1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/PatternMatch.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/InstructionCost.h" 135 #include "llvm/Support/MathExtras.h" 136 #include "llvm/Support/raw_ostream.h" 137 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 138 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <cstdlib> 149 #include <functional> 150 #include <iterator> 151 #include <limits> 152 #include <memory> 153 #include <string> 154 #include <tuple> 155 #include <utility> 156 157 using namespace llvm; 158 159 #define LV_NAME "loop-vectorize" 160 #define DEBUG_TYPE LV_NAME 161 162 #ifndef NDEBUG 163 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 164 #endif 165 166 /// @{ 167 /// Metadata attribute names 168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 169 const char LLVMLoopVectorizeFollowupVectorized[] = 170 "llvm.loop.vectorize.followup_vectorized"; 171 const char LLVMLoopVectorizeFollowupEpilogue[] = 172 "llvm.loop.vectorize.followup_epilogue"; 173 /// @} 174 175 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 178 179 static cl::opt<bool> EnableEpilogueVectorization( 180 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 181 cl::desc("Enable vectorization of epilogue loops.")); 182 183 static cl::opt<unsigned> EpilogueVectorizationForceVF( 184 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 185 cl::desc("When epilogue vectorization is enabled, and a value greater than " 186 "1 is specified, forces the given VF for all applicable epilogue " 187 "loops.")); 188 189 static cl::opt<unsigned> EpilogueVectorizationMinVF( 190 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 191 cl::desc("Only loops with vectorization factor equal to or larger than " 192 "the specified value are considered for epilogue vectorization.")); 193 194 /// Loops with a known constant trip count below this number are vectorized only 195 /// if no scalar iteration overheads are incurred. 196 static cl::opt<unsigned> TinyTripCountVectorThreshold( 197 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 198 cl::desc("Loops with a constant trip count that is smaller than this " 199 "value are vectorized only if no scalar iteration overheads " 200 "are incurred.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 208 // that predication is preferred, and this lists all options. I.e., the 209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 210 // and predicate the instructions accordingly. If tail-folding fails, there are 211 // different fallback strategies depending on these values: 212 namespace PreferPredicateTy { 213 enum Option { 214 ScalarEpilogue = 0, 215 PredicateElseScalarEpilogue, 216 PredicateOrDontVectorize 217 }; 218 } // namespace PreferPredicateTy 219 220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 221 "prefer-predicate-over-epilogue", 222 cl::init(PreferPredicateTy::ScalarEpilogue), 223 cl::Hidden, 224 cl::desc("Tail-folding and predication preferences over creating a scalar " 225 "epilogue loop."), 226 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 227 "scalar-epilogue", 228 "Don't tail-predicate loops, create scalar epilogue"), 229 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 230 "predicate-else-scalar-epilogue", 231 "prefer tail-folding, create scalar epilogue if tail " 232 "folding fails."), 233 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 234 "predicate-dont-vectorize", 235 "prefers tail-folding, don't attempt vectorization if " 236 "tail-folding fails."))); 237 238 static cl::opt<bool> MaximizeBandwidth( 239 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 240 cl::desc("Maximize bandwidth when selecting vectorization factor which " 241 "will be determined by the smallest type in loop.")); 242 243 static cl::opt<bool> EnableInterleavedMemAccesses( 244 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 246 247 /// An interleave-group may need masking if it resides in a block that needs 248 /// predication, or in order to mask away gaps. 249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 250 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 251 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 252 253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 254 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 255 cl::desc("We don't interleave loops with a estimated constant trip count " 256 "below this number")); 257 258 static cl::opt<unsigned> ForceTargetNumScalarRegs( 259 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of scalar registers.")); 261 262 static cl::opt<unsigned> ForceTargetNumVectorRegs( 263 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's number of vector registers.")); 265 266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 267 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 268 cl::desc("A flag that overrides the target's max interleave factor for " 269 "scalar loops.")); 270 271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 272 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 273 cl::desc("A flag that overrides the target's max interleave factor for " 274 "vectorized loops.")); 275 276 static cl::opt<unsigned> ForceTargetInstructionCost( 277 "force-target-instruction-cost", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's expected cost for " 279 "an instruction to a single constant value. Mostly " 280 "useful for getting consistent testing.")); 281 282 static cl::opt<bool> ForceTargetSupportsScalableVectors( 283 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 284 cl::desc( 285 "Pretend that scalable vectors are supported, even if the target does " 286 "not support them. This flag should only be used for testing.")); 287 288 static cl::opt<unsigned> SmallLoopCost( 289 "small-loop-cost", cl::init(20), cl::Hidden, 290 cl::desc( 291 "The cost of a loop that is considered 'small' by the interleaver.")); 292 293 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 294 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 295 cl::desc("Enable the use of the block frequency analysis to access PGO " 296 "heuristics minimizing code growth in cold regions and being more " 297 "aggressive in hot regions.")); 298 299 // Runtime interleave loops for load/store throughput. 300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 301 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 302 cl::desc( 303 "Enable runtime interleaving until load/store ports are saturated")); 304 305 /// Interleave small loops with scalar reductions. 306 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 307 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 308 cl::desc("Enable interleaving for loops with small iteration counts that " 309 "contain scalar reductions to expose ILP.")); 310 311 /// The number of stores in a loop that are allowed to need predication. 312 static cl::opt<unsigned> NumberOfStoresToPredicate( 313 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 314 cl::desc("Max number of stores to be predicated behind an if.")); 315 316 static cl::opt<bool> EnableIndVarRegisterHeur( 317 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 318 cl::desc("Count the induction variable only once when interleaving")); 319 320 static cl::opt<bool> EnableCondStoresVectorization( 321 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 322 cl::desc("Enable if predication of stores during vectorization.")); 323 324 static cl::opt<unsigned> MaxNestedScalarReductionIC( 325 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 326 cl::desc("The maximum interleave count to use when interleaving a scalar " 327 "reduction in a nested loop.")); 328 329 static cl::opt<bool> 330 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 331 cl::Hidden, 332 cl::desc("Prefer in-loop vector reductions, " 333 "overriding the targets preference.")); 334 335 cl::opt<bool> EnableStrictReductions( 336 "enable-strict-reductions", cl::init(false), cl::Hidden, 337 cl::desc("Enable the vectorisation of loops with in-order (strict) " 338 "FP reductions")); 339 340 static cl::opt<bool> PreferPredicatedReductionSelect( 341 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 342 cl::desc( 343 "Prefer predicating a reduction operation over an after loop select.")); 344 345 cl::opt<bool> EnableVPlanNativePath( 346 "enable-vplan-native-path", cl::init(false), cl::Hidden, 347 cl::desc("Enable VPlan-native vectorization path with " 348 "support for outer loop vectorization.")); 349 350 // FIXME: Remove this switch once we have divergence analysis. Currently we 351 // assume divergent non-backedge branches when this switch is true. 352 cl::opt<bool> EnableVPlanPredication( 353 "enable-vplan-predication", cl::init(false), cl::Hidden, 354 cl::desc("Enable VPlan-native vectorization path predicator with " 355 "support for outer loop vectorization.")); 356 357 // This flag enables the stress testing of the VPlan H-CFG construction in the 358 // VPlan-native vectorization path. It must be used in conjuction with 359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 360 // verification of the H-CFGs built. 361 static cl::opt<bool> VPlanBuildStressTest( 362 "vplan-build-stress-test", cl::init(false), cl::Hidden, 363 cl::desc( 364 "Build VPlan for every supported loop nest in the function and bail " 365 "out right after the build (stress test the VPlan H-CFG construction " 366 "in the VPlan-native vectorization path).")); 367 368 cl::opt<bool> llvm::EnableLoopInterleaving( 369 "interleave-loops", cl::init(true), cl::Hidden, 370 cl::desc("Enable loop interleaving in Loop vectorization passes")); 371 cl::opt<bool> llvm::EnableLoopVectorization( 372 "vectorize-loops", cl::init(true), cl::Hidden, 373 cl::desc("Run the Loop vectorization passes")); 374 375 cl::opt<bool> PrintVPlansInDotFormat( 376 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 377 cl::desc("Use dot format instead of plain text when dumping VPlans")); 378 379 /// A helper function that returns true if the given type is irregular. The 380 /// type is irregular if its allocated size doesn't equal the store size of an 381 /// element of the corresponding vector type. 382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 383 // Determine if an array of N elements of type Ty is "bitcast compatible" 384 // with a <N x Ty> vector. 385 // This is only true if there is no padding between the array elements. 386 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 387 } 388 389 /// A helper function that returns the reciprocal of the block probability of 390 /// predicated blocks. If we return X, we are assuming the predicated block 391 /// will execute once for every X iterations of the loop header. 392 /// 393 /// TODO: We should use actual block probability here, if available. Currently, 394 /// we always assume predicated blocks have a 50% chance of executing. 395 static unsigned getReciprocalPredBlockProb() { return 2; } 396 397 /// A helper function that returns an integer or floating-point constant with 398 /// value C. 399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 400 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 401 : ConstantFP::get(Ty, C); 402 } 403 404 /// Returns "best known" trip count for the specified loop \p L as defined by 405 /// the following procedure: 406 /// 1) Returns exact trip count if it is known. 407 /// 2) Returns expected trip count according to profile data if any. 408 /// 3) Returns upper bound estimate if it is known. 409 /// 4) Returns None if all of the above failed. 410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 411 // Check if exact trip count is known. 412 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 413 return ExpectedTC; 414 415 // Check if there is an expected trip count available from profile data. 416 if (LoopVectorizeWithBlockFrequency) 417 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 418 return EstimatedTC; 419 420 // Check if upper bound estimate is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 422 return ExpectedTC; 423 424 return None; 425 } 426 427 // Forward declare GeneratedRTChecks. 428 class GeneratedRTChecks; 429 430 namespace llvm { 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop. 473 /// In the case of epilogue vectorization, this function is overriden to 474 /// handle the more complex control flow around the loops. 475 virtual BasicBlock *createVectorizedLoopSkeleton(); 476 477 /// Widen a single instruction within the innermost loop. 478 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 479 VPTransformState &State); 480 481 /// Widen a single call instruction within the innermost loop. 482 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 483 VPTransformState &State); 484 485 /// Widen a single select instruction within the innermost loop. 486 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 487 bool InvariantCond, VPTransformState &State); 488 489 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 490 void fixVectorizedLoop(VPTransformState &State); 491 492 // Return true if any runtime check is added. 493 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 494 495 /// A type for vectorized values in the new loop. Each value from the 496 /// original loop, when vectorized, is represented by UF vector values in the 497 /// new unrolled loop, where UF is the unroll factor. 498 using VectorParts = SmallVector<Value *, 2>; 499 500 /// Vectorize a single GetElementPtrInst based on information gathered and 501 /// decisions taken during planning. 502 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 503 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 504 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 505 506 /// Vectorize a single PHINode in a block. This method handles the induction 507 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 508 /// arbitrary length vectors. 509 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 510 VPWidenPHIRecipe *PhiR, VPTransformState &State); 511 512 /// A helper function to scalarize a single Instruction in the innermost loop. 513 /// Generates a sequence of scalar instances for each lane between \p MinLane 514 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 515 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 516 /// Instr's operands. 517 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 518 const VPIteration &Instance, bool IfPredicateInstr, 519 VPTransformState &State); 520 521 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 522 /// is provided, the integer induction variable will first be truncated to 523 /// the corresponding type. 524 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 525 VPValue *Def, VPValue *CastDef, 526 VPTransformState &State); 527 528 /// Construct the vector value of a scalarized value \p V one lane at a time. 529 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 530 VPTransformState &State); 531 532 /// Try to vectorize interleaved access group \p Group with the base address 533 /// given in \p Addr, optionally masking the vector operations if \p 534 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 535 /// values in the vectorized loop. 536 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 537 ArrayRef<VPValue *> VPDefs, 538 VPTransformState &State, VPValue *Addr, 539 ArrayRef<VPValue *> StoredValues, 540 VPValue *BlockInMask = nullptr); 541 542 /// Vectorize Load and Store instructions with the base address given in \p 543 /// Addr, optionally masking the vector operations if \p BlockInMask is 544 /// non-null. Use \p State to translate given VPValues to IR values in the 545 /// vectorized loop. 546 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 547 VPValue *Def, VPValue *Addr, 548 VPValue *StoredValue, VPValue *BlockInMask); 549 550 /// Set the debug location in the builder using the debug location in 551 /// the instruction. 552 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 553 554 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 555 void fixNonInductionPHIs(VPTransformState &State); 556 557 /// Returns true if the reordering of FP operations is not allowed, but we are 558 /// able to vectorize with strict in-order reductions for the given RdxDesc. 559 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 protected: 569 friend class LoopVectorizationPlanner; 570 571 /// A small list of PHINodes. 572 using PhiVector = SmallVector<PHINode *, 4>; 573 574 /// A type for scalarized values in the new loop. Each value from the 575 /// original loop, when scalarized, is represented by UF x VF scalar values 576 /// in the new unrolled loop, where UF is the unroll factor and VF is the 577 /// vectorization factor. 578 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 579 580 /// Set up the values of the IVs correctly when exiting the vector loop. 581 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 582 Value *CountRoundDown, Value *EndValue, 583 BasicBlock *MiddleBlock); 584 585 /// Create a new induction variable inside L. 586 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 587 Value *Step, Instruction *DL); 588 589 /// Handle all cross-iteration phis in the header. 590 void fixCrossIterationPHIs(VPTransformState &State); 591 592 /// Fix a first-order recurrence. This is the second phase of vectorizing 593 /// this phi node. 594 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 595 596 /// Fix a reduction cross-iteration phi. This is the second phase of 597 /// vectorizing this phi node. 598 void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State); 599 600 /// Clear NSW/NUW flags from reduction instructions if necessary. 601 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 602 VPTransformState &State); 603 604 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 605 /// means we need to add the appropriate incoming value from the middle 606 /// block as exiting edges from the scalar epilogue loop (if present) are 607 /// already in place, and we exit the vector loop exclusively to the middle 608 /// block. 609 void fixLCSSAPHIs(VPTransformState &State); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(VPTransformState &State); 618 619 /// This function adds 620 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 621 /// to each vector element of Val. The sequence starts at StartIndex. 622 /// \p Opcode is relevant for FP induction variable. 623 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 624 Instruction::BinaryOps Opcode = 625 Instruction::BinaryOpsEnd); 626 627 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 628 /// variable on which to base the steps, \p Step is the size of the step, and 629 /// \p EntryVal is the value from the original loop that maps to the steps. 630 /// Note that \p EntryVal doesn't have to be an induction variable - it 631 /// can also be a truncate instruction. 632 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 633 const InductionDescriptor &ID, VPValue *Def, 634 VPValue *CastDef, VPTransformState &State); 635 636 /// Create a vector induction phi node based on an existing scalar one. \p 637 /// EntryVal is the value from the original loop that maps to the vector phi 638 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 639 /// truncate instruction, instead of widening the original IV, we widen a 640 /// version of the IV truncated to \p EntryVal's type. 641 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 642 Value *Step, Value *Start, 643 Instruction *EntryVal, VPValue *Def, 644 VPValue *CastDef, 645 VPTransformState &State); 646 647 /// Returns true if an instruction \p I should be scalarized instead of 648 /// vectorized for the chosen vectorization factor. 649 bool shouldScalarizeInstruction(Instruction *I) const; 650 651 /// Returns true if we should generate a scalar version of \p IV. 652 bool needsScalarInduction(Instruction *IV) const; 653 654 /// If there is a cast involved in the induction variable \p ID, which should 655 /// be ignored in the vectorized loop body, this function records the 656 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 657 /// cast. We had already proved that the casted Phi is equal to the uncasted 658 /// Phi in the vectorized loop (under a runtime guard), and therefore 659 /// there is no need to vectorize the cast - the same value can be used in the 660 /// vector loop for both the Phi and the cast. 661 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 662 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 663 /// 664 /// \p EntryVal is the value from the original loop that maps to the vector 665 /// phi node and is used to distinguish what is the IV currently being 666 /// processed - original one (if \p EntryVal is a phi corresponding to the 667 /// original IV) or the "newly-created" one based on the proof mentioned above 668 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 669 /// latter case \p EntryVal is a TruncInst and we must not record anything for 670 /// that IV, but it's error-prone to expect callers of this routine to care 671 /// about that, hence this explicit parameter. 672 void recordVectorLoopValueForInductionCast( 673 const InductionDescriptor &ID, const Instruction *EntryVal, 674 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 675 unsigned Part, unsigned Lane = UINT_MAX); 676 677 /// Generate a shuffle sequence that will reverse the vector Vec. 678 virtual Value *reverseVector(Value *Vec); 679 680 /// Returns (and creates if needed) the original loop trip count. 681 Value *getOrCreateTripCount(Loop *NewLoop); 682 683 /// Returns (and creates if needed) the trip count of the widened loop. 684 Value *getOrCreateVectorTripCount(Loop *NewLoop); 685 686 /// Returns a bitcasted value to the requested vector type. 687 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 688 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 689 const DataLayout &DL); 690 691 /// Emit a bypass check to see if the vector trip count is zero, including if 692 /// it overflows. 693 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 694 695 /// Emit a bypass check to see if all of the SCEV assumptions we've 696 /// had to make are correct. Returns the block containing the checks or 697 /// nullptr if no checks have been added. 698 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 699 700 /// Emit bypass checks to check any memory assumptions we may have made. 701 /// Returns the block containing the checks or nullptr if no checks have been 702 /// added. 703 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 /// In cases where the loop skeleton is more complicated (eg. epilogue 724 /// vectorization) and the resume values can come from an additional bypass 725 /// block, the \p AdditionalBypass pair provides information about the bypass 726 /// block and the end value on the edge from bypass to this loop. 727 void createInductionResumeValues( 728 Loop *L, Value *VectorTripCount, 729 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 730 731 /// Complete the loop skeleton by adding debug MDs, creating appropriate 732 /// conditional branches in the middle block, preparing the builder and 733 /// running the verifier. Take in the vector loop \p L as argument, and return 734 /// the preheader of the completed vector loop. 735 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 736 737 /// Add additional metadata to \p To that was not present on \p Orig. 738 /// 739 /// Currently this is used to add the noalias annotations based on the 740 /// inserted memchecks. Use this for instructions that are *cloned* into the 741 /// vector loop. 742 void addNewMetadata(Instruction *To, const Instruction *Orig); 743 744 /// Add metadata from one instruction to another. 745 /// 746 /// This includes both the original MDs from \p From and additional ones (\see 747 /// addNewMetadata). Use this for *newly created* instructions in the vector 748 /// loop. 749 void addMetadata(Instruction *To, Instruction *From); 750 751 /// Similar to the previous function but it adds the metadata to a 752 /// vector of instructions. 753 void addMetadata(ArrayRef<Value *> To, Instruction *From); 754 755 /// Allow subclasses to override and print debug traces before/after vplan 756 /// execution, when trace information is requested. 757 virtual void printDebugTracesAtStart(){}; 758 virtual void printDebugTracesAtEnd(){}; 759 760 /// The original loop. 761 Loop *OrigLoop; 762 763 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 764 /// dynamic knowledge to simplify SCEV expressions and converts them to a 765 /// more usable form. 766 PredicatedScalarEvolution &PSE; 767 768 /// Loop Info. 769 LoopInfo *LI; 770 771 /// Dominator Tree. 772 DominatorTree *DT; 773 774 /// Alias Analysis. 775 AAResults *AA; 776 777 /// Target Library Info. 778 const TargetLibraryInfo *TLI; 779 780 /// Target Transform Info. 781 const TargetTransformInfo *TTI; 782 783 /// Assumption Cache. 784 AssumptionCache *AC; 785 786 /// Interface to emit optimization remarks. 787 OptimizationRemarkEmitter *ORE; 788 789 /// LoopVersioning. It's only set up (non-null) if memchecks were 790 /// used. 791 /// 792 /// This is currently only used to add no-alias metadata based on the 793 /// memchecks. The actually versioning is performed manually. 794 std::unique_ptr<LoopVersioning> LVer; 795 796 /// The vectorization SIMD factor to use. Each vector will have this many 797 /// vector elements. 798 ElementCount VF; 799 800 /// The vectorization unroll factor to use. Each scalar is vectorized to this 801 /// many different vector instructions. 802 unsigned UF; 803 804 /// The builder that we use 805 IRBuilder<> Builder; 806 807 // --- Vectorization state --- 808 809 /// The vector-loop preheader. 810 BasicBlock *LoopVectorPreHeader; 811 812 /// The scalar-loop preheader. 813 BasicBlock *LoopScalarPreHeader; 814 815 /// Middle Block between the vector and the scalar. 816 BasicBlock *LoopMiddleBlock; 817 818 /// The (unique) ExitBlock of the scalar loop. Note that 819 /// there can be multiple exiting edges reaching this block. 820 BasicBlock *LoopExitBlock; 821 822 /// The vector loop body. 823 BasicBlock *LoopVectorBody; 824 825 /// The scalar loop body. 826 BasicBlock *LoopScalarBody; 827 828 /// A list of all bypass blocks. The first block is the entry of the loop. 829 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 830 831 /// The new Induction variable which was added to the new block. 832 PHINode *Induction = nullptr; 833 834 /// The induction variable of the old basic block. 835 PHINode *OldInduction = nullptr; 836 837 /// Store instructions that were predicated. 838 SmallVector<Instruction *, 4> PredicatedInstructions; 839 840 /// Trip count of the original loop. 841 Value *TripCount = nullptr; 842 843 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 844 Value *VectorTripCount = nullptr; 845 846 /// The legality analysis. 847 LoopVectorizationLegality *Legal; 848 849 /// The profitablity analysis. 850 LoopVectorizationCostModel *Cost; 851 852 // Record whether runtime checks are added. 853 bool AddedSafetyChecks = false; 854 855 // Holds the end values for each induction variable. We save the end values 856 // so we can later fix-up the external users of the induction variables. 857 DenseMap<PHINode *, Value *> IVEndValues; 858 859 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 860 // fixed up at the end of vector code generation. 861 SmallVector<PHINode *, 8> OrigPHIsToFix; 862 863 /// BFI and PSI are used to check for profile guided size optimizations. 864 BlockFrequencyInfo *BFI; 865 ProfileSummaryInfo *PSI; 866 867 // Whether this loop should be optimized for size based on profile guided size 868 // optimizatios. 869 bool OptForSizeBasedOnProfile; 870 871 /// Structure to hold information about generated runtime checks, responsible 872 /// for cleaning the checks, if vectorization turns out unprofitable. 873 GeneratedRTChecks &RTChecks; 874 }; 875 876 class InnerLoopUnroller : public InnerLoopVectorizer { 877 public: 878 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 879 LoopInfo *LI, DominatorTree *DT, 880 const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 883 LoopVectorizationLegality *LVL, 884 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 885 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 886 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 888 BFI, PSI, Check) {} 889 890 private: 891 Value *getBroadcastInstrs(Value *V) override; 892 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 893 Instruction::BinaryOps Opcode = 894 Instruction::BinaryOpsEnd) override; 895 Value *reverseVector(Value *Vec) override; 896 }; 897 898 /// Encapsulate information regarding vectorization of a loop and its epilogue. 899 /// This information is meant to be updated and used across two stages of 900 /// epilogue vectorization. 901 struct EpilogueLoopVectorizationInfo { 902 ElementCount MainLoopVF = ElementCount::getFixed(0); 903 unsigned MainLoopUF = 0; 904 ElementCount EpilogueVF = ElementCount::getFixed(0); 905 unsigned EpilogueUF = 0; 906 BasicBlock *MainLoopIterationCountCheck = nullptr; 907 BasicBlock *EpilogueIterationCountCheck = nullptr; 908 BasicBlock *SCEVSafetyCheck = nullptr; 909 BasicBlock *MemSafetyCheck = nullptr; 910 Value *TripCount = nullptr; 911 Value *VectorTripCount = nullptr; 912 913 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 914 unsigned EUF) 915 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 916 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 917 assert(EUF == 1 && 918 "A high UF for the epilogue loop is likely not beneficial."); 919 } 920 }; 921 922 /// An extension of the inner loop vectorizer that creates a skeleton for a 923 /// vectorized loop that has its epilogue (residual) also vectorized. 924 /// The idea is to run the vplan on a given loop twice, firstly to setup the 925 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 926 /// from the first step and vectorize the epilogue. This is achieved by 927 /// deriving two concrete strategy classes from this base class and invoking 928 /// them in succession from the loop vectorizer planner. 929 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 930 public: 931 InnerLoopAndEpilogueVectorizer( 932 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 933 DominatorTree *DT, const TargetLibraryInfo *TLI, 934 const TargetTransformInfo *TTI, AssumptionCache *AC, 935 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 936 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 937 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 938 GeneratedRTChecks &Checks) 939 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 940 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 941 Checks), 942 EPI(EPI) {} 943 944 // Override this function to handle the more complex control flow around the 945 // three loops. 946 BasicBlock *createVectorizedLoopSkeleton() final override { 947 return createEpilogueVectorizedLoopSkeleton(); 948 } 949 950 /// The interface for creating a vectorized skeleton using one of two 951 /// different strategies, each corresponding to one execution of the vplan 952 /// as described above. 953 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 954 955 /// Holds and updates state information required to vectorize the main loop 956 /// and its epilogue in two separate passes. This setup helps us avoid 957 /// regenerating and recomputing runtime safety checks. It also helps us to 958 /// shorten the iteration-count-check path length for the cases where the 959 /// iteration count of the loop is so small that the main vector loop is 960 /// completely skipped. 961 EpilogueLoopVectorizationInfo &EPI; 962 }; 963 964 /// A specialized derived class of inner loop vectorizer that performs 965 /// vectorization of *main* loops in the process of vectorizing loops and their 966 /// epilogues. 967 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 968 public: 969 EpilogueVectorizerMainLoop( 970 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 971 DominatorTree *DT, const TargetLibraryInfo *TLI, 972 const TargetTransformInfo *TTI, AssumptionCache *AC, 973 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 974 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 975 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 976 GeneratedRTChecks &Check) 977 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 978 EPI, LVL, CM, BFI, PSI, Check) {} 979 /// Implements the interface for creating a vectorized skeleton using the 980 /// *main loop* strategy (ie the first pass of vplan execution). 981 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 982 983 protected: 984 /// Emits an iteration count bypass check once for the main loop (when \p 985 /// ForEpilogue is false) and once for the epilogue loop (when \p 986 /// ForEpilogue is true). 987 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 988 bool ForEpilogue); 989 void printDebugTracesAtStart() override; 990 void printDebugTracesAtEnd() override; 991 }; 992 993 // A specialized derived class of inner loop vectorizer that performs 994 // vectorization of *epilogue* loops in the process of vectorizing loops and 995 // their epilogues. 996 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 997 public: 998 EpilogueVectorizerEpilogueLoop( 999 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1000 DominatorTree *DT, const TargetLibraryInfo *TLI, 1001 const TargetTransformInfo *TTI, AssumptionCache *AC, 1002 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1003 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1004 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1005 GeneratedRTChecks &Checks) 1006 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1007 EPI, LVL, CM, BFI, PSI, Checks) {} 1008 /// Implements the interface for creating a vectorized skeleton using the 1009 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1010 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1011 1012 protected: 1013 /// Emits an iteration count bypass check after the main vector loop has 1014 /// finished to see if there are any iterations left to execute by either 1015 /// the vector epilogue or the scalar epilogue. 1016 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1017 BasicBlock *Bypass, 1018 BasicBlock *Insert); 1019 void printDebugTracesAtStart() override; 1020 void printDebugTracesAtEnd() override; 1021 }; 1022 } // end namespace llvm 1023 1024 /// Look for a meaningful debug location on the instruction or it's 1025 /// operands. 1026 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1027 if (!I) 1028 return I; 1029 1030 DebugLoc Empty; 1031 if (I->getDebugLoc() != Empty) 1032 return I; 1033 1034 for (Use &Op : I->operands()) { 1035 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1036 if (OpInst->getDebugLoc() != Empty) 1037 return OpInst; 1038 } 1039 1040 return I; 1041 } 1042 1043 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1044 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1045 const DILocation *DIL = Inst->getDebugLoc(); 1046 1047 // When a FSDiscriminator is enabled, we don't need to add the multiply 1048 // factors to the discriminators. 1049 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1050 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1051 // FIXME: For scalable vectors, assume vscale=1. 1052 auto NewDIL = 1053 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1054 if (NewDIL) 1055 B.SetCurrentDebugLocation(NewDIL.getValue()); 1056 else 1057 LLVM_DEBUG(dbgs() 1058 << "Failed to create new discriminator: " 1059 << DIL->getFilename() << " Line: " << DIL->getLine()); 1060 } else 1061 B.SetCurrentDebugLocation(DIL); 1062 } else 1063 B.SetCurrentDebugLocation(DebugLoc()); 1064 } 1065 1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1067 /// is passed, the message relates to that particular instruction. 1068 #ifndef NDEBUG 1069 static void debugVectorizationMessage(const StringRef Prefix, 1070 const StringRef DebugMsg, 1071 Instruction *I) { 1072 dbgs() << "LV: " << Prefix << DebugMsg; 1073 if (I != nullptr) 1074 dbgs() << " " << *I; 1075 else 1076 dbgs() << '.'; 1077 dbgs() << '\n'; 1078 } 1079 #endif 1080 1081 /// Create an analysis remark that explains why vectorization failed 1082 /// 1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1084 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1085 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1086 /// the location of the remark. \return the remark object that can be 1087 /// streamed to. 1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1089 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1090 Value *CodeRegion = TheLoop->getHeader(); 1091 DebugLoc DL = TheLoop->getStartLoc(); 1092 1093 if (I) { 1094 CodeRegion = I->getParent(); 1095 // If there is no debug location attached to the instruction, revert back to 1096 // using the loop's. 1097 if (I->getDebugLoc()) 1098 DL = I->getDebugLoc(); 1099 } 1100 1101 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1102 } 1103 1104 /// Return a value for Step multiplied by VF. 1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1106 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1107 Constant *StepVal = ConstantInt::get( 1108 Step->getType(), 1109 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1110 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1111 } 1112 1113 namespace llvm { 1114 1115 /// Return the runtime value for VF. 1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1117 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1118 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1119 } 1120 1121 void reportVectorizationFailure(const StringRef DebugMsg, 1122 const StringRef OREMsg, const StringRef ORETag, 1123 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1124 Instruction *I) { 1125 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1126 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1127 ORE->emit( 1128 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1129 << "loop not vectorized: " << OREMsg); 1130 } 1131 1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1133 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1134 Instruction *I) { 1135 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1136 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1137 ORE->emit( 1138 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1139 << Msg); 1140 } 1141 1142 } // end namespace llvm 1143 1144 #ifndef NDEBUG 1145 /// \return string containing a file name and a line # for the given loop. 1146 static std::string getDebugLocString(const Loop *L) { 1147 std::string Result; 1148 if (L) { 1149 raw_string_ostream OS(Result); 1150 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1151 LoopDbgLoc.print(OS); 1152 else 1153 // Just print the module name. 1154 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1155 OS.flush(); 1156 } 1157 return Result; 1158 } 1159 #endif 1160 1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1162 const Instruction *Orig) { 1163 // If the loop was versioned with memchecks, add the corresponding no-alias 1164 // metadata. 1165 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1166 LVer->annotateInstWithNoAlias(To, Orig); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 namespace llvm { 1184 1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1186 // lowered. 1187 enum ScalarEpilogueLowering { 1188 1189 // The default: allowing scalar epilogues. 1190 CM_ScalarEpilogueAllowed, 1191 1192 // Vectorization with OptForSize: don't allow epilogues. 1193 CM_ScalarEpilogueNotAllowedOptSize, 1194 1195 // A special case of vectorisation with OptForSize: loops with a very small 1196 // trip count are considered for vectorization under OptForSize, thereby 1197 // making sure the cost of their loop body is dominant, free of runtime 1198 // guards and scalar iteration overheads. 1199 CM_ScalarEpilogueNotAllowedLowTripLoop, 1200 1201 // Loop hint predicate indicating an epilogue is undesired. 1202 CM_ScalarEpilogueNotNeededUsePredicate, 1203 1204 // Directive indicating we must either tail fold or not vectorize 1205 CM_ScalarEpilogueNotAllowedUsePredicate 1206 }; 1207 1208 /// ElementCountComparator creates a total ordering for ElementCount 1209 /// for the purposes of using it in a set structure. 1210 struct ElementCountComparator { 1211 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1212 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1213 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1214 } 1215 }; 1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1217 1218 /// LoopVectorizationCostModel - estimates the expected speedups due to 1219 /// vectorization. 1220 /// In many cases vectorization is not profitable. This can happen because of 1221 /// a number of reasons. In this class we mainly attempt to predict the 1222 /// expected speedup/slowdowns due to the supported instruction set. We use the 1223 /// TargetTransformInfo to query the different backends for the cost of 1224 /// different operations. 1225 class LoopVectorizationCostModel { 1226 public: 1227 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1228 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1229 LoopVectorizationLegality *Legal, 1230 const TargetTransformInfo &TTI, 1231 const TargetLibraryInfo *TLI, DemandedBits *DB, 1232 AssumptionCache *AC, 1233 OptimizationRemarkEmitter *ORE, const Function *F, 1234 const LoopVectorizeHints *Hints, 1235 InterleavedAccessInfo &IAI) 1236 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1237 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1238 Hints(Hints), InterleaveInfo(IAI) {} 1239 1240 /// \return An upper bound for the vectorization factors (both fixed and 1241 /// scalable). If the factors are 0, vectorization and interleaving should be 1242 /// avoided up front. 1243 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1244 1245 /// \return True if runtime checks are required for vectorization, and false 1246 /// otherwise. 1247 bool runtimeChecksRequired(); 1248 1249 /// \return The most profitable vectorization factor and the cost of that VF. 1250 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1251 /// then this vectorization factor will be selected if vectorization is 1252 /// possible. 1253 VectorizationFactor 1254 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1255 1256 VectorizationFactor 1257 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1258 const LoopVectorizationPlanner &LVP); 1259 1260 /// Setup cost-based decisions for user vectorization factor. 1261 void selectUserVectorizationFactor(ElementCount UserVF) { 1262 collectUniformsAndScalars(UserVF); 1263 collectInstsToScalarize(UserVF); 1264 } 1265 1266 /// \return The size (in bits) of the smallest and widest types in the code 1267 /// that needs to be vectorized. We ignore values that remain scalar such as 1268 /// 64 bit loop indices. 1269 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1270 1271 /// \return The desired interleave count. 1272 /// If interleave count has been specified by metadata it will be returned. 1273 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1274 /// are the selected vectorization factor and the cost of the selected VF. 1275 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1276 1277 /// Memory access instruction may be vectorized in more than one way. 1278 /// Form of instruction after vectorization depends on cost. 1279 /// This function takes cost-based decisions for Load/Store instructions 1280 /// and collects them in a map. This decisions map is used for building 1281 /// the lists of loop-uniform and loop-scalar instructions. 1282 /// The calculated cost is saved with widening decision in order to 1283 /// avoid redundant calculations. 1284 void setCostBasedWideningDecision(ElementCount VF); 1285 1286 /// A struct that represents some properties of the register usage 1287 /// of a loop. 1288 struct RegisterUsage { 1289 /// Holds the number of loop invariant values that are used in the loop. 1290 /// The key is ClassID of target-provided register class. 1291 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1292 /// Holds the maximum number of concurrent live intervals in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1295 }; 1296 1297 /// \return Returns information about the register usages of the loop for the 1298 /// given vectorization factors. 1299 SmallVector<RegisterUsage, 8> 1300 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1301 1302 /// Collect values we want to ignore in the cost model. 1303 void collectValuesToIgnore(); 1304 1305 /// Split reductions into those that happen in the loop, and those that happen 1306 /// outside. In loop reductions are collected into InLoopReductionChains. 1307 void collectInLoopReductions(); 1308 1309 /// Returns true if we should use strict in-order reductions for the given 1310 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1311 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1312 /// of FP operations. 1313 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1314 return EnableStrictReductions && !Hints->allowReordering() && 1315 RdxDesc.isOrdered(); 1316 } 1317 1318 /// \returns The smallest bitwidth each instruction can be represented with. 1319 /// The vector equivalents of these instructions should be truncated to this 1320 /// type. 1321 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1322 return MinBWs; 1323 } 1324 1325 /// \returns True if it is more profitable to scalarize instruction \p I for 1326 /// vectorization factor \p VF. 1327 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1328 assert(VF.isVector() && 1329 "Profitable to scalarize relevant only for VF > 1."); 1330 1331 // Cost model is not run in the VPlan-native path - return conservative 1332 // result until this changes. 1333 if (EnableVPlanNativePath) 1334 return false; 1335 1336 auto Scalars = InstsToScalarize.find(VF); 1337 assert(Scalars != InstsToScalarize.end() && 1338 "VF not yet analyzed for scalarization profitability"); 1339 return Scalars->second.find(I) != Scalars->second.end(); 1340 } 1341 1342 /// Returns true if \p I is known to be uniform after vectorization. 1343 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1344 if (VF.isScalar()) 1345 return true; 1346 1347 // Cost model is not run in the VPlan-native path - return conservative 1348 // result until this changes. 1349 if (EnableVPlanNativePath) 1350 return false; 1351 1352 auto UniformsPerVF = Uniforms.find(VF); 1353 assert(UniformsPerVF != Uniforms.end() && 1354 "VF not yet analyzed for uniformity"); 1355 return UniformsPerVF->second.count(I); 1356 } 1357 1358 /// Returns true if \p I is known to be scalar after vectorization. 1359 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1360 if (VF.isScalar()) 1361 return true; 1362 1363 // Cost model is not run in the VPlan-native path - return conservative 1364 // result until this changes. 1365 if (EnableVPlanNativePath) 1366 return false; 1367 1368 auto ScalarsPerVF = Scalars.find(VF); 1369 assert(ScalarsPerVF != Scalars.end() && 1370 "Scalar values are not calculated for VF"); 1371 return ScalarsPerVF->second.count(I); 1372 } 1373 1374 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1375 /// for vectorization factor \p VF. 1376 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1377 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1378 !isProfitableToScalarize(I, VF) && 1379 !isScalarAfterVectorization(I, VF); 1380 } 1381 1382 /// Decision that was taken during cost calculation for memory instruction. 1383 enum InstWidening { 1384 CM_Unknown, 1385 CM_Widen, // For consecutive accesses with stride +1. 1386 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1387 CM_Interleave, 1388 CM_GatherScatter, 1389 CM_Scalarize 1390 }; 1391 1392 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1393 /// instruction \p I and vector width \p VF. 1394 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1395 InstructionCost Cost) { 1396 assert(VF.isVector() && "Expected VF >=2"); 1397 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1398 } 1399 1400 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1401 /// interleaving group \p Grp and vector width \p VF. 1402 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1403 ElementCount VF, InstWidening W, 1404 InstructionCost Cost) { 1405 assert(VF.isVector() && "Expected VF >=2"); 1406 /// Broadcast this decicion to all instructions inside the group. 1407 /// But the cost will be assigned to one instruction only. 1408 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1409 if (auto *I = Grp->getMember(i)) { 1410 if (Grp->getInsertPos() == I) 1411 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1412 else 1413 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1414 } 1415 } 1416 } 1417 1418 /// Return the cost model decision for the given instruction \p I and vector 1419 /// width \p VF. Return CM_Unknown if this instruction did not pass 1420 /// through the cost modeling. 1421 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1422 assert(VF.isVector() && "Expected VF to be a vector VF"); 1423 // Cost model is not run in the VPlan-native path - return conservative 1424 // result until this changes. 1425 if (EnableVPlanNativePath) 1426 return CM_GatherScatter; 1427 1428 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1429 auto Itr = WideningDecisions.find(InstOnVF); 1430 if (Itr == WideningDecisions.end()) 1431 return CM_Unknown; 1432 return Itr->second.first; 1433 } 1434 1435 /// Return the vectorization cost for the given instruction \p I and vector 1436 /// width \p VF. 1437 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1438 assert(VF.isVector() && "Expected VF >=2"); 1439 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1440 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1441 "The cost is not calculated"); 1442 return WideningDecisions[InstOnVF].second; 1443 } 1444 1445 /// Return True if instruction \p I is an optimizable truncate whose operand 1446 /// is an induction variable. Such a truncate will be removed by adding a new 1447 /// induction variable with the destination type. 1448 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1449 // If the instruction is not a truncate, return false. 1450 auto *Trunc = dyn_cast<TruncInst>(I); 1451 if (!Trunc) 1452 return false; 1453 1454 // Get the source and destination types of the truncate. 1455 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1456 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1457 1458 // If the truncate is free for the given types, return false. Replacing a 1459 // free truncate with an induction variable would add an induction variable 1460 // update instruction to each iteration of the loop. We exclude from this 1461 // check the primary induction variable since it will need an update 1462 // instruction regardless. 