1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 AnalysisKey ShouldRunExtraVectorPasses::Key; 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop and the start value for the canonical induction, if it is != 0. The 474 /// latter is the case when vectorizing the epilogue loop. In the case of 475 /// epilogue vectorization, this function is overriden to handle the more 476 /// complex control flow around the loops. 477 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 478 479 /// Widen a single call instruction within the innermost loop. 480 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 481 VPTransformState &State); 482 483 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 484 void fixVectorizedLoop(VPTransformState &State); 485 486 // Return true if any runtime check is added. 487 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 488 489 /// A type for vectorized values in the new loop. Each value from the 490 /// original loop, when vectorized, is represented by UF vector values in the 491 /// new unrolled loop, where UF is the unroll factor. 492 using VectorParts = SmallVector<Value *, 2>; 493 494 /// Vectorize a single first-order recurrence or pointer induction PHINode in 495 /// a block. This method handles the induction variable canonicalization. It 496 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 497 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 498 VPTransformState &State); 499 500 /// A helper function to scalarize a single Instruction in the innermost loop. 501 /// Generates a sequence of scalar instances for each lane between \p MinLane 502 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 503 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 504 /// Instr's operands. 505 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 506 const VPIteration &Instance, bool IfPredicateInstr, 507 VPTransformState &State); 508 509 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 510 /// is provided, the integer induction variable will first be truncated to 511 /// the corresponding type. \p CanonicalIV is the scalar value generated for 512 /// the canonical induction variable. 513 void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, 514 VPTransformState &State, Value *CanonicalIV); 515 516 /// Construct the vector value of a scalarized value \p V one lane at a time. 517 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 518 VPTransformState &State); 519 520 /// Try to vectorize interleaved access group \p Group with the base address 521 /// given in \p Addr, optionally masking the vector operations if \p 522 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 523 /// values in the vectorized loop. 524 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 525 ArrayRef<VPValue *> VPDefs, 526 VPTransformState &State, VPValue *Addr, 527 ArrayRef<VPValue *> StoredValues, 528 VPValue *BlockInMask = nullptr); 529 530 /// Set the debug location in the builder \p Ptr using the debug location in 531 /// \p V. If \p Ptr is None then it uses the class member's Builder. 532 void setDebugLocFromInst(const Value *V, 533 Optional<IRBuilder<> *> CustomBuilder = None); 534 535 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 536 void fixNonInductionPHIs(VPTransformState &State); 537 538 /// Returns true if the reordering of FP operations is not allowed, but we are 539 /// able to vectorize with strict in-order reductions for the given RdxDesc. 540 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 541 542 /// Create a broadcast instruction. This method generates a broadcast 543 /// instruction (shuffle) for loop invariant values and for the induction 544 /// value. If this is the induction variable then we extend it to N, N+1, ... 545 /// this is needed because each iteration in the loop corresponds to a SIMD 546 /// element. 547 virtual Value *getBroadcastInstrs(Value *V); 548 549 /// Add metadata from one instruction to another. 550 /// 551 /// This includes both the original MDs from \p From and additional ones (\see 552 /// addNewMetadata). Use this for *newly created* instructions in the vector 553 /// loop. 554 void addMetadata(Instruction *To, Instruction *From); 555 556 /// Similar to the previous function but it adds the metadata to a 557 /// vector of instructions. 558 void addMetadata(ArrayRef<Value *> To, Instruction *From); 559 560 // Returns the resume value (bc.merge.rdx) for a reduction as 561 // generated by fixReduction. 562 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 563 564 protected: 565 friend class LoopVectorizationPlanner; 566 567 /// A small list of PHINodes. 568 using PhiVector = SmallVector<PHINode *, 4>; 569 570 /// A type for scalarized values in the new loop. Each value from the 571 /// original loop, when scalarized, is represented by UF x VF scalar values 572 /// in the new unrolled loop, where UF is the unroll factor and VF is the 573 /// vectorization factor. 574 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 575 576 /// Set up the values of the IVs correctly when exiting the vector loop. 577 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 578 Value *CountRoundDown, Value *EndValue, 579 BasicBlock *MiddleBlock); 580 581 /// Introduce a conditional branch (on true, condition to be set later) at the 582 /// end of the header=latch connecting it to itself (across the backedge) and 583 /// to the exit block of \p L. 584 void createHeaderBranch(Loop *L); 585 586 /// Handle all cross-iteration phis in the header. 587 void fixCrossIterationPHIs(VPTransformState &State); 588 589 /// Create the exit value of first order recurrences in the middle block and 590 /// update their users. 591 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 592 VPTransformState &State); 593 594 /// Create code for the loop exit value of the reduction. 595 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 596 597 /// Clear NSW/NUW flags from reduction instructions if necessary. 598 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 599 VPTransformState &State); 600 601 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 602 /// means we need to add the appropriate incoming value from the middle 603 /// block as exiting edges from the scalar epilogue loop (if present) are 604 /// already in place, and we exit the vector loop exclusively to the middle 605 /// block. 606 void fixLCSSAPHIs(VPTransformState &State); 607 608 /// Iteratively sink the scalarized operands of a predicated instruction into 609 /// the block that was created for it. 610 void sinkScalarOperands(Instruction *PredInst); 611 612 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 613 /// represented as. 614 void truncateToMinimalBitwidths(VPTransformState &State); 615 616 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 617 /// variable on which to base the steps, \p Step is the size of the step, and 618 /// \p EntryVal is the value from the original loop that maps to the steps. 619 /// Note that \p EntryVal doesn't have to be an induction variable - it 620 /// can also be a truncate instruction. 621 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 622 const InductionDescriptor &ID, VPValue *Def, 623 VPTransformState &State); 624 625 /// Create a vector induction phi node based on an existing scalar one. \p 626 /// EntryVal is the value from the original loop that maps to the vector phi 627 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 628 /// truncate instruction, instead of widening the original IV, we widen a 629 /// version of the IV truncated to \p EntryVal's type. 630 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 631 Value *Step, Value *Start, 632 Instruction *EntryVal, VPValue *Def, 633 VPTransformState &State); 634 635 /// Returns (and creates if needed) the original loop trip count. 636 Value *getOrCreateTripCount(Loop *NewLoop); 637 638 /// Returns (and creates if needed) the trip count of the widened loop. 639 Value *getOrCreateVectorTripCount(Loop *NewLoop); 640 641 /// Returns a bitcasted value to the requested vector type. 642 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 643 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 644 const DataLayout &DL); 645 646 /// Emit a bypass check to see if the vector trip count is zero, including if 647 /// it overflows. 648 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 649 650 /// Emit a bypass check to see if all of the SCEV assumptions we've 651 /// had to make are correct. Returns the block containing the checks or 652 /// nullptr if no checks have been added. 653 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 654 655 /// Emit bypass checks to check any memory assumptions we may have made. 656 /// Returns the block containing the checks or nullptr if no checks have been 657 /// added. 658 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 659 660 /// Compute the transformed value of Index at offset StartValue using step 661 /// StepValue. 662 /// For integer induction, returns StartValue + Index * StepValue. 663 /// For pointer induction, returns StartValue[Index * StepValue]. 664 /// FIXME: The newly created binary instructions should contain nsw/nuw 665 /// flags, which can be found from the original scalar operations. 666 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 667 const DataLayout &DL, 668 const InductionDescriptor &ID, 669 BasicBlock *VectorHeader) const; 670 671 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 672 /// vector loop preheader, middle block and scalar preheader. Also 673 /// allocate a loop object for the new vector loop and return it. 674 Loop *createVectorLoopSkeleton(StringRef Prefix); 675 676 /// Create new phi nodes for the induction variables to resume iteration count 677 /// in the scalar epilogue, from where the vectorized loop left off. 678 /// In cases where the loop skeleton is more complicated (eg. epilogue 679 /// vectorization) and the resume values can come from an additional bypass 680 /// block, the \p AdditionalBypass pair provides information about the bypass 681 /// block and the end value on the edge from bypass to this loop. 682 void createInductionResumeValues( 683 Loop *L, 684 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 685 686 /// Complete the loop skeleton by adding debug MDs, creating appropriate 687 /// conditional branches in the middle block, preparing the builder and 688 /// running the verifier. Take in the vector loop \p L as argument, and return 689 /// the preheader of the completed vector loop. 690 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 691 692 /// Add additional metadata to \p To that was not present on \p Orig. 693 /// 694 /// Currently this is used to add the noalias annotations based on the 695 /// inserted memchecks. Use this for instructions that are *cloned* into the 696 /// vector loop. 697 void addNewMetadata(Instruction *To, const Instruction *Orig); 698 699 /// Collect poison-generating recipes that may generate a poison value that is 700 /// used after vectorization, even when their operands are not poison. Those 701 /// recipes meet the following conditions: 702 /// * Contribute to the address computation of a recipe generating a widen 703 /// memory load/store (VPWidenMemoryInstructionRecipe or 704 /// VPInterleaveRecipe). 705 /// * Such a widen memory load/store has at least one underlying Instruction 706 /// that is in a basic block that needs predication and after vectorization 707 /// the generated instruction won't be predicated. 708 void collectPoisonGeneratingRecipes(VPTransformState &State); 709 710 /// Allow subclasses to override and print debug traces before/after vplan 711 /// execution, when trace information is requested. 712 virtual void printDebugTracesAtStart(){}; 713 virtual void printDebugTracesAtEnd(){}; 714 715 /// The original loop. 716 Loop *OrigLoop; 717 718 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 719 /// dynamic knowledge to simplify SCEV expressions and converts them to a 720 /// more usable form. 721 PredicatedScalarEvolution &PSE; 722 723 /// Loop Info. 724 LoopInfo *LI; 725 726 /// Dominator Tree. 727 DominatorTree *DT; 728 729 /// Alias Analysis. 730 AAResults *AA; 731 732 /// Target Library Info. 733 const TargetLibraryInfo *TLI; 734 735 /// Target Transform Info. 736 const TargetTransformInfo *TTI; 737 738 /// Assumption Cache. 739 AssumptionCache *AC; 740 741 /// Interface to emit optimization remarks. 742 OptimizationRemarkEmitter *ORE; 743 744 /// LoopVersioning. It's only set up (non-null) if memchecks were 745 /// used. 746 /// 747 /// This is currently only used to add no-alias metadata based on the 748 /// memchecks. The actually versioning is performed manually. 749 std::unique_ptr<LoopVersioning> LVer; 750 751 /// The vectorization SIMD factor to use. Each vector will have this many 752 /// vector elements. 753 ElementCount VF; 754 755 /// The vectorization unroll factor to use. Each scalar is vectorized to this 756 /// many different vector instructions. 757 unsigned UF; 758 759 /// The builder that we use 760 IRBuilder<> Builder; 761 762 // --- Vectorization state --- 763 764 /// The vector-loop preheader. 765 BasicBlock *LoopVectorPreHeader; 766 767 /// The scalar-loop preheader. 768 BasicBlock *LoopScalarPreHeader; 769 770 /// Middle Block between the vector and the scalar. 771 BasicBlock *LoopMiddleBlock; 772 773 /// The unique ExitBlock of the scalar loop if one exists. Note that 774 /// there can be multiple exiting edges reaching this block. 775 BasicBlock *LoopExitBlock; 776 777 /// The vector loop body. 778 BasicBlock *LoopVectorBody; 779 780 /// The scalar loop body. 781 BasicBlock *LoopScalarBody; 782 783 /// A list of all bypass blocks. The first block is the entry of the loop. 784 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 785 786 /// Store instructions that were predicated. 787 SmallVector<Instruction *, 4> PredicatedInstructions; 788 789 /// Trip count of the original loop. 790 Value *TripCount = nullptr; 791 792 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 793 Value *VectorTripCount = nullptr; 794 795 /// The legality analysis. 796 LoopVectorizationLegality *Legal; 797 798 /// The profitablity analysis. 799 LoopVectorizationCostModel *Cost; 800 801 // Record whether runtime checks are added. 802 bool AddedSafetyChecks = false; 803 804 // Holds the end values for each induction variable. We save the end values 805 // so we can later fix-up the external users of the induction variables. 806 DenseMap<PHINode *, Value *> IVEndValues; 807 808 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 809 // fixed up at the end of vector code generation. 810 SmallVector<PHINode *, 8> OrigPHIsToFix; 811 812 /// BFI and PSI are used to check for profile guided size optimizations. 813 BlockFrequencyInfo *BFI; 814 ProfileSummaryInfo *PSI; 815 816 // Whether this loop should be optimized for size based on profile guided size 817 // optimizatios. 818 bool OptForSizeBasedOnProfile; 819 820 /// Structure to hold information about generated runtime checks, responsible 821 /// for cleaning the checks, if vectorization turns out unprofitable. 822 GeneratedRTChecks &RTChecks; 823 824 // Holds the resume values for reductions in the loops, used to set the 825 // correct start value of reduction PHIs when vectorizing the epilogue. 826 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 827 ReductionResumeValues; 828 }; 829 830 class InnerLoopUnroller : public InnerLoopVectorizer { 831 public: 832 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 833 LoopInfo *LI, DominatorTree *DT, 834 const TargetLibraryInfo *TLI, 835 const TargetTransformInfo *TTI, AssumptionCache *AC, 836 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 837 LoopVectorizationLegality *LVL, 838 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 839 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 840 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 841 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 842 BFI, PSI, Check) {} 843 844 private: 845 Value *getBroadcastInstrs(Value *V) override; 846 }; 847 848 /// Encapsulate information regarding vectorization of a loop and its epilogue. 849 /// This information is meant to be updated and used across two stages of 850 /// epilogue vectorization. 851 struct EpilogueLoopVectorizationInfo { 852 ElementCount MainLoopVF = ElementCount::getFixed(0); 853 unsigned MainLoopUF = 0; 854 ElementCount EpilogueVF = ElementCount::getFixed(0); 855 unsigned EpilogueUF = 0; 856 BasicBlock *MainLoopIterationCountCheck = nullptr; 857 BasicBlock *EpilogueIterationCountCheck = nullptr; 858 BasicBlock *SCEVSafetyCheck = nullptr; 859 BasicBlock *MemSafetyCheck = nullptr; 860 Value *TripCount = nullptr; 861 Value *VectorTripCount = nullptr; 862 863 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 864 ElementCount EVF, unsigned EUF) 865 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 866 assert(EUF == 1 && 867 "A high UF for the epilogue loop is likely not beneficial."); 868 } 869 }; 870 871 /// An extension of the inner loop vectorizer that creates a skeleton for a 872 /// vectorized loop that has its epilogue (residual) also vectorized. 873 /// The idea is to run the vplan on a given loop twice, firstly to setup the 874 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 875 /// from the first step and vectorize the epilogue. This is achieved by 876 /// deriving two concrete strategy classes from this base class and invoking 877 /// them in succession from the loop vectorizer planner. 878 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 879 public: 880 InnerLoopAndEpilogueVectorizer( 881 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 882 DominatorTree *DT, const TargetLibraryInfo *TLI, 883 const TargetTransformInfo *TTI, AssumptionCache *AC, 884 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 885 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 886 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 887 GeneratedRTChecks &Checks) 888 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 889 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 890 Checks), 891 EPI(EPI) {} 892 893 // Override this function to handle the more complex control flow around the 894 // three loops. 895 std::pair<BasicBlock *, Value *> 896 createVectorizedLoopSkeleton() final override { 897 return createEpilogueVectorizedLoopSkeleton(); 898 } 899 900 /// The interface for creating a vectorized skeleton using one of two 901 /// different strategies, each corresponding to one execution of the vplan 902 /// as described above. 903 virtual std::pair<BasicBlock *, Value *> 904 createEpilogueVectorizedLoopSkeleton() = 0; 905 906 /// Holds and updates state information required to vectorize the main loop 907 /// and its epilogue in two separate passes. This setup helps us avoid 908 /// regenerating and recomputing runtime safety checks. It also helps us to 909 /// shorten the iteration-count-check path length for the cases where the 910 /// iteration count of the loop is so small that the main vector loop is 911 /// completely skipped. 912 EpilogueLoopVectorizationInfo &EPI; 913 }; 914 915 /// A specialized derived class of inner loop vectorizer that performs 916 /// vectorization of *main* loops in the process of vectorizing loops and their 917 /// epilogues. 918 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 919 public: 920 EpilogueVectorizerMainLoop( 921 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 922 DominatorTree *DT, const TargetLibraryInfo *TLI, 923 const TargetTransformInfo *TTI, AssumptionCache *AC, 924 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 925 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 926 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 927 GeneratedRTChecks &Check) 928 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 929 EPI, LVL, CM, BFI, PSI, Check) {} 930 /// Implements the interface for creating a vectorized skeleton using the 931 /// *main loop* strategy (ie the first pass of vplan execution). 932 std::pair<BasicBlock *, Value *> 933 createEpilogueVectorizedLoopSkeleton() final override; 934 935 protected: 936 /// Emits an iteration count bypass check once for the main loop (when \p 937 /// ForEpilogue is false) and once for the epilogue loop (when \p 938 /// ForEpilogue is true). 939 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 940 bool ForEpilogue); 941 void printDebugTracesAtStart() override; 942 void printDebugTracesAtEnd() override; 943 }; 944 945 // A specialized derived class of inner loop vectorizer that performs 946 // vectorization of *epilogue* loops in the process of vectorizing loops and 947 // their epilogues. 948 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 949 public: 950 EpilogueVectorizerEpilogueLoop( 951 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 952 DominatorTree *DT, const TargetLibraryInfo *TLI, 953 const TargetTransformInfo *TTI, AssumptionCache *AC, 954 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 955 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 956 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 957 GeneratedRTChecks &Checks) 958 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 959 EPI, LVL, CM, BFI, PSI, Checks) {} 960 /// Implements the interface for creating a vectorized skeleton using the 961 /// *epilogue loop* strategy (ie the second pass of vplan execution). 962 std::pair<BasicBlock *, Value *> 963 createEpilogueVectorizedLoopSkeleton() final override; 964 965 protected: 966 /// Emits an iteration count bypass check after the main vector loop has 967 /// finished to see if there are any iterations left to execute by either 968 /// the vector epilogue or the scalar epilogue. 969 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 970 BasicBlock *Bypass, 971 BasicBlock *Insert); 972 void printDebugTracesAtStart() override; 973 void printDebugTracesAtEnd() override; 974 }; 975 } // end namespace llvm 976 977 /// Look for a meaningful debug location on the instruction or it's 978 /// operands. 979 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 980 if (!I) 981 return I; 982 983 DebugLoc Empty; 984 if (I->getDebugLoc() != Empty) 985 return I; 986 987 for (Use &Op : I->operands()) { 988 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 989 if (OpInst->getDebugLoc() != Empty) 990 return OpInst; 991 } 992 993 return I; 994 } 995 996 void InnerLoopVectorizer::setDebugLocFromInst( 997 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 998 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 999 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1000 const DILocation *DIL = Inst->getDebugLoc(); 1001 1002 // When a FSDiscriminator is enabled, we don't need to add the multiply 1003 // factors to the discriminators. 1004 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1005 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1006 // FIXME: For scalable vectors, assume vscale=1. 1007 auto NewDIL = 1008 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1009 if (NewDIL) 1010 B->SetCurrentDebugLocation(NewDIL.getValue()); 1011 else 1012 LLVM_DEBUG(dbgs() 1013 << "Failed to create new discriminator: " 1014 << DIL->getFilename() << " Line: " << DIL->getLine()); 1015 } else 1016 B->SetCurrentDebugLocation(DIL); 1017 } else 1018 B->SetCurrentDebugLocation(DebugLoc()); 1019 } 1020 1021 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1022 /// is passed, the message relates to that particular instruction. 1023 #ifndef NDEBUG 1024 static void debugVectorizationMessage(const StringRef Prefix, 1025 const StringRef DebugMsg, 1026 Instruction *I) { 1027 dbgs() << "LV: " << Prefix << DebugMsg; 1028 if (I != nullptr) 1029 dbgs() << " " << *I; 1030 else 1031 dbgs() << '.'; 1032 dbgs() << '\n'; 1033 } 1034 #endif 1035 1036 /// Create an analysis remark that explains why vectorization failed 1037 /// 1038 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1039 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1040 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1041 /// the location of the remark. \return the remark object that can be 1042 /// streamed to. 1043 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1044 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1045 Value *CodeRegion = TheLoop->getHeader(); 1046 DebugLoc DL = TheLoop->getStartLoc(); 1047 1048 if (I) { 1049 CodeRegion = I->getParent(); 1050 // If there is no debug location attached to the instruction, revert back to 1051 // using the loop's. 1052 if (I->getDebugLoc()) 1053 DL = I->getDebugLoc(); 1054 } 1055 1056 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1057 } 1058 1059 namespace llvm { 1060 1061 /// Return a value for Step multiplied by VF. 1062 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1063 int64_t Step) { 1064 assert(Ty->isIntegerTy() && "Expected an integer step"); 1065 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1066 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1067 } 1068 1069 /// Return the runtime value for VF. 1070 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1071 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1072 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1073 } 1074 1075 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1076 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1077 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1078 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1079 return B.CreateUIToFP(RuntimeVF, FTy); 1080 } 1081 1082 void reportVectorizationFailure(const StringRef DebugMsg, 1083 const StringRef OREMsg, const StringRef ORETag, 1084 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1085 Instruction *I) { 1086 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1087 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1088 ORE->emit( 1089 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1090 << "loop not vectorized: " << OREMsg); 1091 } 1092 1093 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1094 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1095 Instruction *I) { 1096 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1097 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1098 ORE->emit( 1099 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1100 << Msg); 1101 } 1102 1103 } // end namespace llvm 1104 1105 #ifndef NDEBUG 1106 /// \return string containing a file name and a line # for the given loop. 1107 static std::string getDebugLocString(const Loop *L) { 1108 std::string Result; 1109 if (L) { 1110 raw_string_ostream OS(Result); 1111 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1112 LoopDbgLoc.print(OS); 1113 else 1114 // Just print the module name. 1115 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1116 OS.flush(); 1117 } 1118 return Result; 1119 } 1120 #endif 1121 1122 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1123 const Instruction *Orig) { 1124 // If the loop was versioned with memchecks, add the corresponding no-alias 1125 // metadata. 1126 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1127 LVer->annotateInstWithNoAlias(To, Orig); 1128 } 1129 1130 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1131 VPTransformState &State) { 1132 1133 // Collect recipes in the backward slice of `Root` that may generate a poison 1134 // value that is used after vectorization. 1135 SmallPtrSet<VPRecipeBase *, 16> Visited; 1136 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1137 SmallVector<VPRecipeBase *, 16> Worklist; 1138 Worklist.push_back(Root); 1139 1140 // Traverse the backward slice of Root through its use-def chain. 1141 while (!Worklist.empty()) { 1142 VPRecipeBase *CurRec = Worklist.back(); 1143 Worklist.pop_back(); 1144 1145 if (!Visited.insert(CurRec).second) 1146 continue; 1147 1148 // Prune search if we find another recipe generating a widen memory 1149 // instruction. Widen memory instructions involved in address computation 1150 // will lead to gather/scatter instructions, which don't need to be 1151 // handled. 1152 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1153 isa<VPInterleaveRecipe>(CurRec) || 1154 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1155 continue; 1156 1157 // This recipe contributes to the address computation of a widen 1158 // load/store. Collect recipe if its underlying instruction has 1159 // poison-generating flags. 1160 Instruction *Instr = CurRec->getUnderlyingInstr(); 1161 if (Instr && Instr->hasPoisonGeneratingFlags()) 1162 State.MayGeneratePoisonRecipes.insert(CurRec); 1163 1164 // Add new definitions to the worklist. 1165 for (VPValue *operand : CurRec->operands()) 1166 if (VPDef *OpDef = operand->getDef()) 1167 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1168 } 1169 }); 1170 1171 // Traverse all the recipes in the VPlan and collect the poison-generating 1172 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1173 // VPInterleaveRecipe. 1174 auto Iter = depth_first( 1175 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1176 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1177 for (VPRecipeBase &Recipe : *VPBB) { 1178 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1179 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1180 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1181 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1182 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1183 collectPoisonGeneratingInstrsInBackwardSlice( 1184 cast<VPRecipeBase>(AddrDef)); 1185 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1186 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1187 if (AddrDef) { 1188 // Check if any member of the interleave group needs predication. 1189 const InterleaveGroup<Instruction> *InterGroup = 1190 InterleaveRec->getInterleaveGroup(); 1191 bool NeedPredication = false; 1192 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1193 I < NumMembers; ++I) { 1194 Instruction *Member = InterGroup->getMember(I); 1195 if (Member) 1196 NeedPredication |= 1197 Legal->blockNeedsPredication(Member->getParent()); 1198 } 1199 1200 if (NeedPredication) 1201 collectPoisonGeneratingInstrsInBackwardSlice( 1202 cast<VPRecipeBase>(AddrDef)); 1203 } 1204 } 1205 } 1206 } 1207 } 1208 1209 void InnerLoopVectorizer::addMetadata(Instruction *To, 1210 Instruction *From) { 1211 propagateMetadata(To, From); 1212 addNewMetadata(To, From); 1213 } 1214 1215 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1216 Instruction *From) { 1217 for (Value *V : To) { 1218 if (Instruction *I = dyn_cast<Instruction>(V)) 1219 addMetadata(I, From); 1220 } 1221 } 1222 1223 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1224 const RecurrenceDescriptor &RdxDesc) { 1225 auto It = ReductionResumeValues.find(&RdxDesc); 1226 assert(It != ReductionResumeValues.end() && 1227 "Expected to find a resume value for the reduction."); 1228 return It->second; 1229 } 1230 1231 namespace llvm { 1232 1233 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1234 // lowered. 1235 enum ScalarEpilogueLowering { 1236 1237 // The default: allowing scalar epilogues. 1238 CM_ScalarEpilogueAllowed, 1239 1240 // Vectorization with OptForSize: don't allow epilogues. 1241 CM_ScalarEpilogueNotAllowedOptSize, 1242 1243 // A special case of vectorisation with OptForSize: loops with a very small 1244 // trip count are considered for vectorization under OptForSize, thereby 1245 // making sure the cost of their loop body is dominant, free of runtime 1246 // guards and scalar iteration overheads. 1247 CM_ScalarEpilogueNotAllowedLowTripLoop, 1248 1249 // Loop hint predicate indicating an epilogue is undesired. 1250 CM_ScalarEpilogueNotNeededUsePredicate, 1251 1252 // Directive indicating we must either tail fold or not vectorize 1253 CM_ScalarEpilogueNotAllowedUsePredicate 1254 }; 1255 1256 /// ElementCountComparator creates a total ordering for ElementCount 1257 /// for the purposes of using it in a set structure. 1258 struct ElementCountComparator { 1259 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1260 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1261 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1262 } 1263 }; 1264 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1265 1266 /// LoopVectorizationCostModel - estimates the expected speedups due to 1267 /// vectorization. 1268 /// In many cases vectorization is not profitable. This can happen because of 1269 /// a number of reasons. In this class we mainly attempt to predict the 1270 /// expected speedup/slowdowns due to the supported instruction set. We use the 1271 /// TargetTransformInfo to query the different backends for the cost of 1272 /// different operations. 1273 class LoopVectorizationCostModel { 1274 public: 1275 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1276 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1277 LoopVectorizationLegality *Legal, 1278 const TargetTransformInfo &TTI, 1279 const TargetLibraryInfo *TLI, DemandedBits *DB, 1280 AssumptionCache *AC, 1281 OptimizationRemarkEmitter *ORE, const Function *F, 1282 const LoopVectorizeHints *Hints, 1283 InterleavedAccessInfo &IAI) 1284 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1285 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1286 Hints(Hints), InterleaveInfo(IAI) {} 1287 1288 /// \return An upper bound for the vectorization factors (both fixed and 1289 /// scalable). If the factors are 0, vectorization and interleaving should be 1290 /// avoided up front. 1291 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1292 1293 /// \return True if runtime checks are required for vectorization, and false 1294 /// otherwise. 1295 bool runtimeChecksRequired(); 1296 1297 /// \return The most profitable vectorization factor and the cost of that VF. 1298 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1299 /// then this vectorization factor will be selected if vectorization is 1300 /// possible. 1301 VectorizationFactor 1302 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1303 1304 VectorizationFactor 1305 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1306 const LoopVectorizationPlanner &LVP); 1307 1308 /// Setup cost-based decisions for user vectorization factor. 1309 /// \return true if the UserVF is a feasible VF to be chosen. 1310 bool selectUserVectorizationFactor(ElementCount UserVF) { 1311 collectUniformsAndScalars(UserVF); 1312 collectInstsToScalarize(UserVF); 1313 return expectedCost(UserVF).first.isValid(); 1314 } 1315 1316 /// \return The size (in bits) of the smallest and widest types in the code 1317 /// that needs to be vectorized. We ignore values that remain scalar such as 1318 /// 64 bit loop indices. 1319 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1320 1321 /// \return The desired interleave count. 1322 /// If interleave count has been specified by metadata it will be returned. 1323 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1324 /// are the selected vectorization factor and the cost of the selected VF. 1325 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1326 1327 /// Memory access instruction may be vectorized in more than one way. 1328 /// Form of instruction after vectorization depends on cost. 1329 /// This function takes cost-based decisions for Load/Store instructions 1330 /// and collects them in a map. This decisions map is used for building 1331 /// the lists of loop-uniform and loop-scalar instructions. 1332 /// The calculated cost is saved with widening decision in order to 1333 /// avoid redundant calculations. 1334 void setCostBasedWideningDecision(ElementCount VF); 1335 1336 /// A struct that represents some properties of the register usage 1337 /// of a loop. 1338 struct RegisterUsage { 1339 /// Holds the number of loop invariant values that are used in the loop. 1340 /// The key is ClassID of target-provided register class. 1341 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1342 /// Holds the maximum number of concurrent live intervals in the loop. 1343 /// The key is ClassID of target-provided register class. 1344 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1345 }; 1346 1347 /// \return Returns information about the register usages of the loop for the 1348 /// given vectorization factors. 1349 SmallVector<RegisterUsage, 8> 1350 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1351 1352 /// Collect values we want to ignore in the cost model. 1353 void collectValuesToIgnore(); 1354 1355 /// Collect all element types in the loop for which widening is needed. 1356 void collectElementTypesForWidening(); 1357 1358 /// Split reductions into those that happen in the loop, and those that happen 1359 /// outside. In loop reductions are collected into InLoopReductionChains. 1360 void collectInLoopReductions(); 1361 1362 /// Returns true if we should use strict in-order reductions for the given 1363 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1364 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1365 /// of FP operations. 1366 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1367 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1368 } 1369 1370 /// \returns The smallest bitwidth each instruction can be represented with. 1371 /// The vector equivalents of these instructions should be truncated to this 1372 /// type. 1373 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1374 return MinBWs; 1375 } 1376 1377 /// \returns True if it is more profitable to scalarize instruction \p I for 1378 /// vectorization factor \p VF. 1379 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1380 assert(VF.isVector() && 1381 "Profitable to scalarize relevant only for VF > 1."); 1382 1383 // Cost model is not run in the VPlan-native path - return conservative 1384 // result until this changes. 1385 if (EnableVPlanNativePath) 1386 return false; 1387 1388 auto Scalars = InstsToScalarize.find(VF); 1389 assert(Scalars != InstsToScalarize.end() && 1390 "VF not yet analyzed for scalarization profitability"); 1391 return Scalars->second.find(I) != Scalars->second.end(); 1392 } 1393 1394 /// Returns true if \p I is known to be uniform after vectorization. 1395 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1396 if (VF.isScalar()) 1397 return true; 1398 1399 // Cost model is not run in the VPlan-native path - return conservative 1400 // result until this changes. 1401 if (EnableVPlanNativePath) 1402 return false; 1403 1404 auto UniformsPerVF = Uniforms.find(VF); 1405 assert(UniformsPerVF != Uniforms.end() && 1406 "VF not yet analyzed for uniformity"); 1407 return UniformsPerVF->second.count(I); 1408 } 1409 1410 /// Returns true if \p I is known to be scalar after vectorization. 1411 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1412 if (VF.isScalar()) 1413 return true; 1414 1415 // Cost model is not run in the VPlan-native path - return conservative 1416 // result until this changes. 1417 if (EnableVPlanNativePath) 1418 return false; 1419 1420 auto ScalarsPerVF = Scalars.find(VF); 1421 assert(ScalarsPerVF != Scalars.end() && 1422 "Scalar values are not calculated for VF"); 1423 return ScalarsPerVF->second.count(I); 1424 } 1425 1426 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1427 /// for vectorization factor \p VF. 1428 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1429 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1430 !isProfitableToScalarize(I, VF) && 1431 !isScalarAfterVectorization(I, VF); 1432 } 1433 1434 /// Decision that was taken during cost calculation for memory instruction. 1435 enum InstWidening { 1436 CM_Unknown, 1437 CM_Widen, // For consecutive accesses with stride +1. 1438 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1439 CM_Interleave, 1440 CM_GatherScatter, 1441 CM_Scalarize 1442 }; 1443 1444 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1445 /// instruction \p I and vector width \p VF. 1446 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1447 InstructionCost Cost) { 1448 assert(VF.isVector() && "Expected VF >=2"); 1449 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1450 } 1451 1452 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1453 /// interleaving group \p Grp and vector width \p VF. 1454 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1455 ElementCount VF, InstWidening W, 1456 InstructionCost Cost) { 1457 assert(VF.isVector() && "Expected VF >=2"); 1458 /// Broadcast this decicion to all instructions inside the group. 1459 /// But the cost will be assigned to one instruction only. 1460 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1461 if (auto *I = Grp->getMember(i)) { 1462 if (Grp->getInsertPos() == I) 1463 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1464 else 1465 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1466 } 1467 } 1468 } 1469 1470 /// Return the cost model decision for the given instruction \p I and vector 1471 /// width \p VF. Return CM_Unknown if this instruction did not pass 1472 /// through the cost modeling. 1473 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1474 assert(VF.isVector() && "Expected VF to be a vector VF"); 1475 // Cost model is not run in the VPlan-native path - return conservative 1476 // result until this changes. 1477 if (EnableVPlanNativePath) 1478 return CM_GatherScatter; 1479 1480 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1481 auto Itr = WideningDecisions.find(InstOnVF); 1482 if (Itr == WideningDecisions.end()) 1483 return CM_Unknown; 1484 return Itr->second.first; 1485 } 1486 1487 /// Return the vectorization cost for the given instruction \p I and vector 1488 /// width \p VF. 1489 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1490 assert(VF.isVector() && "Expected VF >=2"); 1491 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1492 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1493 "The cost is not calculated"); 1494 return WideningDecisions[InstOnVF].second; 1495 } 1496 1497 /// Return True if instruction \p I is an optimizable truncate whose operand 1498 /// is an induction variable. Such a truncate will be removed by adding a new 1499 /// induction variable with the destination type. 1500 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1501 // If the instruction is not a truncate, return false. 1502 auto *Trunc = dyn_cast<TruncInst>(I); 1503 if (!Trunc) 1504 return false; 1505 1506 // Get the source and destination types of the truncate. 1507 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1508 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1509 1510 // If the truncate is free for the given types, return false. Replacing a 1511 // free truncate with an induction variable would add an induction variable 1512 // update instruction to each iteration of the loop. We exclude from this 1513 // check the primary induction variable since it will need an update 1514 // instruction regardless. 1515 Value *Op = Trunc->getOperand(0); 1516 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1517 return false; 1518 1519 // If the truncated value is not an induction variable, return false. 1520 return Legal->isInductionPhi(Op); 1521 } 1522 1523 /// Collects the instructions to scalarize for each predicated instruction in 1524 /// the loop. 1525 void collectInstsToScalarize(ElementCount VF); 1526 1527 /// Collect Uniform and Scalar values for the given \p VF. 1528 /// The sets depend on CM decision for Load/Store instructions 1529 /// that may be vectorized as interleave, gather-scatter or scalarized. 1530 void collectUniformsAndScalars(ElementCount VF) { 1531 // Do the analysis once. 1532 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1533 return; 1534 setCostBasedWideningDecision(VF); 1535 collectLoopUniforms(VF); 1536 collectLoopScalars(VF); 1537 } 1538 1539 /// Returns true if the target machine supports masked store operation 1540 /// for the given \p DataType and kind of access to \p Ptr. 1541 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1542 return Legal->isConsecutivePtr(DataType, Ptr) && 1543 TTI.isLegalMaskedStore(DataType, Alignment); 1544 } 1545 1546 /// Returns true if the target machine supports masked load operation 1547 /// for the given \p DataType and kind of access to \p Ptr. 1548 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1549 return Legal->isConsecutivePtr(DataType, Ptr) && 1550 TTI.isLegalMaskedLoad(DataType, Alignment); 1551 } 1552 1553 /// Returns true if the target machine can represent \p V as a masked gather 1554 /// or scatter operation. 1555 bool isLegalGatherOrScatter(Value *V, 1556 ElementCount VF = ElementCount::getFixed(1)) { 1557 bool LI = isa<LoadInst>(V); 1558 bool SI = isa<StoreInst>(V); 1559 if (!LI && !SI) 1560 return false; 1561 auto *Ty = getLoadStoreType(V); 1562 Align Align = getLoadStoreAlignment(V); 1563 if (VF.isVector()) 1564 Ty = VectorType::get(Ty, VF); 1565 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1566 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1567 } 1568 1569 /// Returns true if the target machine supports all of the reduction 1570 /// variables found for the given VF. 1571 bool canVectorizeReductions(ElementCount VF) const { 1572 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1573 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1574 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1575 })); 1576 } 1577 1578 /// Returns true if \p I is an instruction that will be scalarized with 1579 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1580 /// instructions include conditional stores and instructions that may divide 1581 /// by zero. 1582 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1583 1584 // Returns true if \p I is an instruction that will be predicated either 1585 // through scalar predication or masked load/store or masked gather/scatter. 1586 // \p VF is the vectorization factor that will be used to vectorize \p I. 1587 // Superset of instructions that return true for isScalarWithPredication. 1588 bool isPredicatedInst(Instruction *I, ElementCount VF, 1589 bool IsKnownUniform = false) { 1590 // When we know the load is uniform and the original scalar loop was not 1591 // predicated we don't need to mark it as a predicated instruction. Any 1592 // vectorised blocks created when tail-folding are something artificial we 1593 // have introduced and we know there is always at least one active lane. 1594 // That's why we call Legal->blockNeedsPredication here because it doesn't 1595 // query tail-folding. 1596 if (IsKnownUniform && isa<LoadInst>(I) && 1597 !Legal->blockNeedsPredication(I->getParent())) 1598 return false; 1599 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1600 return false; 1601 // Loads and stores that need some form of masked operation are predicated 1602 // instructions. 1603 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1604 return Legal->isMaskRequired(I); 1605 return isScalarWithPredication(I, VF); 1606 } 1607 1608 /// Returns true if \p I is a memory instruction with consecutive memory 1609 /// access that can be widened. 1610 bool 1611 memoryInstructionCanBeWidened(Instruction *I, 1612 ElementCount VF = ElementCount::getFixed(1)); 1613 1614 /// Returns true if \p I is a memory instruction in an interleaved-group 1615 /// of memory accesses that can be vectorized with wide vector loads/stores 1616 /// and shuffles. 1617 bool 1618 interleavedAccessCanBeWidened(Instruction *I, 1619 ElementCount VF = ElementCount::getFixed(1)); 1620 1621 /// Check if \p Instr belongs to any interleaved access group. 1622 bool isAccessInterleaved(Instruction *Instr) { 1623 return InterleaveInfo.isInterleaved(Instr); 1624 } 1625 1626 /// Get the interleaved access group that \p Instr belongs to. 1627 const InterleaveGroup<Instruction> * 1628 getInterleavedAccessGroup(Instruction *Instr) { 1629 return InterleaveInfo.getInterleaveGroup(Instr); 1630 } 1631 1632 /// Returns true if we're required to use a scalar epilogue for at least 1633 /// the final iteration of the original loop. 1634 bool requiresScalarEpilogue(ElementCount VF) const { 1635 if (!isScalarEpilogueAllowed()) 1636 return false; 1637 // If we might exit from anywhere but the latch, must run the exiting 1638 // iteration in scalar form. 1639 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1640 return true; 1641 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1642 } 1643 1644 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1645 /// loop hint annotation. 1646 bool isScalarEpilogueAllowed() const { 1647 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1648 } 1649 1650 /// Returns true if all loop blocks should be masked to fold tail loop. 1651 bool foldTailByMasking() const { return FoldTailByMasking; } 1652 1653 /// Returns true if the instructions in this block requires predication 1654 /// for any reason, e.g. because tail folding now requires a predicate 1655 /// or because the block in the original loop was predicated. 1656 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1657 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1658 } 1659 1660 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1661 /// nodes to the chain of instructions representing the reductions. Uses a 1662 /// MapVector to ensure deterministic iteration order. 1663 using ReductionChainMap = 1664 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1665 1666 /// Return the chain of instructions representing an inloop reduction. 1667 const ReductionChainMap &getInLoopReductionChains() const { 1668 return InLoopReductionChains; 1669 } 1670 1671 /// Returns true if the Phi is part of an inloop reduction. 1672 bool isInLoopReduction(PHINode *Phi) const { 1673 return InLoopReductionChains.count(Phi); 1674 } 1675 1676 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1677 /// with factor VF. Return the cost of the instruction, including 1678 /// scalarization overhead if it's needed. 1679 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1680 1681 /// Estimate cost of a call instruction CI if it were vectorized with factor 1682 /// VF. Return the cost of the instruction, including scalarization overhead 1683 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1684 /// scalarized - 1685 /// i.e. either vector version isn't available, or is too expensive. 1686 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1687 bool &NeedToScalarize) const; 1688 1689 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1690 /// that of B. 1691 bool isMoreProfitable(const VectorizationFactor &A, 1692 const VectorizationFactor &B) const; 1693 1694 /// Invalidates decisions already taken by the cost model. 