectorization. 4531 auto UniformIndUpdate = 4532 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4533 auto *I = cast<Instruction>(U); 4534 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4535 isVectorizedMemAccessUse(I, IndUpdate); 4536 }); 4537 if (!UniformIndUpdate) 4538 continue; 4539 4540 // The induction variable and its update instruction will remain uniform. 4541 Worklist.insert(Ind); 4542 Worklist.insert(IndUpdate); 4543 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4544 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 4545 } 4546 4547 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4548 } 4549 4550 void InterleavedAccessInfo::collectConstStrideAccesses( 4551 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 4552 const ValueToValueMap &Strides) { 4553 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4554 4555 // Since it's desired that the load/store instructions be maintained in 4556 // "program order" for the interleaved access analysis, we have to visit the 4557 // blocks in the loop in reverse postorder (i.e., in a topological order). 4558 // Such an ordering will ensure that any load/store that may be executed 4559 // before a second load/store will precede the second load/store in 4560 // AccessStrideInfo. 4561 LoopBlocksDFS DFS(TheLoop); 4562 DFS.perform(LI); 4563 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 4564 for (auto &I : *BB) { 4565 auto *LI = dyn_cast<LoadInst>(&I); 4566 auto *SI = dyn_cast<StoreInst>(&I); 4567 if (!LI && !SI) 4568 continue; 4569 4570 Value *Ptr = getLoadStorePointerOperand(&I); 4571 // We don't check wrapping here because we don't know yet if Ptr will be 4572 // part of a full group or a group with gaps. Checking wrapping for all 4573 // pointers (even those that end up in groups with no gaps) will be overly 4574 // conservative. For full groups, wrapping should be ok since if we would 4575 // wrap around the address space we would do a memory access at nullptr 4576 // even without the transformation. The wrapping checks are therefore 4577 // deferred until after we've formed the interleaved groups. 4578 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 4579 /*Assume=*/true, /*ShouldCheckWrap=*/false); 4580 4581 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4582 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4583 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4584 4585 // An alignment of 0 means target ABI alignment. 4586 unsigned Align = getMemInstAlignment(&I); 4587 if (!Align) 4588 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4589 4590 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 4591 } 4592 } 4593 4594 // Analyze interleaved accesses and collect them into interleaved load and 4595 // store groups. 4596 // 4597 // When generating code for an interleaved load group, we effectively hoist all 4598 // loads in the group to the location of the first load in program order. When 4599 // generating code for an interleaved store group, we sink all stores to the 4600 // location of the last store. This code motion can change the order of load 4601 // and store instructions and may break dependences. 4602 // 4603 // The code generation strategy mentioned above ensures that we won't violate 4604 // any write-after-read (WAR) dependences. 4605 // 4606 // E.g., for the WAR dependence: a = A[i]; // (1) 4607 // A[i] = b; // (2) 4608 // 4609 // The store group of (2) is always inserted at or below (2), and the load 4610 // group of (1) is always inserted at or above (1). Thus, the instructions will 4611 // never be reordered. All other dependences are checked to ensure the 4612 // correctness of the instruction reordering. 4613 // 4614 // The algorithm visits all memory accesses in the loop in bottom-up program 4615 // order. Program order is established by traversing the blocks in the loop in 4616 // reverse postorder when collecting the accesses. 4617 // 4618 // We visit the memory accesses in bottom-up order because it can simplify the 4619 // construction of store groups in the presence of write-after-write (WAW) 4620 // dependences. 4621 // 4622 // E.g., for the WAW dependence: A[i] = a; // (1) 4623 // A[i] = b; // (2) 4624 // A[i + 1] = c; // (3) 4625 // 4626 // We will first create a store group with (3) and (2). (1) can't be added to 4627 // this group because it and (2) are dependent. However, (1) can be grouped 4628 // with other accesses that may precede it in program order. Note that a 4629 // bottom-up order does not imply that WAW dependences should not be checked. 4630 void InterleavedAccessInfo::analyzeInterleaving() { 4631 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4632 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 4633 4634 // Holds all accesses with a constant stride. 4635 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 4636 collectConstStrideAccesses(AccessStrideInfo, Strides); 4637 4638 if (AccessStrideInfo.empty()) 4639 return; 4640 4641 // Collect the dependences in the loop. 4642 collectDependences(); 4643 4644 // Holds all interleaved store groups temporarily. 4645 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4646 // Holds all interleaved load groups temporarily. 4647 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 4648 4649 // Search in bottom-up program order for pairs of accesses (A and B) that can 4650 // form interleaved load or store groups. In the algorithm below, access A 4651 // precedes access B in program order. We initialize a group for B in the 4652 // outer loop of the algorithm, and then in the inner loop, we attempt to 4653 // insert each A into B's group if: 4654 // 4655 // 1. A and B have the same stride, 4656 // 2. A and B have the same memory object size, and 4657 // 3. A belongs in B's group according to its distance from B. 4658 // 4659 // Special care is taken to ensure group formation will not break any 4660 // dependences. 4661 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 4662 BI != E; ++BI) { 4663 Instruction *B = BI->first; 4664 StrideDescriptor DesB = BI->second; 4665 4666 // Initialize a group for B if it has an allowable stride. Even if we don't 4667 // create a group for B, we continue with the bottom-up algorithm to ensure 4668 // we don't break any of B's dependences. 4669 InterleaveGroup *Group = nullptr; 4670 if (isStrided(DesB.Stride)) { 4671 Group = getInterleaveGroup(B); 4672 if (!Group) { 4673 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 4674 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 4675 } 4676 if (B->mayWriteToMemory()) 4677 StoreGroups.insert(Group); 4678 else 4679 LoadGroups.insert(Group); 4680 } 4681 4682 for (auto AI = std::next(BI); AI != E; ++AI) { 4683 Instruction *A = AI->first; 4684 StrideDescriptor DesA = AI->second; 4685 4686 // Our code motion strategy implies that we can't have dependences 4687 // between accesses in an interleaved group and other accesses located 4688 // between the first and last member of the group. Note that this also 4689 // means that a group can't have more than one member at a given offset. 4690 // The accesses in a group can have dependences with other accesses, but 4691 // we must ensure we don't extend the boundaries of the group such that 4692 // we encompass those dependent accesses. 4693 // 4694 // For example, assume we have the sequence of accesses shown below in a 4695 // stride-2 loop: 4696 // 4697 // (1, 2) is a group | A[i] = a; // (1) 4698 // | A[i-1] = b; // (2) | 4699 // A[i-3] = c; // (3) 4700 // A[i] = d; // (4) | (2, 4) is not a group 4701 // 4702 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 4703 // but not with (4). If we did, the dependent access (3) would be within 4704 // the boundaries of the (2, 4) group. 4705 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 4706 // If a dependence exists and A is already in a group, we know that A 4707 // must be a store since A precedes B and WAR dependences are allowed. 4708 // Thus, A would be sunk below B. We release A's group to prevent this 4709 // illegal code motion. A will then be free to form another group with 4710 // instructions that precede it. 4711 if (isInterleaved(A)) { 4712 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 4713 StoreGroups.remove(StoreGroup); 4714 releaseGroup(StoreGroup); 4715 } 4716 4717 // If a dependence exists and A is not already in a group (or it was 4718 // and we just released it), B might be hoisted above A (if B is a 4719 // load) or another store might be sunk below A (if B is a store). In 4720 // either case, we can't add additional instructions to B's group. B 4721 // will only form a group with instructions that it precedes. 4722 break; 4723 } 4724 4725 // At this point, we've checked for illegal code motion. If either A or B 4726 // isn't strided, there's nothing left to do. 4727 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 4728 continue; 4729 4730 // Ignore A if it's already in a group or isn't the same kind of memory 4731 // operation as B. 4732 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory 4733 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() 4734 // should have returned false - except for the case we asked for optimization 4735 // remarks. 4736 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) 4737 || (A->mayWriteToMemory() != B->mayWriteToMemory())) 4738 continue; 4739 4740 // Check rules 1 and 2. Ignore A if its stride or size is different from 4741 // that of B. 4742 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 4743 continue; 4744 4745 // Ignore A if the memory object of A and B don't belong to the same 4746 // address space 4747 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 4748 continue; 4749 4750 // Calculate the distance from A to B. 4751 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 4752 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 4753 if (!DistToB) 4754 continue; 4755 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 4756 4757 // Check rule 3. Ignore A if its distance to B is not a multiple of the 4758 // size. 4759 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 4760 continue; 4761 4762 // Ignore A if either A or B is in a predicated block. Although we 4763 // currently prevent group formation for predicated accesses, we may be 4764 // able to relax this limitation in the future once we handle more 4765 // complicated blocks. 4766 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 4767 continue; 4768 4769 // The index of A is the index of B plus A's distance to B in multiples 4770 // of the size. 4771 int IndexA = 4772 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 4773 4774 // Try to insert A into B's group. 4775 if (Group->insertMember(A, IndexA, DesA.Align)) { 4776 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 4777 << " into the interleave group with" << *B << '\n'); 4778 InterleaveGroupMap[A] = Group; 4779 4780 // Set the first load in program order as the insert position. 4781 if (A->mayReadFromMemory()) 4782 Group->setInsertPos(A); 4783 } 4784 } // Iteration over A accesses. 4785 } // Iteration over B accesses. 4786 4787 // Remove interleaved store groups with gaps. 4788 for (InterleaveGroup *Group : StoreGroups) 4789 if (Group->getNumMembers() != Group->getFactor()) { 4790 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 4791 "to gaps.\n"); 4792 releaseGroup(Group); 4793 } 4794 // Remove interleaved groups with gaps (currently only loads) whose memory 4795 // accesses may wrap around. We have to revisit the getPtrStride analysis, 4796 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 4797 // not check wrapping (see documentation there). 4798 // FORNOW we use Assume=false; 4799 // TODO: Change to Assume=true but making sure we don't exceed the threshold 4800 // of runtime SCEV assumptions checks (thereby potentially failing to 4801 // vectorize altogether). 4802 // Additional optional optimizations: 4803 // TODO: If we are peeling the loop and we know that the first pointer doesn't 4804 // wrap then we can deduce that all pointers in the group don't wrap. 4805 // This means that we can forcefully peel the loop in order to only have to 4806 // check the first pointer for no-wrap. When we'll change to use Assume=true 4807 // we'll only need at most one runtime check per interleaved group. 4808 for (InterleaveGroup *Group : LoadGroups) { 4809 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 4810 // load would wrap around the address space we would do a memory access at 4811 // nullptr even without the transformation. 4812 if (Group->getNumMembers() == Group->getFactor()) 4813 continue; 4814 4815 // Case 2: If first and last members of the group don't wrap this implies 4816 // that all the pointers in the group don't wrap. 4817 // So we check only group member 0 (which is always guaranteed to exist), 4818 // and group member Factor - 1; If the latter doesn't exist we rely on 4819 // peeling (if it is a non-reveresed accsess -- see Case 3). 4820 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 4821 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 4822 /*ShouldCheckWrap=*/true)) { 4823 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 4824 "first group member potentially pointer-wrapping.\n"); 4825 releaseGroup(Group); 4826 continue; 4827 } 4828 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 4829 if (LastMember) { 4830 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 4831 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 4832 /*ShouldCheckWrap=*/true)) { 4833 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 4834 "last group member potentially pointer-wrapping.\n"); 4835 releaseGroup(Group); 4836 } 4837 } else { 4838 // Case 3: A non-reversed interleaved load group with gaps: We need 4839 // to execute at least one scalar epilogue iteration. This will ensure 4840 // we don't speculatively access memory out-of-bounds. We only need 4841 // to look for a member at index factor - 1, since every group must have 4842 // a member at index zero. 4843 if (Group->isReverse()) { 4844 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 4845 "a reverse access with gaps.\n"); 4846 releaseGroup(Group); 4847 continue; 4848 } 4849 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 4850 RequiresScalarEpilogue = true; 4851 } 4852 } 4853 } 4854 4855 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4856 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4857 // TODO: It may by useful to do since it's still likely to be dynamically 4858 // uniform if the target can skip. 4859 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4860 4861 ORE->emit( 4862 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4863 << "runtime pointer checks needed. Not enabled for divergent target"); 4864 4865 return None; 4866 } 4867 4868 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4869 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4870 return computeFeasibleMaxVF(OptForSize, TC); 4871 4872 if (Legal->getRuntimePointerChecking()->Need) { 4873 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4874 << "runtime pointer checks needed. Enable vectorization of this " 4875 "loop with '#pragma clang loop vectorize(enable)' when " 4876 "compiling with -Os/-Oz"); 4877 DEBUG(dbgs() 4878 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4879 return None; 4880 } 4881 4882 // If we optimize the program for size, avoid creating the tail loop. 4883 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4884 4885 // If we don't know the precise trip count, don't try to vectorize. 