1463 Value *Op = Trunc->getOperand(0); 1464 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1465 return false; 1466 1467 // If the truncated value is not an induction variable, return false. 1468 return Legal->isInductionPhi(Op); 1469 } 1470 1471 /// Collects the instructions to scalarize for each predicated instruction in 1472 /// the loop. 1473 void collectInstsToScalarize(ElementCount VF); 1474 1475 /// Collect Uniform and Scalar values for the given \p VF. 1476 /// The sets depend on CM decision for Load/Store instructions 1477 /// that may be vectorized as interleave, gather-scatter or scalarized. 1478 void collectUniformsAndScalars(ElementCount VF) { 1479 // Do the analysis once. 1480 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1481 return; 1482 setCostBasedWideningDecision(VF); 1483 collectLoopUniforms(VF); 1484 collectLoopScalars(VF); 1485 } 1486 1487 /// Returns true if the target machine supports masked store operation 1488 /// for the given \p DataType and kind of access to \p Ptr. 1489 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1490 return Legal->isConsecutivePtr(Ptr) && 1491 TTI.isLegalMaskedStore(DataType, Alignment); 1492 } 1493 1494 /// Returns true if the target machine supports masked load operation 1495 /// for the given \p DataType and kind of access to \p Ptr. 1496 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1497 return Legal->isConsecutivePtr(Ptr) && 1498 TTI.isLegalMaskedLoad(DataType, Alignment); 1499 } 1500 1501 /// Returns true if the target machine can represent \p V as a masked gather 1502 /// or scatter operation. 1503 bool isLegalGatherOrScatter(Value *V) { 1504 bool LI = isa<LoadInst>(V); 1505 bool SI = isa<StoreInst>(V); 1506 if (!LI && !SI) 1507 return false; 1508 auto *Ty = getLoadStoreType(V); 1509 Align Align = getLoadStoreAlignment(V); 1510 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1511 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1512 } 1513 1514 /// Returns true if the target machine supports all of the reduction 1515 /// variables found for the given VF. 1516 bool canVectorizeReductions(ElementCount VF) { 1517 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1518 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1519 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1520 })); 1521 } 1522 1523 /// Returns true if \p I is an instruction that will be scalarized with 1524 /// predication. Such instructions include conditional stores and 1525 /// instructions that may divide by zero. 1526 /// If a non-zero VF has been calculated, we check if I will be scalarized 1527 /// predication for that VF. 1528 bool isScalarWithPredication(Instruction *I) const; 1529 1530 // Returns true if \p I is an instruction that will be predicated either 1531 // through scalar predication or masked load/store or masked gather/scatter. 1532 // Superset of instructions that return true for isScalarWithPredication. 1533 bool isPredicatedInst(Instruction *I) { 1534 if (!blockNeedsPredication(I->getParent())) 1535 return false; 1536 // Loads and stores that need some form of masked operation are predicated 1537 // instructions. 1538 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1539 return Legal->isMaskRequired(I); 1540 return isScalarWithPredication(I); 1541 } 1542 1543 /// Returns true if \p I is a memory instruction with consecutive memory 1544 /// access that can be widened. 1545 bool 1546 memoryInstructionCanBeWidened(Instruction *I, 1547 ElementCount VF = ElementCount::getFixed(1)); 1548 1549 /// Returns true if \p I is a memory instruction in an interleaved-group 1550 /// of memory accesses that can be vectorized with wide vector loads/stores 1551 /// and shuffles. 1552 bool 1553 interleavedAccessCanBeWidened(Instruction *I, 1554 ElementCount VF = ElementCount::getFixed(1)); 1555 1556 /// Check if \p Instr belongs to any interleaved access group. 1557 bool isAccessInterleaved(Instruction *Instr) { 1558 return InterleaveInfo.isInterleaved(Instr); 1559 } 1560 1561 /// Get the interleaved access group that \p Instr belongs to. 1562 const InterleaveGroup<Instruction> * 1563 getInterleavedAccessGroup(Instruction *Instr) { 1564 return InterleaveInfo.getInterleaveGroup(Instr); 1565 } 1566 1567 /// Returns true if we're required to use a scalar epilogue for at least 1568 /// the final iteration of the original loop. 1569 bool requiresScalarEpilogue() const { 1570 if (!isScalarEpilogueAllowed()) 1571 return false; 1572 // If we might exit from anywhere but the latch, must run the exiting 1573 // iteration in scalar form. 1574 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1575 return true; 1576 return InterleaveInfo.requiresScalarEpilogue(); 1577 } 1578 1579 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1580 /// loop hint annotation. 1581 bool isScalarEpilogueAllowed() const { 1582 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1583 } 1584 1585 /// Returns true if all loop blocks should be masked to fold tail loop. 1586 bool foldTailByMasking() const { return FoldTailByMasking; } 1587 1588 bool blockNeedsPredication(BasicBlock *BB) const { 1589 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1590 } 1591 1592 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1593 /// nodes to the chain of instructions representing the reductions. Uses a 1594 /// MapVector to ensure deterministic iteration order. 1595 using ReductionChainMap = 1596 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1597 1598 /// Return the chain of instructions representing an inloop reduction. 1599 const ReductionChainMap &getInLoopReductionChains() const { 1600 return InLoopReductionChains; 1601 } 1602 1603 /// Returns true if the Phi is part of an inloop reduction. 1604 bool isInLoopReduction(PHINode *Phi) const { 1605 return InLoopReductionChains.count(Phi); 1606 } 1607 1608 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1609 /// with factor VF. Return the cost of the instruction, including 1610 /// scalarization overhead if it's needed. 1611 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1612 1613 /// Estimate cost of a call instruction CI if it were vectorized with factor 1614 /// VF. Return the cost of the instruction, including scalarization overhead 1615 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1616 /// scalarized - 1617 /// i.e. either vector version isn't available, or is too expensive. 1618 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1619 bool &NeedToScalarize) const; 1620 1621 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1622 /// that of B. 1623 bool isMoreProfitable(const VectorizationFactor &A, 1624 const VectorizationFactor &B) const; 1625 1626 /// Invalidates decisions already taken by the cost model. 1627 void invalidateCostModelingDecisions() { 1628 WideningDecisions.clear(); 1629 Uniforms.clear(); 1630 Scalars.clear(); 1631 } 1632 1633 private: 1634 unsigned NumPredStores = 0; 1635 1636 /// \return An upper bound for the vectorization factors for both 1637 /// fixed and scalable vectorization, where the minimum-known number of 1638 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1639 /// disabled or unsupported, then the scalable part will be equal to 1640 /// ElementCount::getScalable(0). 1641 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1642 ElementCount UserVF); 1643 1644 /// \return the maximized element count based on the targets vector 1645 /// registers and the loop trip-count, but limited to a maximum safe VF. 1646 /// This is a helper function of computeFeasibleMaxVF. 1647 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1648 /// issue that occurred on one of the buildbots which cannot be reproduced 1649 /// without having access to the properietary compiler (see comments on 1650 /// D98509). The issue is currently under investigation and this workaround 1651 /// will be removed as soon as possible. 1652 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1653 unsigned SmallestType, 1654 unsigned WidestType, 1655 const ElementCount &MaxSafeVF); 1656 1657 /// \return the maximum legal scalable VF, based on the safe max number 1658 /// of elements. 1659 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1660 1661 /// The vectorization cost is a combination of the cost itself and a boolean 1662 /// indicating whether any of the contributing operations will actually 1663 /// operate on 1664 /// vector values after type legalization in the backend. If this latter value 1665 /// is 1666 /// false, then all operations will be scalarized (i.e. no vectorization has 1667 /// actually taken place). 1668 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1669 1670 /// Returns the expected execution cost. The unit of the cost does 1671 /// not matter because we use the 'cost' units to compare different 1672 /// vector widths. The cost that is returned is *not* normalized by 1673 /// the factor width. 1674 VectorizationCostTy expectedCost(ElementCount VF); 1675 1676 /// Returns the execution time cost of an instruction for a given vector 1677 /// width. Vector width of one means scalar. 1678 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1679 1680 /// The cost-computation logic from getInstructionCost which provides 1681 /// the vector type as an output parameter. 1682 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1683 Type *&VectorTy); 1684 1685 /// Return the cost of instructions in an inloop reduction pattern, if I is 1686 /// part of that pattern. 1687 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1688 Type *VectorTy, 1689 TTI::TargetCostKind CostKind); 1690 1691 /// Calculate vectorization cost of memory instruction \p I. 1692 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1693 1694 /// The cost computation for scalarized memory instruction. 1695 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1696 1697 /// The cost computation for interleaving group of memory instructions. 1698 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1699 1700 /// The cost computation for Gather/Scatter instruction. 1701 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1702 1703 /// The cost computation for widening instruction \p I with consecutive 1704 /// memory access. 1705 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1706 1707 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1708 /// Load: scalar load + broadcast. 1709 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1710 /// element) 1711 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1712 1713 /// Estimate the overhead of scalarizing an instruction. This is a 1714 /// convenience wrapper for the type-based getScalarizationOverhead API. 1715 InstructionCost getScalarizationOverhead(Instruction *I, 1716 ElementCount VF) const; 1717 1718 /// Returns whether the instruction is a load or store and will be a emitted 1719 /// as a vector operation. 1720 bool isConsecutiveLoadOrStore(Instruction *I); 1721 1722 /// Returns true if an artificially high cost for emulated masked memrefs 1723 /// should be used. 1724 bool useEmulatedMaskMemRefHack(Instruction *I); 1725 1726 /// Map of scalar integer values to the smallest bitwidth they can be legally 1727 /// represented as. The vector equivalents of these values should be truncated 1728 /// to this type. 1729 MapVector<Instruction *, uint64_t> MinBWs; 1730 1731 /// A type representing the costs for instructions if they were to be 1732 /// scalarized rather than vectorized. The entries are Instruction-Cost 1733 /// pairs. 1734 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1735 1736 /// A set containing all BasicBlocks that are known to present after 1737 /// vectorization as a predicated block. 1738 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1739 1740 /// Records whether it is allowed to have the original scalar loop execute at 1741 /// least once. This may be needed as a fallback loop in case runtime 1742 /// aliasing/dependence checks fail, or to handle the tail/remainder 1743 /// iterations when the trip count is unknown or doesn't divide by the VF, 1744 /// or as a peel-loop to handle gaps in interleave-groups. 1745 /// Under optsize and when the trip count is very small we don't allow any 1746 /// iterations to execute in the scalar loop. 1747 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1748 1749 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1750 bool FoldTailByMasking = false; 1751 1752 /// A map holding scalar costs for different vectorization factors. The 1753 /// presence of a cost for an instruction in the mapping indicates that the 1754 /// instruction will be scalarized when vectorizing with the associated 1755 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1756 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1757 1758 /// Holds the instructions known to be uniform after vectorization. 1759 /// The data is collected per VF. 1760 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1761 1762 /// Holds the instructions known to be scalar after vectorization. 1763 /// The data is collected per VF. 1764 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1765 1766 /// Holds the instructions (address computations) that are forced to be 1767 /// scalarized. 1768 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1769 1770 /// PHINodes of the reductions that should be expanded in-loop along with 1771 /// their associated chains of reduction operations, in program order from top 1772 /// (PHI) to bottom 1773 ReductionChainMap InLoopReductionChains; 1774 1775 /// A Map of inloop reduction operations and their immediate chain operand. 1776 /// FIXME: This can be removed once reductions can be costed correctly in 1777 /// vplan. This was added to allow quick lookup to the inloop operations, 1778 /// without having to loop through InLoopReductionChains. 1779 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1780 1781 /// Returns the expected difference in cost from scalarizing the expression 1782 /// feeding a predicated instruction \p PredInst. The instructions to 1783 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1784 /// non-negative return value implies the expression will be scalarized. 1785 /// Currently, only single-use chains are considered for scalarization. 1786 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1787 ElementCount VF); 1788 1789 /// Collect the instructions that are uniform after vectorization. An 1790 /// instruction is uniform if we represent it with a single scalar value in 1791 /// the vectorized loop corresponding to each vector iteration. Examples of 1792 /// uniform instructions include pointer operands of consecutive or 1793 /// interleaved memory accesses. Note that although uniformity implies an 1794 /// instruction will be scalar, the reverse is not true. In general, a 1795 /// scalarized instruction will be represented by VF scalar values in the 1796 /// vectorized loop, each corresponding to an iteration of the original 1797 /// scalar loop. 1798 void collectLoopUniforms(ElementCount VF); 1799 1800 /// Collect the instructions that are scalar after vectorization. An 1801 /// instruction is scalar if it is known to be uniform or will be scalarized 1802 /// during vectorization. Non-uniform scalarized instructions will be 1803 /// represented by VF values in the vectorized loop, each corresponding to an 1804 /// iteration of the original scalar loop. 1805 void collectLoopScalars(ElementCount VF); 1806 1807 /// Keeps cost model vectorization decision and cost for instructions. 1808 /// Right now it is used for memory instructions only. 1809 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1810 std::pair<InstWidening, InstructionCost>>; 1811 1812 DecisionList WideningDecisions; 1813 1814 /// Returns true if \p V is expected to be vectorized and it needs to be 1815 /// extracted. 1816 bool needsExtract(Value *V, ElementCount VF) const { 1817 Instruction *I = dyn_cast<Instruction>(V); 1818 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1819 TheLoop->isLoopInvariant(I)) 1820 return false; 1821 1822 // Assume we can vectorize V (and hence we need extraction) if the 1823 // scalars are not computed yet. This can happen, because it is called 1824 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1825 // the scalars are collected. That should be a safe assumption in most 1826 // cases, because we check if the operands have vectorizable types 1827 // beforehand in LoopVectorizationLegality. 1828 return Scalars.find(VF) == Scalars.end() || 1829 !isScalarAfterVectorization(I, VF); 1830 }; 1831 1832 /// Returns a range containing only operands needing to be extracted. 1833 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1834 ElementCount VF) const { 1835 return SmallVector<Value *, 4>(make_filter_range( 1836 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1837 } 1838 1839 /// Determines if we have the infrastructure to vectorize loop \p L and its 1840 /// epilogue, assuming the main loop is vectorized by \p VF. 1841 bool isCandidateForEpilogueVectorization(const Loop &L, 1842 const ElementCount VF) const; 1843 1844 /// Returns true if epilogue vectorization is considered profitable, and 1845 /// false otherwise. 1846 /// \p VF is the vectorization factor chosen for the original loop. 1847 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1848 1849 public: 1850 /// The loop that we evaluate. 1851 Loop *TheLoop; 1852 1853 /// Predicated scalar evolution analysis. 1854 PredicatedScalarEvolution &PSE; 1855 1856 /// Loop Info analysis. 1857 LoopInfo *LI; 1858 1859 /// Vectorization legality. 1860 LoopVectorizationLegality *Legal; 1861 1862 /// Vector target information. 1863 const TargetTransformInfo &TTI; 1864 1865 /// Target Library Info. 1866 const TargetLibraryInfo *TLI; 1867 1868 /// Demanded bits analysis. 1869 DemandedBits *DB; 1870 1871 /// Assumption cache. 1872 AssumptionCache *AC; 1873 1874 /// Interface to emit optimization remarks. 1875 OptimizationRemarkEmitter *ORE; 1876 1877 const Function *TheFunction; 1878 1879 /// Loop Vectorize Hint. 1880 const LoopVectorizeHints *Hints; 1881 1882 /// The interleave access information contains groups of interleaved accesses 1883 /// with the same stride and close to each other. 1884 InterleavedAccessInfo &InterleaveInfo; 1885 1886 /// Values to ignore in the cost model. 1887 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1888 1889 /// Values to ignore in the cost model when VF > 1. 1890 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1891 1892 /// Profitable vector factors. 1893 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1894 }; 1895 } // end namespace llvm 1896 1897 /// Helper struct to manage generating runtime checks for vectorization. 1898 /// 1899 /// The runtime checks are created up-front in temporary blocks to allow better 1900 /// estimating the cost and un-linked from the existing IR. After deciding to 1901 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1902 /// temporary blocks are completely removed. 1903 class GeneratedRTChecks { 1904 /// Basic block which contains the generated SCEV checks, if any. 1905 BasicBlock *SCEVCheckBlock = nullptr; 1906 1907 /// The value representing the result of the generated SCEV checks. If it is 1908 /// nullptr, either no SCEV checks have been generated or they have been used. 1909 Value *SCEVCheckCond = nullptr; 1910 1911 /// Basic block which contains the generated memory runtime checks, if any. 1912 BasicBlock *MemCheckBlock = nullptr; 1913 1914 /// The value representing the result of the generated memory runtime checks. 1915 /// If it is nullptr, either no memory runtime checks have been generated or 1916 /// they have been used. 1917 Instruction *MemRuntimeCheckCond = nullptr; 1918 1919 DominatorTree *DT; 1920 LoopInfo *LI; 1921 1922 SCEVExpander SCEVExp; 1923 SCEVExpander MemCheckExp; 1924 1925 public: 1926 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1927 const DataLayout &DL) 1928 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1929 MemCheckExp(SE, DL, "scev.check") {} 1930 1931 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1932 /// accurately estimate the cost of the runtime checks. The blocks are 1933 /// un-linked from the IR and is added back during vector code generation. If 1934 /// there is no vector code generation, the check blocks are removed 1935 /// completely. 1936 void Create(Loop *L, const LoopAccessInfo &LAI, 1937 const SCEVUnionPredicate &UnionPred) { 1938 1939 BasicBlock *LoopHeader = L->getHeader(); 1940 BasicBlock *Preheader = L->getLoopPreheader(); 1941 1942 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1943 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1944 // may be used by SCEVExpander. The blocks will be un-linked from their 1945 // predecessors and removed from LI & DT at the end of the function. 1946 if (!UnionPred.isAlwaysTrue()) { 1947 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1948 nullptr, "vector.scevcheck"); 1949 1950 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1951 &UnionPred, SCEVCheckBlock->getTerminator()); 1952 } 1953 1954 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1955 if (RtPtrChecking.Need) { 1956 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1957 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1958 "vector.memcheck"); 1959 1960 std::tie(std::ignore, MemRuntimeCheckCond) = 1961 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1962 RtPtrChecking.getChecks(), MemCheckExp); 1963 assert(MemRuntimeCheckCond && 1964 "no RT checks generated although RtPtrChecking " 1965 "claimed checks are required"); 1966 } 1967 1968 if (!MemCheckBlock && !SCEVCheckBlock) 1969 return; 1970 1971 // Unhook the temporary block with the checks, update various places 1972 // accordingly. 1973 if (SCEVCheckBlock) 1974 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1975 if (MemCheckBlock) 1976 MemCheckBlock->replaceAllUsesWith(Preheader); 1977 1978 if (SCEVCheckBlock) { 1979 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1980 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1981 Preheader->getTerminator()->eraseFromParent(); 1982 } 1983 if (MemCheckBlock) { 1984 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1985 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1986 Preheader->getTerminator()->eraseFromParent(); 1987 } 1988 1989 DT->changeImmediateDominator(LoopHeader, Preheader); 1990 if (MemCheckBlock) { 1991 DT->eraseNode(MemCheckBlock); 1992 LI->removeBlock(MemCheckBlock); 1993 } 1994 if (SCEVCheckBlock) { 1995 DT->eraseNode(SCEVCheckBlock); 1996 LI->removeBlock(SCEVCheckBlock); 1997 } 1998 } 1999 2000 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2001 /// unused. 2002 ~GeneratedRTChecks() { 2003 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2004 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2005 if (!SCEVCheckCond) 2006 SCEVCleaner.markResultUsed(); 2007 2008 if (!MemRuntimeCheckCond) 2009 MemCheckCleaner.markResultUsed(); 2010 2011 if (MemRuntimeCheckCond) { 2012 auto &SE = *MemCheckExp.getSE(); 2013 // Memory runtime check generation creates compares that use expanded 2014 // values. Remove them before running the SCEVExpanderCleaners. 2015 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2016 if (MemCheckExp.isInsertedInstruction(&I)) 2017 continue; 2018 SE.forgetValue(&I); 2019 SE.eraseValueFromMap(&I); 2020 I.eraseFromParent(); 2021 } 2022 } 2023 MemCheckCleaner.cleanup(); 2024 SCEVCleaner.cleanup(); 2025 2026 if (SCEVCheckCond) 2027 SCEVCheckBlock->eraseFromParent(); 2028 if (MemRuntimeCheckCond) 2029 MemCheckBlock->eraseFromParent(); 2030 } 2031 2032 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2033 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2034 /// depending on the generated condition. 2035 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2036 BasicBlock *LoopVectorPreHeader, 2037 BasicBlock *LoopExitBlock) { 2038 if (!SCEVCheckCond) 2039 return nullptr; 2040 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2041 if (C->isZero()) 2042 return nullptr; 2043 2044 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2045 2046 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2047 // Create new preheader for vector loop. 2048 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2049 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2050 2051 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2052 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2053 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2054 SCEVCheckBlock); 2055 2056 DT->addNewBlock(SCEVCheckBlock, Pred); 2057 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2058 2059 ReplaceInstWithInst( 2060 SCEVCheckBlock->getTerminator(), 2061 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2062 // Mark the check as used, to prevent it from being removed during cleanup. 2063 SCEVCheckCond = nullptr; 2064 return SCEVCheckBlock; 2065 } 2066 2067 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2068 /// the branches to branch to the vector preheader or \p Bypass, depending on 2069 /// the generated condition. 2070 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2071 BasicBlock *LoopVectorPreHeader) { 2072 // Check if we generated code that checks in runtime if arrays overlap. 2073 if (!MemRuntimeCheckCond) 2074 return nullptr; 2075 2076 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2077 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2078 MemCheckBlock); 2079 2080 DT->addNewBlock(MemCheckBlock, Pred); 2081 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2082 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2083 2084 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2085 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2086 2087 ReplaceInstWithInst( 2088 MemCheckBlock->getTerminator(), 2089 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2090 MemCheckBlock->getTerminator()->setDebugLoc( 2091 Pred->getTerminator()->getDebugLoc()); 2092 2093 // Mark the check as used, to prevent it from being removed during cleanup. 2094 MemRuntimeCheckCond = nullptr; 2095 return MemCheckBlock; 2096 } 2097 }; 2098 2099 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2100 // vectorization. The loop needs to be annotated with #pragma omp simd 2101 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2102 // vector length information is not provided, vectorization is not considered 2103 // explicit. Interleave hints are not allowed either. These limitations will be 2104 // relaxed in the future. 2105 // Please, note that we are currently forced to abuse the pragma 'clang 2106 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2107 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2108 // provides *explicit vectorization hints* (LV can bypass legal checks and 2109 // assume that vectorization is legal). However, both hints are implemented 2110 // using the same metadata (llvm.loop.vectorize, processed by 2111 // LoopVectorizeHints). This will be fixed in the future when the native IR 2112 // representation for pragma 'omp simd' is introduced. 2113 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2114 OptimizationRemarkEmitter *ORE) { 2115 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2116 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2117 2118 // Only outer loops with an explicit vectorization hint are supported. 2119 // Unannotated outer loops are ignored. 2120 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2121 return false; 2122 2123 Function *Fn = OuterLp->getHeader()->getParent(); 2124 if (!Hints.allowVectorization(Fn, OuterLp, 2125 true /*VectorizeOnlyWhenForced*/)) { 2126 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2127 return false; 2128 } 2129 2130 if (Hints.getInterleave() > 1) { 2131 // TODO: Interleave support is future work. 2132 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2133 "outer loops.\n"); 2134 Hints.emitRemarkWithHints(); 2135 return false; 2136 } 2137 2138 return true; 2139 } 2140 2141 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2142 OptimizationRemarkEmitter *ORE, 2143 SmallVectorImpl<Loop *> &V) { 2144 // Collect inner loops and outer loops without irreducible control flow. For 2145 // now, only collect outer loops that have explicit vectorization hints. If we 2146 // are stress testing the VPlan H-CFG construction, we collect the outermost 2147 // loop of every loop nest. 2148 if (L.isInnermost() || VPlanBuildStressTest || 2149 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2150 LoopBlocksRPO RPOT(&L); 2151 RPOT.perform(LI); 2152 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2153 V.push_back(&L); 2154 // TODO: Collect inner loops inside marked outer loops in case 2155 // vectorization fails for the outer loop. Do not invoke 2156 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2157 // already known to be reducible. We can use an inherited attribute for 2158 // that. 2159 return; 2160 } 2161 } 2162 for (Loop *InnerL : L) 2163 collectSupportedLoops(*InnerL, LI, ORE, V); 2164 } 2165 2166 namespace { 2167 2168 /// The LoopVectorize Pass. 2169 struct LoopVectorize : public FunctionPass { 2170 /// Pass identification, replacement for typeid 2171 static char ID; 2172 2173 LoopVectorizePass Impl; 2174 2175 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2176 bool VectorizeOnlyWhenForced = false) 2177 : FunctionPass(ID), 2178 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2179 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2180 } 2181 2182 bool runOnFunction(Function &F) override { 2183 if (skipFunction(F)) 2184 return false; 2185 2186 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2187 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2188 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2189 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2190 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2191 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2192 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2193 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2194 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2195 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2196 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2197 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2198 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2199 2200 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2201 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2202 2203 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2204 GetLAA, *ORE, PSI).MadeAnyChange; 2205 } 2206 2207 void getAnalysisUsage(AnalysisUsage &AU) const override { 2208 AU.addRequired<AssumptionCacheTracker>(); 2209 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2210 AU.addRequired<DominatorTreeWrapperPass>(); 2211 AU.addRequired<LoopInfoWrapperPass>(); 2212 AU.addRequired<ScalarEvolutionWrapperPass>(); 2213 AU.addRequired<TargetTransformInfoWrapperPass>(); 2214 AU.addRequired<AAResultsWrapperPass>(); 2215 AU.addRequired<LoopAccessLegacyAnalysis>(); 2216 AU.addRequired<DemandedBitsWrapperPass>(); 2217 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2218 AU.addRequired<InjectTLIMappingsLegacy>(); 2219 2220 // We currently do not preserve loopinfo/dominator analyses with outer loop 2221 // vectorization. Until this is addressed, mark these analyses as preserved 2222 // only for non-VPlan-native path. 2223 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2224 if (!EnableVPlanNativePath) { 2225 AU.addPreserved<LoopInfoWrapperPass>(); 2226 AU.addPreserved<DominatorTreeWrapperPass>(); 2227 } 2228 2229 AU.addPreserved<BasicAAWrapperPass>(); 2230 AU.addPreserved<GlobalsAAWrapperPass>(); 2231 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2232 } 2233 }; 2234 2235 } // end anonymous namespace 2236 2237 //===----------------------------------------------------------------------===// 2238 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2239 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2240 //===----------------------------------------------------------------------===// 2241 2242 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2243 // We need to place the broadcast of invariant variables outside the loop, 2244 // but only if it's proven safe to do so. Else, broadcast will be inside 2245 // vector loop body. 2246 Instruction *Instr = dyn_cast<Instruction>(V); 2247 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2248 (!Instr || 2249 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2250 // Place the code for broadcasting invariant variables in the new preheader. 2251 IRBuilder<>::InsertPointGuard Guard(Builder); 2252 if (SafeToHoist) 2253 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2254 2255 // Broadcast the scalar into all locations in the vector. 2256 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2257 2258 return Shuf; 2259 } 2260 2261 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2262 const InductionDescriptor &II, Value *Step, Value *Start, 2263 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2264 VPTransformState &State) { 2265 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2266 "Expected either an induction phi-node or a truncate of it!"); 2267 2268 // Construct the initial value of the vector IV in the vector loop preheader 2269 auto CurrIP = Builder.saveIP(); 2270 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2271 if (isa<TruncInst>(EntryVal)) { 2272 assert(Start->getType()->isIntegerTy() && 2273 "Truncation requires an integer type"); 2274 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2275 Step = Builder.CreateTrunc(Step, TruncType); 2276 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2277 } 2278 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2279 Value *SteppedStart = 2280 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2281 2282 // We create vector phi nodes for both integer and floating-point induction 2283 // variables. Here, we determine the kind of arithmetic we will perform. 2284 Instruction::BinaryOps AddOp; 2285 Instruction::BinaryOps MulOp; 2286 if (Step->getType()->isIntegerTy()) { 2287 AddOp = Instruction::Add; 2288 MulOp = Instruction::Mul; 2289 } else { 2290 AddOp = II.getInductionOpcode(); 2291 MulOp = Instruction::FMul; 2292 } 2293 2294 // Multiply the vectorization factor by the step using integer or 2295 // floating-point arithmetic as appropriate. 2296 Type *StepType = Step->getType(); 2297 if (Step->getType()->isFloatingPointTy()) 2298 StepType = IntegerType::get(StepType->getContext(), 2299 StepType->getScalarSizeInBits()); 2300 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2301 if (Step->getType()->isFloatingPointTy()) 2302 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2303 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2304 2305 // Create a vector splat to use in the induction update. 2306 // 2307 // FIXME: If the step is non-constant, we create the vector splat with 2308 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2309 // handle a constant vector splat. 2310 Value *SplatVF = isa<Constant>(Mul) 2311 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2312 : Builder.CreateVectorSplat(VF, Mul); 2313 Builder.restoreIP(CurrIP); 2314 2315 // We may need to add the step a number of times, depending on the unroll 2316 // factor. The last of those goes into the PHI. 2317 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2318 &*LoopVectorBody->getFirstInsertionPt()); 2319 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2320 Instruction *LastInduction = VecInd; 2321 for (unsigned Part = 0; Part < UF; ++Part) { 2322 State.set(Def, LastInduction, Part); 2323 2324 if (isa<TruncInst>(EntryVal)) 2325 addMetadata(LastInduction, EntryVal); 2326 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2327 State, Part); 2328 2329 LastInduction = cast<Instruction>( 2330 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2331 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2332 } 2333 2334 // Move the last step to the end of the latch block. This ensures consistent 2335 // placement of all induction updates. 2336 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2337 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2338 auto *ICmp = cast<Instruction>(Br->getCondition()); 2339 LastInduction->moveBefore(ICmp); 2340 LastInduction->setName("vec.ind.next"); 2341 2342 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2343 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2344 } 2345 2346 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2347 return Cost->isScalarAfterVectorization(I, VF) || 2348 Cost->isProfitableToScalarize(I, VF); 2349 } 2350 2351 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2352 if (shouldScalarizeInstruction(IV)) 2353 return true; 2354 auto isScalarInst = [&](User *U) -> bool { 2355 auto *I = cast<Instruction>(U); 2356 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2357 }; 2358 return llvm::any_of(IV->users(), isScalarInst); 2359 } 2360 2361 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2362 const InductionDescriptor &ID, const Instruction *EntryVal, 2363 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2364 unsigned Part, unsigned Lane) { 2365 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2366 "Expected either an induction phi-node or a truncate of it!"); 2367 2368 // This induction variable is not the phi from the original loop but the 2369 // newly-created IV based on the proof that casted Phi is equal to the 2370 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2371 // re-uses the same InductionDescriptor that original IV uses but we don't 2372 // have to do any recording in this case - that is done when original IV is 2373 // processed. 2374 if (isa<TruncInst>(EntryVal)) 2375 return; 2376 2377 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2378 if (Casts.empty()) 2379 return; 2380 // Only the first Cast instruction in the Casts vector is of interest. 2381 // The rest of the Casts (if exist) have no uses outside the 2382 // induction update chain itself. 2383 if (Lane < UINT_MAX) 2384 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2385 else 2386 State.set(CastDef, VectorLoopVal, Part); 2387 } 2388 2389 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2390 TruncInst *Trunc, VPValue *Def, 2391 VPValue *CastDef, 2392 VPTransformState &State) { 2393 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2394 "Primary induction variable must have an integer type"); 2395 2396 auto II = Legal->getInductionVars().find(IV); 2397 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2398 2399 auto ID = II->second; 2400 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2401 2402 // The value from the original loop to which we are mapping the new induction 2403 // variable. 2404 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2405 2406 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2407 2408 // Generate code for the induction step. Note that induction steps are 2409 // required to be loop-invariant 2410 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2411 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2412 "Induction step should be loop invariant"); 2413 if (PSE.getSE()->isSCEVable(IV->getType())) { 2414 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2415 return Exp.expandCodeFor(Step, Step->getType(), 2416 LoopVectorPreHeader->getTerminator()); 2417 } 2418 return cast<SCEVUnknown>(Step)->getValue(); 2419 }; 2420 2421 // The scalar value to broadcast. This is derived from the canonical 2422 // induction variable. If a truncation type is given, truncate the canonical 2423 // induction variable and step. Otherwise, derive these values from the 2424 // induction descriptor. 2425 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2426 Value *ScalarIV = Induction; 2427 if (IV != OldInduction) { 2428 ScalarIV = IV->getType()->isIntegerTy() 2429 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2430 : Builder.CreateCast(Instruction::SIToFP, Induction, 2431 IV->getType()); 2432 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2433 ScalarIV->setName("offset.idx"); 2434 } 2435 if (Trunc) { 2436 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2437 assert(Step->getType()->isIntegerTy() && 2438 "Truncation requires an integer step"); 2439 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2440 Step = Builder.CreateTrunc(Step, TruncType); 2441 } 2442 return ScalarIV; 2443 }; 2444 2445 // Create the vector values from the scalar IV, in the absence of creating a 2446 // vector IV. 2447 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2448 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2449 for (unsigned Part = 0; Part < UF; ++Part) { 2450 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2451 Value *EntryPart = 2452 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2453 ID.getInductionOpcode()); 2454 State.set(Def, EntryPart, Part); 2455 if (Trunc) 2456 addMetadata(EntryPart, Trunc); 2457 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2458 State, Part); 2459 } 2460 }; 2461 2462 // Fast-math-flags propagate from the original induction instruction. 2463 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2464 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2465 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2466 2467 // Now do the actual transformations, and start with creating the step value. 2468 Value *Step = CreateStepValue(ID.getStep()); 2469 if (VF.isZero() || VF.isScalar()) { 2470 Value *ScalarIV = CreateScalarIV(Step); 2471 CreateSplatIV(ScalarIV, Step); 2472 return; 2473 } 2474 2475 // Determine if we want a scalar version of the induction variable. This is 2476 // true if the induction variable itself is not widened, or if it has at 2477 // least one user in the loop that is not widened. 2478 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2479 if (!NeedsScalarIV) { 2480 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2481 State); 2482 return; 2483 } 2484 2485 // Try to create a new independent vector induction variable. If we can't 2486 // create the phi node, we will splat the scalar induction variable in each 2487 // loop iteration. 2488 if (!shouldScalarizeInstruction(EntryVal)) { 2489 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2490 State); 2491 Value *ScalarIV = CreateScalarIV(Step); 2492 // Create scalar steps that can be used by instructions we will later 2493 // scalarize. Note that the addition of the scalar steps will not increase 2494 // the number of instructions in the loop in the common case prior to 2495 // InstCombine. We will be trading one vector extract for each scalar step. 2496 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2497 return; 2498 } 2499 2500 // All IV users are scalar instructions, so only emit a scalar IV, not a 2501 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2502 // predicate used by the masked loads/stores. 2503 Value *ScalarIV = CreateScalarIV(Step); 2504 if (!Cost->isScalarEpilogueAllowed()) 2505 CreateSplatIV(ScalarIV, Step); 2506 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2507 } 2508 2509 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2510 Instruction::BinaryOps BinOp) { 2511 // Create and check the types. 2512 auto *ValVTy = cast<VectorType>(Val->getType()); 2513 ElementCount VLen = ValVTy->getElementCount(); 2514 2515 Type *STy = Val->getType()->getScalarType(); 2516 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2517 "Induction Step must be an integer or FP"); 2518 assert(Step->getType() == STy && "Step has wrong type"); 2519 2520 SmallVector<Constant *, 8> Indices; 2521 2522 // Create a vector of consecutive numbers from zero to VF. 2523 VectorType *InitVecValVTy = ValVTy; 2524 Type *InitVecValSTy = STy; 2525 if (STy->isFloatingPointTy()) { 2526 InitVecValSTy = 2527 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2528 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2529 } 2530 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2531 2532 // Add on StartIdx 2533 Value *StartIdxSplat = Builder.CreateVectorSplat( 2534 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2535 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2536 2537 if (STy->isIntegerTy()) { 2538 Step = Builder.CreateVectorSplat(VLen, Step); 2539 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2540 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2541 // which can be found from the original scalar operations. 2542 Step = Builder.CreateMul(InitVec, Step); 2543 return Builder.CreateAdd(Val, Step, "induction"); 2544 } 2545 2546 // Floating point induction. 2547 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2548 "Binary Opcode should be specified for FP induction"); 2549 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2550 Step = Builder.CreateVectorSplat(VLen, Step); 2551 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2552 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2553 } 2554 2555 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2556 Instruction *EntryVal, 2557 const InductionDescriptor &ID, 2558 VPValue *Def, VPValue *CastDef, 2559 VPTransformState &State) { 2560 // We shouldn't have to build scalar steps if we aren't vectorizing. 2561 assert(VF.isVector() && "VF should be greater than one"); 2562 // Get the value type and ensure it and the step have the same integer type. 2563 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2564 assert(ScalarIVTy == Step->getType() && 2565 "Val and Step should have the same type"); 2566 2567 // We build scalar steps for both integer and floating-point induction 2568 // variables. Here, we determine the kind of arithmetic we will perform. 2569 Instruction::BinaryOps AddOp; 2570 Instruction::BinaryOps MulOp; 2571 if (ScalarIVTy->isIntegerTy()) { 2572 AddOp = Instruction::Add; 2573 MulOp = Instruction::Mul; 2574 } else { 2575 AddOp = ID.getInductionOpcode(); 2576 MulOp = Instruction::FMul; 2577 } 2578 2579 // Determine the number of scalars we need to generate for each unroll 2580 // iteration. If EntryVal is uniform, we only need to generate the first 2581 // lane. Otherwise, we generate all VF values. 2582 bool IsUniform = 2583 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2584 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2585 // Compute the scalar steps and save the results in State. 2586 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2587 ScalarIVTy->getScalarSizeInBits()); 2588 Type *VecIVTy = nullptr; 2589 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2590 if (!IsUniform && VF.isScalable()) { 2591 VecIVTy = VectorType::get(ScalarIVTy, VF); 2592 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2593 SplatStep = Builder.CreateVectorSplat(VF, Step); 2594 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2595 } 2596 2597 for (unsigned Part = 0; Part < UF; ++Part) { 2598 Value *StartIdx0 = 2599 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2600 2601 if (!IsUniform && VF.isScalable()) { 2602 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2603 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2604 if (ScalarIVTy->isFloatingPointTy()) 2605 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2606 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2607 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2608 State.set(Def, Add, Part); 2609 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2610 Part); 2611 // It's useful to record the lane values too for the known minimum number 2612 // of elements so we do those below. This improves the code quality when 2613 // trying to extract the first element, for example. 2614 } 2615 2616 if (ScalarIVTy->isFloatingPointTy()) 2617 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2618 2619 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2620 Value *StartIdx = Builder.CreateBinOp( 2621 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2622 // The step returned by `createStepForVF` is a runtime-evaluated value 2623 // when VF is scalable. Otherwise, it should be folded into a Constant. 2624 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2625 "Expected StartIdx to be folded to a constant when VF is not " 2626 "scalable"); 2627 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2628 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2629 State.set(Def, Add, VPIteration(Part, Lane)); 2630 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2631 Part, Lane); 2632 } 2633 } 2634 } 2635 2636 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2637 const VPIteration &Instance, 2638 VPTransformState &State) { 2639 Value *ScalarInst = State.get(Def, Instance); 2640 Value *VectorValue = State.get(Def, Instance.Part); 2641 VectorValue = Builder.CreateInsertElement( 2642 VectorValue, ScalarInst, 2643 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2644 State.set(Def, VectorValue, Instance.Part); 2645 } 2646 2647 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2648 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2649 return Builder.CreateVectorReverse(Vec, "reverse"); 2650 } 2651 2652 // Return whether we allow using masked interleave-groups (for dealing with 2653 // strided loads/stores that reside in predicated blocks, or for dealing 2654 // with gaps). 2655 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2656 // If an override option has been passed in for interleaved accesses, use it. 2657 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2658 return EnableMaskedInterleavedMemAccesses; 2659 2660 return TTI.enableMaskedInterleavedAccessVectorization(); 2661 } 2662 2663 // Try to vectorize the interleave group that \p Instr belongs to. 2664 // 2665 // E.g. Translate following interleaved load group (factor = 3): 2666 // for (i = 0; i < N; i+=3) { 2667 // R = Pic[i]; // Member of index 0 2668 // G = Pic[i+1]; // Member of index 1 2669 // B = Pic[i+2]; // Member of index 2 2670 // ... // do something to R, G, B 2671 // } 2672 // To: 2673 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2674 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2675 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2676 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2677 // 2678 // Or translate following interleaved store group (factor = 3): 2679 // for (i = 0; i < N; i+=3) { 2680 // ... do something to R, G, B 2681 // Pic[i] = R; // Member of index 0 2682 // Pic[i+1] = G; // Member of index 1 2683 // Pic[i+2] = B; // Member of index 2 2684 // } 2685 // To: 2686 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2687 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2688 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2689 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2690 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2691 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2692 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2693 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2694 VPValue *BlockInMask) { 2695 Instruction *Instr = Group->getInsertPos(); 2696 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2697 2698 // Prepare for the vector type of the interleaved load/store. 