1695 void invalidateCostModelingDecisions() { 1696 WideningDecisions.clear(); 1697 Uniforms.clear(); 1698 Scalars.clear(); 1699 } 1700 1701 private: 1702 unsigned NumPredStores = 0; 1703 1704 /// Convenience function that returns the value of vscale_range iff 1705 /// vscale_range.min == vscale_range.max or otherwise returns the value 1706 /// returned by the corresponding TLI method. 1707 Optional<unsigned> getVScaleForTuning() const; 1708 1709 /// \return An upper bound for the vectorization factors for both 1710 /// fixed and scalable vectorization, where the minimum-known number of 1711 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1712 /// disabled or unsupported, then the scalable part will be equal to 1713 /// ElementCount::getScalable(0). 1714 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1715 ElementCount UserVF, 1716 bool FoldTailByMasking); 1717 1718 /// \return the maximized element count based on the targets vector 1719 /// registers and the loop trip-count, but limited to a maximum safe VF. 1720 /// This is a helper function of computeFeasibleMaxVF. 1721 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1722 /// issue that occurred on one of the buildbots which cannot be reproduced 1723 /// without having access to the properietary compiler (see comments on 1724 /// D98509). The issue is currently under investigation and this workaround 1725 /// will be removed as soon as possible. 1726 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1727 unsigned SmallestType, 1728 unsigned WidestType, 1729 const ElementCount &MaxSafeVF, 1730 bool FoldTailByMasking); 1731 1732 /// \return the maximum legal scalable VF, based on the safe max number 1733 /// of elements. 1734 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1735 1736 /// The vectorization cost is a combination of the cost itself and a boolean 1737 /// indicating whether any of the contributing operations will actually 1738 /// operate on vector values after type legalization in the backend. If this 1739 /// latter value is false, then all operations will be scalarized (i.e. no 1740 /// vectorization has actually taken place). 1741 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1742 1743 /// Returns the expected execution cost. The unit of the cost does 1744 /// not matter because we use the 'cost' units to compare different 1745 /// vector widths. The cost that is returned is *not* normalized by 1746 /// the factor width. If \p Invalid is not nullptr, this function 1747 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1748 /// each instruction that has an Invalid cost for the given VF. 1749 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1750 VectorizationCostTy 1751 expectedCost(ElementCount VF, 1752 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1753 1754 /// Returns the execution time cost of an instruction for a given vector 1755 /// width. Vector width of one means scalar. 1756 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1757 1758 /// The cost-computation logic from getInstructionCost which provides 1759 /// the vector type as an output parameter. 1760 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1761 Type *&VectorTy); 1762 1763 /// Return the cost of instructions in an inloop reduction pattern, if I is 1764 /// part of that pattern. 1765 Optional<InstructionCost> 1766 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1767 TTI::TargetCostKind CostKind); 1768 1769 /// Calculate vectorization cost of memory instruction \p I. 1770 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1771 1772 /// The cost computation for scalarized memory instruction. 1773 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1774 1775 /// The cost computation for interleaving group of memory instructions. 1776 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1777 1778 /// The cost computation for Gather/Scatter instruction. 1779 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1780 1781 /// The cost computation for widening instruction \p I with consecutive 1782 /// memory access. 1783 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1784 1785 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1786 /// Load: scalar load + broadcast. 1787 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1788 /// element) 1789 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1790 1791 /// Estimate the overhead of scalarizing an instruction. This is a 1792 /// convenience wrapper for the type-based getScalarizationOverhead API. 1793 InstructionCost getScalarizationOverhead(Instruction *I, 1794 ElementCount VF) const; 1795 1796 /// Returns whether the instruction is a load or store and will be a emitted 1797 /// as a vector operation. 1798 bool isConsecutiveLoadOrStore(Instruction *I); 1799 1800 /// Returns true if an artificially high cost for emulated masked memrefs 1801 /// should be used. 1802 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1803 1804 /// Map of scalar integer values to the smallest bitwidth they can be legally 1805 /// represented as. The vector equivalents of these values should be truncated 1806 /// to this type. 1807 MapVector<Instruction *, uint64_t> MinBWs; 1808 1809 /// A type representing the costs for instructions if they were to be 1810 /// scalarized rather than vectorized. The entries are Instruction-Cost 1811 /// pairs. 1812 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1813 1814 /// A set containing all BasicBlocks that are known to present after 1815 /// vectorization as a predicated block. 1816 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1817 1818 /// Records whether it is allowed to have the original scalar loop execute at 1819 /// least once. This may be needed as a fallback loop in case runtime 1820 /// aliasing/dependence checks fail, or to handle the tail/remainder 1821 /// iterations when the trip count is unknown or doesn't divide by the VF, 1822 /// or as a peel-loop to handle gaps in interleave-groups. 1823 /// Under optsize and when the trip count is very small we don't allow any 1824 /// iterations to execute in the scalar loop. 1825 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1826 1827 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1828 bool FoldTailByMasking = false; 1829 1830 /// A map holding scalar costs for different vectorization factors. The 1831 /// presence of a cost for an instruction in the mapping indicates that the 1832 /// instruction will be scalarized when vectorizing with the associated 1833 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1834 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1835 1836 /// Holds the instructions known to be uniform after vectorization. 1837 /// The data is collected per VF. 1838 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1839 1840 /// Holds the instructions known to be scalar after vectorization. 1841 /// The data is collected per VF. 1842 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1843 1844 /// Holds the instructions (address computations) that are forced to be 1845 /// scalarized. 1846 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1847 1848 /// PHINodes of the reductions that should be expanded in-loop along with 1849 /// their associated chains of reduction operations, in program order from top 1850 /// (PHI) to bottom 1851 ReductionChainMap InLoopReductionChains; 1852 1853 /// A Map of inloop reduction operations and their immediate chain operand. 1854 /// FIXME: This can be removed once reductions can be costed correctly in 1855 /// vplan. This was added to allow quick lookup to the inloop operations, 1856 /// without having to loop through InLoopReductionChains. 1857 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1858 1859 /// Returns the expected difference in cost from scalarizing the expression 1860 /// feeding a predicated instruction \p PredInst. The instructions to 1861 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1862 /// non-negative return value implies the expression will be scalarized. 1863 /// Currently, only single-use chains are considered for scalarization. 1864 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1865 ElementCount VF); 1866 1867 /// Collect the instructions that are uniform after vectorization. An 1868 /// instruction is uniform if we represent it with a single scalar value in 1869 /// the vectorized loop corresponding to each vector iteration. Examples of 1870 /// uniform instructions include pointer operands of consecutive or 1871 /// interleaved memory accesses. Note that although uniformity implies an 1872 /// instruction will be scalar, the reverse is not true. In general, a 1873 /// scalarized instruction will be represented by VF scalar values in the 1874 /// vectorized loop, each corresponding to an iteration of the original 1875 /// scalar loop. 1876 void collectLoopUniforms(ElementCount VF); 1877 1878 /// Collect the instructions that are scalar after vectorization. An 1879 /// instruction is scalar if it is known to be uniform or will be scalarized 1880 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1881 /// to the list if they are used by a load/store instruction that is marked as 1882 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1883 /// VF values in the vectorized loop, each corresponding to an iteration of 1884 /// the original scalar loop. 1885 void collectLoopScalars(ElementCount VF); 1886 1887 /// Keeps cost model vectorization decision and cost for instructions. 1888 /// Right now it is used for memory instructions only. 1889 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1890 std::pair<InstWidening, InstructionCost>>; 1891 1892 DecisionList WideningDecisions; 1893 1894 /// Returns true if \p V is expected to be vectorized and it needs to be 1895 /// extracted. 1896 bool needsExtract(Value *V, ElementCount VF) const { 1897 Instruction *I = dyn_cast<Instruction>(V); 1898 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1899 TheLoop->isLoopInvariant(I)) 1900 return false; 1901 1902 // Assume we can vectorize V (and hence we need extraction) if the 1903 // scalars are not computed yet. This can happen, because it is called 1904 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1905 // the scalars are collected. That should be a safe assumption in most 1906 // cases, because we check if the operands have vectorizable types 1907 // beforehand in LoopVectorizationLegality. 1908 return Scalars.find(VF) == Scalars.end() || 1909 !isScalarAfterVectorization(I, VF); 1910 }; 1911 1912 /// Returns a range containing only operands needing to be extracted. 1913 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1914 ElementCount VF) const { 1915 return SmallVector<Value *, 4>(make_filter_range( 1916 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1917 } 1918 1919 /// Determines if we have the infrastructure to vectorize loop \p L and its 1920 /// epilogue, assuming the main loop is vectorized by \p VF. 1921 bool isCandidateForEpilogueVectorization(const Loop &L, 1922 const ElementCount VF) const; 1923 1924 /// Returns true if epilogue vectorization is considered profitable, and 1925 /// false otherwise. 1926 /// \p VF is the vectorization factor chosen for the original loop. 1927 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1928 1929 public: 1930 /// The loop that we evaluate. 1931 Loop *TheLoop; 1932 1933 /// Predicated scalar evolution analysis. 1934 PredicatedScalarEvolution &PSE; 1935 1936 /// Loop Info analysis. 1937 LoopInfo *LI; 1938 1939 /// Vectorization legality. 1940 LoopVectorizationLegality *Legal; 1941 1942 /// Vector target information. 1943 const TargetTransformInfo &TTI; 1944 1945 /// Target Library Info. 1946 const TargetLibraryInfo *TLI; 1947 1948 /// Demanded bits analysis. 1949 DemandedBits *DB; 1950 1951 /// Assumption cache. 1952 AssumptionCache *AC; 1953 1954 /// Interface to emit optimization remarks. 1955 OptimizationRemarkEmitter *ORE; 1956 1957 const Function *TheFunction; 1958 1959 /// Loop Vectorize Hint. 1960 const LoopVectorizeHints *Hints; 1961 1962 /// The interleave access information contains groups of interleaved accesses 1963 /// with the same stride and close to each other. 1964 InterleavedAccessInfo &InterleaveInfo; 1965 1966 /// Values to ignore in the cost model. 1967 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1968 1969 /// Values to ignore in the cost model when VF > 1. 1970 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1971 1972 /// All element types found in the loop. 1973 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1974 1975 /// Profitable vector factors. 1976 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1977 }; 1978 } // end namespace llvm 1979 1980 /// Helper struct to manage generating runtime checks for vectorization. 1981 /// 1982 /// The runtime checks are created up-front in temporary blocks to allow better 1983 /// estimating the cost and un-linked from the existing IR. After deciding to 1984 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1985 /// temporary blocks are completely removed. 1986 class GeneratedRTChecks { 1987 /// Basic block which contains the generated SCEV checks, if any. 1988 BasicBlock *SCEVCheckBlock = nullptr; 1989 1990 /// The value representing the result of the generated SCEV checks. If it is 1991 /// nullptr, either no SCEV checks have been generated or they have been used. 1992 Value *SCEVCheckCond = nullptr; 1993 1994 /// Basic block which contains the generated memory runtime checks, if any. 1995 BasicBlock *MemCheckBlock = nullptr; 1996 1997 /// The value representing the result of the generated memory runtime checks. 1998 /// If it is nullptr, either no memory runtime checks have been generated or 1999 /// they have been used. 2000 Value *MemRuntimeCheckCond = nullptr; 2001 2002 DominatorTree *DT; 2003 LoopInfo *LI; 2004 2005 SCEVExpander SCEVExp; 2006 SCEVExpander MemCheckExp; 2007 2008 public: 2009 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 2010 const DataLayout &DL) 2011 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 2012 MemCheckExp(SE, DL, "scev.check") {} 2013 2014 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2015 /// accurately estimate the cost of the runtime checks. The blocks are 2016 /// un-linked from the IR and is added back during vector code generation. If 2017 /// there is no vector code generation, the check blocks are removed 2018 /// completely. 2019 void Create(Loop *L, const LoopAccessInfo &LAI, 2020 const SCEVUnionPredicate &UnionPred) { 2021 2022 BasicBlock *LoopHeader = L->getHeader(); 2023 BasicBlock *Preheader = L->getLoopPreheader(); 2024 2025 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2026 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2027 // may be used by SCEVExpander. The blocks will be un-linked from their 2028 // predecessors and removed from LI & DT at the end of the function. 2029 if (!UnionPred.isAlwaysTrue()) { 2030 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2031 nullptr, "vector.scevcheck"); 2032 2033 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2034 &UnionPred, SCEVCheckBlock->getTerminator()); 2035 } 2036 2037 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2038 if (RtPtrChecking.Need) { 2039 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2040 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2041 "vector.memcheck"); 2042 2043 MemRuntimeCheckCond = 2044 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2045 RtPtrChecking.getChecks(), MemCheckExp); 2046 assert(MemRuntimeCheckCond && 2047 "no RT checks generated although RtPtrChecking " 2048 "claimed checks are required"); 2049 } 2050 2051 if (!MemCheckBlock && !SCEVCheckBlock) 2052 return; 2053 2054 // Unhook the temporary block with the checks, update various places 2055 // accordingly. 2056 if (SCEVCheckBlock) 2057 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2058 if (MemCheckBlock) 2059 MemCheckBlock->replaceAllUsesWith(Preheader); 2060 2061 if (SCEVCheckBlock) { 2062 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2063 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2064 Preheader->getTerminator()->eraseFromParent(); 2065 } 2066 if (MemCheckBlock) { 2067 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2068 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2069 Preheader->getTerminator()->eraseFromParent(); 2070 } 2071 2072 DT->changeImmediateDominator(LoopHeader, Preheader); 2073 if (MemCheckBlock) { 2074 DT->eraseNode(MemCheckBlock); 2075 LI->removeBlock(MemCheckBlock); 2076 } 2077 if (SCEVCheckBlock) { 2078 DT->eraseNode(SCEVCheckBlock); 2079 LI->removeBlock(SCEVCheckBlock); 2080 } 2081 } 2082 2083 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2084 /// unused. 2085 ~GeneratedRTChecks() { 2086 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2087 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2088 if (!SCEVCheckCond) 2089 SCEVCleaner.markResultUsed(); 2090 2091 if (!MemRuntimeCheckCond) 2092 MemCheckCleaner.markResultUsed(); 2093 2094 if (MemRuntimeCheckCond) { 2095 auto &SE = *MemCheckExp.getSE(); 2096 // Memory runtime check generation creates compares that use expanded 2097 // values. Remove them before running the SCEVExpanderCleaners. 2098 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2099 if (MemCheckExp.isInsertedInstruction(&I)) 2100 continue; 2101 SE.forgetValue(&I); 2102 I.eraseFromParent(); 2103 } 2104 } 2105 MemCheckCleaner.cleanup(); 2106 SCEVCleaner.cleanup(); 2107 2108 if (SCEVCheckCond) 2109 SCEVCheckBlock->eraseFromParent(); 2110 if (MemRuntimeCheckCond) 2111 MemCheckBlock->eraseFromParent(); 2112 } 2113 2114 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2115 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2116 /// depending on the generated condition. 2117 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2118 BasicBlock *LoopVectorPreHeader, 2119 BasicBlock *LoopExitBlock) { 2120 if (!SCEVCheckCond) 2121 return nullptr; 2122 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2123 if (C->isZero()) 2124 return nullptr; 2125 2126 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2127 2128 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2129 // Create new preheader for vector loop. 2130 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2131 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2132 2133 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2134 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2135 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2136 SCEVCheckBlock); 2137 2138 DT->addNewBlock(SCEVCheckBlock, Pred); 2139 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2140 2141 ReplaceInstWithInst( 2142 SCEVCheckBlock->getTerminator(), 2143 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2144 // Mark the check as used, to prevent it from being removed during cleanup. 2145 SCEVCheckCond = nullptr; 2146 return SCEVCheckBlock; 2147 } 2148 2149 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2150 /// the branches to branch to the vector preheader or \p Bypass, depending on 2151 /// the generated condition. 2152 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2153 BasicBlock *LoopVectorPreHeader) { 2154 // Check if we generated code that checks in runtime if arrays overlap. 2155 if (!MemRuntimeCheckCond) 2156 return nullptr; 2157 2158 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2159 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2160 MemCheckBlock); 2161 2162 DT->addNewBlock(MemCheckBlock, Pred); 2163 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2164 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2165 2166 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2167 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2168 2169 ReplaceInstWithInst( 2170 MemCheckBlock->getTerminator(), 2171 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2172 MemCheckBlock->getTerminator()->setDebugLoc( 2173 Pred->getTerminator()->getDebugLoc()); 2174 2175 // Mark the check as used, to prevent it from being removed during cleanup. 2176 MemRuntimeCheckCond = nullptr; 2177 return MemCheckBlock; 2178 } 2179 }; 2180 2181 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2182 // vectorization. The loop needs to be annotated with #pragma omp simd 2183 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2184 // vector length information is not provided, vectorization is not considered 2185 // explicit. Interleave hints are not allowed either. These limitations will be 2186 // relaxed in the future. 2187 // Please, note that we are currently forced to abuse the pragma 'clang 2188 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2189 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2190 // provides *explicit vectorization hints* (LV can bypass legal checks and 2191 // assume that vectorization is legal). However, both hints are implemented 2192 // using the same metadata (llvm.loop.vectorize, processed by 2193 // LoopVectorizeHints). This will be fixed in the future when the native IR 2194 // representation for pragma 'omp simd' is introduced. 2195 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2196 OptimizationRemarkEmitter *ORE) { 2197 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2198 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2199 2200 // Only outer loops with an explicit vectorization hint are supported. 2201 // Unannotated outer loops are ignored. 2202 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2203 return false; 2204 2205 Function *Fn = OuterLp->getHeader()->getParent(); 2206 if (!Hints.allowVectorization(Fn, OuterLp, 2207 true /*VectorizeOnlyWhenForced*/)) { 2208 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2209 return false; 2210 } 2211 2212 if (Hints.getInterleave() > 1) { 2213 // TODO: Interleave support is future work. 2214 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2215 "outer loops.\n"); 2216 Hints.emitRemarkWithHints(); 2217 return false; 2218 } 2219 2220 return true; 2221 } 2222 2223 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2224 OptimizationRemarkEmitter *ORE, 2225 SmallVectorImpl<Loop *> &V) { 2226 // Collect inner loops and outer loops without irreducible control flow. For 2227 // now, only collect outer loops that have explicit vectorization hints. If we 2228 // are stress testing the VPlan H-CFG construction, we collect the outermost 2229 // loop of every loop nest. 2230 if (L.isInnermost() || VPlanBuildStressTest || 2231 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2232 LoopBlocksRPO RPOT(&L); 2233 RPOT.perform(LI); 2234 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2235 V.push_back(&L); 2236 // TODO: Collect inner loops inside marked outer loops in case 2237 // vectorization fails for the outer loop. Do not invoke 2238 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2239 // already known to be reducible. We can use an inherited attribute for 2240 // that. 2241 return; 2242 } 2243 } 2244 for (Loop *InnerL : L) 2245 collectSupportedLoops(*InnerL, LI, ORE, V); 2246 } 2247 2248 namespace { 2249 2250 /// The LoopVectorize Pass. 2251 struct LoopVectorize : public FunctionPass { 2252 /// Pass identification, replacement for typeid 2253 static char ID; 2254 2255 LoopVectorizePass Impl; 2256 2257 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2258 bool VectorizeOnlyWhenForced = false) 2259 : FunctionPass(ID), 2260 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2261 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2262 } 2263 2264 bool runOnFunction(Function &F) override { 2265 if (skipFunction(F)) 2266 return false; 2267 2268 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2269 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2270 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2271 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2272 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2273 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2274 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2275 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2276 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2277 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2278 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2279 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2280 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2281 2282 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2283 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2284 2285 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2286 GetLAA, *ORE, PSI).MadeAnyChange; 2287 } 2288 2289 void getAnalysisUsage(AnalysisUsage &AU) const override { 2290 AU.addRequired<AssumptionCacheTracker>(); 2291 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2292 AU.addRequired<DominatorTreeWrapperPass>(); 2293 AU.addRequired<LoopInfoWrapperPass>(); 2294 AU.addRequired<ScalarEvolutionWrapperPass>(); 2295 AU.addRequired<TargetTransformInfoWrapperPass>(); 2296 AU.addRequired<AAResultsWrapperPass>(); 2297 AU.addRequired<LoopAccessLegacyAnalysis>(); 2298 AU.addRequired<DemandedBitsWrapperPass>(); 2299 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2300 AU.addRequired<InjectTLIMappingsLegacy>(); 2301 2302 // We currently do not preserve loopinfo/dominator analyses with outer loop 2303 // vectorization. Until this is addressed, mark these analyses as preserved 2304 // only for non-VPlan-native path. 2305 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2306 if (!EnableVPlanNativePath) { 2307 AU.addPreserved<LoopInfoWrapperPass>(); 2308 AU.addPreserved<DominatorTreeWrapperPass>(); 2309 } 2310 2311 AU.addPreserved<BasicAAWrapperPass>(); 2312 AU.addPreserved<GlobalsAAWrapperPass>(); 2313 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2314 } 2315 }; 2316 2317 } // end anonymous namespace 2318 2319 //===----------------------------------------------------------------------===// 2320 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2321 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2322 //===----------------------------------------------------------------------===// 2323 2324 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2325 // We need to place the broadcast of invariant variables outside the loop, 2326 // but only if it's proven safe to do so. Else, broadcast will be inside 2327 // vector loop body. 2328 Instruction *Instr = dyn_cast<Instruction>(V); 2329 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2330 (!Instr || 2331 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2332 // Place the code for broadcasting invariant variables in the new preheader. 2333 IRBuilder<>::InsertPointGuard Guard(Builder); 2334 if (SafeToHoist) 2335 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2336 2337 // Broadcast the scalar into all locations in the vector. 2338 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2339 2340 return Shuf; 2341 } 2342 2343 /// This function adds 2344 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2345 /// to each vector element of Val. The sequence starts at StartIndex. 2346 /// \p Opcode is relevant for FP induction variable. 2347 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2348 Instruction::BinaryOps BinOp, ElementCount VF, 2349 IRBuilder<> &Builder) { 2350 assert(VF.isVector() && "only vector VFs are supported"); 2351 2352 // Create and check the types. 2353 auto *ValVTy = cast<VectorType>(Val->getType()); 2354 ElementCount VLen = ValVTy->getElementCount(); 2355 2356 Type *STy = Val->getType()->getScalarType(); 2357 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2358 "Induction Step must be an integer or FP"); 2359 assert(Step->getType() == STy && "Step has wrong type"); 2360 2361 SmallVector<Constant *, 8> Indices; 2362 2363 // Create a vector of consecutive numbers from zero to VF. 2364 VectorType *InitVecValVTy = ValVTy; 2365 Type *InitVecValSTy = STy; 2366 if (STy->isFloatingPointTy()) { 2367 InitVecValSTy = 2368 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2369 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2370 } 2371 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2372 2373 // Splat the StartIdx 2374 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2375 2376 if (STy->isIntegerTy()) { 2377 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2378 Step = Builder.CreateVectorSplat(VLen, Step); 2379 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2380 // FIXME: The newly created binary instructions should contain nsw/nuw 2381 // flags, which can be found from the original scalar operations. 2382 Step = Builder.CreateMul(InitVec, Step); 2383 return Builder.CreateAdd(Val, Step, "induction"); 2384 } 2385 2386 // Floating point induction. 2387 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2388 "Binary Opcode should be specified for FP induction"); 2389 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2390 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2391 2392 Step = Builder.CreateVectorSplat(VLen, Step); 2393 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2394 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2395 } 2396 2397 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2398 const InductionDescriptor &II, Value *Step, Value *Start, 2399 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2400 IRBuilder<> &Builder = State.Builder; 2401 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2402 "Expected either an induction phi-node or a truncate of it!"); 2403 2404 // Construct the initial value of the vector IV in the vector loop preheader 2405 auto CurrIP = Builder.saveIP(); 2406 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2407 if (isa<TruncInst>(EntryVal)) { 2408 assert(Start->getType()->isIntegerTy() && 2409 "Truncation requires an integer type"); 2410 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2411 Step = Builder.CreateTrunc(Step, TruncType); 2412 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2413 } 2414 2415 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2416 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2417 Value *SteppedStart = getStepVector( 2418 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2419 2420 // We create vector phi nodes for both integer and floating-point induction 2421 // variables. Here, we determine the kind of arithmetic we will perform. 2422 Instruction::BinaryOps AddOp; 2423 Instruction::BinaryOps MulOp; 2424 if (Step->getType()->isIntegerTy()) { 2425 AddOp = Instruction::Add; 2426 MulOp = Instruction::Mul; 2427 } else { 2428 AddOp = II.getInductionOpcode(); 2429 MulOp = Instruction::FMul; 2430 } 2431 2432 // Multiply the vectorization factor by the step using integer or 2433 // floating-point arithmetic as appropriate. 2434 Type *StepType = Step->getType(); 2435 Value *RuntimeVF; 2436 if (Step->getType()->isFloatingPointTy()) 2437 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2438 else 2439 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2440 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2441 2442 // Create a vector splat to use in the induction update. 2443 // 2444 // FIXME: If the step is non-constant, we create the vector splat with 2445 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2446 // handle a constant vector splat. 2447 Value *SplatVF = isa<Constant>(Mul) 2448 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2449 : Builder.CreateVectorSplat(State.VF, Mul); 2450 Builder.restoreIP(CurrIP); 2451 2452 // We may need to add the step a number of times, depending on the unroll 2453 // factor. The last of those goes into the PHI. 2454 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2455 &*LoopVectorBody->getFirstInsertionPt()); 2456 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2457 Instruction *LastInduction = VecInd; 2458 for (unsigned Part = 0; Part < UF; ++Part) { 2459 State.set(Def, LastInduction, Part); 2460 2461 if (isa<TruncInst>(EntryVal)) 2462 addMetadata(LastInduction, EntryVal); 2463 2464 LastInduction = cast<Instruction>( 2465 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2466 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2467 } 2468 2469 // Move the last step to the end of the latch block. This ensures consistent 2470 // placement of all induction updates. 2471 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2472 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2473 LastInduction->moveBefore(Br); 2474 LastInduction->setName("vec.ind.next"); 2475 2476 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2477 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2478 } 2479 2480 void InnerLoopVectorizer::widenIntOrFpInduction( 2481 PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State, 2482 Value *CanonicalIV) { 2483 Value *Start = Def->getStartValue()->getLiveInIRValue(); 2484 const InductionDescriptor &ID = Def->getInductionDescriptor(); 2485 TruncInst *Trunc = Def->getTruncInst(); 2486 IRBuilder<> &Builder = State.Builder; 2487 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2488 assert(!State.VF.isZero() && "VF must be non-zero"); 2489 2490 // The value from the original loop to which we are mapping the new induction 2491 // variable. 2492 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2493 2494 auto &DL = EntryVal->getModule()->getDataLayout(); 2495 2496 // Generate code for the induction step. Note that induction steps are 2497 // required to be loop-invariant 2498 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2499 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2500 "Induction step should be loop invariant"); 2501 if (PSE.getSE()->isSCEVable(IV->getType())) { 2502 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2503 return Exp.expandCodeFor(Step, Step->getType(), 2504 State.CFG.VectorPreHeader->getTerminator()); 2505 } 2506 return cast<SCEVUnknown>(Step)->getValue(); 2507 }; 2508 2509 // The scalar value to broadcast. This is derived from the canonical 2510 // induction variable. If a truncation type is given, truncate the canonical 2511 // induction variable and step. Otherwise, derive these values from the 2512 // induction descriptor. 2513 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2514 Value *ScalarIV = CanonicalIV; 2515 Type *NeededType = IV->getType(); 2516 if (!Def->isCanonical() || ScalarIV->getType() != NeededType) { 2517 ScalarIV = 2518 NeededType->isIntegerTy() 2519 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2520 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2521 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2522 State.CFG.PrevBB); 2523 ScalarIV->setName("offset.idx"); 2524 } 2525 if (Trunc) { 2526 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2527 assert(Step->getType()->isIntegerTy() && 2528 "Truncation requires an integer step"); 2529 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2530 Step = Builder.CreateTrunc(Step, TruncType); 2531 } 2532 return ScalarIV; 2533 }; 2534 2535 // Fast-math-flags propagate from the original induction instruction. 2536 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2537 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2538 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2539 2540 // Now do the actual transformations, and start with creating the step value. 2541 Value *Step = CreateStepValue(ID.getStep()); 2542 if (State.VF.isScalar()) { 2543 Value *ScalarIV = CreateScalarIV(Step); 2544 Type *ScalarTy = IntegerType::get(ScalarIV->getContext(), 2545 Step->getType()->getScalarSizeInBits()); 2546 2547 Instruction::BinaryOps IncOp = ID.getInductionOpcode(); 2548 if (IncOp == Instruction::BinaryOpsEnd) 2549 IncOp = Instruction::Add; 2550 for (unsigned Part = 0; Part < UF; ++Part) { 2551 Value *StartIdx = ConstantInt::get(ScalarTy, Part); 2552 Instruction::BinaryOps MulOp = Instruction::Mul; 2553 if (Step->getType()->isFloatingPointTy()) { 2554 StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType()); 2555 MulOp = Instruction::FMul; 2556 } 2557 2558 Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2559 Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction"); 2560 State.set(Def, EntryPart, Part); 2561 if (Trunc) { 2562 assert(!Step->getType()->isFloatingPointTy() && 2563 "fp inductions shouldn't be truncated"); 2564 addMetadata(EntryPart, Trunc); 2565 } 2566 } 2567 return; 2568 } 2569 2570 // Create a new independent vector induction variable, if one is needed. 2571 if (Def->needsVectorIV()) 2572 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2573 2574 if (Def->needsScalarIV()) { 2575 // Create scalar steps that can be used by instructions we will later 2576 // scalarize. Note that the addition of the scalar steps will not increase 2577 // the number of instructions in the loop in the common case prior to 2578 // InstCombine. We will be trading one vector extract for each scalar step. 2579 Value *ScalarIV = CreateScalarIV(Step); 2580 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2581 } 2582 } 2583 2584 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2585 Instruction *EntryVal, 2586 const InductionDescriptor &ID, 2587 VPValue *Def, 2588 VPTransformState &State) { 2589 IRBuilder<> &Builder = State.Builder; 2590 // We shouldn't have to build scalar steps if we aren't vectorizing. 2591 assert(State.VF.isVector() && "VF should be greater than one"); 2592 // Get the value type and ensure it and the step have the same integer type. 2593 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2594 assert(ScalarIVTy == Step->getType() && 2595 "Val and Step should have the same type"); 2596 2597 // We build scalar steps for both integer and floating-point induction 2598 // variables. Here, we determine the kind of arithmetic we will perform. 2599 Instruction::BinaryOps AddOp; 2600 Instruction::BinaryOps MulOp; 2601 if (ScalarIVTy->isIntegerTy()) { 2602 AddOp = Instruction::Add; 2603 MulOp = Instruction::Mul; 2604 } else { 2605 AddOp = ID.getInductionOpcode(); 2606 MulOp = Instruction::FMul; 2607 } 2608 2609 // Determine the number of scalars we need to generate for each unroll 2610 // iteration. 2611 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2612 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2613 // Compute the scalar steps and save the results in State. 2614 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2615 ScalarIVTy->getScalarSizeInBits()); 2616 Type *VecIVTy = nullptr; 2617 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2618 if (!FirstLaneOnly && State.VF.isScalable()) { 2619 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2620 UnitStepVec = 2621 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2622 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2623 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2624 } 2625 2626 for (unsigned Part = 0; Part < State.UF; ++Part) { 2627 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2628 2629 if (!FirstLaneOnly && State.VF.isScalable()) { 2630 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2631 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2632 if (ScalarIVTy->isFloatingPointTy()) 2633 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2634 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2635 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2636 State.set(Def, Add, Part); 2637 // It's useful to record the lane values too for the known minimum number 2638 // of elements so we do those below. This improves the code quality when 2639 // trying to extract the first element, for example. 2640 } 2641 2642 if (ScalarIVTy->isFloatingPointTy()) 2643 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2644 2645 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2646 Value *StartIdx = Builder.CreateBinOp( 2647 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2648 // The step returned by `createStepForVF` is a runtime-evaluated value 2649 // when VF is scalable. Otherwise, it should be folded into a Constant. 2650 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2651 "Expected StartIdx to be folded to a constant when VF is not " 2652 "scalable"); 2653 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2654 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2655 State.set(Def, Add, VPIteration(Part, Lane)); 2656 } 2657 } 2658 } 2659 2660 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2661 const VPIteration &Instance, 2662 VPTransformState &State) { 2663 Value *ScalarInst = State.get(Def, Instance); 2664 Value *VectorValue = State.get(Def, Instance.Part); 2665 VectorValue = Builder.CreateInsertElement( 2666 VectorValue, ScalarInst, 2667 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2668 State.set(Def, VectorValue, Instance.Part); 2669 } 2670 2671 // Return whether we allow using masked interleave-groups (for dealing with 2672 // strided loads/stores that reside in predicated blocks, or for dealing 2673 // with gaps). 2674 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2675 // If an override option has been passed in for interleaved accesses, use it. 2676 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2677 return EnableMaskedInterleavedMemAccesses; 2678 2679 return TTI.enableMaskedInterleavedAccessVectorization(); 2680 } 2681 2682 // Try to vectorize the interleave group that \p Instr belongs to. 2683 // 2684 // E.g. Translate following interleaved load group (factor = 3): 2685 // for (i = 0; i < N; i+=3) { 2686 // R = Pic[i]; // Member of index 0 2687 // G = Pic[i+1]; // Member of index 1 2688 // B = Pic[i+2]; // Member of index 2 2689 // ... // do something to R, G, B 2690 // } 2691 // To: 2692 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2693 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2694 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2695 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2696 // 2697 // Or translate following interleaved store group (factor = 3): 2698 // for (i = 0; i < N; i+=3) { 2699 // ... do something to R, G, B 2700 // Pic[i] = R; // Member of index 0 2701 // Pic[i+1] = G; // Member of index 1 2702 // Pic[i+2] = B; // Member of index 2 2703 // } 2704 // To: 2705 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2706 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2707 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2708 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2709 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2710 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2711 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2712 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2713 VPValue *BlockInMask) { 2714 Instruction *Instr = Group->getInsertPos(); 2715 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2716 2717 // Prepare for the vector type of the interleaved load/store. 2718 Type *ScalarTy = getLoadStoreType(Instr); 2719 unsigned InterleaveFactor = Group->getFactor(); 2720 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2721 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2722 2723 // Prepare for the new pointers. 2724 SmallVector<Value *, 2> AddrParts; 2725 unsigned Index = Group->getIndex(Instr); 2726 2727 // TODO: extend the masked interleaved-group support to reversed access. 2728 assert((!BlockInMask || !Group->isReverse()) && 2729 "Reversed masked interleave-group not supported."); 2730 2731 // If the group is reverse, adjust the index to refer to the last vector lane 2732 // instead of the first. We adjust the index from the first vector lane, 2733 // rather than directly getting the pointer for lane VF - 1, because the 2734 // pointer operand of the interleaved access is supposed to be uniform. For 2735 // uniform instructions, we're only required to generate a value for the 2736 // first vector lane in each unroll iteration. 2737 if (Group->isReverse()) 2738 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2739 2740 for (unsigned Part = 0; Part < UF; Part++) { 2741 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2742 setDebugLocFromInst(AddrPart); 2743 2744 // Notice current instruction could be any index. Need to adjust the address 2745 // to the member of index 0. 2746 // 2747 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2748 // b = A[i]; // Member of index 0 2749 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2750 // 2751 // E.g. A[i+1] = a; // Member of index 1 2752 // A[i] = b; // Member of index 0 2753 // A[i+2] = c; // Member of index 2 (Current instruction) 2754 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2755 2756 bool InBounds = false; 2757 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2758 InBounds = gep->isInBounds(); 2759 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2760 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2761 2762 // Cast to the vector pointer type. 2763 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2764 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2765 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2766 } 2767 2768 setDebugLocFromInst(Instr); 2769 Value *PoisonVec = PoisonValue::get(VecTy); 2770 2771 Value *MaskForGaps = nullptr; 2772 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2773 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2774 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2775 } 2776 2777 // Vectorize the interleaved load group. 2778 if (isa<LoadInst>(Instr)) { 2779 // For each unroll part, create a wide load for the group. 2780 SmallVector<Value *, 2> NewLoads; 2781 for (unsigned Part = 0; Part < UF; Part++) { 2782 Instruction *NewLoad; 2783 if (BlockInMask || MaskForGaps) { 2784 assert(useMaskedInterleavedAccesses(*TTI) && 2785 "masked interleaved groups are not allowed."); 2786 Value *GroupMask = MaskForGaps; 2787 if (BlockInMask) { 2788 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2789 Value *ShuffledMask = Builder.CreateShuffleVector( 2790 BlockInMaskPart, 2791 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2792 "interleaved.mask"); 2793 GroupMask = MaskForGaps 2794 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2795 MaskForGaps) 2796 : ShuffledMask; 2797 } 2798 NewLoad = 2799 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2800 GroupMask, PoisonVec, "wide.masked.vec"); 2801 } 2802 else 2803 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2804 Group->getAlign(), "wide.vec"); 2805 Group->addMetadata(NewLoad); 2806 NewLoads.push_back(NewLoad); 2807 } 2808 2809 // For each member in the group, shuffle out the appropriate data from the 2810 // wide loads. 2811 unsigned J = 0; 2812 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2813 Instruction *Member = Group->getMember(I); 2814 2815 // Skip the gaps in the group. 2816 if (!Member) 2817 continue; 2818 2819 auto StrideMask = 2820 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2821 for (unsigned Part = 0; Part < UF; Part++) { 2822 Value *StridedVec = Builder.CreateShuffleVector( 2823 NewLoads[Part], StrideMask, "strided.vec"); 2824 2825 // If this member has different type, cast the result type. 2826 if (Member->getType() != ScalarTy) { 2827 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2828 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2829 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2830 } 2831 2832 if (Group->isReverse()) 2833 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2834 2835 State.set(VPDefs[J], StridedVec, Part); 2836 } 2837 ++J; 2838 } 2839 return; 2840 } 2841 2842 // The sub vector type for current instruction. 2843 auto *SubVT = VectorType::get(ScalarTy, VF); 2844 2845 // Vectorize the interleaved store group. 2846 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2847 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2848 "masked interleaved groups are not allowed."); 2849 assert((!MaskForGaps || !VF.isScalable()) && 2850 "masking gaps for scalable vectors is not yet supported."); 2851 for (unsigned Part = 0; Part < UF; Part++) { 2852 // Collect the stored vector from each member. 2853 SmallVector<Value *, 4> StoredVecs; 2854 for (unsigned i = 0; i < InterleaveFactor; i++) { 2855 assert((Group->getMember(i) || MaskForGaps) && 2856 "Fail to get a member from an interleaved store group"); 2857 Instruction *Member = Group->getMember(i); 2858 2859 // Skip the gaps in the group. 2860 if (!Member) { 2861 Value *Undef = PoisonValue::get(SubVT); 2862 StoredVecs.push_back(Undef); 2863 continue; 2864 } 2865 2866 Value *StoredVec = State.get(StoredValues[i], Part); 2867 2868 if (Group->isReverse()) 2869 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2870 2871 // If this member has different type, cast it to a unified type. 2872 2873 if (StoredVec->getType() != SubVT) 2874 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2875 2876 StoredVecs.push_back(StoredVec); 2877 } 2878 2879 // Concatenate all vectors into a wide vector. 2880 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2881 2882 // Interleave the elements in the wide vector. 2883 Value *IVec = Builder.CreateShuffleVector( 2884 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2885 "interleaved.vec"); 2886 2887 Instruction *NewStoreInstr; 2888 if (BlockInMask || MaskForGaps) { 2889 Value *GroupMask = MaskForGaps; 2890 if (BlockInMask) { 2891 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2892 Value *ShuffledMask = Builder.CreateShuffleVector( 2893 BlockInMaskPart, 2894 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2895 "interleaved.mask"); 2896 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2897 ShuffledMask, MaskForGaps) 2898 : ShuffledMask; 2899 } 2900 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2901 Group->getAlign(), GroupMask); 2902 } else 2903 NewStoreInstr = 2904 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2905 2906 Group->addMetadata(NewStoreInstr); 2907 } 2908 } 2909 2910 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2911 VPReplicateRecipe *RepRecipe, 2912 const VPIteration &Instance, 2913 bool IfPredicateInstr, 2914 VPTransformState &State) { 2915 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2916 2917 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2918 // the first lane and part. 2919 if (isa<NoAliasScopeDeclInst>(Instr)) 2920 if (!Instance.isFirstIteration()) 2921 return; 2922 2923 setDebugLocFromInst(Instr); 2924 2925 // Does this instruction return a value ? 2926 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2927 2928 Instruction *Cloned = Instr->clone(); 2929 if (!IsVoidRetTy) 2930 Cloned->setName(Instr->getName() + ".cloned"); 2931 2932 // If the scalarized instruction contributes to the address computation of a 2933 // widen masked load/store which was in a basic block that needed predication 2934 // and is not predicated after vectorization, we can't propagate 2935 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2936 // instruction could feed a poison value to the base address of the widen 2937 // load/store. 