4886 if (TC < 2) { 4887 ORE->emit( 4888 createMissedAnalysis("UnknownLoopCountComplexCFG") 4889 << "unable to calculate the loop count due to complex control flow"); 4890 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4891 return None; 4892 } 4893 4894 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4895 4896 if (TC % MaxVF != 0) { 4897 // If the trip count that we found modulo the vectorization factor is not 4898 // zero then we require a tail. 4899 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 4900 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 4901 // smaller MaxVF that does not require a scalar epilog. 4902 4903 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4904 << "cannot optimize for size and vectorize at the " 4905 "same time. Enable vectorization of this loop " 4906 "with '#pragma clang loop vectorize(enable)' " 4907 "when compiling with -Os/-Oz"); 4908 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4909 return None; 4910 } 4911 4912 return MaxVF; 4913 } 4914 4915 unsigned 4916 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4917 unsigned ConstTripCount) { 4918 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4919 unsigned SmallestType, WidestType; 4920 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4921 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4922 4923 // Get the maximum safe dependence distance in bits computed by LAA. 4924 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4925 // the memory accesses that is most restrictive (involved in the smallest 4926 // dependence distance). 4927 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4928 4929 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4930 4931 unsigned MaxVectorSize = WidestRegister / WidestType; 4932 4933 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 4934 << WidestType << " bits.\n"); 4935 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 4936 << " bits.\n"); 4937 4938 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4939 " into one vector!"); 4940 if (MaxVectorSize == 0) { 4941 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4942 MaxVectorSize = 1; 4943 return MaxVectorSize; 4944 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4945 isPowerOf2_32(ConstTripCount)) { 4946 // We need to clamp the VF to be the ConstTripCount. There is no point in 4947 // choosing a higher viable VF as done in the loop below. 4948 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4949 << ConstTripCount << "\n"); 4950 MaxVectorSize = ConstTripCount; 4951 return MaxVectorSize; 4952 } 4953 4954 unsigned MaxVF = MaxVectorSize; 4955 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4956 (MaximizeBandwidth && !OptForSize)) { 4957 // Collect all viable vectorization factors larger than the default MaxVF 4958 // (i.e. MaxVectorSize). 4959 SmallVector<unsigned, 8> VFs; 4960 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4961 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4962 VFs.push_back(VS); 4963 4964 // For each VF calculate its register usage. 4965 auto RUs = calculateRegisterUsage(VFs); 4966 4967 // Select the largest VF which doesn't require more registers than existing 4968 // ones. 4969 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4970 for (int i = RUs.size() - 1; i >= 0; --i) { 4971 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4972 MaxVF = VFs[i]; 4973 break; 4974 } 4975 } 4976 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4977 if (MaxVF < MinVF) { 4978 DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4979 << ") with target's minimum: " << MinVF << '\n'); 4980 MaxVF = MinVF; 4981 } 4982 } 4983 } 4984 return MaxVF; 4985 } 4986 4987 VectorizationFactor 4988 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4989 float Cost = expectedCost(1).first; 4990 const float ScalarCost = Cost; 4991 unsigned Width = 1; 4992 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4993 4994 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4995 // Ignore scalar width, because the user explicitly wants vectorization. 4996 if (ForceVectorization && MaxVF > 1) { 4997 Width = 2; 4998 Cost = expectedCost(Width).first / (float)Width; 4999 } 5000 5001 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5002 // Notice that the vector loop needs to be executed less times, so 5003 // we need to divide the cost of the vector loops by the width of 5004 // the vector elements. 5005 VectorizationCostTy C = expectedCost(i); 5006 float VectorCost = C.first / (float)i; 5007 DEBUG(dbgs() << "LV: Vector loop of width " << i 5008 << " costs: " << (int)VectorCost << ".\n"); 5009 if (!C.second && !ForceVectorization) { 5010 DEBUG( 5011 dbgs() << "LV: Not considering vector loop of width " << i 5012 << " because it will not generate any vector instructions.\n"); 5013 continue; 5014 } 5015 if (VectorCost < Cost) { 5016 Cost = VectorCost; 5017 Width = i; 5018 } 5019 } 5020 5021 if (!EnableCondStoresVectorization && NumPredStores) { 5022 ORE->emit(createMissedAnalysis("ConditionalStore") 5023 << "store that is conditionally executed prevents vectorization"); 5024 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5025 Width = 1; 5026 Cost = ScalarCost; 5027 } 5028 5029 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5030 << "LV: Vectorization seems to be not beneficial, " 5031 << "but was forced by a user.\n"); 5032 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5033 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5034 return Factor; 5035 } 5036 5037 std::pair<unsigned, unsigned> 5038 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5039 unsigned MinWidth = -1U; 5040 unsigned MaxWidth = 8; 5041 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5042 5043 // For each block. 5044 for (BasicBlock *BB : TheLoop->blocks()) { 5045 // For each instruction in the loop. 5046 for (Instruction &I : *BB) { 5047 Type *T = I.getType(); 5048 5049 // Skip ignored values. 5050 if (ValuesToIgnore.count(&I)) 5051 continue; 5052 5053 // Only examine Loads, Stores and PHINodes. 5054 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5055 continue; 5056 5057 // Examine PHI nodes that are reduction variables. Update the type to 5058 // account for the recurrence type. 5059 if (auto *PN = dyn_cast<PHINode>(&I)) { 5060 if (!Legal->isReductionVariable(PN)) 5061 continue; 5062 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5063 T = RdxDesc.getRecurrenceType(); 5064 } 5065 5066 // Examine the stored values. 5067 if (auto *ST = dyn_cast<StoreInst>(&I)) 5068 T = ST->getValueOperand()->getType(); 5069 5070 // Ignore loaded pointer types and stored pointer types that are not 5071 // vectorizable. 5072 // 5073 // FIXME: The check here attempts to predict whether a load or store will 5074 // be vectorized. We only know this for certain after a VF has 5075 // been selected. Here, we assume that if an access can be 5076 // vectorized, it will be. We should also look at extending this 5077 // optimization to non-pointer types. 5078 // 5079 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5080 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5081 continue; 5082 5083 MinWidth = std::min(MinWidth, 5084 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5085 MaxWidth = std::max(MaxWidth, 5086 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5087 } 5088 } 5089 5090 return {MinWidth, MaxWidth}; 5091 } 5092 5093 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5094 unsigned VF, 5095 unsigned LoopCost) { 5096 // -- The interleave heuristics -- 5097 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5098 // There are many micro-architectural considerations that we can't predict 5099 // at this level. For example, frontend pressure (on decode or fetch) due to 5100 // code size, or the number and capabilities of the execution ports. 5101 // 5102 // We use the following heuristics to select the interleave count: 5103 // 1. If the code has reductions, then we interleave to break the cross 5104 // iteration dependency. 5105 // 2. If the loop is really small, then we interleave to reduce the loop 5106 // overhead. 5107 // 3. We don't interleave if we think that we will spill registers to memory 5108 // due to the increased register pressure. 5109 5110 // When we optimize for size, we don't interleave. 5111 if (OptForSize) 5112 return 1; 5113 5114 // We used the distance for the interleave count. 5115 if (Legal->getMaxSafeDepDistBytes() != -1U) 5116 return 1; 5117 5118 // Do not interleave loops with a relatively small trip count. 5119 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5120 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5121 return 1; 5122 5123 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5124 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5125 << " registers\n"); 5126 5127 if (VF == 1) { 5128 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5129 TargetNumRegisters = ForceTargetNumScalarRegs; 5130 } else { 5131 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5132 TargetNumRegisters = ForceTargetNumVectorRegs; 5133 } 5134 5135 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5136 // We divide by these constants so assume that we have at least one 5137 // instruction that uses at least one register. 5138 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5139 5140 // We calculate the interleave count using the following formula. 5141 // Subtract the number of loop invariants from the number of available 5142 // registers. These registers are used by all of the interleaved instances. 5143 // Next, divide the remaining registers by the number of registers that is 5144 // required by the loop, in order to estimate how many parallel instances 5145 // fit without causing spills. All of this is rounded down if necessary to be 5146 // a power of two. We want power of two interleave count to simplify any 5147 // addressing operations or alignment considerations. 5148 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5149 R.MaxLocalUsers); 5150 5151 // Don't count the induction variable as interleaved. 5152 if (EnableIndVarRegisterHeur) 5153 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5154 std::max(1U, (R.MaxLocalUsers - 1))); 5155 5156 // Clamp the interleave ranges to reasonable counts. 5157 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5158 5159 // Check if the user has overridden the max. 5160 if (VF == 1) { 5161 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5162 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5163 } else { 5164 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5165 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5166 } 5167 5168 // If we did not calculate the cost for VF (because the user selected the VF) 5169 // then we calculate the cost of VF here. 5170 if (LoopCost == 0) 5171 LoopCost = expectedCost(VF).first; 5172 5173 // Clamp the calculated IC to be between the 1 and the max interleave count 5174 // that the target allows. 5175 if (IC > MaxInterleaveCount) 5176 IC = MaxInterleaveCount; 5177 else if (IC < 1) 5178 IC = 1; 5179 5180 // Interleave if we vectorized this loop and there is a reduction that could 5181 // benefit from interleaving. 5182 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5183 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5184 return IC; 5185 } 5186 5187 // Note that if we've already vectorized the loop we will have done the 5188 // runtime check and so interleaving won't require further checks. 5189 bool InterleavingRequiresRuntimePointerCheck = 5190 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5191 5192 // We want to interleave small loops in order to reduce the loop overhead and 5193 // potentially expose ILP opportunities. 5194 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5195 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5196 // We assume that the cost overhead is 1 and we use the cost model 5197 // to estimate the cost of the loop and interleave until the cost of the 5198 // loop overhead is about 5% of the cost of the loop. 5199 unsigned SmallIC = 5200 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5201 5202 // Interleave until store/load ports (estimated by max interleave count) are 5203 // saturated. 5204 unsigned NumStores = Legal->getNumStores(); 5205 unsigned NumLoads = Legal->getNumLoads(); 5206 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5207 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5208 5209 // If we have a scalar reduction (vector reductions are already dealt with 5210 // by this point), we can increase the critical path length if the loop 5211 // we're interleaving is inside another loop. Limit, by default to 2, so the 5212 // critical path only gets increased by one reduction operation. 5213 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5214 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5215 SmallIC = std::min(SmallIC, F); 5216 StoresIC = std::min(StoresIC, F); 5217 LoadsIC = std::min(LoadsIC, F); 5218 } 5219 5220 if (EnableLoadStoreRuntimeInterleave && 5221 std::max(StoresIC, LoadsIC) > SmallIC) { 5222 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5223 return std::max(StoresIC, LoadsIC); 5224 } 5225 5226 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5227 return SmallIC; 5228 } 5229 5230 // Interleave if this is a large loop (small loops are already dealt with by 5231 // this point) that could benefit from interleaving. 5232 bool HasReductions = !Legal->getReductionVars()->empty(); 5233 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5234 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5235 return IC; 5236 } 5237 5238 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5239 return 1; 5240 } 5241 5242 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5243 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5244 // This function calculates the register usage by measuring the highest number 5245 // of values that are alive at a single location. Obviously, this is a very 5246 // rough estimation. We scan the loop in a topological order in order and 5247 // assign a number to each instruction. We use RPO to ensure that defs are 5248 // met before their users. We assume that each instruction that has in-loop 5249 // users starts an interval. We record every time that an in-loop value is 5250 // used, so we have a list of the first and last occurrences of each 5251 // instruction. Next, we transpose this data structure into a multi map that 5252 // holds the list of intervals that *end* at a specific location. This multi 5253 // map allows us to perform a linear search. We scan the instructions linearly 5254 // and record each time that a new interval starts, by placing it in a set. 5255 // If we find this value in the multi-map then we remove it from the set. 5256 // The max register usage is the maximum size of the set. 5257 // We also search for instructions that are defined outside the loop, but are 5258 // used inside the loop. We need this number separately from the max-interval 5259 // usage number because when we unroll, loop-invariant values do not take 5260 // more register. 