2699 Type *ScalarTy = getLoadStoreType(Instr); 2700 unsigned InterleaveFactor = Group->getFactor(); 2701 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2702 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2703 2704 // Prepare for the new pointers. 2705 SmallVector<Value *, 2> AddrParts; 2706 unsigned Index = Group->getIndex(Instr); 2707 2708 // TODO: extend the masked interleaved-group support to reversed access. 2709 assert((!BlockInMask || !Group->isReverse()) && 2710 "Reversed masked interleave-group not supported."); 2711 2712 // If the group is reverse, adjust the index to refer to the last vector lane 2713 // instead of the first. We adjust the index from the first vector lane, 2714 // rather than directly getting the pointer for lane VF - 1, because the 2715 // pointer operand of the interleaved access is supposed to be uniform. For 2716 // uniform instructions, we're only required to generate a value for the 2717 // first vector lane in each unroll iteration. 2718 if (Group->isReverse()) 2719 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2720 2721 for (unsigned Part = 0; Part < UF; Part++) { 2722 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2723 setDebugLocFromInst(Builder, AddrPart); 2724 2725 // Notice current instruction could be any index. Need to adjust the address 2726 // to the member of index 0. 2727 // 2728 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2729 // b = A[i]; // Member of index 0 2730 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2731 // 2732 // E.g. A[i+1] = a; // Member of index 1 2733 // A[i] = b; // Member of index 0 2734 // A[i+2] = c; // Member of index 2 (Current instruction) 2735 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2736 2737 bool InBounds = false; 2738 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2739 InBounds = gep->isInBounds(); 2740 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2741 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2742 2743 // Cast to the vector pointer type. 2744 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2745 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2746 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2747 } 2748 2749 setDebugLocFromInst(Builder, Instr); 2750 Value *PoisonVec = PoisonValue::get(VecTy); 2751 2752 Value *MaskForGaps = nullptr; 2753 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2754 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2755 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2756 } 2757 2758 // Vectorize the interleaved load group. 2759 if (isa<LoadInst>(Instr)) { 2760 // For each unroll part, create a wide load for the group. 2761 SmallVector<Value *, 2> NewLoads; 2762 for (unsigned Part = 0; Part < UF; Part++) { 2763 Instruction *NewLoad; 2764 if (BlockInMask || MaskForGaps) { 2765 assert(useMaskedInterleavedAccesses(*TTI) && 2766 "masked interleaved groups are not allowed."); 2767 Value *GroupMask = MaskForGaps; 2768 if (BlockInMask) { 2769 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2770 Value *ShuffledMask = Builder.CreateShuffleVector( 2771 BlockInMaskPart, 2772 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2773 "interleaved.mask"); 2774 GroupMask = MaskForGaps 2775 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2776 MaskForGaps) 2777 : ShuffledMask; 2778 } 2779 NewLoad = 2780 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2781 GroupMask, PoisonVec, "wide.masked.vec"); 2782 } 2783 else 2784 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2785 Group->getAlign(), "wide.vec"); 2786 Group->addMetadata(NewLoad); 2787 NewLoads.push_back(NewLoad); 2788 } 2789 2790 // For each member in the group, shuffle out the appropriate data from the 2791 // wide loads. 2792 unsigned J = 0; 2793 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2794 Instruction *Member = Group->getMember(I); 2795 2796 // Skip the gaps in the group. 2797 if (!Member) 2798 continue; 2799 2800 auto StrideMask = 2801 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2802 for (unsigned Part = 0; Part < UF; Part++) { 2803 Value *StridedVec = Builder.CreateShuffleVector( 2804 NewLoads[Part], StrideMask, "strided.vec"); 2805 2806 // If this member has different type, cast the result type. 2807 if (Member->getType() != ScalarTy) { 2808 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2809 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2810 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2811 } 2812 2813 if (Group->isReverse()) 2814 StridedVec = reverseVector(StridedVec); 2815 2816 State.set(VPDefs[J], StridedVec, Part); 2817 } 2818 ++J; 2819 } 2820 return; 2821 } 2822 2823 // The sub vector type for current instruction. 2824 auto *SubVT = VectorType::get(ScalarTy, VF); 2825 2826 // Vectorize the interleaved store group. 2827 for (unsigned Part = 0; Part < UF; Part++) { 2828 // Collect the stored vector from each member. 2829 SmallVector<Value *, 4> StoredVecs; 2830 for (unsigned i = 0; i < InterleaveFactor; i++) { 2831 // Interleaved store group doesn't allow a gap, so each index has a member 2832 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2833 2834 Value *StoredVec = State.get(StoredValues[i], Part); 2835 2836 if (Group->isReverse()) 2837 StoredVec = reverseVector(StoredVec); 2838 2839 // If this member has different type, cast it to a unified type. 2840 2841 if (StoredVec->getType() != SubVT) 2842 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2843 2844 StoredVecs.push_back(StoredVec); 2845 } 2846 2847 // Concatenate all vectors into a wide vector. 2848 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2849 2850 // Interleave the elements in the wide vector. 2851 Value *IVec = Builder.CreateShuffleVector( 2852 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2853 "interleaved.vec"); 2854 2855 Instruction *NewStoreInstr; 2856 if (BlockInMask) { 2857 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2858 Value *ShuffledMask = Builder.CreateShuffleVector( 2859 BlockInMaskPart, 2860 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2861 "interleaved.mask"); 2862 NewStoreInstr = Builder.CreateMaskedStore( 2863 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2864 } 2865 else 2866 NewStoreInstr = 2867 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2868 2869 Group->addMetadata(NewStoreInstr); 2870 } 2871 } 2872 2873 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2874 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2875 VPValue *StoredValue, VPValue *BlockInMask) { 2876 // Attempt to issue a wide load. 2877 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2878 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2879 2880 assert((LI || SI) && "Invalid Load/Store instruction"); 2881 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2882 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2883 2884 LoopVectorizationCostModel::InstWidening Decision = 2885 Cost->getWideningDecision(Instr, VF); 2886 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2887 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2888 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2889 "CM decision is not to widen the memory instruction"); 2890 2891 Type *ScalarDataTy = getLoadStoreType(Instr); 2892 2893 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2894 const Align Alignment = getLoadStoreAlignment(Instr); 2895 2896 // Determine if the pointer operand of the access is either consecutive or 2897 // reverse consecutive. 2898 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2899 bool ConsecutiveStride = 2900 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2901 bool CreateGatherScatter = 2902 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2903 2904 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2905 // gather/scatter. Otherwise Decision should have been to Scalarize. 2906 assert((ConsecutiveStride || CreateGatherScatter) && 2907 "The instruction should be scalarized"); 2908 (void)ConsecutiveStride; 2909 2910 VectorParts BlockInMaskParts(UF); 2911 bool isMaskRequired = BlockInMask; 2912 if (isMaskRequired) 2913 for (unsigned Part = 0; Part < UF; ++Part) 2914 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2915 2916 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2917 // Calculate the pointer for the specific unroll-part. 2918 GetElementPtrInst *PartPtr = nullptr; 2919 2920 bool InBounds = false; 2921 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2922 InBounds = gep->isInBounds(); 2923 if (Reverse) { 2924 // If the address is consecutive but reversed, then the 2925 // wide store needs to start at the last vector element. 2926 // RunTimeVF = VScale * VF.getKnownMinValue() 2927 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2928 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2929 // NumElt = -Part * RunTimeVF 2930 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2931 // LastLane = 1 - RunTimeVF 2932 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2933 PartPtr = 2934 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2935 PartPtr->setIsInBounds(InBounds); 2936 PartPtr = cast<GetElementPtrInst>( 2937 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2938 PartPtr->setIsInBounds(InBounds); 2939 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2940 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2941 } else { 2942 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2943 PartPtr = cast<GetElementPtrInst>( 2944 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2945 PartPtr->setIsInBounds(InBounds); 2946 } 2947 2948 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2949 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2950 }; 2951 2952 // Handle Stores: 2953 if (SI) { 2954 setDebugLocFromInst(Builder, SI); 2955 2956 for (unsigned Part = 0; Part < UF; ++Part) { 2957 Instruction *NewSI = nullptr; 2958 Value *StoredVal = State.get(StoredValue, Part); 2959 if (CreateGatherScatter) { 2960 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2961 Value *VectorGep = State.get(Addr, Part); 2962 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2963 MaskPart); 2964 } else { 2965 if (Reverse) { 2966 // If we store to reverse consecutive memory locations, then we need 2967 // to reverse the order of elements in the stored value. 2968 StoredVal = reverseVector(StoredVal); 2969 // We don't want to update the value in the map as it might be used in 2970 // another expression. So don't call resetVectorValue(StoredVal). 2971 } 2972 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2973 if (isMaskRequired) 2974 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2975 BlockInMaskParts[Part]); 2976 else 2977 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2978 } 2979 addMetadata(NewSI, SI); 2980 } 2981 return; 2982 } 2983 2984 // Handle loads. 2985 assert(LI && "Must have a load instruction"); 2986 setDebugLocFromInst(Builder, LI); 2987 for (unsigned Part = 0; Part < UF; ++Part) { 2988 Value *NewLI; 2989 if (CreateGatherScatter) { 2990 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2991 Value *VectorGep = State.get(Addr, Part); 2992 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2993 nullptr, "wide.masked.gather"); 2994 addMetadata(NewLI, LI); 2995 } else { 2996 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2997 if (isMaskRequired) 2998 NewLI = Builder.CreateMaskedLoad( 2999 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 3000 "wide.masked.load"); 3001 else 3002 NewLI = 3003 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3004 3005 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3006 addMetadata(NewLI, LI); 3007 if (Reverse) 3008 NewLI = reverseVector(NewLI); 3009 } 3010 3011 State.set(Def, NewLI, Part); 3012 } 3013 } 3014 3015 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3016 VPUser &User, 3017 const VPIteration &Instance, 3018 bool IfPredicateInstr, 3019 VPTransformState &State) { 3020 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3021 3022 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3023 // the first lane and part. 3024 if (isa<NoAliasScopeDeclInst>(Instr)) 3025 if (!Instance.isFirstIteration()) 3026 return; 3027 3028 setDebugLocFromInst(Builder, Instr); 3029 3030 // Does this instruction return a value ? 3031 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3032 3033 Instruction *Cloned = Instr->clone(); 3034 if (!IsVoidRetTy) 3035 Cloned->setName(Instr->getName() + ".cloned"); 3036 3037 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3038 Builder.GetInsertPoint()); 3039 // Replace the operands of the cloned instructions with their scalar 3040 // equivalents in the new loop. 3041 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3042 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3043 auto InputInstance = Instance; 3044 if (!Operand || !OrigLoop->contains(Operand) || 3045 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3046 InputInstance.Lane = VPLane::getFirstLane(); 3047 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3048 Cloned->setOperand(op, NewOp); 3049 } 3050 addNewMetadata(Cloned, Instr); 3051 3052 // Place the cloned scalar in the new loop. 3053 Builder.Insert(Cloned); 3054 3055 State.set(Def, Cloned, Instance); 3056 3057 // If we just cloned a new assumption, add it the assumption cache. 3058 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3059 AC->registerAssumption(II); 3060 3061 // End if-block. 3062 if (IfPredicateInstr) 3063 PredicatedInstructions.push_back(Cloned); 3064 } 3065 3066 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3067 Value *End, Value *Step, 3068 Instruction *DL) { 3069 BasicBlock *Header = L->getHeader(); 3070 BasicBlock *Latch = L->getLoopLatch(); 3071 // As we're just creating this loop, it's possible no latch exists 3072 // yet. If so, use the header as this will be a single block loop. 3073 if (!Latch) 3074 Latch = Header; 3075 3076 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3077 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3078 setDebugLocFromInst(Builder, OldInst); 3079 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3080 3081 Builder.SetInsertPoint(Latch->getTerminator()); 3082 setDebugLocFromInst(Builder, OldInst); 3083 3084 // Create i+1 and fill the PHINode. 3085 // 3086 // If the tail is not folded, we know that End - Start >= Step (either 3087 // statically or through the minimum iteration checks). We also know that both 3088 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3089 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3090 // overflows and we can mark the induction increment as NUW. 3091 Value *Next = 3092 Builder.CreateAdd(Induction, Step, "index.next", 3093 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3094 Induction->addIncoming(Start, L->getLoopPreheader()); 3095 Induction->addIncoming(Next, Latch); 3096 // Create the compare. 3097 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3098 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3099 3100 // Now we have two terminators. Remove the old one from the block. 3101 Latch->getTerminator()->eraseFromParent(); 3102 3103 return Induction; 3104 } 3105 3106 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3107 if (TripCount) 3108 return TripCount; 3109 3110 assert(L && "Create Trip Count for null loop."); 3111 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3112 // Find the loop boundaries. 3113 ScalarEvolution *SE = PSE.getSE(); 3114 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3115 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3116 "Invalid loop count"); 3117 3118 Type *IdxTy = Legal->getWidestInductionType(); 3119 assert(IdxTy && "No type for induction"); 3120 3121 // The exit count might have the type of i64 while the phi is i32. This can 3122 // happen if we have an induction variable that is sign extended before the 3123 // compare. The only way that we get a backedge taken count is that the 3124 // induction variable was signed and as such will not overflow. In such a case 3125 // truncation is legal. 3126 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3127 IdxTy->getPrimitiveSizeInBits()) 3128 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3129 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3130 3131 // Get the total trip count from the count by adding 1. 3132 const SCEV *ExitCount = SE->getAddExpr( 3133 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3134 3135 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3136 3137 // Expand the trip count and place the new instructions in the preheader. 3138 // Notice that the pre-header does not change, only the loop body. 3139 SCEVExpander Exp(*SE, DL, "induction"); 3140 3141 // Count holds the overall loop count (N). 3142 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3143 L->getLoopPreheader()->getTerminator()); 3144 3145 if (TripCount->getType()->isPointerTy()) 3146 TripCount = 3147 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3148 L->getLoopPreheader()->getTerminator()); 3149 3150 return TripCount; 3151 } 3152 3153 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3154 if (VectorTripCount) 3155 return VectorTripCount; 3156 3157 Value *TC = getOrCreateTripCount(L); 3158 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3159 3160 Type *Ty = TC->getType(); 3161 // This is where we can make the step a runtime constant. 3162 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3163 3164 // If the tail is to be folded by masking, round the number of iterations N 3165 // up to a multiple of Step instead of rounding down. This is done by first 3166 // adding Step-1 and then rounding down. Note that it's ok if this addition 3167 // overflows: the vector induction variable will eventually wrap to zero given 3168 // that it starts at zero and its Step is a power of two; the loop will then 3169 // exit, with the last early-exit vector comparison also producing all-true. 3170 if (Cost->foldTailByMasking()) { 3171 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3172 "VF*UF must be a power of 2 when folding tail by masking"); 3173 assert(!VF.isScalable() && 3174 "Tail folding not yet supported for scalable vectors"); 3175 TC = Builder.CreateAdd( 3176 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3177 } 3178 3179 // Now we need to generate the expression for the part of the loop that the 3180 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3181 // iterations are not required for correctness, or N - Step, otherwise. Step 3182 // is equal to the vectorization factor (number of SIMD elements) times the 3183 // unroll factor (number of SIMD instructions). 3184 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3185 3186 // There are two cases where we need to ensure (at least) the last iteration 3187 // runs in the scalar remainder loop. Thus, if the step evenly divides 3188 // the trip count, we set the remainder to be equal to the step. If the step 3189 // does not evenly divide the trip count, no adjustment is necessary since 3190 // there will already be scalar iterations. Note that the minimum iterations 3191 // check ensures that N >= Step. The cases are: 3192 // 1) If there is a non-reversed interleaved group that may speculatively 3193 // access memory out-of-bounds. 3194 // 2) If any instruction may follow a conditionally taken exit. That is, if 3195 // the loop contains multiple exiting blocks, or a single exiting block 3196 // which is not the latch. 3197 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3198 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3199 R = Builder.CreateSelect(IsZero, Step, R); 3200 } 3201 3202 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3203 3204 return VectorTripCount; 3205 } 3206 3207 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3208 const DataLayout &DL) { 3209 // Verify that V is a vector type with same number of elements as DstVTy. 3210 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3211 unsigned VF = DstFVTy->getNumElements(); 3212 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3213 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3214 Type *SrcElemTy = SrcVecTy->getElementType(); 3215 Type *DstElemTy = DstFVTy->getElementType(); 3216 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3217 "Vector elements must have same size"); 3218 3219 // Do a direct cast if element types are castable. 3220 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3221 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3222 } 3223 // V cannot be directly casted to desired vector type. 3224 // May happen when V is a floating point vector but DstVTy is a vector of 3225 // pointers or vice-versa. Handle this using a two-step bitcast using an 3226 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3227 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3228 "Only one type should be a pointer type"); 3229 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3230 "Only one type should be a floating point type"); 3231 Type *IntTy = 3232 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3233 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3234 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3235 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3236 } 3237 3238 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3239 BasicBlock *Bypass) { 3240 Value *Count = getOrCreateTripCount(L); 3241 // Reuse existing vector loop preheader for TC checks. 3242 // Note that new preheader block is generated for vector loop. 3243 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3244 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3245 3246 // Generate code to check if the loop's trip count is less than VF * UF, or 3247 // equal to it in case a scalar epilogue is required; this implies that the 3248 // vector trip count is zero. This check also covers the case where adding one 3249 // to the backedge-taken count overflowed leading to an incorrect trip count 3250 // of zero. In this case we will also jump to the scalar loop. 3251 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3252 : ICmpInst::ICMP_ULT; 3253 3254 // If tail is to be folded, vector loop takes care of all iterations. 3255 Value *CheckMinIters = Builder.getFalse(); 3256 if (!Cost->foldTailByMasking()) { 3257 Value *Step = 3258 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3259 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3260 } 3261 // Create new preheader for vector loop. 3262 LoopVectorPreHeader = 3263 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3264 "vector.ph"); 3265 3266 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3267 DT->getNode(Bypass)->getIDom()) && 3268 "TC check is expected to dominate Bypass"); 3269 3270 // Update dominator for Bypass & LoopExit. 3271 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3272 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3273 3274 ReplaceInstWithInst( 3275 TCCheckBlock->getTerminator(), 3276 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3277 LoopBypassBlocks.push_back(TCCheckBlock); 3278 } 3279 3280 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3281 3282 BasicBlock *const SCEVCheckBlock = 3283 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3284 if (!SCEVCheckBlock) 3285 return nullptr; 3286 3287 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3288 (OptForSizeBasedOnProfile && 3289 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3290 "Cannot SCEV check stride or overflow when optimizing for size"); 3291 3292 3293 // Update dominator only if this is first RT check. 3294 if (LoopBypassBlocks.empty()) { 3295 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3296 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3297 } 3298 3299 LoopBypassBlocks.push_back(SCEVCheckBlock); 3300 AddedSafetyChecks = true; 3301 return SCEVCheckBlock; 3302 } 3303 3304 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3305 BasicBlock *Bypass) { 3306 // VPlan-native path does not do any analysis for runtime checks currently. 3307 if (EnableVPlanNativePath) 3308 return nullptr; 3309 3310 BasicBlock *const MemCheckBlock = 3311 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3312 3313 // Check if we generated code that checks in runtime if arrays overlap. We put 3314 // the checks into a separate block to make the more common case of few 3315 // elements faster. 3316 if (!MemCheckBlock) 3317 return nullptr; 3318 3319 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3320 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3321 "Cannot emit memory checks when optimizing for size, unless forced " 3322 "to vectorize."); 3323 ORE->emit([&]() { 3324 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3325 L->getStartLoc(), L->getHeader()) 3326 << "Code-size may be reduced by not forcing " 3327 "vectorization, or by source-code modifications " 3328 "eliminating the need for runtime checks " 3329 "(e.g., adding 'restrict')."; 3330 }); 3331 } 3332 3333 LoopBypassBlocks.push_back(MemCheckBlock); 3334 3335 AddedSafetyChecks = true; 3336 3337 // We currently don't use LoopVersioning for the actual loop cloning but we 3338 // still use it to add the noalias metadata. 3339 LVer = std::make_unique<LoopVersioning>( 3340 *Legal->getLAI(), 3341 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3342 DT, PSE.getSE()); 3343 LVer->prepareNoAliasMetadata(); 3344 return MemCheckBlock; 3345 } 3346 3347 Value *InnerLoopVectorizer::emitTransformedIndex( 3348 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3349 const InductionDescriptor &ID) const { 3350 3351 SCEVExpander Exp(*SE, DL, "induction"); 3352 auto Step = ID.getStep(); 3353 auto StartValue = ID.getStartValue(); 3354 assert(Index->getType()->getScalarType() == Step->getType() && 3355 "Index scalar type does not match StepValue type"); 3356 3357 // Note: the IR at this point is broken. We cannot use SE to create any new 3358 // SCEV and then expand it, hoping that SCEV's simplification will give us 3359 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3360 // lead to various SCEV crashes. So all we can do is to use builder and rely 3361 // on InstCombine for future simplifications. Here we handle some trivial 3362 // cases only. 3363 auto CreateAdd = [&B](Value *X, Value *Y) { 3364 assert(X->getType() == Y->getType() && "Types don't match!"); 3365 if (auto *CX = dyn_cast<ConstantInt>(X)) 3366 if (CX->isZero()) 3367 return Y; 3368 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3369 if (CY->isZero()) 3370 return X; 3371 return B.CreateAdd(X, Y); 3372 }; 3373 3374 // We allow X to be a vector type, in which case Y will potentially be 3375 // splatted into a vector with the same element count. 3376 auto CreateMul = [&B](Value *X, Value *Y) { 3377 assert(X->getType()->getScalarType() == Y->getType() && 3378 "Types don't match!"); 3379 if (auto *CX = dyn_cast<ConstantInt>(X)) 3380 if (CX->isOne()) 3381 return Y; 3382 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3383 if (CY->isOne()) 3384 return X; 3385 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3386 if (XVTy && !isa<VectorType>(Y->getType())) 3387 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3388 return B.CreateMul(X, Y); 3389 }; 3390 3391 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3392 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3393 // the DomTree is not kept up-to-date for additional blocks generated in the 3394 // vector loop. By using the header as insertion point, we guarantee that the 3395 // expanded instructions dominate all their uses. 3396 auto GetInsertPoint = [this, &B]() { 3397 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3398 if (InsertBB != LoopVectorBody && 3399 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3400 return LoopVectorBody->getTerminator(); 3401 return &*B.GetInsertPoint(); 3402 }; 3403 3404 switch (ID.getKind()) { 3405 case InductionDescriptor::IK_IntInduction: { 3406 assert(!isa<VectorType>(Index->getType()) && 3407 "Vector indices not supported for integer inductions yet"); 3408 assert(Index->getType() == StartValue->getType() && 3409 "Index type does not match StartValue type"); 3410 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3411 return B.CreateSub(StartValue, Index); 3412 auto *Offset = CreateMul( 3413 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3414 return CreateAdd(StartValue, Offset); 3415 } 3416 case InductionDescriptor::IK_PtrInduction: { 3417 assert(isa<SCEVConstant>(Step) && 3418 "Expected constant step for pointer induction"); 3419 return B.CreateGEP( 3420 StartValue->getType()->getPointerElementType(), StartValue, 3421 CreateMul(Index, 3422 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3423 GetInsertPoint()))); 3424 } 3425 case InductionDescriptor::IK_FpInduction: { 3426 assert(!isa<VectorType>(Index->getType()) && 3427 "Vector indices not supported for FP inductions yet"); 3428 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3429 auto InductionBinOp = ID.getInductionBinOp(); 3430 assert(InductionBinOp && 3431 (InductionBinOp->getOpcode() == Instruction::FAdd || 3432 InductionBinOp->getOpcode() == Instruction::FSub) && 3433 "Original bin op should be defined for FP induction"); 3434 3435 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3436 Value *MulExp = B.CreateFMul(StepValue, Index); 3437 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3438 "induction"); 3439 } 3440 case InductionDescriptor::IK_NoInduction: 3441 return nullptr; 3442 } 3443 llvm_unreachable("invalid enum"); 3444 } 3445 3446 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3447 LoopScalarBody = OrigLoop->getHeader(); 3448 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3449 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3450 assert(LoopExitBlock && "Must have an exit block"); 3451 assert(LoopVectorPreHeader && "Invalid loop structure"); 3452 3453 LoopMiddleBlock = 3454 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3455 LI, nullptr, Twine(Prefix) + "middle.block"); 3456 LoopScalarPreHeader = 3457 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3458 nullptr, Twine(Prefix) + "scalar.ph"); 3459 3460 // Set up branch from middle block to the exit and scalar preheader blocks. 3461 // completeLoopSkeleton will update the condition to use an iteration check, 3462 // if required to decide whether to execute the remainder. 3463 BranchInst *BrInst = 3464 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3465 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3466 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3467 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3468 3469 // We intentionally don't let SplitBlock to update LoopInfo since 3470 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3471 // LoopVectorBody is explicitly added to the correct place few lines later. 3472 LoopVectorBody = 3473 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3474 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3475 3476 // Update dominator for loop exit. 3477 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3478 3479 // Create and register the new vector loop. 3480 Loop *Lp = LI->AllocateLoop(); 3481 Loop *ParentLoop = OrigLoop->getParentLoop(); 3482 3483 // Insert the new loop into the loop nest and register the new basic blocks 3484 // before calling any utilities such as SCEV that require valid LoopInfo. 3485 if (ParentLoop) { 3486 ParentLoop->addChildLoop(Lp); 3487 } else { 3488 LI->addTopLevelLoop(Lp); 3489 } 3490 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3491 return Lp; 3492 } 3493 3494 void InnerLoopVectorizer::createInductionResumeValues( 3495 Loop *L, Value *VectorTripCount, 3496 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3497 assert(VectorTripCount && L && "Expected valid arguments"); 3498 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3499 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3500 "Inconsistent information about additional bypass."); 3501 // We are going to resume the execution of the scalar loop. 3502 // Go over all of the induction variables that we found and fix the 3503 // PHIs that are left in the scalar version of the loop. 3504 // The starting values of PHI nodes depend on the counter of the last 3505 // iteration in the vectorized loop. 3506 // If we come from a bypass edge then we need to start from the original 3507 // start value. 3508 for (auto &InductionEntry : Legal->getInductionVars()) { 3509 PHINode *OrigPhi = InductionEntry.first; 3510 InductionDescriptor II = InductionEntry.second; 3511 3512 // Create phi nodes to merge from the backedge-taken check block. 3513 PHINode *BCResumeVal = 3514 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3515 LoopScalarPreHeader->getTerminator()); 3516 // Copy original phi DL over to the new one. 3517 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3518 Value *&EndValue = IVEndValues[OrigPhi]; 3519 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3520 if (OrigPhi == OldInduction) { 3521 // We know what the end value is. 3522 EndValue = VectorTripCount; 3523 } else { 3524 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3525 3526 // Fast-math-flags propagate from the original induction instruction. 3527 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3528 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3529 3530 Type *StepType = II.getStep()->getType(); 3531 Instruction::CastOps CastOp = 3532 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3533 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3534 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3535 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3536 EndValue->setName("ind.end"); 3537 3538 // Compute the end value for the additional bypass (if applicable). 3539 if (AdditionalBypass.first) { 3540 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3541 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3542 StepType, true); 3543 CRD = 3544 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3545 EndValueFromAdditionalBypass = 3546 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3547 EndValueFromAdditionalBypass->setName("ind.end"); 3548 } 3549 } 3550 // The new PHI merges the original incoming value, in case of a bypass, 3551 // or the value at the end of the vectorized loop. 3552 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3553 3554 // Fix the scalar body counter (PHI node). 3555 // The old induction's phi node in the scalar body needs the truncated 3556 // value. 3557 for (BasicBlock *BB : LoopBypassBlocks) 3558 BCResumeVal->addIncoming(II.getStartValue(), BB); 3559 3560 if (AdditionalBypass.first) 3561 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3562 EndValueFromAdditionalBypass); 3563 3564 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3565 } 3566 } 3567 3568 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3569 MDNode *OrigLoopID) { 3570 assert(L && "Expected valid loop."); 3571 3572 // The trip counts should be cached by now. 3573 Value *Count = getOrCreateTripCount(L); 3574 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3575 3576 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3577 3578 // Add a check in the middle block to see if we have completed 3579 // all of the iterations in the first vector loop. 3580 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3581 // If tail is to be folded, we know we don't need to run the remainder. 3582 if (!Cost->foldTailByMasking()) { 3583 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3584 Count, VectorTripCount, "cmp.n", 3585 LoopMiddleBlock->getTerminator()); 3586 3587 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3588 // of the corresponding compare because they may have ended up with 3589 // different line numbers and we want to avoid awkward line stepping while 3590 // debugging. Eg. if the compare has got a line number inside the loop. 3591 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3592 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3593 } 3594 3595 // Get ready to start creating new instructions into the vectorized body. 3596 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3597 "Inconsistent vector loop preheader"); 3598 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3599 3600 Optional<MDNode *> VectorizedLoopID = 3601 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3602 LLVMLoopVectorizeFollowupVectorized}); 3603 if (VectorizedLoopID.hasValue()) { 3604 L->setLoopID(VectorizedLoopID.getValue()); 3605 3606 // Do not setAlreadyVectorized if loop attributes have been defined 3607 // explicitly. 3608 return LoopVectorPreHeader; 3609 } 3610 3611 // Keep all loop hints from the original loop on the vector loop (we'll 3612 // replace the vectorizer-specific hints below). 3613 if (MDNode *LID = OrigLoop->getLoopID()) 3614 L->setLoopID(LID); 3615 3616 LoopVectorizeHints Hints(L, true, *ORE); 3617 Hints.setAlreadyVectorized(); 3618 3619 #ifdef EXPENSIVE_CHECKS 3620 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3621 LI->verify(*DT); 3622 #endif 3623 3624 return LoopVectorPreHeader; 3625 } 3626 3627 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3628 /* 3629 In this function we generate a new loop. The new loop will contain 3630 the vectorized instructions while the old loop will continue to run the 3631 scalar remainder. 3632 3633 [ ] <-- loop iteration number check. 3634 / | 3635 / v 3636 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3637 | / | 3638 | / v 3639 || [ ] <-- vector pre header. 3640 |/ | 3641 | v 3642 | [ ] \ 3643 | [ ]_| <-- vector loop. 3644 | | 3645 | v 3646 | -[ ] <--- middle-block. 3647 | / | 3648 | / v 3649 -|- >[ ] <--- new preheader. 3650 | | 3651 | v 3652 | [ ] \ 3653 | [ ]_| <-- old scalar loop to handle remainder. 3654 \ | 3655 \ v 3656 >[ ] <-- exit block. 3657 ... 3658 */ 3659 3660 // Get the metadata of the original loop before it gets modified. 3661 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3662 3663 // Workaround! Compute the trip count of the original loop and cache it 3664 // before we start modifying the CFG. This code has a systemic problem 3665 // wherein it tries to run analysis over partially constructed IR; this is 3666 // wrong, and not simply for SCEV. The trip count of the original loop 3667 // simply happens to be prone to hitting this in practice. In theory, we 3668 // can hit the same issue for any SCEV, or ValueTracking query done during 3669 // mutation. See PR49900. 3670 getOrCreateTripCount(OrigLoop); 3671 3672 // Create an empty vector loop, and prepare basic blocks for the runtime 3673 // checks. 3674 Loop *Lp = createVectorLoopSkeleton(""); 3675 3676 // Now, compare the new count to zero. If it is zero skip the vector loop and 3677 // jump to the scalar loop. This check also covers the case where the 3678 // backedge-taken count is uint##_max: adding one to it will overflow leading 3679 // to an incorrect trip count of zero. In this (rare) case we will also jump 3680 // to the scalar loop. 3681 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3682 3683 // Generate the code to check any assumptions that we've made for SCEV 3684 // expressions. 3685 emitSCEVChecks(Lp, LoopScalarPreHeader); 3686 3687 // Generate the code that checks in runtime if arrays overlap. We put the 3688 // checks into a separate block to make the more common case of few elements 3689 // faster. 3690 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3691 3692 // Some loops have a single integer induction variable, while other loops 3693 // don't. One example is c++ iterators that often have multiple pointer 3694 // induction variables. In the code below we also support a case where we 3695 // don't have a single induction variable. 3696 // 3697 // We try to obtain an induction variable from the original loop as hard 3698 // as possible. However if we don't find one that: 3699 // - is an integer 3700 // - counts from zero, stepping by one 3701 // - is the size of the widest induction variable type 3702 // then we create a new one. 3703 OldInduction = Legal->getPrimaryInduction(); 3704 Type *IdxTy = Legal->getWidestInductionType(); 3705 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3706 // The loop step is equal to the vectorization factor (num of SIMD elements) 3707 // times the unroll factor (num of SIMD instructions). 3708 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3709 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3710 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3711 Induction = 3712 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3713 getDebugLocFromInstOrOperands(OldInduction)); 3714 3715 // Emit phis for the new starting index of the scalar loop. 3716 createInductionResumeValues(Lp, CountRoundDown); 3717 3718 return completeLoopSkeleton(Lp, OrigLoopID); 3719 } 3720 3721 // Fix up external users of the induction variable. At this point, we are 3722 // in LCSSA form, with all external PHIs that use the IV having one input value, 3723 // coming from the remainder loop. We need those PHIs to also have a correct 3724 // value for the IV when arriving directly from the middle block. 3725 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3726 const InductionDescriptor &II, 3727 Value *CountRoundDown, Value *EndValue, 3728 BasicBlock *MiddleBlock) { 3729 // There are two kinds of external IV usages - those that use the value 3730 // computed in the last iteration (the PHI) and those that use the penultimate 3731 // value (the value that feeds into the phi from the loop latch). 3732 // We allow both, but they, obviously, have different values. 3733 3734 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3735 3736 DenseMap<Value *, Value *> MissingVals; 3737 3738 // An external user of the last iteration's value should see the value that 3739 // the remainder loop uses to initialize its own IV. 3740 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3741 for (User *U : PostInc->users()) { 3742 Instruction *UI = cast<Instruction>(U); 3743 if (!OrigLoop->contains(UI)) { 3744 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3745 MissingVals[UI] = EndValue; 3746 } 3747 } 3748 3749 // An external user of the penultimate value need to see EndValue - Step. 3750 // The simplest way to get this is to recompute it from the constituent SCEVs, 3751 // that is Start + (Step * (CRD - 1)). 3752 for (User *U : OrigPhi->users()) { 3753 auto *UI = cast<Instruction>(U); 3754 if (!OrigLoop->contains(UI)) { 3755 const DataLayout &DL = 3756 OrigLoop->getHeader()->getModule()->getDataLayout(); 3757 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3758 3759 IRBuilder<> B(MiddleBlock->getTerminator()); 3760 3761 // Fast-math-flags propagate from the original induction instruction. 3762 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3763 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3764 3765 Value *CountMinusOne = B.CreateSub( 3766 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3767 Value *CMO = 3768 !II.getStep()->getType()->isIntegerTy() 3769 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3770 II.getStep()->getType()) 3771 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3772 CMO->setName("cast.cmo"); 3773 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3774 Escape->setName("ind.escape"); 3775 MissingVals[UI] = Escape; 3776 } 3777 } 3778 3779 for (auto &I : MissingVals) { 3780 PHINode *PHI = cast<PHINode>(I.first); 3781 // One corner case we have to handle is two IVs "chasing" each-other, 3782 // that is %IV2 = phi [...], [ %IV1, %latch ] 3783 // In this case, if IV1 has an external use, we need to avoid adding both 3784 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3785 // don't already have an incoming value for the middle block. 3786 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3787 PHI->addIncoming(I.second, MiddleBlock); 3788 } 3789 } 3790 3791 namespace { 3792 3793 struct CSEDenseMapInfo { 3794 static bool canHandle(const Instruction *I) { 3795 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3796 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3797 } 3798 3799 static inline Instruction *getEmptyKey() { 3800 return DenseMapInfo<Instruction *>::getEmptyKey(); 3801 } 3802 3803 static inline Instruction *getTombstoneKey() { 3804 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3805 } 3806 3807 static unsigned getHashValue(const Instruction *I) { 3808 assert(canHandle(I) && "Unknown instruction!"); 3809 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3810 I->value_op_end())); 3811 } 3812 3813 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3814 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3815 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3816 return LHS == RHS; 3817 return LHS->isIdenticalTo(RHS); 3818 } 3819 }; 3820 3821 } // end anonymous namespace 3822 3823 ///Perform cse of induction variable instructions. 3824 static void cse(BasicBlock *BB) { 3825 // Perform simple cse. 3826 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3827 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3828 Instruction *In = &*I++; 3829 3830 if (!CSEDenseMapInfo::canHandle(In)) 3831 continue; 3832 3833 // Check if we can replace this instruction with any of the 3834 // visited instructions. 3835 if (Instruction *V = CSEMap.lookup(In)) { 3836 In->replaceAllUsesWith(V); 3837 In->eraseFromParent(); 3838 continue; 3839 } 3840 3841 CSEMap[In] = In; 3842 } 3843 } 3844 3845 InstructionCost 3846 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3847 bool &NeedToScalarize) const { 3848 Function *F = CI->getCalledFunction(); 3849 Type *ScalarRetTy = CI->getType(); 3850 SmallVector<Type *, 4> Tys, ScalarTys; 3851 for (auto &ArgOp : CI->arg_operands()) 3852 ScalarTys.push_back(ArgOp->getType()); 3853 3854 // Estimate cost of scalarized vector call. The source operands are assumed 3855 // to be vectors, so we need to extract individual elements from there, 3856 // execute VF scalar calls, and then gather the result into the vector return 3857 // value. 3858 InstructionCost ScalarCallCost = 3859 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3860 if (VF.isScalar()) 3861 return ScalarCallCost; 3862 3863 // Compute corresponding vector type for return value and arguments. 3864 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3865 for (Type *ScalarTy : ScalarTys) 3866 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3867 3868 // Compute costs of unpacking argument values for the scalar calls and 3869 // packing the return values to a vector. 3870 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3871 3872 InstructionCost Cost = 3873 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3874 3875 // If we can't emit a vector call for this function, then the currently found 3876 // cost is the cost we need to return. 3877 NeedToScalarize = true; 3878 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3879 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3880 3881 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3882 return Cost; 3883 3884 // If the corresponding vector cost is cheaper, return its cost. 3885 InstructionCost VectorCallCost = 3886 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3887 if (VectorCallCost < Cost) { 3888 NeedToScalarize = false; 3889 Cost = VectorCallCost; 3890 } 3891 return Cost; 3892 } 3893 3894 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3895 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3896 return Elt; 3897 return VectorType::get(Elt, VF); 3898 } 3899 3900 InstructionCost 3901 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3902 ElementCount VF) const { 3903 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3904 assert(ID && "Expected intrinsic call!"); 3905 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3906 FastMathFlags FMF; 3907 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3908 FMF = FPMO->getFastMathFlags(); 3909 3910 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3911 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3912 SmallVector<Type *> ParamTys; 3913 std::transform(FTy->param_begin(), FTy->param_end(), 3914 std::back_inserter(ParamTys), 3915 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3916 3917 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3918 dyn_cast<IntrinsicInst>(CI)); 3919 return TTI.getIntrinsicInstrCost(CostAttrs, 3920 TargetTransformInfo::TCK_RecipThroughput); 3921 } 3922 3923 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3924 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3925 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3926 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3927 } 3928 3929 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3930 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3931 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3932 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3933 } 3934 3935 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3936 // For every instruction `I` in MinBWs, truncate the operands, create a 3937 // truncated version of `I` and reextend its result. InstCombine runs 3938 // later and will remove any ext/trunc pairs. 3939 SmallPtrSet<Value *, 4> Erased; 3940 for (const auto &KV : Cost->getMinimalBitwidths()) { 3941 // If the value wasn't vectorized, we must maintain the original scalar 3942 // type. The absence of the value from State indicates that it 3943 // wasn't vectorized. 3944 VPValue *Def = State.Plan->getVPValue(KV.first); 3945 if (!State.hasAnyVectorValue(Def)) 3946 continue; 3947 for (unsigned Part = 0; Part < UF; ++Part) { 3948 Value *I = State.get(Def, Part); 3949 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3950 continue; 3951 Type *OriginalTy = I->getType(); 3952 Type *ScalarTruncatedTy = 3953 IntegerType::get(OriginalTy->getContext(), KV.second); 3954 auto *TruncatedTy = FixedVectorType::get( 3955 ScalarTruncatedTy, 3956 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3957 if (TruncatedTy == OriginalTy) 3958 continue; 3959 3960 IRBuilder<> B(cast<Instruction>(I)); 3961 auto ShrinkOperand = [&](Value *V) -> Value * { 3962 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3963 if (ZI->getSrcTy() == TruncatedTy) 3964 return ZI->getOperand(0); 3965 return B.CreateZExtOrTrunc(V, TruncatedTy); 3966 }; 3967 3968 // The actual instruction modification depends on the instruction type, 3969 // unfortunately. 