2938 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2939 Cloned->dropPoisonGeneratingFlags(); 2940 2941 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2942 Builder.GetInsertPoint()); 2943 // Replace the operands of the cloned instructions with their scalar 2944 // equivalents in the new loop. 2945 for (auto &I : enumerate(RepRecipe->operands())) { 2946 auto InputInstance = Instance; 2947 VPValue *Operand = I.value(); 2948 if (State.Plan->isUniformAfterVectorization(Operand)) 2949 InputInstance.Lane = VPLane::getFirstLane(); 2950 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2951 } 2952 addNewMetadata(Cloned, Instr); 2953 2954 // Place the cloned scalar in the new loop. 2955 Builder.Insert(Cloned); 2956 2957 State.set(RepRecipe, Cloned, Instance); 2958 2959 // If we just cloned a new assumption, add it the assumption cache. 2960 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2961 AC->registerAssumption(II); 2962 2963 // End if-block. 2964 if (IfPredicateInstr) 2965 PredicatedInstructions.push_back(Cloned); 2966 } 2967 2968 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2969 BasicBlock *Header = L->getHeader(); 2970 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2971 2972 IRBuilder<> B(Header->getTerminator()); 2973 Instruction *OldInst = 2974 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2975 setDebugLocFromInst(OldInst, &B); 2976 2977 // Connect the header to the exit and header blocks and replace the old 2978 // terminator. 2979 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2980 2981 // Now we have two terminators. Remove the old one from the block. 2982 Header->getTerminator()->eraseFromParent(); 2983 } 2984 2985 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2986 if (TripCount) 2987 return TripCount; 2988 2989 assert(L && "Create Trip Count for null loop."); 2990 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2991 // Find the loop boundaries. 2992 ScalarEvolution *SE = PSE.getSE(); 2993 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2994 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2995 "Invalid loop count"); 2996 2997 Type *IdxTy = Legal->getWidestInductionType(); 2998 assert(IdxTy && "No type for induction"); 2999 3000 // The exit count might have the type of i64 while the phi is i32. This can 3001 // happen if we have an induction variable that is sign extended before the 3002 // compare. The only way that we get a backedge taken count is that the 3003 // induction variable was signed and as such will not overflow. In such a case 3004 // truncation is legal. 3005 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3006 IdxTy->getPrimitiveSizeInBits()) 3007 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3008 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3009 3010 // Get the total trip count from the count by adding 1. 3011 const SCEV *ExitCount = SE->getAddExpr( 3012 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3013 3014 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3015 3016 // Expand the trip count and place the new instructions in the preheader. 3017 // Notice that the pre-header does not change, only the loop body. 3018 SCEVExpander Exp(*SE, DL, "induction"); 3019 3020 // Count holds the overall loop count (N). 3021 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3022 L->getLoopPreheader()->getTerminator()); 3023 3024 if (TripCount->getType()->isPointerTy()) 3025 TripCount = 3026 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3027 L->getLoopPreheader()->getTerminator()); 3028 3029 return TripCount; 3030 } 3031 3032 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3033 if (VectorTripCount) 3034 return VectorTripCount; 3035 3036 Value *TC = getOrCreateTripCount(L); 3037 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3038 3039 Type *Ty = TC->getType(); 3040 // This is where we can make the step a runtime constant. 3041 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3042 3043 // If the tail is to be folded by masking, round the number of iterations N 3044 // up to a multiple of Step instead of rounding down. This is done by first 3045 // adding Step-1 and then rounding down. Note that it's ok if this addition 3046 // overflows: the vector induction variable will eventually wrap to zero given 3047 // that it starts at zero and its Step is a power of two; the loop will then 3048 // exit, with the last early-exit vector comparison also producing all-true. 3049 if (Cost->foldTailByMasking()) { 3050 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3051 "VF*UF must be a power of 2 when folding tail by masking"); 3052 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3053 TC = Builder.CreateAdd( 3054 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3055 } 3056 3057 // Now we need to generate the expression for the part of the loop that the 3058 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3059 // iterations are not required for correctness, or N - Step, otherwise. Step 3060 // is equal to the vectorization factor (number of SIMD elements) times the 3061 // unroll factor (number of SIMD instructions). 3062 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3063 3064 // There are cases where we *must* run at least one iteration in the remainder 3065 // loop. See the cost model for when this can happen. If the step evenly 3066 // divides the trip count, we set the remainder to be equal to the step. If 3067 // the step does not evenly divide the trip count, no adjustment is necessary 3068 // since there will already be scalar iterations. Note that the minimum 3069 // iterations check ensures that N >= Step. 3070 if (Cost->requiresScalarEpilogue(VF)) { 3071 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3072 R = Builder.CreateSelect(IsZero, Step, R); 3073 } 3074 3075 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3076 3077 return VectorTripCount; 3078 } 3079 3080 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3081 const DataLayout &DL) { 3082 // Verify that V is a vector type with same number of elements as DstVTy. 3083 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3084 unsigned VF = DstFVTy->getNumElements(); 3085 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3086 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3087 Type *SrcElemTy = SrcVecTy->getElementType(); 3088 Type *DstElemTy = DstFVTy->getElementType(); 3089 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3090 "Vector elements must have same size"); 3091 3092 // Do a direct cast if element types are castable. 3093 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3094 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3095 } 3096 // V cannot be directly casted to desired vector type. 3097 // May happen when V is a floating point vector but DstVTy is a vector of 3098 // pointers or vice-versa. Handle this using a two-step bitcast using an 3099 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3100 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3101 "Only one type should be a pointer type"); 3102 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3103 "Only one type should be a floating point type"); 3104 Type *IntTy = 3105 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3106 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3107 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3108 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3109 } 3110 3111 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3112 BasicBlock *Bypass) { 3113 Value *Count = getOrCreateTripCount(L); 3114 // Reuse existing vector loop preheader for TC checks. 3115 // Note that new preheader block is generated for vector loop. 3116 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3117 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3118 3119 // Generate code to check if the loop's trip count is less than VF * UF, or 3120 // equal to it in case a scalar epilogue is required; this implies that the 3121 // vector trip count is zero. This check also covers the case where adding one 3122 // to the backedge-taken count overflowed leading to an incorrect trip count 3123 // of zero. In this case we will also jump to the scalar loop. 3124 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3125 : ICmpInst::ICMP_ULT; 3126 3127 // If tail is to be folded, vector loop takes care of all iterations. 3128 Value *CheckMinIters = Builder.getFalse(); 3129 if (!Cost->foldTailByMasking()) { 3130 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3131 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3132 } 3133 // Create new preheader for vector loop. 3134 LoopVectorPreHeader = 3135 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3136 "vector.ph"); 3137 3138 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3139 DT->getNode(Bypass)->getIDom()) && 3140 "TC check is expected to dominate Bypass"); 3141 3142 // Update dominator for Bypass & LoopExit (if needed). 3143 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3144 if (!Cost->requiresScalarEpilogue(VF)) 3145 // If there is an epilogue which must run, there's no edge from the 3146 // middle block to exit blocks and thus no need to update the immediate 3147 // dominator of the exit blocks. 3148 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3149 3150 ReplaceInstWithInst( 3151 TCCheckBlock->getTerminator(), 3152 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3153 LoopBypassBlocks.push_back(TCCheckBlock); 3154 } 3155 3156 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3157 3158 BasicBlock *const SCEVCheckBlock = 3159 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3160 if (!SCEVCheckBlock) 3161 return nullptr; 3162 3163 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3164 (OptForSizeBasedOnProfile && 3165 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3166 "Cannot SCEV check stride or overflow when optimizing for size"); 3167 3168 3169 // Update dominator only if this is first RT check. 3170 if (LoopBypassBlocks.empty()) { 3171 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3172 if (!Cost->requiresScalarEpilogue(VF)) 3173 // If there is an epilogue which must run, there's no edge from the 3174 // middle block to exit blocks and thus no need to update the immediate 3175 // dominator of the exit blocks. 3176 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3177 } 3178 3179 LoopBypassBlocks.push_back(SCEVCheckBlock); 3180 AddedSafetyChecks = true; 3181 return SCEVCheckBlock; 3182 } 3183 3184 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3185 BasicBlock *Bypass) { 3186 // VPlan-native path does not do any analysis for runtime checks currently. 3187 if (EnableVPlanNativePath) 3188 return nullptr; 3189 3190 BasicBlock *const MemCheckBlock = 3191 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3192 3193 // Check if we generated code that checks in runtime if arrays overlap. We put 3194 // the checks into a separate block to make the more common case of few 3195 // elements faster. 3196 if (!MemCheckBlock) 3197 return nullptr; 3198 3199 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3200 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3201 "Cannot emit memory checks when optimizing for size, unless forced " 3202 "to vectorize."); 3203 ORE->emit([&]() { 3204 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3205 L->getStartLoc(), L->getHeader()) 3206 << "Code-size may be reduced by not forcing " 3207 "vectorization, or by source-code modifications " 3208 "eliminating the need for runtime checks " 3209 "(e.g., adding 'restrict')."; 3210 }); 3211 } 3212 3213 LoopBypassBlocks.push_back(MemCheckBlock); 3214 3215 AddedSafetyChecks = true; 3216 3217 // We currently don't use LoopVersioning for the actual loop cloning but we 3218 // still use it to add the noalias metadata. 3219 LVer = std::make_unique<LoopVersioning>( 3220 *Legal->getLAI(), 3221 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3222 DT, PSE.getSE()); 3223 LVer->prepareNoAliasMetadata(); 3224 return MemCheckBlock; 3225 } 3226 3227 Value *InnerLoopVectorizer::emitTransformedIndex( 3228 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3229 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3230 3231 SCEVExpander Exp(*SE, DL, "induction"); 3232 auto Step = ID.getStep(); 3233 auto StartValue = ID.getStartValue(); 3234 assert(Index->getType()->getScalarType() == Step->getType() && 3235 "Index scalar type does not match StepValue type"); 3236 3237 // Note: the IR at this point is broken. We cannot use SE to create any new 3238 // SCEV and then expand it, hoping that SCEV's simplification will give us 3239 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3240 // lead to various SCEV crashes. So all we can do is to use builder and rely 3241 // on InstCombine for future simplifications. Here we handle some trivial 3242 // cases only. 3243 auto CreateAdd = [&B](Value *X, Value *Y) { 3244 assert(X->getType() == Y->getType() && "Types don't match!"); 3245 if (auto *CX = dyn_cast<ConstantInt>(X)) 3246 if (CX->isZero()) 3247 return Y; 3248 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3249 if (CY->isZero()) 3250 return X; 3251 return B.CreateAdd(X, Y); 3252 }; 3253 3254 // We allow X to be a vector type, in which case Y will potentially be 3255 // splatted into a vector with the same element count. 3256 auto CreateMul = [&B](Value *X, Value *Y) { 3257 assert(X->getType()->getScalarType() == Y->getType() && 3258 "Types don't match!"); 3259 if (auto *CX = dyn_cast<ConstantInt>(X)) 3260 if (CX->isOne()) 3261 return Y; 3262 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3263 if (CY->isOne()) 3264 return X; 3265 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3266 if (XVTy && !isa<VectorType>(Y->getType())) 3267 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3268 return B.CreateMul(X, Y); 3269 }; 3270 3271 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3272 // loop, choose the end of the vector loop header (=VectorHeader), because 3273 // the DomTree is not kept up-to-date for additional blocks generated in the 3274 // vector loop. By using the header as insertion point, we guarantee that the 3275 // expanded instructions dominate all their uses. 3276 auto GetInsertPoint = [this, &B, VectorHeader]() { 3277 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3278 if (InsertBB != LoopVectorBody && 3279 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3280 return VectorHeader->getTerminator(); 3281 return &*B.GetInsertPoint(); 3282 }; 3283 3284 switch (ID.getKind()) { 3285 case InductionDescriptor::IK_IntInduction: { 3286 assert(!isa<VectorType>(Index->getType()) && 3287 "Vector indices not supported for integer inductions yet"); 3288 assert(Index->getType() == StartValue->getType() && 3289 "Index type does not match StartValue type"); 3290 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3291 return B.CreateSub(StartValue, Index); 3292 auto *Offset = CreateMul( 3293 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3294 return CreateAdd(StartValue, Offset); 3295 } 3296 case InductionDescriptor::IK_PtrInduction: { 3297 assert(isa<SCEVConstant>(Step) && 3298 "Expected constant step for pointer induction"); 3299 return B.CreateGEP( 3300 ID.getElementType(), StartValue, 3301 CreateMul(Index, 3302 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3303 GetInsertPoint()))); 3304 } 3305 case InductionDescriptor::IK_FpInduction: { 3306 assert(!isa<VectorType>(Index->getType()) && 3307 "Vector indices not supported for FP inductions yet"); 3308 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3309 auto InductionBinOp = ID.getInductionBinOp(); 3310 assert(InductionBinOp && 3311 (InductionBinOp->getOpcode() == Instruction::FAdd || 3312 InductionBinOp->getOpcode() == Instruction::FSub) && 3313 "Original bin op should be defined for FP induction"); 3314 3315 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3316 Value *MulExp = B.CreateFMul(StepValue, Index); 3317 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3318 "induction"); 3319 } 3320 case InductionDescriptor::IK_NoInduction: 3321 return nullptr; 3322 } 3323 llvm_unreachable("invalid enum"); 3324 } 3325 3326 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3327 LoopScalarBody = OrigLoop->getHeader(); 3328 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3329 assert(LoopVectorPreHeader && "Invalid loop structure"); 3330 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3331 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3332 "multiple exit loop without required epilogue?"); 3333 3334 LoopMiddleBlock = 3335 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3336 LI, nullptr, Twine(Prefix) + "middle.block"); 3337 LoopScalarPreHeader = 3338 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3339 nullptr, Twine(Prefix) + "scalar.ph"); 3340 3341 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3342 3343 // Set up the middle block terminator. Two cases: 3344 // 1) If we know that we must execute the scalar epilogue, emit an 3345 // unconditional branch. 3346 // 2) Otherwise, we must have a single unique exit block (due to how we 3347 // implement the multiple exit case). In this case, set up a conditonal 3348 // branch from the middle block to the loop scalar preheader, and the 3349 // exit block. completeLoopSkeleton will update the condition to use an 3350 // iteration check, if required to decide whether to execute the remainder. 3351 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3352 BranchInst::Create(LoopScalarPreHeader) : 3353 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3354 Builder.getTrue()); 3355 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3356 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3357 3358 // We intentionally don't let SplitBlock to update LoopInfo since 3359 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3360 // LoopVectorBody is explicitly added to the correct place few lines later. 3361 LoopVectorBody = 3362 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3363 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3364 3365 // Update dominator for loop exit. 3366 if (!Cost->requiresScalarEpilogue(VF)) 3367 // If there is an epilogue which must run, there's no edge from the 3368 // middle block to exit blocks and thus no need to update the immediate 3369 // dominator of the exit blocks. 3370 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3371 3372 // Create and register the new vector loop. 3373 Loop *Lp = LI->AllocateLoop(); 3374 Loop *ParentLoop = OrigLoop->getParentLoop(); 3375 3376 // Insert the new loop into the loop nest and register the new basic blocks 3377 // before calling any utilities such as SCEV that require valid LoopInfo. 3378 if (ParentLoop) { 3379 ParentLoop->addChildLoop(Lp); 3380 } else { 3381 LI->addTopLevelLoop(Lp); 3382 } 3383 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3384 return Lp; 3385 } 3386 3387 void InnerLoopVectorizer::createInductionResumeValues( 3388 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3389 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3390 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3391 "Inconsistent information about additional bypass."); 3392 3393 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3394 assert(VectorTripCount && L && "Expected valid arguments"); 3395 // We are going to resume the execution of the scalar loop. 3396 // Go over all of the induction variables that we found and fix the 3397 // PHIs that are left in the scalar version of the loop. 3398 // The starting values of PHI nodes depend on the counter of the last 3399 // iteration in the vectorized loop. 3400 // If we come from a bypass edge then we need to start from the original 3401 // start value. 3402 Instruction *OldInduction = Legal->getPrimaryInduction(); 3403 for (auto &InductionEntry : Legal->getInductionVars()) { 3404 PHINode *OrigPhi = InductionEntry.first; 3405 InductionDescriptor II = InductionEntry.second; 3406 3407 // Create phi nodes to merge from the backedge-taken check block. 3408 PHINode *BCResumeVal = 3409 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3410 LoopScalarPreHeader->getTerminator()); 3411 // Copy original phi DL over to the new one. 3412 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3413 Value *&EndValue = IVEndValues[OrigPhi]; 3414 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3415 if (OrigPhi == OldInduction) { 3416 // We know what the end value is. 3417 EndValue = VectorTripCount; 3418 } else { 3419 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3420 3421 // Fast-math-flags propagate from the original induction instruction. 3422 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3423 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3424 3425 Type *StepType = II.getStep()->getType(); 3426 Instruction::CastOps CastOp = 3427 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3428 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3429 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3430 EndValue = 3431 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3432 EndValue->setName("ind.end"); 3433 3434 // Compute the end value for the additional bypass (if applicable). 3435 if (AdditionalBypass.first) { 3436 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3437 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3438 StepType, true); 3439 CRD = 3440 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3441 EndValueFromAdditionalBypass = 3442 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3443 EndValueFromAdditionalBypass->setName("ind.end"); 3444 } 3445 } 3446 // The new PHI merges the original incoming value, in case of a bypass, 3447 // or the value at the end of the vectorized loop. 3448 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3449 3450 // Fix the scalar body counter (PHI node). 3451 // The old induction's phi node in the scalar body needs the truncated 3452 // value. 3453 for (BasicBlock *BB : LoopBypassBlocks) 3454 BCResumeVal->addIncoming(II.getStartValue(), BB); 3455 3456 if (AdditionalBypass.first) 3457 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3458 EndValueFromAdditionalBypass); 3459 3460 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3461 } 3462 } 3463 3464 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3465 MDNode *OrigLoopID) { 3466 assert(L && "Expected valid loop."); 3467 3468 // The trip counts should be cached by now. 3469 Value *Count = getOrCreateTripCount(L); 3470 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3471 3472 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3473 3474 // Add a check in the middle block to see if we have completed 3475 // all of the iterations in the first vector loop. Three cases: 3476 // 1) If we require a scalar epilogue, there is no conditional branch as 3477 // we unconditionally branch to the scalar preheader. Do nothing. 3478 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3479 // Thus if tail is to be folded, we know we don't need to run the 3480 // remainder and we can use the previous value for the condition (true). 3481 // 3) Otherwise, construct a runtime check. 3482 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3483 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3484 Count, VectorTripCount, "cmp.n", 3485 LoopMiddleBlock->getTerminator()); 3486 3487 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3488 // of the corresponding compare because they may have ended up with 3489 // different line numbers and we want to avoid awkward line stepping while 3490 // debugging. Eg. if the compare has got a line number inside the loop. 3491 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3492 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3493 } 3494 3495 // Get ready to start creating new instructions into the vectorized body. 3496 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3497 "Inconsistent vector loop preheader"); 3498 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3499 3500 #ifdef EXPENSIVE_CHECKS 3501 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3502 LI->verify(*DT); 3503 #endif 3504 3505 return LoopVectorPreHeader; 3506 } 3507 3508 std::pair<BasicBlock *, Value *> 3509 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3510 /* 3511 In this function we generate a new loop. The new loop will contain 3512 the vectorized instructions while the old loop will continue to run the 3513 scalar remainder. 3514 3515 [ ] <-- loop iteration number check. 3516 / | 3517 / v 3518 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3519 | / | 3520 | / v 3521 || [ ] <-- vector pre header. 3522 |/ | 3523 | v 3524 | [ ] \ 3525 | [ ]_| <-- vector loop. 3526 | | 3527 | v 3528 \ -[ ] <--- middle-block. 3529 \/ | 3530 /\ v 3531 | ->[ ] <--- new preheader. 3532 | | 3533 (opt) v <-- edge from middle to exit iff epilogue is not required. 3534 | [ ] \ 3535 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3536 \ | 3537 \ v 3538 >[ ] <-- exit block(s). 3539 ... 3540 */ 3541 3542 // Get the metadata of the original loop before it gets modified. 3543 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3544 3545 // Workaround! Compute the trip count of the original loop and cache it 3546 // before we start modifying the CFG. This code has a systemic problem 3547 // wherein it tries to run analysis over partially constructed IR; this is 3548 // wrong, and not simply for SCEV. The trip count of the original loop 3549 // simply happens to be prone to hitting this in practice. In theory, we 3550 // can hit the same issue for any SCEV, or ValueTracking query done during 3551 // mutation. See PR49900. 3552 getOrCreateTripCount(OrigLoop); 3553 3554 // Create an empty vector loop, and prepare basic blocks for the runtime 3555 // checks. 3556 Loop *Lp = createVectorLoopSkeleton(""); 3557 3558 // Now, compare the new count to zero. If it is zero skip the vector loop and 3559 // jump to the scalar loop. This check also covers the case where the 3560 // backedge-taken count is uint##_max: adding one to it will overflow leading 3561 // to an incorrect trip count of zero. In this (rare) case we will also jump 3562 // to the scalar loop. 3563 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3564 3565 // Generate the code to check any assumptions that we've made for SCEV 3566 // expressions. 3567 emitSCEVChecks(Lp, LoopScalarPreHeader); 3568 3569 // Generate the code that checks in runtime if arrays overlap. We put the 3570 // checks into a separate block to make the more common case of few elements 3571 // faster. 3572 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3573 3574 createHeaderBranch(Lp); 3575 3576 // Emit phis for the new starting index of the scalar loop. 3577 createInductionResumeValues(Lp); 3578 3579 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3580 } 3581 3582 // Fix up external users of the induction variable. At this point, we are 3583 // in LCSSA form, with all external PHIs that use the IV having one input value, 3584 // coming from the remainder loop. We need those PHIs to also have a correct 3585 // value for the IV when arriving directly from the middle block. 3586 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3587 const InductionDescriptor &II, 3588 Value *CountRoundDown, Value *EndValue, 3589 BasicBlock *MiddleBlock) { 3590 // There are two kinds of external IV usages - those that use the value 3591 // computed in the last iteration (the PHI) and those that use the penultimate 3592 // value (the value that feeds into the phi from the loop latch). 3593 // We allow both, but they, obviously, have different values. 3594 3595 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3596 3597 DenseMap<Value *, Value *> MissingVals; 3598 3599 // An external user of the last iteration's value should see the value that 3600 // the remainder loop uses to initialize its own IV. 3601 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3602 for (User *U : PostInc->users()) { 3603 Instruction *UI = cast<Instruction>(U); 3604 if (!OrigLoop->contains(UI)) { 3605 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3606 MissingVals[UI] = EndValue; 3607 } 3608 } 3609 3610 // An external user of the penultimate value need to see EndValue - Step. 3611 // The simplest way to get this is to recompute it from the constituent SCEVs, 3612 // that is Start + (Step * (CRD - 1)). 3613 for (User *U : OrigPhi->users()) { 3614 auto *UI = cast<Instruction>(U); 3615 if (!OrigLoop->contains(UI)) { 3616 const DataLayout &DL = 3617 OrigLoop->getHeader()->getModule()->getDataLayout(); 3618 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3619 3620 IRBuilder<> B(MiddleBlock->getTerminator()); 3621 3622 // Fast-math-flags propagate from the original induction instruction. 3623 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3624 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3625 3626 Value *CountMinusOne = B.CreateSub( 3627 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3628 Value *CMO = 3629 !II.getStep()->getType()->isIntegerTy() 3630 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3631 II.getStep()->getType()) 3632 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3633 CMO->setName("cast.cmo"); 3634 Value *Escape = 3635 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3636 Escape->setName("ind.escape"); 3637 MissingVals[UI] = Escape; 3638 } 3639 } 3640 3641 for (auto &I : MissingVals) { 3642 PHINode *PHI = cast<PHINode>(I.first); 3643 // One corner case we have to handle is two IVs "chasing" each-other, 3644 // that is %IV2 = phi [...], [ %IV1, %latch ] 3645 // In this case, if IV1 has an external use, we need to avoid adding both 3646 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3647 // don't already have an incoming value for the middle block. 3648 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3649 PHI->addIncoming(I.second, MiddleBlock); 3650 } 3651 } 3652 3653 namespace { 3654 3655 struct CSEDenseMapInfo { 3656 static bool canHandle(const Instruction *I) { 3657 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3658 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3659 } 3660 3661 static inline Instruction *getEmptyKey() { 3662 return DenseMapInfo<Instruction *>::getEmptyKey(); 3663 } 3664 3665 static inline Instruction *getTombstoneKey() { 3666 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3667 } 3668 3669 static unsigned getHashValue(const Instruction *I) { 3670 assert(canHandle(I) && "Unknown instruction!"); 3671 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3672 I->value_op_end())); 3673 } 3674 3675 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3676 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3677 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3678 return LHS == RHS; 3679 return LHS->isIdenticalTo(RHS); 3680 } 3681 }; 3682 3683 } // end anonymous namespace 3684 3685 ///Perform cse of induction variable instructions. 3686 static void cse(BasicBlock *BB) { 3687 // Perform simple cse. 3688 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3689 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3690 if (!CSEDenseMapInfo::canHandle(&In)) 3691 continue; 3692 3693 // Check if we can replace this instruction with any of the 3694 // visited instructions. 3695 if (Instruction *V = CSEMap.lookup(&In)) { 3696 In.replaceAllUsesWith(V); 3697 In.eraseFromParent(); 3698 continue; 3699 } 3700 3701 CSEMap[&In] = &In; 3702 } 3703 } 3704 3705 InstructionCost 3706 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3707 bool &NeedToScalarize) const { 3708 Function *F = CI->getCalledFunction(); 3709 Type *ScalarRetTy = CI->getType(); 3710 SmallVector<Type *, 4> Tys, ScalarTys; 3711 for (auto &ArgOp : CI->args()) 3712 ScalarTys.push_back(ArgOp->getType()); 3713 3714 // Estimate cost of scalarized vector call. The source operands are assumed 3715 // to be vectors, so we need to extract individual elements from there, 3716 // execute VF scalar calls, and then gather the result into the vector return 3717 // value. 3718 InstructionCost ScalarCallCost = 3719 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3720 if (VF.isScalar()) 3721 return ScalarCallCost; 3722 3723 // Compute corresponding vector type for return value and arguments. 3724 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3725 for (Type *ScalarTy : ScalarTys) 3726 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3727 3728 // Compute costs of unpacking argument values for the scalar calls and 3729 // packing the return values to a vector. 3730 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3731 3732 InstructionCost Cost = 3733 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3734 3735 // If we can't emit a vector call for this function, then the currently found 3736 // cost is the cost we need to return. 3737 NeedToScalarize = true; 3738 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3739 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3740 3741 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3742 return Cost; 3743 3744 // If the corresponding vector cost is cheaper, return its cost. 3745 InstructionCost VectorCallCost = 3746 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3747 if (VectorCallCost < Cost) { 3748 NeedToScalarize = false; 3749 Cost = VectorCallCost; 3750 } 3751 return Cost; 3752 } 3753 3754 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3755 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3756 return Elt; 3757 return VectorType::get(Elt, VF); 3758 } 3759 3760 InstructionCost 3761 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3762 ElementCount VF) const { 3763 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3764 assert(ID && "Expected intrinsic call!"); 3765 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3766 FastMathFlags FMF; 3767 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3768 FMF = FPMO->getFastMathFlags(); 3769 3770 SmallVector<const Value *> Arguments(CI->args()); 3771 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3772 SmallVector<Type *> ParamTys; 3773 std::transform(FTy->param_begin(), FTy->param_end(), 3774 std::back_inserter(ParamTys), 3775 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3776 3777 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3778 dyn_cast<IntrinsicInst>(CI)); 3779 return TTI.getIntrinsicInstrCost(CostAttrs, 3780 TargetTransformInfo::TCK_RecipThroughput); 3781 } 3782 3783 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3784 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3785 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3786 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3787 } 3788 3789 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3790 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3791 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3792 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3793 } 3794 3795 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3796 // For every instruction `I` in MinBWs, truncate the operands, create a 3797 // truncated version of `I` and reextend its result. InstCombine runs 3798 // later and will remove any ext/trunc pairs. 3799 SmallPtrSet<Value *, 4> Erased; 3800 for (const auto &KV : Cost->getMinimalBitwidths()) { 3801 // If the value wasn't vectorized, we must maintain the original scalar 3802 // type. The absence of the value from State indicates that it 3803 // wasn't vectorized. 3804 // FIXME: Should not rely on getVPValue at this point. 3805 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3806 if (!State.hasAnyVectorValue(Def)) 3807 continue; 3808 for (unsigned Part = 0; Part < UF; ++Part) { 3809 Value *I = State.get(Def, Part); 3810 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3811 continue; 3812 Type *OriginalTy = I->getType(); 3813 Type *ScalarTruncatedTy = 3814 IntegerType::get(OriginalTy->getContext(), KV.second); 3815 auto *TruncatedTy = VectorType::get( 3816 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3817 if (TruncatedTy == OriginalTy) 3818 continue; 3819 3820 IRBuilder<> B(cast<Instruction>(I)); 3821 auto ShrinkOperand = [&](Value *V) -> Value * { 3822 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3823 if (ZI->getSrcTy() == TruncatedTy) 3824 return ZI->getOperand(0); 3825 return B.CreateZExtOrTrunc(V, TruncatedTy); 3826 }; 3827 3828 // The actual instruction modification depends on the instruction type, 3829 // unfortunately. 3830 Value *NewI = nullptr; 3831 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3832 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3833 ShrinkOperand(BO->getOperand(1))); 3834 3835 // Any wrapping introduced by shrinking this operation shouldn't be 3836 // considered undefined behavior. So, we can't unconditionally copy 3837 // arithmetic wrapping flags to NewI. 3838 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3839 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3840 NewI = 3841 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3842 ShrinkOperand(CI->getOperand(1))); 3843 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3844 NewI = B.CreateSelect(SI->getCondition(), 3845 ShrinkOperand(SI->getTrueValue()), 3846 ShrinkOperand(SI->getFalseValue())); 3847 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3848 switch (CI->getOpcode()) { 3849 default: 3850 llvm_unreachable("Unhandled cast!"); 3851 case Instruction::Trunc: 3852 NewI = ShrinkOperand(CI->getOperand(0)); 3853 break; 3854 case Instruction::SExt: 3855 NewI = B.CreateSExtOrTrunc( 3856 CI->getOperand(0), 3857 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3858 break; 3859 case Instruction::ZExt: 3860 NewI = B.CreateZExtOrTrunc( 3861 CI->getOperand(0), 3862 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3863 break; 3864 } 3865 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3866 auto Elements0 = 3867 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3868 auto *O0 = B.CreateZExtOrTrunc( 3869 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3870 auto Elements1 = 3871 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3872 auto *O1 = B.CreateZExtOrTrunc( 3873 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3874 3875 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3876 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3877 // Don't do anything with the operands, just extend the result. 3878 continue; 3879 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3880 auto Elements = 3881 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3882 auto *O0 = B.CreateZExtOrTrunc( 3883 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3884 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3885 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3886 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3887 auto Elements = 3888 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3889 auto *O0 = B.CreateZExtOrTrunc( 3890 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3891 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3892 } else { 3893 // If we don't know what to do, be conservative and don't do anything. 3894 continue; 3895 } 3896 3897 // Lastly, extend the result. 3898 NewI->takeName(cast<Instruction>(I)); 3899 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3900 I->replaceAllUsesWith(Res); 3901 cast<Instruction>(I)->eraseFromParent(); 3902 Erased.insert(I); 3903 State.reset(Def, Res, Part); 3904 } 3905 } 3906 3907 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3908 for (const auto &KV : Cost->getMinimalBitwidths()) { 3909 // If the value wasn't vectorized, we must maintain the original scalar 3910 // type. The absence of the value from State indicates that it 3911 // wasn't vectorized. 3912 // FIXME: Should not rely on getVPValue at this point. 3913 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3914 if (!State.hasAnyVectorValue(Def)) 3915 continue; 3916 for (unsigned Part = 0; Part < UF; ++Part) { 3917 Value *I = State.get(Def, Part); 3918 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3919 if (Inst && Inst->use_empty()) { 3920 Value *NewI = Inst->getOperand(0); 3921 Inst->eraseFromParent(); 3922 State.reset(Def, NewI, Part); 3923 } 3924 } 3925 } 3926 } 3927 3928 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3929 // Insert truncates and extends for any truncated instructions as hints to 3930 // InstCombine. 3931 if (VF.isVector()) 3932 truncateToMinimalBitwidths(State); 3933 3934 // Fix widened non-induction PHIs by setting up the PHI operands. 3935 if (OrigPHIsToFix.size()) { 3936 assert(EnableVPlanNativePath && 3937 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3938 fixNonInductionPHIs(State); 3939 } 3940 3941 // At this point every instruction in the original loop is widened to a 3942 // vector form. Now we need to fix the recurrences in the loop. These PHI 3943 // nodes are currently empty because we did not want to introduce cycles. 3944 // This is the second stage of vectorizing recurrences. 3945 fixCrossIterationPHIs(State); 3946 3947 // Forget the original basic block. 3948 PSE.getSE()->forgetLoop(OrigLoop); 3949 3950 // If we inserted an edge from the middle block to the unique exit block, 3951 // update uses outside the loop (phis) to account for the newly inserted 3952 // edge. 3953 if (!Cost->requiresScalarEpilogue(VF)) { 3954 // Fix-up external users of the induction variables. 3955 for (auto &Entry : Legal->getInductionVars()) 3956 fixupIVUsers(Entry.first, Entry.second, 3957 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3958 IVEndValues[Entry.first], LoopMiddleBlock); 3959 3960 fixLCSSAPHIs(State); 3961 } 3962 3963 for (Instruction *PI : PredicatedInstructions) 3964 sinkScalarOperands(&*PI); 3965 3966 // Remove redundant induction instructions. 3967 cse(LoopVectorBody); 3968 3969 // Set/update profile weights for the vector and remainder loops as original 3970 // loop iterations are now distributed among them. Note that original loop 3971 // represented by LoopScalarBody becomes remainder loop after vectorization. 3972 // 3973 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3974 // end up getting slightly roughened result but that should be OK since 3975 // profile is not inherently precise anyway. Note also possible bypass of 3976 // vector code caused by legality checks is ignored, assigning all the weight 3977 // to the vector loop, optimistically. 3978 // 3979 // For scalable vectorization we can't know at compile time how many iterations 3980 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3981 // vscale of '1'. 3982 setProfileInfoAfterUnrolling( 3983 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3984 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3985 } 3986 3987 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3988 // In order to support recurrences we need to be able to vectorize Phi nodes. 3989 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3990 // stage #2: We now need to fix the recurrences by adding incoming edges to 3991 // the currently empty PHI nodes. At this point every instruction in the 3992 // original loop is widened to a vector form so we can use them to construct 3993 // the incoming edges. 3994 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3995 for (VPRecipeBase &R : Header->phis()) { 3996 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3997 fixReduction(ReductionPhi, State); 3998 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3999 fixFirstOrderRecurrence(FOR, State); 4000 } 4001 } 4002 4003 void InnerLoopVectorizer::fixFirstOrderRecurrence( 4004 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 4005 // This is the second phase of vectorizing first-order recurrences. An 4006 // overview of the transformation is described below. Suppose we have the 4007 // following loop. 4008 // 4009 // for (int i = 0; i < n; ++i) 4010 // b[i] = a[i] - a[i - 1]; 4011 // 4012 // There is a first-order recurrence on "a". For this loop, the shorthand 4013 // scalar IR looks like: 4014 // 4015 // scalar.ph: 4016 // s_init = a[-1] 4017 // br scalar.body 4018 // 4019 // scalar.body: 4020 // i = phi [0, scalar.ph], [i+1, scalar.body] 4021 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4022 // s2 = a[i] 4023 // b[i] = s2 - s1 4024 // br cond, scalar.body, ... 4025 // 4026 // In this example, s1 is a recurrence because it's value depends on the 4027 // previous iteration. In the first phase of vectorization, we created a 4028 // vector phi v1 for s1. We now complete the vectorization and produce the 4029 // shorthand vector IR shown below (for VF = 4, UF = 1). 4030 // 4031 // vector.ph: 4032 // v_init = vector(..., ..., ..., a[-1]) 4033 // br vector.body 4034 // 4035 // vector.body 4036 // i = phi [0, vector.ph], [i+4, vector.body] 4037 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4038 // v2 = a[i, i+1, i+2, i+3]; 4039 // v3 = vector(v1(3), v2(0, 1, 2)) 4040 // b[i, i+1, i+2, i+3] = v2 - v3 4041 // br cond, vector.body, middle.block 4042 // 4043 // middle.block: 4044 // x = v2(3) 4045 // br scalar.ph 4046 // 4047 // scalar.ph: 4048 // s_init = phi [x, middle.block], [a[-1], otherwise] 4049 // br scalar.body 4050 // 4051 // After execution completes the vector loop, we extract the next value of 4052 // the recurrence (x) to use as the initial value in the scalar loop. 4053 4054 // Extract the last vector element in the middle block. This will be the 4055 // initial value for the recurrence when jumping to the scalar loop. 4056 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4057 Value *Incoming = State.get(PreviousDef, UF - 1); 4058 auto *ExtractForScalar = Incoming; 4059 auto *IdxTy = Builder.getInt32Ty(); 4060 if (VF.isVector()) { 4061 auto *One = ConstantInt::get(IdxTy, 1); 4062 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4063 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4064 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4065 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4066 "vector.recur.extract"); 4067 } 4068 // Extract the second last element in the middle block if the 4069 // Phi is used outside the loop. We need to extract the phi itself 4070 // and not the last element (the phi update in the current iteration). This 4071 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4072 // when the scalar loop is not run at all. 4073 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4074 if (VF.isVector()) { 4075 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4076 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4077 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4078 Incoming, Idx, "vector.recur.extract.for.phi"); 4079 } else if (UF > 1) 4080 // When loop is unrolled without vectorizing, initialize 4081 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4082 // of `Incoming`. This is analogous to the vectorized case above: extracting 4083 // the second last element when VF > 1. 4084 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4085 4086 // Fix the initial value of the original recurrence in the scalar loop. 4087 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4088 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4089 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4090 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4091 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4092 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4093 Start->addIncoming(Incoming, BB); 4094 } 4095 4096 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4097 Phi->setName("scalar.recur"); 4098 4099 // Finally, fix users of the recurrence outside the loop. The users will need 4100 // either the last value of the scalar recurrence or the last value of the 4101 // vector recurrence we extracted in the middle block. Since the loop is in 4102 // LCSSA form, we just need to find all the phi nodes for the original scalar 4103 // recurrence in the exit block, and then add an edge for the middle block. 4104 // Note that LCSSA does not imply single entry when the original scalar loop 4105 // had multiple exiting edges (as we always run the last iteration in the 4106 // scalar epilogue); in that case, there is no edge from middle to exit and 4107 // and thus no phis which needed updated. 4108 if (!Cost->requiresScalarEpilogue(VF)) 4109 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4110 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4111 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4112 } 4113 4114 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4115 VPTransformState &State) { 4116 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4117 // Get it's reduction variable descriptor. 4118 assert(Legal->isReductionVariable(OrigPhi) && 4119 "Unable to find the reduction variable"); 4120 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4121 4122 RecurKind RK = RdxDesc.getRecurrenceKind(); 4123 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4124 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4125 setDebugLocFromInst(ReductionStartValue); 4126 4127 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4128 // This is the vector-clone of the value that leaves the loop. 4129 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4130 4131 // Wrap flags are in general invalid after vectorization, clear them. 4132 clearReductionWrapFlags(RdxDesc, State); 4133 4134 // Before each round, move the insertion point right between 4135 // the PHIs and the values we are going to write. 4136 // This allows us to write both PHINodes and the extractelement 4137 // instructions. 4138 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4139 4140 setDebugLocFromInst(LoopExitInst); 4141 4142 Type *PhiTy = OrigPhi->getType(); 4143 // If tail is folded by masking, the vector value to leave the loop should be 4144 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4145 // instead of the former. For an inloop reduction the reduction will already 4146 // be predicated, and does not need to be handled here. 4147 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4148 for (unsigned Part = 0; Part < UF; ++Part) { 4149 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4150 Value *Sel = nullptr; 4151 for (User *U : VecLoopExitInst->users()) { 4152 if (isa<SelectInst>(U)) { 4153 assert(!Sel && "Reduction exit feeding two selects"); 4154 Sel = U; 4155 } else 4156 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4157 } 4158 assert(Sel && "Reduction exit feeds no select"); 4159 State.reset(LoopExitInstDef, Sel, Part); 4160 4161 // If the target can create a predicated operator for the reduction at no 4162 // extra cost in the loop (for example a predicated vadd), it can be 4163 // cheaper for the select to remain in the loop than be sunk out of it, 4164 // and so use the select value for the phi instead of the old 4165 // LoopExitValue. 