5261 LoopBlocksDFS DFS(TheLoop); 5262 DFS.perform(LI); 5263 5264 RegisterUsage RU; 5265 5266 // Each 'key' in the map opens a new interval. The values 5267 // of the map are the index of the 'last seen' usage of the 5268 // instruction that is the key. 5269 using IntervalMap = DenseMap<Instruction *, unsigned>; 5270 5271 // Maps instruction to its index. 5272 DenseMap<unsigned, Instruction *> IdxToInstr; 5273 // Marks the end of each interval. 5274 IntervalMap EndPoint; 5275 // Saves the list of instruction indices that are used in the loop. 5276 SmallSet<Instruction *, 8> Ends; 5277 // Saves the list of values that are used in the loop but are 5278 // defined outside the loop, such as arguments and constants. 5279 SmallPtrSet<Value *, 8> LoopInvariants; 5280 5281 unsigned Index = 0; 5282 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5283 for (Instruction &I : *BB) { 5284 IdxToInstr[Index++] = &I; 5285 5286 // Save the end location of each USE. 5287 for (Value *U : I.operands()) { 5288 auto *Instr = dyn_cast<Instruction>(U); 5289 5290 // Ignore non-instruction values such as arguments, constants, etc. 5291 if (!Instr) 5292 continue; 5293 5294 // If this instruction is outside the loop then record it and continue. 5295 if (!TheLoop->contains(Instr)) { 5296 LoopInvariants.insert(Instr); 5297 continue; 5298 } 5299 5300 // Overwrite previous end points. 5301 EndPoint[Instr] = Index; 5302 Ends.insert(Instr); 5303 } 5304 } 5305 } 5306 5307 // Saves the list of intervals that end with the index in 'key'. 5308 using InstrList = SmallVector<Instruction *, 2>; 5309 DenseMap<unsigned, InstrList> TransposeEnds; 5310 5311 // Transpose the EndPoints to a list of values that end at each index. 5312 for (auto &Interval : EndPoint) 5313 TransposeEnds[Interval.second].push_back(Interval.first); 5314 5315 SmallSet<Instruction *, 8> OpenIntervals; 5316 5317 // Get the size of the widest register. 5318 unsigned MaxSafeDepDist = -1U; 5319 if (Legal->getMaxSafeDepDistBytes() != -1U) 5320 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5321 unsigned WidestRegister = 5322 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5323 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5324 5325 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5326 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5327 5328 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5329 5330 // A lambda that gets the register usage for the given type and VF. 5331 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5332 if (Ty->isTokenTy()) 5333 return 0U; 5334 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5335 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5336 }; 5337 5338 for (unsigned int i = 0; i < Index; ++i) { 5339 Instruction *I = IdxToInstr[i]; 5340 5341 // Remove all of the instructions that end at this location. 5342 InstrList &List = TransposeEnds[i]; 5343 for (Instruction *ToRemove : List) 5344 OpenIntervals.erase(ToRemove); 5345 5346 // Ignore instructions that are never used within the loop. 5347 if (!Ends.count(I)) 5348 continue; 5349 5350 // Skip ignored values. 5351 if (ValuesToIgnore.count(I)) 5352 continue; 5353 5354 // For each VF find the maximum usage of registers. 5355 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5356 if (VFs[j] == 1) { 5357 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5358 continue; 5359 } 5360 collectUniformsAndScalars(VFs[j]); 5361 // Count the number of live intervals. 5362 unsigned RegUsage = 0; 5363 for (auto Inst : OpenIntervals) { 5364 // Skip ignored values for VF > 1. 5365 if (VecValuesToIgnore.count(Inst) || 5366 isScalarAfterVectorization(Inst, VFs[j])) 5367 continue; 5368 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5369 } 5370 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5371 } 5372 5373 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5374 << OpenIntervals.size() << '\n'); 5375 5376 // Add the current instruction to the list of open intervals. 5377 OpenIntervals.insert(I); 5378 } 5379 5380 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5381 unsigned Invariant = 0; 5382 if (VFs[i] == 1) 5383 Invariant = LoopInvariants.size(); 5384 else { 5385 for (auto Inst : LoopInvariants) 5386 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5387 } 5388 5389 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5390 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5391 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5392 5393 RU.LoopInvariantRegs = Invariant; 5394 RU.MaxLocalUsers = MaxUsages[i]; 5395 RUs[i] = RU; 5396 } 5397 5398 return RUs; 5399 } 5400 5401 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5402 // TODO: Cost model for emulated masked load/store is completely 5403 // broken. This hack guides the cost model to use an artificially 5404 // high enough value to practically disable vectorization with such 5405 // operations, except where previously deployed legality hack allowed 5406 // using very low cost values. This is to avoid regressions coming simply 5407 // from moving "masked load/store" check from legality to cost model. 5408 // Masked Load/Gather emulation was previously never allowed. 5409 // Limited number of Masked Store/Scatter emulation was allowed. 5410 assert(isScalarWithPredication(I) && 5411 "Expecting a scalar emulated instruction"); 5412 return isa<LoadInst>(I) || 5413 (isa<StoreInst>(I) && 5414 NumPredStores > NumberOfStoresToPredicate); 5415 } 5416 5417 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5418 // If we aren't vectorizing the loop, or if we've already collected the 5419 // instructions to scalarize, there's nothing to do. Collection may already 5420 // have occurred if we have a user-selected VF and are now computing the 5421 // expected cost for interleaving. 5422 if (VF < 2 || InstsToScalarize.count(VF)) 5423 return; 5424 5425 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5426 // not profitable to scalarize any instructions, the presence of VF in the 5427 // map will indicate that we've analyzed it already. 5428 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5429 5430 // Find all the instructions that are scalar with predication in the loop and 5431 // determine if it would be better to not if-convert the blocks they are in. 5432 // If so, we also record the instructions to scalarize. 5433 for (BasicBlock *BB : TheLoop->blocks()) { 5434 if (!Legal->blockNeedsPredication(BB)) 5435 continue; 5436 for (Instruction &I : *BB) 5437 if (isScalarWithPredication(&I)) { 5438 ScalarCostsTy ScalarCosts; 5439 // Do not apply discount logic if hacked cost is needed 5440 // for emulated masked memrefs. 5441 if (!useEmulatedMaskMemRefHack(&I) && 5442 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5443 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5444 // Remember that BB will remain after vectorization. 5445 PredicatedBBsAfterVectorization.insert(BB); 5446 } 5447 } 5448 } 5449 5450 int LoopVectorizationCostModel::computePredInstDiscount( 5451 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5452 unsigned VF) { 5453 assert(!isUniformAfterVectorization(PredInst, VF) && 5454 "Instruction marked uniform-after-vectorization will be predicated"); 5455 5456 // Initialize the discount to zero, meaning that the scalar version and the 5457 // vector version cost the same. 5458 int Discount = 0; 5459 5460 // Holds instructions to analyze. The instructions we visit are mapped in 5461 // ScalarCosts. Those instructions are the ones that would be scalarized if 5462 // we find that the scalar version costs less. 5463 SmallVector<Instruction *, 8> Worklist; 5464 5465 // Returns true if the given instruction can be scalarized. 5466 auto canBeScalarized = [&](Instruction *I) -> bool { 5467 // We only attempt to scalarize instructions forming a single-use chain 5468 // from the original predicated block that would otherwise be vectorized. 5469 // Although not strictly necessary, we give up on instructions we know will 5470 // already be scalar to avoid traversing chains that are unlikely to be 5471 // beneficial. 5472 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5473 isScalarAfterVectorization(I, VF)) 5474 return false; 5475 5476 // If the instruction is scalar with predication, it will be analyzed 5477 // separately. We ignore it within the context of PredInst. 5478 if (isScalarWithPredication(I)) 5479 return false; 5480 5481 // If any of the instruction's operands are uniform after vectorization, 5482 // the instruction cannot be scalarized. This prevents, for example, a 5483 // masked load from being scalarized. 5484 // 5485 // We assume we will only emit a value for lane zero of an instruction 5486 // marked uniform after vectorization, rather than VF identical values. 5487 // Thus, if we scalarize an instruction that uses a uniform, we would 5488 // create uses of values corresponding to the lanes we aren't emitting code 5489 // for. This behavior can be changed by allowing getScalarValue to clone 5490 // the lane zero values for uniforms rather than asserting. 5491 for (Use &U : I->operands()) 5492 if (auto *J = dyn_cast<Instruction>(U.get())) 5493 if (isUniformAfterVectorization(J, VF)) 5494 return false; 5495 5496 // Otherwise, we can scalarize the instruction. 5497 return true; 5498 }; 5499 5500 // Returns true if an operand that cannot be scalarized must be extracted 5501 // from a vector. We will account for this scalarization overhead below. Note 5502 // that the non-void predicated instructions are placed in their own blocks, 5503 // and their return values are inserted into vectors. Thus, an extract would 5504 // still be required. 5505 auto needsExtract = [&](Instruction *I) -> bool { 5506 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5507 }; 5508 5509 // Compute the expected cost discount from scalarizing the entire expression 5510 // feeding the predicated instruction. We currently only consider expressions 5511 // that are single-use instruction chains. 5512 Worklist.push_back(PredInst); 5513 while (!Worklist.empty()) { 5514 Instruction *I = Worklist.pop_back_val(); 5515 5516 // If we've already analyzed the instruction, there's nothing to do. 5517 if (ScalarCosts.count(I)) 5518 continue; 5519 5520 // Compute the cost of the vector instruction. Note that this cost already 5521 // includes the scalarization overhead of the predicated instruction. 5522 unsigned VectorCost = getInstructionCost(I, VF).first; 5523 5524 // Compute the cost of the scalarized instruction. This cost is the cost of 5525 // the instruction as if it wasn't if-converted and instead remained in the 5526 // predicated block. We will scale this cost by block probability after 5527 // computing the scalarization overhead. 5528 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5529 5530 // Compute the scalarization overhead of needed insertelement instructions 5531 // and phi nodes. 5532 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5533 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5534 true, false); 5535 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5536 } 5537 5538 // Compute the scalarization overhead of needed extractelement 5539 // instructions. For each of the instruction's operands, if the operand can 5540 // be scalarized, add it to the worklist; otherwise, account for the 5541 // overhead. 5542 for (Use &U : I->operands()) 5543 if (auto *J = dyn_cast<Instruction>(U.get())) { 5544 assert(VectorType::isValidElementType(J->getType()) && 5545 "Instruction has non-scalar type"); 5546 if (canBeScalarized(J)) 5547 Worklist.push_back(J); 5548 else if (needsExtract(J)) 5549 ScalarCost += TTI.getScalarizationOverhead( 5550 ToVectorTy(J->getType(),VF), false, true); 5551 } 5552 5553 // Scale the total scalar cost by block probability. 5554 ScalarCost /= getReciprocalPredBlockProb(); 5555 5556 // Compute the discount. A non-negative discount means the vector version 5557 // of the instruction costs more, and scalarizing would be beneficial. 5558 Discount += VectorCost - ScalarCost; 5559 ScalarCosts[I] = ScalarCost; 5560 } 5561 5562 return Discount; 5563 } 5564 5565 LoopVectorizationCostModel::VectorizationCostTy 5566 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5567 VectorizationCostTy Cost; 5568 5569 // For each block. 5570 for (BasicBlock *BB : TheLoop->blocks()) { 5571 VectorizationCostTy BlockCost; 5572 5573 // For each instruction in the old loop. 5574 for (Instruction &I : BB->instructionsWithoutDebug()) { 5575 // Skip ignored values. 5576 if (ValuesToIgnore.count(&I) || 5577 (VF > 1 && VecValuesToIgnore.count(&I))) 5578 continue; 5579 5580 VectorizationCostTy C = getInstructionCost(&I, VF); 5581 5582 // Check if we should override the cost. 5583 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5584 C.first = ForceTargetInstructionCost; 5585 5586 BlockCost.first += C.first; 5587 BlockCost.second |= C.second; 5588 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5589 << VF << " For instruction: " << I << '\n'); 5590 } 5591 5592 // If we are vectorizing a predicated block, it will have been 5593 // if-converted. This means that the block's instructions (aside from 5594 // stores and instructions that may divide by zero) will now be 5595 // unconditionally executed. For the scalar case, we may not always execute 5596 // the predicated block. Thus, scale the block's cost by the probability of 5597 // executing it. 5598 if (VF == 1 && Legal->blockNeedsPredication(BB)) 5599 BlockCost.first /= getReciprocalPredBlockProb(); 5600 5601 Cost.first += BlockCost.first; 5602 Cost.second |= BlockCost.second; 5603 } 5604 5605 return Cost; 5606 } 5607 5608 /// Gets Address Access SCEV after verifying that the access pattern 5609 /// is loop invariant except the induction variable dependence. 5610 /// 5611 /// This SCEV can be sent to the Target in order to estimate the address 5612 /// calculation cost. 5613 static const SCEV *getAddressAccessSCEV( 5614 Value *Ptr, 5615 LoopVectorizationLegality *Legal, 5616 PredicatedScalarEvolution &PSE, 5617 const Loop *TheLoop) { 5618 5619 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5620 if (!Gep) 5621 return nullptr; 5622 5623 // We are looking for a gep with all loop invariant indices except for one 5624 // which should be an induction variable. 