3970 Value *NewI = nullptr; 3971 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3972 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3973 ShrinkOperand(BO->getOperand(1))); 3974 3975 // Any wrapping introduced by shrinking this operation shouldn't be 3976 // considered undefined behavior. So, we can't unconditionally copy 3977 // arithmetic wrapping flags to NewI. 3978 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3979 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3980 NewI = 3981 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3982 ShrinkOperand(CI->getOperand(1))); 3983 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3984 NewI = B.CreateSelect(SI->getCondition(), 3985 ShrinkOperand(SI->getTrueValue()), 3986 ShrinkOperand(SI->getFalseValue())); 3987 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3988 switch (CI->getOpcode()) { 3989 default: 3990 llvm_unreachable("Unhandled cast!"); 3991 case Instruction::Trunc: 3992 NewI = ShrinkOperand(CI->getOperand(0)); 3993 break; 3994 case Instruction::SExt: 3995 NewI = B.CreateSExtOrTrunc( 3996 CI->getOperand(0), 3997 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3998 break; 3999 case Instruction::ZExt: 4000 NewI = B.CreateZExtOrTrunc( 4001 CI->getOperand(0), 4002 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4003 break; 4004 } 4005 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4006 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 4007 ->getNumElements(); 4008 auto *O0 = B.CreateZExtOrTrunc( 4009 SI->getOperand(0), 4010 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 4011 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 4012 ->getNumElements(); 4013 auto *O1 = B.CreateZExtOrTrunc( 4014 SI->getOperand(1), 4015 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 4016 4017 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4018 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4019 // Don't do anything with the operands, just extend the result. 4020 continue; 4021 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4022 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 4023 ->getNumElements(); 4024 auto *O0 = B.CreateZExtOrTrunc( 4025 IE->getOperand(0), 4026 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4027 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4028 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4029 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4030 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4031 ->getNumElements(); 4032 auto *O0 = B.CreateZExtOrTrunc( 4033 EE->getOperand(0), 4034 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4035 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4036 } else { 4037 // If we don't know what to do, be conservative and don't do anything. 4038 continue; 4039 } 4040 4041 // Lastly, extend the result. 4042 NewI->takeName(cast<Instruction>(I)); 4043 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4044 I->replaceAllUsesWith(Res); 4045 cast<Instruction>(I)->eraseFromParent(); 4046 Erased.insert(I); 4047 State.reset(Def, Res, Part); 4048 } 4049 } 4050 4051 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4052 for (const auto &KV : Cost->getMinimalBitwidths()) { 4053 // If the value wasn't vectorized, we must maintain the original scalar 4054 // type. The absence of the value from State indicates that it 4055 // wasn't vectorized. 4056 VPValue *Def = State.Plan->getVPValue(KV.first); 4057 if (!State.hasAnyVectorValue(Def)) 4058 continue; 4059 for (unsigned Part = 0; Part < UF; ++Part) { 4060 Value *I = State.get(Def, Part); 4061 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4062 if (Inst && Inst->use_empty()) { 4063 Value *NewI = Inst->getOperand(0); 4064 Inst->eraseFromParent(); 4065 State.reset(Def, NewI, Part); 4066 } 4067 } 4068 } 4069 } 4070 4071 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4072 // Insert truncates and extends for any truncated instructions as hints to 4073 // InstCombine. 4074 if (VF.isVector()) 4075 truncateToMinimalBitwidths(State); 4076 4077 // Fix widened non-induction PHIs by setting up the PHI operands. 4078 if (OrigPHIsToFix.size()) { 4079 assert(EnableVPlanNativePath && 4080 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4081 fixNonInductionPHIs(State); 4082 } 4083 4084 // At this point every instruction in the original loop is widened to a 4085 // vector form. Now we need to fix the recurrences in the loop. These PHI 4086 // nodes are currently empty because we did not want to introduce cycles. 4087 // This is the second stage of vectorizing recurrences. 4088 fixCrossIterationPHIs(State); 4089 4090 // Forget the original basic block. 4091 PSE.getSE()->forgetLoop(OrigLoop); 4092 4093 // Fix-up external users of the induction variables. 4094 for (auto &Entry : Legal->getInductionVars()) 4095 fixupIVUsers(Entry.first, Entry.second, 4096 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4097 IVEndValues[Entry.first], LoopMiddleBlock); 4098 4099 fixLCSSAPHIs(State); 4100 for (Instruction *PI : PredicatedInstructions) 4101 sinkScalarOperands(&*PI); 4102 4103 // Remove redundant induction instructions. 4104 cse(LoopVectorBody); 4105 4106 // Set/update profile weights for the vector and remainder loops as original 4107 // loop iterations are now distributed among them. Note that original loop 4108 // represented by LoopScalarBody becomes remainder loop after vectorization. 4109 // 4110 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4111 // end up getting slightly roughened result but that should be OK since 4112 // profile is not inherently precise anyway. Note also possible bypass of 4113 // vector code caused by legality checks is ignored, assigning all the weight 4114 // to the vector loop, optimistically. 4115 // 4116 // For scalable vectorization we can't know at compile time how many iterations 4117 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4118 // vscale of '1'. 4119 setProfileInfoAfterUnrolling( 4120 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4121 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4122 } 4123 4124 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4125 // In order to support recurrences we need to be able to vectorize Phi nodes. 4126 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4127 // stage #2: We now need to fix the recurrences by adding incoming edges to 4128 // the currently empty PHI nodes. At this point every instruction in the 4129 // original loop is widened to a vector form so we can use them to construct 4130 // the incoming edges. 4131 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4132 for (VPRecipeBase &R : Header->phis()) { 4133 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4134 if (!PhiR) 4135 continue; 4136 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4137 if (PhiR->getRecurrenceDescriptor()) { 4138 fixReduction(PhiR, State); 4139 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4140 fixFirstOrderRecurrence(OrigPhi, State); 4141 } 4142 } 4143 4144 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4145 VPTransformState &State) { 4146 // This is the second phase of vectorizing first-order recurrences. An 4147 // overview of the transformation is described below. Suppose we have the 4148 // following loop. 4149 // 4150 // for (int i = 0; i < n; ++i) 4151 // b[i] = a[i] - a[i - 1]; 4152 // 4153 // There is a first-order recurrence on "a". For this loop, the shorthand 4154 // scalar IR looks like: 4155 // 4156 // scalar.ph: 4157 // s_init = a[-1] 4158 // br scalar.body 4159 // 4160 // scalar.body: 4161 // i = phi [0, scalar.ph], [i+1, scalar.body] 4162 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4163 // s2 = a[i] 4164 // b[i] = s2 - s1 4165 // br cond, scalar.body, ... 4166 // 4167 // In this example, s1 is a recurrence because it's value depends on the 4168 // previous iteration. In the first phase of vectorization, we created a 4169 // temporary value for s1. We now complete the vectorization and produce the 4170 // shorthand vector IR shown below (for VF = 4, UF = 1). 4171 // 4172 // vector.ph: 4173 // v_init = vector(..., ..., ..., a[-1]) 4174 // br vector.body 4175 // 4176 // vector.body 4177 // i = phi [0, vector.ph], [i+4, vector.body] 4178 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4179 // v2 = a[i, i+1, i+2, i+3]; 4180 // v3 = vector(v1(3), v2(0, 1, 2)) 4181 // b[i, i+1, i+2, i+3] = v2 - v3 4182 // br cond, vector.body, middle.block 4183 // 4184 // middle.block: 4185 // x = v2(3) 4186 // br scalar.ph 4187 // 4188 // scalar.ph: 4189 // s_init = phi [x, middle.block], [a[-1], otherwise] 4190 // br scalar.body 4191 // 4192 // After execution completes the vector loop, we extract the next value of 4193 // the recurrence (x) to use as the initial value in the scalar loop. 4194 4195 // Get the original loop preheader and single loop latch. 4196 auto *Preheader = OrigLoop->getLoopPreheader(); 4197 auto *Latch = OrigLoop->getLoopLatch(); 4198 4199 // Get the initial and previous values of the scalar recurrence. 4200 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4201 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4202 4203 auto *IdxTy = Builder.getInt32Ty(); 4204 auto *One = ConstantInt::get(IdxTy, 1); 4205 4206 // Create a vector from the initial value. 4207 auto *VectorInit = ScalarInit; 4208 if (VF.isVector()) { 4209 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4210 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4211 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4212 VectorInit = Builder.CreateInsertElement( 4213 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4214 VectorInit, LastIdx, "vector.recur.init"); 4215 } 4216 4217 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4218 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4219 // We constructed a temporary phi node in the first phase of vectorization. 4220 // This phi node will eventually be deleted. 4221 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4222 4223 // Create a phi node for the new recurrence. The current value will either be 4224 // the initial value inserted into a vector or loop-varying vector value. 4225 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4226 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4227 4228 // Get the vectorized previous value of the last part UF - 1. It appears last 4229 // among all unrolled iterations, due to the order of their construction. 4230 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4231 4232 // Find and set the insertion point after the previous value if it is an 4233 // instruction. 4234 BasicBlock::iterator InsertPt; 4235 // Note that the previous value may have been constant-folded so it is not 4236 // guaranteed to be an instruction in the vector loop. 4237 // FIXME: Loop invariant values do not form recurrences. We should deal with 4238 // them earlier. 4239 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4240 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4241 else { 4242 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4243 if (isa<PHINode>(PreviousLastPart)) 4244 // If the previous value is a phi node, we should insert after all the phi 4245 // nodes in the block containing the PHI to avoid breaking basic block 4246 // verification. Note that the basic block may be different to 4247 // LoopVectorBody, in case we predicate the loop. 4248 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4249 else 4250 InsertPt = ++PreviousInst->getIterator(); 4251 } 4252 Builder.SetInsertPoint(&*InsertPt); 4253 4254 // The vector from which to take the initial value for the current iteration 4255 // (actual or unrolled). Initially, this is the vector phi node. 4256 Value *Incoming = VecPhi; 4257 4258 // Shuffle the current and previous vector and update the vector parts. 4259 for (unsigned Part = 0; Part < UF; ++Part) { 4260 Value *PreviousPart = State.get(PreviousDef, Part); 4261 Value *PhiPart = State.get(PhiDef, Part); 4262 auto *Shuffle = VF.isVector() 4263 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4264 : Incoming; 4265 PhiPart->replaceAllUsesWith(Shuffle); 4266 cast<Instruction>(PhiPart)->eraseFromParent(); 4267 State.reset(PhiDef, Shuffle, Part); 4268 Incoming = PreviousPart; 4269 } 4270 4271 // Fix the latch value of the new recurrence in the vector loop. 4272 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4273 4274 // Extract the last vector element in the middle block. This will be the 4275 // initial value for the recurrence when jumping to the scalar loop. 4276 auto *ExtractForScalar = Incoming; 4277 if (VF.isVector()) { 4278 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4279 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4280 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4281 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4282 "vector.recur.extract"); 4283 } 4284 // Extract the second last element in the middle block if the 4285 // Phi is used outside the loop. We need to extract the phi itself 4286 // and not the last element (the phi update in the current iteration). This 4287 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4288 // when the scalar loop is not run at all. 4289 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4290 if (VF.isVector()) { 4291 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4292 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4293 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4294 Incoming, Idx, "vector.recur.extract.for.phi"); 4295 } else if (UF > 1) 4296 // When loop is unrolled without vectorizing, initialize 4297 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4298 // of `Incoming`. This is analogous to the vectorized case above: extracting 4299 // the second last element when VF > 1. 4300 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4301 4302 // Fix the initial value of the original recurrence in the scalar loop. 4303 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4304 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4305 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4306 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4307 Start->addIncoming(Incoming, BB); 4308 } 4309 4310 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4311 Phi->setName("scalar.recur"); 4312 4313 // Finally, fix users of the recurrence outside the loop. The users will need 4314 // either the last value of the scalar recurrence or the last value of the 4315 // vector recurrence we extracted in the middle block. Since the loop is in 4316 // LCSSA form, we just need to find all the phi nodes for the original scalar 4317 // recurrence in the exit block, and then add an edge for the middle block. 4318 // Note that LCSSA does not imply single entry when the original scalar loop 4319 // had multiple exiting edges (as we always run the last iteration in the 4320 // scalar epilogue); in that case, the exiting path through middle will be 4321 // dynamically dead and the value picked for the phi doesn't matter. 4322 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4323 if (any_of(LCSSAPhi.incoming_values(), 4324 [Phi](Value *V) { return V == Phi; })) 4325 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4326 } 4327 4328 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR, 4329 VPTransformState &State) { 4330 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4331 // Get it's reduction variable descriptor. 4332 assert(Legal->isReductionVariable(OrigPhi) && 4333 "Unable to find the reduction variable"); 4334 const RecurrenceDescriptor &RdxDesc = *PhiR->getRecurrenceDescriptor(); 4335 4336 RecurKind RK = RdxDesc.getRecurrenceKind(); 4337 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4338 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4339 setDebugLocFromInst(Builder, ReductionStartValue); 4340 bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi); 4341 4342 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4343 // This is the vector-clone of the value that leaves the loop. 4344 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4345 4346 // Wrap flags are in general invalid after vectorization, clear them. 4347 clearReductionWrapFlags(RdxDesc, State); 4348 4349 // Fix the vector-loop phi. 4350 4351 // Reductions do not have to start at zero. They can start with 4352 // any loop invariant values. 4353 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4354 4355 bool IsOrdered = State.VF.isVector() && IsInLoopReductionPhi && 4356 Cost->useOrderedReductions(RdxDesc); 4357 4358 for (unsigned Part = 0; Part < UF; ++Part) { 4359 if (IsOrdered && Part > 0) 4360 break; 4361 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4362 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4363 if (IsOrdered) 4364 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4365 4366 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4367 } 4368 4369 // Before each round, move the insertion point right between 4370 // the PHIs and the values we are going to write. 4371 // This allows us to write both PHINodes and the extractelement 4372 // instructions. 4373 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4374 4375 setDebugLocFromInst(Builder, LoopExitInst); 4376 4377 Type *PhiTy = OrigPhi->getType(); 4378 // If tail is folded by masking, the vector value to leave the loop should be 4379 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4380 // instead of the former. For an inloop reduction the reduction will already 4381 // be predicated, and does not need to be handled here. 4382 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4383 for (unsigned Part = 0; Part < UF; ++Part) { 4384 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4385 Value *Sel = nullptr; 4386 for (User *U : VecLoopExitInst->users()) { 4387 if (isa<SelectInst>(U)) { 4388 assert(!Sel && "Reduction exit feeding two selects"); 4389 Sel = U; 4390 } else 4391 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4392 } 4393 assert(Sel && "Reduction exit feeds no select"); 4394 State.reset(LoopExitInstDef, Sel, Part); 4395 4396 // If the target can create a predicated operator for the reduction at no 4397 // extra cost in the loop (for example a predicated vadd), it can be 4398 // cheaper for the select to remain in the loop than be sunk out of it, 4399 // and so use the select value for the phi instead of the old 4400 // LoopExitValue. 4401 if (PreferPredicatedReductionSelect || 4402 TTI->preferPredicatedReductionSelect( 4403 RdxDesc.getOpcode(), PhiTy, 4404 TargetTransformInfo::ReductionFlags())) { 4405 auto *VecRdxPhi = 4406 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4407 VecRdxPhi->setIncomingValueForBlock( 4408 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4409 } 4410 } 4411 } 4412 4413 // If the vector reduction can be performed in a smaller type, we truncate 4414 // then extend the loop exit value to enable InstCombine to evaluate the 4415 // entire expression in the smaller type. 4416 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4417 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4418 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4419 Builder.SetInsertPoint( 4420 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4421 VectorParts RdxParts(UF); 4422 for (unsigned Part = 0; Part < UF; ++Part) { 4423 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4424 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4425 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4426 : Builder.CreateZExt(Trunc, VecTy); 4427 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4428 UI != RdxParts[Part]->user_end();) 4429 if (*UI != Trunc) { 4430 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4431 RdxParts[Part] = Extnd; 4432 } else { 4433 ++UI; 4434 } 4435 } 4436 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4437 for (unsigned Part = 0; Part < UF; ++Part) { 4438 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4439 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4440 } 4441 } 4442 4443 // Reduce all of the unrolled parts into a single vector. 4444 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4445 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4446 4447 // The middle block terminator has already been assigned a DebugLoc here (the 4448 // OrigLoop's single latch terminator). We want the whole middle block to 4449 // appear to execute on this line because: (a) it is all compiler generated, 4450 // (b) these instructions are always executed after evaluating the latch 4451 // conditional branch, and (c) other passes may add new predecessors which 4452 // terminate on this line. This is the easiest way to ensure we don't 4453 // accidentally cause an extra step back into the loop while debugging. 4454 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4455 if (IsOrdered) 4456 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4457 else { 4458 // Floating-point operations should have some FMF to enable the reduction. 4459 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4460 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4461 for (unsigned Part = 1; Part < UF; ++Part) { 4462 Value *RdxPart = State.get(LoopExitInstDef, Part); 4463 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4464 ReducedPartRdx = Builder.CreateBinOp( 4465 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4466 } else { 4467 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4468 } 4469 } 4470 } 4471 4472 // Create the reduction after the loop. Note that inloop reductions create the 4473 // target reduction in the loop using a Reduction recipe. 4474 if (VF.isVector() && !IsInLoopReductionPhi) { 4475 ReducedPartRdx = 4476 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4477 // If the reduction can be performed in a smaller type, we need to extend 4478 // the reduction to the wider type before we branch to the original loop. 4479 if (PhiTy != RdxDesc.getRecurrenceType()) 4480 ReducedPartRdx = RdxDesc.isSigned() 4481 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4482 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4483 } 4484 4485 // Create a phi node that merges control-flow from the backedge-taken check 4486 // block and the middle block. 4487 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4488 LoopScalarPreHeader->getTerminator()); 4489 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4490 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4491 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4492 4493 // Now, we need to fix the users of the reduction variable 4494 // inside and outside of the scalar remainder loop. 4495 4496 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4497 // in the exit blocks. See comment on analogous loop in 4498 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4499 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4500 if (any_of(LCSSAPhi.incoming_values(), 4501 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4502 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4503 4504 // Fix the scalar loop reduction variable with the incoming reduction sum 4505 // from the vector body and from the backedge value. 4506 int IncomingEdgeBlockIdx = 4507 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4508 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4509 // Pick the other block. 4510 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4511 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4512 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4513 } 4514 4515 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4516 VPTransformState &State) { 4517 RecurKind RK = RdxDesc.getRecurrenceKind(); 4518 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4519 return; 4520 4521 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4522 assert(LoopExitInstr && "null loop exit instruction"); 4523 SmallVector<Instruction *, 8> Worklist; 4524 SmallPtrSet<Instruction *, 8> Visited; 4525 Worklist.push_back(LoopExitInstr); 4526 Visited.insert(LoopExitInstr); 4527 4528 while (!Worklist.empty()) { 4529 Instruction *Cur = Worklist.pop_back_val(); 4530 if (isa<OverflowingBinaryOperator>(Cur)) 4531 for (unsigned Part = 0; Part < UF; ++Part) { 4532 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4533 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4534 } 4535 4536 for (User *U : Cur->users()) { 4537 Instruction *UI = cast<Instruction>(U); 4538 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4539 Visited.insert(UI).second) 4540 Worklist.push_back(UI); 4541 } 4542 } 4543 } 4544 4545 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4546 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4547 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4548 // Some phis were already hand updated by the reduction and recurrence 4549 // code above, leave them alone. 4550 continue; 4551 4552 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4553 // Non-instruction incoming values will have only one value. 4554 4555 VPLane Lane = VPLane::getFirstLane(); 4556 if (isa<Instruction>(IncomingValue) && 4557 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4558 VF)) 4559 Lane = VPLane::getLastLaneForVF(VF); 4560 4561 // Can be a loop invariant incoming value or the last scalar value to be 4562 // extracted from the vectorized loop. 4563 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4564 Value *lastIncomingValue = 4565 OrigLoop->isLoopInvariant(IncomingValue) 4566 ? IncomingValue 4567 : State.get(State.Plan->getVPValue(IncomingValue), 4568 VPIteration(UF - 1, Lane)); 4569 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4570 } 4571 } 4572 4573 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4574 // The basic block and loop containing the predicated instruction. 4575 auto *PredBB = PredInst->getParent(); 4576 auto *VectorLoop = LI->getLoopFor(PredBB); 4577 4578 // Initialize a worklist with the operands of the predicated instruction. 4579 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4580 4581 // Holds instructions that we need to analyze again. An instruction may be 4582 // reanalyzed if we don't yet know if we can sink it or not. 4583 SmallVector<Instruction *, 8> InstsToReanalyze; 4584 4585 // Returns true if a given use occurs in the predicated block. Phi nodes use 4586 // their operands in their corresponding predecessor blocks. 4587 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4588 auto *I = cast<Instruction>(U.getUser()); 4589 BasicBlock *BB = I->getParent(); 4590 if (auto *Phi = dyn_cast<PHINode>(I)) 4591 BB = Phi->getIncomingBlock( 4592 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4593 return BB == PredBB; 4594 }; 4595 4596 // Iteratively sink the scalarized operands of the predicated instruction 4597 // into the block we created for it. When an instruction is sunk, it's 4598 // operands are then added to the worklist. The algorithm ends after one pass 4599 // through the worklist doesn't sink a single instruction. 4600 bool Changed; 4601 do { 4602 // Add the instructions that need to be reanalyzed to the worklist, and 4603 // reset the changed indicator. 4604 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4605 InstsToReanalyze.clear(); 4606 Changed = false; 4607 4608 while (!Worklist.empty()) { 4609 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4610 4611 // We can't sink an instruction if it is a phi node, is not in the loop, 4612 // or may have side effects. 4613 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4614 I->mayHaveSideEffects()) 4615 continue; 4616 4617 // If the instruction is already in PredBB, check if we can sink its 4618 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4619 // sinking the scalar instruction I, hence it appears in PredBB; but it 4620 // may have failed to sink I's operands (recursively), which we try 4621 // (again) here. 4622 if (I->getParent() == PredBB) { 4623 Worklist.insert(I->op_begin(), I->op_end()); 4624 continue; 4625 } 4626 4627 // It's legal to sink the instruction if all its uses occur in the 4628 // predicated block. Otherwise, there's nothing to do yet, and we may 4629 // need to reanalyze the instruction. 4630 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4631 InstsToReanalyze.push_back(I); 4632 continue; 4633 } 4634 4635 // Move the instruction to the beginning of the predicated block, and add 4636 // it's operands to the worklist. 4637 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4638 Worklist.insert(I->op_begin(), I->op_end()); 4639 4640 // The sinking may have enabled other instructions to be sunk, so we will 4641 // need to iterate. 4642 Changed = true; 4643 } 4644 } while (Changed); 4645 } 4646 4647 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4648 for (PHINode *OrigPhi : OrigPHIsToFix) { 4649 VPWidenPHIRecipe *VPPhi = 4650 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4651 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4652 // Make sure the builder has a valid insert point. 4653 Builder.SetInsertPoint(NewPhi); 4654 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4655 VPValue *Inc = VPPhi->getIncomingValue(i); 4656 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4657 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4658 } 4659 } 4660 } 4661 4662 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4663 return Cost->useOrderedReductions(RdxDesc); 4664 } 4665 4666 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4667 VPUser &Operands, unsigned UF, 4668 ElementCount VF, bool IsPtrLoopInvariant, 4669 SmallBitVector &IsIndexLoopInvariant, 4670 VPTransformState &State) { 4671 // Construct a vector GEP by widening the operands of the scalar GEP as 4672 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4673 // results in a vector of pointers when at least one operand of the GEP 4674 // is vector-typed. Thus, to keep the representation compact, we only use 4675 // vector-typed operands for loop-varying values. 4676 4677 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4678 // If we are vectorizing, but the GEP has only loop-invariant operands, 4679 // the GEP we build (by only using vector-typed operands for 4680 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4681 // produce a vector of pointers, we need to either arbitrarily pick an 4682 // operand to broadcast, or broadcast a clone of the original GEP. 4683 // Here, we broadcast a clone of the original. 4684 // 4685 // TODO: If at some point we decide to scalarize instructions having 4686 // loop-invariant operands, this special case will no longer be 4687 // required. We would add the scalarization decision to 4688 // collectLoopScalars() and teach getVectorValue() to broadcast 4689 // the lane-zero scalar value. 4690 auto *Clone = Builder.Insert(GEP->clone()); 4691 for (unsigned Part = 0; Part < UF; ++Part) { 4692 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4693 State.set(VPDef, EntryPart, Part); 4694 addMetadata(EntryPart, GEP); 4695 } 4696 } else { 4697 // If the GEP has at least one loop-varying operand, we are sure to 4698 // produce a vector of pointers. But if we are only unrolling, we want 4699 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4700 // produce with the code below will be scalar (if VF == 1) or vector 4701 // (otherwise). Note that for the unroll-only case, we still maintain 4702 // values in the vector mapping with initVector, as we do for other 4703 // instructions. 4704 for (unsigned Part = 0; Part < UF; ++Part) { 4705 // The pointer operand of the new GEP. If it's loop-invariant, we 4706 // won't broadcast it. 4707 auto *Ptr = IsPtrLoopInvariant 4708 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4709 : State.get(Operands.getOperand(0), Part); 4710 4711 // Collect all the indices for the new GEP. If any index is 4712 // loop-invariant, we won't broadcast it. 4713 SmallVector<Value *, 4> Indices; 4714 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4715 VPValue *Operand = Operands.getOperand(I); 4716 if (IsIndexLoopInvariant[I - 1]) 4717 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4718 else 4719 Indices.push_back(State.get(Operand, Part)); 4720 } 4721 4722 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4723 // but it should be a vector, otherwise. 4724 auto *NewGEP = 4725 GEP->isInBounds() 4726 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4727 Indices) 4728 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4729 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4730 "NewGEP is not a pointer vector"); 4731 State.set(VPDef, NewGEP, Part); 4732 addMetadata(NewGEP, GEP); 4733 } 4734 } 4735 } 4736 4737 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4738 RecurrenceDescriptor *RdxDesc, 4739 VPWidenPHIRecipe *PhiR, 4740 VPTransformState &State) { 4741 PHINode *P = cast<PHINode>(PN); 4742 if (EnableVPlanNativePath) { 4743 // Currently we enter here in the VPlan-native path for non-induction 4744 // PHIs where all control flow is uniform. We simply widen these PHIs. 4745 // Create a vector phi with no operands - the vector phi operands will be 4746 // set at the end of vector code generation. 4747 Type *VecTy = (State.VF.isScalar()) 4748 ? PN->getType() 4749 : VectorType::get(PN->getType(), State.VF); 4750 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4751 State.set(PhiR, VecPhi, 0); 4752 OrigPHIsToFix.push_back(P); 4753 4754 return; 4755 } 4756 4757 assert(PN->getParent() == OrigLoop->getHeader() && 4758 "Non-header phis should have been handled elsewhere"); 4759 4760 VPValue *StartVPV = PhiR->getStartValue(); 4761 Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr; 4762 // In order to support recurrences we need to be able to vectorize Phi nodes. 4763 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4764 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4765 // this value when we vectorize all of the instructions that use the PHI. 4766 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4767 Value *Iden = nullptr; 4768 bool ScalarPHI = 4769 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4770 Type *VecTy = 4771 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4772 4773 if (RdxDesc) { 4774 assert(Legal->isReductionVariable(P) && StartV && 4775 "RdxDesc should only be set for reduction variables; in that case " 4776 "a StartV is also required"); 4777 RecurKind RK = RdxDesc->getRecurrenceKind(); 4778 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4779 // MinMax reduction have the start value as their identify. 4780 if (ScalarPHI) { 4781 Iden = StartV; 4782 } else { 4783 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4784 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4785 StartV = Iden = 4786 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4787 } 4788 } else { 4789 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4790 RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags()); 4791 Iden = IdenC; 4792 4793 if (!ScalarPHI) { 4794 Iden = ConstantVector::getSplat(State.VF, IdenC); 4795 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4796 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4797 Constant *Zero = Builder.getInt32(0); 4798 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4799 } 4800 } 4801 } 4802 4803 bool IsOrdered = State.VF.isVector() && 4804 Cost->isInLoopReduction(cast<PHINode>(PN)) && 4805 Cost->useOrderedReductions(*RdxDesc); 4806 4807 for (unsigned Part = 0; Part < State.UF; ++Part) { 4808 // This is phase one of vectorizing PHIs. 4809 if (Part > 0 && IsOrdered) 4810 return; 4811 Value *EntryPart = PHINode::Create( 4812 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4813 State.set(PhiR, EntryPart, Part); 4814 if (StartV) { 4815 // Make sure to add the reduction start value only to the 4816 // first unroll part. 4817 Value *StartVal = (Part == 0) ? StartV : Iden; 4818 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4819 } 4820 } 4821 return; 4822 } 4823 4824 assert(!Legal->isReductionVariable(P) && 4825 "reductions should be handled above"); 4826 4827 setDebugLocFromInst(Builder, P); 4828 4829 // This PHINode must be an induction variable. 4830 // Make sure that we know about it. 4831 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4832 4833 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4834 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4835 4836 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4837 // which can be found from the original scalar operations. 4838 switch (II.getKind()) { 4839 case InductionDescriptor::IK_NoInduction: 4840 llvm_unreachable("Unknown induction"); 4841 case InductionDescriptor::IK_IntInduction: 4842 case InductionDescriptor::IK_FpInduction: 4843 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4844 case InductionDescriptor::IK_PtrInduction: { 4845 // Handle the pointer induction variable case. 4846 assert(P->getType()->isPointerTy() && "Unexpected type."); 4847 4848 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4849 // This is the normalized GEP that starts counting at zero. 4850 Value *PtrInd = 4851 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4852 // Determine the number of scalars we need to generate for each unroll 4853 // iteration. If the instruction is uniform, we only need to generate the 4854 // first lane. Otherwise, we generate all VF values. 4855 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4856 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4857 4858 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4859 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4860 if (NeedsVectorIndex) { 4861 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4862 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4863 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4864 } 4865 4866 for (unsigned Part = 0; Part < UF; ++Part) { 4867 Value *PartStart = createStepForVF( 4868 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4869 4870 if (NeedsVectorIndex) { 4871 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4872 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4873 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4874 Value *SclrGep = 4875 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4876 SclrGep->setName("next.gep"); 4877 State.set(PhiR, SclrGep, Part); 4878 // We've cached the whole vector, which means we can support the 4879 // extraction of any lane. 4880 continue; 4881 } 4882 4883 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4884 Value *Idx = Builder.CreateAdd( 4885 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4886 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4887 Value *SclrGep = 4888 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4889 SclrGep->setName("next.gep"); 4890 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4891 } 4892 } 4893 return; 4894 } 4895 assert(isa<SCEVConstant>(II.getStep()) && 4896 "Induction step not a SCEV constant!"); 4897 Type *PhiType = II.getStep()->getType(); 4898 4899 // Build a pointer phi 4900 Value *ScalarStartValue = II.getStartValue(); 4901 Type *ScStValueType = ScalarStartValue->getType(); 4902 PHINode *NewPointerPhi = 4903 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4904 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4905 4906 // A pointer induction, performed by using a gep 4907 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4908 Instruction *InductionLoc = LoopLatch->getTerminator(); 4909 const SCEV *ScalarStep = II.getStep(); 4910 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4911 Value *ScalarStepValue = 4912 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4913 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4914 Value *NumUnrolledElems = 4915 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4916 Value *InductionGEP = GetElementPtrInst::Create( 4917 ScStValueType->getPointerElementType(), NewPointerPhi, 4918 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4919 InductionLoc); 4920 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4921 4922 // Create UF many actual address geps that use the pointer 4923 // phi as base and a vectorized version of the step value 4924 // (<step*0, ..., step*N>) as offset. 4925 for (unsigned Part = 0; Part < State.UF; ++Part) { 4926 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4927 Value *StartOffsetScalar = 4928 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4929 Value *StartOffset = 4930 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4931 // Create a vector of consecutive numbers from zero to VF. 4932 StartOffset = 4933 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4934 4935 Value *GEP = Builder.CreateGEP( 4936 ScStValueType->getPointerElementType(), NewPointerPhi, 4937 Builder.CreateMul( 4938 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4939 "vector.gep")); 4940 State.set(PhiR, GEP, Part); 4941 } 4942 } 4943 } 4944 } 4945 4946 /// A helper function for checking whether an integer division-related 4947 /// instruction may divide by zero (in which case it must be predicated if 4948 /// executed conditionally in the scalar code). 4949 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4950 /// Non-zero divisors that are non compile-time constants will not be 4951 /// converted into multiplication, so we will still end up scalarizing 4952 /// the division, but can do so w/o predication. 4953 static bool mayDivideByZero(Instruction &I) { 4954 assert((I.getOpcode() == Instruction::UDiv || 4955 I.getOpcode() == Instruction::SDiv || 4956 I.getOpcode() == Instruction::URem || 4957 I.getOpcode() == Instruction::SRem) && 4958 "Unexpected instruction"); 4959 Value *Divisor = I.getOperand(1); 4960 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4961 return !CInt || CInt->isZero(); 4962 } 4963 4964 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4965 VPUser &User, 4966 VPTransformState &State) { 4967 switch (I.getOpcode()) { 4968 case Instruction::Call: 4969 case Instruction::Br: 4970 case Instruction::PHI: 4971 case Instruction::GetElementPtr: 4972 case Instruction::Select: 4973 llvm_unreachable("This instruction is handled by a different recipe."); 4974 case Instruction::UDiv: 4975 case Instruction::SDiv: 4976 case Instruction::SRem: 4977 case Instruction::URem: 4978 case Instruction::Add: 4979 case Instruction::FAdd: 4980 case Instruction::Sub: 4981 case Instruction::FSub: 4982 case Instruction::FNeg: 4983 case Instruction::Mul: 4984 case Instruction::FMul: 4985 case Instruction::FDiv: 4986 case Instruction::FRem: 4987 case Instruction::Shl: 4988 case Instruction::LShr: 4989 case Instruction::AShr: 4990 case Instruction::And: 4991 case Instruction::Or: 4992 case Instruction::Xor: { 4993 // Just widen unops and binops. 4994 setDebugLocFromInst(Builder, &I); 4995 4996 for (unsigned Part = 0; Part < UF; ++Part) { 4997 SmallVector<Value *, 2> Ops; 4998 for (VPValue *VPOp : User.operands()) 4999 Ops.push_back(State.get(VPOp, Part)); 5000 5001 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 5002 5003 if (auto *VecOp = dyn_cast<Instruction>(V)) 5004 VecOp->copyIRFlags(&I); 5005 5006 // Use this vector value for all users of the original instruction. 5007 State.set(Def, V, Part); 5008 addMetadata(V, &I); 5009 } 5010 5011 break; 5012 } 5013 case Instruction::ICmp: 5014 case Instruction::FCmp: { 5015 // Widen compares. Generate vector compares. 5016 bool FCmp = (I.getOpcode() == Instruction::FCmp); 5017 auto *Cmp = cast<CmpInst>(&I); 5018 setDebugLocFromInst(Builder, Cmp); 5019 for (unsigned Part = 0; Part < UF; ++Part) { 5020 Value *A = State.get(User.getOperand(0), Part); 5021 Value *B = State.get(User.getOperand(1), Part); 5022 Value *C = nullptr; 5023 if (FCmp) { 5024 // Propagate fast math flags. 5025 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 5026 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 5027 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 5028 } else { 5029 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 5030 } 5031 State.set(Def, C, Part); 5032 addMetadata(C, &I); 5033 } 5034 5035 break; 5036 } 5037 5038 case Instruction::ZExt: 5039 case Instruction::SExt: 5040 case Instruction::FPToUI: 5041 case Instruction::FPToSI: 5042 case Instruction::FPExt: 5043 case Instruction::PtrToInt: 5044 case Instruction::IntToPtr: 5045 case Instruction::SIToFP: 5046 case Instruction::UIToFP: 5047 case Instruction::Trunc: 5048 case Instruction::FPTrunc: 5049 case Instruction::BitCast: { 5050 auto *CI = cast<CastInst>(&I); 5051 setDebugLocFromInst(Builder, CI); 5052 5053 /// Vectorize casts. 5054 Type *DestTy = 5055 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5056 5057 for (unsigned Part = 0; Part < UF; ++Part) { 5058 Value *A = State.get(User.getOperand(0), Part); 5059 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5060 State.set(Def, Cast, Part); 5061 addMetadata(Cast, &I); 5062 } 5063 break; 5064 } 5065 default: 5066 // This instruction is not vectorized by simple widening. 5067 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5068 llvm_unreachable("Unhandled instruction!"); 5069 } // end of switch. 5070 } 5071 5072 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5073 VPUser &ArgOperands, 5074 VPTransformState &State) { 5075 assert(!isa<DbgInfoIntrinsic>(I) && 5076 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5077 setDebugLocFromInst(Builder, &I); 5078 5079 Module *M = I.getParent()->getParent()->getParent(); 5080 auto *CI = cast<CallInst>(&I); 5081 5082 SmallVector<Type *, 4> Tys; 5083 for (Value *ArgOperand : CI->arg_operands()) 5084 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5085 5086 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5087 5088 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5089 // version of the instruction. 5090 // Is it beneficial to perform intrinsic call compared to lib call? 5091 bool NeedToScalarize = false; 5092 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5093 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5094 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5095 assert((UseVectorIntrinsic || !NeedToScalarize) && 5096 "Instruction should be scalarized elsewhere."); 5097 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5098 "Either the intrinsic cost or vector call cost must be valid"); 5099 5100 for (unsigned Part = 0; Part < UF; ++Part) { 5101 SmallVector<Value *, 4> Args; 5102 for (auto &I : enumerate(ArgOperands.operands())) { 5103 // Some intrinsics have a scalar argument - don't replace it with a 5104 // vector. 5105 Value *Arg; 5106 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5107 Arg = State.get(I.value(), Part); 5108 else 5109 Arg = State.get(I.value(), VPIteration(0, 0)); 5110 Args.push_back(Arg); 5111 } 5112 5113 Function *VectorF; 5114 if (UseVectorIntrinsic) { 5115 // Use vector version of the intrinsic. 5116 Type *TysForDecl[] = {CI->getType()}; 5117 if (VF.isVector()) 5118 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5119 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5120 assert(VectorF && "Can't retrieve vector intrinsic."); 5121 } else { 5122 // Use vector version of the function call. 5123 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5124 #ifndef NDEBUG 5125 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5126 "Can't create vector function."); 5127 #endif 5128 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5129 } 5130 SmallVector<OperandBundleDef, 1> OpBundles; 5131 CI->getOperandBundlesAsDefs(OpBundles); 5132 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5133 5134 if (isa<FPMathOperator>(V)) 5135 V->copyFastMathFlags(CI); 5136 5137 State.set(Def, V, Part); 5138 addMetadata(V, &I); 5139 } 5140 } 5141 5142 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5143 VPUser &Operands, 5144 bool InvariantCond, 5145 VPTransformState &State) { 5146 setDebugLocFromInst(Builder, &I); 5147 5148 // The condition can be loop invariant but still defined inside the 5149 // loop. This means that we can't just use the original 'cond' value. 5150 // We have to take the 'vectorized' value and pick the first lane. 5151 // Instcombine will make this a no-op. 5152 auto *InvarCond = InvariantCond 5153 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5154 : nullptr; 5155 5156 for (unsigned Part = 0; Part < UF; ++Part) { 5157 Value *Cond = 5158 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5159 Value *Op0 = State.get(Operands.getOperand(1), Part); 5160 Value *Op1 = State.get(Operands.getOperand(2), Part); 5161 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5162 State.set(VPDef, Sel, Part); 5163 addMetadata(Sel, &I); 5164 } 5165 } 5166 5167 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5168 // We should not collect Scalars more than once per VF. Right now, this 5169 // function is called from collectUniformsAndScalars(), which already does 5170 // this check. Collecting Scalars for VF=1 does not make any sense. 5171 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5172 "This function should not be visited twice for the same VF"); 5173 5174 SmallSetVector<Instruction *, 8> Worklist; 5175 5176 // These sets are used to seed the analysis with pointers used by memory 5177 // accesses that will remain scalar. 5178 SmallSetVector<Instruction *, 8> ScalarPtrs; 5179 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5180 auto *Latch = TheLoop->getLoopLatch(); 5181 5182 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5183 // The pointer operands of loads and stores will be scalar as long as the 5184 // memory access is not a gather or scatter operation. The value operand of a 5185 // store will remain scalar if the store is scalarized. 