4166 if (PreferPredicatedReductionSelect || 4167 TTI->preferPredicatedReductionSelect( 4168 RdxDesc.getOpcode(), PhiTy, 4169 TargetTransformInfo::ReductionFlags())) { 4170 auto *VecRdxPhi = 4171 cast<PHINode>(State.get(PhiR, Part)); 4172 VecRdxPhi->setIncomingValueForBlock( 4173 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4174 } 4175 } 4176 } 4177 4178 // If the vector reduction can be performed in a smaller type, we truncate 4179 // then extend the loop exit value to enable InstCombine to evaluate the 4180 // entire expression in the smaller type. 4181 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4182 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4183 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4184 Builder.SetInsertPoint( 4185 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4186 VectorParts RdxParts(UF); 4187 for (unsigned Part = 0; Part < UF; ++Part) { 4188 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4189 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4190 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4191 : Builder.CreateZExt(Trunc, VecTy); 4192 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4193 if (U != Trunc) { 4194 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4195 RdxParts[Part] = Extnd; 4196 } 4197 } 4198 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4199 for (unsigned Part = 0; Part < UF; ++Part) { 4200 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4201 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4202 } 4203 } 4204 4205 // Reduce all of the unrolled parts into a single vector. 4206 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4207 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4208 4209 // The middle block terminator has already been assigned a DebugLoc here (the 4210 // OrigLoop's single latch terminator). We want the whole middle block to 4211 // appear to execute on this line because: (a) it is all compiler generated, 4212 // (b) these instructions are always executed after evaluating the latch 4213 // conditional branch, and (c) other passes may add new predecessors which 4214 // terminate on this line. This is the easiest way to ensure we don't 4215 // accidentally cause an extra step back into the loop while debugging. 4216 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4217 if (PhiR->isOrdered()) 4218 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4219 else { 4220 // Floating-point operations should have some FMF to enable the reduction. 4221 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4222 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4223 for (unsigned Part = 1; Part < UF; ++Part) { 4224 Value *RdxPart = State.get(LoopExitInstDef, Part); 4225 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4226 ReducedPartRdx = Builder.CreateBinOp( 4227 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4228 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4229 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4230 ReducedPartRdx, RdxPart); 4231 else 4232 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4233 } 4234 } 4235 4236 // Create the reduction after the loop. Note that inloop reductions create the 4237 // target reduction in the loop using a Reduction recipe. 4238 if (VF.isVector() && !PhiR->isInLoop()) { 4239 ReducedPartRdx = 4240 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4241 // If the reduction can be performed in a smaller type, we need to extend 4242 // the reduction to the wider type before we branch to the original loop. 4243 if (PhiTy != RdxDesc.getRecurrenceType()) 4244 ReducedPartRdx = RdxDesc.isSigned() 4245 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4246 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4247 } 4248 4249 PHINode *ResumePhi = 4250 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4251 4252 // Create a phi node that merges control-flow from the backedge-taken check 4253 // block and the middle block. 4254 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4255 LoopScalarPreHeader->getTerminator()); 4256 4257 // If we are fixing reductions in the epilogue loop then we should already 4258 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4259 // we carry over the incoming values correctly. 4260 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4261 if (Incoming == LoopMiddleBlock) 4262 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4263 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4264 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4265 Incoming); 4266 else 4267 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4268 } 4269 4270 // Set the resume value for this reduction 4271 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4272 4273 // Now, we need to fix the users of the reduction variable 4274 // inside and outside of the scalar remainder loop. 4275 4276 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4277 // in the exit blocks. See comment on analogous loop in 4278 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4279 if (!Cost->requiresScalarEpilogue(VF)) 4280 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4281 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4282 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4283 4284 // Fix the scalar loop reduction variable with the incoming reduction sum 4285 // from the vector body and from the backedge value. 4286 int IncomingEdgeBlockIdx = 4287 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4288 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4289 // Pick the other block. 4290 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4291 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4292 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4293 } 4294 4295 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4296 VPTransformState &State) { 4297 RecurKind RK = RdxDesc.getRecurrenceKind(); 4298 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4299 return; 4300 4301 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4302 assert(LoopExitInstr && "null loop exit instruction"); 4303 SmallVector<Instruction *, 8> Worklist; 4304 SmallPtrSet<Instruction *, 8> Visited; 4305 Worklist.push_back(LoopExitInstr); 4306 Visited.insert(LoopExitInstr); 4307 4308 while (!Worklist.empty()) { 4309 Instruction *Cur = Worklist.pop_back_val(); 4310 if (isa<OverflowingBinaryOperator>(Cur)) 4311 for (unsigned Part = 0; Part < UF; ++Part) { 4312 // FIXME: Should not rely on getVPValue at this point. 4313 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4314 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4315 } 4316 4317 for (User *U : Cur->users()) { 4318 Instruction *UI = cast<Instruction>(U); 4319 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4320 Visited.insert(UI).second) 4321 Worklist.push_back(UI); 4322 } 4323 } 4324 } 4325 4326 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4327 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4328 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4329 // Some phis were already hand updated by the reduction and recurrence 4330 // code above, leave them alone. 4331 continue; 4332 4333 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4334 // Non-instruction incoming values will have only one value. 4335 4336 VPLane Lane = VPLane::getFirstLane(); 4337 if (isa<Instruction>(IncomingValue) && 4338 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4339 VF)) 4340 Lane = VPLane::getLastLaneForVF(VF); 4341 4342 // Can be a loop invariant incoming value or the last scalar value to be 4343 // extracted from the vectorized loop. 4344 // FIXME: Should not rely on getVPValue at this point. 4345 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4346 Value *lastIncomingValue = 4347 OrigLoop->isLoopInvariant(IncomingValue) 4348 ? IncomingValue 4349 : State.get(State.Plan->getVPValue(IncomingValue, true), 4350 VPIteration(UF - 1, Lane)); 4351 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4352 } 4353 } 4354 4355 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4356 // The basic block and loop containing the predicated instruction. 4357 auto *PredBB = PredInst->getParent(); 4358 auto *VectorLoop = LI->getLoopFor(PredBB); 4359 4360 // Initialize a worklist with the operands of the predicated instruction. 4361 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4362 4363 // Holds instructions that we need to analyze again. An instruction may be 4364 // reanalyzed if we don't yet know if we can sink it or not. 4365 SmallVector<Instruction *, 8> InstsToReanalyze; 4366 4367 // Returns true if a given use occurs in the predicated block. Phi nodes use 4368 // their operands in their corresponding predecessor blocks. 4369 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4370 auto *I = cast<Instruction>(U.getUser()); 4371 BasicBlock *BB = I->getParent(); 4372 if (auto *Phi = dyn_cast<PHINode>(I)) 4373 BB = Phi->getIncomingBlock( 4374 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4375 return BB == PredBB; 4376 }; 4377 4378 // Iteratively sink the scalarized operands of the predicated instruction 4379 // into the block we created for it. When an instruction is sunk, it's 4380 // operands are then added to the worklist. The algorithm ends after one pass 4381 // through the worklist doesn't sink a single instruction. 4382 bool Changed; 4383 do { 4384 // Add the instructions that need to be reanalyzed to the worklist, and 4385 // reset the changed indicator. 4386 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4387 InstsToReanalyze.clear(); 4388 Changed = false; 4389 4390 while (!Worklist.empty()) { 4391 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4392 4393 // We can't sink an instruction if it is a phi node, is not in the loop, 4394 // or may have side effects. 4395 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4396 I->mayHaveSideEffects()) 4397 continue; 4398 4399 // If the instruction is already in PredBB, check if we can sink its 4400 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4401 // sinking the scalar instruction I, hence it appears in PredBB; but it 4402 // may have failed to sink I's operands (recursively), which we try 4403 // (again) here. 4404 if (I->getParent() == PredBB) { 4405 Worklist.insert(I->op_begin(), I->op_end()); 4406 continue; 4407 } 4408 4409 // It's legal to sink the instruction if all its uses occur in the 4410 // predicated block. Otherwise, there's nothing to do yet, and we may 4411 // need to reanalyze the instruction. 4412 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4413 InstsToReanalyze.push_back(I); 4414 continue; 4415 } 4416 4417 // Move the instruction to the beginning of the predicated block, and add 4418 // it's operands to the worklist. 4419 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4420 Worklist.insert(I->op_begin(), I->op_end()); 4421 4422 // The sinking may have enabled other instructions to be sunk, so we will 4423 // need to iterate. 4424 Changed = true; 4425 } 4426 } while (Changed); 4427 } 4428 4429 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4430 for (PHINode *OrigPhi : OrigPHIsToFix) { 4431 VPWidenPHIRecipe *VPPhi = 4432 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4433 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4434 // Make sure the builder has a valid insert point. 4435 Builder.SetInsertPoint(NewPhi); 4436 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4437 VPValue *Inc = VPPhi->getIncomingValue(i); 4438 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4439 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4440 } 4441 } 4442 } 4443 4444 bool InnerLoopVectorizer::useOrderedReductions( 4445 const RecurrenceDescriptor &RdxDesc) { 4446 return Cost->useOrderedReductions(RdxDesc); 4447 } 4448 4449 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4450 VPWidenPHIRecipe *PhiR, 4451 VPTransformState &State) { 4452 PHINode *P = cast<PHINode>(PN); 4453 if (EnableVPlanNativePath) { 4454 // Currently we enter here in the VPlan-native path for non-induction 4455 // PHIs where all control flow is uniform. We simply widen these PHIs. 4456 // Create a vector phi with no operands - the vector phi operands will be 4457 // set at the end of vector code generation. 4458 Type *VecTy = (State.VF.isScalar()) 4459 ? PN->getType() 4460 : VectorType::get(PN->getType(), State.VF); 4461 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4462 State.set(PhiR, VecPhi, 0); 4463 OrigPHIsToFix.push_back(P); 4464 4465 return; 4466 } 4467 4468 assert(PN->getParent() == OrigLoop->getHeader() && 4469 "Non-header phis should have been handled elsewhere"); 4470 4471 // In order to support recurrences we need to be able to vectorize Phi nodes. 4472 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4473 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4474 // this value when we vectorize all of the instructions that use the PHI. 4475 4476 assert(!Legal->isReductionVariable(P) && 4477 "reductions should be handled elsewhere"); 4478 4479 setDebugLocFromInst(P); 4480 4481 // This PHINode must be an induction variable. 4482 // Make sure that we know about it. 4483 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4484 4485 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4486 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4487 4488 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4489 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4490 4491 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4492 // which can be found from the original scalar operations. 4493 switch (II.getKind()) { 4494 case InductionDescriptor::IK_NoInduction: 4495 llvm_unreachable("Unknown induction"); 4496 case InductionDescriptor::IK_IntInduction: 4497 case InductionDescriptor::IK_FpInduction: 4498 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4499 case InductionDescriptor::IK_PtrInduction: { 4500 // Handle the pointer induction variable case. 4501 assert(P->getType()->isPointerTy() && "Unexpected type."); 4502 4503 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4504 // This is the normalized GEP that starts counting at zero. 4505 Value *PtrInd = 4506 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4507 // Determine the number of scalars we need to generate for each unroll 4508 // iteration. If the instruction is uniform, we only need to generate the 4509 // first lane. Otherwise, we generate all VF values. 4510 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4511 assert((IsUniform || !State.VF.isScalable()) && 4512 "Cannot scalarize a scalable VF"); 4513 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4514 4515 for (unsigned Part = 0; Part < UF; ++Part) { 4516 Value *PartStart = 4517 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4518 4519 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4520 Value *Idx = Builder.CreateAdd( 4521 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4522 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4523 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4524 DL, II, State.CFG.PrevBB); 4525 SclrGep->setName("next.gep"); 4526 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4527 } 4528 } 4529 return; 4530 } 4531 assert(isa<SCEVConstant>(II.getStep()) && 4532 "Induction step not a SCEV constant!"); 4533 Type *PhiType = II.getStep()->getType(); 4534 4535 // Build a pointer phi 4536 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4537 Type *ScStValueType = ScalarStartValue->getType(); 4538 PHINode *NewPointerPhi = 4539 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4540 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4541 4542 // A pointer induction, performed by using a gep 4543 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4544 Instruction *InductionLoc = LoopLatch->getTerminator(); 4545 const SCEV *ScalarStep = II.getStep(); 4546 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4547 Value *ScalarStepValue = 4548 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4549 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4550 Value *NumUnrolledElems = 4551 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4552 Value *InductionGEP = GetElementPtrInst::Create( 4553 II.getElementType(), NewPointerPhi, 4554 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4555 InductionLoc); 4556 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4557 4558 // Create UF many actual address geps that use the pointer 4559 // phi as base and a vectorized version of the step value 4560 // (<step*0, ..., step*N>) as offset. 4561 for (unsigned Part = 0; Part < State.UF; ++Part) { 4562 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4563 Value *StartOffsetScalar = 4564 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4565 Value *StartOffset = 4566 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4567 // Create a vector of consecutive numbers from zero to VF. 4568 StartOffset = 4569 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4570 4571 Value *GEP = Builder.CreateGEP( 4572 II.getElementType(), NewPointerPhi, 4573 Builder.CreateMul( 4574 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4575 "vector.gep")); 4576 State.set(PhiR, GEP, Part); 4577 } 4578 } 4579 } 4580 } 4581 4582 /// A helper function for checking whether an integer division-related 4583 /// instruction may divide by zero (in which case it must be predicated if 4584 /// executed conditionally in the scalar code). 4585 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4586 /// Non-zero divisors that are non compile-time constants will not be 4587 /// converted into multiplication, so we will still end up scalarizing 4588 /// the division, but can do so w/o predication. 4589 static bool mayDivideByZero(Instruction &I) { 4590 assert((I.getOpcode() == Instruction::UDiv || 4591 I.getOpcode() == Instruction::SDiv || 4592 I.getOpcode() == Instruction::URem || 4593 I.getOpcode() == Instruction::SRem) && 4594 "Unexpected instruction"); 4595 Value *Divisor = I.getOperand(1); 4596 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4597 return !CInt || CInt->isZero(); 4598 } 4599 4600 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4601 VPUser &ArgOperands, 4602 VPTransformState &State) { 4603 assert(!isa<DbgInfoIntrinsic>(I) && 4604 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4605 setDebugLocFromInst(&I); 4606 4607 Module *M = I.getParent()->getParent()->getParent(); 4608 auto *CI = cast<CallInst>(&I); 4609 4610 SmallVector<Type *, 4> Tys; 4611 for (Value *ArgOperand : CI->args()) 4612 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4613 4614 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4615 4616 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4617 // version of the instruction. 4618 // Is it beneficial to perform intrinsic call compared to lib call? 4619 bool NeedToScalarize = false; 4620 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4621 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4622 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4623 assert((UseVectorIntrinsic || !NeedToScalarize) && 4624 "Instruction should be scalarized elsewhere."); 4625 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4626 "Either the intrinsic cost or vector call cost must be valid"); 4627 4628 for (unsigned Part = 0; Part < UF; ++Part) { 4629 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4630 SmallVector<Value *, 4> Args; 4631 for (auto &I : enumerate(ArgOperands.operands())) { 4632 // Some intrinsics have a scalar argument - don't replace it with a 4633 // vector. 4634 Value *Arg; 4635 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4636 Arg = State.get(I.value(), Part); 4637 else { 4638 Arg = State.get(I.value(), VPIteration(0, 0)); 4639 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4640 TysForDecl.push_back(Arg->getType()); 4641 } 4642 Args.push_back(Arg); 4643 } 4644 4645 Function *VectorF; 4646 if (UseVectorIntrinsic) { 4647 // Use vector version of the intrinsic. 4648 if (VF.isVector()) 4649 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4650 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4651 assert(VectorF && "Can't retrieve vector intrinsic."); 4652 } else { 4653 // Use vector version of the function call. 4654 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4655 #ifndef NDEBUG 4656 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4657 "Can't create vector function."); 4658 #endif 4659 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4660 } 4661 SmallVector<OperandBundleDef, 1> OpBundles; 4662 CI->getOperandBundlesAsDefs(OpBundles); 4663 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4664 4665 if (isa<FPMathOperator>(V)) 4666 V->copyFastMathFlags(CI); 4667 4668 State.set(Def, V, Part); 4669 addMetadata(V, &I); 4670 } 4671 } 4672 4673 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4674 // We should not collect Scalars more than once per VF. Right now, this 4675 // function is called from collectUniformsAndScalars(), which already does 4676 // this check. Collecting Scalars for VF=1 does not make any sense. 4677 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4678 "This function should not be visited twice for the same VF"); 4679 4680 SmallSetVector<Instruction *, 8> Worklist; 4681 4682 // These sets are used to seed the analysis with pointers used by memory 4683 // accesses that will remain scalar. 4684 SmallSetVector<Instruction *, 8> ScalarPtrs; 4685 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4686 auto *Latch = TheLoop->getLoopLatch(); 4687 4688 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4689 // The pointer operands of loads and stores will be scalar as long as the 4690 // memory access is not a gather or scatter operation. The value operand of a 4691 // store will remain scalar if the store is scalarized. 4692 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4693 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4694 assert(WideningDecision != CM_Unknown && 4695 "Widening decision should be ready at this moment"); 4696 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4697 if (Ptr == Store->getValueOperand()) 4698 return WideningDecision == CM_Scalarize; 4699 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4700 "Ptr is neither a value or pointer operand"); 4701 return WideningDecision != CM_GatherScatter; 4702 }; 4703 4704 // A helper that returns true if the given value is a bitcast or 4705 // getelementptr instruction contained in the loop. 4706 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4707 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4708 isa<GetElementPtrInst>(V)) && 4709 !TheLoop->isLoopInvariant(V); 4710 }; 4711 4712 // A helper that evaluates a memory access's use of a pointer. If the use will 4713 // be a scalar use and the pointer is only used by memory accesses, we place 4714 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4715 // PossibleNonScalarPtrs. 4716 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4717 // We only care about bitcast and getelementptr instructions contained in 4718 // the loop. 4719 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4720 return; 4721 4722 // If the pointer has already been identified as scalar (e.g., if it was 4723 // also identified as uniform), there's nothing to do. 4724 auto *I = cast<Instruction>(Ptr); 4725 if (Worklist.count(I)) 4726 return; 4727 4728 // If the use of the pointer will be a scalar use, and all users of the 4729 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4730 // place the pointer in PossibleNonScalarPtrs. 4731 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4732 return isa<LoadInst>(U) || isa<StoreInst>(U); 4733 })) 4734 ScalarPtrs.insert(I); 4735 else 4736 PossibleNonScalarPtrs.insert(I); 4737 }; 4738 4739 // We seed the scalars analysis with three classes of instructions: (1) 4740 // instructions marked uniform-after-vectorization and (2) bitcast, 4741 // getelementptr and (pointer) phi instructions used by memory accesses 4742 // requiring a scalar use. 4743 // 4744 // (1) Add to the worklist all instructions that have been identified as 4745 // uniform-after-vectorization. 4746 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4747 4748 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4749 // memory accesses requiring a scalar use. The pointer operands of loads and 4750 // stores will be scalar as long as the memory accesses is not a gather or 4751 // scatter operation. The value operand of a store will remain scalar if the 4752 // store is scalarized. 4753 for (auto *BB : TheLoop->blocks()) 4754 for (auto &I : *BB) { 4755 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4756 evaluatePtrUse(Load, Load->getPointerOperand()); 4757 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4758 evaluatePtrUse(Store, Store->getPointerOperand()); 4759 evaluatePtrUse(Store, Store->getValueOperand()); 4760 } 4761 } 4762 for (auto *I : ScalarPtrs) 4763 if (!PossibleNonScalarPtrs.count(I)) { 4764 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4765 Worklist.insert(I); 4766 } 4767 4768 // Insert the forced scalars. 4769 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4770 // induction variable when the PHI user is scalarized. 4771 auto ForcedScalar = ForcedScalars.find(VF); 4772 if (ForcedScalar != ForcedScalars.end()) 4773 for (auto *I : ForcedScalar->second) 4774 Worklist.insert(I); 4775 4776 // Expand the worklist by looking through any bitcasts and getelementptr 4777 // instructions we've already identified as scalar. This is similar to the 4778 // expansion step in collectLoopUniforms(); however, here we're only 4779 // expanding to include additional bitcasts and getelementptr instructions. 4780 unsigned Idx = 0; 4781 while (Idx != Worklist.size()) { 4782 Instruction *Dst = Worklist[Idx++]; 4783 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4784 continue; 4785 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4786 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4787 auto *J = cast<Instruction>(U); 4788 return !TheLoop->contains(J) || Worklist.count(J) || 4789 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4790 isScalarUse(J, Src)); 4791 })) { 4792 Worklist.insert(Src); 4793 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4794 } 4795 } 4796 4797 // An induction variable will remain scalar if all users of the induction 4798 // variable and induction variable update remain scalar. 4799 for (auto &Induction : Legal->getInductionVars()) { 4800 auto *Ind = Induction.first; 4801 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4802 4803 // If tail-folding is applied, the primary induction variable will be used 4804 // to feed a vector compare. 4805 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4806 continue; 4807 4808 // Returns true if \p Indvar is a pointer induction that is used directly by 4809 // load/store instruction \p I. 4810 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4811 Instruction *I) { 4812 return Induction.second.getKind() == 4813 InductionDescriptor::IK_PtrInduction && 4814 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4815 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4816 }; 4817 4818 // Determine if all users of the induction variable are scalar after 4819 // vectorization. 4820 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4821 auto *I = cast<Instruction>(U); 4822 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4823 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4824 }); 4825 if (!ScalarInd) 4826 continue; 4827 4828 // Determine if all users of the induction variable update instruction are 4829 // scalar after vectorization. 4830 auto ScalarIndUpdate = 4831 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4832 auto *I = cast<Instruction>(U); 4833 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4834 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4835 }); 4836 if (!ScalarIndUpdate) 4837 continue; 4838 4839 // The induction variable and its update instruction will remain scalar. 4840 Worklist.insert(Ind); 4841 Worklist.insert(IndUpdate); 4842 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4843 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4844 << "\n"); 4845 } 4846 4847 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4848 } 4849 4850 bool LoopVectorizationCostModel::isScalarWithPredication( 4851 Instruction *I, ElementCount VF) const { 4852 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4853 return false; 4854 switch(I->getOpcode()) { 4855 default: 4856 break; 4857 case Instruction::Load: 4858 case Instruction::Store: { 4859 if (!Legal->isMaskRequired(I)) 4860 return false; 4861 auto *Ptr = getLoadStorePointerOperand(I); 4862 auto *Ty = getLoadStoreType(I); 4863 Type *VTy = Ty; 4864 if (VF.isVector()) 4865 VTy = VectorType::get(Ty, VF); 4866 const Align Alignment = getLoadStoreAlignment(I); 4867 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4868 TTI.isLegalMaskedGather(VTy, Alignment)) 4869 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4870 TTI.isLegalMaskedScatter(VTy, Alignment)); 4871 } 4872 case Instruction::UDiv: 4873 case Instruction::SDiv: 4874 case Instruction::SRem: 4875 case Instruction::URem: 4876 return mayDivideByZero(*I); 4877 } 4878 return false; 4879 } 4880 4881 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4882 Instruction *I, ElementCount VF) { 4883 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4884 assert(getWideningDecision(I, VF) == CM_Unknown && 4885 "Decision should not be set yet."); 4886 auto *Group = getInterleavedAccessGroup(I); 4887 assert(Group && "Must have a group."); 4888 4889 // If the instruction's allocated size doesn't equal it's type size, it 4890 // requires padding and will be scalarized. 4891 auto &DL = I->getModule()->getDataLayout(); 4892 auto *ScalarTy = getLoadStoreType(I); 4893 if (hasIrregularType(ScalarTy, DL)) 4894 return false; 4895 4896 // Check if masking is required. 4897 // A Group may need masking for one of two reasons: it resides in a block that 4898 // needs predication, or it was decided to use masking to deal with gaps 4899 // (either a gap at the end of a load-access that may result in a speculative 4900 // load, or any gaps in a store-access). 4901 bool PredicatedAccessRequiresMasking = 4902 blockNeedsPredicationForAnyReason(I->getParent()) && 4903 Legal->isMaskRequired(I); 4904 bool LoadAccessWithGapsRequiresEpilogMasking = 4905 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4906 !isScalarEpilogueAllowed(); 4907 bool StoreAccessWithGapsRequiresMasking = 4908 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4909 if (!PredicatedAccessRequiresMasking && 4910 !LoadAccessWithGapsRequiresEpilogMasking && 4911 !StoreAccessWithGapsRequiresMasking) 4912 return true; 4913 4914 // If masked interleaving is required, we expect that the user/target had 4915 // enabled it, because otherwise it either wouldn't have been created or 4916 // it should have been invalidated by the CostModel. 4917 assert(useMaskedInterleavedAccesses(TTI) && 4918 "Masked interleave-groups for predicated accesses are not enabled."); 4919 4920 if (Group->isReverse()) 4921 return false; 4922 4923 auto *Ty = getLoadStoreType(I); 4924 const Align Alignment = getLoadStoreAlignment(I); 4925 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4926 : TTI.isLegalMaskedStore(Ty, Alignment); 4927 } 4928 4929 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4930 Instruction *I, ElementCount VF) { 4931 // Get and ensure we have a valid memory instruction. 4932 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4933 4934 auto *Ptr = getLoadStorePointerOperand(I); 4935 auto *ScalarTy = getLoadStoreType(I); 4936 4937 // In order to be widened, the pointer should be consecutive, first of all. 4938 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4939 return false; 4940 4941 // If the instruction is a store located in a predicated block, it will be 4942 // scalarized. 4943 if (isScalarWithPredication(I, VF)) 4944 return false; 4945 4946 // If the instruction's allocated size doesn't equal it's type size, it 4947 // requires padding and will be scalarized. 4948 auto &DL = I->getModule()->getDataLayout(); 4949 if (hasIrregularType(ScalarTy, DL)) 4950 return false; 4951 4952 return true; 4953 } 4954 4955 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4956 // We should not collect Uniforms more than once per VF. Right now, 4957 // this function is called from collectUniformsAndScalars(), which 4958 // already does this check. Collecting Uniforms for VF=1 does not make any 4959 // sense. 4960 4961 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4962 "This function should not be visited twice for the same VF"); 4963 4964 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4965 // not analyze again. Uniforms.count(VF) will return 1. 4966 Uniforms[VF].clear(); 4967 4968 // We now know that the loop is vectorizable! 4969 // Collect instructions inside the loop that will remain uniform after 4970 // vectorization. 4971 4972 // Global values, params and instructions outside of current loop are out of 4973 // scope. 4974 auto isOutOfScope = [&](Value *V) -> bool { 4975 Instruction *I = dyn_cast<Instruction>(V); 4976 return (!I || !TheLoop->contains(I)); 4977 }; 4978 4979 // Worklist containing uniform instructions demanding lane 0. 4980 SetVector<Instruction *> Worklist; 4981 BasicBlock *Latch = TheLoop->getLoopLatch(); 4982 4983 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4984 // that are scalar with predication must not be considered uniform after 4985 // vectorization, because that would create an erroneous replicating region 4986 // where only a single instance out of VF should be formed. 4987 // TODO: optimize such seldom cases if found important, see PR40816. 4988 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4989 if (isOutOfScope(I)) { 4990 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4991 << *I << "\n"); 4992 return; 4993 } 4994 if (isScalarWithPredication(I, VF)) { 4995 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4996 << *I << "\n"); 4997 return; 4998 } 4999 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5000 Worklist.insert(I); 5001 }; 5002 5003 // Start with the conditional branch. If the branch condition is an 5004 // instruction contained in the loop that is only used by the branch, it is 5005 // uniform. 5006 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5007 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5008 addToWorklistIfAllowed(Cmp); 5009 5010 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5011 InstWidening WideningDecision = getWideningDecision(I, VF); 5012 assert(WideningDecision != CM_Unknown && 5013 "Widening decision should be ready at this moment"); 5014 5015 // A uniform memory op is itself uniform. We exclude uniform stores 5016 // here as they demand the last lane, not the first one. 5017 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5018 assert(WideningDecision == CM_Scalarize); 5019 return true; 5020 } 5021 5022 return (WideningDecision == CM_Widen || 5023 WideningDecision == CM_Widen_Reverse || 5024 WideningDecision == CM_Interleave); 5025 }; 5026 5027 5028 // Returns true if Ptr is the pointer operand of a memory access instruction 5029 // I, and I is known to not require scalarization. 5030 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5031 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5032 }; 5033 5034 // Holds a list of values which are known to have at least one uniform use. 5035 // Note that there may be other uses which aren't uniform. A "uniform use" 5036 // here is something which only demands lane 0 of the unrolled iterations; 5037 // it does not imply that all lanes produce the same value (e.g. this is not 5038 // the usual meaning of uniform) 5039 SetVector<Value *> HasUniformUse; 5040 5041 // Scan the loop for instructions which are either a) known to have only 5042 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5043 for (auto *BB : TheLoop->blocks()) 5044 for (auto &I : *BB) { 5045 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5046 switch (II->getIntrinsicID()) { 5047 case Intrinsic::sideeffect: 5048 case Intrinsic::experimental_noalias_scope_decl: 5049 case Intrinsic::assume: 5050 case Intrinsic::lifetime_start: 5051 case Intrinsic::lifetime_end: 5052 if (TheLoop->hasLoopInvariantOperands(&I)) 5053 addToWorklistIfAllowed(&I); 5054 break; 5055 default: 5056 break; 5057 } 5058 } 5059 5060 // ExtractValue instructions must be uniform, because the operands are 5061 // known to be loop-invariant. 5062 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5063 assert(isOutOfScope(EVI->getAggregateOperand()) && 5064 "Expected aggregate value to be loop invariant"); 5065 addToWorklistIfAllowed(EVI); 5066 continue; 5067 } 5068 5069 // If there's no pointer operand, there's nothing to do. 5070 auto *Ptr = getLoadStorePointerOperand(&I); 5071 if (!Ptr) 5072 continue; 5073 5074 // A uniform memory op is itself uniform. We exclude uniform stores 5075 // here as they demand the last lane, not the first one. 5076 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5077 addToWorklistIfAllowed(&I); 5078 5079 if (isUniformDecision(&I, VF)) { 5080 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5081 HasUniformUse.insert(Ptr); 5082 } 5083 } 5084 5085 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5086 // demanding) users. Since loops are assumed to be in LCSSA form, this 5087 // disallows uses outside the loop as well. 5088 for (auto *V : HasUniformUse) { 5089 if (isOutOfScope(V)) 5090 continue; 5091 auto *I = cast<Instruction>(V); 5092 auto UsersAreMemAccesses = 5093 llvm::all_of(I->users(), [&](User *U) -> bool { 5094 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5095 }); 5096 if (UsersAreMemAccesses) 5097 addToWorklistIfAllowed(I); 5098 } 5099 5100 // Expand Worklist in topological order: whenever a new instruction 5101 // is added , its users should be already inside Worklist. It ensures 5102 // a uniform instruction will only be used by uniform instructions. 5103 unsigned idx = 0; 5104 while (idx != Worklist.size()) { 5105 Instruction *I = Worklist[idx++]; 5106 5107 for (auto OV : I->operand_values()) { 5108 // isOutOfScope operands cannot be uniform instructions. 5109 if (isOutOfScope(OV)) 5110 continue; 5111 // First order recurrence Phi's should typically be considered 5112 // non-uniform. 5113 auto *OP = dyn_cast<PHINode>(OV); 5114 if (OP && Legal->isFirstOrderRecurrence(OP)) 5115 continue; 5116 // If all the users of the operand are uniform, then add the 5117 // operand into the uniform worklist. 5118 auto *OI = cast<Instruction>(OV); 5119 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5120 auto *J = cast<Instruction>(U); 5121 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5122 })) 5123 addToWorklistIfAllowed(OI); 5124 } 5125 } 5126 5127 // For an instruction to be added into Worklist above, all its users inside 5128 // the loop should also be in Worklist. However, this condition cannot be 5129 // true for phi nodes that form a cyclic dependence. We must process phi 5130 // nodes separately. An induction variable will remain uniform if all users 5131 // of the induction variable and induction variable update remain uniform. 5132 // The code below handles both pointer and non-pointer induction variables. 5133 for (auto &Induction : Legal->getInductionVars()) { 5134 auto *Ind = Induction.first; 5135 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5136 5137 // Determine if all users of the induction variable are uniform after 5138 // vectorization. 5139 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5140 auto *I = cast<Instruction>(U); 5141 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5142 isVectorizedMemAccessUse(I, Ind); 5143 }); 5144 if (!UniformInd) 5145 continue; 5146 5147 // Determine if all users of the induction variable update instruction are 5148 // uniform after vectorization. 5149 auto UniformIndUpdate = 5150 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5151 auto *I = cast<Instruction>(U); 5152 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5153 isVectorizedMemAccessUse(I, IndUpdate); 5154 }); 5155 if (!UniformIndUpdate) 5156 continue; 5157 5158 // The induction variable and its update instruction will remain uniform. 5159 addToWorklistIfAllowed(Ind); 5160 addToWorklistIfAllowed(IndUpdate); 5161 } 5162 5163 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5164 } 5165 5166 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5167 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5168 5169 if (Legal->getRuntimePointerChecking()->Need) { 5170 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5171 "runtime pointer checks needed. Enable vectorization of this " 5172 "loop with '#pragma clang loop vectorize(enable)' when " 5173 "compiling with -Os/-Oz", 5174 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5175 return true; 5176 } 5177 5178 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5179 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5180 "runtime SCEV checks needed. Enable vectorization of this " 5181 "loop with '#pragma clang loop vectorize(enable)' when " 5182 "compiling with -Os/-Oz", 5183 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5184 return true; 5185 } 5186 5187 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5188 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5189 reportVectorizationFailure("Runtime stride check for small trip count", 5190 "runtime stride == 1 checks needed. Enable vectorization of " 5191 "this loop without such check by compiling with -Os/-Oz", 5192 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5193 return true; 5194 } 5195 5196 return false; 5197 } 5198 5199 ElementCount 5200 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5201 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5202 return ElementCount::getScalable(0); 5203 5204 if (Hints->isScalableVectorizationDisabled()) { 5205 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5206 "ScalableVectorizationDisabled", ORE, TheLoop); 5207 return ElementCount::getScalable(0); 5208 } 5209 5210 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5211 5212 auto MaxScalableVF = ElementCount::getScalable( 5213 std::numeric_limits<ElementCount::ScalarTy>::max()); 5214 5215 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5216 // FIXME: While for scalable vectors this is currently sufficient, this should 5217 // be replaced by a more detailed mechanism that filters out specific VFs, 5218 // instead of invalidating vectorization for a whole set of VFs based on the 5219 // MaxVF. 5220 5221 // Disable scalable vectorization if the loop contains unsupported reductions. 5222 if (!canVectorizeReductions(MaxScalableVF)) { 5223 reportVectorizationInfo( 5224 "Scalable vectorization not supported for the reduction " 5225 "operations found in this loop.", 5226 "ScalableVFUnfeasible", ORE, TheLoop); 5227 return ElementCount::getScalable(0); 5228 } 5229 5230 // Disable scalable vectorization if the loop contains any instructions 5231 // with element types not supported for scalable vectors. 5232 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5233 return !Ty->isVoidTy() && 5234 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5235 })) { 5236 reportVectorizationInfo("Scalable vectorization is not supported " 5237 "for all element types found in this loop.", 5238 "ScalableVFUnfeasible", ORE, TheLoop); 5239 return ElementCount::getScalable(0); 5240 } 5241 5242 if (Legal->isSafeForAnyVectorWidth()) 5243 return MaxScalableVF; 5244 5245 // Limit MaxScalableVF by the maximum safe dependence distance. 5246 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5247 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5248 MaxVScale = 5249 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5250 MaxScalableVF = ElementCount::getScalable( 5251 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5252 if (!MaxScalableVF) 5253 reportVectorizationInfo( 5254 "Max legal vector width too small, scalable vectorization " 5255 "unfeasible.", 5256 "ScalableVFUnfeasible", ORE, TheLoop); 5257 5258 return MaxScalableVF; 5259 } 5260 5261 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5262 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5263 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5264 unsigned SmallestType, WidestType; 5265 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5266 5267 // Get the maximum safe dependence distance in bits computed by LAA. 5268 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5269 // the memory accesses that is most restrictive (involved in the smallest 5270 // dependence distance). 5271 unsigned MaxSafeElements = 5272 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5273 5274 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5275 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5276 5277 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5278 << ".\n"); 5279 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5280 << ".\n"); 5281 5282 // First analyze the UserVF, fall back if the UserVF should be ignored. 5283 if (UserVF) { 5284 auto MaxSafeUserVF = 5285 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5286 5287 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5288 // If `VF=vscale x N` is safe, then so is `VF=N` 5289 if (UserVF.isScalable()) 5290 return FixedScalableVFPair( 5291 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5292 else 5293 return UserVF; 5294 } 5295 5296 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5297 5298 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5299 // is better to ignore the hint and let the compiler choose a suitable VF. 5300 if (!UserVF.isScalable()) { 5301 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5302 << " is unsafe, clamping to max safe VF=" 5303 << MaxSafeFixedVF << ".\n"); 5304 ORE->emit([&]() { 5305 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5306 TheLoop->getStartLoc(), 5307 TheLoop->getHeader()) 5308 << "User-specified vectorization factor " 5309 << ore::NV("UserVectorizationFactor", UserVF) 5310 << " is unsafe, clamping to maximum safe vectorization factor " 5311 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5312 }); 5313 return MaxSafeFixedVF; 5314 } 5315 5316 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5317 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5318 << " is ignored because scalable vectors are not " 5319 "available.\n"); 5320 ORE->emit([&]() { 5321 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5322 TheLoop->getStartLoc(), 5323 TheLoop->getHeader()) 5324 << "User-specified vectorization factor " 5325 << ore::NV("UserVectorizationFactor", UserVF) 5326 << " is ignored because the target does not support scalable " 5327 "vectors. The compiler will pick a more suitable value."; 5328 }); 5329 } else { 5330 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5331 << " is unsafe. Ignoring scalable UserVF.\n"); 5332 ORE->emit([&]() { 5333 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5334 TheLoop->getStartLoc(), 5335 TheLoop->getHeader()) 5336 << "User-specified vectorization factor " 5337 << ore::NV("UserVectorizationFactor", UserVF) 5338 << " is unsafe. Ignoring the hint to let the compiler pick a " 5339 "more suitable value."; 5340 }); 5341 } 5342 } 5343 5344 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5345 << " / " << WidestType << " bits.\n"); 5346 5347 FixedScalableVFPair Result(ElementCount::getFixed(1), 5348 ElementCount::getScalable(0)); 5349 if (auto MaxVF = 5350 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5351 MaxSafeFixedVF, FoldTailByMasking)) 5352 Result.FixedVF = MaxVF; 5353 5354 if (auto MaxVF = 5355 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5356 MaxSafeScalableVF, FoldTailByMasking)) 5357 if (MaxVF.isScalable()) { 5358 Result.ScalableVF = MaxVF; 5359 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5360 << "\n"); 5361 } 5362 5363 return Result; 5364 } 5365 5366 FixedScalableVFPair 5367 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5368 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5369 // TODO: It may by useful to do since it's still likely to be dynamically 5370 // uniform if the target can skip. 5371 reportVectorizationFailure( 5372 "Not inserting runtime ptr check for divergent target", 5373 "runtime pointer checks needed. Not enabled for divergent target", 5374 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5375 return FixedScalableVFPair::getNone(); 5376 } 5377 5378 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5379 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5380 if (TC == 1) { 5381 reportVectorizationFailure("Single iteration (non) loop", 5382 "loop trip count is one, irrelevant for vectorization", 5383 "SingleIterationLoop", ORE, TheLoop); 5384 return FixedScalableVFPair::getNone(); 5385 } 5386 5387 switch (ScalarEpilogueStatus) { 5388 case CM_ScalarEpilogueAllowed: 5389 return computeFeasibleMaxVF(TC, UserVF, false); 5390 case CM_ScalarEpilogueNotAllowedUsePredicate: 5391 LLVM_FALLTHROUGH; 5392 case CM_ScalarEpilogueNotNeededUsePredicate: 5393 LLVM_DEBUG( 5394 dbgs() << "LV: vector predicate hint/switch found.\n" 5395 << "LV: Not allowing scalar epilogue, creating predicated " 5396 << "vector loop.\n"); 5397 break; 5398 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5399 // fallthrough as a special case of OptForSize 5400 case CM_ScalarEpilogueNotAllowedOptSize: 5401 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5402 LLVM_DEBUG( 5403 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5404 else 5405 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5406 << "count.