5625 auto SE = PSE.getSE(); 5626 unsigned NumOperands = Gep->getNumOperands(); 5627 for (unsigned i = 1; i < NumOperands; ++i) { 5628 Value *Opd = Gep->getOperand(i); 5629 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5630 !Legal->isInductionVariable(Opd)) 5631 return nullptr; 5632 } 5633 5634 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5635 return PSE.getSCEV(Ptr); 5636 } 5637 5638 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5639 return Legal->hasStride(I->getOperand(0)) || 5640 Legal->hasStride(I->getOperand(1)); 5641 } 5642 5643 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5644 unsigned VF) { 5645 Type *ValTy = getMemInstValueType(I); 5646 auto SE = PSE.getSE(); 5647 5648 unsigned Alignment = getMemInstAlignment(I); 5649 unsigned AS = getMemInstAddressSpace(I); 5650 Value *Ptr = getLoadStorePointerOperand(I); 5651 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5652 5653 // Figure out whether the access is strided and get the stride value 5654 // if it's known in compile time 5655 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5656 5657 // Get the cost of the scalar memory instruction and address computation. 5658 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5659 5660 Cost += VF * 5661 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5662 AS, I); 5663 5664 // Get the overhead of the extractelement and insertelement instructions 5665 // we might create due to scalarization. 5666 Cost += getScalarizationOverhead(I, VF, TTI); 5667 5668 // If we have a predicated store, it may not be executed for each vector 5669 // lane. Scale the cost by the probability of executing the predicated 5670 // block. 5671 if (isScalarWithPredication(I)) { 5672 Cost /= getReciprocalPredBlockProb(); 5673 5674 if (useEmulatedMaskMemRefHack(I)) 5675 // Artificially setting to a high enough value to practically disable 5676 // vectorization with such operations. 5677 Cost = 3000000; 5678 } 5679 5680 return Cost; 5681 } 5682 5683 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5684 unsigned VF) { 5685 Type *ValTy = getMemInstValueType(I); 5686 Type *VectorTy = ToVectorTy(ValTy, VF); 5687 unsigned Alignment = getMemInstAlignment(I); 5688 Value *Ptr = getLoadStorePointerOperand(I); 5689 unsigned AS = getMemInstAddressSpace(I); 5690 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5691 5692 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5693 "Stride should be 1 or -1 for consecutive memory access"); 5694 unsigned Cost = 0; 5695 if (Legal->isMaskRequired(I)) 5696 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5697 else 5698 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5699 5700 bool Reverse = ConsecutiveStride < 0; 5701 if (Reverse) 5702 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5703 return Cost; 5704 } 5705 5706 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5707 unsigned VF) { 5708 LoadInst *LI = cast<LoadInst>(I); 5709 Type *ValTy = LI->getType(); 5710 Type *VectorTy = ToVectorTy(ValTy, VF); 5711 unsigned Alignment = LI->getAlignment(); 5712 unsigned AS = LI->getPointerAddressSpace(); 5713 5714 return TTI.getAddressComputationCost(ValTy) + 5715 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5716 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5717 } 5718 5719 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5720 unsigned VF) { 5721 Type *ValTy = getMemInstValueType(I); 5722 Type *VectorTy = ToVectorTy(ValTy, VF); 5723 unsigned Alignment = getMemInstAlignment(I); 5724 Value *Ptr = getLoadStorePointerOperand(I); 5725 5726 return TTI.getAddressComputationCost(VectorTy) + 5727 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5728 Legal->isMaskRequired(I), Alignment); 5729 } 5730 5731 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5732 unsigned VF) { 5733 Type *ValTy = getMemInstValueType(I); 5734 Type *VectorTy = ToVectorTy(ValTy, VF); 5735 unsigned AS = getMemInstAddressSpace(I); 5736 5737 auto Group = getInterleavedAccessGroup(I); 5738 assert(Group && "Fail to get an interleaved access group."); 5739 5740 unsigned InterleaveFactor = Group->getFactor(); 5741 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5742 5743 // Holds the indices of existing members in an interleaved load group. 5744 // An interleaved store group doesn't need this as it doesn't allow gaps. 5745 SmallVector<unsigned, 4> Indices; 5746 if (isa<LoadInst>(I)) { 5747 for (unsigned i = 0; i < InterleaveFactor; i++) 5748 if (Group->getMember(i)) 5749 Indices.push_back(i); 5750 } 5751 5752 // Calculate the cost of the whole interleaved group. 5753 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 5754 Group->getFactor(), Indices, 5755 Group->getAlignment(), AS); 5756 5757 if (Group->isReverse()) 5758 Cost += Group->getNumMembers() * 5759 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5760 return Cost; 5761 } 5762 5763 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5764 unsigned VF) { 5765 // Calculate scalar cost only. Vectorization cost should be ready at this 5766 // moment. 5767 if (VF == 1) { 5768 Type *ValTy = getMemInstValueType(I); 5769 unsigned Alignment = getMemInstAlignment(I); 5770 unsigned AS = getMemInstAddressSpace(I); 5771 5772 return TTI.getAddressComputationCost(ValTy) + 5773 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5774 } 5775 return getWideningCost(I, VF); 5776 } 5777 5778 LoopVectorizationCostModel::VectorizationCostTy 5779 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5780 // If we know that this instruction will remain uniform, check the cost of 5781 // the scalar version. 5782 if (isUniformAfterVectorization(I, VF)) 5783 VF = 1; 5784 5785 if (VF > 1 && isProfitableToScalarize(I, VF)) 5786 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5787 5788 // Forced scalars do not have any scalarization overhead. 5789 if (VF > 1 && ForcedScalars.count(VF) && 5790 ForcedScalars.find(VF)->second.count(I)) 5791 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5792 5793 Type *VectorTy; 5794 unsigned C = getInstructionCost(I, VF, VectorTy); 5795 5796 bool TypeNotScalarized = 5797 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5798 return VectorizationCostTy(C, TypeNotScalarized); 5799 } 5800 5801 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5802 if (VF == 1) 5803 return; 5804 NumPredStores = 0; 5805 for (BasicBlock *BB : TheLoop->blocks()) { 5806 // For each instruction in the old loop. 5807 for (Instruction &I : *BB) { 5808 Value *Ptr = getLoadStorePointerOperand(&I); 5809 if (!Ptr) 5810 continue; 5811 5812 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5813 NumPredStores++; 5814 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 5815 // Scalar load + broadcast 5816 unsigned Cost = getUniformMemOpCost(&I, VF); 5817 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5818 continue; 5819 } 5820 5821 // We assume that widening is the best solution when possible. 5822 if (memoryInstructionCanBeWidened(&I, VF)) { 5823 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5824 int ConsecutiveStride = 5825 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5826 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5827 "Expected consecutive stride."); 5828 InstWidening Decision = 5829 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5830 setWideningDecision(&I, VF, Decision, Cost); 5831 continue; 5832 } 5833 5834 // Choose between Interleaving, Gather/Scatter or Scalarization. 5835 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5836 unsigned NumAccesses = 1; 5837 if (isAccessInterleaved(&I)) { 5838 auto Group = getInterleavedAccessGroup(&I); 5839 assert(Group && "Fail to get an interleaved access group."); 5840 5841 // Make one decision for the whole group. 5842 if (getWideningDecision(&I, VF) != CM_Unknown) 5843 continue; 5844 5845 NumAccesses = Group->getNumMembers(); 5846 InterleaveCost = getInterleaveGroupCost(&I, VF); 5847 } 5848 5849 unsigned GatherScatterCost = 5850 isLegalGatherOrScatter(&I) 5851 ? getGatherScatterCost(&I, VF) * NumAccesses 5852 : std::numeric_limits<unsigned>::max(); 5853 5854 unsigned ScalarizationCost = 5855 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5856 5857 // Choose better solution for the current VF, 5858 // write down this decision and use it during vectorization. 5859 unsigned Cost; 5860 InstWidening Decision; 5861 if (InterleaveCost <= GatherScatterCost && 5862 InterleaveCost < ScalarizationCost) { 5863 Decision = CM_Interleave; 5864 Cost = InterleaveCost; 5865 } else if (GatherScatterCost < ScalarizationCost) { 5866 Decision = CM_GatherScatter; 5867 Cost = GatherScatterCost; 5868 } else { 5869 Decision = CM_Scalarize; 5870 Cost = ScalarizationCost; 5871 } 5872 // If the instructions belongs to an interleave group, the whole group 5873 // receives the same decision. The whole group receives the cost, but 5874 // the cost will actually be assigned to one instruction. 5875 if (auto Group = getInterleavedAccessGroup(&I)) 5876 setWideningDecision(Group, VF, Decision, Cost); 5877 else 5878 setWideningDecision(&I, VF, Decision, Cost); 5879 } 5880 } 5881 5882 // Make sure that any load of address and any other address computation 5883 // remains scalar unless there is gather/scatter support. This avoids 5884 // inevitable extracts into address registers, and also has the benefit of 5885 // activating LSR more, since that pass can't optimize vectorized 5886 // addresses. 5887 if (TTI.prefersVectorizedAddressing()) 5888 return; 5889 5890 // Start with all scalar pointer uses. 5891 SmallPtrSet<Instruction *, 8> AddrDefs; 5892 for (BasicBlock *BB : TheLoop->blocks()) 5893 for (Instruction &I : *BB) { 5894 Instruction *PtrDef = 5895 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5896 if (PtrDef && TheLoop->contains(PtrDef) && 5897 getWideningDecision(&I, VF) != CM_GatherScatter) 5898 AddrDefs.insert(PtrDef); 5899 } 5900 5901 // Add all instructions used to generate the addresses. 5902 SmallVector<Instruction *, 4> Worklist; 5903 for (auto *I : AddrDefs) 5904 Worklist.push_back(I); 5905 while (!Worklist.empty()) { 5906 Instruction *I = Worklist.pop_back_val(); 5907 for (auto &Op : I->operands()) 5908 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5909 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5910 AddrDefs.insert(InstOp).second) 5911 Worklist.push_back(InstOp); 5912 } 5913 5914 for (auto *I : AddrDefs) { 5915 if (isa<LoadInst>(I)) { 5916 // Setting the desired widening decision should ideally be handled in 5917 // by cost functions, but since this involves the task of finding out 5918 // if the loaded register is involved in an address computation, it is 5919 // instead changed here when we know this is the case. 5920 InstWidening Decision = getWideningDecision(I, VF); 5921 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5922 // Scalarize a widened load of address. 5923 setWideningDecision(I, VF, CM_Scalarize, 5924 (VF * getMemoryInstructionCost(I, 1))); 5925 else if (auto Group = getInterleavedAccessGroup(I)) { 5926 // Scalarize an interleave group of address loads. 5927 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5928 if (Instruction *Member = Group->getMember(I)) 5929 setWideningDecision(Member, VF, CM_Scalarize, 5930 (VF * getMemoryInstructionCost(Member, 1))); 5931 } 5932 } 5933 } else 5934 // Make sure I gets scalarized and a cost estimate without 5935 // scalarization overhead. 5936 ForcedScalars[VF].insert(I); 5937 } 5938 } 5939 5940 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5941 unsigned VF, 5942 Type *&VectorTy) { 5943 Type *RetTy = I->getType(); 5944 if (canTruncateToMinimalBitwidth(I, VF)) 5945 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5946 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5947 auto SE = PSE.getSE(); 5948 5949 // TODO: We need to estimate the cost of intrinsic calls. 5950 switch (I->getOpcode()) { 5951 case Instruction::GetElementPtr: 5952 // We mark this instruction as zero-cost because the cost of GEPs in 5953 // vectorized code depends on whether the corresponding memory instruction 5954 // is scalarized or not. Therefore, we handle GEPs with the memory 5955 // instruction cost. 5956 return 0; 5957 case Instruction::Br: { 5958 // In cases of scalarized and predicated instructions, there will be VF 5959 // predicated blocks in the vectorized loop. Each branch around these 5960 // blocks requires also an extract of its vector compare i1 element. 5961 bool ScalarPredicatedBB = false; 5962 BranchInst *BI = cast<BranchInst>(I); 5963 if (VF > 1 && BI->isConditional() && 5964 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 5965 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 5966 ScalarPredicatedBB = true; 5967 5968 if (ScalarPredicatedBB) { 5969 // Return cost for branches around scalarized and predicated blocks. 5970 Type *Vec_i1Ty = 5971 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5972 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5973 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5974 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5975 // The back-edge branch will remain, as will all scalar branches. 5976 return TTI.getCFInstrCost(Instruction::Br); 5977 else 5978 // This branch will be eliminated by if-conversion. 5979 return 0; 5980 // Note: We currently assume zero cost for an unconditional branch inside 5981 // a predicated block since it will become a fall-through, although we 5982 // may decide in the future to call TTI for all branches. 5983 } 5984 case Instruction::PHI: { 5985 auto *Phi = cast<PHINode>(I); 5986 5987 // First-order recurrences are replaced by vector shuffles inside the loop. 5988 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5989 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5990 VectorTy, VF - 1, VectorTy); 5991 5992 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5993 // converted into select instructions. We require N - 1 selects per phi 5994 // node, where N is the number of incoming values. 5995 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5996 return (Phi->getNumIncomingValues() - 1) * 5997 TTI.getCmpSelInstrCost( 5998 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5999 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6000 6001 return TTI.getCFInstrCost(Instruction::PHI); 6002 } 6003 case Instruction::UDiv: 6004 case Instruction::SDiv: 6005 case Instruction::URem: 6006 case Instruction::SRem: 6007 // If we have a predicated instruction, it may not be executed for each 6008 // vector lane. Get the scalarization cost and scale this amount by the 6009 // probability of executing the predicated block. If the instruction is not 6010 // predicated, we fall through to the next case. 6011 if (VF > 1 && isScalarWithPredication(I)) { 6012 unsigned Cost = 0; 6013 6014 // These instructions have a non-void type, so account for the phi nodes 6015 // that we will create. This cost is likely to be zero. The phi node 6016 // cost, if any, should be scaled by the block probability because it 6017 // models a copy at the end of each predicated block. 6018 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6019 6020 // The cost of the non-predicated instruction. 