5186 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5187 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5188 assert(WideningDecision != CM_Unknown && 5189 "Widening decision should be ready at this moment"); 5190 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5191 if (Ptr == Store->getValueOperand()) 5192 return WideningDecision == CM_Scalarize; 5193 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5194 "Ptr is neither a value or pointer operand"); 5195 return WideningDecision != CM_GatherScatter; 5196 }; 5197 5198 // A helper that returns true if the given value is a bitcast or 5199 // getelementptr instruction contained in the loop. 5200 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5201 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5202 isa<GetElementPtrInst>(V)) && 5203 !TheLoop->isLoopInvariant(V); 5204 }; 5205 5206 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5207 if (!isa<PHINode>(Ptr) || 5208 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5209 return false; 5210 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5211 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5212 return false; 5213 return isScalarUse(MemAccess, Ptr); 5214 }; 5215 5216 // A helper that evaluates a memory access's use of a pointer. If the 5217 // pointer is actually the pointer induction of a loop, it is being 5218 // inserted into Worklist. If the use will be a scalar use, and the 5219 // pointer is only used by memory accesses, we place the pointer in 5220 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5221 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5222 if (isScalarPtrInduction(MemAccess, Ptr)) { 5223 Worklist.insert(cast<Instruction>(Ptr)); 5224 Instruction *Update = cast<Instruction>( 5225 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5226 Worklist.insert(Update); 5227 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5228 << "\n"); 5229 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5230 << "\n"); 5231 return; 5232 } 5233 // We only care about bitcast and getelementptr instructions contained in 5234 // the loop. 5235 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5236 return; 5237 5238 // If the pointer has already been identified as scalar (e.g., if it was 5239 // also identified as uniform), there's nothing to do. 5240 auto *I = cast<Instruction>(Ptr); 5241 if (Worklist.count(I)) 5242 return; 5243 5244 // If the use of the pointer will be a scalar use, and all users of the 5245 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5246 // place the pointer in PossibleNonScalarPtrs. 5247 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5248 return isa<LoadInst>(U) || isa<StoreInst>(U); 5249 })) 5250 ScalarPtrs.insert(I); 5251 else 5252 PossibleNonScalarPtrs.insert(I); 5253 }; 5254 5255 // We seed the scalars analysis with three classes of instructions: (1) 5256 // instructions marked uniform-after-vectorization and (2) bitcast, 5257 // getelementptr and (pointer) phi instructions used by memory accesses 5258 // requiring a scalar use. 5259 // 5260 // (1) Add to the worklist all instructions that have been identified as 5261 // uniform-after-vectorization. 5262 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5263 5264 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5265 // memory accesses requiring a scalar use. The pointer operands of loads and 5266 // stores will be scalar as long as the memory accesses is not a gather or 5267 // scatter operation. The value operand of a store will remain scalar if the 5268 // store is scalarized. 5269 for (auto *BB : TheLoop->blocks()) 5270 for (auto &I : *BB) { 5271 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5272 evaluatePtrUse(Load, Load->getPointerOperand()); 5273 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5274 evaluatePtrUse(Store, Store->getPointerOperand()); 5275 evaluatePtrUse(Store, Store->getValueOperand()); 5276 } 5277 } 5278 for (auto *I : ScalarPtrs) 5279 if (!PossibleNonScalarPtrs.count(I)) { 5280 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5281 Worklist.insert(I); 5282 } 5283 5284 // Insert the forced scalars. 5285 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5286 // induction variable when the PHI user is scalarized. 5287 auto ForcedScalar = ForcedScalars.find(VF); 5288 if (ForcedScalar != ForcedScalars.end()) 5289 for (auto *I : ForcedScalar->second) 5290 Worklist.insert(I); 5291 5292 // Expand the worklist by looking through any bitcasts and getelementptr 5293 // instructions we've already identified as scalar. This is similar to the 5294 // expansion step in collectLoopUniforms(); however, here we're only 5295 // expanding to include additional bitcasts and getelementptr instructions. 5296 unsigned Idx = 0; 5297 while (Idx != Worklist.size()) { 5298 Instruction *Dst = Worklist[Idx++]; 5299 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5300 continue; 5301 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5302 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5303 auto *J = cast<Instruction>(U); 5304 return !TheLoop->contains(J) || Worklist.count(J) || 5305 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5306 isScalarUse(J, Src)); 5307 })) { 5308 Worklist.insert(Src); 5309 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5310 } 5311 } 5312 5313 // An induction variable will remain scalar if all users of the induction 5314 // variable and induction variable update remain scalar. 5315 for (auto &Induction : Legal->getInductionVars()) { 5316 auto *Ind = Induction.first; 5317 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5318 5319 // If tail-folding is applied, the primary induction variable will be used 5320 // to feed a vector compare. 5321 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5322 continue; 5323 5324 // Determine if all users of the induction variable are scalar after 5325 // vectorization. 5326 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5327 auto *I = cast<Instruction>(U); 5328 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5329 }); 5330 if (!ScalarInd) 5331 continue; 5332 5333 // Determine if all users of the induction variable update instruction are 5334 // scalar after vectorization. 5335 auto ScalarIndUpdate = 5336 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5337 auto *I = cast<Instruction>(U); 5338 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5339 }); 5340 if (!ScalarIndUpdate) 5341 continue; 5342 5343 // The induction variable and its update instruction will remain scalar. 5344 Worklist.insert(Ind); 5345 Worklist.insert(IndUpdate); 5346 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5347 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5348 << "\n"); 5349 } 5350 5351 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5352 } 5353 5354 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5355 if (!blockNeedsPredication(I->getParent())) 5356 return false; 5357 switch(I->getOpcode()) { 5358 default: 5359 break; 5360 case Instruction::Load: 5361 case Instruction::Store: { 5362 if (!Legal->isMaskRequired(I)) 5363 return false; 5364 auto *Ptr = getLoadStorePointerOperand(I); 5365 auto *Ty = getLoadStoreType(I); 5366 const Align Alignment = getLoadStoreAlignment(I); 5367 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5368 TTI.isLegalMaskedGather(Ty, Alignment)) 5369 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5370 TTI.isLegalMaskedScatter(Ty, Alignment)); 5371 } 5372 case Instruction::UDiv: 5373 case Instruction::SDiv: 5374 case Instruction::SRem: 5375 case Instruction::URem: 5376 return mayDivideByZero(*I); 5377 } 5378 return false; 5379 } 5380 5381 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5382 Instruction *I, ElementCount VF) { 5383 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5384 assert(getWideningDecision(I, VF) == CM_Unknown && 5385 "Decision should not be set yet."); 5386 auto *Group = getInterleavedAccessGroup(I); 5387 assert(Group && "Must have a group."); 5388 5389 // If the instruction's allocated size doesn't equal it's type size, it 5390 // requires padding and will be scalarized. 5391 auto &DL = I->getModule()->getDataLayout(); 5392 auto *ScalarTy = getLoadStoreType(I); 5393 if (hasIrregularType(ScalarTy, DL)) 5394 return false; 5395 5396 // Check if masking is required. 5397 // A Group may need masking for one of two reasons: it resides in a block that 5398 // needs predication, or it was decided to use masking to deal with gaps. 5399 bool PredicatedAccessRequiresMasking = 5400 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5401 bool AccessWithGapsRequiresMasking = 5402 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5403 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5404 return true; 5405 5406 // If masked interleaving is required, we expect that the user/target had 5407 // enabled it, because otherwise it either wouldn't have been created or 5408 // it should have been invalidated by the CostModel. 5409 assert(useMaskedInterleavedAccesses(TTI) && 5410 "Masked interleave-groups for predicated accesses are not enabled."); 5411 5412 auto *Ty = getLoadStoreType(I); 5413 const Align Alignment = getLoadStoreAlignment(I); 5414 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5415 : TTI.isLegalMaskedStore(Ty, Alignment); 5416 } 5417 5418 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5419 Instruction *I, ElementCount VF) { 5420 // Get and ensure we have a valid memory instruction. 5421 LoadInst *LI = dyn_cast<LoadInst>(I); 5422 StoreInst *SI = dyn_cast<StoreInst>(I); 5423 assert((LI || SI) && "Invalid memory instruction"); 5424 5425 auto *Ptr = getLoadStorePointerOperand(I); 5426 5427 // In order to be widened, the pointer should be consecutive, first of all. 5428 if (!Legal->isConsecutivePtr(Ptr)) 5429 return false; 5430 5431 // If the instruction is a store located in a predicated block, it will be 5432 // scalarized. 5433 if (isScalarWithPredication(I)) 5434 return false; 5435 5436 // If the instruction's allocated size doesn't equal it's type size, it 5437 // requires padding and will be scalarized. 5438 auto &DL = I->getModule()->getDataLayout(); 5439 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5440 if (hasIrregularType(ScalarTy, DL)) 5441 return false; 5442 5443 return true; 5444 } 5445 5446 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5447 // We should not collect Uniforms more than once per VF. Right now, 5448 // this function is called from collectUniformsAndScalars(), which 5449 // already does this check. Collecting Uniforms for VF=1 does not make any 5450 // sense. 5451 5452 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5453 "This function should not be visited twice for the same VF"); 5454 5455 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5456 // not analyze again. Uniforms.count(VF) will return 1. 5457 Uniforms[VF].clear(); 5458 5459 // We now know that the loop is vectorizable! 5460 // Collect instructions inside the loop that will remain uniform after 5461 // vectorization. 5462 5463 // Global values, params and instructions outside of current loop are out of 5464 // scope. 5465 auto isOutOfScope = [&](Value *V) -> bool { 5466 Instruction *I = dyn_cast<Instruction>(V); 5467 return (!I || !TheLoop->contains(I)); 5468 }; 5469 5470 SetVector<Instruction *> Worklist; 5471 BasicBlock *Latch = TheLoop->getLoopLatch(); 5472 5473 // Instructions that are scalar with predication must not be considered 5474 // uniform after vectorization, because that would create an erroneous 5475 // replicating region where only a single instance out of VF should be formed. 5476 // TODO: optimize such seldom cases if found important, see PR40816. 5477 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5478 if (isOutOfScope(I)) { 5479 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5480 << *I << "\n"); 5481 return; 5482 } 5483 if (isScalarWithPredication(I)) { 5484 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5485 << *I << "\n"); 5486 return; 5487 } 5488 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5489 Worklist.insert(I); 5490 }; 5491 5492 // Start with the conditional branch. If the branch condition is an 5493 // instruction contained in the loop that is only used by the branch, it is 5494 // uniform. 5495 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5496 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5497 addToWorklistIfAllowed(Cmp); 5498 5499 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5500 InstWidening WideningDecision = getWideningDecision(I, VF); 5501 assert(WideningDecision != CM_Unknown && 5502 "Widening decision should be ready at this moment"); 5503 5504 // A uniform memory op is itself uniform. We exclude uniform stores 5505 // here as they demand the last lane, not the first one. 5506 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5507 assert(WideningDecision == CM_Scalarize); 5508 return true; 5509 } 5510 5511 return (WideningDecision == CM_Widen || 5512 WideningDecision == CM_Widen_Reverse || 5513 WideningDecision == CM_Interleave); 5514 }; 5515 5516 5517 // Returns true if Ptr is the pointer operand of a memory access instruction 5518 // I, and I is known to not require scalarization. 5519 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5520 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5521 }; 5522 5523 // Holds a list of values which are known to have at least one uniform use. 5524 // Note that there may be other uses which aren't uniform. A "uniform use" 5525 // here is something which only demands lane 0 of the unrolled iterations; 5526 // it does not imply that all lanes produce the same value (e.g. this is not 5527 // the usual meaning of uniform) 5528 SetVector<Value *> HasUniformUse; 5529 5530 // Scan the loop for instructions which are either a) known to have only 5531 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5532 for (auto *BB : TheLoop->blocks()) 5533 for (auto &I : *BB) { 5534 // If there's no pointer operand, there's nothing to do. 5535 auto *Ptr = getLoadStorePointerOperand(&I); 5536 if (!Ptr) 5537 continue; 5538 5539 // A uniform memory op is itself uniform. We exclude uniform stores 5540 // here as they demand the last lane, not the first one. 5541 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5542 addToWorklistIfAllowed(&I); 5543 5544 if (isUniformDecision(&I, VF)) { 5545 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5546 HasUniformUse.insert(Ptr); 5547 } 5548 } 5549 5550 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5551 // demanding) users. Since loops are assumed to be in LCSSA form, this 5552 // disallows uses outside the loop as well. 5553 for (auto *V : HasUniformUse) { 5554 if (isOutOfScope(V)) 5555 continue; 5556 auto *I = cast<Instruction>(V); 5557 auto UsersAreMemAccesses = 5558 llvm::all_of(I->users(), [&](User *U) -> bool { 5559 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5560 }); 5561 if (UsersAreMemAccesses) 5562 addToWorklistIfAllowed(I); 5563 } 5564 5565 // Expand Worklist in topological order: whenever a new instruction 5566 // is added , its users should be already inside Worklist. It ensures 5567 // a uniform instruction will only be used by uniform instructions. 5568 unsigned idx = 0; 5569 while (idx != Worklist.size()) { 5570 Instruction *I = Worklist[idx++]; 5571 5572 for (auto OV : I->operand_values()) { 5573 // isOutOfScope operands cannot be uniform instructions. 5574 if (isOutOfScope(OV)) 5575 continue; 5576 // First order recurrence Phi's should typically be considered 5577 // non-uniform. 5578 auto *OP = dyn_cast<PHINode>(OV); 5579 if (OP && Legal->isFirstOrderRecurrence(OP)) 5580 continue; 5581 // If all the users of the operand are uniform, then add the 5582 // operand into the uniform worklist. 5583 auto *OI = cast<Instruction>(OV); 5584 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5585 auto *J = cast<Instruction>(U); 5586 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5587 })) 5588 addToWorklistIfAllowed(OI); 5589 } 5590 } 5591 5592 // For an instruction to be added into Worklist above, all its users inside 5593 // the loop should also be in Worklist. However, this condition cannot be 5594 // true for phi nodes that form a cyclic dependence. We must process phi 5595 // nodes separately. An induction variable will remain uniform if all users 5596 // of the induction variable and induction variable update remain uniform. 5597 // The code below handles both pointer and non-pointer induction variables. 5598 for (auto &Induction : Legal->getInductionVars()) { 5599 auto *Ind = Induction.first; 5600 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5601 5602 // Determine if all users of the induction variable are uniform after 5603 // vectorization. 5604 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5605 auto *I = cast<Instruction>(U); 5606 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5607 isVectorizedMemAccessUse(I, Ind); 5608 }); 5609 if (!UniformInd) 5610 continue; 5611 5612 // Determine if all users of the induction variable update instruction are 5613 // uniform after vectorization. 5614 auto UniformIndUpdate = 5615 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5616 auto *I = cast<Instruction>(U); 5617 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5618 isVectorizedMemAccessUse(I, IndUpdate); 5619 }); 5620 if (!UniformIndUpdate) 5621 continue; 5622 5623 // The induction variable and its update instruction will remain uniform. 5624 addToWorklistIfAllowed(Ind); 5625 addToWorklistIfAllowed(IndUpdate); 5626 } 5627 5628 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5629 } 5630 5631 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5632 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5633 5634 if (Legal->getRuntimePointerChecking()->Need) { 5635 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5636 "runtime pointer checks needed. Enable vectorization of this " 5637 "loop with '#pragma clang loop vectorize(enable)' when " 5638 "compiling with -Os/-Oz", 5639 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5640 return true; 5641 } 5642 5643 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5644 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5645 "runtime SCEV checks needed. Enable vectorization of this " 5646 "loop with '#pragma clang loop vectorize(enable)' when " 5647 "compiling with -Os/-Oz", 5648 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5649 return true; 5650 } 5651 5652 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5653 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5654 reportVectorizationFailure("Runtime stride check for small trip count", 5655 "runtime stride == 1 checks needed. Enable vectorization of " 5656 "this loop without such check by compiling with -Os/-Oz", 5657 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5658 return true; 5659 } 5660 5661 return false; 5662 } 5663 5664 ElementCount 5665 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5666 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5667 reportVectorizationInfo( 5668 "Disabling scalable vectorization, because target does not " 5669 "support scalable vectors.", 5670 "ScalableVectorsUnsupported", ORE, TheLoop); 5671 return ElementCount::getScalable(0); 5672 } 5673 5674 if (Hints->isScalableVectorizationDisabled()) { 5675 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5676 "ScalableVectorizationDisabled", ORE, TheLoop); 5677 return ElementCount::getScalable(0); 5678 } 5679 5680 auto MaxScalableVF = ElementCount::getScalable( 5681 std::numeric_limits<ElementCount::ScalarTy>::max()); 5682 5683 // Disable scalable vectorization if the loop contains unsupported reductions. 5684 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5685 // FIXME: While for scalable vectors this is currently sufficient, this should 5686 // be replaced by a more detailed mechanism that filters out specific VFs, 5687 // instead of invalidating vectorization for a whole set of VFs based on the 5688 // MaxVF. 5689 if (!canVectorizeReductions(MaxScalableVF)) { 5690 reportVectorizationInfo( 5691 "Scalable vectorization not supported for the reduction " 5692 "operations found in this loop.", 5693 "ScalableVFUnfeasible", ORE, TheLoop); 5694 return ElementCount::getScalable(0); 5695 } 5696 5697 if (Legal->isSafeForAnyVectorWidth()) 5698 return MaxScalableVF; 5699 5700 // Limit MaxScalableVF by the maximum safe dependence distance. 5701 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5702 MaxScalableVF = ElementCount::getScalable( 5703 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5704 if (!MaxScalableVF) 5705 reportVectorizationInfo( 5706 "Max legal vector width too small, scalable vectorization " 5707 "unfeasible.", 5708 "ScalableVFUnfeasible", ORE, TheLoop); 5709 5710 return MaxScalableVF; 5711 } 5712 5713 FixedScalableVFPair 5714 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5715 ElementCount UserVF) { 5716 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5717 unsigned SmallestType, WidestType; 5718 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5719 5720 // Get the maximum safe dependence distance in bits computed by LAA. 5721 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5722 // the memory accesses that is most restrictive (involved in the smallest 5723 // dependence distance). 5724 unsigned MaxSafeElements = 5725 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5726 5727 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5728 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5729 5730 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5731 << ".\n"); 5732 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5733 << ".\n"); 5734 5735 // First analyze the UserVF, fall back if the UserVF should be ignored. 5736 if (UserVF) { 5737 auto MaxSafeUserVF = 5738 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5739 5740 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) 5741 return UserVF; 5742 5743 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5744 5745 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5746 // is better to ignore the hint and let the compiler choose a suitable VF. 5747 if (!UserVF.isScalable()) { 5748 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5749 << " is unsafe, clamping to max safe VF=" 5750 << MaxSafeFixedVF << ".\n"); 5751 ORE->emit([&]() { 5752 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5753 TheLoop->getStartLoc(), 5754 TheLoop->getHeader()) 5755 << "User-specified vectorization factor " 5756 << ore::NV("UserVectorizationFactor", UserVF) 5757 << " is unsafe, clamping to maximum safe vectorization factor " 5758 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5759 }); 5760 return MaxSafeFixedVF; 5761 } 5762 5763 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5764 << " is unsafe. Ignoring scalable UserVF.\n"); 5765 ORE->emit([&]() { 5766 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5767 TheLoop->getStartLoc(), 5768 TheLoop->getHeader()) 5769 << "User-specified vectorization factor " 5770 << ore::NV("UserVectorizationFactor", UserVF) 5771 << " is unsafe. Ignoring the hint to let the compiler pick a " 5772 "suitable VF."; 5773 }); 5774 } 5775 5776 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5777 << " / " << WidestType << " bits.\n"); 5778 5779 FixedScalableVFPair Result(ElementCount::getFixed(1), 5780 ElementCount::getScalable(0)); 5781 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5782 WidestType, MaxSafeFixedVF)) 5783 Result.FixedVF = MaxVF; 5784 5785 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5786 WidestType, MaxSafeScalableVF)) 5787 if (MaxVF.isScalable()) { 5788 Result.ScalableVF = MaxVF; 5789 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5790 << "\n"); 5791 } 5792 5793 return Result; 5794 } 5795 5796 FixedScalableVFPair 5797 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5798 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5799 // TODO: It may by useful to do since it's still likely to be dynamically 5800 // uniform if the target can skip. 5801 reportVectorizationFailure( 5802 "Not inserting runtime ptr check for divergent target", 5803 "runtime pointer checks needed. Not enabled for divergent target", 5804 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5805 return FixedScalableVFPair::getNone(); 5806 } 5807 5808 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5809 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5810 if (TC == 1) { 5811 reportVectorizationFailure("Single iteration (non) loop", 5812 "loop trip count is one, irrelevant for vectorization", 5813 "SingleIterationLoop", ORE, TheLoop); 5814 return FixedScalableVFPair::getNone(); 5815 } 5816 5817 switch (ScalarEpilogueStatus) { 5818 case CM_ScalarEpilogueAllowed: 5819 return computeFeasibleMaxVF(TC, UserVF); 5820 case CM_ScalarEpilogueNotAllowedUsePredicate: 5821 LLVM_FALLTHROUGH; 5822 case CM_ScalarEpilogueNotNeededUsePredicate: 5823 LLVM_DEBUG( 5824 dbgs() << "LV: vector predicate hint/switch found.\n" 5825 << "LV: Not allowing scalar epilogue, creating predicated " 5826 << "vector loop.\n"); 5827 break; 5828 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5829 // fallthrough as a special case of OptForSize 5830 case CM_ScalarEpilogueNotAllowedOptSize: 5831 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5832 LLVM_DEBUG( 5833 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5834 else 5835 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5836 << "count.\n"); 5837 5838 // Bail if runtime checks are required, which are not good when optimising 5839 // for size. 5840 if (runtimeChecksRequired()) 5841 return FixedScalableVFPair::getNone(); 5842 5843 break; 5844 } 5845 5846 // The only loops we can vectorize without a scalar epilogue, are loops with 5847 // a bottom-test and a single exiting block. We'd have to handle the fact 5848 // that not every instruction executes on the last iteration. This will 5849 // require a lane mask which varies through the vector loop body. (TODO) 5850 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5851 // If there was a tail-folding hint/switch, but we can't fold the tail by 5852 // masking, fallback to a vectorization with a scalar epilogue. 5853 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5854 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5855 "scalar epilogue instead.\n"); 5856 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5857 return computeFeasibleMaxVF(TC, UserVF); 5858 } 5859 return FixedScalableVFPair::getNone(); 5860 } 5861 5862 // Now try the tail folding 5863 5864 // Invalidate interleave groups that require an epilogue if we can't mask 5865 // the interleave-group. 5866 if (!useMaskedInterleavedAccesses(TTI)) { 5867 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5868 "No decisions should have been taken at this point"); 5869 // Note: There is no need to invalidate any cost modeling decisions here, as 5870 // non where taken so far. 5871 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5872 } 5873 5874 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5875 // Avoid tail folding if the trip count is known to be a multiple of any VF 5876 // we chose. 5877 // FIXME: The condition below pessimises the case for fixed-width vectors, 5878 // when scalable VFs are also candidates for vectorization. 5879 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5880 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5881 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5882 "MaxFixedVF must be a power of 2"); 5883 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5884 : MaxFixedVF.getFixedValue(); 5885 ScalarEvolution *SE = PSE.getSE(); 5886 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5887 const SCEV *ExitCount = SE->getAddExpr( 5888 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5889 const SCEV *Rem = SE->getURemExpr( 5890 SE->applyLoopGuards(ExitCount, TheLoop), 5891 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5892 if (Rem->isZero()) { 5893 // Accept MaxFixedVF if we do not have a tail. 5894 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5895 return MaxFactors; 5896 } 5897 } 5898 5899 // If we don't know the precise trip count, or if the trip count that we 5900 // found modulo the vectorization factor is not zero, try to fold the tail 5901 // by masking. 5902 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5903 if (Legal->prepareToFoldTailByMasking()) { 5904 FoldTailByMasking = true; 5905 return MaxFactors; 5906 } 5907 5908 // If there was a tail-folding hint/switch, but we can't fold the tail by 5909 // masking, fallback to a vectorization with a scalar epilogue. 5910 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5911 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5912 "scalar epilogue instead.\n"); 5913 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5914 return MaxFactors; 5915 } 5916 5917 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5918 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5919 return FixedScalableVFPair::getNone(); 5920 } 5921 5922 if (TC == 0) { 5923 reportVectorizationFailure( 5924 "Unable to calculate the loop count due to complex control flow", 5925 "unable to calculate the loop count due to complex control flow", 5926 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5927 return FixedScalableVFPair::getNone(); 5928 } 5929 5930 reportVectorizationFailure( 5931 "Cannot optimize for size and vectorize at the same time.", 5932 "cannot optimize for size and vectorize at the same time. " 5933 "Enable vectorization of this loop with '#pragma clang loop " 5934 "vectorize(enable)' when compiling with -Os/-Oz", 5935 "NoTailLoopWithOptForSize", ORE, TheLoop); 5936 return FixedScalableVFPair::getNone(); 5937 } 5938 5939 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5940 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5941 const ElementCount &MaxSafeVF) { 5942 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5943 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5944 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5945 : TargetTransformInfo::RGK_FixedWidthVector); 5946 5947 // Convenience function to return the minimum of two ElementCounts. 5948 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5949 assert((LHS.isScalable() == RHS.isScalable()) && 5950 "Scalable flags must match"); 5951 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5952 }; 5953 5954 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5955 // Note that both WidestRegister and WidestType may not be a powers of 2. 5956 auto MaxVectorElementCount = ElementCount::get( 5957 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5958 ComputeScalableMaxVF); 5959 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5960 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5961 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5962 5963 if (!MaxVectorElementCount) { 5964 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5965 return ElementCount::getFixed(1); 5966 } 5967 5968 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5969 if (ConstTripCount && 5970 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5971 isPowerOf2_32(ConstTripCount)) { 5972 // We need to clamp the VF to be the ConstTripCount. There is no point in 5973 // choosing a higher viable VF as done in the loop below. If 5974 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5975 // the TC is less than or equal to the known number of lanes. 5976 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5977 << ConstTripCount << "\n"); 5978 return TripCountEC; 5979 } 5980 5981 ElementCount MaxVF = MaxVectorElementCount; 5982 if (TTI.shouldMaximizeVectorBandwidth() || 5983 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5984 auto MaxVectorElementCountMaxBW = ElementCount::get( 5985 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5986 ComputeScalableMaxVF); 5987 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5988 5989 // Collect all viable vectorization factors larger than the default MaxVF 5990 // (i.e. MaxVectorElementCount). 5991 SmallVector<ElementCount, 8> VFs; 5992 for (ElementCount VS = MaxVectorElementCount * 2; 5993 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5994 VFs.push_back(VS); 5995 5996 // For each VF calculate its register usage. 5997 auto RUs = calculateRegisterUsage(VFs); 5998 5999 // Select the largest VF which doesn't require more registers than existing 6000 // ones. 6001 for (int i = RUs.size() - 1; i >= 0; --i) { 6002 bool Selected = true; 6003 for (auto &pair : RUs[i].MaxLocalUsers) { 6004 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6005 if (pair.second > TargetNumRegisters) 6006 Selected = false; 6007 } 6008 if (Selected) { 6009 MaxVF = VFs[i]; 6010 break; 6011 } 6012 } 6013 if (ElementCount MinVF = 6014 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6015 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6016 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6017 << ") with target's minimum: " << MinVF << '\n'); 6018 MaxVF = MinVF; 6019 } 6020 } 6021 } 6022 return MaxVF; 6023 } 6024 6025 bool LoopVectorizationCostModel::isMoreProfitable( 6026 const VectorizationFactor &A, const VectorizationFactor &B) const { 6027 InstructionCost::CostType CostA = *A.Cost.getValue(); 6028 InstructionCost::CostType CostB = *B.Cost.getValue(); 6029 6030 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6031 6032 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6033 MaxTripCount) { 6034 // If we are folding the tail and the trip count is a known (possibly small) 6035 // constant, the trip count will be rounded up to an integer number of 6036 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6037 // which we compare directly. When not folding the tail, the total cost will 6038 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6039 // approximated with the per-lane cost below instead of using the tripcount 6040 // as here. 6041 int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6042 int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6043 return RTCostA < RTCostB; 6044 } 6045 6046 // When set to preferred, for now assume vscale may be larger than 1, so 6047 // that scalable vectorization is slightly favorable over fixed-width 6048 // vectorization. 6049 if (Hints->isScalableVectorizationPreferred()) 6050 if (A.Width.isScalable() && !B.Width.isScalable()) 6051 return (CostA * B.Width.getKnownMinValue()) <= 6052 (CostB * A.Width.getKnownMinValue()); 6053 6054 // To avoid the need for FP division: 6055 // (CostA / A.Width) < (CostB / B.Width) 6056 // <=> (CostA * B.Width) < (CostB * A.Width) 6057 return (CostA * B.Width.getKnownMinValue()) < 6058 (CostB * A.Width.getKnownMinValue()); 6059 } 6060 6061 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6062 const ElementCountSet &VFCandidates) { 6063 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6064 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6065 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6066 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6067 "Expected Scalar VF to be a candidate"); 6068 6069 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6070 VectorizationFactor ChosenFactor = ScalarCost; 6071 6072 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6073 if (ForceVectorization && VFCandidates.size() > 1) { 6074 // Ignore scalar width, because the user explicitly wants vectorization. 6075 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6076 // evaluation. 6077 ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max(); 6078 } 6079 6080 for (const auto &i : VFCandidates) { 6081 // The cost for scalar VF=1 is already calculated, so ignore it. 6082 if (i.isScalar()) 6083 continue; 6084 6085 // Notice that the vector loop needs to be executed less times, so 6086 // we need to divide the cost of the vector loops by the width of 6087 // the vector elements. 6088 VectorizationCostTy C = expectedCost(i); 6089 6090 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 6091 VectorizationFactor Candidate(i, C.first); 6092 LLVM_DEBUG( 6093 dbgs() << "LV: Vector loop of width " << i << " costs: " 6094 << (*Candidate.Cost.getValue() / 6095 Candidate.Width.getKnownMinValue()) 6096 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6097 << ".\n"); 6098 6099 if (!C.second && !ForceVectorization) { 6100 LLVM_DEBUG( 6101 dbgs() << "LV: Not considering vector loop of width " << i 6102 << " because it will not generate any vector instructions.\n"); 6103 continue; 6104 } 6105 6106 // If profitable add it to ProfitableVF list. 6107 if (isMoreProfitable(Candidate, ScalarCost)) 6108 ProfitableVFs.push_back(Candidate); 6109 6110 if (isMoreProfitable(Candidate, ChosenFactor)) 6111 ChosenFactor = Candidate; 6112 } 6113 6114 if (!EnableCondStoresVectorization && NumPredStores) { 6115 reportVectorizationFailure("There are conditional stores.", 6116 "store that is conditionally executed prevents vectorization", 6117 "ConditionalStore", ORE, TheLoop); 6118 ChosenFactor = ScalarCost; 6119 } 6120 6121 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6122 *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) 6123 dbgs() 6124 << "LV: Vectorization seems to be not beneficial, " 6125 << "but was forced by a user.\n"); 6126 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6127 return ChosenFactor; 6128 } 6129 6130 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6131 const Loop &L, ElementCount VF) const { 6132 // Cross iteration phis such as reductions need special handling and are 6133 // currently unsupported. 6134 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6135 return Legal->isFirstOrderRecurrence(&Phi) || 6136 Legal->isReductionVariable(&Phi); 6137 })) 6138 return false; 6139 6140 // Phis with uses outside of the loop require special handling and are 6141 // currently unsupported. 6142 for (auto &Entry : Legal->getInductionVars()) { 6143 // Look for uses of the value of the induction at the last iteration. 6144 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6145 for (User *U : PostInc->users()) 6146 if (!L.contains(cast<Instruction>(U))) 6147 return false; 6148 // Look for uses of penultimate value of the induction. 6149 for (User *U : Entry.first->users()) 6150 if (!L.contains(cast<Instruction>(U))) 6151 return false; 6152 } 6153 6154 // Induction variables that are widened require special handling that is 6155 // currently not supported. 6156 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6157 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6158 this->isProfitableToScalarize(Entry.first, VF)); 6159 })) 6160 return false; 6161 6162 return true; 6163 } 6164 6165 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6166 const ElementCount VF) const { 6167 // FIXME: We need a much better cost-model to take different parameters such 6168 // as register pressure, code size increase and cost of extra branches into 6169 // account. For now we apply a very crude heuristic and only consider loops 6170 // with vectorization factors larger than a certain value. 6171 // We also consider epilogue vectorization unprofitable for targets that don't 6172 // consider interleaving beneficial (eg. MVE). 6173 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6174 return false; 6175 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6176 return true; 6177 return false; 6178 } 6179 6180 VectorizationFactor 6181 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6182 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6183 VectorizationFactor Result = VectorizationFactor::Disabled(); 6184 if (!EnableEpilogueVectorization) { 6185 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6186 return Result; 6187 } 6188 6189 if (!isScalarEpilogueAllowed()) { 6190 LLVM_DEBUG( 6191 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6192 "allowed.\n";); 6193 return Result; 6194 } 6195 6196 // FIXME: This can be fixed for scalable vectors later, because at this stage 6197 // the LoopVectorizer will only consider vectorizing a loop with scalable 6198 // vectors when the loop has a hint to enable vectorization for a given VF. 6199 if (MainLoopVF.isScalable()) { 6200 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6201 "yet supported.\n"); 6202 return Result; 6203 } 6204 6205 // Not really a cost consideration, but check for unsupported cases here to 6206 // simplify the logic. 6207 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6208 LLVM_DEBUG( 6209 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6210 "not a supported candidate.\n";); 6211 return Result; 6212 } 6213 6214 if (EpilogueVectorizationForceVF > 1) { 6215 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6216 if (LVP.hasPlanWithVFs( 6217 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6218 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6219 else { 6220 LLVM_DEBUG( 6221 dbgs() 6222 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6223 return Result; 6224 } 6225 } 6226 6227 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6228 TheLoop->getHeader()->getParent()->hasMinSize()) { 6229 LLVM_DEBUG( 6230 dbgs() 6231 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6232 return Result; 6233 } 6234 6235 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6236 return Result; 6237 6238 for (auto &NextVF : ProfitableVFs) 6239 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6240 (Result.Width.getFixedValue() == 1 || 6241 isMoreProfitable(NextVF, Result)) && 6242 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6243 Result = NextVF; 6244 6245 if (Result != VectorizationFactor::Disabled()) 6246 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6247 << Result.Width.getFixedValue() << "\n";); 6248 return Result; 6249 } 6250 6251 std::pair<unsigned, unsigned> 6252 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6253 unsigned MinWidth = -1U; 6254 unsigned MaxWidth = 8; 6255 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6256 6257 // For each block. 6258 for (BasicBlock *BB : TheLoop->blocks()) { 6259 // For each instruction in the loop. 6260 for (Instruction &I : BB->instructionsWithoutDebug()) { 6261 Type *T = I.getType(); 6262 6263 // Skip ignored values. 6264 if (ValuesToIgnore.count(&I)) 6265 continue; 6266 6267 // Only examine Loads, Stores and PHINodes. 6268 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6269 continue; 6270 6271 // Examine PHI nodes that are reduction variables. Update the type to 6272 // account for the recurrence type. 6273 if (auto *PN = dyn_cast<PHINode>(&I)) { 6274 if (!Legal->isReductionVariable(PN)) 6275 continue; 6276 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6277 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6278 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6279 RdxDesc.getRecurrenceType(), 6280 TargetTransformInfo::ReductionFlags())) 6281 continue; 6282 T = RdxDesc.getRecurrenceType(); 6283 } 6284 6285 // Examine the stored values. 6286 if (auto *ST = dyn_cast<StoreInst>(&I)) 6287 T = ST->getValueOperand()->getType(); 6288 6289 // Ignore loaded pointer types and stored pointer types that are not 6290 // vectorizable. 6291 // 6292 // FIXME: The check here attempts to predict whether a load or store will 6293 // be vectorized. We only know this for certain after a VF has 6294 // been selected. Here, we assume that if an access can be 6295 // vectorized, it will be. We should also look at extending this 6296 // optimization to non-pointer types. 6297 // 6298 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6299 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6300 continue; 6301 6302 MinWidth = std::min(MinWidth, 6303 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6304 MaxWidth = std::max(MaxWidth, 6305 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6306 } 6307 } 6308 6309 return {MinWidth, MaxWidth}; 6310 } 6311 6312 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6313 unsigned LoopCost) { 6314 // -- The interleave heuristics -- 6315 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6316 // There are many micro-architectural considerations that we can't predict 6317 // at this level. For example, frontend pressure (on decode or fetch) due to 6318 // code size, or the number and capabilities of the execution ports. 6319 // 6320 // We use the following heuristics to select the interleave count: 6321 // 1. If the code has reductions, then we interleave to break the cross 6322 // iteration dependency. 6323 // 2. If the loop is really small, then we interleave to reduce the loop 6324 // overhead. 6325 // 3. We don't interleave if we think that we will spill registers to memory 6326 // due to the increased register pressure. 6327 6328 if (!isScalarEpilogueAllowed()) 6329 return 1; 6330 6331 // We used the distance for the interleave count. 6332 if (Legal->getMaxSafeDepDistBytes() != -1U) 6333 return 1; 6334 6335 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6336 const bool HasReductions = !Legal->getReductionVars().empty(); 6337 // Do not interleave loops with a relatively small known or estimated trip 6338 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6339 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6340 // because with the above conditions interleaving can expose ILP and break 6341 // cross iteration dependences for reductions. 6342 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6343 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6344 return 1; 6345 6346 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6347 // We divide by these constants so assume that we have at least one 6348 // instruction that uses at least one register. 6349 for (auto& pair : R.MaxLocalUsers) { 6350 pair.second = std::max(pair.second, 1U); 6351 } 6352 6353 // We calculate the interleave count using the following formula. 6354 // Subtract the number of loop invariants from the number of available 6355 // registers. These registers are used by all of the interleaved instances. 6356 // Next, divide the remaining registers by the number of registers that is 6357 // required by the loop, in order to estimate how many parallel instances 6358 // fit without causing spills. All of this is rounded down if necessary to be 6359 // a power of two. We want power of two interleave count to simplify any 6360 // addressing operations or alignment considerations. 6361 // We also want power of two interleave counts to ensure that the induction 6362 // variable of the vector loop wraps to zero, when tail is folded by masking; 6363 // this currently happens when OptForSize, in which case IC is set to 1 above. 6364 unsigned IC = UINT_MAX; 6365 6366 for (auto& pair : R.MaxLocalUsers) { 6367 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6368 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6369 << " registers of " 6370 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6371 if (VF.isScalar()) { 6372 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6373 TargetNumRegisters = ForceTargetNumScalarRegs; 6374 } else { 6375 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6376 TargetNumRegisters = ForceTargetNumVectorRegs; 6377 } 6378 unsigned MaxLocalUsers = pair.second; 6379 unsigned LoopInvariantRegs = 0; 6380 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6381 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6382 6383 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6384 // Don't count the induction variable as interleaved. 6385 if (EnableIndVarRegisterHeur) { 6386 TmpIC = 6387 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6388 std::max(1U, (MaxLocalUsers - 1))); 6389 } 6390 6391 IC = std::min(IC, TmpIC); 6392 } 6393 6394 // Clamp the interleave ranges to reasonable counts. 6395 unsigned MaxInterleaveCount = 6396 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6397 6398 // Check if the user has overridden the max. 6399 if (VF.isScalar()) { 6400 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6401 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6402 } else { 6403 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6404 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6405 } 6406 6407 // If trip count is known or estimated compile time constant, limit the 6408 // interleave count to be less than the trip count divided by VF, provided it 6409 // is at least 1. 6410 // 6411 // For scalable vectors we can't know if interleaving is beneficial. It may 6412 // not be beneficial for small loops if none of the lanes in the second vector 6413 // iterations is enabled. However, for larger loops, there is likely to be a 6414 // similar benefit as for fixed-width vectors. For now, we choose to leave 6415 // the InterleaveCount as if vscale is '1', although if some information about 6416 // the vector is known (e.g. min vector size), we can make a better decision. 6417 if (BestKnownTC) { 6418 MaxInterleaveCount = 6419 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6420 // Make sure MaxInterleaveCount is greater than 0. 6421 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6422 } 6423 6424 assert(MaxInterleaveCount > 0 && 6425 "Maximum interleave count must be greater than 0"); 6426 6427 // Clamp the calculated IC to be between the 1 and the max interleave count 6428 // that the target and trip count allows. 6429 if (IC > MaxInterleaveCount) 6430 IC = MaxInterleaveCount; 6431 else 6432 // Make sure IC is greater than 0. 6433 IC = std::max(1u, IC); 6434 6435 assert(IC > 0 && "Interleave count must be greater than 0."); 6436 6437 // If we did not calculate the cost for VF (because the user selected the VF) 6438 // then we calculate the cost of VF here. 6439 if (LoopCost == 0) { 6440 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6441 LoopCost = *expectedCost(VF).first.getValue(); 6442 } 6443 6444 assert(LoopCost && "Non-zero loop cost expected"); 6445 6446 // Interleave if we vectorized this loop and there is a reduction that could 6447 // benefit from interleaving. 6448 if (VF.isVector() && HasReductions) { 6449 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6450 return IC; 6451 } 6452 6453 // Note that if we've already vectorized the loop we will have done the 6454 // runtime check and so interleaving won't require further checks. 6455 bool InterleavingRequiresRuntimePointerCheck = 6456 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6457 6458 // We want to interleave small loops in order to reduce the loop overhead and 6459 // potentially expose ILP opportunities. 6460 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6461 << "LV: IC is " << IC << '\n' 6462 << "LV: VF is " << VF << '\n'); 6463 const bool AggressivelyInterleaveReductions = 6464 TTI.enableAggressiveInterleaving(HasReductions); 6465 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6466 // We assume that the cost overhead is 1 and we use the cost model 6467 // to estimate the cost of the loop and interleave until the cost of the 6468 // loop overhead is about 5% of the cost of the loop. 6469 unsigned SmallIC = 6470 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6471 6472 // Interleave until store/load ports (estimated by max interleave count) are 6473 // saturated. 6474 unsigned NumStores = Legal->getNumStores(); 6475 unsigned NumLoads = Legal->getNumLoads(); 6476 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6477 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6478 6479 // If we have a scalar reduction (vector reductions are already dealt with 6480 // by this point), we can increase the critical path length if the loop 6481 // we're interleaving is inside another loop. Limit, by default to 2, so the 6482 // critical path only gets increased by one reduction operation. 