\n"); 5407 5408 // Bail if runtime checks are required, which are not good when optimising 5409 // for size. 5410 if (runtimeChecksRequired()) 5411 return FixedScalableVFPair::getNone(); 5412 5413 break; 5414 } 5415 5416 // The only loops we can vectorize without a scalar epilogue, are loops with 5417 // a bottom-test and a single exiting block. We'd have to handle the fact 5418 // that not every instruction executes on the last iteration. This will 5419 // require a lane mask which varies through the vector loop body. (TODO) 5420 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5421 // If there was a tail-folding hint/switch, but we can't fold the tail by 5422 // masking, fallback to a vectorization with a scalar epilogue. 5423 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5424 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5425 "scalar epilogue instead.\n"); 5426 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5427 return computeFeasibleMaxVF(TC, UserVF, false); 5428 } 5429 return FixedScalableVFPair::getNone(); 5430 } 5431 5432 // Now try the tail folding 5433 5434 // Invalidate interleave groups that require an epilogue if we can't mask 5435 // the interleave-group. 5436 if (!useMaskedInterleavedAccesses(TTI)) { 5437 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5438 "No decisions should have been taken at this point"); 5439 // Note: There is no need to invalidate any cost modeling decisions here, as 5440 // non where taken so far. 5441 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5442 } 5443 5444 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5445 // Avoid tail folding if the trip count is known to be a multiple of any VF 5446 // we chose. 5447 // FIXME: The condition below pessimises the case for fixed-width vectors, 5448 // when scalable VFs are also candidates for vectorization. 5449 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5450 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5451 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5452 "MaxFixedVF must be a power of 2"); 5453 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5454 : MaxFixedVF.getFixedValue(); 5455 ScalarEvolution *SE = PSE.getSE(); 5456 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5457 const SCEV *ExitCount = SE->getAddExpr( 5458 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5459 const SCEV *Rem = SE->getURemExpr( 5460 SE->applyLoopGuards(ExitCount, TheLoop), 5461 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5462 if (Rem->isZero()) { 5463 // Accept MaxFixedVF if we do not have a tail. 5464 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5465 return MaxFactors; 5466 } 5467 } 5468 5469 // For scalable vectors don't use tail folding for low trip counts or 5470 // optimizing for code size. We only permit this if the user has explicitly 5471 // requested it. 5472 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5473 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5474 MaxFactors.ScalableVF.isVector()) 5475 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5476 5477 // If we don't know the precise trip count, or if the trip count that we 5478 // found modulo the vectorization factor is not zero, try to fold the tail 5479 // by masking. 5480 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5481 if (Legal->prepareToFoldTailByMasking()) { 5482 FoldTailByMasking = true; 5483 return MaxFactors; 5484 } 5485 5486 // If there was a tail-folding hint/switch, but we can't fold the tail by 5487 // masking, fallback to a vectorization with a scalar epilogue. 5488 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5489 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5490 "scalar epilogue instead.\n"); 5491 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5492 return MaxFactors; 5493 } 5494 5495 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5496 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5497 return FixedScalableVFPair::getNone(); 5498 } 5499 5500 if (TC == 0) { 5501 reportVectorizationFailure( 5502 "Unable to calculate the loop count due to complex control flow", 5503 "unable to calculate the loop count due to complex control flow", 5504 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5505 return FixedScalableVFPair::getNone(); 5506 } 5507 5508 reportVectorizationFailure( 5509 "Cannot optimize for size and vectorize at the same time.", 5510 "cannot optimize for size and vectorize at the same time. " 5511 "Enable vectorization of this loop with '#pragma clang loop " 5512 "vectorize(enable)' when compiling with -Os/-Oz", 5513 "NoTailLoopWithOptForSize", ORE, TheLoop); 5514 return FixedScalableVFPair::getNone(); 5515 } 5516 5517 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5518 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5519 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5520 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5521 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5522 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5523 : TargetTransformInfo::RGK_FixedWidthVector); 5524 5525 // Convenience function to return the minimum of two ElementCounts. 5526 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5527 assert((LHS.isScalable() == RHS.isScalable()) && 5528 "Scalable flags must match"); 5529 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5530 }; 5531 5532 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5533 // Note that both WidestRegister and WidestType may not be a powers of 2. 5534 auto MaxVectorElementCount = ElementCount::get( 5535 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5536 ComputeScalableMaxVF); 5537 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5538 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5539 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5540 5541 if (!MaxVectorElementCount) { 5542 LLVM_DEBUG(dbgs() << "LV: The target has no " 5543 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5544 << " vector registers.\n"); 5545 return ElementCount::getFixed(1); 5546 } 5547 5548 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5549 if (ConstTripCount && 5550 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5551 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5552 // If loop trip count (TC) is known at compile time there is no point in 5553 // choosing VF greater than TC (as done in the loop below). Select maximum 5554 // power of two which doesn't exceed TC. 5555 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5556 // when the TC is less than or equal to the known number of lanes. 5557 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5558 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5559 "exceeding the constant trip count: " 5560 << ClampedConstTripCount << "\n"); 5561 return ElementCount::getFixed(ClampedConstTripCount); 5562 } 5563 5564 ElementCount MaxVF = MaxVectorElementCount; 5565 if (TTI.shouldMaximizeVectorBandwidth() || 5566 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5567 auto MaxVectorElementCountMaxBW = ElementCount::get( 5568 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5569 ComputeScalableMaxVF); 5570 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5571 5572 // Collect all viable vectorization factors larger than the default MaxVF 5573 // (i.e. MaxVectorElementCount). 5574 SmallVector<ElementCount, 8> VFs; 5575 for (ElementCount VS = MaxVectorElementCount * 2; 5576 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5577 VFs.push_back(VS); 5578 5579 // For each VF calculate its register usage. 5580 auto RUs = calculateRegisterUsage(VFs); 5581 5582 // Select the largest VF which doesn't require more registers than existing 5583 // ones. 5584 for (int i = RUs.size() - 1; i >= 0; --i) { 5585 bool Selected = true; 5586 for (auto &pair : RUs[i].MaxLocalUsers) { 5587 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5588 if (pair.second > TargetNumRegisters) 5589 Selected = false; 5590 } 5591 if (Selected) { 5592 MaxVF = VFs[i]; 5593 break; 5594 } 5595 } 5596 if (ElementCount MinVF = 5597 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5598 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5599 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5600 << ") with target's minimum: " << MinVF << '\n'); 5601 MaxVF = MinVF; 5602 } 5603 } 5604 } 5605 return MaxVF; 5606 } 5607 5608 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5609 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5610 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5611 auto Min = Attr.getVScaleRangeMin(); 5612 auto Max = Attr.getVScaleRangeMax(); 5613 if (Max && Min == Max) 5614 return Max; 5615 } 5616 5617 return TTI.getVScaleForTuning(); 5618 } 5619 5620 bool LoopVectorizationCostModel::isMoreProfitable( 5621 const VectorizationFactor &A, const VectorizationFactor &B) const { 5622 InstructionCost CostA = A.Cost; 5623 InstructionCost CostB = B.Cost; 5624 5625 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5626 5627 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5628 MaxTripCount) { 5629 // If we are folding the tail and the trip count is a known (possibly small) 5630 // constant, the trip count will be rounded up to an integer number of 5631 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5632 // which we compare directly. When not folding the tail, the total cost will 5633 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5634 // approximated with the per-lane cost below instead of using the tripcount 5635 // as here. 5636 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5637 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5638 return RTCostA < RTCostB; 5639 } 5640 5641 // Improve estimate for the vector width if it is scalable. 5642 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5643 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5644 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5645 if (A.Width.isScalable()) 5646 EstimatedWidthA *= VScale.getValue(); 5647 if (B.Width.isScalable()) 5648 EstimatedWidthB *= VScale.getValue(); 5649 } 5650 5651 // Assume vscale may be larger than 1 (or the value being tuned for), 5652 // so that scalable vectorization is slightly favorable over fixed-width 5653 // vectorization. 5654 if (A.Width.isScalable() && !B.Width.isScalable()) 5655 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5656 5657 // To avoid the need for FP division: 5658 // (CostA / A.Width) < (CostB / B.Width) 5659 // <=> (CostA * B.Width) < (CostB * A.Width) 5660 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5661 } 5662 5663 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5664 const ElementCountSet &VFCandidates) { 5665 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5666 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5667 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5668 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5669 "Expected Scalar VF to be a candidate"); 5670 5671 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5672 VectorizationFactor ChosenFactor = ScalarCost; 5673 5674 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5675 if (ForceVectorization && VFCandidates.size() > 1) { 5676 // Ignore scalar width, because the user explicitly wants vectorization. 5677 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5678 // evaluation. 5679 ChosenFactor.Cost = InstructionCost::getMax(); 5680 } 5681 5682 SmallVector<InstructionVFPair> InvalidCosts; 5683 for (const auto &i : VFCandidates) { 5684 // The cost for scalar VF=1 is already calculated, so ignore it. 5685 if (i.isScalar()) 5686 continue; 5687 5688 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5689 VectorizationFactor Candidate(i, C.first); 5690 5691 #ifndef NDEBUG 5692 unsigned AssumedMinimumVscale = 1; 5693 if (Optional<unsigned> VScale = getVScaleForTuning()) 5694 AssumedMinimumVscale = VScale.getValue(); 5695 unsigned Width = 5696 Candidate.Width.isScalable() 5697 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5698 : Candidate.Width.getFixedValue(); 5699 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5700 << " costs: " << (Candidate.Cost / Width)); 5701 if (i.isScalable()) 5702 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5703 << AssumedMinimumVscale << ")"); 5704 LLVM_DEBUG(dbgs() << ".\n"); 5705 #endif 5706 5707 if (!C.second && !ForceVectorization) { 5708 LLVM_DEBUG( 5709 dbgs() << "LV: Not considering vector loop of width " << i 5710 << " because it will not generate any vector instructions.\n"); 5711 continue; 5712 } 5713 5714 // If profitable add it to ProfitableVF list. 5715 if (isMoreProfitable(Candidate, ScalarCost)) 5716 ProfitableVFs.push_back(Candidate); 5717 5718 if (isMoreProfitable(Candidate, ChosenFactor)) 5719 ChosenFactor = Candidate; 5720 } 5721 5722 // Emit a report of VFs with invalid costs in the loop. 5723 if (!InvalidCosts.empty()) { 5724 // Group the remarks per instruction, keeping the instruction order from 5725 // InvalidCosts. 5726 std::map<Instruction *, unsigned> Numbering; 5727 unsigned I = 0; 5728 for (auto &Pair : InvalidCosts) 5729 if (!Numbering.count(Pair.first)) 5730 Numbering[Pair.first] = I++; 5731 5732 // Sort the list, first on instruction(number) then on VF. 5733 llvm::sort(InvalidCosts, 5734 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5735 if (Numbering[A.first] != Numbering[B.first]) 5736 return Numbering[A.first] < Numbering[B.first]; 5737 ElementCountComparator ECC; 5738 return ECC(A.second, B.second); 5739 }); 5740 5741 // For a list of ordered instruction-vf pairs: 5742 // [(load, vf1), (load, vf2), (store, vf1)] 5743 // Group the instructions together to emit separate remarks for: 5744 // load (vf1, vf2) 5745 // store (vf1) 5746 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5747 auto Subset = ArrayRef<InstructionVFPair>(); 5748 do { 5749 if (Subset.empty()) 5750 Subset = Tail.take_front(1); 5751 5752 Instruction *I = Subset.front().first; 5753 5754 // If the next instruction is different, or if there are no other pairs, 5755 // emit a remark for the collated subset. e.g. 5756 // [(load, vf1), (load, vf2))] 5757 // to emit: 5758 // remark: invalid costs for 'load' at VF=(vf, vf2) 5759 if (Subset == Tail || Tail[Subset.size()].first != I) { 5760 std::string OutString; 5761 raw_string_ostream OS(OutString); 5762 assert(!Subset.empty() && "Unexpected empty range"); 5763 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5764 for (auto &Pair : Subset) 5765 OS << (Pair.second == Subset.front().second ? "" : ", ") 5766 << Pair.second; 5767 OS << "):"; 5768 if (auto *CI = dyn_cast<CallInst>(I)) 5769 OS << " call to " << CI->getCalledFunction()->getName(); 5770 else 5771 OS << " " << I->getOpcodeName(); 5772 OS.flush(); 5773 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5774 Tail = Tail.drop_front(Subset.size()); 5775 Subset = {}; 5776 } else 5777 // Grow the subset by one element 5778 Subset = Tail.take_front(Subset.size() + 1); 5779 } while (!Tail.empty()); 5780 } 5781 5782 if (!EnableCondStoresVectorization && NumPredStores) { 5783 reportVectorizationFailure("There are conditional stores.", 5784 "store that is conditionally executed prevents vectorization", 5785 "ConditionalStore", ORE, TheLoop); 5786 ChosenFactor = ScalarCost; 5787 } 5788 5789 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5790 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5791 << "LV: Vectorization seems to be not beneficial, " 5792 << "but was forced by a user.\n"); 5793 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5794 return ChosenFactor; 5795 } 5796 5797 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5798 const Loop &L, ElementCount VF) const { 5799 // Cross iteration phis such as reductions need special handling and are 5800 // currently unsupported. 5801 if (any_of(L.getHeader()->phis(), 5802 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5803 return false; 5804 5805 // Phis with uses outside of the loop require special handling and are 5806 // currently unsupported. 5807 for (auto &Entry : Legal->getInductionVars()) { 5808 // Look for uses of the value of the induction at the last iteration. 5809 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5810 for (User *U : PostInc->users()) 5811 if (!L.contains(cast<Instruction>(U))) 5812 return false; 5813 // Look for uses of penultimate value of the induction. 5814 for (User *U : Entry.first->users()) 5815 if (!L.contains(cast<Instruction>(U))) 5816 return false; 5817 } 5818 5819 // Induction variables that are widened require special handling that is 5820 // currently not supported. 5821 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5822 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5823 this->isProfitableToScalarize(Entry.first, VF)); 5824 })) 5825 return false; 5826 5827 // Epilogue vectorization code has not been auditted to ensure it handles 5828 // non-latch exits properly. It may be fine, but it needs auditted and 5829 // tested. 5830 if (L.getExitingBlock() != L.getLoopLatch()) 5831 return false; 5832 5833 return true; 5834 } 5835 5836 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5837 const ElementCount VF) const { 5838 // FIXME: We need a much better cost-model to take different parameters such 5839 // as register pressure, code size increase and cost of extra branches into 5840 // account. For now we apply a very crude heuristic and only consider loops 5841 // with vectorization factors larger than a certain value. 5842 // We also consider epilogue vectorization unprofitable for targets that don't 5843 // consider interleaving beneficial (eg. MVE). 5844 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5845 return false; 5846 // FIXME: We should consider changing the threshold for scalable 5847 // vectors to take VScaleForTuning into account. 5848 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5849 return true; 5850 return false; 5851 } 5852 5853 VectorizationFactor 5854 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5855 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5856 VectorizationFactor Result = VectorizationFactor::Disabled(); 5857 if (!EnableEpilogueVectorization) { 5858 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5859 return Result; 5860 } 5861 5862 if (!isScalarEpilogueAllowed()) { 5863 LLVM_DEBUG( 5864 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5865 "allowed.\n";); 5866 return Result; 5867 } 5868 5869 // Not really a cost consideration, but check for unsupported cases here to 5870 // simplify the logic. 5871 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5872 LLVM_DEBUG( 5873 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5874 "not a supported candidate.\n";); 5875 return Result; 5876 } 5877 5878 if (EpilogueVectorizationForceVF > 1) { 5879 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5880 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5881 if (LVP.hasPlanWithVF(ForcedEC)) 5882 return {ForcedEC, 0}; 5883 else { 5884 LLVM_DEBUG( 5885 dbgs() 5886 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5887 return Result; 5888 } 5889 } 5890 5891 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5892 TheLoop->getHeader()->getParent()->hasMinSize()) { 5893 LLVM_DEBUG( 5894 dbgs() 5895 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5896 return Result; 5897 } 5898 5899 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5900 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5901 "this loop\n"); 5902 return Result; 5903 } 5904 5905 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5906 // the main loop handles 8 lanes per iteration. We could still benefit from 5907 // vectorizing the epilogue loop with VF=4. 5908 ElementCount EstimatedRuntimeVF = MainLoopVF; 5909 if (MainLoopVF.isScalable()) { 5910 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5911 if (Optional<unsigned> VScale = getVScaleForTuning()) 5912 EstimatedRuntimeVF *= VScale.getValue(); 5913 } 5914 5915 for (auto &NextVF : ProfitableVFs) 5916 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5917 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5918 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5919 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5920 LVP.hasPlanWithVF(NextVF.Width)) 5921 Result = NextVF; 5922 5923 if (Result != VectorizationFactor::Disabled()) 5924 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5925 << Result.Width << "\n";); 5926 return Result; 5927 } 5928 5929 std::pair<unsigned, unsigned> 5930 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5931 unsigned MinWidth = -1U; 5932 unsigned MaxWidth = 8; 5933 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5934 // For in-loop reductions, no element types are added to ElementTypesInLoop 5935 // if there are no loads/stores in the loop. In this case, check through the 5936 // reduction variables to determine the maximum width. 5937 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5938 // Reset MaxWidth so that we can find the smallest type used by recurrences 5939 // in the loop. 5940 MaxWidth = -1U; 5941 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5942 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5943 // When finding the min width used by the recurrence we need to account 5944 // for casts on the input operands of the recurrence. 5945 MaxWidth = std::min<unsigned>( 5946 MaxWidth, std::min<unsigned>( 5947 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5948 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5949 } 5950 } else { 5951 for (Type *T : ElementTypesInLoop) { 5952 MinWidth = std::min<unsigned>( 5953 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5954 MaxWidth = std::max<unsigned>( 5955 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5956 } 5957 } 5958 return {MinWidth, MaxWidth}; 5959 } 5960 5961 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5962 ElementTypesInLoop.clear(); 5963 // For each block. 5964 for (BasicBlock *BB : TheLoop->blocks()) { 5965 // For each instruction in the loop. 5966 for (Instruction &I : BB->instructionsWithoutDebug()) { 5967 Type *T = I.getType(); 5968 5969 // Skip ignored values. 5970 if (ValuesToIgnore.count(&I)) 5971 continue; 5972 5973 // Only examine Loads, Stores and PHINodes. 5974 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5975 continue; 5976 5977 // Examine PHI nodes that are reduction variables. Update the type to 5978 // account for the recurrence type. 5979 if (auto *PN = dyn_cast<PHINode>(&I)) { 5980 if (!Legal->isReductionVariable(PN)) 5981 continue; 5982 const RecurrenceDescriptor &RdxDesc = 5983 Legal->getReductionVars().find(PN)->second; 5984 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5985 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5986 RdxDesc.getRecurrenceType(), 5987 TargetTransformInfo::ReductionFlags())) 5988 continue; 5989 T = RdxDesc.getRecurrenceType(); 5990 } 5991 5992 // Examine the stored values. 5993 if (auto *ST = dyn_cast<StoreInst>(&I)) 5994 T = ST->getValueOperand()->getType(); 5995 5996 assert(T->isSized() && 5997 "Expected the load/store/recurrence type to be sized"); 5998 5999 ElementTypesInLoop.insert(T); 6000 } 6001 } 6002 } 6003 6004 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6005 unsigned LoopCost) { 6006 // -- The interleave heuristics -- 6007 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6008 // There are many micro-architectural considerations that we can't predict 6009 // at this level. For example, frontend pressure (on decode or fetch) due to 6010 // code size, or the number and capabilities of the execution ports. 6011 // 6012 // We use the following heuristics to select the interleave count: 6013 // 1. If the code has reductions, then we interleave to break the cross 6014 // iteration dependency. 6015 // 2. If the loop is really small, then we interleave to reduce the loop 6016 // overhead. 6017 // 3. We don't interleave if we think that we will spill registers to memory 6018 // due to the increased register pressure. 6019 6020 if (!isScalarEpilogueAllowed()) 6021 return 1; 6022 6023 // We used the distance for the interleave count. 6024 if (Legal->getMaxSafeDepDistBytes() != -1U) 6025 return 1; 6026 6027 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6028 const bool HasReductions = !Legal->getReductionVars().empty(); 6029 // Do not interleave loops with a relatively small known or estimated trip 6030 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6031 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6032 // because with the above conditions interleaving can expose ILP and break 6033 // cross iteration dependences for reductions. 6034 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6035 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6036 return 1; 6037 6038 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6039 // We divide by these constants so assume that we have at least one 6040 // instruction that uses at least one register. 6041 for (auto& pair : R.MaxLocalUsers) { 6042 pair.second = std::max(pair.second, 1U); 6043 } 6044 6045 // We calculate the interleave count using the following formula. 6046 // Subtract the number of loop invariants from the number of available 6047 // registers. These registers are used by all of the interleaved instances. 6048 // Next, divide the remaining registers by the number of registers that is 6049 // required by the loop, in order to estimate how many parallel instances 6050 // fit without causing spills. All of this is rounded down if necessary to be 6051 // a power of two. We want power of two interleave count to simplify any 6052 // addressing operations or alignment considerations. 6053 // We also want power of two interleave counts to ensure that the induction 6054 // variable of the vector loop wraps to zero, when tail is folded by masking; 6055 // this currently happens when OptForSize, in which case IC is set to 1 above. 6056 unsigned IC = UINT_MAX; 6057 6058 for (auto& pair : R.MaxLocalUsers) { 6059 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6060 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6061 << " registers of " 6062 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6063 if (VF.isScalar()) { 6064 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6065 TargetNumRegisters = ForceTargetNumScalarRegs; 6066 } else { 6067 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6068 TargetNumRegisters = ForceTargetNumVectorRegs; 6069 } 6070 unsigned MaxLocalUsers = pair.second; 6071 unsigned LoopInvariantRegs = 0; 6072 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6073 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6074 6075 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6076 // Don't count the induction variable as interleaved. 6077 if (EnableIndVarRegisterHeur) { 6078 TmpIC = 6079 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6080 std::max(1U, (MaxLocalUsers - 1))); 6081 } 6082 6083 IC = std::min(IC, TmpIC); 6084 } 6085 6086 // Clamp the interleave ranges to reasonable counts. 6087 unsigned MaxInterleaveCount = 6088 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6089 6090 // Check if the user has overridden the max. 6091 if (VF.isScalar()) { 6092 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6093 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6094 } else { 6095 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6096 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6097 } 6098 6099 // If trip count is known or estimated compile time constant, limit the 6100 // interleave count to be less than the trip count divided by VF, provided it 6101 // is at least 1. 6102 // 6103 // For scalable vectors we can't know if interleaving is beneficial. It may 6104 // not be beneficial for small loops if none of the lanes in the second vector 6105 // iterations is enabled. However, for larger loops, there is likely to be a 6106 // similar benefit as for fixed-width vectors. For now, we choose to leave 6107 // the InterleaveCount as if vscale is '1', although if some information about 6108 // the vector is known (e.g. min vector size), we can make a better decision. 6109 if (BestKnownTC) { 6110 MaxInterleaveCount = 6111 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6112 // Make sure MaxInterleaveCount is greater than 0. 6113 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6114 } 6115 6116 assert(MaxInterleaveCount > 0 && 6117 "Maximum interleave count must be greater than 0"); 6118 6119 // Clamp the calculated IC to be between the 1 and the max interleave count 6120 // that the target and trip count allows. 6121 if (IC > MaxInterleaveCount) 6122 IC = MaxInterleaveCount; 6123 else 6124 // Make sure IC is greater than 0. 6125 IC = std::max(1u, IC); 6126 6127 assert(IC > 0 && "Interleave count must be greater than 0."); 6128 6129 // If we did not calculate the cost for VF (because the user selected the VF) 6130 // then we calculate the cost of VF here. 6131 if (LoopCost == 0) { 6132 InstructionCost C = expectedCost(VF).first; 6133 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6134 LoopCost = *C.getValue(); 6135 } 6136 6137 assert(LoopCost && "Non-zero loop cost expected"); 6138 6139 // Interleave if we vectorized this loop and there is a reduction that could 6140 // benefit from interleaving. 6141 if (VF.isVector() && HasReductions) { 6142 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6143 return IC; 6144 } 6145 6146 // Note that if we've already vectorized the loop we will have done the 6147 // runtime check and so interleaving won't require further checks. 6148 bool InterleavingRequiresRuntimePointerCheck = 6149 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6150 6151 // We want to interleave small loops in order to reduce the loop overhead and 6152 // potentially expose ILP opportunities. 6153 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6154 << "LV: IC is " << IC << '\n' 6155 << "LV: VF is " << VF << '\n'); 6156 const bool AggressivelyInterleaveReductions = 6157 TTI.enableAggressiveInterleaving(HasReductions); 6158 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6159 // We assume that the cost overhead is 1 and we use the cost model 6160 // to estimate the cost of the loop and interleave until the cost of the 6161 // loop overhead is about 5% of the cost of the loop. 6162 unsigned SmallIC = 6163 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6164 6165 // Interleave until store/load ports (estimated by max interleave count) are 6166 // saturated. 6167 unsigned NumStores = Legal->getNumStores(); 6168 unsigned NumLoads = Legal->getNumLoads(); 6169 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6170 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6171 6172 // There is little point in interleaving for reductions containing selects 6173 // and compares when VF=1 since it may just create more overhead than it's 6174 // worth for loops with small trip counts. This is because we still have to 6175 // do the final reduction after the loop. 6176 bool HasSelectCmpReductions = 6177 HasReductions && 6178 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6179 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6180 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6181 RdxDesc.getRecurrenceKind()); 6182 }); 6183 if (HasSelectCmpReductions) { 6184 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6185 return 1; 6186 } 6187 6188 // If we have a scalar reduction (vector reductions are already dealt with 6189 // by this point), we can increase the critical path length if the loop 6190 // we're interleaving is inside another loop. For tree-wise reductions 6191 // set the limit to 2, and for ordered reductions it's best to disable 6192 // interleaving entirely. 6193 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6194 bool HasOrderedReductions = 6195 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6196 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6197 return RdxDesc.isOrdered(); 6198 }); 6199 if (HasOrderedReductions) { 6200 LLVM_DEBUG( 6201 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6202 return 1; 6203 } 6204 6205 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6206 SmallIC = std::min(SmallIC, F); 6207 StoresIC = std::min(StoresIC, F); 6208 LoadsIC = std::min(LoadsIC, F); 6209 } 6210 6211 if (EnableLoadStoreRuntimeInterleave && 6212 std::max(StoresIC, LoadsIC) > SmallIC) { 6213 LLVM_DEBUG( 6214 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6215 return std::max(StoresIC, LoadsIC); 6216 } 6217 6218 // If there are scalar reductions and TTI has enabled aggressive 6219 // interleaving for reductions, we will interleave to expose ILP. 6220 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6221 AggressivelyInterleaveReductions) { 6222 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6223 // Interleave no less than SmallIC but not as aggressive as the normal IC 6224 // to satisfy the rare situation when resources are too limited. 6225 return std::max(IC / 2, SmallIC); 6226 } else { 6227 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6228 return SmallIC; 6229 } 6230 } 6231 6232 // Interleave if this is a large loop (small loops are already dealt with by 6233 // this point) that could benefit from interleaving. 6234 if (AggressivelyInterleaveReductions) { 6235 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6236 return IC; 6237 } 6238 6239 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6240 return 1; 6241 } 6242 6243 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6244 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6245 // This function calculates the register usage by measuring the highest number 6246 // of values that are alive at a single location. Obviously, this is a very 6247 // rough estimation. We scan the loop in a topological order in order and 6248 // assign a number to each instruction. We use RPO to ensure that defs are 6249 // met before their users. We assume that each instruction that has in-loop 6250 // users starts an interval. We record every time that an in-loop value is 6251 // used, so we have a list of the first and last occurrences of each 6252 // instruction. Next, we transpose this data structure into a multi map that 6253 // holds the list of intervals that *end* at a specific location. This multi 6254 // map allows us to perform a linear search. We scan the instructions linearly 6255 // and record each time that a new interval starts, by placing it in a set. 6256 // If we find this value in the multi-map then we remove it from the set. 6257 // The max register usage is the maximum size of the set. 6258 // We also search for instructions that are defined outside the loop, but are 6259 // used inside the loop. We need this number separately from the max-interval 6260 // usage number because when we unroll, loop-invariant values do not take 6261 // more register. 6262 LoopBlocksDFS DFS(TheLoop); 6263 DFS.perform(LI); 6264 6265 RegisterUsage RU; 6266 6267 // Each 'key' in the map opens a new interval. The values 6268 // of the map are the index of the 'last seen' usage of the 6269 // instruction that is the key. 6270 using IntervalMap = DenseMap<Instruction *, unsigned>; 6271 6272 // Maps instruction to its index. 6273 SmallVector<Instruction *, 64> IdxToInstr; 6274 // Marks the end of each interval. 6275 IntervalMap EndPoint; 6276 // Saves the list of instruction indices that are used in the loop. 6277 SmallPtrSet<Instruction *, 8> Ends; 6278 // Saves the list of values that are used in the loop but are 6279 // defined outside the loop, such as arguments and constants. 6280 SmallPtrSet<Value *, 8> LoopInvariants; 6281 6282 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6283 for (Instruction &I : BB->instructionsWithoutDebug()) { 6284 IdxToInstr.push_back(&I); 6285 6286 // Save the end location of each USE. 6287 for (Value *U : I.operands()) { 6288 auto *Instr = dyn_cast<Instruction>(U); 6289 6290 // Ignore non-instruction values such as arguments, constants, etc. 6291 if (!Instr) 6292 continue; 6293 6294 // If this instruction is outside the loop then record it and continue. 6295 if (!TheLoop->contains(Instr)) { 6296 LoopInvariants.insert(Instr); 6297 continue; 6298 } 6299 6300 // Overwrite previous end points. 6301 EndPoint[Instr] = IdxToInstr.size(); 6302 Ends.insert(Instr); 6303 } 6304 } 6305 } 6306 6307 // Saves the list of intervals that end with the index in 'key'. 6308 using InstrList = SmallVector<Instruction *, 2>; 6309 DenseMap<unsigned, InstrList> TransposeEnds; 6310 6311 // Transpose the EndPoints to a list of values that end at each index. 6312 for (auto &Interval : EndPoint) 6313 TransposeEnds[Interval.second].push_back(Interval.first); 6314 6315 SmallPtrSet<Instruction *, 8> OpenIntervals; 6316 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6317 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6318 6319 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6320 6321 // A lambda that gets the register usage for the given type and VF. 6322 const auto &TTICapture = TTI; 6323 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6324 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6325 return 0; 6326 InstructionCost::CostType RegUsage = 6327 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6328 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6329 "Nonsensical values for register usage."); 6330 return RegUsage; 6331 }; 6332 6333 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6334 Instruction *I = IdxToInstr[i]; 6335 6336 // Remove all of the instructions that end at this location. 6337 InstrList &List = TransposeEnds[i]; 6338 for (Instruction *ToRemove : List) 6339 OpenIntervals.erase(ToRemove); 6340 6341 // Ignore instructions that are never used within the loop. 6342 if (!Ends.count(I)) 6343 continue; 6344 6345 // Skip ignored values. 6346 if (ValuesToIgnore.count(I)) 6347 continue; 6348 6349 // For each VF find the maximum usage of registers. 6350 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6351 // Count the number of live intervals. 6352 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6353 6354 if (VFs[j].isScalar()) { 6355 for (auto Inst : OpenIntervals) { 6356 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6357 if (RegUsage.find(ClassID) == RegUsage.end()) 6358 RegUsage[ClassID] = 1; 6359 else 6360 RegUsage[ClassID] += 1; 6361 } 6362 } else { 6363 collectUniformsAndScalars(VFs[j]); 6364 for (auto Inst : OpenIntervals) { 6365 // Skip ignored values for VF > 1. 6366 if (VecValuesToIgnore.count(Inst)) 6367 continue; 6368 if (isScalarAfterVectorization(Inst, VFs[j])) { 6369 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6370 if (RegUsage.find(ClassID) == RegUsage.end()) 6371 RegUsage[ClassID] = 1; 6372 else 6373 RegUsage[ClassID] += 1; 6374 } else { 6375 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6376 if (RegUsage.find(ClassID) == RegUsage.end()) 6377 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6378 else 6379 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6380 } 6381 } 6382 } 6383 6384 for (auto& pair : RegUsage) { 6385 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6386 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6387 else 6388 MaxUsages[j][pair.first] = pair.second; 6389 } 6390 } 6391 6392 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6393 << OpenIntervals.size() << '\n'); 6394 6395 // Add the current instruction to the list of open intervals. 6396 OpenIntervals.insert(I); 6397 } 6398 6399 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6400 SmallMapVector<unsigned, unsigned, 4> Invariant; 6401 6402 for (auto Inst : LoopInvariants) { 6403 unsigned Usage = 6404 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6405 unsigned ClassID = 6406 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6407 if (Invariant.find(ClassID) == Invariant.end()) 6408 Invariant[ClassID] = Usage; 6409 else 6410 Invariant[ClassID] += Usage; 6411 } 6412 6413 LLVM_DEBUG({ 6414 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6415 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6416 << " item\n"; 6417 for (const auto &pair : MaxUsages[i]) { 6418 dbgs() << "LV(REG): RegisterClass: " 6419 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6420 << " registers\n"; 6421 } 6422 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6423 << " item\n"; 6424 for (const auto &pair : Invariant) { 6425 dbgs() << "LV(REG): RegisterClass: " 6426 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6427 << " registers\n"; 6428 } 6429 }); 6430 6431 RU.LoopInvariantRegs = Invariant; 6432 RU.MaxLocalUsers = MaxUsages[i]; 6433 RUs[i] = RU; 6434 } 6435 6436 return RUs; 6437 } 6438 6439 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6440 ElementCount VF) { 6441 // TODO: Cost model for emulated masked load/store is completely 6442 // broken. This hack guides the cost model to use an artificially 6443 // high enough value to practically disable vectorization with such 6444 // operations, except where previously deployed legality hack allowed 6445 // using very low cost values. This is to avoid regressions coming simply 6446 // from moving "masked load/store" check from legality to cost model. 6447 // Masked Load/Gather emulation was previously never allowed. 6448 // Limited number of Masked Store/Scatter emulation was allowed. 6449 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6450 return isa<LoadInst>(I) || 6451 (isa<StoreInst>(I) && 6452 NumPredStores > NumberOfStoresToPredicate); 6453 } 6454 6455 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6456 // If we aren't vectorizing the loop, or if we've already collected the 6457 // instructions to scalarize, there's nothing to do. Collection may already 6458 // have occurred if we have a user-selected VF and are now computing the 6459 // expected cost for interleaving. 6460 if (VF.isScalar() || VF.isZero() || 6461 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6462 return; 6463 6464 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6465 // not profitable to scalarize any instructions, the presence of VF in the 6466 // map will indicate that we've analyzed it already. 6467 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6468 6469 // Find all the instructions that are scalar with predication in the loop and 6470 // determine if it would be better to not if-convert the blocks they are in. 6471 // If so, we also record the instructions to scalarize. 6472 for (BasicBlock *BB : TheLoop->blocks()) { 6473 if (!blockNeedsPredicationForAnyReason(BB)) 6474 continue; 6475 for (Instruction &I : *BB) 6476 if (isScalarWithPredication(&I, VF)) { 6477 ScalarCostsTy ScalarCosts; 6478 // Do not apply discount if scalable, because that would lead to 6479 // invalid scalarization costs. 6480 // Do not apply discount logic if hacked cost is needed 6481 // for emulated masked memrefs. 6482 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6483 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6484 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6485 // Remember that BB will remain after vectorization. 6486 PredicatedBBsAfterVectorization.insert(BB); 6487 } 6488 } 6489 } 6490 6491 int LoopVectorizationCostModel::computePredInstDiscount( 6492 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6493 assert(!isUniformAfterVectorization(PredInst, VF) && 6494 "Instruction marked uniform-after-vectorization will be predicated"); 6495 6496 // Initialize the discount to zero, meaning that the scalar version and the 6497 // vector version cost the same. 6498 InstructionCost Discount = 0; 6499 6500 // Holds instructions to analyze. The instructions we visit are mapped in 6501 // ScalarCosts. Those instructions are the ones that would be scalarized if 6502 // we find that the scalar version costs less. 6503 SmallVector<Instruction *, 8> Worklist; 6504 6505 // Returns true if the given instruction can be scalarized. 6506 auto canBeScalarized = [&](Instruction *I) -> bool { 6507 // We only attempt to scalarize instructions forming a single-use chain 6508 // from the original predicated block that would otherwise be vectorized. 6509 // Although not strictly necessary, we give up on instructions we know will 6510 // already be scalar to avoid traversing chains that are unlikely to be 6511 // beneficial. 6512 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6513 isScalarAfterVectorization(I, VF)) 6514 return false; 6515 6516 // If the instruction is scalar with predication, it will be analyzed 6517 // separately. We ignore it within the context of PredInst. 6518 if (isScalarWithPredication(I, VF)) 6519 return false; 6520 6521 // If any of the instruction's operands are uniform after vectorization, 6522 // the instruction cannot be scalarized. This prevents, for example, a 6523 // masked load from being scalarized. 6524 // 6525 // We assume we will only emit a value for lane zero of an instruction 6526 // marked uniform after vectorization, rather than VF identical values. 6527 // Thus, if we scalarize an instruction that uses a uniform, we would 6528 // create uses of values corresponding to the lanes we aren't emitting code 6529 // for. This behavior can be changed by allowing getScalarValue to clone 6530 // the lane zero values for uniforms rather than asserting. 6531 for (Use &U : I->operands()) 6532 if (auto *J = dyn_cast<Instruction>(U.get())) 6533 if (isUniformAfterVectorization(J, VF)) 6534 return false; 6535 6536 // Otherwise, we can scalarize the instruction. 6537 return true; 6538 }; 6539 6540 // Compute the expected cost discount from scalarizing the entire expression 6541 // feeding the predicated instruction. We currently only consider expressions 6542 // that are single-use instruction chains. 6543 Worklist.push_back(PredInst); 6544 while (!Worklist.empty()) { 6545 Instruction *I = Worklist.pop_back_val(); 6546 6547 // If we've already analyzed the instruction, there's nothing to do. 6548 if (ScalarCosts.find(I) != ScalarCosts.end()) 6549 continue; 6550 6551 // Compute the cost of the vector instruction. Note that this cost already 6552 // includes the scalarization overhead of the predicated instruction. 6553 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6554 6555 // Compute the cost of the scalarized instruction. This cost is the cost of 6556 // the instruction as if it wasn't if-converted and instead remained in the 6557 // predicated block. We will scale this cost by block probability after 6558 // computing the scalarization overhead. 6559 InstructionCost ScalarCost = 6560 VF.getFixedValue() * 6561 getInstructionCost(I, ElementCount::getFixed(1)).first; 6562 6563 // Compute the scalarization overhead of needed insertelement instructions 6564 // and phi nodes. 6565 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6566 ScalarCost += TTI.getScalarizationOverhead( 6567 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6568 APInt::getAllOnes(VF.getFixedValue()), true, false); 6569 ScalarCost += 6570 VF.getFixedValue() * 6571 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6572 } 6573 6574 // Compute the scalarization overhead of needed extractelement 6575 // instructions. For each of the instruction's operands, if the operand can 6576 // be scalarized, add it to the worklist; otherwise, account for the 6577 // overhead. 6578 for (Use &U : I->operands()) 6579 if (auto *J = dyn_cast<Instruction>(U.get())) { 6580 assert(VectorType::isValidElementType(J->getType()) && 6581 "Instruction has non-scalar type"); 6582 if (canBeScalarized(J)) 6583 Worklist.push_back(J); 6584 else if (needsExtract(J, VF)) { 6585 ScalarCost += TTI.getScalarizationOverhead( 6586 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6587 APInt::getAllOnes(VF.getFixedValue()), false, true); 6588 } 6589 } 6590 6591 // Scale the total scalar cost by block probability. 6592 ScalarCost /= getReciprocalPredBlockProb(); 6593 6594 // Compute the discount. A non-negative discount means the vector version 6595 // of the instruction costs more, and scalarizing would be beneficial. 6596 Discount += VectorCost - ScalarCost; 6597 ScalarCosts[I] = ScalarCost; 6598 } 6599 6600 return *Discount.getValue(); 6601 } 6602 6603 LoopVectorizationCostModel::VectorizationCostTy 6604 LoopVectorizationCostModel::expectedCost( 6605 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6606 VectorizationCostTy Cost; 6607 6608 // For each block. 6609 for (BasicBlock *BB : TheLoop->blocks()) { 6610 VectorizationCostTy BlockCost; 6611 6612 // For each instruction in the old loop. 6613 for (Instruction &I : BB->instructionsWithoutDebug()) { 6614 // Skip ignored values. 6615 if (ValuesToIgnore.count(&I) || 6616 (VF.isVector() && VecValuesToIgnore.count(&I))) 6617 continue; 6618 6619 VectorizationCostTy C = getInstructionCost(&I, VF); 6620 6621 // Check if we should override the cost. 6622 if (C.first.isValid() && 6623 ForceTargetInstructionCost.getNumOccurrences() > 0) 6624 C.first = InstructionCost(ForceTargetInstructionCost); 6625 6626 // Keep a list of instructions with invalid costs. 6627 if (Invalid && !C.first.isValid()) 6628 Invalid->emplace_back(&I, VF); 6629 6630 BlockCost.first += C.first; 6631 BlockCost.second |= C.second; 6632 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6633 << " for VF " << VF << " For instruction: " << I 6634 << '\n'); 6635 } 6636 6637 // If we are vectorizing a predicated block, it will have been 6638 // if-converted. This means that the block's instructions (aside from 6639 // stores and instructions that may divide by zero) will now be 6640 // unconditionally executed. For the scalar case, we may not always execute 6641 // the predicated block, if it is an if-else block. Thus, scale the block's 6642 // cost by the probability of executing it. blockNeedsPredication from 6643 // Legal is used so as to not include all blocks in tail folded loops. 6644 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6645 BlockCost.first /= getReciprocalPredBlockProb(); 6646 6647 Cost.first += BlockCost.first; 6648 Cost.second |= BlockCost.second; 6649 } 6650 6651 return Cost; 6652 } 6653 6654 /// Gets Address Access SCEV after verifying that the access pattern 6655 /// is loop invariant except the induction variable dependence. 6656 /// 6657 /// This SCEV can be sent to the Target in order to estimate the address 6658 /// calculation cost. 6659 static const SCEV *getAddressAccessSCEV( 6660 Value *Ptr, 6661 LoopVectorizationLegality *Legal, 6662 PredicatedScalarEvolution &PSE, 6663 const Loop *TheLoop) { 6664 6665 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6666 if (!Gep) 6667 return nullptr; 6668 6669 // We are looking for a gep with all loop invariant indices except for one 6670 // which should be an induction variable. 