6021 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6022 6023 // The cost of insertelement and extractelement instructions needed for 6024 // scalarization. 6025 Cost += getScalarizationOverhead(I, VF, TTI); 6026 6027 // Scale the cost by the probability of executing the predicated blocks. 6028 // This assumes the predicated block for each vector lane is equally 6029 // likely. 6030 return Cost / getReciprocalPredBlockProb(); 6031 } 6032 LLVM_FALLTHROUGH; 6033 case Instruction::Add: 6034 case Instruction::FAdd: 6035 case Instruction::Sub: 6036 case Instruction::FSub: 6037 case Instruction::Mul: 6038 case Instruction::FMul: 6039 case Instruction::FDiv: 6040 case Instruction::FRem: 6041 case Instruction::Shl: 6042 case Instruction::LShr: 6043 case Instruction::AShr: 6044 case Instruction::And: 6045 case Instruction::Or: 6046 case Instruction::Xor: { 6047 // Since we will replace the stride by 1 the multiplication should go away. 6048 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6049 return 0; 6050 // Certain instructions can be cheaper to vectorize if they have a constant 6051 // second vector operand. One example of this are shifts on x86. 6052 TargetTransformInfo::OperandValueKind Op1VK = 6053 TargetTransformInfo::OK_AnyValue; 6054 TargetTransformInfo::OperandValueKind Op2VK = 6055 TargetTransformInfo::OK_AnyValue; 6056 TargetTransformInfo::OperandValueProperties Op1VP = 6057 TargetTransformInfo::OP_None; 6058 TargetTransformInfo::OperandValueProperties Op2VP = 6059 TargetTransformInfo::OP_None; 6060 Value *Op2 = I->getOperand(1); 6061 6062 // Check for a splat or for a non uniform vector of constants. 6063 if (isa<ConstantInt>(Op2)) { 6064 ConstantInt *CInt = cast<ConstantInt>(Op2); 6065 if (CInt && CInt->getValue().isPowerOf2()) 6066 Op2VP = TargetTransformInfo::OP_PowerOf2; 6067 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6068 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6069 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6070 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6071 if (SplatValue) { 6072 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6073 if (CInt && CInt->getValue().isPowerOf2()) 6074 Op2VP = TargetTransformInfo::OP_PowerOf2; 6075 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6076 } 6077 } else if (Legal->isUniform(Op2)) { 6078 Op2VK = TargetTransformInfo::OK_UniformValue; 6079 } 6080 SmallVector<const Value *, 4> Operands(I->operand_values()); 6081 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6082 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 6083 Op2VK, Op1VP, Op2VP, Operands); 6084 } 6085 case Instruction::Select: { 6086 SelectInst *SI = cast<SelectInst>(I); 6087 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6088 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6089 Type *CondTy = SI->getCondition()->getType(); 6090 if (!ScalarCond) 6091 CondTy = VectorType::get(CondTy, VF); 6092 6093 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6094 } 6095 case Instruction::ICmp: 6096 case Instruction::FCmp: { 6097 Type *ValTy = I->getOperand(0)->getType(); 6098 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6099 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6100 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6101 VectorTy = ToVectorTy(ValTy, VF); 6102 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6103 } 6104 case Instruction::Store: 6105 case Instruction::Load: { 6106 unsigned Width = VF; 6107 if (Width > 1) { 6108 InstWidening Decision = getWideningDecision(I, Width); 6109 assert(Decision != CM_Unknown && 6110 "CM decision should be taken at this point"); 6111 if (Decision == CM_Scalarize) 6112 Width = 1; 6113 } 6114 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6115 return getMemoryInstructionCost(I, VF); 6116 } 6117 case Instruction::ZExt: 6118 case Instruction::SExt: 6119 case Instruction::FPToUI: 6120 case Instruction::FPToSI: 6121 case Instruction::FPExt: 6122 case Instruction::PtrToInt: 6123 case Instruction::IntToPtr: 6124 case Instruction::SIToFP: 6125 case Instruction::UIToFP: 6126 case Instruction::Trunc: 6127 case Instruction::FPTrunc: 6128 case Instruction::BitCast: { 6129 // We optimize the truncation of induction variables having constant 6130 // integer steps. The cost of these truncations is the same as the scalar 6131 // operation. 6132 if (isOptimizableIVTruncate(I, VF)) { 6133 auto *Trunc = cast<TruncInst>(I); 6134 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6135 Trunc->getSrcTy(), Trunc); 6136 } 6137 6138 Type *SrcScalarTy = I->getOperand(0)->getType(); 6139 Type *SrcVecTy = 6140 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6141 if (canTruncateToMinimalBitwidth(I, VF)) { 6142 // This cast is going to be shrunk. This may remove the cast or it might 6143 // turn it into slightly different cast. For example, if MinBW == 16, 6144 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6145 // 6146 // Calculate the modified src and dest types. 6147 Type *MinVecTy = VectorTy; 6148 if (I->getOpcode() == Instruction::Trunc) { 6149 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6150 VectorTy = 6151 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6152 } else if (I->getOpcode() == Instruction::ZExt || 6153 I->getOpcode() == Instruction::SExt) { 6154 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6155 VectorTy = 6156 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6157 } 6158 } 6159 6160 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6161 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6162 } 6163 case Instruction::Call: { 6164 bool NeedToScalarize; 6165 CallInst *CI = cast<CallInst>(I); 6166 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6167 if (getVectorIntrinsicIDForCall(CI, TLI)) 6168 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6169 return CallCost; 6170 } 6171 default: 6172 // The cost of executing VF copies of the scalar instruction. This opcode 6173 // is unknown. Assume that it is the same as 'mul'. 6174 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6175 getScalarizationOverhead(I, VF, TTI); 6176 } // end of switch. 6177 } 6178 6179 char LoopVectorize::ID = 0; 6180 6181 static const char lv_name[] = "Loop Vectorization"; 6182 6183 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6184 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6185 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6186 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6187 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6188 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6189 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6191 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6192 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6193 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6194 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6195 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6196 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6197 6198 namespace llvm { 6199 6200 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6201 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6202 } 6203 6204 } // end namespace llvm 6205 6206 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6207 // Check if the pointer operand of a load or store instruction is 6208 // consecutive. 6209 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6210 return Legal->isConsecutivePtr(Ptr); 6211 return false; 6212 } 6213 6214 void LoopVectorizationCostModel::collectValuesToIgnore() { 6215 // Ignore ephemeral values. 6216 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6217 6218 // Ignore type-promoting instructions we identified during reduction 6219 // detection. 6220 for (auto &Reduction : *Legal->getReductionVars()) { 6221 RecurrenceDescriptor &RedDes = Reduction.second; 6222 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6223 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6224 } 6225 // Ignore type-casting instructions we identified during induction 6226 // detection. 6227 for (auto &Induction : *Legal->getInductionVars()) { 6228 InductionDescriptor &IndDes = Induction.second; 6229 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6230 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6231 } 6232 } 6233 6234 VectorizationFactor 6235 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6236 unsigned UserVF) { 6237 // Width 1 means no vectorize, cost 0 means uncomputed cost. 6238 const VectorizationFactor NoVectorization = {1U, 0U}; 6239 6240 // Outer loop handling: They may require CFG and instruction level 6241 // transformations before even evaluating whether vectorization is profitable. 6242 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6243 // the vectorization pipeline. 6244 if (!OrigLoop->empty()) { 6245 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6246 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6247 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6248 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6249 buildVPlans(UserVF, UserVF); 6250 6251 return {UserVF, 0}; 6252 } 6253 6254 DEBUG(dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6255 "VPlan-native path.\n"); 6256 return NoVectorization; 6257 } 6258 6259 VectorizationFactor 6260 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 6261 assert(OrigLoop->empty() && "Inner loop expected."); 6262 // Width 1 means no vectorize, cost 0 means uncomputed cost. 6263 const VectorizationFactor NoVectorization = {1U, 0U}; 6264 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6265 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 6266 return NoVectorization; 6267 6268 if (UserVF) { 6269 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6270 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6271 // Collect the instructions (and their associated costs) that will be more 6272 // profitable to scalarize. 6273 CM.selectUserVectorizationFactor(UserVF); 6274 buildVPlans(UserVF, UserVF); 6275 DEBUG(printPlans(dbgs())); 6276 return {UserVF, 0}; 6277 } 6278 6279 unsigned MaxVF = MaybeMaxVF.getValue(); 6280 assert(MaxVF != 0 && "MaxVF is zero."); 6281 6282 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6283 // Collect Uniform and Scalar instructions after vectorization with VF. 6284 CM.collectUniformsAndScalars(VF); 6285 6286 // Collect the instructions (and their associated costs) that will be more 6287 // profitable to scalarize. 6288 if (VF > 1) 6289 CM.collectInstsToScalarize(VF); 6290 } 6291 6292 buildVPlans(1, MaxVF); 6293 DEBUG(printPlans(dbgs())); 6294 if (MaxVF == 1) 6295 return NoVectorization; 6296 6297 // Select the optimal vectorization factor. 6298 return CM.selectVectorizationFactor(MaxVF); 6299 } 6300 6301 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6302 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 6303 BestVF = VF; 6304 BestUF = UF; 6305 6306 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6307 return !Plan->hasVF(VF); 6308 }); 6309 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6310 } 6311 6312 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6313 DominatorTree *DT) { 6314 // Perform the actual loop transformation. 6315 6316 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6317 VPCallbackILV CallbackILV(ILV); 6318 6319 VPTransformState State{BestVF, BestUF, LI, 6320 DT, ILV.Builder, ILV.VectorLoopValueMap, 6321 &ILV, CallbackILV}; 6322 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6323 6324 //===------------------------------------------------===// 6325 // 6326 // Notice: any optimization or new instruction that go 6327 // into the code below should also be implemented in 6328 // the cost-model. 6329 // 6330 //===------------------------------------------------===// 6331 6332 // 2. Copy and widen instructions from the old loop into the new loop. 6333 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6334 VPlans.front()->execute(&State); 6335 6336 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6337 // predication, updating analyses. 6338 ILV.fixVectorizedLoop(); 6339 } 6340 6341 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6342 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6343 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6344 6345 // We create new control-flow for the vectorized loop, so the original 6346 // condition will be dead after vectorization if it's only used by the 6347 // branch. 6348 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6349 if (Cmp && Cmp->hasOneUse()) 6350 DeadInstructions.insert(Cmp); 6351 6352 // We create new "steps" for induction variable updates to which the original 6353 // induction variables map. An original update instruction will be dead if 6354 // all its users except the induction variable are dead. 6355 for (auto &Induction : *Legal->getInductionVars()) { 6356 PHINode *Ind = Induction.first; 6357 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6358 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6359 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6360 })) 6361 DeadInstructions.insert(IndUpdate); 6362 6363 // We record as "Dead" also the type-casting instructions we had identified 6364 // during induction analysis. We don't need any handling for them in the 6365 // vectorized loop because we have proven that, under a proper runtime 6366 // test guarding the vectorized loop, the value of the phi, and the casted 6367 // value of the phi, are the same. The last instruction in this casting chain 6368 // will get its scalar/vector/widened def from the scalar/vector/widened def 6369 // of the respective phi node. Any other casts in the induction def-use chain 6370 // have no other uses outside the phi update chain, and will be ignored. 6371 InductionDescriptor &IndDes = Induction.second; 6372 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6373 DeadInstructions.insert(Casts.begin(), Casts.end()); 6374 } 6375 } 6376 6377 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6378 6379 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6380 6381 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6382 Instruction::BinaryOps BinOp) { 6383 // When unrolling and the VF is 1, we only need to add a simple scalar. 6384 Type *Ty = Val->getType(); 6385 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6386 6387 if (Ty->isFloatingPointTy()) { 6388 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6389 6390 // Floating point operations had to be 'fast' to enable the unrolling. 6391 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6392 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6393 } 6394 Constant *C = ConstantInt::get(Ty, StartIdx); 6395 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6396 } 6397 6398 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6399 SmallVector<Metadata *, 4> MDs; 6400 // Reserve first location for self reference to the LoopID metadata node. 6401 MDs.push_back(nullptr); 6402 bool IsUnrollMetadata = false; 6403 MDNode *LoopID = L->getLoopID(); 6404 if (LoopID) { 6405 // First find existing loop unrolling disable metadata. 