6483 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6484 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6485 SmallIC = std::min(SmallIC, F); 6486 StoresIC = std::min(StoresIC, F); 6487 LoadsIC = std::min(LoadsIC, F); 6488 } 6489 6490 if (EnableLoadStoreRuntimeInterleave && 6491 std::max(StoresIC, LoadsIC) > SmallIC) { 6492 LLVM_DEBUG( 6493 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6494 return std::max(StoresIC, LoadsIC); 6495 } 6496 6497 // If there are scalar reductions and TTI has enabled aggressive 6498 // interleaving for reductions, we will interleave to expose ILP. 6499 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6500 AggressivelyInterleaveReductions) { 6501 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6502 // Interleave no less than SmallIC but not as aggressive as the normal IC 6503 // to satisfy the rare situation when resources are too limited. 6504 return std::max(IC / 2, SmallIC); 6505 } else { 6506 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6507 return SmallIC; 6508 } 6509 } 6510 6511 // Interleave if this is a large loop (small loops are already dealt with by 6512 // this point) that could benefit from interleaving. 6513 if (AggressivelyInterleaveReductions) { 6514 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6515 return IC; 6516 } 6517 6518 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6519 return 1; 6520 } 6521 6522 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6523 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6524 // This function calculates the register usage by measuring the highest number 6525 // of values that are alive at a single location. Obviously, this is a very 6526 // rough estimation. We scan the loop in a topological order in order and 6527 // assign a number to each instruction. We use RPO to ensure that defs are 6528 // met before their users. We assume that each instruction that has in-loop 6529 // users starts an interval. We record every time that an in-loop value is 6530 // used, so we have a list of the first and last occurrences of each 6531 // instruction. Next, we transpose this data structure into a multi map that 6532 // holds the list of intervals that *end* at a specific location. This multi 6533 // map allows us to perform a linear search. We scan the instructions linearly 6534 // and record each time that a new interval starts, by placing it in a set. 6535 // If we find this value in the multi-map then we remove it from the set. 6536 // The max register usage is the maximum size of the set. 6537 // We also search for instructions that are defined outside the loop, but are 6538 // used inside the loop. We need this number separately from the max-interval 6539 // usage number because when we unroll, loop-invariant values do not take 6540 // more register. 6541 LoopBlocksDFS DFS(TheLoop); 6542 DFS.perform(LI); 6543 6544 RegisterUsage RU; 6545 6546 // Each 'key' in the map opens a new interval. The values 6547 // of the map are the index of the 'last seen' usage of the 6548 // instruction that is the key. 6549 using IntervalMap = DenseMap<Instruction *, unsigned>; 6550 6551 // Maps instruction to its index. 6552 SmallVector<Instruction *, 64> IdxToInstr; 6553 // Marks the end of each interval. 6554 IntervalMap EndPoint; 6555 // Saves the list of instruction indices that are used in the loop. 6556 SmallPtrSet<Instruction *, 8> Ends; 6557 // Saves the list of values that are used in the loop but are 6558 // defined outside the loop, such as arguments and constants. 6559 SmallPtrSet<Value *, 8> LoopInvariants; 6560 6561 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6562 for (Instruction &I : BB->instructionsWithoutDebug()) { 6563 IdxToInstr.push_back(&I); 6564 6565 // Save the end location of each USE. 6566 for (Value *U : I.operands()) { 6567 auto *Instr = dyn_cast<Instruction>(U); 6568 6569 // Ignore non-instruction values such as arguments, constants, etc. 6570 if (!Instr) 6571 continue; 6572 6573 // If this instruction is outside the loop then record it and continue. 6574 if (!TheLoop->contains(Instr)) { 6575 LoopInvariants.insert(Instr); 6576 continue; 6577 } 6578 6579 // Overwrite previous end points. 6580 EndPoint[Instr] = IdxToInstr.size(); 6581 Ends.insert(Instr); 6582 } 6583 } 6584 } 6585 6586 // Saves the list of intervals that end with the index in 'key'. 6587 using InstrList = SmallVector<Instruction *, 2>; 6588 DenseMap<unsigned, InstrList> TransposeEnds; 6589 6590 // Transpose the EndPoints to a list of values that end at each index. 6591 for (auto &Interval : EndPoint) 6592 TransposeEnds[Interval.second].push_back(Interval.first); 6593 6594 SmallPtrSet<Instruction *, 8> OpenIntervals; 6595 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6596 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6597 6598 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6599 6600 // A lambda that gets the register usage for the given type and VF. 6601 const auto &TTICapture = TTI; 6602 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6603 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6604 return 0; 6605 return *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6606 }; 6607 6608 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6609 Instruction *I = IdxToInstr[i]; 6610 6611 // Remove all of the instructions that end at this location. 6612 InstrList &List = TransposeEnds[i]; 6613 for (Instruction *ToRemove : List) 6614 OpenIntervals.erase(ToRemove); 6615 6616 // Ignore instructions that are never used within the loop. 6617 if (!Ends.count(I)) 6618 continue; 6619 6620 // Skip ignored values. 6621 if (ValuesToIgnore.count(I)) 6622 continue; 6623 6624 // For each VF find the maximum usage of registers. 6625 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6626 // Count the number of live intervals. 6627 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6628 6629 if (VFs[j].isScalar()) { 6630 for (auto Inst : OpenIntervals) { 6631 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6632 if (RegUsage.find(ClassID) == RegUsage.end()) 6633 RegUsage[ClassID] = 1; 6634 else 6635 RegUsage[ClassID] += 1; 6636 } 6637 } else { 6638 collectUniformsAndScalars(VFs[j]); 6639 for (auto Inst : OpenIntervals) { 6640 // Skip ignored values for VF > 1. 6641 if (VecValuesToIgnore.count(Inst)) 6642 continue; 6643 if (isScalarAfterVectorization(Inst, VFs[j])) { 6644 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6645 if (RegUsage.find(ClassID) == RegUsage.end()) 6646 RegUsage[ClassID] = 1; 6647 else 6648 RegUsage[ClassID] += 1; 6649 } else { 6650 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6651 if (RegUsage.find(ClassID) == RegUsage.end()) 6652 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6653 else 6654 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6655 } 6656 } 6657 } 6658 6659 for (auto& pair : RegUsage) { 6660 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6661 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6662 else 6663 MaxUsages[j][pair.first] = pair.second; 6664 } 6665 } 6666 6667 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6668 << OpenIntervals.size() << '\n'); 6669 6670 // Add the current instruction to the list of open intervals. 6671 OpenIntervals.insert(I); 6672 } 6673 6674 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6675 SmallMapVector<unsigned, unsigned, 4> Invariant; 6676 6677 for (auto Inst : LoopInvariants) { 6678 unsigned Usage = 6679 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6680 unsigned ClassID = 6681 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6682 if (Invariant.find(ClassID) == Invariant.end()) 6683 Invariant[ClassID] = Usage; 6684 else 6685 Invariant[ClassID] += Usage; 6686 } 6687 6688 LLVM_DEBUG({ 6689 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6690 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6691 << " item\n"; 6692 for (const auto &pair : MaxUsages[i]) { 6693 dbgs() << "LV(REG): RegisterClass: " 6694 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6695 << " registers\n"; 6696 } 6697 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6698 << " item\n"; 6699 for (const auto &pair : Invariant) { 6700 dbgs() << "LV(REG): RegisterClass: " 6701 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6702 << " registers\n"; 6703 } 6704 }); 6705 6706 RU.LoopInvariantRegs = Invariant; 6707 RU.MaxLocalUsers = MaxUsages[i]; 6708 RUs[i] = RU; 6709 } 6710 6711 return RUs; 6712 } 6713 6714 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6715 // TODO: Cost model for emulated masked load/store is completely 6716 // broken. This hack guides the cost model to use an artificially 6717 // high enough value to practically disable vectorization with such 6718 // operations, except where previously deployed legality hack allowed 6719 // using very low cost values. This is to avoid regressions coming simply 6720 // from moving "masked load/store" check from legality to cost model. 6721 // Masked Load/Gather emulation was previously never allowed. 6722 // Limited number of Masked Store/Scatter emulation was allowed. 6723 assert(isPredicatedInst(I) && 6724 "Expecting a scalar emulated instruction"); 6725 return isa<LoadInst>(I) || 6726 (isa<StoreInst>(I) && 6727 NumPredStores > NumberOfStoresToPredicate); 6728 } 6729 6730 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6731 // If we aren't vectorizing the loop, or if we've already collected the 6732 // instructions to scalarize, there's nothing to do. Collection may already 6733 // have occurred if we have a user-selected VF and are now computing the 6734 // expected cost for interleaving. 6735 if (VF.isScalar() || VF.isZero() || 6736 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6737 return; 6738 6739 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6740 // not profitable to scalarize any instructions, the presence of VF in the 6741 // map will indicate that we've analyzed it already. 6742 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6743 6744 // Find all the instructions that are scalar with predication in the loop and 6745 // determine if it would be better to not if-convert the blocks they are in. 6746 // If so, we also record the instructions to scalarize. 6747 for (BasicBlock *BB : TheLoop->blocks()) { 6748 if (!blockNeedsPredication(BB)) 6749 continue; 6750 for (Instruction &I : *BB) 6751 if (isScalarWithPredication(&I)) { 6752 ScalarCostsTy ScalarCosts; 6753 // Do not apply discount logic if hacked cost is needed 6754 // for emulated masked memrefs. 6755 if (!useEmulatedMaskMemRefHack(&I) && 6756 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6757 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6758 // Remember that BB will remain after vectorization. 6759 PredicatedBBsAfterVectorization.insert(BB); 6760 } 6761 } 6762 } 6763 6764 int LoopVectorizationCostModel::computePredInstDiscount( 6765 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6766 assert(!isUniformAfterVectorization(PredInst, VF) && 6767 "Instruction marked uniform-after-vectorization will be predicated"); 6768 6769 // Initialize the discount to zero, meaning that the scalar version and the 6770 // vector version cost the same. 6771 InstructionCost Discount = 0; 6772 6773 // Holds instructions to analyze. The instructions we visit are mapped in 6774 // ScalarCosts. Those instructions are the ones that would be scalarized if 6775 // we find that the scalar version costs less. 6776 SmallVector<Instruction *, 8> Worklist; 6777 6778 // Returns true if the given instruction can be scalarized. 6779 auto canBeScalarized = [&](Instruction *I) -> bool { 6780 // We only attempt to scalarize instructions forming a single-use chain 6781 // from the original predicated block that would otherwise be vectorized. 6782 // Although not strictly necessary, we give up on instructions we know will 6783 // already be scalar to avoid traversing chains that are unlikely to be 6784 // beneficial. 6785 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6786 isScalarAfterVectorization(I, VF)) 6787 return false; 6788 6789 // If the instruction is scalar with predication, it will be analyzed 6790 // separately. We ignore it within the context of PredInst. 6791 if (isScalarWithPredication(I)) 6792 return false; 6793 6794 // If any of the instruction's operands are uniform after vectorization, 6795 // the instruction cannot be scalarized. This prevents, for example, a 6796 // masked load from being scalarized. 6797 // 6798 // We assume we will only emit a value for lane zero of an instruction 6799 // marked uniform after vectorization, rather than VF identical values. 6800 // Thus, if we scalarize an instruction that uses a uniform, we would 6801 // create uses of values corresponding to the lanes we aren't emitting code 6802 // for. This behavior can be changed by allowing getScalarValue to clone 6803 // the lane zero values for uniforms rather than asserting. 6804 for (Use &U : I->operands()) 6805 if (auto *J = dyn_cast<Instruction>(U.get())) 6806 if (isUniformAfterVectorization(J, VF)) 6807 return false; 6808 6809 // Otherwise, we can scalarize the instruction. 6810 return true; 6811 }; 6812 6813 // Compute the expected cost discount from scalarizing the entire expression 6814 // feeding the predicated instruction. We currently only consider expressions 6815 // that are single-use instruction chains. 6816 Worklist.push_back(PredInst); 6817 while (!Worklist.empty()) { 6818 Instruction *I = Worklist.pop_back_val(); 6819 6820 // If we've already analyzed the instruction, there's nothing to do. 6821 if (ScalarCosts.find(I) != ScalarCosts.end()) 6822 continue; 6823 6824 // Compute the cost of the vector instruction. Note that this cost already 6825 // includes the scalarization overhead of the predicated instruction. 6826 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6827 6828 // Compute the cost of the scalarized instruction. This cost is the cost of 6829 // the instruction as if it wasn't if-converted and instead remained in the 6830 // predicated block. We will scale this cost by block probability after 6831 // computing the scalarization overhead. 6832 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6833 InstructionCost ScalarCost = 6834 VF.getKnownMinValue() * 6835 getInstructionCost(I, ElementCount::getFixed(1)).first; 6836 6837 // Compute the scalarization overhead of needed insertelement instructions 6838 // and phi nodes. 6839 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6840 ScalarCost += TTI.getScalarizationOverhead( 6841 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6842 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6843 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6844 ScalarCost += 6845 VF.getKnownMinValue() * 6846 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6847 } 6848 6849 // Compute the scalarization overhead of needed extractelement 6850 // instructions. For each of the instruction's operands, if the operand can 6851 // be scalarized, add it to the worklist; otherwise, account for the 6852 // overhead. 6853 for (Use &U : I->operands()) 6854 if (auto *J = dyn_cast<Instruction>(U.get())) { 6855 assert(VectorType::isValidElementType(J->getType()) && 6856 "Instruction has non-scalar type"); 6857 if (canBeScalarized(J)) 6858 Worklist.push_back(J); 6859 else if (needsExtract(J, VF)) { 6860 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6861 ScalarCost += TTI.getScalarizationOverhead( 6862 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6863 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6864 } 6865 } 6866 6867 // Scale the total scalar cost by block probability. 6868 ScalarCost /= getReciprocalPredBlockProb(); 6869 6870 // Compute the discount. A non-negative discount means the vector version 6871 // of the instruction costs more, and scalarizing would be beneficial. 6872 Discount += VectorCost - ScalarCost; 6873 ScalarCosts[I] = ScalarCost; 6874 } 6875 6876 return *Discount.getValue(); 6877 } 6878 6879 LoopVectorizationCostModel::VectorizationCostTy 6880 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6881 VectorizationCostTy Cost; 6882 6883 // For each block. 6884 for (BasicBlock *BB : TheLoop->blocks()) { 6885 VectorizationCostTy BlockCost; 6886 6887 // For each instruction in the old loop. 6888 for (Instruction &I : BB->instructionsWithoutDebug()) { 6889 // Skip ignored values. 6890 if (ValuesToIgnore.count(&I) || 6891 (VF.isVector() && VecValuesToIgnore.count(&I))) 6892 continue; 6893 6894 VectorizationCostTy C = getInstructionCost(&I, VF); 6895 6896 // Check if we should override the cost. 6897 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6898 C.first = InstructionCost(ForceTargetInstructionCost); 6899 6900 BlockCost.first += C.first; 6901 BlockCost.second |= C.second; 6902 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6903 << " for VF " << VF << " For instruction: " << I 6904 << '\n'); 6905 } 6906 6907 // If we are vectorizing a predicated block, it will have been 6908 // if-converted. This means that the block's instructions (aside from 6909 // stores and instructions that may divide by zero) will now be 6910 // unconditionally executed. For the scalar case, we may not always execute 6911 // the predicated block, if it is an if-else block. Thus, scale the block's 6912 // cost by the probability of executing it. blockNeedsPredication from 6913 // Legal is used so as to not include all blocks in tail folded loops. 6914 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6915 BlockCost.first /= getReciprocalPredBlockProb(); 6916 6917 Cost.first += BlockCost.first; 6918 Cost.second |= BlockCost.second; 6919 } 6920 6921 return Cost; 6922 } 6923 6924 /// Gets Address Access SCEV after verifying that the access pattern 6925 /// is loop invariant except the induction variable dependence. 6926 /// 6927 /// This SCEV can be sent to the Target in order to estimate the address 6928 /// calculation cost. 6929 static const SCEV *getAddressAccessSCEV( 6930 Value *Ptr, 6931 LoopVectorizationLegality *Legal, 6932 PredicatedScalarEvolution &PSE, 6933 const Loop *TheLoop) { 6934 6935 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6936 if (!Gep) 6937 return nullptr; 6938 6939 // We are looking for a gep with all loop invariant indices except for one 6940 // which should be an induction variable. 6941 auto SE = PSE.getSE(); 6942 unsigned NumOperands = Gep->getNumOperands(); 6943 for (unsigned i = 1; i < NumOperands; ++i) { 6944 Value *Opd = Gep->getOperand(i); 6945 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6946 !Legal->isInductionVariable(Opd)) 6947 return nullptr; 6948 } 6949 6950 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6951 return PSE.getSCEV(Ptr); 6952 } 6953 6954 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6955 return Legal->hasStride(I->getOperand(0)) || 6956 Legal->hasStride(I->getOperand(1)); 6957 } 6958 6959 InstructionCost 6960 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6961 ElementCount VF) { 6962 assert(VF.isVector() && 6963 "Scalarization cost of instruction implies vectorization."); 6964 if (VF.isScalable()) 6965 return InstructionCost::getInvalid(); 6966 6967 Type *ValTy = getLoadStoreType(I); 6968 auto SE = PSE.getSE(); 6969 6970 unsigned AS = getLoadStoreAddressSpace(I); 6971 Value *Ptr = getLoadStorePointerOperand(I); 6972 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6973 6974 // Figure out whether the access is strided and get the stride value 6975 // if it's known in compile time 6976 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6977 6978 // Get the cost of the scalar memory instruction and address computation. 6979 InstructionCost Cost = 6980 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6981 6982 // Don't pass *I here, since it is scalar but will actually be part of a 6983 // vectorized loop where the user of it is a vectorized instruction. 6984 const Align Alignment = getLoadStoreAlignment(I); 6985 Cost += VF.getKnownMinValue() * 6986 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6987 AS, TTI::TCK_RecipThroughput); 6988 6989 // Get the overhead of the extractelement and insertelement instructions 6990 // we might create due to scalarization. 6991 Cost += getScalarizationOverhead(I, VF); 6992 6993 // If we have a predicated load/store, it will need extra i1 extracts and 6994 // conditional branches, but may not be executed for each vector lane. Scale 6995 // the cost by the probability of executing the predicated block. 6996 if (isPredicatedInst(I)) { 6997 Cost /= getReciprocalPredBlockProb(); 6998 6999 // Add the cost of an i1 extract and a branch 7000 auto *Vec_i1Ty = 7001 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7002 Cost += TTI.getScalarizationOverhead( 7003 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7004 /*Insert=*/false, /*Extract=*/true); 7005 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7006 7007 if (useEmulatedMaskMemRefHack(I)) 7008 // Artificially setting to a high enough value to practically disable 7009 // vectorization with such operations. 7010 Cost = 3000000; 7011 } 7012 7013 return Cost; 7014 } 7015 7016 InstructionCost 7017 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7018 ElementCount VF) { 7019 Type *ValTy = getLoadStoreType(I); 7020 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7021 Value *Ptr = getLoadStorePointerOperand(I); 7022 unsigned AS = getLoadStoreAddressSpace(I); 7023 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7024 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7025 7026 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7027 "Stride should be 1 or -1 for consecutive memory access"); 7028 const Align Alignment = getLoadStoreAlignment(I); 7029 InstructionCost Cost = 0; 7030 if (Legal->isMaskRequired(I)) 7031 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7032 CostKind); 7033 else 7034 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7035 CostKind, I); 7036 7037 bool Reverse = ConsecutiveStride < 0; 7038 if (Reverse) 7039 Cost += 7040 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7041 return Cost; 7042 } 7043 7044 InstructionCost 7045 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7046 ElementCount VF) { 7047 assert(Legal->isUniformMemOp(*I)); 7048 7049 Type *ValTy = getLoadStoreType(I); 7050 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7051 const Align Alignment = getLoadStoreAlignment(I); 7052 unsigned AS = getLoadStoreAddressSpace(I); 7053 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7054 if (isa<LoadInst>(I)) { 7055 return TTI.getAddressComputationCost(ValTy) + 7056 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7057 CostKind) + 7058 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7059 } 7060 StoreInst *SI = cast<StoreInst>(I); 7061 7062 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7063 return TTI.getAddressComputationCost(ValTy) + 7064 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7065 CostKind) + 7066 (isLoopInvariantStoreValue 7067 ? 0 7068 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7069 VF.getKnownMinValue() - 1)); 7070 } 7071 7072 InstructionCost 7073 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7074 ElementCount VF) { 7075 Type *ValTy = getLoadStoreType(I); 7076 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7077 const Align Alignment = getLoadStoreAlignment(I); 7078 const Value *Ptr = getLoadStorePointerOperand(I); 7079 7080 return TTI.getAddressComputationCost(VectorTy) + 7081 TTI.getGatherScatterOpCost( 7082 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7083 TargetTransformInfo::TCK_RecipThroughput, I); 7084 } 7085 7086 InstructionCost 7087 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7088 ElementCount VF) { 7089 // TODO: Once we have support for interleaving with scalable vectors 7090 // we can calculate the cost properly here. 7091 if (VF.isScalable()) 7092 return InstructionCost::getInvalid(); 7093 7094 Type *ValTy = getLoadStoreType(I); 7095 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7096 unsigned AS = getLoadStoreAddressSpace(I); 7097 7098 auto Group = getInterleavedAccessGroup(I); 7099 assert(Group && "Fail to get an interleaved access group."); 7100 7101 unsigned InterleaveFactor = Group->getFactor(); 7102 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7103 7104 // Holds the indices of existing members in an interleaved load group. 7105 // An interleaved store group doesn't need this as it doesn't allow gaps. 7106 SmallVector<unsigned, 4> Indices; 7107 if (isa<LoadInst>(I)) { 7108 for (unsigned i = 0; i < InterleaveFactor; i++) 7109 if (Group->getMember(i)) 7110 Indices.push_back(i); 7111 } 7112 7113 // Calculate the cost of the whole interleaved group. 7114 bool UseMaskForGaps = 7115 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7116 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7117 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7118 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7119 7120 if (Group->isReverse()) { 7121 // TODO: Add support for reversed masked interleaved access. 7122 assert(!Legal->isMaskRequired(I) && 7123 "Reverse masked interleaved access not supported."); 7124 Cost += 7125 Group->getNumMembers() * 7126 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7127 } 7128 return Cost; 7129 } 7130 7131 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7132 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7133 // Early exit for no inloop reductions 7134 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7135 return InstructionCost::getInvalid(); 7136 auto *VectorTy = cast<VectorType>(Ty); 7137 7138 // We are looking for a pattern of, and finding the minimal acceptable cost: 7139 // reduce(mul(ext(A), ext(B))) or 7140 // reduce(mul(A, B)) or 7141 // reduce(ext(A)) or 7142 // reduce(A). 7143 // The basic idea is that we walk down the tree to do that, finding the root 7144 // reduction instruction in InLoopReductionImmediateChains. From there we find 7145 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7146 // of the components. If the reduction cost is lower then we return it for the 7147 // reduction instruction and 0 for the other instructions in the pattern. If 7148 // it is not we return an invalid cost specifying the orignal cost method 7149 // should be used. 7150 Instruction *RetI = I; 7151 if ((RetI->getOpcode() == Instruction::SExt || 7152 RetI->getOpcode() == Instruction::ZExt)) { 7153 if (!RetI->hasOneUser()) 7154 return InstructionCost::getInvalid(); 7155 RetI = RetI->user_back(); 7156 } 7157 if (RetI->getOpcode() == Instruction::Mul && 7158 RetI->user_back()->getOpcode() == Instruction::Add) { 7159 if (!RetI->hasOneUser()) 7160 return InstructionCost::getInvalid(); 7161 RetI = RetI->user_back(); 7162 } 7163 7164 // Test if the found instruction is a reduction, and if not return an invalid 7165 // cost specifying the parent to use the original cost modelling. 7166 if (!InLoopReductionImmediateChains.count(RetI)) 7167 return InstructionCost::getInvalid(); 7168 7169 // Find the reduction this chain is a part of and calculate the basic cost of 7170 // the reduction on its own. 7171 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7172 Instruction *ReductionPhi = LastChain; 7173 while (!isa<PHINode>(ReductionPhi)) 7174 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7175 7176 const RecurrenceDescriptor &RdxDesc = 7177 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7178 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7179 RdxDesc.getOpcode(), VectorTy, false, CostKind); 7180 7181 // Get the operand that was not the reduction chain and match it to one of the 7182 // patterns, returning the better cost if it is found. 7183 Instruction *RedOp = RetI->getOperand(1) == LastChain 7184 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7185 : dyn_cast<Instruction>(RetI->getOperand(1)); 7186 7187 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7188 7189 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7190 !TheLoop->isLoopInvariant(RedOp)) { 7191 bool IsUnsigned = isa<ZExtInst>(RedOp); 7192 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7193 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7194 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7195 CostKind); 7196 7197 InstructionCost ExtCost = 7198 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7199 TTI::CastContextHint::None, CostKind, RedOp); 7200 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7201 return I == RetI ? *RedCost.getValue() : 0; 7202 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7203 Instruction *Mul = RedOp; 7204 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7205 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7206 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7207 Op0->getOpcode() == Op1->getOpcode() && 7208 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7209 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7210 bool IsUnsigned = isa<ZExtInst>(Op0); 7211 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7212 // reduce(mul(ext, ext)) 7213 InstructionCost ExtCost = 7214 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7215 TTI::CastContextHint::None, CostKind, Op0); 7216 InstructionCost MulCost = 7217 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7218 7219 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7220 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7221 CostKind); 7222 7223 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7224 return I == RetI ? *RedCost.getValue() : 0; 7225 } else { 7226 InstructionCost MulCost = 7227 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7228 7229 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7230 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7231 CostKind); 7232 7233 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7234 return I == RetI ? *RedCost.getValue() : 0; 7235 } 7236 } 7237 7238 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7239 } 7240 7241 InstructionCost 7242 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7243 ElementCount VF) { 7244 // Calculate scalar cost only. Vectorization cost should be ready at this 7245 // moment. 7246 if (VF.isScalar()) { 7247 Type *ValTy = getLoadStoreType(I); 7248 const Align Alignment = getLoadStoreAlignment(I); 7249 unsigned AS = getLoadStoreAddressSpace(I); 7250 7251 return TTI.getAddressComputationCost(ValTy) + 7252 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7253 TTI::TCK_RecipThroughput, I); 7254 } 7255 return getWideningCost(I, VF); 7256 } 7257 7258 LoopVectorizationCostModel::VectorizationCostTy 7259 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7260 ElementCount VF) { 7261 // If we know that this instruction will remain uniform, check the cost of 7262 // the scalar version. 7263 if (isUniformAfterVectorization(I, VF)) 7264 VF = ElementCount::getFixed(1); 7265 7266 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7267 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7268 7269 // Forced scalars do not have any scalarization overhead. 7270 auto ForcedScalar = ForcedScalars.find(VF); 7271 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7272 auto InstSet = ForcedScalar->second; 7273 if (InstSet.count(I)) 7274 return VectorizationCostTy( 7275 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7276 VF.getKnownMinValue()), 7277 false); 7278 } 7279 7280 Type *VectorTy; 7281 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7282 7283 bool TypeNotScalarized = 7284 VF.isVector() && VectorTy->isVectorTy() && 7285 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7286 return VectorizationCostTy(C, TypeNotScalarized); 7287 } 7288 7289 InstructionCost 7290 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7291 ElementCount VF) const { 7292 7293 if (VF.isScalable()) 7294 return InstructionCost::getInvalid(); 7295 7296 if (VF.isScalar()) 7297 return 0; 7298 7299 InstructionCost Cost = 0; 7300 Type *RetTy = ToVectorTy(I->getType(), VF); 7301 if (!RetTy->isVoidTy() && 7302 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7303 Cost += TTI.getScalarizationOverhead( 7304 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7305 true, false); 7306 7307 // Some targets keep addresses scalar. 7308 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7309 return Cost; 7310 7311 // Some targets support efficient element stores. 7312 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7313 return Cost; 7314 7315 // Collect operands to consider. 7316 CallInst *CI = dyn_cast<CallInst>(I); 7317 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7318 7319 // Skip operands that do not require extraction/scalarization and do not incur 7320 // any overhead. 7321 SmallVector<Type *> Tys; 7322 for (auto *V : filterExtractingOperands(Ops, VF)) 7323 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7324 return Cost + TTI.getOperandsScalarizationOverhead( 7325 filterExtractingOperands(Ops, VF), Tys); 7326 } 7327 7328 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7329 if (VF.isScalar()) 7330 return; 7331 NumPredStores = 0; 7332 for (BasicBlock *BB : TheLoop->blocks()) { 7333 // For each instruction in the old loop. 7334 for (Instruction &I : *BB) { 7335 Value *Ptr = getLoadStorePointerOperand(&I); 7336 if (!Ptr) 7337 continue; 7338 7339 // TODO: We should generate better code and update the cost model for 7340 // predicated uniform stores. Today they are treated as any other 7341 // predicated store (see added test cases in 7342 // invariant-store-vectorization.ll). 7343 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7344 NumPredStores++; 7345 7346 if (Legal->isUniformMemOp(I)) { 7347 // TODO: Avoid replicating loads and stores instead of 7348 // relying on instcombine to remove them. 7349 // Load: Scalar load + broadcast 7350 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7351 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7352 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7353 continue; 7354 } 7355 7356 // We assume that widening is the best solution when possible. 7357 if (memoryInstructionCanBeWidened(&I, VF)) { 7358 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7359 int ConsecutiveStride = 7360 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7361 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7362 "Expected consecutive stride."); 7363 InstWidening Decision = 7364 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7365 setWideningDecision(&I, VF, Decision, Cost); 7366 continue; 7367 } 7368 7369 // Choose between Interleaving, Gather/Scatter or Scalarization. 7370 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7371 unsigned NumAccesses = 1; 7372 if (isAccessInterleaved(&I)) { 7373 auto Group = getInterleavedAccessGroup(&I); 7374 assert(Group && "Fail to get an interleaved access group."); 7375 7376 // Make one decision for the whole group. 7377 if (getWideningDecision(&I, VF) != CM_Unknown) 7378 continue; 7379 7380 NumAccesses = Group->getNumMembers(); 7381 if (interleavedAccessCanBeWidened(&I, VF)) 7382 InterleaveCost = getInterleaveGroupCost(&I, VF); 7383 } 7384 7385 InstructionCost GatherScatterCost = 7386 isLegalGatherOrScatter(&I) 7387 ? getGatherScatterCost(&I, VF) * NumAccesses 7388 : InstructionCost::getInvalid(); 7389 7390 InstructionCost ScalarizationCost = 7391 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7392 7393 // Choose better solution for the current VF, 7394 // write down this decision and use it during vectorization. 7395 InstructionCost Cost; 7396 InstWidening Decision; 7397 if (InterleaveCost <= GatherScatterCost && 7398 InterleaveCost < ScalarizationCost) { 7399 Decision = CM_Interleave; 7400 Cost = InterleaveCost; 7401 } else if (GatherScatterCost < ScalarizationCost) { 7402 Decision = CM_GatherScatter; 7403 Cost = GatherScatterCost; 7404 } else { 7405 assert(!VF.isScalable() && 7406 "We cannot yet scalarise for scalable vectors"); 7407 Decision = CM_Scalarize; 7408 Cost = ScalarizationCost; 7409 } 7410 // If the instructions belongs to an interleave group, the whole group 7411 // receives the same decision. The whole group receives the cost, but 7412 // the cost will actually be assigned to one instruction. 7413 if (auto Group = getInterleavedAccessGroup(&I)) 7414 setWideningDecision(Group, VF, Decision, Cost); 7415 else 7416 setWideningDecision(&I, VF, Decision, Cost); 7417 } 7418 } 7419 7420 // Make sure that any load of address and any other address computation 7421 // remains scalar unless there is gather/scatter support. This avoids 7422 // inevitable extracts into address registers, and also has the benefit of 7423 // activating LSR more, since that pass can't optimize vectorized 7424 // addresses. 7425 if (TTI.prefersVectorizedAddressing()) 7426 return; 7427 7428 // Start with all scalar pointer uses. 7429 SmallPtrSet<Instruction *, 8> AddrDefs; 7430 for (BasicBlock *BB : TheLoop->blocks()) 7431 for (Instruction &I : *BB) { 7432 Instruction *PtrDef = 7433 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7434 if (PtrDef && TheLoop->contains(PtrDef) && 7435 getWideningDecision(&I, VF) != CM_GatherScatter) 7436 AddrDefs.insert(PtrDef); 7437 } 7438 7439 // Add all instructions used to generate the addresses. 7440 SmallVector<Instruction *, 4> Worklist; 7441 append_range(Worklist, AddrDefs); 7442 while (!Worklist.empty()) { 7443 Instruction *I = Worklist.pop_back_val(); 7444 for (auto &Op : I->operands()) 7445 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7446 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7447 AddrDefs.insert(InstOp).second) 7448 Worklist.push_back(InstOp); 7449 } 7450 7451 for (auto *I : AddrDefs) { 7452 if (isa<LoadInst>(I)) { 7453 // Setting the desired widening decision should ideally be handled in 7454 // by cost functions, but since this involves the task of finding out 7455 // if the loaded register is involved in an address computation, it is 7456 // instead changed here when we know this is the case. 7457 InstWidening Decision = getWideningDecision(I, VF); 7458 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7459 // Scalarize a widened load of address. 7460 setWideningDecision( 7461 I, VF, CM_Scalarize, 7462 (VF.getKnownMinValue() * 7463 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7464 else if (auto Group = getInterleavedAccessGroup(I)) { 7465 // Scalarize an interleave group of address loads. 7466 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7467 if (Instruction *Member = Group->getMember(I)) 7468 setWideningDecision( 7469 Member, VF, CM_Scalarize, 7470 (VF.getKnownMinValue() * 7471 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7472 } 7473 } 7474 } else 7475 // Make sure I gets scalarized and a cost estimate without 7476 // scalarization overhead. 7477 ForcedScalars[VF].insert(I); 7478 } 7479 } 7480 7481 InstructionCost 7482 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7483 Type *&VectorTy) { 7484 Type *RetTy = I->getType(); 7485 if (canTruncateToMinimalBitwidth(I, VF)) 7486 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7487 auto SE = PSE.getSE(); 7488 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7489 7490 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7491 ElementCount VF) -> bool { 7492 if (VF.isScalar()) 7493 return true; 7494 7495 auto Scalarized = InstsToScalarize.find(VF); 7496 assert(Scalarized != InstsToScalarize.end() && 7497 "VF not yet analyzed for scalarization profitability"); 7498 return !Scalarized->second.count(I) && 7499 llvm::all_of(I->users(), [&](User *U) { 7500 auto *UI = cast<Instruction>(U); 7501 return !Scalarized->second.count(UI); 7502 }); 7503 }; 7504 (void) hasSingleCopyAfterVectorization; 7505 7506 if (isScalarAfterVectorization(I, VF)) { 7507 // With the exception of GEPs and PHIs, after scalarization there should 7508 // only be one copy of the instruction generated in the loop. This is 7509 // because the VF is either 1, or any instructions that need scalarizing 7510 // have already been dealt with by the the time we get here. As a result, 7511 // it means we don't have to multiply the instruction cost by VF. 7512 assert(I->getOpcode() == Instruction::GetElementPtr || 7513 I->getOpcode() == Instruction::PHI || 7514 (I->getOpcode() == Instruction::BitCast && 7515 I->getType()->isPointerTy()) || 7516 hasSingleCopyAfterVectorization(I, VF)); 7517 VectorTy = RetTy; 7518 } else 7519 VectorTy = ToVectorTy(RetTy, VF); 7520 7521 // TODO: We need to estimate the cost of intrinsic calls. 7522 switch (I->getOpcode()) { 7523 case Instruction::GetElementPtr: 7524 // We mark this instruction as zero-cost because the cost of GEPs in 7525 // vectorized code depends on whether the corresponding memory instruction 7526 // is scalarized or not. Therefore, we handle GEPs with the memory 7527 // instruction cost. 7528 return 0; 7529 case Instruction::Br: { 7530 // In cases of scalarized and predicated instructions, there will be VF 7531 // predicated blocks in the vectorized loop. Each branch around these 7532 // blocks requires also an extract of its vector compare i1 element. 7533 bool ScalarPredicatedBB = false; 7534 BranchInst *BI = cast<BranchInst>(I); 7535 if (VF.isVector() && BI->isConditional() && 7536 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7537 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7538 ScalarPredicatedBB = true; 7539 7540 if (ScalarPredicatedBB) { 7541 // Return cost for branches around scalarized and predicated blocks. 7542 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7543 auto *Vec_i1Ty = 7544 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7545 return (TTI.getScalarizationOverhead( 7546 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7547 false, true) + 7548 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7549 VF.getKnownMinValue())); 7550 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7551 // The back-edge branch will remain, as will all scalar branches. 7552 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7553 else 7554 // This branch will be eliminated by if-conversion. 7555 return 0; 7556 // Note: We currently assume zero cost for an unconditional branch inside 7557 // a predicated block since it will become a fall-through, although we 7558 // may decide in the future to call TTI for all branches. 7559 } 7560 case Instruction::PHI: { 7561 auto *Phi = cast<PHINode>(I); 7562 7563 // First-order recurrences are replaced by vector shuffles inside the loop. 7564 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7565 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7566 return TTI.getShuffleCost( 7567 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7568 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7569 7570 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7571 // converted into select instructions. We require N - 1 selects per phi 7572 // node, where N is the number of incoming values. 7573 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7574 return (Phi->getNumIncomingValues() - 1) * 7575 TTI.getCmpSelInstrCost( 7576 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7577 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7578 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7579 7580 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7581 } 7582 case Instruction::UDiv: 7583 case Instruction::SDiv: 7584 case Instruction::URem: 7585 case Instruction::SRem: 7586 // If we have a predicated instruction, it may not be executed for each 7587 // vector lane. Get the scalarization cost and scale this amount by the 7588 // probability of executing the predicated block. If the instruction is not 7589 // predicated, we fall through to the next case. 7590 if (VF.isVector() && isScalarWithPredication(I)) { 7591 InstructionCost Cost = 0; 7592 7593 // These instructions have a non-void type, so account for the phi nodes 7594 // that we will create. This cost is likely to be zero. The phi node 7595 // cost, if any, should be scaled by the block probability because it 7596 // models a copy at the end of each predicated block. 7597 Cost += VF.getKnownMinValue() * 7598 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7599 7600 // The cost of the non-predicated instruction. 7601 Cost += VF.getKnownMinValue() * 7602 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7603 7604 // The cost of insertelement and extractelement instructions needed for 7605 // scalarization. 7606 Cost += getScalarizationOverhead(I, VF); 7607 7608 // Scale the cost by the probability of executing the predicated blocks. 7609 // This assumes the predicated block for each vector lane is equally 7610 // likely. 7611 return Cost / getReciprocalPredBlockProb(); 7612 } 7613 LLVM_FALLTHROUGH; 7614 case Instruction::Add: 7615 case Instruction::FAdd: 7616 case Instruction::Sub: 7617 case Instruction::FSub: 7618 case Instruction::Mul: 7619 case Instruction::FMul: 7620 case Instruction::FDiv: 7621 case Instruction::FRem: 7622 case Instruction::Shl: 7623 case Instruction::LShr: 7624 case Instruction::AShr: 7625 case Instruction::And: 7626 case Instruction::Or: 7627 case Instruction::Xor: { 7628 // Since we will replace the stride by 1 the multiplication should go away. 7629 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7630 return 0; 7631 7632 // Detect reduction patterns 7633 InstructionCost RedCost; 7634 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7635 .isValid()) 7636 return RedCost; 7637 7638 // Certain instructions can be cheaper to vectorize if they have a constant 7639 // second vector operand. One example of this are shifts on x86. 7640 Value *Op2 = I->getOperand(1); 7641 TargetTransformInfo::OperandValueProperties Op2VP; 7642 TargetTransformInfo::OperandValueKind Op2VK = 7643 TTI.getOperandInfo(Op2, Op2VP); 7644 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7645 Op2VK = TargetTransformInfo::OK_UniformValue; 7646 7647 SmallVector<const Value *, 4> Operands(I->operand_values()); 7648 return TTI.getArithmeticInstrCost( 7649 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7650 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7651 } 7652 case Instruction::FNeg: { 7653 return TTI.getArithmeticInstrCost( 7654 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7655 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7656 TargetTransformInfo::OP_None, I->getOperand(0), I); 7657 } 7658 case Instruction::Select: { 7659 SelectInst *SI = cast<SelectInst>(I); 7660 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7661 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7662 7663 const Value *Op0, *Op1; 7664 using namespace llvm::PatternMatch; 7665 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7666 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7667 // select x, y, false --> x & y 7668 // select x, true, y --> x | y 7669 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7670 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7671 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7672 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7673 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7674 Op1->getType()->getScalarSizeInBits() == 1); 7675 7676 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7677 return TTI.getArithmeticInstrCost( 7678 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7679 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7680 } 7681 7682 Type *CondTy = SI->getCondition()->getType(); 7683 if (!ScalarCond) 7684 CondTy = VectorType::get(CondTy, VF); 7685 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7686 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7687 } 7688 case Instruction::ICmp: 7689 case Instruction::FCmp: { 7690 Type *ValTy = I->getOperand(0)->getType(); 7691 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7692 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7693 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7694 VectorTy = ToVectorTy(ValTy, VF); 7695 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7696 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7697 } 7698 case Instruction::Store: 7699 case Instruction::Load: { 7700 ElementCount Width = VF; 7701 if (Width.isVector()) { 7702 InstWidening Decision = getWideningDecision(I, Width); 7703 assert(Decision != CM_Unknown && 7704 "CM decision should be taken at this point"); 7705 if (Decision == CM_Scalarize) 7706 Width = ElementCount::getFixed(1); 7707 } 7708 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7709 return getMemoryInstructionCost(I, VF); 7710 } 7711 case Instruction::BitCast: 7712 if (I->getType()->isPointerTy()) 7713 return 0; 7714 LLVM_FALLTHROUGH; 7715 case Instruction::ZExt: 7716 case Instruction::SExt: 7717 case Instruction::FPToUI: 7718 case Instruction::FPToSI: 7719 case Instruction::FPExt: 7720 case Instruction::PtrToInt: 7721 case Instruction::IntToPtr: 7722 case Instruction::SIToFP: 7723 case Instruction::UIToFP: 7724 case Instruction::Trunc: 7725 case Instruction::FPTrunc: { 7726 // Computes the CastContextHint from a Load/Store instruction. 7727 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7728 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7729 "Expected a load or a store!"); 7730 7731 if (VF.isScalar() || !TheLoop->contains(I)) 7732 return TTI::CastContextHint::Normal; 7733 7734 switch (getWideningDecision(I, VF)) { 7735 case LoopVectorizationCostModel::CM_GatherScatter: 7736 return TTI::CastContextHint::GatherScatter; 7737 case LoopVectorizationCostModel::CM_Interleave: 7738 return TTI::CastContextHint::Interleave; 7739 case LoopVectorizationCostModel::CM_Scalarize: 7740 case LoopVectorizationCostModel::CM_Widen: 7741 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7742 : TTI::CastContextHint::Normal; 7743 case LoopVectorizationCostModel::CM_Widen_Reverse: 7744 return TTI::CastContextHint::Reversed; 7745 case LoopVectorizationCostModel::CM_Unknown: 7746 llvm_unreachable("Instr did not go through cost modelling?"); 7747 } 7748 7749 llvm_unreachable("Unhandled case!"); 7750 }; 7751 7752 unsigned Opcode = I->getOpcode(); 7753 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7754 // For Trunc, the context is the only user, which must be a StoreInst. 7755 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7756 if (I->hasOneUse()) 7757 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7758 CCH = ComputeCCH(Store); 7759 } 7760 // For Z/Sext, the context is the operand, which must be a LoadInst. 7761 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7762 Opcode == Instruction::FPExt) { 7763 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7764 CCH = ComputeCCH(Load); 7765 } 7766 7767 // We optimize the truncation of induction variables having constant 7768 // integer steps. The cost of these truncations is the same as the scalar 7769 // operation. 