6671 auto SE = PSE.getSE(); 6672 unsigned NumOperands = Gep->getNumOperands(); 6673 for (unsigned i = 1; i < NumOperands; ++i) { 6674 Value *Opd = Gep->getOperand(i); 6675 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6676 !Legal->isInductionVariable(Opd)) 6677 return nullptr; 6678 } 6679 6680 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6681 return PSE.getSCEV(Ptr); 6682 } 6683 6684 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6685 return Legal->hasStride(I->getOperand(0)) || 6686 Legal->hasStride(I->getOperand(1)); 6687 } 6688 6689 InstructionCost 6690 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6691 ElementCount VF) { 6692 assert(VF.isVector() && 6693 "Scalarization cost of instruction implies vectorization."); 6694 if (VF.isScalable()) 6695 return InstructionCost::getInvalid(); 6696 6697 Type *ValTy = getLoadStoreType(I); 6698 auto SE = PSE.getSE(); 6699 6700 unsigned AS = getLoadStoreAddressSpace(I); 6701 Value *Ptr = getLoadStorePointerOperand(I); 6702 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6703 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6704 // that it is being called from this specific place. 6705 6706 // Figure out whether the access is strided and get the stride value 6707 // if it's known in compile time 6708 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6709 6710 // Get the cost of the scalar memory instruction and address computation. 6711 InstructionCost Cost = 6712 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6713 6714 // Don't pass *I here, since it is scalar but will actually be part of a 6715 // vectorized loop where the user of it is a vectorized instruction. 6716 const Align Alignment = getLoadStoreAlignment(I); 6717 Cost += VF.getKnownMinValue() * 6718 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6719 AS, TTI::TCK_RecipThroughput); 6720 6721 // Get the overhead of the extractelement and insertelement instructions 6722 // we might create due to scalarization. 6723 Cost += getScalarizationOverhead(I, VF); 6724 6725 // If we have a predicated load/store, it will need extra i1 extracts and 6726 // conditional branches, but may not be executed for each vector lane. Scale 6727 // the cost by the probability of executing the predicated block. 6728 if (isPredicatedInst(I, VF)) { 6729 Cost /= getReciprocalPredBlockProb(); 6730 6731 // Add the cost of an i1 extract and a branch 6732 auto *Vec_i1Ty = 6733 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6734 Cost += TTI.getScalarizationOverhead( 6735 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6736 /*Insert=*/false, /*Extract=*/true); 6737 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6738 6739 if (useEmulatedMaskMemRefHack(I, VF)) 6740 // Artificially setting to a high enough value to practically disable 6741 // vectorization with such operations. 6742 Cost = 3000000; 6743 } 6744 6745 return Cost; 6746 } 6747 6748 InstructionCost 6749 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6750 ElementCount VF) { 6751 Type *ValTy = getLoadStoreType(I); 6752 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6753 Value *Ptr = getLoadStorePointerOperand(I); 6754 unsigned AS = getLoadStoreAddressSpace(I); 6755 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6756 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6757 6758 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6759 "Stride should be 1 or -1 for consecutive memory access"); 6760 const Align Alignment = getLoadStoreAlignment(I); 6761 InstructionCost Cost = 0; 6762 if (Legal->isMaskRequired(I)) 6763 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6764 CostKind); 6765 else 6766 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6767 CostKind, I); 6768 6769 bool Reverse = ConsecutiveStride < 0; 6770 if (Reverse) 6771 Cost += 6772 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6773 return Cost; 6774 } 6775 6776 InstructionCost 6777 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6778 ElementCount VF) { 6779 assert(Legal->isUniformMemOp(*I)); 6780 6781 Type *ValTy = getLoadStoreType(I); 6782 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6783 const Align Alignment = getLoadStoreAlignment(I); 6784 unsigned AS = getLoadStoreAddressSpace(I); 6785 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6786 if (isa<LoadInst>(I)) { 6787 return TTI.getAddressComputationCost(ValTy) + 6788 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6789 CostKind) + 6790 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6791 } 6792 StoreInst *SI = cast<StoreInst>(I); 6793 6794 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6795 return TTI.getAddressComputationCost(ValTy) + 6796 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6797 CostKind) + 6798 (isLoopInvariantStoreValue 6799 ? 0 6800 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6801 VF.getKnownMinValue() - 1)); 6802 } 6803 6804 InstructionCost 6805 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6806 ElementCount VF) { 6807 Type *ValTy = getLoadStoreType(I); 6808 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6809 const Align Alignment = getLoadStoreAlignment(I); 6810 const Value *Ptr = getLoadStorePointerOperand(I); 6811 6812 return TTI.getAddressComputationCost(VectorTy) + 6813 TTI.getGatherScatterOpCost( 6814 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6815 TargetTransformInfo::TCK_RecipThroughput, I); 6816 } 6817 6818 InstructionCost 6819 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6820 ElementCount VF) { 6821 // TODO: Once we have support for interleaving with scalable vectors 6822 // we can calculate the cost properly here. 6823 if (VF.isScalable()) 6824 return InstructionCost::getInvalid(); 6825 6826 Type *ValTy = getLoadStoreType(I); 6827 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6828 unsigned AS = getLoadStoreAddressSpace(I); 6829 6830 auto Group = getInterleavedAccessGroup(I); 6831 assert(Group && "Fail to get an interleaved access group."); 6832 6833 unsigned InterleaveFactor = Group->getFactor(); 6834 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6835 6836 // Holds the indices of existing members in the interleaved group. 6837 SmallVector<unsigned, 4> Indices; 6838 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6839 if (Group->getMember(IF)) 6840 Indices.push_back(IF); 6841 6842 // Calculate the cost of the whole interleaved group. 6843 bool UseMaskForGaps = 6844 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6845 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6846 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6847 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6848 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6849 6850 if (Group->isReverse()) { 6851 // TODO: Add support for reversed masked interleaved access. 6852 assert(!Legal->isMaskRequired(I) && 6853 "Reverse masked interleaved access not supported."); 6854 Cost += 6855 Group->getNumMembers() * 6856 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6857 } 6858 return Cost; 6859 } 6860 6861 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6862 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6863 using namespace llvm::PatternMatch; 6864 // Early exit for no inloop reductions 6865 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6866 return None; 6867 auto *VectorTy = cast<VectorType>(Ty); 6868 6869 // We are looking for a pattern of, and finding the minimal acceptable cost: 6870 // reduce(mul(ext(A), ext(B))) or 6871 // reduce(mul(A, B)) or 6872 // reduce(ext(A)) or 6873 // reduce(A). 6874 // The basic idea is that we walk down the tree to do that, finding the root 6875 // reduction instruction in InLoopReductionImmediateChains. From there we find 6876 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6877 // of the components. If the reduction cost is lower then we return it for the 6878 // reduction instruction and 0 for the other instructions in the pattern. If 6879 // it is not we return an invalid cost specifying the orignal cost method 6880 // should be used. 6881 Instruction *RetI = I; 6882 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6883 if (!RetI->hasOneUser()) 6884 return None; 6885 RetI = RetI->user_back(); 6886 } 6887 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6888 RetI->user_back()->getOpcode() == Instruction::Add) { 6889 if (!RetI->hasOneUser()) 6890 return None; 6891 RetI = RetI->user_back(); 6892 } 6893 6894 // Test if the found instruction is a reduction, and if not return an invalid 6895 // cost specifying the parent to use the original cost modelling. 6896 if (!InLoopReductionImmediateChains.count(RetI)) 6897 return None; 6898 6899 // Find the reduction this chain is a part of and calculate the basic cost of 6900 // the reduction on its own. 6901 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6902 Instruction *ReductionPhi = LastChain; 6903 while (!isa<PHINode>(ReductionPhi)) 6904 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6905 6906 const RecurrenceDescriptor &RdxDesc = 6907 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6908 6909 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6910 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6911 6912 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6913 // normal fmul instruction to the cost of the fadd reduction. 6914 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6915 BaseCost += 6916 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6917 6918 // If we're using ordered reductions then we can just return the base cost 6919 // here, since getArithmeticReductionCost calculates the full ordered 6920 // reduction cost when FP reassociation is not allowed. 6921 if (useOrderedReductions(RdxDesc)) 6922 return BaseCost; 6923 6924 // Get the operand that was not the reduction chain and match it to one of the 6925 // patterns, returning the better cost if it is found. 6926 Instruction *RedOp = RetI->getOperand(1) == LastChain 6927 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6928 : dyn_cast<Instruction>(RetI->getOperand(1)); 6929 6930 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6931 6932 Instruction *Op0, *Op1; 6933 if (RedOp && 6934 match(RedOp, 6935 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6936 match(Op0, m_ZExtOrSExt(m_Value())) && 6937 Op0->getOpcode() == Op1->getOpcode() && 6938 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6939 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6940 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6941 6942 // Matched reduce(ext(mul(ext(A), ext(B))) 6943 // Note that the extend opcodes need to all match, or if A==B they will have 6944 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6945 // which is equally fine. 6946 bool IsUnsigned = isa<ZExtInst>(Op0); 6947 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6948 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6949 6950 InstructionCost ExtCost = 6951 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6952 TTI::CastContextHint::None, CostKind, Op0); 6953 InstructionCost MulCost = 6954 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6955 InstructionCost Ext2Cost = 6956 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6957 TTI::CastContextHint::None, CostKind, RedOp); 6958 6959 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6960 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6961 CostKind); 6962 6963 if (RedCost.isValid() && 6964 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6965 return I == RetI ? RedCost : 0; 6966 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6967 !TheLoop->isLoopInvariant(RedOp)) { 6968 // Matched reduce(ext(A)) 6969 bool IsUnsigned = isa<ZExtInst>(RedOp); 6970 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6971 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6972 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6973 CostKind); 6974 6975 InstructionCost ExtCost = 6976 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6977 TTI::CastContextHint::None, CostKind, RedOp); 6978 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6979 return I == RetI ? RedCost : 0; 6980 } else if (RedOp && 6981 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6982 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6983 Op0->getOpcode() == Op1->getOpcode() && 6984 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6985 bool IsUnsigned = isa<ZExtInst>(Op0); 6986 Type *Op0Ty = Op0->getOperand(0)->getType(); 6987 Type *Op1Ty = Op1->getOperand(0)->getType(); 6988 Type *LargestOpTy = 6989 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6990 : Op0Ty; 6991 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6992 6993 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6994 // different sizes. We take the largest type as the ext to reduce, and add 6995 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6996 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6997 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6998 TTI::CastContextHint::None, CostKind, Op0); 6999 InstructionCost ExtCost1 = TTI.getCastInstrCost( 7000 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 7001 TTI::CastContextHint::None, CostKind, Op1); 7002 InstructionCost MulCost = 7003 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7004 7005 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7006 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7007 CostKind); 7008 InstructionCost ExtraExtCost = 0; 7009 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 7010 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 7011 ExtraExtCost = TTI.getCastInstrCost( 7012 ExtraExtOp->getOpcode(), ExtType, 7013 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 7014 TTI::CastContextHint::None, CostKind, ExtraExtOp); 7015 } 7016 7017 if (RedCost.isValid() && 7018 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 7019 return I == RetI ? RedCost : 0; 7020 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7021 // Matched reduce(mul()) 7022 InstructionCost MulCost = 7023 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7024 7025 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7026 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7027 CostKind); 7028 7029 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7030 return I == RetI ? RedCost : 0; 7031 } 7032 } 7033 7034 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7035 } 7036 7037 InstructionCost 7038 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7039 ElementCount VF) { 7040 // Calculate scalar cost only. Vectorization cost should be ready at this 7041 // moment. 7042 if (VF.isScalar()) { 7043 Type *ValTy = getLoadStoreType(I); 7044 const Align Alignment = getLoadStoreAlignment(I); 7045 unsigned AS = getLoadStoreAddressSpace(I); 7046 7047 return TTI.getAddressComputationCost(ValTy) + 7048 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7049 TTI::TCK_RecipThroughput, I); 7050 } 7051 return getWideningCost(I, VF); 7052 } 7053 7054 LoopVectorizationCostModel::VectorizationCostTy 7055 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7056 ElementCount VF) { 7057 // If we know that this instruction will remain uniform, check the cost of 7058 // the scalar version. 7059 if (isUniformAfterVectorization(I, VF)) 7060 VF = ElementCount::getFixed(1); 7061 7062 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7063 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7064 7065 // Forced scalars do not have any scalarization overhead. 7066 auto ForcedScalar = ForcedScalars.find(VF); 7067 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7068 auto InstSet = ForcedScalar->second; 7069 if (InstSet.count(I)) 7070 return VectorizationCostTy( 7071 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7072 VF.getKnownMinValue()), 7073 false); 7074 } 7075 7076 Type *VectorTy; 7077 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7078 7079 bool TypeNotScalarized = false; 7080 if (VF.isVector() && VectorTy->isVectorTy()) { 7081 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7082 if (NumParts) 7083 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7084 else 7085 C = InstructionCost::getInvalid(); 7086 } 7087 return VectorizationCostTy(C, TypeNotScalarized); 7088 } 7089 7090 InstructionCost 7091 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7092 ElementCount VF) const { 7093 7094 // There is no mechanism yet to create a scalable scalarization loop, 7095 // so this is currently Invalid. 7096 if (VF.isScalable()) 7097 return InstructionCost::getInvalid(); 7098 7099 if (VF.isScalar()) 7100 return 0; 7101 7102 InstructionCost Cost = 0; 7103 Type *RetTy = ToVectorTy(I->getType(), VF); 7104 if (!RetTy->isVoidTy() && 7105 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7106 Cost += TTI.getScalarizationOverhead( 7107 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7108 false); 7109 7110 // Some targets keep addresses scalar. 7111 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7112 return Cost; 7113 7114 // Some targets support efficient element stores. 7115 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7116 return Cost; 7117 7118 // Collect operands to consider. 7119 CallInst *CI = dyn_cast<CallInst>(I); 7120 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7121 7122 // Skip operands that do not require extraction/scalarization and do not incur 7123 // any overhead. 7124 SmallVector<Type *> Tys; 7125 for (auto *V : filterExtractingOperands(Ops, VF)) 7126 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7127 return Cost + TTI.getOperandsScalarizationOverhead( 7128 filterExtractingOperands(Ops, VF), Tys); 7129 } 7130 7131 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7132 if (VF.isScalar()) 7133 return; 7134 NumPredStores = 0; 7135 for (BasicBlock *BB : TheLoop->blocks()) { 7136 // For each instruction in the old loop. 7137 for (Instruction &I : *BB) { 7138 Value *Ptr = getLoadStorePointerOperand(&I); 7139 if (!Ptr) 7140 continue; 7141 7142 // TODO: We should generate better code and update the cost model for 7143 // predicated uniform stores. Today they are treated as any other 7144 // predicated store (see added test cases in 7145 // invariant-store-vectorization.ll). 7146 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7147 NumPredStores++; 7148 7149 if (Legal->isUniformMemOp(I)) { 7150 // TODO: Avoid replicating loads and stores instead of 7151 // relying on instcombine to remove them. 7152 // Load: Scalar load + broadcast 7153 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7154 InstructionCost Cost; 7155 if (isa<StoreInst>(&I) && VF.isScalable() && 7156 isLegalGatherOrScatter(&I, VF)) { 7157 Cost = getGatherScatterCost(&I, VF); 7158 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7159 } else { 7160 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7161 "Cannot yet scalarize uniform stores"); 7162 Cost = getUniformMemOpCost(&I, VF); 7163 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7164 } 7165 continue; 7166 } 7167 7168 // We assume that widening is the best solution when possible. 7169 if (memoryInstructionCanBeWidened(&I, VF)) { 7170 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7171 int ConsecutiveStride = Legal->isConsecutivePtr( 7172 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7173 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7174 "Expected consecutive stride."); 7175 InstWidening Decision = 7176 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7177 setWideningDecision(&I, VF, Decision, Cost); 7178 continue; 7179 } 7180 7181 // Choose between Interleaving, Gather/Scatter or Scalarization. 7182 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7183 unsigned NumAccesses = 1; 7184 if (isAccessInterleaved(&I)) { 7185 auto Group = getInterleavedAccessGroup(&I); 7186 assert(Group && "Fail to get an interleaved access group."); 7187 7188 // Make one decision for the whole group. 7189 if (getWideningDecision(&I, VF) != CM_Unknown) 7190 continue; 7191 7192 NumAccesses = Group->getNumMembers(); 7193 if (interleavedAccessCanBeWidened(&I, VF)) 7194 InterleaveCost = getInterleaveGroupCost(&I, VF); 7195 } 7196 7197 InstructionCost GatherScatterCost = 7198 isLegalGatherOrScatter(&I, VF) 7199 ? getGatherScatterCost(&I, VF) * NumAccesses 7200 : InstructionCost::getInvalid(); 7201 7202 InstructionCost ScalarizationCost = 7203 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7204 7205 // Choose better solution for the current VF, 7206 // write down this decision and use it during vectorization. 7207 InstructionCost Cost; 7208 InstWidening Decision; 7209 if (InterleaveCost <= GatherScatterCost && 7210 InterleaveCost < ScalarizationCost) { 7211 Decision = CM_Interleave; 7212 Cost = InterleaveCost; 7213 } else if (GatherScatterCost < ScalarizationCost) { 7214 Decision = CM_GatherScatter; 7215 Cost = GatherScatterCost; 7216 } else { 7217 Decision = CM_Scalarize; 7218 Cost = ScalarizationCost; 7219 } 7220 // If the instructions belongs to an interleave group, the whole group 7221 // receives the same decision. The whole group receives the cost, but 7222 // the cost will actually be assigned to one instruction. 7223 if (auto Group = getInterleavedAccessGroup(&I)) 7224 setWideningDecision(Group, VF, Decision, Cost); 7225 else 7226 setWideningDecision(&I, VF, Decision, Cost); 7227 } 7228 } 7229 7230 // Make sure that any load of address and any other address computation 7231 // remains scalar unless there is gather/scatter support. This avoids 7232 // inevitable extracts into address registers, and also has the benefit of 7233 // activating LSR more, since that pass can't optimize vectorized 7234 // addresses. 7235 if (TTI.prefersVectorizedAddressing()) 7236 return; 7237 7238 // Start with all scalar pointer uses. 7239 SmallPtrSet<Instruction *, 8> AddrDefs; 7240 for (BasicBlock *BB : TheLoop->blocks()) 7241 for (Instruction &I : *BB) { 7242 Instruction *PtrDef = 7243 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7244 if (PtrDef && TheLoop->contains(PtrDef) && 7245 getWideningDecision(&I, VF) != CM_GatherScatter) 7246 AddrDefs.insert(PtrDef); 7247 } 7248 7249 // Add all instructions used to generate the addresses. 7250 SmallVector<Instruction *, 4> Worklist; 7251 append_range(Worklist, AddrDefs); 7252 while (!Worklist.empty()) { 7253 Instruction *I = Worklist.pop_back_val(); 7254 for (auto &Op : I->operands()) 7255 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7256 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7257 AddrDefs.insert(InstOp).second) 7258 Worklist.push_back(InstOp); 7259 } 7260 7261 for (auto *I : AddrDefs) { 7262 if (isa<LoadInst>(I)) { 7263 // Setting the desired widening decision should ideally be handled in 7264 // by cost functions, but since this involves the task of finding out 7265 // if the loaded register is involved in an address computation, it is 7266 // instead changed here when we know this is the case. 7267 InstWidening Decision = getWideningDecision(I, VF); 7268 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7269 // Scalarize a widened load of address. 7270 setWideningDecision( 7271 I, VF, CM_Scalarize, 7272 (VF.getKnownMinValue() * 7273 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7274 else if (auto Group = getInterleavedAccessGroup(I)) { 7275 // Scalarize an interleave group of address loads. 7276 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7277 if (Instruction *Member = Group->getMember(I)) 7278 setWideningDecision( 7279 Member, VF, CM_Scalarize, 7280 (VF.getKnownMinValue() * 7281 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7282 } 7283 } 7284 } else 7285 // Make sure I gets scalarized and a cost estimate without 7286 // scalarization overhead. 7287 ForcedScalars[VF].insert(I); 7288 } 7289 } 7290 7291 InstructionCost 7292 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7293 Type *&VectorTy) { 7294 Type *RetTy = I->getType(); 7295 if (canTruncateToMinimalBitwidth(I, VF)) 7296 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7297 auto SE = PSE.getSE(); 7298 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7299 7300 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7301 ElementCount VF) -> bool { 7302 if (VF.isScalar()) 7303 return true; 7304 7305 auto Scalarized = InstsToScalarize.find(VF); 7306 assert(Scalarized != InstsToScalarize.end() && 7307 "VF not yet analyzed for scalarization profitability"); 7308 return !Scalarized->second.count(I) && 7309 llvm::all_of(I->users(), [&](User *U) { 7310 auto *UI = cast<Instruction>(U); 7311 return !Scalarized->second.count(UI); 7312 }); 7313 }; 7314 (void) hasSingleCopyAfterVectorization; 7315 7316 if (isScalarAfterVectorization(I, VF)) { 7317 // With the exception of GEPs and PHIs, after scalarization there should 7318 // only be one copy of the instruction generated in the loop. This is 7319 // because the VF is either 1, or any instructions that need scalarizing 7320 // have already been dealt with by the the time we get here. As a result, 7321 // it means we don't have to multiply the instruction cost by VF. 7322 assert(I->getOpcode() == Instruction::GetElementPtr || 7323 I->getOpcode() == Instruction::PHI || 7324 (I->getOpcode() == Instruction::BitCast && 7325 I->getType()->isPointerTy()) || 7326 hasSingleCopyAfterVectorization(I, VF)); 7327 VectorTy = RetTy; 7328 } else 7329 VectorTy = ToVectorTy(RetTy, VF); 7330 7331 // TODO: We need to estimate the cost of intrinsic calls. 7332 switch (I->getOpcode()) { 7333 case Instruction::GetElementPtr: 7334 // We mark this instruction as zero-cost because the cost of GEPs in 7335 // vectorized code depends on whether the corresponding memory instruction 7336 // is scalarized or not. Therefore, we handle GEPs with the memory 7337 // instruction cost. 7338 return 0; 7339 case Instruction::Br: { 7340 // In cases of scalarized and predicated instructions, there will be VF 7341 // predicated blocks in the vectorized loop. Each branch around these 7342 // blocks requires also an extract of its vector compare i1 element. 7343 bool ScalarPredicatedBB = false; 7344 BranchInst *BI = cast<BranchInst>(I); 7345 if (VF.isVector() && BI->isConditional() && 7346 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7347 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7348 ScalarPredicatedBB = true; 7349 7350 if (ScalarPredicatedBB) { 7351 // Not possible to scalarize scalable vector with predicated instructions. 7352 if (VF.isScalable()) 7353 return InstructionCost::getInvalid(); 7354 // Return cost for branches around scalarized and predicated blocks. 7355 auto *Vec_i1Ty = 7356 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7357 return ( 7358 TTI.getScalarizationOverhead( 7359 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7360 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7361 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7362 // The back-edge branch will remain, as will all scalar branches. 7363 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7364 else 7365 // This branch will be eliminated by if-conversion. 7366 return 0; 7367 // Note: We currently assume zero cost for an unconditional branch inside 7368 // a predicated block since it will become a fall-through, although we 7369 // may decide in the future to call TTI for all branches. 7370 } 7371 case Instruction::PHI: { 7372 auto *Phi = cast<PHINode>(I); 7373 7374 // First-order recurrences are replaced by vector shuffles inside the loop. 7375 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7376 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7377 return TTI.getShuffleCost( 7378 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7379 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7380 7381 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7382 // converted into select instructions. We require N - 1 selects per phi 7383 // node, where N is the number of incoming values. 7384 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7385 return (Phi->getNumIncomingValues() - 1) * 7386 TTI.getCmpSelInstrCost( 7387 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7388 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7389 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7390 7391 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7392 } 7393 case Instruction::UDiv: 7394 case Instruction::SDiv: 7395 case Instruction::URem: 7396 case Instruction::SRem: 7397 // If we have a predicated instruction, it may not be executed for each 7398 // vector lane. Get the scalarization cost and scale this amount by the 7399 // probability of executing the predicated block. If the instruction is not 7400 // predicated, we fall through to the next case. 7401 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7402 InstructionCost Cost = 0; 7403 7404 // These instructions have a non-void type, so account for the phi nodes 7405 // that we will create. This cost is likely to be zero. The phi node 7406 // cost, if any, should be scaled by the block probability because it 7407 // models a copy at the end of each predicated block. 7408 Cost += VF.getKnownMinValue() * 7409 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7410 7411 // The cost of the non-predicated instruction. 7412 Cost += VF.getKnownMinValue() * 7413 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7414 7415 // The cost of insertelement and extractelement instructions needed for 7416 // scalarization. 7417 Cost += getScalarizationOverhead(I, VF); 7418 7419 // Scale the cost by the probability of executing the predicated blocks. 7420 // This assumes the predicated block for each vector lane is equally 7421 // likely. 7422 return Cost / getReciprocalPredBlockProb(); 7423 } 7424 LLVM_FALLTHROUGH; 7425 case Instruction::Add: 7426 case Instruction::FAdd: 7427 case Instruction::Sub: 7428 case Instruction::FSub: 7429 case Instruction::Mul: 7430 case Instruction::FMul: 7431 case Instruction::FDiv: 7432 case Instruction::FRem: 7433 case Instruction::Shl: 7434 case Instruction::LShr: 7435 case Instruction::AShr: 7436 case Instruction::And: 7437 case Instruction::Or: 7438 case Instruction::Xor: { 7439 // Since we will replace the stride by 1 the multiplication should go away. 7440 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7441 return 0; 7442 7443 // Detect reduction patterns 7444 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7445 return *RedCost; 7446 7447 // Certain instructions can be cheaper to vectorize if they have a constant 7448 // second vector operand. One example of this are shifts on x86. 7449 Value *Op2 = I->getOperand(1); 7450 TargetTransformInfo::OperandValueProperties Op2VP; 7451 TargetTransformInfo::OperandValueKind Op2VK = 7452 TTI.getOperandInfo(Op2, Op2VP); 7453 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7454 Op2VK = TargetTransformInfo::OK_UniformValue; 7455 7456 SmallVector<const Value *, 4> Operands(I->operand_values()); 7457 return TTI.getArithmeticInstrCost( 7458 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7459 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7460 } 7461 case Instruction::FNeg: { 7462 return TTI.getArithmeticInstrCost( 7463 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7464 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7465 TargetTransformInfo::OP_None, I->getOperand(0), I); 7466 } 7467 case Instruction::Select: { 7468 SelectInst *SI = cast<SelectInst>(I); 7469 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7470 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7471 7472 const Value *Op0, *Op1; 7473 using namespace llvm::PatternMatch; 7474 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7475 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7476 // select x, y, false --> x & y 7477 // select x, true, y --> x | y 7478 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7479 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7480 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7481 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7482 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7483 Op1->getType()->getScalarSizeInBits() == 1); 7484 7485 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7486 return TTI.getArithmeticInstrCost( 7487 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7488 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7489 } 7490 7491 Type *CondTy = SI->getCondition()->getType(); 7492 if (!ScalarCond) 7493 CondTy = VectorType::get(CondTy, VF); 7494 7495 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7496 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7497 Pred = Cmp->getPredicate(); 7498 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7499 CostKind, I); 7500 } 7501 case Instruction::ICmp: 7502 case Instruction::FCmp: { 7503 Type *ValTy = I->getOperand(0)->getType(); 7504 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7505 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7506 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7507 VectorTy = ToVectorTy(ValTy, VF); 7508 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7509 cast<CmpInst>(I)->getPredicate(), CostKind, 7510 I); 7511 } 7512 case Instruction::Store: 7513 case Instruction::Load: { 7514 ElementCount Width = VF; 7515 if (Width.isVector()) { 7516 InstWidening Decision = getWideningDecision(I, Width); 7517 assert(Decision != CM_Unknown && 7518 "CM decision should be taken at this point"); 7519 if (Decision == CM_Scalarize) 7520 Width = ElementCount::getFixed(1); 7521 } 7522 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7523 return getMemoryInstructionCost(I, VF); 7524 } 7525 case Instruction::BitCast: 7526 if (I->getType()->isPointerTy()) 7527 return 0; 7528 LLVM_FALLTHROUGH; 7529 case Instruction::ZExt: 7530 case Instruction::SExt: 7531 case Instruction::FPToUI: 7532 case Instruction::FPToSI: 7533 case Instruction::FPExt: 7534 case Instruction::PtrToInt: 7535 case Instruction::IntToPtr: 7536 case Instruction::SIToFP: 7537 case Instruction::UIToFP: 7538 case Instruction::Trunc: 7539 case Instruction::FPTrunc: { 7540 // Computes the CastContextHint from a Load/Store instruction. 7541 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7542 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7543 "Expected a load or a store!"); 7544 7545 if (VF.isScalar() || !TheLoop->contains(I)) 7546 return TTI::CastContextHint::Normal; 7547 7548 switch (getWideningDecision(I, VF)) { 7549 case LoopVectorizationCostModel::CM_GatherScatter: 7550 return TTI::CastContextHint::GatherScatter; 7551 case LoopVectorizationCostModel::CM_Interleave: 7552 return TTI::CastContextHint::Interleave; 7553 case LoopVectorizationCostModel::CM_Scalarize: 7554 case LoopVectorizationCostModel::CM_Widen: 7555 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7556 : TTI::CastContextHint::Normal; 7557 case LoopVectorizationCostModel::CM_Widen_Reverse: 7558 return TTI::CastContextHint::Reversed; 7559 case LoopVectorizationCostModel::CM_Unknown: 7560 llvm_unreachable("Instr did not go through cost modelling?"); 7561 } 7562 7563 llvm_unreachable("Unhandled case!"); 7564 }; 7565 7566 unsigned Opcode = I->getOpcode(); 7567 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7568 // For Trunc, the context is the only user, which must be a StoreInst. 7569 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7570 if (I->hasOneUse()) 7571 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7572 CCH = ComputeCCH(Store); 7573 } 7574 // For Z/Sext, the context is the operand, which must be a LoadInst. 7575 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7576 Opcode == Instruction::FPExt) { 7577 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7578 CCH = ComputeCCH(Load); 7579 } 7580 7581 // We optimize the truncation of induction variables having constant 7582 // integer steps. The cost of these truncations is the same as the scalar 7583 // operation. 7584 if (isOptimizableIVTruncate(I, VF)) { 7585 auto *Trunc = cast<TruncInst>(I); 7586 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7587 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7588 } 7589 7590 // Detect reduction patterns 7591 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7592 return *RedCost; 7593 7594 Type *SrcScalarTy = I->getOperand(0)->getType(); 7595 Type *SrcVecTy = 7596 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7597 if (canTruncateToMinimalBitwidth(I, VF)) { 7598 // This cast is going to be shrunk. This may remove the cast or it might 7599 // turn it into slightly different cast. For example, if MinBW == 16, 7600 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7601 // 7602 // Calculate the modified src and dest types. 7603 Type *MinVecTy = VectorTy; 7604 if (Opcode == Instruction::Trunc) { 7605 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7606 VectorTy = 7607 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7608 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7609 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7610 VectorTy = 7611 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7612 } 7613 } 7614 7615 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7616 } 7617 case Instruction::Call: { 7618 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7619 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7620 return *RedCost; 7621 bool NeedToScalarize; 7622 CallInst *CI = cast<CallInst>(I); 7623 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7624 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7625 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7626 return std::min(CallCost, IntrinsicCost); 7627 } 7628 return CallCost; 7629 } 7630 case Instruction::ExtractValue: 7631 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7632 case Instruction::Alloca: 7633 // We cannot easily widen alloca to a scalable alloca, as 7634 // the result would need to be a vector of pointers. 7635 if (VF.isScalable()) 7636 return InstructionCost::getInvalid(); 7637 LLVM_FALLTHROUGH; 7638 default: 7639 // This opcode is unknown. Assume that it is the same as 'mul'. 7640 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7641 } // end of switch. 7642 } 7643 7644 char LoopVectorize::ID = 0; 7645 7646 static const char lv_name[] = "Loop Vectorization"; 7647 7648 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7649 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7650 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7651 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7652 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7653 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7654 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7655 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7656 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7657 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7658 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7659 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7660 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7661 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7662 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7663 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7664 7665 namespace llvm { 7666 7667 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7668 7669 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7670 bool VectorizeOnlyWhenForced) { 7671 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7672 } 7673 7674 } // end namespace llvm 7675 7676 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7677 // Check if the pointer operand of a load or store instruction is 7678 // consecutive. 7679 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7680 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7681 return false; 7682 } 7683 7684 void LoopVectorizationCostModel::collectValuesToIgnore() { 7685 // Ignore ephemeral values. 7686 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7687 7688 // Ignore type-promoting instructions we identified during reduction 7689 // detection. 7690 for (auto &Reduction : Legal->getReductionVars()) { 7691 const RecurrenceDescriptor &RedDes = Reduction.second; 7692 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7693 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7694 } 7695 // Ignore type-casting instructions we identified during induction 7696 // detection. 7697 for (auto &Induction : Legal->getInductionVars()) { 7698 const InductionDescriptor &IndDes = Induction.second; 7699 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7700 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7701 } 7702 } 7703 7704 void LoopVectorizationCostModel::collectInLoopReductions() { 7705 for (auto &Reduction : Legal->getReductionVars()) { 7706 PHINode *Phi = Reduction.first; 7707 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7708 7709 // We don't collect reductions that are type promoted (yet). 7710 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7711 continue; 7712 7713 // If the target would prefer this reduction to happen "in-loop", then we 7714 // want to record it as such. 7715 unsigned Opcode = RdxDesc.getOpcode(); 7716 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7717 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7718 TargetTransformInfo::ReductionFlags())) 7719 continue; 7720 7721 // Check that we can correctly put the reductions into the loop, by 7722 // finding the chain of operations that leads from the phi to the loop 7723 // exit value. 7724 SmallVector<Instruction *, 4> ReductionOperations = 7725 RdxDesc.getReductionOpChain(Phi, TheLoop); 7726 bool InLoop = !ReductionOperations.empty(); 7727 if (InLoop) { 7728 InLoopReductionChains[Phi] = ReductionOperations; 7729 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7730 Instruction *LastChain = Phi; 7731 for (auto *I : ReductionOperations) { 7732 InLoopReductionImmediateChains[I] = LastChain; 7733 LastChain = I; 7734 } 7735 } 7736 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7737 << " reduction for phi: " << *Phi << "\n"); 7738 } 7739 } 7740 7741 // TODO: we could return a pair of values that specify the max VF and 7742 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7743 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7744 // doesn't have a cost model that can choose which plan to execute if 7745 // more than one is generated. 7746 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7747 LoopVectorizationCostModel &CM) { 7748 unsigned WidestType; 7749 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7750 return WidestVectorRegBits / WidestType; 7751 } 7752 7753 VectorizationFactor 7754 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7755 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7756 ElementCount VF = UserVF; 7757 // Outer loop handling: They may require CFG and instruction level 7758 // transformations before even evaluating whether vectorization is profitable. 7759 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7760 // the vectorization pipeline. 7761 if (!OrigLoop->isInnermost()) { 7762 // If the user doesn't provide a vectorization factor, determine a 7763 // reasonable one. 7764 if (UserVF.isZero()) { 7765 VF = ElementCount::getFixed(determineVPlanVF( 7766 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7767 .getFixedSize(), 7768 CM)); 7769 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7770 7771 // Make sure we have a VF > 1 for stress testing. 7772 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7773 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7774 << "overriding computed VF.\n"); 7775 VF = ElementCount::getFixed(4); 7776 } 7777 } 7778 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7779 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7780 "VF needs to be a power of two"); 7781 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7782 << "VF " << VF << " to build VPlans.\n"); 7783 buildVPlans(VF, VF); 7784 7785 // For VPlan build stress testing, we bail out after VPlan construction. 7786 if (VPlanBuildStressTest) 7787 return VectorizationFactor::Disabled(); 7788 7789 return {VF, 0 /*Cost*/}; 7790 } 7791 7792 LLVM_DEBUG( 7793 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7794 "VPlan-native path.\n"); 7795 return VectorizationFactor::Disabled(); 7796 } 7797 7798 Optional<VectorizationFactor> 7799 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7800 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7801 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7802 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7803 return None; 7804 7805 // Invalidate interleave groups if all blocks of loop will be predicated. 7806 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7807 !useMaskedInterleavedAccesses(*TTI)) { 7808 LLVM_DEBUG( 7809 dbgs() 7810 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7811 "which requires masked-interleaved support.\n"); 7812 if (CM.InterleaveInfo.invalidateGroups()) 7813 // Invalidating interleave groups also requires invalidating all decisions 7814 // based on them, which includes widening decisions and uniform and scalar 7815 // values. 7816 CM.invalidateCostModelingDecisions(); 7817 } 7818 7819 ElementCount MaxUserVF = 7820 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7821 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7822 if (!UserVF.isZero() && UserVFIsLegal) { 7823 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7824 "VF needs to be a power of two"); 7825 // Collect the instructions (and their associated costs) that will be more 7826 // profitable to scalarize. 7827 if (CM.selectUserVectorizationFactor(UserVF)) { 7828 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7829 CM.collectInLoopReductions(); 7830 buildVPlansWithVPRecipes(UserVF, UserVF); 7831 LLVM_DEBUG(printPlans(dbgs())); 7832 return {{UserVF, 0}}; 7833 } else 7834 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7835 "InvalidCost", ORE, OrigLoop); 7836 } 7837 7838 // Populate the set of Vectorization Factor Candidates. 7839 ElementCountSet VFCandidates; 7840 for (auto VF = ElementCount::getFixed(1); 7841 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7842 VFCandidates.insert(VF); 7843 for (auto VF = ElementCount::getScalable(1); 7844 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7845 VFCandidates.insert(VF); 7846 7847 for (const auto &VF : VFCandidates) { 7848 // Collect Uniform and Scalar instructions after vectorization with VF. 7849 CM.collectUniformsAndScalars(VF); 7850 7851 // Collect the instructions (and their associated costs) that will be more 7852 // profitable to scalarize. 7853 if (VF.isVector()) 7854 CM.collectInstsToScalarize(VF); 7855 } 7856 7857 CM.collectInLoopReductions(); 7858 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7859 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7860 7861 LLVM_DEBUG(printPlans(dbgs())); 7862 if (!MaxFactors.hasVector()) 7863 return VectorizationFactor::Disabled(); 7864 7865 // Select the optimal vectorization factor. 7866 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7867 7868 // Check if it is profitable to vectorize with runtime checks. 7869 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7870 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7871 bool PragmaThresholdReached = 7872 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7873 bool ThresholdReached = 7874 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7875 if ((ThresholdReached && !Hints.allowReordering()) || 7876 PragmaThresholdReached) { 7877 ORE->emit([&]() { 7878 return OptimizationRemarkAnalysisAliasing( 7879 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7880 OrigLoop->getHeader()) 7881 << "loop not vectorized: cannot prove it is safe to reorder " 7882 "memory operations"; 7883 }); 7884 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7885 Hints.emitRemarkWithHints(); 7886 return VectorizationFactor::Disabled(); 7887 } 7888 } 7889 return SelectedVF; 7890 } 7891 7892 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7893 assert(count_if(VPlans, 7894 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7895 1 && 7896 "Best VF has not a single VPlan."); 7897 7898 for (const VPlanPtr &Plan : VPlans) { 7899 if (Plan->hasVF(VF)) 7900 return *Plan.get(); 7901 } 7902 llvm_unreachable("No plan found!"); 7903 } 7904 7905 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7906 SmallVector<Metadata *, 4> MDs; 7907 // Reserve first location for self reference to the LoopID metadata node. 7908 MDs.push_back(nullptr); 7909 bool IsUnrollMetadata = false; 7910 MDNode *LoopID = L->getLoopID(); 7911 if (LoopID) { 7912 // First find existing loop unrolling disable metadata. 7913 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7914 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7915 if (MD) { 7916 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7917 IsUnrollMetadata = 7918 S && S->getString().startswith("llvm.loop.unroll.disable"); 7919 } 7920 MDs.push_back(LoopID->getOperand(i)); 7921 } 7922 } 7923 7924 if (!IsUnrollMetadata) { 7925 // Add runtime unroll disable metadata. 7926 LLVMContext &Context = L->getHeader()->getContext(); 7927 SmallVector<Metadata *, 1> DisableOperands; 7928 DisableOperands.push_back( 7929 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7930 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7931 MDs.push_back(DisableNode); 7932 MDNode *NewLoopID = MDNode::get(Context, MDs); 7933 // Set operand 0 to refer to the loop id itself. 7934 NewLoopID->replaceOperandWith(0, NewLoopID); 7935 L->setLoopID(NewLoopID); 7936 } 7937 } 7938 7939 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7940 VPlan &BestVPlan, 7941 InnerLoopVectorizer &ILV, 7942 DominatorTree *DT) { 7943 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7944 << '\n'); 7945 7946 // Perform the actual loop transformation. 7947 7948 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7949 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7950 Value *CanonicalIVStartValue; 7951 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7952 ILV.createVectorizedLoopSkeleton(); 7953 ILV.collectPoisonGeneratingRecipes(State); 7954 7955 ILV.printDebugTracesAtStart(); 7956 7957 //===------------------------------------------------===// 7958 // 7959 // Notice: any optimization or new instruction that go 7960 // into the code below should also be implemented in 7961 // the cost-model. 7962 // 7963 //===------------------------------------------------===// 7964 7965 // 2. Copy and widen instructions from the old loop into the new loop. 7966 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7967 ILV.getOrCreateVectorTripCount(nullptr), 7968 CanonicalIVStartValue, State); 7969 BestVPlan.execute(&State); 7970 7971 // Keep all loop hints from the original loop on the vector loop (we'll 7972 // replace the vectorizer-specific hints below). 