6406 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6407 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6408 if (MD) { 6409 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6410 IsUnrollMetadata = 6411 S && S->getString().startswith("llvm.loop.unroll.disable"); 6412 } 6413 MDs.push_back(LoopID->getOperand(i)); 6414 } 6415 } 6416 6417 if (!IsUnrollMetadata) { 6418 // Add runtime unroll disable metadata. 6419 LLVMContext &Context = L->getHeader()->getContext(); 6420 SmallVector<Metadata *, 1> DisableOperands; 6421 DisableOperands.push_back( 6422 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6423 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6424 MDs.push_back(DisableNode); 6425 MDNode *NewLoopID = MDNode::get(Context, MDs); 6426 // Set operand 0 to refer to the loop id itself. 6427 NewLoopID->replaceOperandWith(0, NewLoopID); 6428 L->setLoopID(NewLoopID); 6429 } 6430 } 6431 6432 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6433 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6434 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6435 bool PredicateAtRangeStart = Predicate(Range.Start); 6436 6437 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6438 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6439 Range.End = TmpVF; 6440 break; 6441 } 6442 6443 return PredicateAtRangeStart; 6444 } 6445 6446 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6447 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6448 /// of VF's starting at a given VF and extending it as much as possible. Each 6449 /// vectorization decision can potentially shorten this sub-range during 6450 /// buildVPlan(). 6451 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6452 6453 // Collect conditions feeding internal conditional branches; they need to be 6454 // represented in VPlan for it to model masking. 6455 SmallPtrSet<Value *, 1> NeedDef; 6456 6457 auto *Latch = OrigLoop->getLoopLatch(); 6458 for (BasicBlock *BB : OrigLoop->blocks()) { 6459 if (BB == Latch) 6460 continue; 6461 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6462 if (Branch && Branch->isConditional()) 6463 NeedDef.insert(Branch->getCondition()); 6464 } 6465 6466 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6467 VFRange SubRange = {VF, MaxVF + 1}; 6468 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 6469 VF = SubRange.End; 6470 } 6471 } 6472 6473 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 6474 BasicBlock *Dst, 6475 VPlanPtr &Plan) { 6476 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6477 6478 // Look for cached value. 6479 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6480 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6481 if (ECEntryIt != EdgeMaskCache.end()) 6482 return ECEntryIt->second; 6483 6484 VPValue *SrcMask = createBlockInMask(Src, Plan); 6485 6486 // The terminator has to be a branch inst! 6487 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6488 assert(BI && "Unexpected terminator found"); 6489 6490 if (!BI->isConditional()) 6491 return EdgeMaskCache[Edge] = SrcMask; 6492 6493 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6494 assert(EdgeMask && "No Edge Mask found for condition"); 6495 6496 if (BI->getSuccessor(0) != Dst) 6497 EdgeMask = Builder.createNot(EdgeMask); 6498 6499 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6500 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6501 6502 return EdgeMaskCache[Edge] = EdgeMask; 6503 } 6504 6505 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 6506 VPlanPtr &Plan) { 6507 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6508 6509 // Look for cached value. 6510 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6511 if (BCEntryIt != BlockMaskCache.end()) 6512 return BCEntryIt->second; 6513 6514 // All-one mask is modelled as no-mask following the convention for masked 6515 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6516 VPValue *BlockMask = nullptr; 6517 6518 // Loop incoming mask is all-one. 6519 if (OrigLoop->getHeader() == BB) 6520 return BlockMaskCache[BB] = BlockMask; 6521 6522 // This is the block mask. We OR all incoming edges. 6523 for (auto *Predecessor : predecessors(BB)) { 6524 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6525 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6526 return BlockMaskCache[BB] = EdgeMask; 6527 6528 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6529 BlockMask = EdgeMask; 6530 continue; 6531 } 6532 6533 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6534 } 6535 6536 return BlockMaskCache[BB] = BlockMask; 6537 } 6538 6539 VPInterleaveRecipe * 6540 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 6541 VFRange &Range) { 6542 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I); 6543 if (!IG) 6544 return nullptr; 6545 6546 // Now check if IG is relevant for VF's in the given range. 6547 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6548 return [=](unsigned VF) -> bool { 6549 return (VF >= 2 && // Query is illegal for VF == 1 6550 CM.getWideningDecision(I, VF) == 6551 LoopVectorizationCostModel::CM_Interleave); 6552 }; 6553 }; 6554 if (!getDecisionAndClampRange(isIGMember(I), Range)) 6555 return nullptr; 6556 6557 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6558 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6559 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6560 assert(I == IG->getInsertPos() && 6561 "Generating a recipe for an adjunct member of an interleave group"); 6562 6563 return new VPInterleaveRecipe(IG); 6564 } 6565 6566 VPWidenMemoryInstructionRecipe * 6567 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 6568 VPlanPtr &Plan) { 6569 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6570 return nullptr; 6571 6572 auto willWiden = [&](unsigned VF) -> bool { 6573 if (VF == 1) 6574 return false; 6575 if (CM.isScalarAfterVectorization(I, VF) || 6576 CM.isProfitableToScalarize(I, VF)) 6577 return false; 6578 LoopVectorizationCostModel::InstWidening Decision = 6579 CM.getWideningDecision(I, VF); 6580 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6581 "CM decision should be taken at this point."); 6582 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6583 "Interleave memory opportunity should be caught earlier."); 6584 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6585 }; 6586 6587 if (!getDecisionAndClampRange(willWiden, Range)) 6588 return nullptr; 6589 6590 VPValue *Mask = nullptr; 6591 if (Legal->isMaskRequired(I)) 6592 Mask = createBlockInMask(I->getParent(), Plan); 6593 6594 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6595 } 6596 6597 VPWidenIntOrFpInductionRecipe * 6598 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 6599 VFRange &Range) { 6600 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6601 // Check if this is an integer or fp induction. If so, build the recipe that 6602 // produces its scalar and vector values. 6603 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6604 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6605 II.getKind() == InductionDescriptor::IK_FpInduction) 6606 return new VPWidenIntOrFpInductionRecipe(Phi); 6607 6608 return nullptr; 6609 } 6610 6611 // Optimize the special case where the source is a constant integer 6612 // induction variable. Notice that we can only optimize the 'trunc' case 6613 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6614 // (c) other casts depend on pointer size. 6615 6616 // Determine whether \p K is a truncation based on an induction variable that 6617 // can be optimized. 6618 auto isOptimizableIVTruncate = 6619 [&](Instruction *K) -> std::function<bool(unsigned)> { 6620 return 6621 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6622 }; 6623 6624 if (isa<TruncInst>(I) && 6625 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 6626 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6627 cast<TruncInst>(I)); 6628 return nullptr; 6629 } 6630 6631 VPBlendRecipe * 6632 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6633 PHINode *Phi = dyn_cast<PHINode>(I); 6634 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6635 return nullptr; 6636 6637 // We know that all PHIs in non-header blocks are converted into selects, so 6638 // we don't have to worry about the insertion order and we can just use the 6639 // builder. At this point we generate the predication tree. There may be 6640 // duplications since this is a simple recursive scan, but future 6641 // optimizations will clean it up. 6642 6643 SmallVector<VPValue *, 2> Masks; 6644 unsigned NumIncoming = Phi->getNumIncomingValues(); 6645 for (unsigned In = 0; In < NumIncoming; In++) { 6646 VPValue *EdgeMask = 6647 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6648 assert((EdgeMask || NumIncoming == 1) && 6649 "Multiple predecessors with one having a full mask"); 6650 if (EdgeMask) 6651 Masks.push_back(EdgeMask); 6652 } 6653 return new VPBlendRecipe(Phi, Masks); 6654 } 6655 6656 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6657 VFRange &Range) { 6658 if (CM.isScalarWithPredication(I)) 6659 return false; 6660 6661 auto IsVectorizableOpcode = [](unsigned Opcode) { 6662 switch (Opcode) { 6663 case Instruction::Add: 6664 case Instruction::And: 6665 case Instruction::AShr: 6666 case Instruction::BitCast: 6667 case Instruction::Br: 6668 case Instruction::Call: 6669 case Instruction::FAdd: 6670 case Instruction::FCmp: 6671 case Instruction::FDiv: 6672 case Instruction::FMul: 6673 case Instruction::FPExt: 6674 case Instruction::FPToSI: 6675 case Instruction::FPToUI: 6676 case Instruction::FPTrunc: 6677 case Instruction::FRem: 6678 case Instruction::FSub: 6679 case Instruction::GetElementPtr: 6680 case Instruction::ICmp: 6681 case Instruction::IntToPtr: 6682 case Instruction::Load: 6683 case Instruction::LShr: 6684 case Instruction::Mul: 6685 case Instruction::Or: 6686 case Instruction::PHI: 6687 case Instruction::PtrToInt: 6688 case Instruction::SDiv: 6689 case Instruction::Select: 6690 case Instruction::SExt: 6691 case Instruction::Shl: 6692 case Instruction::SIToFP: 6693 case Instruction::SRem: 6694 case Instruction::Store: 6695 case Instruction::Sub: 6696 case Instruction::Trunc: 6697 case Instruction::UDiv: 6698 case Instruction::UIToFP: 6699 case Instruction::URem: 6700 case Instruction::Xor: 6701 case Instruction::ZExt: 6702 return true; 6703 } 6704 return false; 6705 }; 6706 6707 if (!IsVectorizableOpcode(I->getOpcode())) 6708 return false; 6709 6710 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6711 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6712 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6713 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6714 return false; 6715 } 6716 6717 auto willWiden = [&](unsigned VF) -> bool { 6718 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6719 CM.isProfitableToScalarize(I, VF))) 6720 return false; 6721 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6722 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6723 // The following case may be scalarized depending on the VF. 6724 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6725 // version of the instruction. 6726 // Is it beneficial to perform intrinsic call compared to lib call? 6727 bool NeedToScalarize; 6728 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6729 bool UseVectorIntrinsic = 6730 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6731 return UseVectorIntrinsic || !NeedToScalarize; 6732 } 6733 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6734 assert(CM.getWideningDecision(I, VF) == 6735 LoopVectorizationCostModel::CM_Scalarize && 6736 "Memory widening decisions should have been taken care by now"); 6737 return false; 6738 } 6739 return true; 6740 }; 6741 6742 if (!getDecisionAndClampRange(willWiden, Range)) 6743 return false; 6744 6745 // Success: widen this instruction. We optimize the common case where 6746 // consecutive instructions can be represented by a single recipe. 6747 if (!VPBB->empty()) { 6748 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6749 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6750 return true; 6751 } 6752 6753 VPBB->appendRecipe(new VPWidenRecipe(I)); 6754 return true; 6755 } 6756 6757 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 6758 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6759 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6760 VPlanPtr &Plan) { 6761 bool IsUniform = getDecisionAndClampRange( 6762 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6763 Range); 6764 6765 bool IsPredicated = CM.isScalarWithPredication(I); 6766 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6767 6768 // Find if I uses a predicated instruction. If so, it will use its scalar 6769 // value. Avoid hoisting the insert-element which packs the scalar value into 6770 // a vector value, as that happens iff all users use the vector value. 6771 for (auto &Op : I->operands()) 6772 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6773 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6774 PredInst2Recipe[PredInst]->setAlsoPack(false); 6775 6776 // Finalize the recipe for Instr, first if it is not predicated. 6777 if (!IsPredicated) { 6778 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6779 VPBB->appendRecipe(Recipe); 6780 return VPBB; 6781 } 6782 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6783 assert(VPBB->getSuccessors().empty() && 6784 "VPBB has successors when handling predicated replication."); 6785 // Record predicated instructions for above packing optimizations. 6786 PredInst2Recipe[I] = Recipe; 6787 VPBlockBase *Region = 6788 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 6789 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 6790 } 6791 6792 VPRegionBlock * 6793 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 6794 VPRecipeBase *PredRecipe, 6795 VPlanPtr &Plan) { 6796 // Instructions marked for predication are replicated and placed under an 6797 // if-then construct to prevent side-effects. 6798 6799 // Generate recipes to compute the block mask for this region. 6800 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6801 6802 // Build the triangular if-then region. 6803 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6804 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6805 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6806 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6807 auto *PHIRecipe = 6808 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6809 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6810 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6811 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6812 6813 // Note: first set Entry as region entry and then connect successors starting 6814 // from it in order, to propagate the "parent" of each VPBasicBlock. 