7770 if (isOptimizableIVTruncate(I, VF)) { 7771 auto *Trunc = cast<TruncInst>(I); 7772 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7773 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7774 } 7775 7776 // Detect reduction patterns 7777 InstructionCost RedCost; 7778 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7779 .isValid()) 7780 return RedCost; 7781 7782 Type *SrcScalarTy = I->getOperand(0)->getType(); 7783 Type *SrcVecTy = 7784 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7785 if (canTruncateToMinimalBitwidth(I, VF)) { 7786 // This cast is going to be shrunk. This may remove the cast or it might 7787 // turn it into slightly different cast. For example, if MinBW == 16, 7788 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7789 // 7790 // Calculate the modified src and dest types. 7791 Type *MinVecTy = VectorTy; 7792 if (Opcode == Instruction::Trunc) { 7793 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7794 VectorTy = 7795 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7796 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7797 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7798 VectorTy = 7799 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7800 } 7801 } 7802 7803 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7804 } 7805 case Instruction::Call: { 7806 bool NeedToScalarize; 7807 CallInst *CI = cast<CallInst>(I); 7808 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7809 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7810 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7811 return std::min(CallCost, IntrinsicCost); 7812 } 7813 return CallCost; 7814 } 7815 case Instruction::ExtractValue: 7816 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7817 default: 7818 // This opcode is unknown. Assume that it is the same as 'mul'. 7819 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7820 } // end of switch. 7821 } 7822 7823 char LoopVectorize::ID = 0; 7824 7825 static const char lv_name[] = "Loop Vectorization"; 7826 7827 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7828 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7829 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7830 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7831 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7832 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7833 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7834 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7835 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7836 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7837 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7838 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7839 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7840 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7841 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7842 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7843 7844 namespace llvm { 7845 7846 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7847 7848 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7849 bool VectorizeOnlyWhenForced) { 7850 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7851 } 7852 7853 } // end namespace llvm 7854 7855 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7856 // Check if the pointer operand of a load or store instruction is 7857 // consecutive. 7858 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7859 return Legal->isConsecutivePtr(Ptr); 7860 return false; 7861 } 7862 7863 void LoopVectorizationCostModel::collectValuesToIgnore() { 7864 // Ignore ephemeral values. 7865 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7866 7867 // Ignore type-promoting instructions we identified during reduction 7868 // detection. 7869 for (auto &Reduction : Legal->getReductionVars()) { 7870 RecurrenceDescriptor &RedDes = Reduction.second; 7871 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7872 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7873 } 7874 // Ignore type-casting instructions we identified during induction 7875 // detection. 7876 for (auto &Induction : Legal->getInductionVars()) { 7877 InductionDescriptor &IndDes = Induction.second; 7878 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7879 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7880 } 7881 } 7882 7883 void LoopVectorizationCostModel::collectInLoopReductions() { 7884 for (auto &Reduction : Legal->getReductionVars()) { 7885 PHINode *Phi = Reduction.first; 7886 RecurrenceDescriptor &RdxDesc = Reduction.second; 7887 7888 // We don't collect reductions that are type promoted (yet). 7889 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7890 continue; 7891 7892 // If the target would prefer this reduction to happen "in-loop", then we 7893 // want to record it as such. 7894 unsigned Opcode = RdxDesc.getOpcode(); 7895 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7896 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7897 TargetTransformInfo::ReductionFlags())) 7898 continue; 7899 7900 // Check that we can correctly put the reductions into the loop, by 7901 // finding the chain of operations that leads from the phi to the loop 7902 // exit value. 7903 SmallVector<Instruction *, 4> ReductionOperations = 7904 RdxDesc.getReductionOpChain(Phi, TheLoop); 7905 bool InLoop = !ReductionOperations.empty(); 7906 if (InLoop) { 7907 InLoopReductionChains[Phi] = ReductionOperations; 7908 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7909 Instruction *LastChain = Phi; 7910 for (auto *I : ReductionOperations) { 7911 InLoopReductionImmediateChains[I] = LastChain; 7912 LastChain = I; 7913 } 7914 } 7915 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7916 << " reduction for phi: " << *Phi << "\n"); 7917 } 7918 } 7919 7920 // TODO: we could return a pair of values that specify the max VF and 7921 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7922 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7923 // doesn't have a cost model that can choose which plan to execute if 7924 // more than one is generated. 7925 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7926 LoopVectorizationCostModel &CM) { 7927 unsigned WidestType; 7928 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7929 return WidestVectorRegBits / WidestType; 7930 } 7931 7932 VectorizationFactor 7933 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7934 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7935 ElementCount VF = UserVF; 7936 // Outer loop handling: They may require CFG and instruction level 7937 // transformations before even evaluating whether vectorization is profitable. 7938 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7939 // the vectorization pipeline. 7940 if (!OrigLoop->isInnermost()) { 7941 // If the user doesn't provide a vectorization factor, determine a 7942 // reasonable one. 7943 if (UserVF.isZero()) { 7944 VF = ElementCount::getFixed(determineVPlanVF( 7945 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7946 .getFixedSize(), 7947 CM)); 7948 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7949 7950 // Make sure we have a VF > 1 for stress testing. 7951 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7952 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7953 << "overriding computed VF.\n"); 7954 VF = ElementCount::getFixed(4); 7955 } 7956 } 7957 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7958 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7959 "VF needs to be a power of two"); 7960 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7961 << "VF " << VF << " to build VPlans.\n"); 7962 buildVPlans(VF, VF); 7963 7964 // For VPlan build stress testing, we bail out after VPlan construction. 7965 if (VPlanBuildStressTest) 7966 return VectorizationFactor::Disabled(); 7967 7968 return {VF, 0 /*Cost*/}; 7969 } 7970 7971 LLVM_DEBUG( 7972 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7973 "VPlan-native path.\n"); 7974 return VectorizationFactor::Disabled(); 7975 } 7976 7977 Optional<VectorizationFactor> 7978 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7979 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7980 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7981 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7982 return None; 7983 7984 // Invalidate interleave groups if all blocks of loop will be predicated. 7985 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7986 !useMaskedInterleavedAccesses(*TTI)) { 7987 LLVM_DEBUG( 7988 dbgs() 7989 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7990 "which requires masked-interleaved support.\n"); 7991 if (CM.InterleaveInfo.invalidateGroups()) 7992 // Invalidating interleave groups also requires invalidating all decisions 7993 // based on them, which includes widening decisions and uniform and scalar 7994 // values. 7995 CM.invalidateCostModelingDecisions(); 7996 } 7997 7998 ElementCount MaxUserVF = 7999 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8000 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8001 if (!UserVF.isZero() && UserVFIsLegal) { 8002 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 8003 << " VF " << UserVF << ".\n"); 8004 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8005 "VF needs to be a power of two"); 8006 // Collect the instructions (and their associated costs) that will be more 8007 // profitable to scalarize. 8008 CM.selectUserVectorizationFactor(UserVF); 8009 CM.collectInLoopReductions(); 8010 buildVPlansWithVPRecipes(UserVF, UserVF); 8011 LLVM_DEBUG(printPlans(dbgs())); 8012 return {{UserVF, 0}}; 8013 } 8014 8015 // Populate the set of Vectorization Factor Candidates. 8016 ElementCountSet VFCandidates; 8017 for (auto VF = ElementCount::getFixed(1); 8018 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8019 VFCandidates.insert(VF); 8020 for (auto VF = ElementCount::getScalable(1); 8021 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8022 VFCandidates.insert(VF); 8023 8024 for (const auto &VF : VFCandidates) { 8025 // Collect Uniform and Scalar instructions after vectorization with VF. 8026 CM.collectUniformsAndScalars(VF); 8027 8028 // Collect the instructions (and their associated costs) that will be more 8029 // profitable to scalarize. 8030 if (VF.isVector()) 8031 CM.collectInstsToScalarize(VF); 8032 } 8033 8034 CM.collectInLoopReductions(); 8035 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8036 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8037 8038 LLVM_DEBUG(printPlans(dbgs())); 8039 if (!MaxFactors.hasVector()) 8040 return VectorizationFactor::Disabled(); 8041 8042 // Select the optimal vectorization factor. 8043 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8044 8045 // Check if it is profitable to vectorize with runtime checks. 8046 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8047 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8048 bool PragmaThresholdReached = 8049 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8050 bool ThresholdReached = 8051 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8052 if ((ThresholdReached && !Hints.allowReordering()) || 8053 PragmaThresholdReached) { 8054 ORE->emit([&]() { 8055 return OptimizationRemarkAnalysisAliasing( 8056 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8057 OrigLoop->getHeader()) 8058 << "loop not vectorized: cannot prove it is safe to reorder " 8059 "memory operations"; 8060 }); 8061 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8062 Hints.emitRemarkWithHints(); 8063 return VectorizationFactor::Disabled(); 8064 } 8065 } 8066 return SelectedVF; 8067 } 8068 8069 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8070 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8071 << '\n'); 8072 BestVF = VF; 8073 BestUF = UF; 8074 8075 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8076 return !Plan->hasVF(VF); 8077 }); 8078 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8079 } 8080 8081 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8082 DominatorTree *DT) { 8083 // Perform the actual loop transformation. 8084 8085 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8086 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8087 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8088 8089 VPTransformState State{ 8090 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8091 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8092 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8093 State.CanonicalIV = ILV.Induction; 8094 8095 ILV.printDebugTracesAtStart(); 8096 8097 //===------------------------------------------------===// 8098 // 8099 // Notice: any optimization or new instruction that go 8100 // into the code below should also be implemented in 8101 // the cost-model. 8102 // 8103 //===------------------------------------------------===// 8104 8105 // 2. Copy and widen instructions from the old loop into the new loop. 8106 VPlans.front()->execute(&State); 8107 8108 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8109 // predication, updating analyses. 8110 ILV.fixVectorizedLoop(State); 8111 8112 ILV.printDebugTracesAtEnd(); 8113 } 8114 8115 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8116 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8117 for (const auto &Plan : VPlans) 8118 if (PrintVPlansInDotFormat) 8119 Plan->printDOT(O); 8120 else 8121 Plan->print(O); 8122 } 8123 #endif 8124 8125 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8126 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8127 8128 // We create new control-flow for the vectorized loop, so the original exit 8129 // conditions will be dead after vectorization if it's only used by the 8130 // terminator 8131 SmallVector<BasicBlock*> ExitingBlocks; 8132 OrigLoop->getExitingBlocks(ExitingBlocks); 8133 for (auto *BB : ExitingBlocks) { 8134 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8135 if (!Cmp || !Cmp->hasOneUse()) 8136 continue; 8137 8138 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8139 if (!DeadInstructions.insert(Cmp).second) 8140 continue; 8141 8142 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8143 // TODO: can recurse through operands in general 8144 for (Value *Op : Cmp->operands()) { 8145 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8146 DeadInstructions.insert(cast<Instruction>(Op)); 8147 } 8148 } 8149 8150 // We create new "steps" for induction variable updates to which the original 8151 // induction variables map. An original update instruction will be dead if 8152 // all its users except the induction variable are dead. 8153 auto *Latch = OrigLoop->getLoopLatch(); 8154 for (auto &Induction : Legal->getInductionVars()) { 8155 PHINode *Ind = Induction.first; 8156 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8157 8158 // If the tail is to be folded by masking, the primary induction variable, 8159 // if exists, isn't dead: it will be used for masking. Don't kill it. 8160 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8161 continue; 8162 8163 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8164 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8165 })) 8166 DeadInstructions.insert(IndUpdate); 8167 8168 // We record as "Dead" also the type-casting instructions we had identified 8169 // during induction analysis. We don't need any handling for them in the 8170 // vectorized loop because we have proven that, under a proper runtime 8171 // test guarding the vectorized loop, the value of the phi, and the casted 8172 // value of the phi, are the same. The last instruction in this casting chain 8173 // will get its scalar/vector/widened def from the scalar/vector/widened def 8174 // of the respective phi node. Any other casts in the induction def-use chain 8175 // have no other uses outside the phi update chain, and will be ignored. 8176 InductionDescriptor &IndDes = Induction.second; 8177 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8178 DeadInstructions.insert(Casts.begin(), Casts.end()); 8179 } 8180 } 8181 8182 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8183 8184 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8185 8186 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8187 Instruction::BinaryOps BinOp) { 8188 // When unrolling and the VF is 1, we only need to add a simple scalar. 8189 Type *Ty = Val->getType(); 8190 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8191 8192 if (Ty->isFloatingPointTy()) { 8193 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8194 8195 // Floating-point operations inherit FMF via the builder's flags. 8196 Value *MulOp = Builder.CreateFMul(C, Step); 8197 return Builder.CreateBinOp(BinOp, Val, MulOp); 8198 } 8199 Constant *C = ConstantInt::get(Ty, StartIdx); 8200 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8201 } 8202 8203 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8204 SmallVector<Metadata *, 4> MDs; 8205 // Reserve first location for self reference to the LoopID metadata node. 8206 MDs.push_back(nullptr); 8207 bool IsUnrollMetadata = false; 8208 MDNode *LoopID = L->getLoopID(); 8209 if (LoopID) { 8210 // First find existing loop unrolling disable metadata. 8211 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8212 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8213 if (MD) { 8214 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8215 IsUnrollMetadata = 8216 S && S->getString().startswith("llvm.loop.unroll.disable"); 8217 } 8218 MDs.push_back(LoopID->getOperand(i)); 8219 } 8220 } 8221 8222 if (!IsUnrollMetadata) { 8223 // Add runtime unroll disable metadata. 8224 LLVMContext &Context = L->getHeader()->getContext(); 8225 SmallVector<Metadata *, 1> DisableOperands; 8226 DisableOperands.push_back( 8227 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8228 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8229 MDs.push_back(DisableNode); 8230 MDNode *NewLoopID = MDNode::get(Context, MDs); 8231 // Set operand 0 to refer to the loop id itself. 8232 NewLoopID->replaceOperandWith(0, NewLoopID); 8233 L->setLoopID(NewLoopID); 8234 } 8235 } 8236 8237 //===--------------------------------------------------------------------===// 8238 // EpilogueVectorizerMainLoop 8239 //===--------------------------------------------------------------------===// 8240 8241 /// This function is partially responsible for generating the control flow 8242 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8243 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8244 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8245 Loop *Lp = createVectorLoopSkeleton(""); 8246 8247 // Generate the code to check the minimum iteration count of the vector 8248 // epilogue (see below). 8249 EPI.EpilogueIterationCountCheck = 8250 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8251 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8252 8253 // Generate the code to check any assumptions that we've made for SCEV 8254 // expressions. 8255 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8256 8257 // Generate the code that checks at runtime if arrays overlap. We put the 8258 // checks into a separate block to make the more common case of few elements 8259 // faster. 8260 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8261 8262 // Generate the iteration count check for the main loop, *after* the check 8263 // for the epilogue loop, so that the path-length is shorter for the case 8264 // that goes directly through the vector epilogue. The longer-path length for 8265 // the main loop is compensated for, by the gain from vectorizing the larger 8266 // trip count. Note: the branch will get updated later on when we vectorize 8267 // the epilogue. 8268 EPI.MainLoopIterationCountCheck = 8269 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8270 8271 // Generate the induction variable. 8272 OldInduction = Legal->getPrimaryInduction(); 8273 Type *IdxTy = Legal->getWidestInductionType(); 8274 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8275 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8276 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8277 EPI.VectorTripCount = CountRoundDown; 8278 Induction = 8279 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8280 getDebugLocFromInstOrOperands(OldInduction)); 8281 8282 // Skip induction resume value creation here because they will be created in 8283 // the second pass. If we created them here, they wouldn't be used anyway, 8284 // because the vplan in the second pass still contains the inductions from the 8285 // original loop. 8286 8287 return completeLoopSkeleton(Lp, OrigLoopID); 8288 } 8289 8290 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8291 LLVM_DEBUG({ 8292 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8293 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8294 << ", Main Loop UF:" << EPI.MainLoopUF 8295 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8296 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8297 }); 8298 } 8299 8300 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8301 DEBUG_WITH_TYPE(VerboseDebug, { 8302 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8303 }); 8304 } 8305 8306 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8307 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8308 assert(L && "Expected valid Loop."); 8309 assert(Bypass && "Expected valid bypass basic block."); 8310 unsigned VFactor = 8311 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8312 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8313 Value *Count = getOrCreateTripCount(L); 8314 // Reuse existing vector loop preheader for TC checks. 8315 // Note that new preheader block is generated for vector loop. 8316 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8317 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8318 8319 // Generate code to check if the loop's trip count is less than VF * UF of the 8320 // main vector loop. 8321 auto P = 8322 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8323 8324 Value *CheckMinIters = Builder.CreateICmp( 8325 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8326 "min.iters.check"); 8327 8328 if (!ForEpilogue) 8329 TCCheckBlock->setName("vector.main.loop.iter.check"); 8330 8331 // Create new preheader for vector loop. 8332 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8333 DT, LI, nullptr, "vector.ph"); 8334 8335 if (ForEpilogue) { 8336 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8337 DT->getNode(Bypass)->getIDom()) && 8338 "TC check is expected to dominate Bypass"); 8339 8340 // Update dominator for Bypass & LoopExit. 8341 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8342 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8343 8344 LoopBypassBlocks.push_back(TCCheckBlock); 8345 8346 // Save the trip count so we don't have to regenerate it in the 8347 // vec.epilog.iter.check. This is safe to do because the trip count 8348 // generated here dominates the vector epilog iter check. 8349 EPI.TripCount = Count; 8350 } 8351 8352 ReplaceInstWithInst( 8353 TCCheckBlock->getTerminator(), 8354 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8355 8356 return TCCheckBlock; 8357 } 8358 8359 //===--------------------------------------------------------------------===// 8360 // EpilogueVectorizerEpilogueLoop 8361 //===--------------------------------------------------------------------===// 8362 8363 /// This function is partially responsible for generating the control flow 8364 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8365 BasicBlock * 8366 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8367 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8368 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8369 8370 // Now, compare the remaining count and if there aren't enough iterations to 8371 // execute the vectorized epilogue skip to the scalar part. 8372 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8373 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8374 LoopVectorPreHeader = 8375 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8376 LI, nullptr, "vec.epilog.ph"); 8377 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8378 VecEpilogueIterationCountCheck); 8379 8380 // Adjust the control flow taking the state info from the main loop 8381 // vectorization into account. 8382 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8383 "expected this to be saved from the previous pass."); 8384 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8385 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8386 8387 DT->changeImmediateDominator(LoopVectorPreHeader, 8388 EPI.MainLoopIterationCountCheck); 8389 8390 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8391 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8392 8393 if (EPI.SCEVSafetyCheck) 8394 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8395 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8396 if (EPI.MemSafetyCheck) 8397 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8398 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8399 8400 DT->changeImmediateDominator( 8401 VecEpilogueIterationCountCheck, 8402 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8403 8404 DT->changeImmediateDominator(LoopScalarPreHeader, 8405 EPI.EpilogueIterationCountCheck); 8406 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8407 8408 // Keep track of bypass blocks, as they feed start values to the induction 8409 // phis in the scalar loop preheader. 8410 if (EPI.SCEVSafetyCheck) 8411 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8412 if (EPI.MemSafetyCheck) 8413 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8414 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8415 8416 // Generate a resume induction for the vector epilogue and put it in the 8417 // vector epilogue preheader 8418 Type *IdxTy = Legal->getWidestInductionType(); 8419 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8420 LoopVectorPreHeader->getFirstNonPHI()); 8421 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8422 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8423 EPI.MainLoopIterationCountCheck); 8424 8425 // Generate the induction variable. 8426 OldInduction = Legal->getPrimaryInduction(); 8427 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8428 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8429 Value *StartIdx = EPResumeVal; 8430 Induction = 8431 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8432 getDebugLocFromInstOrOperands(OldInduction)); 8433 8434 // Generate induction resume values. These variables save the new starting 8435 // indexes for the scalar loop. They are used to test if there are any tail 8436 // iterations left once the vector loop has completed. 8437 // Note that when the vectorized epilogue is skipped due to iteration count 8438 // check, then the resume value for the induction variable comes from 8439 // the trip count of the main vector loop, hence passing the AdditionalBypass 8440 // argument. 8441 createInductionResumeValues(Lp, CountRoundDown, 8442 {VecEpilogueIterationCountCheck, 8443 EPI.VectorTripCount} /* AdditionalBypass */); 8444 8445 AddRuntimeUnrollDisableMetaData(Lp); 8446 return completeLoopSkeleton(Lp, OrigLoopID); 8447 } 8448 8449 BasicBlock * 8450 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8451 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8452 8453 assert(EPI.TripCount && 8454 "Expected trip count to have been safed in the first pass."); 8455 assert( 8456 (!isa<Instruction>(EPI.TripCount) || 8457 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8458 "saved trip count does not dominate insertion point."); 8459 Value *TC = EPI.TripCount; 8460 IRBuilder<> Builder(Insert->getTerminator()); 8461 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8462 8463 // Generate code to check if the loop's trip count is less than VF * UF of the 8464 // vector epilogue loop. 8465 auto P = 8466 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8467 8468 Value *CheckMinIters = Builder.CreateICmp( 8469 P, Count, 8470 ConstantInt::get(Count->getType(), 8471 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8472 "min.epilog.iters.check"); 8473 8474 ReplaceInstWithInst( 8475 Insert->getTerminator(), 8476 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8477 8478 LoopBypassBlocks.push_back(Insert); 8479 return Insert; 8480 } 8481 8482 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8483 LLVM_DEBUG({ 8484 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8485 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8486 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8487 }); 8488 } 8489 8490 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8491 DEBUG_WITH_TYPE(VerboseDebug, { 8492 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8493 }); 8494 } 8495 8496 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8497 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8498 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8499 bool PredicateAtRangeStart = Predicate(Range.Start); 8500 8501 for (ElementCount TmpVF = Range.Start * 2; 8502 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8503 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8504 Range.End = TmpVF; 8505 break; 8506 } 8507 8508 return PredicateAtRangeStart; 8509 } 8510 8511 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8512 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8513 /// of VF's starting at a given VF and extending it as much as possible. Each 8514 /// vectorization decision can potentially shorten this sub-range during 8515 /// buildVPlan(). 8516 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8517 ElementCount MaxVF) { 8518 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8519 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8520 VFRange SubRange = {VF, MaxVFPlusOne}; 8521 VPlans.push_back(buildVPlan(SubRange)); 8522 VF = SubRange.End; 8523 } 8524 } 8525 8526 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8527 VPlanPtr &Plan) { 8528 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8529 8530 // Look for cached value. 8531 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8532 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8533 if (ECEntryIt != EdgeMaskCache.end()) 8534 return ECEntryIt->second; 8535 8536 VPValue *SrcMask = createBlockInMask(Src, Plan); 8537 8538 // The terminator has to be a branch inst! 8539 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8540 assert(BI && "Unexpected terminator found"); 8541 8542 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8543 return EdgeMaskCache[Edge] = SrcMask; 8544 8545 // If source is an exiting block, we know the exit edge is dynamically dead 8546 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8547 // adding uses of an otherwise potentially dead instruction. 8548 if (OrigLoop->isLoopExiting(Src)) 8549 return EdgeMaskCache[Edge] = SrcMask; 8550 8551 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8552 assert(EdgeMask && "No Edge Mask found for condition"); 8553 8554 if (BI->getSuccessor(0) != Dst) 8555 EdgeMask = Builder.createNot(EdgeMask); 8556 8557 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8558 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8559 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8560 // The select version does not introduce new UB if SrcMask is false and 8561 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8562 VPValue *False = Plan->getOrAddVPValue( 8563 ConstantInt::getFalse(BI->getCondition()->getType())); 8564 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8565 } 8566 8567 return EdgeMaskCache[Edge] = EdgeMask; 8568 } 8569 8570 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8571 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8572 8573 // Look for cached value. 8574 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8575 if (BCEntryIt != BlockMaskCache.end()) 8576 return BCEntryIt->second; 8577 8578 // All-one mask is modelled as no-mask following the convention for masked 8579 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8580 VPValue *BlockMask = nullptr; 8581 8582 if (OrigLoop->getHeader() == BB) { 8583 if (!CM.blockNeedsPredication(BB)) 8584 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8585 8586 // Create the block in mask as the first non-phi instruction in the block. 8587 VPBuilder::InsertPointGuard Guard(Builder); 8588 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8589 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8590 8591 // Introduce the early-exit compare IV <= BTC to form header block mask. 8592 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8593 // Start by constructing the desired canonical IV. 8594 VPValue *IV = nullptr; 8595 if (Legal->getPrimaryInduction()) 8596 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8597 else { 8598 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8599 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8600 IV = IVRecipe->getVPSingleValue(); 8601 } 8602 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8603 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8604 8605 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8606 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8607 // as a second argument, we only pass the IV here and extract the 8608 // tripcount from the transform state where codegen of the VP instructions 8609 // happen. 8610 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8611 } else { 8612 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8613 } 8614 return BlockMaskCache[BB] = BlockMask; 8615 } 8616 8617 // This is the block mask. We OR all incoming edges. 8618 for (auto *Predecessor : predecessors(BB)) { 8619 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8620 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8621 return BlockMaskCache[BB] = EdgeMask; 8622 8623 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8624 BlockMask = EdgeMask; 8625 continue; 8626 } 8627 8628 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8629 } 8630 8631 return BlockMaskCache[BB] = BlockMask; 8632 } 8633 8634 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8635 ArrayRef<VPValue *> Operands, 8636 VFRange &Range, 8637 VPlanPtr &Plan) { 8638 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8639 "Must be called with either a load or store"); 8640 8641 auto willWiden = [&](ElementCount VF) -> bool { 8642 if (VF.isScalar()) 8643 return false; 8644 LoopVectorizationCostModel::InstWidening Decision = 8645 CM.getWideningDecision(I, VF); 8646 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8647 "CM decision should be taken at this point."); 8648 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8649 return true; 8650 if (CM.isScalarAfterVectorization(I, VF) || 8651 CM.isProfitableToScalarize(I, VF)) 8652 return false; 8653 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8654 }; 8655 8656 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8657 return nullptr; 8658 8659 VPValue *Mask = nullptr; 8660 if (Legal->isMaskRequired(I)) 8661 Mask = createBlockInMask(I->getParent(), Plan); 8662 8663 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8664 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8665 8666 StoreInst *Store = cast<StoreInst>(I); 8667 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8668 Mask); 8669 } 8670 8671 VPWidenIntOrFpInductionRecipe * 8672 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8673 ArrayRef<VPValue *> Operands) const { 8674 // Check if this is an integer or fp induction. If so, build the recipe that 8675 // produces its scalar and vector values. 8676 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8677 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8678 II.getKind() == InductionDescriptor::IK_FpInduction) { 8679 assert(II.getStartValue() == 8680 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8681 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8682 return new VPWidenIntOrFpInductionRecipe( 8683 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8684 } 8685 8686 return nullptr; 8687 } 8688 8689 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8690 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8691 VPlan &Plan) const { 8692 // Optimize the special case where the source is a constant integer 8693 // induction variable. Notice that we can only optimize the 'trunc' case 8694 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8695 // (c) other casts depend on pointer size. 8696 8697 // Determine whether \p K is a truncation based on an induction variable that 8698 // can be optimized. 8699 auto isOptimizableIVTruncate = 8700 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8701 return [=](ElementCount VF) -> bool { 8702 return CM.isOptimizableIVTruncate(K, VF); 8703 }; 8704 }; 8705 8706 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8707 isOptimizableIVTruncate(I), Range)) { 8708 8709 InductionDescriptor II = 8710 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8711 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8712 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8713 Start, nullptr, I); 8714 } 8715 return nullptr; 8716 } 8717 8718 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8719 ArrayRef<VPValue *> Operands, 8720 VPlanPtr &Plan) { 8721 // If all incoming values are equal, the incoming VPValue can be used directly 8722 // instead of creating a new VPBlendRecipe. 8723 VPValue *FirstIncoming = Operands[0]; 8724 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8725 return FirstIncoming == Inc; 8726 })) { 8727 return Operands[0]; 8728 } 8729 8730 // We know that all PHIs in non-header blocks are converted into selects, so 8731 // we don't have to worry about the insertion order and we can just use the 8732 // builder. At this point we generate the predication tree. There may be 8733 // duplications since this is a simple recursive scan, but future 8734 // optimizations will clean it up. 8735 SmallVector<VPValue *, 2> OperandsWithMask; 8736 unsigned NumIncoming = Phi->getNumIncomingValues(); 8737 8738 for (unsigned In = 0; In < NumIncoming; In++) { 8739 VPValue *EdgeMask = 8740 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8741 assert((EdgeMask || NumIncoming == 1) && 8742 "Multiple predecessors with one having a full mask"); 8743 OperandsWithMask.push_back(Operands[In]); 8744 if (EdgeMask) 8745 OperandsWithMask.push_back(EdgeMask); 8746 } 8747 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8748 } 8749 8750 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8751 ArrayRef<VPValue *> Operands, 8752 VFRange &Range) const { 8753 8754 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8755 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8756 Range); 8757 8758 if (IsPredicated) 8759 return nullptr; 8760 8761 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8762 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8763 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8764 ID == Intrinsic::pseudoprobe || 8765 ID == Intrinsic::experimental_noalias_scope_decl)) 8766 return nullptr; 8767 8768 auto willWiden = [&](ElementCount VF) -> bool { 8769 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8770 // The following case may be scalarized depending on the VF. 8771 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8772 // version of the instruction. 8773 // Is it beneficial to perform intrinsic call compared to lib call? 8774 bool NeedToScalarize = false; 8775 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8776 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8777 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8778 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8779 "Either the intrinsic cost or vector call cost must be valid"); 8780 return UseVectorIntrinsic || !NeedToScalarize; 8781 }; 8782 8783 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8784 return nullptr; 8785 8786 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8787 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8788 } 8789 8790 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8791 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8792 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8793 // Instruction should be widened, unless it is scalar after vectorization, 8794 // scalarization is profitable or it is predicated. 8795 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8796 return CM.isScalarAfterVectorization(I, VF) || 8797 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8798 }; 8799 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8800 Range); 8801 } 8802 8803 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8804 ArrayRef<VPValue *> Operands) const { 8805 auto IsVectorizableOpcode = [](unsigned Opcode) { 8806 switch (Opcode) { 8807 case Instruction::Add: 8808 case Instruction::And: 8809 case Instruction::AShr: 8810 case Instruction::BitCast: 8811 case Instruction::FAdd: 8812 case Instruction::FCmp: 8813 case Instruction::FDiv: 8814 case Instruction::FMul: 8815 case Instruction::FNeg: 8816 case Instruction::FPExt: 8817 case Instruction::FPToSI: 8818 case Instruction::FPToUI: 8819 case Instruction::FPTrunc: 8820 case Instruction::FRem: 8821 case Instruction::FSub: 8822 case Instruction::ICmp: 8823 case Instruction::IntToPtr: 8824 case Instruction::LShr: 8825 case Instruction::Mul: 8826 case Instruction::Or: 8827 case Instruction::PtrToInt: 8828 case Instruction::SDiv: 8829 case Instruction::Select: 8830 case Instruction::SExt: 8831 case Instruction::Shl: 8832 case Instruction::SIToFP: 8833 case Instruction::SRem: 8834 case Instruction::Sub: 8835 case Instruction::Trunc: 8836 case Instruction::UDiv: 8837 case Instruction::UIToFP: 8838 case Instruction::URem: 8839 case Instruction::Xor: 8840 case Instruction::ZExt: 8841 return true; 8842 } 8843 return false; 8844 }; 8845 8846 if (!IsVectorizableOpcode(I->getOpcode())) 8847 return nullptr; 8848 8849 // Success: widen this instruction. 8850 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8851 } 8852 8853 void VPRecipeBuilder::fixHeaderPhis() { 8854 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8855 for (VPWidenPHIRecipe *R : PhisToFix) { 8856 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8857 VPRecipeBase *IncR = 8858 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8859 R->addOperand(IncR->getVPSingleValue()); 8860 } 8861 } 8862 8863 VPBasicBlock *VPRecipeBuilder::handleReplication( 8864 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8865 VPlanPtr &Plan) { 8866 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8867 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8868 Range); 8869 8870 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8871 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8872 8873 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8874 IsUniform, IsPredicated); 8875 setRecipe(I, Recipe); 8876 Plan->addVPValue(I, Recipe); 8877 8878 // Find if I uses a predicated instruction. If so, it will use its scalar 8879 // value. Avoid hoisting the insert-element which packs the scalar value into 8880 // a vector value, as that happens iff all users use the vector value. 8881 for (VPValue *Op : Recipe->operands()) { 8882 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8883 if (!PredR) 8884 continue; 8885 auto *RepR = 8886 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8887 assert(RepR->isPredicated() && 8888 "expected Replicate recipe to be predicated"); 8889 RepR->setAlsoPack(false); 8890 } 8891 8892 // Finalize the recipe for Instr, first if it is not predicated. 8893 if (!IsPredicated) { 8894 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8895 VPBB->appendRecipe(Recipe); 8896 return VPBB; 8897 } 8898 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8899 assert(VPBB->getSuccessors().empty() && 8900 "VPBB has successors when handling predicated replication."); 8901 // Record predicated instructions for above packing optimizations. 8902 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8903 VPBlockUtils::insertBlockAfter(Region, VPBB); 8904 auto *RegSucc = new VPBasicBlock(); 8905 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8906 return RegSucc; 8907 } 8908 8909 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8910 VPRecipeBase *PredRecipe, 8911 VPlanPtr &Plan) { 8912 // Instructions marked for predication are replicated and placed under an 8913 // if-then construct to prevent side-effects. 8914 8915 // Generate recipes to compute the block mask for this region. 8916 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8917 8918 // Build the triangular if-then region. 8919 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8920 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8921 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8922 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8923 auto *PHIRecipe = Instr->getType()->isVoidTy() 8924 ? nullptr 8925 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8926 if (PHIRecipe) { 8927 Plan->removeVPValueFor(Instr); 8928 Plan->addVPValue(Instr, PHIRecipe); 8929 } 8930 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8931 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8932 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8933 8934 // Note: first set Entry as region entry and then connect successors starting 8935 // from it in order, to propagate the "parent" of each VPBasicBlock. 8936 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8937 VPBlockUtils::connectBlocks(Pred, Exit); 8938 8939 return Region; 8940 } 8941 8942 VPRecipeOrVPValueTy 8943 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8944 ArrayRef<VPValue *> Operands, 8945 VFRange &Range, VPlanPtr &Plan) { 8946 // First, check for specific widening recipes that deal with calls, memory 8947 // operations, inductions and Phi nodes. 8948 if (auto *CI = dyn_cast<CallInst>(Instr)) 8949 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8950 8951 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8952 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8953 8954 VPRecipeBase *Recipe; 8955 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8956 if (Phi->getParent() != OrigLoop->getHeader()) 8957 return tryToBlend(Phi, Operands, Plan); 8958 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8959 return toVPRecipeResult(Recipe); 8960 8961 if (Legal->isReductionVariable(Phi)) { 8962 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8963 assert(RdxDesc.getRecurrenceStartValue() == 8964 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8965 VPValue *StartV = Operands[0]; 8966 8967 auto *PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8968 PhisToFix.push_back(PhiRecipe); 8969 // Record the incoming value from the backedge, so we can add the incoming 8970 // value from the backedge after all recipes have been created. 8971 recordRecipeOf(cast<Instruction>( 8972 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8973 return toVPRecipeResult(PhiRecipe); 8974 } 8975 8976 return toVPRecipeResult(new VPWidenPHIRecipe(Phi)); 8977 } 8978 8979 if (isa<TruncInst>(Instr) && 8980 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8981 Range, *Plan))) 8982 return toVPRecipeResult(Recipe); 8983 8984 if (!shouldWiden(Instr, Range)) 8985 return nullptr; 8986 8987 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8988 return toVPRecipeResult(new VPWidenGEPRecipe( 8989 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8990 8991 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8992 bool InvariantCond = 8993 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8994 return toVPRecipeResult(new VPWidenSelectRecipe( 8995 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8996 } 8997 8998 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8999 } 9000 9001 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9002 ElementCount MaxVF) { 9003 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9004 9005 // Collect instructions from the original loop that will become trivially dead 9006 // in the vectorized loop. We don't need to vectorize these instructions. For 9007 // example, original induction update instructions can become dead because we 9008 // separately emit induction "steps" when generating code for the new loop. 9009 // Similarly, we create a new latch condition when setting up the structure 9010 // of the new loop, so the old one can become dead. 9011 SmallPtrSet<Instruction *, 4> DeadInstructions; 9012 collectTriviallyDeadInstructions(DeadInstructions); 9013 9014 // Add assume instructions we need to drop to DeadInstructions, to prevent 9015 // them from being added to the VPlan. 9016 // TODO: We only need to drop assumes in blocks that get flattend. If the 9017 // control flow is preserved, we should keep them. 9018 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9019 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9020 9021 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9022 // Dead instructions do not need sinking. Remove them from SinkAfter. 9023 for (Instruction *I : DeadInstructions) 9024 SinkAfter.erase(I); 9025 9026 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9027 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9028 VFRange SubRange = {VF, MaxVFPlusOne}; 9029 VPlans.push_back( 9030 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9031 VF = SubRange.End; 9032 } 9033 } 9034 9035 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9036 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9037 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9038 9039 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9040 9041 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9042 9043 // --------------------------------------------------------------------------- 9044 // Pre-construction: record ingredients whose recipes we'll need to further 9045 // process after constructing the initial VPlan. 9046 // --------------------------------------------------------------------------- 9047 9048 // Mark instructions we'll need to sink later and their targets as 9049 // ingredients whose recipe we'll need to record. 9050 for (auto &Entry : SinkAfter) { 9051 RecipeBuilder.recordRecipeOf(Entry.first); 9052 RecipeBuilder.recordRecipeOf(Entry.second); 9053 } 9054 for (auto &Reduction : CM.getInLoopReductionChains()) { 9055 PHINode *Phi = Reduction.first; 9056 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9057 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9058 9059 RecipeBuilder.recordRecipeOf(Phi); 9060 for (auto &R : ReductionOperations) { 9061 RecipeBuilder.recordRecipeOf(R); 9062 // For min/max reducitons, where we have a pair of icmp/select, we also 9063 // need to record the ICmp recipe, so it can be removed later. 