7973 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7974 7975 Optional<MDNode *> VectorizedLoopID = 7976 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7977 LLVMLoopVectorizeFollowupVectorized}); 7978 7979 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7980 if (VectorizedLoopID.hasValue()) 7981 L->setLoopID(VectorizedLoopID.getValue()); 7982 else { 7983 // Keep all loop hints from the original loop on the vector loop (we'll 7984 // replace the vectorizer-specific hints below). 7985 if (MDNode *LID = OrigLoop->getLoopID()) 7986 L->setLoopID(LID); 7987 7988 LoopVectorizeHints Hints(L, true, *ORE); 7989 Hints.setAlreadyVectorized(); 7990 } 7991 // Disable runtime unrolling when vectorizing the epilogue loop. 7992 if (CanonicalIVStartValue) 7993 AddRuntimeUnrollDisableMetaData(L); 7994 7995 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7996 // predication, updating analyses. 7997 ILV.fixVectorizedLoop(State); 7998 7999 ILV.printDebugTracesAtEnd(); 8000 } 8001 8002 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8003 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8004 for (const auto &Plan : VPlans) 8005 if (PrintVPlansInDotFormat) 8006 Plan->printDOT(O); 8007 else 8008 Plan->print(O); 8009 } 8010 #endif 8011 8012 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8013 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8014 8015 // We create new control-flow for the vectorized loop, so the original exit 8016 // conditions will be dead after vectorization if it's only used by the 8017 // terminator 8018 SmallVector<BasicBlock*> ExitingBlocks; 8019 OrigLoop->getExitingBlocks(ExitingBlocks); 8020 for (auto *BB : ExitingBlocks) { 8021 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8022 if (!Cmp || !Cmp->hasOneUse()) 8023 continue; 8024 8025 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8026 if (!DeadInstructions.insert(Cmp).second) 8027 continue; 8028 8029 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8030 // TODO: can recurse through operands in general 8031 for (Value *Op : Cmp->operands()) { 8032 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8033 DeadInstructions.insert(cast<Instruction>(Op)); 8034 } 8035 } 8036 8037 // We create new "steps" for induction variable updates to which the original 8038 // induction variables map. An original update instruction will be dead if 8039 // all its users except the induction variable are dead. 8040 auto *Latch = OrigLoop->getLoopLatch(); 8041 for (auto &Induction : Legal->getInductionVars()) { 8042 PHINode *Ind = Induction.first; 8043 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8044 8045 // If the tail is to be folded by masking, the primary induction variable, 8046 // if exists, isn't dead: it will be used for masking. Don't kill it. 8047 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8048 continue; 8049 8050 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8051 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8052 })) 8053 DeadInstructions.insert(IndUpdate); 8054 } 8055 } 8056 8057 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8058 8059 //===--------------------------------------------------------------------===// 8060 // EpilogueVectorizerMainLoop 8061 //===--------------------------------------------------------------------===// 8062 8063 /// This function is partially responsible for generating the control flow 8064 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8065 std::pair<BasicBlock *, Value *> 8066 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8067 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8068 Loop *Lp = createVectorLoopSkeleton(""); 8069 8070 // Generate the code to check the minimum iteration count of the vector 8071 // epilogue (see below). 8072 EPI.EpilogueIterationCountCheck = 8073 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8074 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8075 8076 // Generate the code to check any assumptions that we've made for SCEV 8077 // expressions. 8078 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8079 8080 // Generate the code that checks at runtime if arrays overlap. We put the 8081 // checks into a separate block to make the more common case of few elements 8082 // faster. 8083 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8084 8085 // Generate the iteration count check for the main loop, *after* the check 8086 // for the epilogue loop, so that the path-length is shorter for the case 8087 // that goes directly through the vector epilogue. The longer-path length for 8088 // the main loop is compensated for, by the gain from vectorizing the larger 8089 // trip count. Note: the branch will get updated later on when we vectorize 8090 // the epilogue. 8091 EPI.MainLoopIterationCountCheck = 8092 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8093 8094 // Generate the induction variable. 8095 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8096 EPI.VectorTripCount = CountRoundDown; 8097 createHeaderBranch(Lp); 8098 8099 // Skip induction resume value creation here because they will be created in 8100 // the second pass. If we created them here, they wouldn't be used anyway, 8101 // because the vplan in the second pass still contains the inductions from the 8102 // original loop. 8103 8104 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8105 } 8106 8107 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8108 LLVM_DEBUG({ 8109 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8110 << "Main Loop VF:" << EPI.MainLoopVF 8111 << ", Main Loop UF:" << EPI.MainLoopUF 8112 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8113 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8114 }); 8115 } 8116 8117 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8118 DEBUG_WITH_TYPE(VerboseDebug, { 8119 dbgs() << "intermediate fn:\n" 8120 << *OrigLoop->getHeader()->getParent() << "\n"; 8121 }); 8122 } 8123 8124 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8125 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8126 assert(L && "Expected valid Loop."); 8127 assert(Bypass && "Expected valid bypass basic block."); 8128 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8129 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8130 Value *Count = getOrCreateTripCount(L); 8131 // Reuse existing vector loop preheader for TC checks. 8132 // Note that new preheader block is generated for vector loop. 8133 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8134 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8135 8136 // Generate code to check if the loop's trip count is less than VF * UF of the 8137 // main vector loop. 8138 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8139 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8140 8141 Value *CheckMinIters = Builder.CreateICmp( 8142 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8143 "min.iters.check"); 8144 8145 if (!ForEpilogue) 8146 TCCheckBlock->setName("vector.main.loop.iter.check"); 8147 8148 // Create new preheader for vector loop. 8149 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8150 DT, LI, nullptr, "vector.ph"); 8151 8152 if (ForEpilogue) { 8153 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8154 DT->getNode(Bypass)->getIDom()) && 8155 "TC check is expected to dominate Bypass"); 8156 8157 // Update dominator for Bypass & LoopExit. 8158 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8159 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8160 // For loops with multiple exits, there's no edge from the middle block 8161 // to exit blocks (as the epilogue must run) and thus no need to update 8162 // the immediate dominator of the exit blocks. 8163 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8164 8165 LoopBypassBlocks.push_back(TCCheckBlock); 8166 8167 // Save the trip count so we don't have to regenerate it in the 8168 // vec.epilog.iter.check. This is safe to do because the trip count 8169 // generated here dominates the vector epilog iter check. 8170 EPI.TripCount = Count; 8171 } 8172 8173 ReplaceInstWithInst( 8174 TCCheckBlock->getTerminator(), 8175 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8176 8177 return TCCheckBlock; 8178 } 8179 8180 //===--------------------------------------------------------------------===// 8181 // EpilogueVectorizerEpilogueLoop 8182 //===--------------------------------------------------------------------===// 8183 8184 /// This function is partially responsible for generating the control flow 8185 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8186 std::pair<BasicBlock *, Value *> 8187 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8188 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8189 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8190 8191 // Now, compare the remaining count and if there aren't enough iterations to 8192 // execute the vectorized epilogue skip to the scalar part. 8193 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8194 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8195 LoopVectorPreHeader = 8196 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8197 LI, nullptr, "vec.epilog.ph"); 8198 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8199 VecEpilogueIterationCountCheck); 8200 8201 // Adjust the control flow taking the state info from the main loop 8202 // vectorization into account. 8203 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8204 "expected this to be saved from the previous pass."); 8205 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8206 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8207 8208 DT->changeImmediateDominator(LoopVectorPreHeader, 8209 EPI.MainLoopIterationCountCheck); 8210 8211 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8212 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8213 8214 if (EPI.SCEVSafetyCheck) 8215 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8216 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8217 if (EPI.MemSafetyCheck) 8218 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8219 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8220 8221 DT->changeImmediateDominator( 8222 VecEpilogueIterationCountCheck, 8223 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8224 8225 DT->changeImmediateDominator(LoopScalarPreHeader, 8226 EPI.EpilogueIterationCountCheck); 8227 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8228 // If there is an epilogue which must run, there's no edge from the 8229 // middle block to exit blocks and thus no need to update the immediate 8230 // dominator of the exit blocks. 8231 DT->changeImmediateDominator(LoopExitBlock, 8232 EPI.EpilogueIterationCountCheck); 8233 8234 // Keep track of bypass blocks, as they feed start values to the induction 8235 // phis in the scalar loop preheader. 8236 if (EPI.SCEVSafetyCheck) 8237 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8238 if (EPI.MemSafetyCheck) 8239 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8240 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8241 8242 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8243 // merge control-flow from the latch block and the middle block. Update the 8244 // incoming values here and move the Phi into the preheader. 8245 SmallVector<PHINode *, 4> PhisInBlock; 8246 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8247 PhisInBlock.push_back(&Phi); 8248 8249 for (PHINode *Phi : PhisInBlock) { 8250 Phi->replaceIncomingBlockWith( 8251 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8252 VecEpilogueIterationCountCheck); 8253 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8254 if (EPI.SCEVSafetyCheck) 8255 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8256 if (EPI.MemSafetyCheck) 8257 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8258 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8259 } 8260 8261 // Generate a resume induction for the vector epilogue and put it in the 8262 // vector epilogue preheader 8263 Type *IdxTy = Legal->getWidestInductionType(); 8264 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8265 LoopVectorPreHeader->getFirstNonPHI()); 8266 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8267 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8268 EPI.MainLoopIterationCountCheck); 8269 8270 // Generate the induction variable. 8271 createHeaderBranch(Lp); 8272 8273 // Generate induction resume values. These variables save the new starting 8274 // indexes for the scalar loop. They are used to test if there are any tail 8275 // iterations left once the vector loop has completed. 8276 // Note that when the vectorized epilogue is skipped due to iteration count 8277 // check, then the resume value for the induction variable comes from 8278 // the trip count of the main vector loop, hence passing the AdditionalBypass 8279 // argument. 8280 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8281 EPI.VectorTripCount} /* AdditionalBypass */); 8282 8283 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8284 } 8285 8286 BasicBlock * 8287 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8288 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8289 8290 assert(EPI.TripCount && 8291 "Expected trip count to have been safed in the first pass."); 8292 assert( 8293 (!isa<Instruction>(EPI.TripCount) || 8294 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8295 "saved trip count does not dominate insertion point."); 8296 Value *TC = EPI.TripCount; 8297 IRBuilder<> Builder(Insert->getTerminator()); 8298 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8299 8300 // Generate code to check if the loop's trip count is less than VF * UF of the 8301 // vector epilogue loop. 8302 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8303 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8304 8305 Value *CheckMinIters = 8306 Builder.CreateICmp(P, Count, 8307 createStepForVF(Builder, Count->getType(), 8308 EPI.EpilogueVF, EPI.EpilogueUF), 8309 "min.epilog.iters.check"); 8310 8311 ReplaceInstWithInst( 8312 Insert->getTerminator(), 8313 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8314 8315 LoopBypassBlocks.push_back(Insert); 8316 return Insert; 8317 } 8318 8319 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8320 LLVM_DEBUG({ 8321 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8322 << "Epilogue Loop VF:" << EPI.EpilogueVF 8323 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8324 }); 8325 } 8326 8327 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8328 DEBUG_WITH_TYPE(VerboseDebug, { 8329 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8330 }); 8331 } 8332 8333 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8334 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8335 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8336 bool PredicateAtRangeStart = Predicate(Range.Start); 8337 8338 for (ElementCount TmpVF = Range.Start * 2; 8339 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8340 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8341 Range.End = TmpVF; 8342 break; 8343 } 8344 8345 return PredicateAtRangeStart; 8346 } 8347 8348 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8349 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8350 /// of VF's starting at a given VF and extending it as much as possible. Each 8351 /// vectorization decision can potentially shorten this sub-range during 8352 /// buildVPlan(). 8353 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8354 ElementCount MaxVF) { 8355 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8356 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8357 VFRange SubRange = {VF, MaxVFPlusOne}; 8358 VPlans.push_back(buildVPlan(SubRange)); 8359 VF = SubRange.End; 8360 } 8361 } 8362 8363 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8364 VPlanPtr &Plan) { 8365 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8366 8367 // Look for cached value. 8368 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8369 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8370 if (ECEntryIt != EdgeMaskCache.end()) 8371 return ECEntryIt->second; 8372 8373 VPValue *SrcMask = createBlockInMask(Src, Plan); 8374 8375 // The terminator has to be a branch inst! 8376 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8377 assert(BI && "Unexpected terminator found"); 8378 8379 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8380 return EdgeMaskCache[Edge] = SrcMask; 8381 8382 // If source is an exiting block, we know the exit edge is dynamically dead 8383 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8384 // adding uses of an otherwise potentially dead instruction. 8385 if (OrigLoop->isLoopExiting(Src)) 8386 return EdgeMaskCache[Edge] = SrcMask; 8387 8388 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8389 assert(EdgeMask && "No Edge Mask found for condition"); 8390 8391 if (BI->getSuccessor(0) != Dst) 8392 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8393 8394 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8395 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8396 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8397 // The select version does not introduce new UB if SrcMask is false and 8398 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8399 VPValue *False = Plan->getOrAddVPValue( 8400 ConstantInt::getFalse(BI->getCondition()->getType())); 8401 EdgeMask = 8402 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8403 } 8404 8405 return EdgeMaskCache[Edge] = EdgeMask; 8406 } 8407 8408 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8409 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8410 8411 // Look for cached value. 8412 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8413 if (BCEntryIt != BlockMaskCache.end()) 8414 return BCEntryIt->second; 8415 8416 // All-one mask is modelled as no-mask following the convention for masked 8417 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8418 VPValue *BlockMask = nullptr; 8419 8420 if (OrigLoop->getHeader() == BB) { 8421 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8422 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8423 8424 // Introduce the early-exit compare IV <= BTC to form header block mask. 8425 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8426 // constructing the desired canonical IV in the header block as its first 8427 // non-phi instructions. 8428 assert(CM.foldTailByMasking() && "must fold the tail"); 8429 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8430 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8431 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8432 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8433 8434 VPBuilder::InsertPointGuard Guard(Builder); 8435 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8436 if (CM.TTI.emitGetActiveLaneMask()) { 8437 VPValue *TC = Plan->getOrCreateTripCount(); 8438 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8439 } else { 8440 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8441 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8442 } 8443 return BlockMaskCache[BB] = BlockMask; 8444 } 8445 8446 // This is the block mask. We OR all incoming edges. 8447 for (auto *Predecessor : predecessors(BB)) { 8448 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8449 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8450 return BlockMaskCache[BB] = EdgeMask; 8451 8452 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8453 BlockMask = EdgeMask; 8454 continue; 8455 } 8456 8457 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8458 } 8459 8460 return BlockMaskCache[BB] = BlockMask; 8461 } 8462 8463 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8464 ArrayRef<VPValue *> Operands, 8465 VFRange &Range, 8466 VPlanPtr &Plan) { 8467 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8468 "Must be called with either a load or store"); 8469 8470 auto willWiden = [&](ElementCount VF) -> bool { 8471 if (VF.isScalar()) 8472 return false; 8473 LoopVectorizationCostModel::InstWidening Decision = 8474 CM.getWideningDecision(I, VF); 8475 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8476 "CM decision should be taken at this point."); 8477 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8478 return true; 8479 if (CM.isScalarAfterVectorization(I, VF) || 8480 CM.isProfitableToScalarize(I, VF)) 8481 return false; 8482 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8483 }; 8484 8485 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8486 return nullptr; 8487 8488 VPValue *Mask = nullptr; 8489 if (Legal->isMaskRequired(I)) 8490 Mask = createBlockInMask(I->getParent(), Plan); 8491 8492 // Determine if the pointer operand of the access is either consecutive or 8493 // reverse consecutive. 8494 LoopVectorizationCostModel::InstWidening Decision = 8495 CM.getWideningDecision(I, Range.Start); 8496 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8497 bool Consecutive = 8498 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8499 8500 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8501 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8502 Consecutive, Reverse); 8503 8504 StoreInst *Store = cast<StoreInst>(I); 8505 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8506 Mask, Consecutive, Reverse); 8507 } 8508 8509 static VPWidenIntOrFpInductionRecipe * 8510 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8511 VPValue *Start, const InductionDescriptor &IndDesc, 8512 LoopVectorizationCostModel &CM, Loop &OrigLoop, 8513 VFRange &Range) { 8514 // Returns true if an instruction \p I should be scalarized instead of 8515 // vectorized for the chosen vectorization factor. 8516 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8517 return CM.isScalarAfterVectorization(I, VF) || 8518 CM.isProfitableToScalarize(I, VF); 8519 }; 8520 8521 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8522 [&](ElementCount VF) { 8523 // Returns true if we should generate a scalar version of \p IV. 8524 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8525 return true; 8526 auto isScalarInst = [&](User *U) -> bool { 8527 auto *I = cast<Instruction>(U); 8528 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8529 }; 8530 return any_of(PhiOrTrunc->users(), isScalarInst); 8531 }, 8532 Range); 8533 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8534 [&](ElementCount VF) { 8535 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8536 }, 8537 Range); 8538 assert(IndDesc.getStartValue() == 8539 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8540 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8541 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI, 8542 NeedsScalarIV, !NeedsScalarIVOnly); 8543 } 8544 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8545 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8546 !NeedsScalarIVOnly); 8547 } 8548 8549 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8550 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8551 8552 // Check if this is an integer or fp induction. If so, build the recipe that 8553 // produces its scalar and vector values. 8554 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8555 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop, 8556 Range); 8557 8558 return nullptr; 8559 } 8560 8561 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8562 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8563 VPlan &Plan) const { 8564 // Optimize the special case where the source is a constant integer 8565 // induction variable. Notice that we can only optimize the 'trunc' case 8566 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8567 // (c) other casts depend on pointer size. 8568 8569 // Determine whether \p K is a truncation based on an induction variable that 8570 // can be optimized. 8571 auto isOptimizableIVTruncate = 8572 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8573 return [=](ElementCount VF) -> bool { 8574 return CM.isOptimizableIVTruncate(K, VF); 8575 }; 8576 }; 8577 8578 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8579 isOptimizableIVTruncate(I), Range)) { 8580 8581 auto *Phi = cast<PHINode>(I->getOperand(0)); 8582 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8583 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8584 return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range); 8585 } 8586 return nullptr; 8587 } 8588 8589 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8590 ArrayRef<VPValue *> Operands, 8591 VPlanPtr &Plan) { 8592 // If all incoming values are equal, the incoming VPValue can be used directly 8593 // instead of creating a new VPBlendRecipe. 8594 VPValue *FirstIncoming = Operands[0]; 8595 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8596 return FirstIncoming == Inc; 8597 })) { 8598 return Operands[0]; 8599 } 8600 8601 // We know that all PHIs in non-header blocks are converted into selects, so 8602 // we don't have to worry about the insertion order and we can just use the 8603 // builder. At this point we generate the predication tree. There may be 8604 // duplications since this is a simple recursive scan, but future 8605 // optimizations will clean it up. 8606 SmallVector<VPValue *, 2> OperandsWithMask; 8607 unsigned NumIncoming = Phi->getNumIncomingValues(); 8608 8609 for (unsigned In = 0; In < NumIncoming; In++) { 8610 VPValue *EdgeMask = 8611 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8612 assert((EdgeMask || NumIncoming == 1) && 8613 "Multiple predecessors with one having a full mask"); 8614 OperandsWithMask.push_back(Operands[In]); 8615 if (EdgeMask) 8616 OperandsWithMask.push_back(EdgeMask); 8617 } 8618 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8619 } 8620 8621 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8622 ArrayRef<VPValue *> Operands, 8623 VFRange &Range) const { 8624 8625 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8626 [this, CI](ElementCount VF) { 8627 return CM.isScalarWithPredication(CI, VF); 8628 }, 8629 Range); 8630 8631 if (IsPredicated) 8632 return nullptr; 8633 8634 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8635 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8636 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8637 ID == Intrinsic::pseudoprobe || 8638 ID == Intrinsic::experimental_noalias_scope_decl)) 8639 return nullptr; 8640 8641 auto willWiden = [&](ElementCount VF) -> bool { 8642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8643 // The following case may be scalarized depending on the VF. 8644 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8645 // version of the instruction. 8646 // Is it beneficial to perform intrinsic call compared to lib call? 8647 bool NeedToScalarize = false; 8648 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8649 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8650 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8651 return UseVectorIntrinsic || !NeedToScalarize; 8652 }; 8653 8654 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8655 return nullptr; 8656 8657 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8658 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8659 } 8660 8661 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8662 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8663 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8664 // Instruction should be widened, unless it is scalar after vectorization, 8665 // scalarization is profitable or it is predicated. 8666 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8667 return CM.isScalarAfterVectorization(I, VF) || 8668 CM.isProfitableToScalarize(I, VF) || 8669 CM.isScalarWithPredication(I, VF); 8670 }; 8671 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8672 Range); 8673 } 8674 8675 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8676 ArrayRef<VPValue *> Operands) const { 8677 auto IsVectorizableOpcode = [](unsigned Opcode) { 8678 switch (Opcode) { 8679 case Instruction::Add: 8680 case Instruction::And: 8681 case Instruction::AShr: 8682 case Instruction::BitCast: 8683 case Instruction::FAdd: 8684 case Instruction::FCmp: 8685 case Instruction::FDiv: 8686 case Instruction::FMul: 8687 case Instruction::FNeg: 8688 case Instruction::FPExt: 8689 case Instruction::FPToSI: 8690 case Instruction::FPToUI: 8691 case Instruction::FPTrunc: 8692 case Instruction::FRem: 8693 case Instruction::FSub: 8694 case Instruction::ICmp: 8695 case Instruction::IntToPtr: 8696 case Instruction::LShr: 8697 case Instruction::Mul: 8698 case Instruction::Or: 8699 case Instruction::PtrToInt: 8700 case Instruction::SDiv: 8701 case Instruction::Select: 8702 case Instruction::SExt: 8703 case Instruction::Shl: 8704 case Instruction::SIToFP: 8705 case Instruction::SRem: 8706 case Instruction::Sub: 8707 case Instruction::Trunc: 8708 case Instruction::UDiv: 8709 case Instruction::UIToFP: 8710 case Instruction::URem: 8711 case Instruction::Xor: 8712 case Instruction::ZExt: 8713 return true; 8714 } 8715 return false; 8716 }; 8717 8718 if (!IsVectorizableOpcode(I->getOpcode())) 8719 return nullptr; 8720 8721 // Success: widen this instruction. 8722 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8723 } 8724 8725 void VPRecipeBuilder::fixHeaderPhis() { 8726 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8727 for (VPHeaderPHIRecipe *R : PhisToFix) { 8728 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8729 VPRecipeBase *IncR = 8730 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8731 R->addOperand(IncR->getVPSingleValue()); 8732 } 8733 } 8734 8735 VPBasicBlock *VPRecipeBuilder::handleReplication( 8736 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8737 VPlanPtr &Plan) { 8738 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8739 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8740 Range); 8741 8742 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8743 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8744 Range); 8745 8746 // Even if the instruction is not marked as uniform, there are certain 8747 // intrinsic calls that can be effectively treated as such, so we check for 8748 // them here. Conservatively, we only do this for scalable vectors, since 8749 // for fixed-width VFs we can always fall back on full scalarization. 8750 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8751 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8752 case Intrinsic::assume: 8753 case Intrinsic::lifetime_start: 8754 case Intrinsic::lifetime_end: 8755 // For scalable vectors if one of the operands is variant then we still 8756 // want to mark as uniform, which will generate one instruction for just 8757 // the first lane of the vector. We can't scalarize the call in the same 8758 // way as for fixed-width vectors because we don't know how many lanes 8759 // there are. 8760 // 8761 // The reasons for doing it this way for scalable vectors are: 8762 // 1. For the assume intrinsic generating the instruction for the first 8763 // lane is still be better than not generating any at all. For 8764 // example, the input may be a splat across all lanes. 8765 // 2. For the lifetime start/end intrinsics the pointer operand only 8766 // does anything useful when the input comes from a stack object, 8767 // which suggests it should always be uniform. For non-stack objects 8768 // the effect is to poison the object, which still allows us to 8769 // remove the call. 8770 IsUniform = true; 8771 break; 8772 default: 8773 break; 8774 } 8775 } 8776 8777 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8778 IsUniform, IsPredicated); 8779 setRecipe(I, Recipe); 8780 Plan->addVPValue(I, Recipe); 8781 8782 // Find if I uses a predicated instruction. If so, it will use its scalar 8783 // value. Avoid hoisting the insert-element which packs the scalar value into 8784 // a vector value, as that happens iff all users use the vector value. 8785 for (VPValue *Op : Recipe->operands()) { 8786 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8787 if (!PredR) 8788 continue; 8789 auto *RepR = 8790 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8791 assert(RepR->isPredicated() && 8792 "expected Replicate recipe to be predicated"); 8793 RepR->setAlsoPack(false); 8794 } 8795 8796 // Finalize the recipe for Instr, first if it is not predicated. 8797 if (!IsPredicated) { 8798 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8799 VPBB->appendRecipe(Recipe); 8800 return VPBB; 8801 } 8802 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8803 8804 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8805 assert(SingleSucc && "VPBB must have a single successor when handling " 8806 "predicated replication."); 8807 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8808 // Record predicated instructions for above packing optimizations. 8809 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8810 VPBlockUtils::insertBlockAfter(Region, VPBB); 8811 auto *RegSucc = new VPBasicBlock(); 8812 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8813 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8814 return RegSucc; 8815 } 8816 8817 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8818 VPRecipeBase *PredRecipe, 8819 VPlanPtr &Plan) { 8820 // Instructions marked for predication are replicated and placed under an 8821 // if-then construct to prevent side-effects. 8822 8823 // Generate recipes to compute the block mask for this region. 8824 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8825 8826 // Build the triangular if-then region. 8827 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8828 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8829 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8830 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8831 auto *PHIRecipe = Instr->getType()->isVoidTy() 8832 ? nullptr 8833 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8834 if (PHIRecipe) { 8835 Plan->removeVPValueFor(Instr); 8836 Plan->addVPValue(Instr, PHIRecipe); 8837 } 8838 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8839 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8840 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8841 8842 // Note: first set Entry as region entry and then connect successors starting 8843 // from it in order, to propagate the "parent" of each VPBasicBlock. 8844 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8845 VPBlockUtils::connectBlocks(Pred, Exit); 8846 8847 return Region; 8848 } 8849 8850 VPRecipeOrVPValueTy 8851 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8852 ArrayRef<VPValue *> Operands, 8853 VFRange &Range, VPlanPtr &Plan) { 8854 // First, check for specific widening recipes that deal with calls, memory 8855 // operations, inductions and Phi nodes. 8856 if (auto *CI = dyn_cast<CallInst>(Instr)) 8857 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8858 8859 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8860 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8861 8862 VPRecipeBase *Recipe; 8863 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8864 if (Phi->getParent() != OrigLoop->getHeader()) 8865 return tryToBlend(Phi, Operands, Plan); 8866 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8867 return toVPRecipeResult(Recipe); 8868 8869 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8870 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8871 VPValue *StartV = Operands[0]; 8872 if (Legal->isReductionVariable(Phi)) { 8873 const RecurrenceDescriptor &RdxDesc = 8874 Legal->getReductionVars().find(Phi)->second; 8875 assert(RdxDesc.getRecurrenceStartValue() == 8876 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8877 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8878 CM.isInLoopReduction(Phi), 8879 CM.useOrderedReductions(RdxDesc)); 8880 } else { 8881 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8882 } 8883 8884 // Record the incoming value from the backedge, so we can add the incoming 8885 // value from the backedge after all recipes have been created. 8886 recordRecipeOf(cast<Instruction>( 8887 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8888 PhisToFix.push_back(PhiRecipe); 8889 } else { 8890 // TODO: record backedge value for remaining pointer induction phis. 8891 assert(Phi->getType()->isPointerTy() && 8892 "only pointer phis should be handled here"); 8893 assert(Legal->getInductionVars().count(Phi) && 8894 "Not an induction variable"); 8895 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8896 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8897 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8898 } 8899 8900 return toVPRecipeResult(PhiRecipe); 8901 } 8902 8903 if (isa<TruncInst>(Instr) && 8904 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8905 Range, *Plan))) 8906 return toVPRecipeResult(Recipe); 8907 8908 if (!shouldWiden(Instr, Range)) 8909 return nullptr; 8910 8911 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8912 return toVPRecipeResult(new VPWidenGEPRecipe( 8913 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8914 8915 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8916 bool InvariantCond = 8917 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8918 return toVPRecipeResult(new VPWidenSelectRecipe( 8919 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8920 } 8921 8922 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8923 } 8924 8925 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8926 ElementCount MaxVF) { 8927 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8928 8929 // Collect instructions from the original loop that will become trivially dead 8930 // in the vectorized loop. We don't need to vectorize these instructions. For 8931 // example, original induction update instructions can become dead because we 8932 // separately emit induction "steps" when generating code for the new loop. 8933 // Similarly, we create a new latch condition when setting up the structure 8934 // of the new loop, so the old one can become dead. 8935 SmallPtrSet<Instruction *, 4> DeadInstructions; 8936 collectTriviallyDeadInstructions(DeadInstructions); 8937 8938 // Add assume instructions we need to drop to DeadInstructions, to prevent 8939 // them from being added to the VPlan. 8940 // TODO: We only need to drop assumes in blocks that get flattend. If the 8941 // control flow is preserved, we should keep them. 8942 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8943 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8944 8945 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8946 // Dead instructions do not need sinking. Remove them from SinkAfter. 8947 for (Instruction *I : DeadInstructions) 8948 SinkAfter.erase(I); 8949 8950 // Cannot sink instructions after dead instructions (there won't be any 8951 // recipes for them). Instead, find the first non-dead previous instruction. 8952 for (auto &P : Legal->getSinkAfter()) { 8953 Instruction *SinkTarget = P.second; 8954 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8955 (void)FirstInst; 8956 while (DeadInstructions.contains(SinkTarget)) { 8957 assert( 8958 SinkTarget != FirstInst && 8959 "Must find a live instruction (at least the one feeding the " 8960 "first-order recurrence PHI) before reaching beginning of the block"); 8961 SinkTarget = SinkTarget->getPrevNode(); 8962 assert(SinkTarget != P.first && 8963 "sink source equals target, no sinking required"); 8964 } 8965 P.second = SinkTarget; 8966 } 8967 8968 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8969 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8970 VFRange SubRange = {VF, MaxVFPlusOne}; 8971 VPlans.push_back( 8972 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8973 VF = SubRange.End; 8974 } 8975 } 8976 8977 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8978 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8979 // BranchOnCount VPInstruction to the latch. 8980 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8981 bool HasNUW, bool IsVPlanNative) { 8982 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8983 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8984 8985 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8986 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8987 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8988 if (IsVPlanNative) 8989 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8990 Header->insert(CanonicalIVPHI, Header->begin()); 8991 8992 auto *CanonicalIVIncrement = 8993 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8994 : VPInstruction::CanonicalIVIncrement, 8995 {CanonicalIVPHI}, DL); 8996 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8997 8998 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8999 if (IsVPlanNative) { 9000 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 9001 EB->setCondBit(nullptr); 9002 } 9003 EB->appendRecipe(CanonicalIVIncrement); 9004 9005 auto *BranchOnCount = 9006 new VPInstruction(VPInstruction::BranchOnCount, 9007 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 9008 EB->appendRecipe(BranchOnCount); 9009 } 9010 9011 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9012 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9013 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9014 9015 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9016 9017 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9018 9019 // --------------------------------------------------------------------------- 9020 // Pre-construction: record ingredients whose recipes we'll need to further 9021 // process after constructing the initial VPlan. 9022 // --------------------------------------------------------------------------- 9023 9024 // Mark instructions we'll need to sink later and their targets as 9025 // ingredients whose recipe we'll need to record. 9026 for (auto &Entry : SinkAfter) { 9027 RecipeBuilder.recordRecipeOf(Entry.first); 9028 RecipeBuilder.recordRecipeOf(Entry.second); 9029 } 9030 for (auto &Reduction : CM.getInLoopReductionChains()) { 9031 PHINode *Phi = Reduction.first; 9032 RecurKind Kind = 9033 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 9034 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9035 9036 RecipeBuilder.recordRecipeOf(Phi); 9037 for (auto &R : ReductionOperations) { 9038 RecipeBuilder.recordRecipeOf(R); 9039 // For min/max reducitons, where we have a pair of icmp/select, we also 9040 // need to record the ICmp recipe, so it can be removed later. 9041 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9042 "Only min/max recurrences allowed for inloop reductions"); 9043 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9044 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9045 } 9046 } 9047 9048 // For each interleave group which is relevant for this (possibly trimmed) 9049 // Range, add it to the set of groups to be later applied to the VPlan and add 9050 // placeholders for its members' Recipes which we'll be replacing with a 9051 // single VPInterleaveRecipe. 9052 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9053 auto applyIG = [IG, this](ElementCount VF) -> bool { 9054 return (VF.isVector() && // Query is illegal for VF == 1 9055 CM.getWideningDecision(IG->getInsertPos(), VF) == 9056 LoopVectorizationCostModel::CM_Interleave); 9057 }; 9058 if (!getDecisionAndClampRange(applyIG, Range)) 9059 continue; 9060 InterleaveGroups.insert(IG); 9061 for (unsigned i = 0; i < IG->getFactor(); i++) 9062 if (Instruction *Member = IG->getMember(i)) 9063 RecipeBuilder.recordRecipeOf(Member); 9064 }; 9065 9066 // --------------------------------------------------------------------------- 9067 // Build initial VPlan: Scan the body of the loop in a topological order to 9068 // visit each basic block after having visited its predecessor basic blocks. 9069 // --------------------------------------------------------------------------- 9070 9071 // Create initial VPlan skeleton, with separate header and latch blocks. 9072 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9073 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9074 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9075 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9076 auto Plan = std::make_unique<VPlan>(TopRegion); 9077 9078 Instruction *DLInst = 9079 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9080 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9081 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9082 !CM.foldTailByMasking(), false); 9083 9084 // Scan the body of the loop in a topological order to visit each basic block 9085 // after having visited its predecessor basic blocks. 9086 LoopBlocksDFS DFS(OrigLoop); 9087 DFS.perform(LI); 9088 9089 VPBasicBlock *VPBB = HeaderVPBB; 9090 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9091 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9092 // Relevant instructions from basic block BB will be grouped into VPRecipe 9093 // ingredients and fill a new VPBasicBlock. 9094 unsigned VPBBsForBB = 0; 9095 VPBB->setName(BB->getName()); 9096 Builder.setInsertPoint(VPBB); 9097 9098 // Introduce each ingredient into VPlan. 9099 // TODO: Model and preserve debug instrinsics in VPlan. 9100 for (Instruction &I : BB->instructionsWithoutDebug()) { 9101 Instruction *Instr = &I; 9102 9103 // First filter out irrelevant instructions, to ensure no recipes are 9104 // built for them. 9105 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9106 continue; 9107 9108 SmallVector<VPValue *, 4> Operands; 9109 auto *Phi = dyn_cast<PHINode>(Instr); 9110 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9111 Operands.push_back(Plan->getOrAddVPValue( 9112 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9113 } else { 9114 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9115 Operands = {OpRange.begin(), OpRange.end()}; 9116 } 9117 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9118 Instr, Operands, Range, Plan)) { 9119 // If Instr can be simplified to an existing VPValue, use it. 9120 if (RecipeOrValue.is<VPValue *>()) { 9121 auto *VPV = RecipeOrValue.get<VPValue *>(); 9122 Plan->addVPValue(Instr, VPV); 9123 // If the re-used value is a recipe, register the recipe for the 9124 // instruction, in case the recipe for Instr needs to be recorded. 9125 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9126 RecipeBuilder.setRecipe(Instr, R); 9127 continue; 9128 } 9129 // Otherwise, add the new recipe. 9130 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9131 for (auto *Def : Recipe->definedValues()) { 9132 auto *UV = Def->getUnderlyingValue(); 9133 Plan->addVPValue(UV, Def); 9134 } 9135 9136 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9137 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9138 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9139 // of the header block. That can happen for truncates of induction 9140 // variables. Those recipes are moved to the phi section of the header 9141 // block after applying SinkAfter, which relies on the original 9142 // position of the trunc. 9143 assert(isa<TruncInst>(Instr)); 9144 InductionsToMove.push_back( 9145 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9146 } 9147 RecipeBuilder.setRecipe(Instr, Recipe); 9148 VPBB->appendRecipe(Recipe); 9149 continue; 9150 } 9151 9152 // Otherwise, if all widening options failed, Instruction is to be 9153 // replicated. This may create a successor for VPBB. 9154 VPBasicBlock *NextVPBB = 9155 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9156 if (NextVPBB != VPBB) { 9157 VPBB = NextVPBB; 9158 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9159 : ""); 9160 } 9161 } 9162 9163 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9164 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9165 } 9166 9167 // Fold the last, empty block into its predecessor. 9168 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9169 assert(VPBB && "expected to fold last (empty) block"); 9170 // After here, VPBB should not be used. 9171 VPBB = nullptr; 9172 9173 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9174 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9175 "entry block must be set to a VPRegionBlock having a non-empty entry " 9176 "VPBasicBlock"); 9177 RecipeBuilder.fixHeaderPhis(); 9178 9179 // --------------------------------------------------------------------------- 9180 // Transform initial VPlan: Apply previously taken decisions, in order, to 9181 // bring the VPlan to its final state. 9182 // --------------------------------------------------------------------------- 9183 9184 // Apply Sink-After legal constraints. 9185 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9186 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9187 if (Region && Region->isReplicator()) { 9188 assert(Region->getNumSuccessors() == 1 && 9189 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9190 assert(R->getParent()->size() == 1 && 9191 "A recipe in an original replicator region must be the only " 9192 "recipe in its block"); 9193 return Region; 9194 } 9195 return nullptr; 9196 }; 9197 for (auto &Entry : SinkAfter) { 9198 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9199 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9200 9201 auto *TargetRegion = GetReplicateRegion(Target); 9202 auto *SinkRegion = GetReplicateRegion(Sink); 9203 if (!SinkRegion) { 9204 // If the sink source is not a replicate region, sink the recipe directly. 9205 if (TargetRegion) { 9206 // The target is in a replication region, make sure to move Sink to 9207 // the block after it, not into the replication region itself. 9208 VPBasicBlock *NextBlock = 9209 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9210 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9211 } else 9212 Sink->moveAfter(Target); 9213 continue; 9214 } 9215 9216 // The sink source is in a replicate region. Unhook the region from the CFG. 9217 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9218 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9219 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9220 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9221 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9222 9223 if (TargetRegion) { 9224 // The target recipe is also in a replicate region, move the sink region 9225 // after the target region. 9226 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9227 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9228 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9229 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9230 } else { 9231 // The sink source is in a replicate region, we need to move the whole 9232 // replicate region, which should only contain a single recipe in the 9233 // main block. 