6815 Entry->setTwoSuccessors(Pred, Exit); 6816 Pred->setOneSuccessor(Exit); 6817 6818 return Region; 6819 } 6820 6821 LoopVectorizationPlanner::VPlanPtr 6822 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 6823 const SmallPtrSetImpl<Value *> &NeedDef) { 6824 // Outer loop handling: They may require CFG and instruction level 6825 // transformations before even evaluating whether vectorization is profitable. 6826 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6827 // the vectorization pipeline. 6828 if (!OrigLoop->empty()) { 6829 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6830 6831 // Create new empty VPlan 6832 auto Plan = llvm::make_unique<VPlan>(); 6833 return Plan; 6834 } 6835 6836 assert(OrigLoop->empty() && "Inner loop expected."); 6837 EdgeMaskCache.clear(); 6838 BlockMaskCache.clear(); 6839 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6840 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6841 6842 // Collect instructions from the original loop that will become trivially dead 6843 // in the vectorized loop. We don't need to vectorize these instructions. For 6844 // example, original induction update instructions can become dead because we 6845 // separately emit induction "steps" when generating code for the new loop. 6846 // Similarly, we create a new latch condition when setting up the structure 6847 // of the new loop, so the old one can become dead. 6848 SmallPtrSet<Instruction *, 4> DeadInstructions; 6849 collectTriviallyDeadInstructions(DeadInstructions); 6850 6851 // Hold a mapping from predicated instructions to their recipes, in order to 6852 // fix their AlsoPack behavior if a user is determined to replicate and use a 6853 // scalar instead of vector value. 6854 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6855 6856 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6857 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6858 auto Plan = llvm::make_unique<VPlan>(VPBB); 6859 6860 // Represent values that will have defs inside VPlan. 6861 for (Value *V : NeedDef) 6862 Plan->addVPValue(V); 6863 6864 // Scan the body of the loop in a topological order to visit each basic block 6865 // after having visited its predecessor basic blocks. 6866 LoopBlocksDFS DFS(OrigLoop); 6867 DFS.perform(LI); 6868 6869 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6870 // Relevant instructions from basic block BB will be grouped into VPRecipe 6871 // ingredients and fill a new VPBasicBlock. 6872 unsigned VPBBsForBB = 0; 6873 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6874 VPBB->setOneSuccessor(FirstVPBBForBB); 6875 VPBB = FirstVPBBForBB; 6876 Builder.setInsertPoint(VPBB); 6877 6878 std::vector<Instruction *> Ingredients; 6879 6880 // Organize the ingredients to vectorize from current basic block in the 6881 // right order. 6882 for (Instruction &I : BB->instructionsWithoutDebug()) { 6883 Instruction *Instr = &I; 6884 6885 // First filter out irrelevant instructions, to ensure no recipes are 6886 // built for them. 6887 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 6888 continue; 6889 6890 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6891 // member of the IG, do not construct any Recipe for it. 6892 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr); 6893 if (IG && Instr != IG->getInsertPos() && 6894 Range.Start >= 2 && // Query is illegal for VF == 1 6895 CM.getWideningDecision(Instr, Range.Start) == 6896 LoopVectorizationCostModel::CM_Interleave) { 6897 if (SinkAfterInverse.count(Instr)) 6898 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 6899 continue; 6900 } 6901 6902 // Move instructions to handle first-order recurrences, step 1: avoid 6903 // handling this instruction until after we've handled the instruction it 6904 // should follow. 6905 auto SAIt = SinkAfter.find(Instr); 6906 if (SAIt != SinkAfter.end()) { 6907 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 6908 << " to vectorize a 1st order recurrence.\n"); 6909 SinkAfterInverse[SAIt->second] = Instr; 6910 continue; 6911 } 6912 6913 Ingredients.push_back(Instr); 6914 6915 // Move instructions to handle first-order recurrences, step 2: push the 6916 // instruction to be sunk at its insertion point. 6917 auto SAInvIt = SinkAfterInverse.find(Instr); 6918 if (SAInvIt != SinkAfterInverse.end()) 6919 Ingredients.push_back(SAInvIt->second); 6920 } 6921 6922 // Introduce each ingredient into VPlan. 6923 for (Instruction *Instr : Ingredients) { 6924 VPRecipeBase *Recipe = nullptr; 6925 6926 // Check if Instr should belong to an interleave memory recipe, or already 6927 // does. In the latter case Instr is irrelevant. 6928 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 6929 VPBB->appendRecipe(Recipe); 6930 continue; 6931 } 6932 6933 // Check if Instr is a memory operation that should be widened. 6934 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6935 VPBB->appendRecipe(Recipe); 6936 continue; 6937 } 6938 6939 // Check if Instr should form some PHI recipe. 6940 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6941 VPBB->appendRecipe(Recipe); 6942 continue; 6943 } 6944 if ((Recipe = tryToBlend(Instr, Plan))) { 6945 VPBB->appendRecipe(Recipe); 6946 continue; 6947 } 6948 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6949 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6950 continue; 6951 } 6952 6953 // Check if Instr is to be widened by a general VPWidenRecipe, after 6954 // having first checked for specific widening recipes that deal with 6955 // Interleave Groups, Inductions and Phi nodes. 6956 if (tryToWiden(Instr, VPBB, Range)) 6957 continue; 6958 6959 // Otherwise, if all widening options failed, Instruction is to be 6960 // replicated. This may create a successor for VPBB. 6961 VPBasicBlock *NextVPBB = 6962 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 6963 if (NextVPBB != VPBB) { 6964 VPBB = NextVPBB; 6965 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6966 : ""); 6967 } 6968 } 6969 } 6970 6971 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6972 // may also be empty, such as the last one VPBB, reflecting original 6973 // basic-blocks with no recipes. 6974 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6975 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6976 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6977 PreEntry->disconnectSuccessor(Entry); 6978 delete PreEntry; 6979 6980 std::string PlanName; 6981 raw_string_ostream RSO(PlanName); 6982 unsigned VF = Range.Start; 6983 Plan->addVF(VF); 6984 RSO << "Initial VPlan for VF={" << VF; 6985 for (VF *= 2; VF < Range.End; VF *= 2) { 6986 Plan->addVF(VF); 6987 RSO << "," << VF; 6988 } 6989 RSO << "},UF>=1"; 6990 RSO.flush(); 6991 Plan->setName(PlanName); 6992 6993 return Plan; 6994 } 6995 6996 Value* LoopVectorizationPlanner::VPCallbackILV:: 6997 getOrCreateVectorValues(Value *V, unsigned Part) { 6998 return ILV.getOrCreateVectorValue(V, Part); 6999 } 7000 7001 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7002 O << " +\n" 7003 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7004 IG->getInsertPos()->printAsOperand(O, false); 7005 O << "\\l\""; 7006 for (unsigned i = 0; i < IG->getFactor(); ++i) 7007 if (Instruction *I = IG->getMember(i)) 7008 O << " +\n" 7009 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7010 } 7011 7012 void VPWidenRecipe::execute(VPTransformState &State) { 7013 for (auto &Instr : make_range(Begin, End)) 7014 State.ILV->widenInstruction(Instr); 7015 } 7016 7017 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7018 assert(!State.Instance && "Int or FP induction being replicated."); 7019 State.ILV->widenIntOrFpInduction(IV, Trunc); 7020 } 7021 7022 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7023 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7024 } 7025 7026 void VPBlendRecipe::execute(VPTransformState &State) { 7027 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7028 // We know that all PHIs in non-header blocks are converted into 7029 // selects, so we don't have to worry about the insertion order and we 7030 // can just use the builder. 7031 // At this point we generate the predication tree. There may be 7032 // duplications since this is a simple recursive scan, but future 7033 // optimizations will clean it up. 7034 7035 unsigned NumIncoming = Phi->getNumIncomingValues(); 7036 7037 assert((User || NumIncoming == 1) && 7038 "Multiple predecessors with predecessors having a full mask"); 7039 // Generate a sequence of selects of the form: 7040 // SELECT(Mask3, In3, 7041 // SELECT(Mask2, In2, 7042 // ( ...))) 7043 InnerLoopVectorizer::VectorParts Entry(State.UF); 7044 for (unsigned In = 0; In < NumIncoming; ++In) { 7045 for (unsigned Part = 0; Part < State.UF; ++Part) { 7046 // We might have single edge PHIs (blocks) - use an identity 7047 // 'select' for the first PHI operand. 7048 Value *In0 = 7049 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7050 if (In == 0) 7051 Entry[Part] = In0; // Initialize with the first incoming value. 7052 else { 7053 // Select between the current value and the previous incoming edge 7054 // based on the incoming mask. 7055 Value *Cond = State.get(User->getOperand(In), Part); 7056 Entry[Part] = 7057 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7058 } 7059 } 7060 } 7061 for (unsigned Part = 0; Part < State.UF; ++Part) 7062 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7063 } 7064 7065 void VPInterleaveRecipe::execute(VPTransformState &State) { 7066 assert(!State.Instance && "Interleave group being replicated."); 7067 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7068 } 7069 7070 void VPReplicateRecipe::execute(VPTransformState &State) { 7071 if (State.Instance) { // Generate a single instance. 7072 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7073 // Insert scalar instance packing it into a vector. 7074 if (AlsoPack && State.VF > 1) { 7075 // If we're constructing lane 0, initialize to start from undef. 7076 if (State.Instance->Lane == 0) { 7077 Value *Undef = 7078 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7079 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7080 } 7081 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7082 } 7083 return; 7084 } 7085 7086 // Generate scalar instances for all VF lanes of all UF parts, unless the 7087 // instruction is uniform inwhich case generate only the first lane for each 7088 // of the UF parts. 7089 unsigned EndLane = IsUniform ? 1 : State.VF; 7090 for (unsigned Part = 0; Part < State.UF; ++Part) 7091 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7092 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7093 } 7094 7095 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7096 assert(State.Instance && "Branch on Mask works only on single instance."); 7097 7098 unsigned Part = State.Instance->Part; 7099 unsigned Lane = State.Instance->Lane; 7100 7101 Value *ConditionBit = nullptr; 7102 if (!User) // Block in mask is all-one. 7103 ConditionBit = State.Builder.getTrue(); 7104 else { 7105 VPValue *BlockInMask = User->getOperand(0); 7106 ConditionBit = State.get(BlockInMask, Part); 7107 if (ConditionBit->getType()->isVectorTy()) 7108 ConditionBit = State.Builder.CreateExtractElement( 7109 ConditionBit, State.Builder.getInt32(Lane)); 7110 } 7111 7112 // Replace the temporary unreachable terminator with a new conditional branch, 7113 // whose two destinations will be set later when they are created. 7114 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7115 assert(isa<UnreachableInst>(CurrentTerminator) && 7116 "Expected to replace unreachable terminator with conditional branch."); 7117 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7118 CondBr->setSuccessor(0, nullptr); 7119 ReplaceInstWithInst(CurrentTerminator, CondBr); 7120 } 7121 7122 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7123 assert(State.Instance && "Predicated instruction PHI works per instance."); 7124 Instruction *ScalarPredInst = cast<Instruction>( 7125 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7126 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7127 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7128 assert(PredicatingBB && "Predicated block has no single predecessor."); 7129 7130 // By current pack/unpack logic we need to generate only a single phi node: if 7131 // a vector value for the predicated instruction exists at this point it means 7132 // the instruction has vector users only, and a phi for the vector value is 7133 // needed. In this case the recipe of the predicated instruction is marked to 7134 // also do that packing, thereby "hoisting" the insert-element sequence. 7135 // Otherwise, a phi node for the scalar value is needed. 7136 unsigned Part = State.Instance->Part; 7137 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7138 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7139 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7140 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7141 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7142 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7143 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7144 } else { 7145 Type *PredInstType = PredInst->getType(); 7146 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7147 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7148 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7149 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7150 } 7151 } 7152 7153 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7154 if (!User) 7155 return State.ILV->vectorizeMemoryInstruction(&Instr); 7156 7157 // Last (and currently only) operand is a mask. 7158 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7159 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7160 for (unsigned Part = 0; Part < State.UF; ++Part) 7161 MaskValues[Part] = State.get(Mask, Part); 7162 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7163 } 7164 7165 // Process the loop in the VPlan-native vectorization path. This path builds 7166 // VPlan upfront in the vectorization pipeline, which allows to apply 7167 // VPlan-to-VPlan transformations from the very beginning without modifying the 7168 // input LLVM IR. 7169 static bool processLoopInVPlanNativePath( 7170 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7171 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7172 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7173 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7174 7175 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7176 Function *F = L->getHeader()->getParent(); 7177 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7178 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7179 &Hints, IAI); 7180 // Use the planner for outer loop vectorization. 7181 // TODO: CM is not used at this point inside the planner. Turn CM into an 7182 // optional argument if we don't need it in the future. 7183 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7184 7185 // Get user vectorization factor. 