9064 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9065 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9066 } 9067 } 9068 9069 // For each interleave group which is relevant for this (possibly trimmed) 9070 // Range, add it to the set of groups to be later applied to the VPlan and add 9071 // placeholders for its members' Recipes which we'll be replacing with a 9072 // single VPInterleaveRecipe. 9073 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9074 auto applyIG = [IG, this](ElementCount VF) -> bool { 9075 return (VF.isVector() && // Query is illegal for VF == 1 9076 CM.getWideningDecision(IG->getInsertPos(), VF) == 9077 LoopVectorizationCostModel::CM_Interleave); 9078 }; 9079 if (!getDecisionAndClampRange(applyIG, Range)) 9080 continue; 9081 InterleaveGroups.insert(IG); 9082 for (unsigned i = 0; i < IG->getFactor(); i++) 9083 if (Instruction *Member = IG->getMember(i)) 9084 RecipeBuilder.recordRecipeOf(Member); 9085 }; 9086 9087 // --------------------------------------------------------------------------- 9088 // Build initial VPlan: Scan the body of the loop in a topological order to 9089 // visit each basic block after having visited its predecessor basic blocks. 9090 // --------------------------------------------------------------------------- 9091 9092 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9093 auto Plan = std::make_unique<VPlan>(); 9094 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9095 Plan->setEntry(VPBB); 9096 9097 // Scan the body of the loop in a topological order to visit each basic block 9098 // after having visited its predecessor basic blocks. 9099 LoopBlocksDFS DFS(OrigLoop); 9100 DFS.perform(LI); 9101 9102 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9103 // Relevant instructions from basic block BB will be grouped into VPRecipe 9104 // ingredients and fill a new VPBasicBlock. 9105 unsigned VPBBsForBB = 0; 9106 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9107 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9108 VPBB = FirstVPBBForBB; 9109 Builder.setInsertPoint(VPBB); 9110 9111 // Introduce each ingredient into VPlan. 9112 // TODO: Model and preserve debug instrinsics in VPlan. 9113 for (Instruction &I : BB->instructionsWithoutDebug()) { 9114 Instruction *Instr = &I; 9115 9116 // First filter out irrelevant instructions, to ensure no recipes are 9117 // built for them. 9118 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9119 continue; 9120 9121 SmallVector<VPValue *, 4> Operands; 9122 auto *Phi = dyn_cast<PHINode>(Instr); 9123 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9124 Operands.push_back(Plan->getOrAddVPValue( 9125 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9126 } else { 9127 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9128 Operands = {OpRange.begin(), OpRange.end()}; 9129 } 9130 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9131 Instr, Operands, Range, Plan)) { 9132 // If Instr can be simplified to an existing VPValue, use it. 9133 if (RecipeOrValue.is<VPValue *>()) { 9134 auto *VPV = RecipeOrValue.get<VPValue *>(); 9135 Plan->addVPValue(Instr, VPV); 9136 // If the re-used value is a recipe, register the recipe for the 9137 // instruction, in case the recipe for Instr needs to be recorded. 9138 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9139 RecipeBuilder.setRecipe(Instr, R); 9140 continue; 9141 } 9142 // Otherwise, add the new recipe. 9143 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9144 for (auto *Def : Recipe->definedValues()) { 9145 auto *UV = Def->getUnderlyingValue(); 9146 Plan->addVPValue(UV, Def); 9147 } 9148 9149 RecipeBuilder.setRecipe(Instr, Recipe); 9150 VPBB->appendRecipe(Recipe); 9151 continue; 9152 } 9153 9154 // Otherwise, if all widening options failed, Instruction is to be 9155 // replicated. This may create a successor for VPBB. 9156 VPBasicBlock *NextVPBB = 9157 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9158 if (NextVPBB != VPBB) { 9159 VPBB = NextVPBB; 9160 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9161 : ""); 9162 } 9163 } 9164 } 9165 9166 RecipeBuilder.fixHeaderPhis(); 9167 9168 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9169 // may also be empty, such as the last one VPBB, reflecting original 9170 // basic-blocks with no recipes. 9171 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9172 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9173 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9174 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9175 delete PreEntry; 9176 9177 // --------------------------------------------------------------------------- 9178 // Transform initial VPlan: Apply previously taken decisions, in order, to 9179 // bring the VPlan to its final state. 9180 // --------------------------------------------------------------------------- 9181 9182 // Apply Sink-After legal constraints. 9183 for (auto &Entry : SinkAfter) { 9184 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9185 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9186 9187 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9188 auto *Region = 9189 dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9190 if (Region && Region->isReplicator()) 9191 return Region; 9192 return nullptr; 9193 }; 9194 9195 // If the target is in a replication region, make sure to move Sink to the 9196 // block after it, not into the replication region itself. 9197 if (auto *TargetRegion = GetReplicateRegion(Target)) { 9198 assert(TargetRegion->getNumSuccessors() == 1 && "Expected SESE region!"); 9199 assert(!GetReplicateRegion(Sink) && 9200 "cannot sink a region into another region yet"); 9201 VPBasicBlock *NextBlock = 9202 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9203 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9204 continue; 9205 } 9206 9207 auto *SinkRegion = GetReplicateRegion(Sink); 9208 // Unless the sink source is in a replicate region, sink the recipe 9209 // directly. 9210 if (!SinkRegion) { 9211 Sink->moveAfter(Target); 9212 continue; 9213 } 9214 9215 // If the sink source is in a replicate region, we need to move the whole 9216 // replicate region, which should only contain a single recipe in the main 9217 // block. 9218 assert(Sink->getParent()->size() == 1 && 9219 "parent must be a replicator with a single recipe"); 9220 auto *SplitBlock = 9221 Target->getParent()->splitAt(std::next(Target->getIterator())); 9222 9223 auto *Pred = SinkRegion->getSinglePredecessor(); 9224 auto *Succ = SinkRegion->getSingleSuccessor(); 9225 VPBlockUtils::disconnectBlocks(Pred, SinkRegion); 9226 VPBlockUtils::disconnectBlocks(SinkRegion, Succ); 9227 VPBlockUtils::connectBlocks(Pred, Succ); 9228 9229 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9230 9231 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9232 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9233 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9234 if (VPBB == SplitPred) 9235 VPBB = SplitBlock; 9236 } 9237 9238 // Interleave memory: for each Interleave Group we marked earlier as relevant 9239 // for this VPlan, replace the Recipes widening its memory instructions with a 9240 // single VPInterleaveRecipe at its insertion point. 9241 for (auto IG : InterleaveGroups) { 9242 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9243 RecipeBuilder.getRecipe(IG->getInsertPos())); 9244 SmallVector<VPValue *, 4> StoredValues; 9245 for (unsigned i = 0; i < IG->getFactor(); ++i) 9246 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9247 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9248 9249 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9250 Recipe->getMask()); 9251 VPIG->insertBefore(Recipe); 9252 unsigned J = 0; 9253 for (unsigned i = 0; i < IG->getFactor(); ++i) 9254 if (Instruction *Member = IG->getMember(i)) { 9255 if (!Member->getType()->isVoidTy()) { 9256 VPValue *OriginalV = Plan->getVPValue(Member); 9257 Plan->removeVPValueFor(Member); 9258 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9259 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9260 J++; 9261 } 9262 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9263 } 9264 } 9265 9266 // Adjust the recipes for any inloop reductions. 9267 if (Range.Start.isVector()) 9268 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 9269 9270 // Finally, if tail is folded by masking, introduce selects between the phi 9271 // and the live-out instruction of each reduction, at the end of the latch. 9272 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9273 Builder.setInsertPoint(VPBB); 9274 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9275 for (auto &Reduction : Legal->getReductionVars()) { 9276 if (CM.isInLoopReduction(Reduction.first)) 9277 continue; 9278 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9279 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9280 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9281 } 9282 } 9283 9284 VPlanTransforms::sinkScalarOperands(*Plan); 9285 9286 std::string PlanName; 9287 raw_string_ostream RSO(PlanName); 9288 ElementCount VF = Range.Start; 9289 Plan->addVF(VF); 9290 RSO << "Initial VPlan for VF={" << VF; 9291 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9292 Plan->addVF(VF); 9293 RSO << "," << VF; 9294 } 9295 RSO << "},UF>=1"; 9296 RSO.flush(); 9297 Plan->setName(PlanName); 9298 9299 return Plan; 9300 } 9301 9302 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9303 // Outer loop handling: They may require CFG and instruction level 9304 // transformations before even evaluating whether vectorization is profitable. 9305 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9306 // the vectorization pipeline. 9307 assert(!OrigLoop->isInnermost()); 9308 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9309 9310 // Create new empty VPlan 9311 auto Plan = std::make_unique<VPlan>(); 9312 9313 // Build hierarchical CFG 9314 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9315 HCFGBuilder.buildHierarchicalCFG(); 9316 9317 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9318 VF *= 2) 9319 Plan->addVF(VF); 9320 9321 if (EnableVPlanPredication) { 9322 VPlanPredicator VPP(*Plan); 9323 VPP.predicate(); 9324 9325 // Avoid running transformation to recipes until masked code generation in 9326 // VPlan-native path is in place. 9327 return Plan; 9328 } 9329 9330 SmallPtrSet<Instruction *, 1> DeadInstructions; 9331 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9332 Legal->getInductionVars(), 9333 DeadInstructions, *PSE.getSE()); 9334 return Plan; 9335 } 9336 9337 // Adjust the recipes for any inloop reductions. The chain of instructions 9338 // leading from the loop exit instr to the phi need to be converted to 9339 // reductions, with one operand being vector and the other being the scalar 9340 // reduction chain. 9341 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9342 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 9343 for (auto &Reduction : CM.getInLoopReductionChains()) { 9344 PHINode *Phi = Reduction.first; 9345 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9346 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9347 9348 // ReductionOperations are orders top-down from the phi's use to the 9349 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9350 // which of the two operands will remain scalar and which will be reduced. 9351 // For minmax the chain will be the select instructions. 9352 Instruction *Chain = Phi; 9353 for (Instruction *R : ReductionOperations) { 9354 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9355 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9356 9357 VPValue *ChainOp = Plan->getVPValue(Chain); 9358 unsigned FirstOpId; 9359 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9360 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9361 "Expected to replace a VPWidenSelectSC"); 9362 FirstOpId = 1; 9363 } else { 9364 assert(isa<VPWidenRecipe>(WidenRecipe) && 9365 "Expected to replace a VPWidenSC"); 9366 FirstOpId = 0; 9367 } 9368 unsigned VecOpId = 9369 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9370 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9371 9372 auto *CondOp = CM.foldTailByMasking() 9373 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9374 : nullptr; 9375 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9376 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9377 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9378 Plan->removeVPValueFor(R); 9379 Plan->addVPValue(R, RedRecipe); 9380 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9381 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9382 WidenRecipe->eraseFromParent(); 9383 9384 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9385 VPRecipeBase *CompareRecipe = 9386 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9387 assert(isa<VPWidenRecipe>(CompareRecipe) && 9388 "Expected to replace a VPWidenSC"); 9389 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9390 "Expected no remaining users"); 9391 CompareRecipe->eraseFromParent(); 9392 } 9393 Chain = R; 9394 } 9395 } 9396 } 9397 9398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9399 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9400 VPSlotTracker &SlotTracker) const { 9401 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9402 IG->getInsertPos()->printAsOperand(O, false); 9403 O << ", "; 9404 getAddr()->printAsOperand(O, SlotTracker); 9405 VPValue *Mask = getMask(); 9406 if (Mask) { 9407 O << ", "; 9408 Mask->printAsOperand(O, SlotTracker); 9409 } 9410 for (unsigned i = 0; i < IG->getFactor(); ++i) 9411 if (Instruction *I = IG->getMember(i)) 9412 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9413 } 9414 #endif 9415 9416 void VPWidenCallRecipe::execute(VPTransformState &State) { 9417 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9418 *this, State); 9419 } 9420 9421 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9422 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9423 this, *this, InvariantCond, State); 9424 } 9425 9426 void VPWidenRecipe::execute(VPTransformState &State) { 9427 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9428 } 9429 9430 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9431 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9432 *this, State.UF, State.VF, IsPtrLoopInvariant, 9433 IsIndexLoopInvariant, State); 9434 } 9435 9436 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9437 assert(!State.Instance && "Int or FP induction being replicated."); 9438 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9439 getTruncInst(), getVPValue(0), 9440 getCastValue(), State); 9441 } 9442 9443 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9444 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9445 this, State); 9446 } 9447 9448 void VPBlendRecipe::execute(VPTransformState &State) { 9449 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9450 // We know that all PHIs in non-header blocks are converted into 9451 // selects, so we don't have to worry about the insertion order and we 9452 // can just use the builder. 9453 // At this point we generate the predication tree. There may be 9454 // duplications since this is a simple recursive scan, but future 9455 // optimizations will clean it up. 9456 9457 unsigned NumIncoming = getNumIncomingValues(); 9458 9459 // Generate a sequence of selects of the form: 9460 // SELECT(Mask3, In3, 9461 // SELECT(Mask2, In2, 9462 // SELECT(Mask1, In1, 9463 // In0))) 9464 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9465 // are essentially undef are taken from In0. 9466 InnerLoopVectorizer::VectorParts Entry(State.UF); 9467 for (unsigned In = 0; In < NumIncoming; ++In) { 9468 for (unsigned Part = 0; Part < State.UF; ++Part) { 9469 // We might have single edge PHIs (blocks) - use an identity 9470 // 'select' for the first PHI operand. 9471 Value *In0 = State.get(getIncomingValue(In), Part); 9472 if (In == 0) 9473 Entry[Part] = In0; // Initialize with the first incoming value. 9474 else { 9475 // Select between the current value and the previous incoming edge 9476 // based on the incoming mask. 9477 Value *Cond = State.get(getMask(In), Part); 9478 Entry[Part] = 9479 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9480 } 9481 } 9482 } 9483 for (unsigned Part = 0; Part < State.UF; ++Part) 9484 State.set(this, Entry[Part], Part); 9485 } 9486 9487 void VPInterleaveRecipe::execute(VPTransformState &State) { 9488 assert(!State.Instance && "Interleave group being replicated."); 9489 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9490 getStoredValues(), getMask()); 9491 } 9492 9493 void VPReductionRecipe::execute(VPTransformState &State) { 9494 assert(!State.Instance && "Reduction being replicated."); 9495 Value *PrevInChain = State.get(getChainOp(), 0); 9496 for (unsigned Part = 0; Part < State.UF; ++Part) { 9497 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9498 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9499 Value *NewVecOp = State.get(getVecOp(), Part); 9500 if (VPValue *Cond = getCondOp()) { 9501 Value *NewCond = State.get(Cond, Part); 9502 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9503 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9504 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9505 Constant *IdenVec = 9506 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9507 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9508 NewVecOp = Select; 9509 } 9510 Value *NewRed; 9511 Value *NextInChain; 9512 if (IsOrdered) { 9513 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9514 PrevInChain); 9515 PrevInChain = NewRed; 9516 } else { 9517 PrevInChain = State.get(getChainOp(), Part); 9518 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9519 } 9520 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9521 NextInChain = 9522 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9523 NewRed, PrevInChain); 9524 } else if (IsOrdered) 9525 NextInChain = NewRed; 9526 else { 9527 NextInChain = State.Builder.CreateBinOp( 9528 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9529 PrevInChain); 9530 } 9531 State.set(this, NextInChain, Part); 9532 } 9533 } 9534 9535 void VPReplicateRecipe::execute(VPTransformState &State) { 9536 if (State.Instance) { // Generate a single instance. 9537 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9538 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9539 *State.Instance, IsPredicated, State); 9540 // Insert scalar instance packing it into a vector. 9541 if (AlsoPack && State.VF.isVector()) { 9542 // If we're constructing lane 0, initialize to start from poison. 9543 if (State.Instance->Lane.isFirstLane()) { 9544 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9545 Value *Poison = PoisonValue::get( 9546 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9547 State.set(this, Poison, State.Instance->Part); 9548 } 9549 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9550 } 9551 return; 9552 } 9553 9554 // Generate scalar instances for all VF lanes of all UF parts, unless the 9555 // instruction is uniform inwhich case generate only the first lane for each 9556 // of the UF parts. 9557 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9558 assert((!State.VF.isScalable() || IsUniform) && 9559 "Can't scalarize a scalable vector"); 9560 for (unsigned Part = 0; Part < State.UF; ++Part) 9561 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9562 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9563 VPIteration(Part, Lane), IsPredicated, 9564 State); 9565 } 9566 9567 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9568 assert(State.Instance && "Branch on Mask works only on single instance."); 9569 9570 unsigned Part = State.Instance->Part; 9571 unsigned Lane = State.Instance->Lane.getKnownLane(); 9572 9573 Value *ConditionBit = nullptr; 9574 VPValue *BlockInMask = getMask(); 9575 if (BlockInMask) { 9576 ConditionBit = State.get(BlockInMask, Part); 9577 if (ConditionBit->getType()->isVectorTy()) 9578 ConditionBit = State.Builder.CreateExtractElement( 9579 ConditionBit, State.Builder.getInt32(Lane)); 9580 } else // Block in mask is all-one. 9581 ConditionBit = State.Builder.getTrue(); 9582 9583 // Replace the temporary unreachable terminator with a new conditional branch, 9584 // whose two destinations will be set later when they are created. 9585 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9586 assert(isa<UnreachableInst>(CurrentTerminator) && 9587 "Expected to replace unreachable terminator with conditional branch."); 9588 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9589 CondBr->setSuccessor(0, nullptr); 9590 ReplaceInstWithInst(CurrentTerminator, CondBr); 9591 } 9592 9593 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9594 assert(State.Instance && "Predicated instruction PHI works per instance."); 9595 Instruction *ScalarPredInst = 9596 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9597 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9598 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9599 assert(PredicatingBB && "Predicated block has no single predecessor."); 9600 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9601 "operand must be VPReplicateRecipe"); 9602 9603 // By current pack/unpack logic we need to generate only a single phi node: if 9604 // a vector value for the predicated instruction exists at this point it means 9605 // the instruction has vector users only, and a phi for the vector value is 9606 // needed. In this case the recipe of the predicated instruction is marked to 9607 // also do that packing, thereby "hoisting" the insert-element sequence. 9608 // Otherwise, a phi node for the scalar value is needed. 9609 unsigned Part = State.Instance->Part; 9610 if (State.hasVectorValue(getOperand(0), Part)) { 9611 Value *VectorValue = State.get(getOperand(0), Part); 9612 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9613 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9614 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9615 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9616 if (State.hasVectorValue(this, Part)) 9617 State.reset(this, VPhi, Part); 9618 else 9619 State.set(this, VPhi, Part); 9620 // NOTE: Currently we need to update the value of the operand, so the next 9621 // predicated iteration inserts its generated value in the correct vector. 9622 State.reset(getOperand(0), VPhi, Part); 9623 } else { 9624 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9625 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9626 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9627 PredicatingBB); 9628 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9629 if (State.hasScalarValue(this, *State.Instance)) 9630 State.reset(this, Phi, *State.Instance); 9631 else 9632 State.set(this, Phi, *State.Instance); 9633 // NOTE: Currently we need to update the value of the operand, so the next 9634 // predicated iteration inserts its generated value in the correct vector. 9635 State.reset(getOperand(0), Phi, *State.Instance); 9636 } 9637 } 9638 9639 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9640 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9641 State.ILV->vectorizeMemoryInstruction( 9642 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9643 StoredValue, getMask()); 9644 } 9645 9646 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9647 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9648 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9649 // for predication. 9650 static ScalarEpilogueLowering getScalarEpilogueLowering( 9651 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9652 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9653 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9654 LoopVectorizationLegality &LVL) { 9655 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9656 // don't look at hints or options, and don't request a scalar epilogue. 9657 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9658 // LoopAccessInfo (due to code dependency and not being able to reliably get 9659 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9660 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9661 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9662 // back to the old way and vectorize with versioning when forced. See D81345.) 9663 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9664 PGSOQueryType::IRPass) && 9665 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9666 return CM_ScalarEpilogueNotAllowedOptSize; 9667 9668 // 2) If set, obey the directives 9669 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9670 switch (PreferPredicateOverEpilogue) { 9671 case PreferPredicateTy::ScalarEpilogue: 9672 return CM_ScalarEpilogueAllowed; 9673 case PreferPredicateTy::PredicateElseScalarEpilogue: 9674 return CM_ScalarEpilogueNotNeededUsePredicate; 9675 case PreferPredicateTy::PredicateOrDontVectorize: 9676 return CM_ScalarEpilogueNotAllowedUsePredicate; 9677 }; 9678 } 9679 9680 // 3) If set, obey the hints 9681 switch (Hints.getPredicate()) { 9682 case LoopVectorizeHints::FK_Enabled: 9683 return CM_ScalarEpilogueNotNeededUsePredicate; 9684 case LoopVectorizeHints::FK_Disabled: 9685 return CM_ScalarEpilogueAllowed; 9686 }; 9687 9688 // 4) if the TTI hook indicates this is profitable, request predication. 9689 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9690 LVL.getLAI())) 9691 return CM_ScalarEpilogueNotNeededUsePredicate; 9692 9693 return CM_ScalarEpilogueAllowed; 9694 } 9695 9696 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9697 // If Values have been set for this Def return the one relevant for \p Part. 9698 if (hasVectorValue(Def, Part)) 9699 return Data.PerPartOutput[Def][Part]; 9700 9701 if (!hasScalarValue(Def, {Part, 0})) { 9702 Value *IRV = Def->getLiveInIRValue(); 9703 Value *B = ILV->getBroadcastInstrs(IRV); 9704 set(Def, B, Part); 9705 return B; 9706 } 9707 9708 Value *ScalarValue = get(Def, {Part, 0}); 9709 // If we aren't vectorizing, we can just copy the scalar map values over 9710 // to the vector map. 9711 if (VF.isScalar()) { 9712 set(Def, ScalarValue, Part); 9713 return ScalarValue; 9714 } 9715 9716 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9717 bool IsUniform = RepR && RepR->isUniform(); 9718 9719 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9720 // Check if there is a scalar value for the selected lane. 9721 if (!hasScalarValue(Def, {Part, LastLane})) { 9722 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9723 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9724 "unexpected recipe found to be invariant"); 9725 IsUniform = true; 9726 LastLane = 0; 9727 } 9728 9729 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9730 9731 // Set the insert point after the last scalarized instruction. This 9732 // ensures the insertelement sequence will directly follow the scalar 9733 // definitions. 9734 auto OldIP = Builder.saveIP(); 9735 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9736 Builder.SetInsertPoint(&*NewIP); 9737 9738 // However, if we are vectorizing, we need to construct the vector values. 9739 // If the value is known to be uniform after vectorization, we can just 9740 // broadcast the scalar value corresponding to lane zero for each unroll 9741 // iteration. Otherwise, we construct the vector values using 9742 // insertelement instructions. Since the resulting vectors are stored in 9743 // State, we will only generate the insertelements once. 9744 Value *VectorValue = nullptr; 9745 if (IsUniform) { 9746 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9747 set(Def, VectorValue, Part); 9748 } else { 9749 // Initialize packing with insertelements to start from undef. 9750 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9751 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9752 set(Def, Undef, Part); 9753 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9754 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9755 VectorValue = get(Def, Part); 9756 } 9757 Builder.restoreIP(OldIP); 9758 return VectorValue; 9759 } 9760 9761 // Process the loop in the VPlan-native vectorization path. This path builds 9762 // VPlan upfront in the vectorization pipeline, which allows to apply 9763 // VPlan-to-VPlan transformations from the very beginning without modifying the 9764 // input LLVM IR. 9765 static bool processLoopInVPlanNativePath( 9766 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9767 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9768 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9769 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9770 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9771 LoopVectorizationRequirements &Requirements) { 9772 9773 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9774 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9775 return false; 9776 } 9777 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9778 Function *F = L->getHeader()->getParent(); 9779 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9780 9781 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9782 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9783 9784 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9785 &Hints, IAI); 9786 // Use the planner for outer loop vectorization. 9787 // TODO: CM is not used at this point inside the planner. Turn CM into an 9788 // optional argument if we don't need it in the future. 9789 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9790 Requirements, ORE); 9791 9792 // Get user vectorization factor. 9793 ElementCount UserVF = Hints.getWidth(); 9794 9795 // Plan how to best vectorize, return the best VF and its cost. 9796 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9797 9798 // If we are stress testing VPlan builds, do not attempt to generate vector 9799 // code. Masked vector code generation support will follow soon. 9800 // Also, do not attempt to vectorize if no vector code will be produced. 9801 if (VPlanBuildStressTest || EnableVPlanPredication || 9802 VectorizationFactor::Disabled() == VF) 9803 return false; 9804 9805 LVP.setBestPlan(VF.Width, 1); 9806 9807 { 9808 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9809 F->getParent()->getDataLayout()); 9810 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9811 &CM, BFI, PSI, Checks); 9812 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9813 << L->getHeader()->getParent()->getName() << "\"\n"); 9814 LVP.executePlan(LB, DT); 9815 } 9816 9817 // Mark the loop as already vectorized to avoid vectorizing again. 9818 Hints.setAlreadyVectorized(); 9819 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9820 return true; 9821 } 9822 9823 // Emit a remark if there are stores to floats that required a floating point 9824 // extension. If the vectorized loop was generated with floating point there 9825 // will be a performance penalty from the conversion overhead and the change in 9826 // the vector width. 9827 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9828 SmallVector<Instruction *, 4> Worklist; 9829 for (BasicBlock *BB : L->getBlocks()) { 9830 for (Instruction &Inst : *BB) { 9831 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9832 if (S->getValueOperand()->getType()->isFloatTy()) 9833 Worklist.push_back(S); 9834 } 9835 } 9836 } 9837 9838 // Traverse the floating point stores upwards searching, for floating point 9839 // conversions. 9840 SmallPtrSet<const Instruction *, 4> Visited; 9841 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9842 while (!Worklist.empty()) { 9843 auto *I = Worklist.pop_back_val(); 9844 if (!L->contains(I)) 9845 continue; 9846 if (!Visited.insert(I).second) 9847 continue; 9848 9849 // Emit a remark if the floating point store required a floating 9850 // point conversion. 9851 // TODO: More work could be done to identify the root cause such as a 9852 // constant or a function return type and point the user to it. 9853 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9854 ORE->emit([&]() { 9855 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9856 I->getDebugLoc(), L->getHeader()) 9857 << "floating point conversion changes vector width. " 9858 << "Mixed floating point precision requires an up/down " 9859 << "cast that will negatively impact performance."; 9860 }); 9861 9862 for (Use &Op : I->operands()) 9863 if (auto *OpI = dyn_cast<Instruction>(Op)) 9864 Worklist.push_back(OpI); 9865 } 9866 } 9867 9868 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9869 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9870 !EnableLoopInterleaving), 9871 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9872 !EnableLoopVectorization) {} 9873 9874 bool LoopVectorizePass::processLoop(Loop *L) { 9875 assert((EnableVPlanNativePath || L->isInnermost()) && 9876 "VPlan-native path is not enabled. Only process inner loops."); 9877 9878 #ifndef NDEBUG 9879 const std::string DebugLocStr = getDebugLocString(L); 9880 #endif /* NDEBUG */ 9881 9882 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9883 << L->getHeader()->getParent()->getName() << "\" from " 9884 << DebugLocStr << "\n"); 9885 9886 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9887 9888 LLVM_DEBUG( 9889 dbgs() << "LV: Loop hints:" 9890 << " force=" 9891 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9892 ? "disabled" 9893 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9894 ? "enabled" 9895 : "?")) 9896 << " width=" << Hints.getWidth() 9897 << " interleave=" << Hints.getInterleave() << "\n"); 9898 9899 // Function containing loop 9900 Function *F = L->getHeader()->getParent(); 9901 9902 // Looking at the diagnostic output is the only way to determine if a loop 9903 // was vectorized (other than looking at the IR or machine code), so it 9904 // is important to generate an optimization remark for each loop. Most of 9905 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9906 // generated as OptimizationRemark and OptimizationRemarkMissed are 9907 // less verbose reporting vectorized loops and unvectorized loops that may 9908 // benefit from vectorization, respectively. 9909 9910 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9911 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9912 return false; 9913 } 9914 9915 PredicatedScalarEvolution PSE(*SE, *L); 9916 9917 // Check if it is legal to vectorize the loop. 9918 LoopVectorizationRequirements Requirements; 9919 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9920 &Requirements, &Hints, DB, AC, BFI, PSI); 9921 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9922 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9923 Hints.emitRemarkWithHints(); 9924 return false; 9925 } 9926 9927 // Check the function attributes and profiles to find out if this function 9928 // should be optimized for size. 9929 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9930 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9931 9932 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9933 // here. They may require CFG and instruction level transformations before 9934 // even evaluating whether vectorization is profitable. Since we cannot modify 9935 // the incoming IR, we need to build VPlan upfront in the vectorization 9936 // pipeline. 9937 if (!L->isInnermost()) 9938 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9939 ORE, BFI, PSI, Hints, Requirements); 9940 9941 assert(L->isInnermost() && "Inner loop expected."); 9942 9943 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9944 // count by optimizing for size, to minimize overheads. 9945 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9946 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9947 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9948 << "This loop is worth vectorizing only if no scalar " 9949 << "iteration overheads are incurred."); 9950 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9951 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9952 else { 9953 LLVM_DEBUG(dbgs() << "\n"); 9954 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9955 } 9956 } 9957 9958 // Check the function attributes to see if implicit floats are allowed. 9959 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9960 // an integer loop and the vector instructions selected are purely integer 9961 // vector instructions? 9962 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9963 reportVectorizationFailure( 9964 "Can't vectorize when the NoImplicitFloat attribute is used", 9965 "loop not vectorized due to NoImplicitFloat attribute", 9966 "NoImplicitFloat", ORE, L); 9967 Hints.emitRemarkWithHints(); 9968 return false; 9969 } 9970 9971 // Check if the target supports potentially unsafe FP vectorization. 9972 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9973 // for the target we're vectorizing for, to make sure none of the 9974 // additional fp-math flags can help. 9975 if (Hints.isPotentiallyUnsafe() && 9976 TTI->isFPVectorizationPotentiallyUnsafe()) { 9977 reportVectorizationFailure( 9978 "Potentially unsafe FP op prevents vectorization", 9979 "loop not vectorized due to unsafe FP support.", 9980 "UnsafeFP", ORE, L); 9981 Hints.emitRemarkWithHints(); 9982 return false; 9983 } 9984 9985 if (!LVL.canVectorizeFPMath(EnableStrictReductions)) { 9986 ORE->emit([&]() { 9987 auto *ExactFPMathInst = Requirements.getExactFPInst(); 9988 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 9989 ExactFPMathInst->getDebugLoc(), 9990 ExactFPMathInst->getParent()) 9991 << "loop not vectorized: cannot prove it is safe to reorder " 9992 "floating-point operations"; 9993 }); 9994 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 9995 "reorder floating-point operations\n"); 9996 Hints.emitRemarkWithHints(); 9997 return false; 9998 } 9999 10000 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10001 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10002 10003 // If an override option has been passed in for interleaved accesses, use it. 10004 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10005 UseInterleaved = EnableInterleavedMemAccesses; 10006 10007 // Analyze interleaved memory accesses. 10008 if (UseInterleaved) { 10009 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10010 } 10011 10012 // Use the cost model. 10013 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10014 F, &Hints, IAI); 10015 CM.collectValuesToIgnore(); 10016 10017 // Use the planner for vectorization. 10018 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10019 Requirements, ORE); 10020 10021 // Get user vectorization factor and interleave count. 10022 ElementCount UserVF = Hints.getWidth(); 10023 unsigned UserIC = Hints.getInterleave(); 10024 10025 // Plan how to best vectorize, return the best VF and its cost. 10026 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10027 10028 VectorizationFactor VF = VectorizationFactor::Disabled(); 10029 unsigned IC = 1; 10030 10031 if (MaybeVF) { 10032 VF = *MaybeVF; 10033 // Select the interleave count. 10034 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10035 } 10036 10037 // Identify the diagnostic messages that should be produced. 10038 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10039 bool VectorizeLoop = true, InterleaveLoop = true; 10040 if (VF.Width.isScalar()) { 10041 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10042 VecDiagMsg = std::make_pair( 10043 "VectorizationNotBeneficial", 10044 "the cost-model indicates that vectorization is not beneficial"); 10045 VectorizeLoop = false; 10046 } 10047 10048 if (!MaybeVF && UserIC > 1) { 10049 // Tell the user interleaving was avoided up-front, despite being explicitly 10050 // requested. 10051 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10052 "interleaving should be avoided up front\n"); 10053 IntDiagMsg = std::make_pair( 10054 "InterleavingAvoided", 10055 "Ignoring UserIC, because interleaving was avoided up front"); 10056 InterleaveLoop = false; 10057 } else if (IC == 1 && UserIC <= 1) { 10058 // Tell the user interleaving is not beneficial. 10059 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10060 IntDiagMsg = std::make_pair( 10061 "InterleavingNotBeneficial", 10062 "the cost-model indicates that interleaving is not beneficial"); 10063 InterleaveLoop = false; 10064 if (UserIC == 1) { 10065 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10066 IntDiagMsg.second += 10067 " and is explicitly disabled or interleave count is set to 1"; 10068 } 10069 } else if (IC > 1 && UserIC == 1) { 10070 // Tell the user interleaving is beneficial, but it explicitly disabled. 10071 LLVM_DEBUG( 10072 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10073 IntDiagMsg = std::make_pair( 10074 "InterleavingBeneficialButDisabled", 10075 "the cost-model indicates that interleaving is beneficial " 10076 "but is explicitly disabled or interleave count is set to 1"); 10077 InterleaveLoop = false; 10078 } 10079 10080 // Override IC if user provided an interleave count. 10081 IC = UserIC > 0 ? UserIC : IC; 10082 10083 // Emit diagnostic messages, if any. 10084 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10085 if (!VectorizeLoop && !InterleaveLoop) { 10086 // Do not vectorize or interleaving the loop. 10087 ORE->emit([&]() { 10088 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10089 L->getStartLoc(), L->getHeader()) 10090 << VecDiagMsg.second; 10091 }); 10092 ORE->emit([&]() { 10093 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10094 L->getStartLoc(), L->getHeader()) 10095 << IntDiagMsg.second; 10096 }); 10097 return false; 10098 } else if (!VectorizeLoop && InterleaveLoop) { 10099 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10100 ORE->emit([&]() { 10101 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10102 L->getStartLoc(), L->getHeader()) 10103 << VecDiagMsg.second; 10104 }); 10105 } else if (VectorizeLoop && !InterleaveLoop) { 10106 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10107 << ") in " << DebugLocStr << '\n'); 10108 ORE->emit([&]() { 10109 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10110 L->getStartLoc(), L->getHeader()) 10111 << IntDiagMsg.second; 10112 }); 10113 } else if (VectorizeLoop && InterleaveLoop) { 10114 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10115 << ") in " << DebugLocStr << '\n'); 10116 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10117 } 10118 10119 bool DisableRuntimeUnroll = false; 10120 MDNode *OrigLoopID = L->getLoopID(); 10121 { 10122 // Optimistically generate runtime checks. Drop them if they turn out to not 10123 // be profitable. Limit the scope of Checks, so the cleanup happens 10124 // immediately after vector codegeneration is done. 10125 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10126 F->getParent()->getDataLayout()); 10127 if (!VF.Width.isScalar() || IC > 1) 10128 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10129 LVP.setBestPlan(VF.Width, IC); 10130 10131 using namespace ore; 10132 if (!VectorizeLoop) { 10133 assert(IC > 1 && "interleave count should not be 1 or 0"); 10134 // If we decided that it is not legal to vectorize the loop, then 10135 // interleave it. 10136 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10137 &CM, BFI, PSI, Checks); 10138 LVP.executePlan(Unroller, DT); 10139 10140 ORE->emit([&]() { 10141 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10142 L->getHeader()) 10143 << "interleaved loop (interleaved count: " 10144 << NV("InterleaveCount", IC) << ")"; 10145 }); 10146 } else { 10147 // If we decided that it is *legal* to vectorize the loop, then do it. 10148 10149 // Consider vectorizing the epilogue too if it's profitable. 10150 VectorizationFactor EpilogueVF = 10151 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10152 if (EpilogueVF.Width.isVector()) { 10153 10154 // The first pass vectorizes the main loop and creates a scalar epilogue 10155 // to be vectorized by executing the plan (potentially with a different 10156 // factor) again shortly afterwards. 10157 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10158 EpilogueVF.Width.getKnownMinValue(), 10159 1); 10160 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10161 EPI, &LVL, &CM, BFI, PSI, Checks); 10162 10163 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10164 LVP.executePlan(MainILV, DT); 10165 ++LoopsVectorized; 10166 10167 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10168 formLCSSARecursively(*L, *DT, LI, SE); 10169 10170 // Second pass vectorizes the epilogue and adjusts the control flow 10171 // edges from the first pass. 10172 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10173 EPI.MainLoopVF = EPI.EpilogueVF; 10174 EPI.MainLoopUF = EPI.EpilogueUF; 10175 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10176 ORE, EPI, &LVL, &CM, BFI, PSI, 10177 Checks); 10178 LVP.executePlan(EpilogILV, DT); 10179 ++LoopsEpilogueVectorized; 10180 10181 if (!MainILV.areSafetyChecksAdded()) 10182 DisableRuntimeUnroll = true; 10183 } else { 10184 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10185 &LVL, &CM, BFI, PSI, Checks); 10186 LVP.executePlan(LB, DT); 10187 ++LoopsVectorized; 10188 10189 // Add metadata to disable runtime unrolling a scalar loop when there 10190 // are no runtime checks about strides and memory. A scalar loop that is 10191 // rarely used is not worth unrolling. 10192 if (!LB.areSafetyChecksAdded()) 10193 DisableRuntimeUnroll = true; 10194 } 10195 // Report the vectorization decision. 10196 ORE->emit([&]() { 10197 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10198 L->getHeader()) 10199 << "vectorized loop (vectorization width: " 10200 << NV("VectorizationFactor", VF.Width) 10201 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10202 }); 10203 } 10204 10205 if (ORE->allowExtraAnalysis(LV_NAME)) 10206 checkMixedPrecision(L, ORE); 10207 } 10208 10209 Optional<MDNode *> RemainderLoopID = 10210 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10211 LLVMLoopVectorizeFollowupEpilogue}); 10212 if (RemainderLoopID.hasValue()) { 10213 L->setLoopID(RemainderLoopID.getValue()); 10214 } else { 10215 if (DisableRuntimeUnroll) 10216 AddRuntimeUnrollDisableMetaData(L); 10217 10218 // Mark the loop as already vectorized to avoid vectorizing again. 10219 Hints.setAlreadyVectorized(); 10220 } 10221 10222 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10223 return true; 10224 } 10225 10226 LoopVectorizeResult LoopVectorizePass::runImpl( 10227 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10228 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10229 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10230 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10231 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10232 SE = &SE_; 10233 LI = &LI_; 10234 TTI = &TTI_; 10235 DT = &DT_; 10236 BFI = &BFI_; 10237 TLI = TLI_; 10238 AA = &AA_; 10239 AC = &AC_; 10240 GetLAA = &GetLAA_; 10241 DB = &DB_; 10242 ORE = &ORE_; 10243 PSI = PSI_; 10244 10245 // Don't attempt if 10246 // 1. the target claims to have no vector registers, and 10247 // 2. interleaving won't help ILP. 10248 // 10249 // The second condition is necessary because, even if the target has no 10250 // vector registers, loop vectorization may still enable scalar 10251 // interleaving. 10252 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10253 TTI->getMaxInterleaveFactor(1) < 2) 10254 return LoopVectorizeResult(false, false); 10255 10256 bool Changed = false, CFGChanged = false; 10257 10258 // The vectorizer requires loops to be in simplified form. 10259 // Since simplification may add new inner loops, it has to run before the 10260 // legality and profitability checks. This means running the loop vectorizer 10261 // will simplify all loops, regardless of whether anything end up being 10262 // vectorized. 10263 for (auto &L : *LI) 10264 Changed |= CFGChanged |= 10265 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10266 10267 // Build up a worklist of inner-loops to vectorize. This is necessary as 10268 // the act of vectorizing or partially unrolling a loop creates new loops 10269 // and can invalidate iterators across the loops. 10270 SmallVector<Loop *, 8> Worklist; 10271 10272 for (Loop *L : *LI) 10273 collectSupportedLoops(*L, LI, ORE, Worklist); 10274 10275 LoopsAnalyzed += Worklist.size(); 10276 10277 // Now walk the identified inner loops. 10278 while (!Worklist.empty()) { 10279 Loop *L = Worklist.pop_back_val(); 10280 10281 // For the inner loops we actually process, form LCSSA to simplify the 10282 // transform. 10283 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10284 10285 Changed |= CFGChanged |= processLoop(L); 10286 } 10287 10288 // Process each loop nest in the function. 10289 return LoopVectorizeResult(Changed, CFGChanged); 10290 } 10291 10292 PreservedAnalyses LoopVectorizePass::run(Function &F, 10293 FunctionAnalysisManager &AM) { 10294 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10295 auto &LI = AM.getResult<LoopAnalysis>(F); 10296 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10297 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10298 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10299 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10300 auto &AA = AM.getResult<AAManager>(F); 10301 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10302 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10303 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10304 MemorySSA *MSSA = EnableMSSALoopDependency 10305 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10306 : nullptr; 10307 10308 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10309 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10310 [&](Loop &L) -> const LoopAccessInfo & { 10311 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10312 TLI, TTI, nullptr, MSSA}; 10313 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10314 }; 10315 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10316 ProfileSummaryInfo *PSI = 10317 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10318 LoopVectorizeResult Result = 10319 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10320 if (!Result.MadeAnyChange) 10321 return PreservedAnalyses::all(); 10322 PreservedAnalyses PA; 10323 10324 // We currently do not preserve loopinfo/dominator analyses with outer loop 10325 // vectorization. Until this is addressed, mark these analyses as preserved 10326 // only for non-VPlan-native path. 10327 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10328 if (!EnableVPlanNativePath) { 10329 PA.preserve<LoopAnalysis>(); 10330 PA.preserve<DominatorTreeAnalysis>(); 10331 } 10332 if (!Result.MadeCFGChange) 10333 PA.preserveSet<CFGAnalyses>(); 10334 return PA; 10335 } 10336