7186 unsigned UserVF = Hints.getWidth(); 7187 7188 // Check the function attributes to find out if this function should be 7189 // optimized for size. 7190 bool OptForSize = 7191 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7192 7193 // Plan how to best vectorize, return the best VF and its cost. 7194 LVP.planInVPlanNativePath(OptForSize, UserVF); 7195 7196 // Returning false. We are currently not generating vector code in the VPlan 7197 // native path. 7198 return false; 7199 } 7200 7201 bool LoopVectorizePass::processLoop(Loop *L) { 7202 assert((EnableVPlanNativePath || L->empty()) && 7203 "VPlan-native path is not enabled. Only process inner loops."); 7204 7205 #ifndef NDEBUG 7206 const std::string DebugLocStr = getDebugLocString(L); 7207 #endif /* NDEBUG */ 7208 7209 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7210 << L->getHeader()->getParent()->getName() << "\" from " 7211 << DebugLocStr << "\n"); 7212 7213 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7214 7215 DEBUG(dbgs() << "LV: Loop hints:" 7216 << " force=" 7217 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7218 ? "disabled" 7219 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7220 ? "enabled" 7221 : "?")) 7222 << " width=" << Hints.getWidth() 7223 << " unroll=" << Hints.getInterleave() << "\n"); 7224 7225 // Function containing loop 7226 Function *F = L->getHeader()->getParent(); 7227 7228 // Looking at the diagnostic output is the only way to determine if a loop 7229 // was vectorized (other than looking at the IR or machine code), so it 7230 // is important to generate an optimization remark for each loop. Most of 7231 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7232 // generated as OptimizationRemark and OptimizationRemarkMissed are 7233 // less verbose reporting vectorized loops and unvectorized loops that may 7234 // benefit from vectorization, respectively. 7235 7236 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7237 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7238 return false; 7239 } 7240 7241 PredicatedScalarEvolution PSE(*SE, *L); 7242 7243 // Check if it is legal to vectorize the loop. 7244 LoopVectorizationRequirements Requirements(*ORE); 7245 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7246 &Requirements, &Hints, DB, AC); 7247 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7248 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7249 emitMissedWarning(F, L, Hints, ORE); 7250 return false; 7251 } 7252 7253 // Check the function attributes to find out if this function should be 7254 // optimized for size. 7255 bool OptForSize = 7256 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7257 7258 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7259 // here. They may require CFG and instruction level transformations before 7260 // even evaluating whether vectorization is profitable. Since we cannot modify 7261 // the incoming IR, we need to build VPlan upfront in the vectorization 7262 // pipeline. 7263 if (!L->empty()) 7264 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7265 ORE, Hints); 7266 7267 assert(L->empty() && "Inner loop expected."); 7268 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7269 // count by optimizing for size, to minimize overheads. 7270 // Prefer constant trip counts over profile data, over upper bound estimate. 7271 unsigned ExpectedTC = 0; 7272 bool HasExpectedTC = false; 7273 if (const SCEVConstant *ConstExits = 7274 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7275 const APInt &ExitsCount = ConstExits->getAPInt(); 7276 // We are interested in small values for ExpectedTC. Skip over those that 7277 // can't fit an unsigned. 7278 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7279 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7280 HasExpectedTC = true; 7281 } 7282 } 7283 // ExpectedTC may be large because it's bound by a variable. Check 7284 // profiling information to validate we should vectorize. 7285 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7286 auto EstimatedTC = getLoopEstimatedTripCount(L); 7287 if (EstimatedTC) { 7288 ExpectedTC = *EstimatedTC; 7289 HasExpectedTC = true; 7290 } 7291 } 7292 if (!HasExpectedTC) { 7293 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7294 HasExpectedTC = (ExpectedTC > 0); 7295 } 7296 7297 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7298 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7299 << "This loop is worth vectorizing only if no scalar " 7300 << "iteration overheads are incurred."); 7301 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7302 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7303 else { 7304 DEBUG(dbgs() << "\n"); 7305 // Loops with a very small trip count are considered for vectorization 7306 // under OptForSize, thereby making sure the cost of their loop body is 7307 // dominant, free of runtime guards and scalar iteration overheads. 7308 OptForSize = true; 7309 } 7310 } 7311 7312 // Check the function attributes to see if implicit floats are allowed. 7313 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7314 // an integer loop and the vector instructions selected are purely integer 7315 // vector instructions? 7316 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7317 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7318 "attribute is used.\n"); 7319 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7320 "NoImplicitFloat", L) 7321 << "loop not vectorized due to NoImplicitFloat attribute"); 7322 emitMissedWarning(F, L, Hints, ORE); 7323 return false; 7324 } 7325 7326 // Check if the target supports potentially unsafe FP vectorization. 7327 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7328 // for the target we're vectorizing for, to make sure none of the 7329 // additional fp-math flags can help. 7330 if (Hints.isPotentiallyUnsafe() && 7331 TTI->isFPVectorizationPotentiallyUnsafe()) { 7332 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7333 ORE->emit( 7334 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7335 << "loop not vectorized due to unsafe FP support."); 7336 emitMissedWarning(F, L, Hints, ORE); 7337 return false; 7338 } 7339 7340 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7341 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7342 7343 // If an override option has been passed in for interleaved accesses, use it. 7344 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7345 UseInterleaved = EnableInterleavedMemAccesses; 7346 7347 // Analyze interleaved memory accesses. 7348 if (UseInterleaved) { 7349 IAI.analyzeInterleaving(); 7350 } 7351 7352 // Use the cost model. 7353 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7354 &Hints, IAI); 7355 CM.collectValuesToIgnore(); 7356 7357 // Use the planner for vectorization. 7358 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7359 7360 // Get user vectorization factor. 7361 unsigned UserVF = Hints.getWidth(); 7362 7363 // Plan how to best vectorize, return the best VF and its cost. 7364 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7365 7366 // Select the interleave count. 7367 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7368 7369 // Get user interleave count. 7370 unsigned UserIC = Hints.getInterleave(); 7371 7372 // Identify the diagnostic messages that should be produced. 7373 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7374 bool VectorizeLoop = true, InterleaveLoop = true; 7375 if (Requirements.doesNotMeet(F, L, Hints)) { 7376 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7377 "requirements.\n"); 7378 emitMissedWarning(F, L, Hints, ORE); 7379 return false; 7380 } 7381 7382 if (VF.Width == 1) { 7383 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7384 VecDiagMsg = std::make_pair( 7385 "VectorizationNotBeneficial", 7386 "the cost-model indicates that vectorization is not beneficial"); 7387 VectorizeLoop = false; 7388 } 7389 7390 if (IC == 1 && UserIC <= 1) { 7391 // Tell the user interleaving is not beneficial. 7392 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7393 IntDiagMsg = std::make_pair( 7394 "InterleavingNotBeneficial", 7395 "the cost-model indicates that interleaving is not beneficial"); 7396 InterleaveLoop = false; 7397 if (UserIC == 1) { 7398 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7399 IntDiagMsg.second += 7400 " and is explicitly disabled or interleave count is set to 1"; 7401 } 7402 } else if (IC > 1 && UserIC == 1) { 7403 // Tell the user interleaving is beneficial, but it explicitly disabled. 7404 DEBUG(dbgs() 7405 << "LV: Interleaving is beneficial but is explicitly disabled."); 7406 IntDiagMsg = std::make_pair( 7407 "InterleavingBeneficialButDisabled", 7408 "the cost-model indicates that interleaving is beneficial " 7409 "but is explicitly disabled or interleave count is set to 1"); 7410 InterleaveLoop = false; 7411 } 7412 7413 // Override IC if user provided an interleave count. 7414 IC = UserIC > 0 ? UserIC : IC; 7415 7416 // Emit diagnostic messages, if any. 7417 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7418 if (!VectorizeLoop && !InterleaveLoop) { 7419 // Do not vectorize or interleaving the loop. 7420 ORE->emit([&]() { 7421 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7422 L->getStartLoc(), L->getHeader()) 7423 << VecDiagMsg.second; 7424 }); 7425 ORE->emit([&]() { 7426 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7427 L->getStartLoc(), L->getHeader()) 7428 << IntDiagMsg.second; 7429 }); 7430 return false; 7431 } else if (!VectorizeLoop && InterleaveLoop) { 7432 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7433 ORE->emit([&]() { 7434 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7435 L->getStartLoc(), L->getHeader()) 7436 << VecDiagMsg.second; 7437 }); 7438 } else if (VectorizeLoop && !InterleaveLoop) { 7439 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7440 << DebugLocStr << '\n'); 7441 ORE->emit([&]() { 7442 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7443 L->getStartLoc(), L->getHeader()) 7444 << IntDiagMsg.second; 7445 }); 7446 } else if (VectorizeLoop && InterleaveLoop) { 7447 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7448 << DebugLocStr << '\n'); 7449 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7450 } 7451 7452 LVP.setBestPlan(VF.Width, IC); 7453 7454 using namespace ore; 7455 7456 if (!VectorizeLoop) { 7457 assert(IC > 1 && "interleave count should not be 1 or 0"); 7458 // If we decided that it is not legal to vectorize the loop, then 7459 // interleave it. 7460 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7461 &CM); 7462 LVP.executePlan(Unroller, DT); 7463 7464 ORE->emit([&]() { 7465 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7466 L->getHeader()) 7467 << "interleaved loop (interleaved count: " 7468 << NV("InterleaveCount", IC) << ")"; 7469 }); 7470 } else { 7471 // If we decided that it is *legal* to vectorize the loop, then do it. 7472 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7473 &LVL, &CM); 7474 LVP.executePlan(LB, DT); 7475 ++LoopsVectorized; 7476 7477 // Add metadata to disable runtime unrolling a scalar loop when there are 7478 // no runtime checks about strides and memory. A scalar loop that is 7479 // rarely used is not worth unrolling. 7480 if (!LB.areSafetyChecksAdded()) 7481 AddRuntimeUnrollDisableMetaData(L); 7482 7483 // Report the vectorization decision. 7484 ORE->emit([&]() { 7485 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7486 L->getHeader()) 7487 << "vectorized loop (vectorization width: " 7488 << NV("VectorizationFactor", VF.Width) 7489 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7490 }); 7491 } 7492 7493 // Mark the loop as already vectorized to avoid vectorizing again. 7494 Hints.setAlreadyVectorized(); 7495 7496 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7497 return true; 7498 } 7499 7500 bool LoopVectorizePass::runImpl( 7501 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7502 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7503 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7504 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7505 OptimizationRemarkEmitter &ORE_) { 7506 SE = &SE_; 7507 LI = &LI_; 7508 TTI = &TTI_; 7509 DT = &DT_; 7510 BFI = &BFI_; 7511 TLI = TLI_; 7512 AA = &AA_; 7513 AC = &AC_; 7514 GetLAA = &GetLAA_; 7515 DB = &DB_; 7516 ORE = &ORE_; 7517 7518 // Don't attempt if 7519 // 1. the target claims to have no vector registers, and 7520 // 2. interleaving won't help ILP. 7521 // 7522 // The second condition is necessary because, even if the target has no 7523 // vector registers, loop vectorization may still enable scalar 7524 // interleaving. 7525 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7526 return false; 7527 7528 bool Changed = false; 7529 7530 // The vectorizer requires loops to be in simplified form. 7531 // Since simplification may add new inner loops, it has to run before the 7532 // legality and profitability checks. This means running the loop vectorizer 7533 // will simplify all loops, regardless of whether anything end up being 7534 // vectorized. 7535 for (auto &L : *LI) 7536 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7537 7538 // Build up a worklist of inner-loops to vectorize. This is necessary as 7539 // the act of vectorizing or partially unrolling a loop creates new loops 7540 // and can invalidate iterators across the loops. 7541 SmallVector<Loop *, 8> Worklist; 7542 7543 for (Loop *L : *LI) 7544 collectSupportedLoops(*L, LI, ORE, Worklist); 7545 7546 LoopsAnalyzed += Worklist.size(); 7547 7548 // Now walk the identified inner loops. 7549 while (!Worklist.empty()) { 7550 Loop *L = Worklist.pop_back_val(); 7551 7552 // For the inner loops we actually process, form LCSSA to simplify the 7553 // transform. 7554 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7555 7556 Changed |= processLoop(L); 7557 } 7558 7559 // Process each loop nest in the function. 7560 return Changed; 7561 } 7562 7563 PreservedAnalyses LoopVectorizePass::run(Function &F, 7564 FunctionAnalysisManager &AM) { 7565 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7566 auto &LI = AM.getResult<LoopAnalysis>(F); 7567 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7568 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7569 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7570 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7571 auto &AA = AM.getResult<AAManager>(F); 7572 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7573 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7574 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7575 7576 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7577 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7578 [&](Loop &L) -> const LoopAccessInfo & { 7579 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7580 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7581 }; 7582 bool Changed = 7583 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7584 if (!Changed) 7585 return PreservedAnalyses::all(); 7586 PreservedAnalyses PA; 7587 PA.preserve<LoopAnalysis>(); 7588 PA.preserve<DominatorTreeAnalysis>(); 7589 PA.preserve<BasicAA>(); 7590 PA.preserve<GlobalsAA>(); 7591 return PA; 7592 } 7593