9234 auto *SplitBlock = 9235 Target->getParent()->splitAt(std::next(Target->getIterator())); 9236 9237 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9238 9239 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9240 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9241 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9242 } 9243 } 9244 9245 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9246 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9247 9248 // Now that sink-after is done, move induction recipes for optimized truncates 9249 // to the phi section of the header block. 9250 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9251 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9252 9253 // Adjust the recipes for any inloop reductions. 9254 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9255 RecipeBuilder, Range.Start); 9256 9257 // Introduce a recipe to combine the incoming and previous values of a 9258 // first-order recurrence. 9259 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9260 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9261 if (!RecurPhi) 9262 continue; 9263 9264 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9265 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9266 auto *Region = GetReplicateRegion(PrevRecipe); 9267 if (Region) 9268 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9269 if (Region || PrevRecipe->isPhi()) 9270 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9271 else 9272 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9273 9274 auto *RecurSplice = cast<VPInstruction>( 9275 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9276 {RecurPhi, RecurPhi->getBackedgeValue()})); 9277 9278 RecurPhi->replaceAllUsesWith(RecurSplice); 9279 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9280 // all users. 9281 RecurSplice->setOperand(0, RecurPhi); 9282 } 9283 9284 // Interleave memory: for each Interleave Group we marked earlier as relevant 9285 // for this VPlan, replace the Recipes widening its memory instructions with a 9286 // single VPInterleaveRecipe at its insertion point. 9287 for (auto IG : InterleaveGroups) { 9288 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9289 RecipeBuilder.getRecipe(IG->getInsertPos())); 9290 SmallVector<VPValue *, 4> StoredValues; 9291 for (unsigned i = 0; i < IG->getFactor(); ++i) 9292 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9293 auto *StoreR = 9294 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9295 StoredValues.push_back(StoreR->getStoredValue()); 9296 } 9297 9298 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9299 Recipe->getMask()); 9300 VPIG->insertBefore(Recipe); 9301 unsigned J = 0; 9302 for (unsigned i = 0; i < IG->getFactor(); ++i) 9303 if (Instruction *Member = IG->getMember(i)) { 9304 if (!Member->getType()->isVoidTy()) { 9305 VPValue *OriginalV = Plan->getVPValue(Member); 9306 Plan->removeVPValueFor(Member); 9307 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9308 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9309 J++; 9310 } 9311 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9312 } 9313 } 9314 9315 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9316 // in ways that accessing values using original IR values is incorrect. 9317 Plan->disableValue2VPValue(); 9318 9319 VPlanTransforms::sinkScalarOperands(*Plan); 9320 VPlanTransforms::mergeReplicateRegions(*Plan); 9321 9322 std::string PlanName; 9323 raw_string_ostream RSO(PlanName); 9324 ElementCount VF = Range.Start; 9325 Plan->addVF(VF); 9326 RSO << "Initial VPlan for VF={" << VF; 9327 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9328 Plan->addVF(VF); 9329 RSO << "," << VF; 9330 } 9331 RSO << "},UF>=1"; 9332 RSO.flush(); 9333 Plan->setName(PlanName); 9334 9335 // Fold Exit block into its predecessor if possible. 9336 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9337 // VPBasicBlock as exit. 9338 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9339 9340 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9341 return Plan; 9342 } 9343 9344 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9345 // Outer loop handling: They may require CFG and instruction level 9346 // transformations before even evaluating whether vectorization is profitable. 9347 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9348 // the vectorization pipeline. 9349 assert(!OrigLoop->isInnermost()); 9350 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9351 9352 // Create new empty VPlan 9353 auto Plan = std::make_unique<VPlan>(); 9354 9355 // Build hierarchical CFG 9356 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9357 HCFGBuilder.buildHierarchicalCFG(); 9358 9359 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9360 VF *= 2) 9361 Plan->addVF(VF); 9362 9363 if (EnableVPlanPredication) { 9364 VPlanPredicator VPP(*Plan); 9365 VPP.predicate(); 9366 9367 // Avoid running transformation to recipes until masked code generation in 9368 // VPlan-native path is in place. 9369 return Plan; 9370 } 9371 9372 SmallPtrSet<Instruction *, 1> DeadInstructions; 9373 VPlanTransforms::VPInstructionsToVPRecipes( 9374 OrigLoop, Plan, 9375 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9376 DeadInstructions, *PSE.getSE()); 9377 9378 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9379 true, true); 9380 return Plan; 9381 } 9382 9383 // Adjust the recipes for reductions. For in-loop reductions the chain of 9384 // instructions leading from the loop exit instr to the phi need to be converted 9385 // to reductions, with one operand being vector and the other being the scalar 9386 // reduction chain. For other reductions, a select is introduced between the phi 9387 // and live-out recipes when folding the tail. 9388 void LoopVectorizationPlanner::adjustRecipesForReductions( 9389 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9390 ElementCount MinVF) { 9391 for (auto &Reduction : CM.getInLoopReductionChains()) { 9392 PHINode *Phi = Reduction.first; 9393 const RecurrenceDescriptor &RdxDesc = 9394 Legal->getReductionVars().find(Phi)->second; 9395 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9396 9397 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9398 continue; 9399 9400 // ReductionOperations are orders top-down from the phi's use to the 9401 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9402 // which of the two operands will remain scalar and which will be reduced. 9403 // For minmax the chain will be the select instructions. 9404 Instruction *Chain = Phi; 9405 for (Instruction *R : ReductionOperations) { 9406 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9407 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9408 9409 VPValue *ChainOp = Plan->getVPValue(Chain); 9410 unsigned FirstOpId; 9411 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9412 "Only min/max recurrences allowed for inloop reductions"); 9413 // Recognize a call to the llvm.fmuladd intrinsic. 9414 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9415 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9416 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9417 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9418 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9419 "Expected to replace a VPWidenSelectSC"); 9420 FirstOpId = 1; 9421 } else { 9422 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9423 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9424 "Expected to replace a VPWidenSC"); 9425 FirstOpId = 0; 9426 } 9427 unsigned VecOpId = 9428 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9429 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9430 9431 auto *CondOp = CM.foldTailByMasking() 9432 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9433 : nullptr; 9434 9435 if (IsFMulAdd) { 9436 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9437 // need to create an fmul recipe to use as the vector operand for the 9438 // fadd reduction. 9439 VPInstruction *FMulRecipe = new VPInstruction( 9440 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9441 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9442 WidenRecipe->getParent()->insert(FMulRecipe, 9443 WidenRecipe->getIterator()); 9444 VecOp = FMulRecipe; 9445 } 9446 VPReductionRecipe *RedRecipe = 9447 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9448 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9449 Plan->removeVPValueFor(R); 9450 Plan->addVPValue(R, RedRecipe); 9451 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9452 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9453 WidenRecipe->eraseFromParent(); 9454 9455 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9456 VPRecipeBase *CompareRecipe = 9457 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9458 assert(isa<VPWidenRecipe>(CompareRecipe) && 9459 "Expected to replace a VPWidenSC"); 9460 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9461 "Expected no remaining users"); 9462 CompareRecipe->eraseFromParent(); 9463 } 9464 Chain = R; 9465 } 9466 } 9467 9468 // If tail is folded by masking, introduce selects between the phi 9469 // and the live-out instruction of each reduction, at the beginning of the 9470 // dedicated latch block. 9471 if (CM.foldTailByMasking()) { 9472 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9473 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9474 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9475 if (!PhiR || PhiR->isInLoop()) 9476 continue; 9477 VPValue *Cond = 9478 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9479 VPValue *Red = PhiR->getBackedgeValue(); 9480 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9481 "reduction recipe must be defined before latch"); 9482 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9483 } 9484 } 9485 } 9486 9487 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9488 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9489 VPSlotTracker &SlotTracker) const { 9490 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9491 IG->getInsertPos()->printAsOperand(O, false); 9492 O << ", "; 9493 getAddr()->printAsOperand(O, SlotTracker); 9494 VPValue *Mask = getMask(); 9495 if (Mask) { 9496 O << ", "; 9497 Mask->printAsOperand(O, SlotTracker); 9498 } 9499 9500 unsigned OpIdx = 0; 9501 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9502 if (!IG->getMember(i)) 9503 continue; 9504 if (getNumStoreOperands() > 0) { 9505 O << "\n" << Indent << " store "; 9506 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9507 O << " to index " << i; 9508 } else { 9509 O << "\n" << Indent << " "; 9510 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9511 O << " = load from index " << i; 9512 } 9513 ++OpIdx; 9514 } 9515 } 9516 #endif 9517 9518 void VPWidenCallRecipe::execute(VPTransformState &State) { 9519 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9520 *this, State); 9521 } 9522 9523 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9524 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9525 State.ILV->setDebugLocFromInst(&I); 9526 9527 // The condition can be loop invariant but still defined inside the 9528 // loop. This means that we can't just use the original 'cond' value. 9529 // We have to take the 'vectorized' value and pick the first lane. 9530 // Instcombine will make this a no-op. 9531 auto *InvarCond = 9532 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9533 9534 for (unsigned Part = 0; Part < State.UF; ++Part) { 9535 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9536 Value *Op0 = State.get(getOperand(1), Part); 9537 Value *Op1 = State.get(getOperand(2), Part); 9538 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9539 State.set(this, Sel, Part); 9540 State.ILV->addMetadata(Sel, &I); 9541 } 9542 } 9543 9544 void VPWidenRecipe::execute(VPTransformState &State) { 9545 auto &I = *cast<Instruction>(getUnderlyingValue()); 9546 auto &Builder = State.Builder; 9547 switch (I.getOpcode()) { 9548 case Instruction::Call: 9549 case Instruction::Br: 9550 case Instruction::PHI: 9551 case Instruction::GetElementPtr: 9552 case Instruction::Select: 9553 llvm_unreachable("This instruction is handled by a different recipe."); 9554 case Instruction::UDiv: 9555 case Instruction::SDiv: 9556 case Instruction::SRem: 9557 case Instruction::URem: 9558 case Instruction::Add: 9559 case Instruction::FAdd: 9560 case Instruction::Sub: 9561 case Instruction::FSub: 9562 case Instruction::FNeg: 9563 case Instruction::Mul: 9564 case Instruction::FMul: 9565 case Instruction::FDiv: 9566 case Instruction::FRem: 9567 case Instruction::Shl: 9568 case Instruction::LShr: 9569 case Instruction::AShr: 9570 case Instruction::And: 9571 case Instruction::Or: 9572 case Instruction::Xor: { 9573 // Just widen unops and binops. 9574 State.ILV->setDebugLocFromInst(&I); 9575 9576 for (unsigned Part = 0; Part < State.UF; ++Part) { 9577 SmallVector<Value *, 2> Ops; 9578 for (VPValue *VPOp : operands()) 9579 Ops.push_back(State.get(VPOp, Part)); 9580 9581 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9582 9583 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9584 VecOp->copyIRFlags(&I); 9585 9586 // If the instruction is vectorized and was in a basic block that needed 9587 // predication, we can't propagate poison-generating flags (nuw/nsw, 9588 // exact, etc.). The control flow has been linearized and the 9589 // instruction is no longer guarded by the predicate, which could make 9590 // the flag properties to no longer hold. 9591 if (State.MayGeneratePoisonRecipes.contains(this)) 9592 VecOp->dropPoisonGeneratingFlags(); 9593 } 9594 9595 // Use this vector value for all users of the original instruction. 9596 State.set(this, V, Part); 9597 State.ILV->addMetadata(V, &I); 9598 } 9599 9600 break; 9601 } 9602 case Instruction::ICmp: 9603 case Instruction::FCmp: { 9604 // Widen compares. Generate vector compares. 9605 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9606 auto *Cmp = cast<CmpInst>(&I); 9607 State.ILV->setDebugLocFromInst(Cmp); 9608 for (unsigned Part = 0; Part < State.UF; ++Part) { 9609 Value *A = State.get(getOperand(0), Part); 9610 Value *B = State.get(getOperand(1), Part); 9611 Value *C = nullptr; 9612 if (FCmp) { 9613 // Propagate fast math flags. 9614 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9615 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9616 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9617 } else { 9618 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9619 } 9620 State.set(this, C, Part); 9621 State.ILV->addMetadata(C, &I); 9622 } 9623 9624 break; 9625 } 9626 9627 case Instruction::ZExt: 9628 case Instruction::SExt: 9629 case Instruction::FPToUI: 9630 case Instruction::FPToSI: 9631 case Instruction::FPExt: 9632 case Instruction::PtrToInt: 9633 case Instruction::IntToPtr: 9634 case Instruction::SIToFP: 9635 case Instruction::UIToFP: 9636 case Instruction::Trunc: 9637 case Instruction::FPTrunc: 9638 case Instruction::BitCast: { 9639 auto *CI = cast<CastInst>(&I); 9640 State.ILV->setDebugLocFromInst(CI); 9641 9642 /// Vectorize casts. 9643 Type *DestTy = (State.VF.isScalar()) 9644 ? CI->getType() 9645 : VectorType::get(CI->getType(), State.VF); 9646 9647 for (unsigned Part = 0; Part < State.UF; ++Part) { 9648 Value *A = State.get(getOperand(0), Part); 9649 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9650 State.set(this, Cast, Part); 9651 State.ILV->addMetadata(Cast, &I); 9652 } 9653 break; 9654 } 9655 default: 9656 // This instruction is not vectorized by simple widening. 9657 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9658 llvm_unreachable("Unhandled instruction!"); 9659 } // end of switch. 9660 } 9661 9662 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9663 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9664 // Construct a vector GEP by widening the operands of the scalar GEP as 9665 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9666 // results in a vector of pointers when at least one operand of the GEP 9667 // is vector-typed. Thus, to keep the representation compact, we only use 9668 // vector-typed operands for loop-varying values. 9669 9670 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9671 // If we are vectorizing, but the GEP has only loop-invariant operands, 9672 // the GEP we build (by only using vector-typed operands for 9673 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9674 // produce a vector of pointers, we need to either arbitrarily pick an 9675 // operand to broadcast, or broadcast a clone of the original GEP. 9676 // Here, we broadcast a clone of the original. 9677 // 9678 // TODO: If at some point we decide to scalarize instructions having 9679 // loop-invariant operands, this special case will no longer be 9680 // required. We would add the scalarization decision to 9681 // collectLoopScalars() and teach getVectorValue() to broadcast 9682 // the lane-zero scalar value. 9683 auto *Clone = State.Builder.Insert(GEP->clone()); 9684 for (unsigned Part = 0; Part < State.UF; ++Part) { 9685 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9686 State.set(this, EntryPart, Part); 9687 State.ILV->addMetadata(EntryPart, GEP); 9688 } 9689 } else { 9690 // If the GEP has at least one loop-varying operand, we are sure to 9691 // produce a vector of pointers. But if we are only unrolling, we want 9692 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9693 // produce with the code below will be scalar (if VF == 1) or vector 9694 // (otherwise). Note that for the unroll-only case, we still maintain 9695 // values in the vector mapping with initVector, as we do for other 9696 // instructions. 9697 for (unsigned Part = 0; Part < State.UF; ++Part) { 9698 // The pointer operand of the new GEP. If it's loop-invariant, we 9699 // won't broadcast it. 9700 auto *Ptr = IsPtrLoopInvariant 9701 ? State.get(getOperand(0), VPIteration(0, 0)) 9702 : State.get(getOperand(0), Part); 9703 9704 // Collect all the indices for the new GEP. If any index is 9705 // loop-invariant, we won't broadcast it. 9706 SmallVector<Value *, 4> Indices; 9707 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9708 VPValue *Operand = getOperand(I); 9709 if (IsIndexLoopInvariant[I - 1]) 9710 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9711 else 9712 Indices.push_back(State.get(Operand, Part)); 9713 } 9714 9715 // If the GEP instruction is vectorized and was in a basic block that 9716 // needed predication, we can't propagate the poison-generating 'inbounds' 9717 // flag. The control flow has been linearized and the GEP is no longer 9718 // guarded by the predicate, which could make the 'inbounds' properties to 9719 // no longer hold. 9720 bool IsInBounds = 9721 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9722 9723 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9724 // but it should be a vector, otherwise. 9725 auto *NewGEP = IsInBounds 9726 ? State.Builder.CreateInBoundsGEP( 9727 GEP->getSourceElementType(), Ptr, Indices) 9728 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9729 Ptr, Indices); 9730 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9731 "NewGEP is not a pointer vector"); 9732 State.set(this, NewGEP, Part); 9733 State.ILV->addMetadata(NewGEP, GEP); 9734 } 9735 } 9736 } 9737 9738 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9739 assert(!State.Instance && "Int or FP induction being replicated."); 9740 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9741 State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV); 9742 } 9743 9744 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9745 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9746 State); 9747 } 9748 9749 void VPBlendRecipe::execute(VPTransformState &State) { 9750 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9751 // We know that all PHIs in non-header blocks are converted into 9752 // selects, so we don't have to worry about the insertion order and we 9753 // can just use the builder. 9754 // At this point we generate the predication tree. There may be 9755 // duplications since this is a simple recursive scan, but future 9756 // optimizations will clean it up. 9757 9758 unsigned NumIncoming = getNumIncomingValues(); 9759 9760 // Generate a sequence of selects of the form: 9761 // SELECT(Mask3, In3, 9762 // SELECT(Mask2, In2, 9763 // SELECT(Mask1, In1, 9764 // In0))) 9765 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9766 // are essentially undef are taken from In0. 9767 InnerLoopVectorizer::VectorParts Entry(State.UF); 9768 for (unsigned In = 0; In < NumIncoming; ++In) { 9769 for (unsigned Part = 0; Part < State.UF; ++Part) { 9770 // We might have single edge PHIs (blocks) - use an identity 9771 // 'select' for the first PHI operand. 9772 Value *In0 = State.get(getIncomingValue(In), Part); 9773 if (In == 0) 9774 Entry[Part] = In0; // Initialize with the first incoming value. 9775 else { 9776 // Select between the current value and the previous incoming edge 9777 // based on the incoming mask. 9778 Value *Cond = State.get(getMask(In), Part); 9779 Entry[Part] = 9780 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9781 } 9782 } 9783 } 9784 for (unsigned Part = 0; Part < State.UF; ++Part) 9785 State.set(this, Entry[Part], Part); 9786 } 9787 9788 void VPInterleaveRecipe::execute(VPTransformState &State) { 9789 assert(!State.Instance && "Interleave group being replicated."); 9790 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9791 getStoredValues(), getMask()); 9792 } 9793 9794 void VPReductionRecipe::execute(VPTransformState &State) { 9795 assert(!State.Instance && "Reduction being replicated."); 9796 Value *PrevInChain = State.get(getChainOp(), 0); 9797 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9798 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9799 // Propagate the fast-math flags carried by the underlying instruction. 9800 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9801 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9802 for (unsigned Part = 0; Part < State.UF; ++Part) { 9803 Value *NewVecOp = State.get(getVecOp(), Part); 9804 if (VPValue *Cond = getCondOp()) { 9805 Value *NewCond = State.get(Cond, Part); 9806 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9807 Value *Iden = RdxDesc->getRecurrenceIdentity( 9808 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9809 Value *IdenVec = 9810 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9811 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9812 NewVecOp = Select; 9813 } 9814 Value *NewRed; 9815 Value *NextInChain; 9816 if (IsOrdered) { 9817 if (State.VF.isVector()) 9818 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9819 PrevInChain); 9820 else 9821 NewRed = State.Builder.CreateBinOp( 9822 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9823 NewVecOp); 9824 PrevInChain = NewRed; 9825 } else { 9826 PrevInChain = State.get(getChainOp(), Part); 9827 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9828 } 9829 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9830 NextInChain = 9831 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9832 NewRed, PrevInChain); 9833 } else if (IsOrdered) 9834 NextInChain = NewRed; 9835 else 9836 NextInChain = State.Builder.CreateBinOp( 9837 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9838 PrevInChain); 9839 State.set(this, NextInChain, Part); 9840 } 9841 } 9842 9843 void VPReplicateRecipe::execute(VPTransformState &State) { 9844 if (State.Instance) { // Generate a single instance. 9845 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9846 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9847 IsPredicated, State); 9848 // Insert scalar instance packing it into a vector. 9849 if (AlsoPack && State.VF.isVector()) { 9850 // If we're constructing lane 0, initialize to start from poison. 9851 if (State.Instance->Lane.isFirstLane()) { 9852 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9853 Value *Poison = PoisonValue::get( 9854 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9855 State.set(this, Poison, State.Instance->Part); 9856 } 9857 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9858 } 9859 return; 9860 } 9861 9862 // Generate scalar instances for all VF lanes of all UF parts, unless the 9863 // instruction is uniform inwhich case generate only the first lane for each 9864 // of the UF parts. 9865 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9866 assert((!State.VF.isScalable() || IsUniform) && 9867 "Can't scalarize a scalable vector"); 9868 for (unsigned Part = 0; Part < State.UF; ++Part) 9869 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9870 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9871 VPIteration(Part, Lane), IsPredicated, 9872 State); 9873 } 9874 9875 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9876 assert(State.Instance && "Branch on Mask works only on single instance."); 9877 9878 unsigned Part = State.Instance->Part; 9879 unsigned Lane = State.Instance->Lane.getKnownLane(); 9880 9881 Value *ConditionBit = nullptr; 9882 VPValue *BlockInMask = getMask(); 9883 if (BlockInMask) { 9884 ConditionBit = State.get(BlockInMask, Part); 9885 if (ConditionBit->getType()->isVectorTy()) 9886 ConditionBit = State.Builder.CreateExtractElement( 9887 ConditionBit, State.Builder.getInt32(Lane)); 9888 } else // Block in mask is all-one. 9889 ConditionBit = State.Builder.getTrue(); 9890 9891 // Replace the temporary unreachable terminator with a new conditional branch, 9892 // whose two destinations will be set later when they are created. 9893 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9894 assert(isa<UnreachableInst>(CurrentTerminator) && 9895 "Expected to replace unreachable terminator with conditional branch."); 9896 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9897 CondBr->setSuccessor(0, nullptr); 9898 ReplaceInstWithInst(CurrentTerminator, CondBr); 9899 } 9900 9901 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9902 assert(State.Instance && "Predicated instruction PHI works per instance."); 9903 Instruction *ScalarPredInst = 9904 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9905 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9906 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9907 assert(PredicatingBB && "Predicated block has no single predecessor."); 9908 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9909 "operand must be VPReplicateRecipe"); 9910 9911 // By current pack/unpack logic we need to generate only a single phi node: if 9912 // a vector value for the predicated instruction exists at this point it means 9913 // the instruction has vector users only, and a phi for the vector value is 9914 // needed. In this case the recipe of the predicated instruction is marked to 9915 // also do that packing, thereby "hoisting" the insert-element sequence. 9916 // Otherwise, a phi node for the scalar value is needed. 9917 unsigned Part = State.Instance->Part; 9918 if (State.hasVectorValue(getOperand(0), Part)) { 9919 Value *VectorValue = State.get(getOperand(0), Part); 9920 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9921 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9922 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9923 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9924 if (State.hasVectorValue(this, Part)) 9925 State.reset(this, VPhi, Part); 9926 else 9927 State.set(this, VPhi, Part); 9928 // NOTE: Currently we need to update the value of the operand, so the next 9929 // predicated iteration inserts its generated value in the correct vector. 9930 State.reset(getOperand(0), VPhi, Part); 9931 } else { 9932 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9933 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9934 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9935 PredicatingBB); 9936 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9937 if (State.hasScalarValue(this, *State.Instance)) 9938 State.reset(this, Phi, *State.Instance); 9939 else 9940 State.set(this, Phi, *State.Instance); 9941 // NOTE: Currently we need to update the value of the operand, so the next 9942 // predicated iteration inserts its generated value in the correct vector. 9943 State.reset(getOperand(0), Phi, *State.Instance); 9944 } 9945 } 9946 9947 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9948 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9949 9950 // Attempt to issue a wide load. 9951 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9952 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9953 9954 assert((LI || SI) && "Invalid Load/Store instruction"); 9955 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9956 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9957 9958 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9959 9960 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9961 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9962 bool CreateGatherScatter = !Consecutive; 9963 9964 auto &Builder = State.Builder; 9965 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9966 bool isMaskRequired = getMask(); 9967 if (isMaskRequired) 9968 for (unsigned Part = 0; Part < State.UF; ++Part) 9969 BlockInMaskParts[Part] = State.get(getMask(), Part); 9970 9971 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9972 // Calculate the pointer for the specific unroll-part. 9973 GetElementPtrInst *PartPtr = nullptr; 9974 9975 bool InBounds = false; 9976 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9977 InBounds = gep->isInBounds(); 9978 if (Reverse) { 9979 // If the address is consecutive but reversed, then the 9980 // wide store needs to start at the last vector element. 9981 // RunTimeVF = VScale * VF.getKnownMinValue() 9982 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9983 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9984 // NumElt = -Part * RunTimeVF 9985 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9986 // LastLane = 1 - RunTimeVF 9987 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9988 PartPtr = 9989 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9990 PartPtr->setIsInBounds(InBounds); 9991 PartPtr = cast<GetElementPtrInst>( 9992 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9993 PartPtr->setIsInBounds(InBounds); 9994 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9995 BlockInMaskParts[Part] = 9996 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9997 } else { 9998 Value *Increment = 9999 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 10000 PartPtr = cast<GetElementPtrInst>( 10001 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 10002 PartPtr->setIsInBounds(InBounds); 10003 } 10004 10005 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 10006 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 10007 }; 10008 10009 // Handle Stores: 10010 if (SI) { 10011 State.ILV->setDebugLocFromInst(SI); 10012 10013 for (unsigned Part = 0; Part < State.UF; ++Part) { 10014 Instruction *NewSI = nullptr; 10015 Value *StoredVal = State.get(StoredValue, Part); 10016 if (CreateGatherScatter) { 10017 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10018 Value *VectorGep = State.get(getAddr(), Part); 10019 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10020 MaskPart); 10021 } else { 10022 if (Reverse) { 10023 // If we store to reverse consecutive memory locations, then we need 10024 // to reverse the order of elements in the stored value. 10025 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10026 // We don't want to update the value in the map as it might be used in 10027 // another expression. So don't call resetVectorValue(StoredVal). 10028 } 10029 auto *VecPtr = 10030 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10031 if (isMaskRequired) 10032 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10033 BlockInMaskParts[Part]); 10034 else 10035 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10036 } 10037 State.ILV->addMetadata(NewSI, SI); 10038 } 10039 return; 10040 } 10041 10042 // Handle loads. 10043 assert(LI && "Must have a load instruction"); 10044 State.ILV->setDebugLocFromInst(LI); 10045 for (unsigned Part = 0; Part < State.UF; ++Part) { 10046 Value *NewLI; 10047 if (CreateGatherScatter) { 10048 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10049 Value *VectorGep = State.get(getAddr(), Part); 10050 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10051 nullptr, "wide.masked.gather"); 10052 State.ILV->addMetadata(NewLI, LI); 10053 } else { 10054 auto *VecPtr = 10055 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10056 if (isMaskRequired) 10057 NewLI = Builder.CreateMaskedLoad( 10058 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10059 PoisonValue::get(DataTy), "wide.masked.load"); 10060 else 10061 NewLI = 10062 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10063 10064 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10065 State.ILV->addMetadata(NewLI, LI); 10066 if (Reverse) 10067 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10068 } 10069 10070 State.set(this, NewLI, Part); 10071 } 10072 } 10073 10074 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10075 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10076 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10077 // for predication. 10078 static ScalarEpilogueLowering getScalarEpilogueLowering( 10079 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10080 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10081 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10082 LoopVectorizationLegality &LVL) { 10083 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10084 // don't look at hints or options, and don't request a scalar epilogue. 10085 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10086 // LoopAccessInfo (due to code dependency and not being able to reliably get 10087 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10088 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10089 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10090 // back to the old way and vectorize with versioning when forced. See D81345.) 10091 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10092 PGSOQueryType::IRPass) && 10093 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10094 return CM_ScalarEpilogueNotAllowedOptSize; 10095 10096 // 2) If set, obey the directives 10097 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10098 switch (PreferPredicateOverEpilogue) { 10099 case PreferPredicateTy::ScalarEpilogue: 10100 return CM_ScalarEpilogueAllowed; 10101 case PreferPredicateTy::PredicateElseScalarEpilogue: 10102 return CM_ScalarEpilogueNotNeededUsePredicate; 10103 case PreferPredicateTy::PredicateOrDontVectorize: 10104 return CM_ScalarEpilogueNotAllowedUsePredicate; 10105 }; 10106 } 10107 10108 // 3) If set, obey the hints 10109 switch (Hints.getPredicate()) { 10110 case LoopVectorizeHints::FK_Enabled: 10111 return CM_ScalarEpilogueNotNeededUsePredicate; 10112 case LoopVectorizeHints::FK_Disabled: 10113 return CM_ScalarEpilogueAllowed; 10114 }; 10115 10116 // 4) if the TTI hook indicates this is profitable, request predication. 10117 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10118 LVL.getLAI())) 10119 return CM_ScalarEpilogueNotNeededUsePredicate; 10120 10121 return CM_ScalarEpilogueAllowed; 10122 } 10123 10124 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10125 // If Values have been set for this Def return the one relevant for \p Part. 10126 if (hasVectorValue(Def, Part)) 10127 return Data.PerPartOutput[Def][Part]; 10128 10129 if (!hasScalarValue(Def, {Part, 0})) { 10130 Value *IRV = Def->getLiveInIRValue(); 10131 Value *B = ILV->getBroadcastInstrs(IRV); 10132 set(Def, B, Part); 10133 return B; 10134 } 10135 10136 Value *ScalarValue = get(Def, {Part, 0}); 10137 // If we aren't vectorizing, we can just copy the scalar map values over 10138 // to the vector map. 10139 if (VF.isScalar()) { 10140 set(Def, ScalarValue, Part); 10141 return ScalarValue; 10142 } 10143 10144 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10145 bool IsUniform = RepR && RepR->isUniform(); 10146 10147 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10148 // Check if there is a scalar value for the selected lane. 10149 if (!hasScalarValue(Def, {Part, LastLane})) { 10150 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10151 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10152 "unexpected recipe found to be invariant"); 10153 IsUniform = true; 10154 LastLane = 0; 10155 } 10156 10157 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10158 // Set the insert point after the last scalarized instruction or after the 10159 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10160 // will directly follow the scalar definitions. 10161 auto OldIP = Builder.saveIP(); 10162 auto NewIP = 10163 isa<PHINode>(LastInst) 10164 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10165 : std::next(BasicBlock::iterator(LastInst)); 10166 Builder.SetInsertPoint(&*NewIP); 10167 10168 // However, if we are vectorizing, we need to construct the vector values. 10169 // If the value is known to be uniform after vectorization, we can just 10170 // broadcast the scalar value corresponding to lane zero for each unroll 10171 // iteration. Otherwise, we construct the vector values using 10172 // insertelement instructions. Since the resulting vectors are stored in 10173 // State, we will only generate the insertelements once. 10174 Value *VectorValue = nullptr; 10175 if (IsUniform) { 10176 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10177 set(Def, VectorValue, Part); 10178 } else { 10179 // Initialize packing with insertelements to start from undef. 10180 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10181 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10182 set(Def, Undef, Part); 10183 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10184 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10185 VectorValue = get(Def, Part); 10186 } 10187 Builder.restoreIP(OldIP); 10188 return VectorValue; 10189 } 10190 10191 // Process the loop in the VPlan-native vectorization path. This path builds 10192 // VPlan upfront in the vectorization pipeline, which allows to apply 10193 // VPlan-to-VPlan transformations from the very beginning without modifying the 10194 // input LLVM IR. 10195 static bool processLoopInVPlanNativePath( 10196 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10197 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10198 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10199 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10200 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10201 LoopVectorizationRequirements &Requirements) { 10202 10203 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10204 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10205 return false; 10206 } 10207 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10208 Function *F = L->getHeader()->getParent(); 10209 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10210 10211 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10212 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10213 10214 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10215 &Hints, IAI); 10216 // Use the planner for outer loop vectorization. 10217 // TODO: CM is not used at this point inside the planner. Turn CM into an 10218 // optional argument if we don't need it in the future. 10219 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10220 Requirements, ORE); 10221 10222 // Get user vectorization factor. 10223 ElementCount UserVF = Hints.getWidth(); 10224 10225 CM.collectElementTypesForWidening(); 10226 10227 // Plan how to best vectorize, return the best VF and its cost. 10228 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10229 10230 // If we are stress testing VPlan builds, do not attempt to generate vector 10231 // code. Masked vector code generation support will follow soon. 10232 // Also, do not attempt to vectorize if no vector code will be produced. 10233 if (VPlanBuildStressTest || EnableVPlanPredication || 10234 VectorizationFactor::Disabled() == VF) 10235 return false; 10236 10237 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10238 10239 { 10240 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10241 F->getParent()->getDataLayout()); 10242 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10243 &CM, BFI, PSI, Checks); 10244 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10245 << L->getHeader()->getParent()->getName() << "\"\n"); 10246 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10247 } 10248 10249 // Mark the loop as already vectorized to avoid vectorizing again. 10250 Hints.setAlreadyVectorized(); 10251 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10252 return true; 10253 } 10254 10255 // Emit a remark if there are stores to floats that required a floating point 10256 // extension. If the vectorized loop was generated with floating point there 10257 // will be a performance penalty from the conversion overhead and the change in 10258 // the vector width. 10259 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10260 SmallVector<Instruction *, 4> Worklist; 10261 for (BasicBlock *BB : L->getBlocks()) { 10262 for (Instruction &Inst : *BB) { 10263 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10264 if (S->getValueOperand()->getType()->isFloatTy()) 10265 Worklist.push_back(S); 10266 } 10267 } 10268 } 10269 10270 // Traverse the floating point stores upwards searching, for floating point 10271 // conversions. 10272 SmallPtrSet<const Instruction *, 4> Visited; 10273 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10274 while (!Worklist.empty()) { 10275 auto *I = Worklist.pop_back_val(); 10276 if (!L->contains(I)) 10277 continue; 10278 if (!Visited.insert(I).second) 10279 continue; 10280 10281 // Emit a remark if the floating point store required a floating 10282 // point conversion. 10283 // TODO: More work could be done to identify the root cause such as a 10284 // constant or a function return type and point the user to it. 10285 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10286 ORE->emit([&]() { 10287 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10288 I->getDebugLoc(), L->getHeader()) 10289 << "floating point conversion changes vector width. " 10290 << "Mixed floating point precision requires an up/down " 10291 << "cast that will negatively impact performance."; 10292 }); 10293 10294 for (Use &Op : I->operands()) 10295 if (auto *OpI = dyn_cast<Instruction>(Op)) 10296 Worklist.push_back(OpI); 10297 } 10298 } 10299 10300 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10301 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10302 !EnableLoopInterleaving), 10303 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10304 !EnableLoopVectorization) {} 10305 10306 bool LoopVectorizePass::processLoop(Loop *L) { 10307 assert((EnableVPlanNativePath || L->isInnermost()) && 10308 "VPlan-native path is not enabled. Only process inner loops."); 10309 10310 #ifndef NDEBUG 10311 const std::string DebugLocStr = getDebugLocString(L); 10312 #endif /* NDEBUG */ 10313 10314 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10315 << L->getHeader()->getParent()->getName() << "\" from " 10316 << DebugLocStr << "\n"); 10317 10318 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10319 10320 LLVM_DEBUG( 10321 dbgs() << "LV: Loop hints:" 10322 << " force=" 10323 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10324 ? "disabled" 10325 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10326 ? "enabled" 10327 : "?")) 10328 << " width=" << Hints.getWidth() 10329 << " interleave=" << Hints.getInterleave() << "\n"); 10330 10331 // Function containing loop 10332 Function *F = L->getHeader()->getParent(); 10333 10334 // Looking at the diagnostic output is the only way to determine if a loop 10335 // was vectorized (other than looking at the IR or machine code), so it 10336 // is important to generate an optimization remark for each loop. Most of 10337 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10338 // generated as OptimizationRemark and OptimizationRemarkMissed are 10339 // less verbose reporting vectorized loops and unvectorized loops that may 10340 // benefit from vectorization, respectively. 10341 10342 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10343 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10344 return false; 10345 } 10346 10347 PredicatedScalarEvolution PSE(*SE, *L); 10348 10349 // Check if it is legal to vectorize the loop. 10350 LoopVectorizationRequirements Requirements; 10351 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10352 &Requirements, &Hints, DB, AC, BFI, PSI); 10353 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10354 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10355 Hints.emitRemarkWithHints(); 10356 return false; 10357 } 10358 10359 // Check the function attributes and profiles to find out if this function 10360 // should be optimized for size. 10361 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10362 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10363 10364 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10365 // here. They may require CFG and instruction level transformations before 10366 // even evaluating whether vectorization is profitable. Since we cannot modify 10367 // the incoming IR, we need to build VPlan upfront in the vectorization 10368 // pipeline. 10369 if (!L->isInnermost()) 10370 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10371 ORE, BFI, PSI, Hints, Requirements); 10372 10373 assert(L->isInnermost() && "Inner loop expected."); 10374 10375 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10376 // count by optimizing for size, to minimize overheads. 10377 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10378 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10379 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10380 << "This loop is worth vectorizing only if no scalar " 10381 << "iteration overheads are incurred."); 10382 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10383 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10384 else { 10385 LLVM_DEBUG(dbgs() << "\n"); 10386 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10387 } 10388 } 10389 10390 // Check the function attributes to see if implicit floats are allowed. 10391 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10392 // an integer loop and the vector instructions selected are purely integer 10393 // vector instructions? 10394 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10395 reportVectorizationFailure( 10396 "Can't vectorize when the NoImplicitFloat attribute is used", 10397 "loop not vectorized due to NoImplicitFloat attribute", 10398 "NoImplicitFloat", ORE, L); 10399 Hints.emitRemarkWithHints(); 10400 return false; 10401 } 10402 10403 // Check if the target supports potentially unsafe FP vectorization. 10404 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10405 // for the target we're vectorizing for, to make sure none of the 10406 // additional fp-math flags can help. 10407 if (Hints.isPotentiallyUnsafe() && 10408 TTI->isFPVectorizationPotentiallyUnsafe()) { 10409 reportVectorizationFailure( 10410 "Potentially unsafe FP op prevents vectorization", 10411 "loop not vectorized due to unsafe FP support.", 10412 "UnsafeFP", ORE, L); 10413 Hints.emitRemarkWithHints(); 10414 return false; 10415 } 10416 10417 bool AllowOrderedReductions; 10418 // If the flag is set, use that instead and override the TTI behaviour. 10419 if (ForceOrderedReductions.getNumOccurrences() > 0) 10420 AllowOrderedReductions = ForceOrderedReductions; 10421 else 10422 AllowOrderedReductions = TTI->enableOrderedReductions(); 10423 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10424 ORE->emit([&]() { 10425 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10426 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10427 ExactFPMathInst->getDebugLoc(), 10428 ExactFPMathInst->getParent()) 10429 << "loop not vectorized: cannot prove it is safe to reorder " 10430 "floating-point operations"; 10431 }); 10432 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10433 "reorder floating-point operations\n"); 10434 Hints.emitRemarkWithHints(); 10435 return false; 10436 } 10437 10438 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10439 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10440 10441 // If an override option has been passed in for interleaved accesses, use it. 10442 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10443 UseInterleaved = EnableInterleavedMemAccesses; 10444 10445 // Analyze interleaved memory accesses. 10446 if (UseInterleaved) { 10447 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10448 } 10449 10450 // Use the cost model. 10451 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10452 F, &Hints, IAI); 10453 CM.collectValuesToIgnore(); 10454 CM.collectElementTypesForWidening(); 10455 10456 // Use the planner for vectorization. 10457 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10458 Requirements, ORE); 10459 10460 // Get user vectorization factor and interleave count. 10461 ElementCount UserVF = Hints.getWidth(); 10462 unsigned UserIC = Hints.getInterleave(); 10463 10464 // Plan how to best vectorize, return the best VF and its cost. 10465 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10466 10467 VectorizationFactor VF = VectorizationFactor::Disabled(); 10468 unsigned IC = 1; 10469 10470 if (MaybeVF) { 10471 VF = *MaybeVF; 10472 // Select the interleave count. 10473 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10474 } 10475 10476 // Identify the diagnostic messages that should be produced. 10477 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10478 bool VectorizeLoop = true, InterleaveLoop = true; 10479 if (VF.Width.isScalar()) { 10480 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10481 VecDiagMsg = std::make_pair( 10482 "VectorizationNotBeneficial", 10483 "the cost-model indicates that vectorization is not beneficial"); 10484 VectorizeLoop = false; 10485 } 10486 10487 if (!MaybeVF && UserIC > 1) { 10488 // Tell the user interleaving was avoided up-front, despite being explicitly 10489 // requested. 10490 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10491 "interleaving should be avoided up front\n"); 10492 IntDiagMsg = std::make_pair( 10493 "InterleavingAvoided", 10494 "Ignoring UserIC, because interleaving was avoided up front"); 10495 InterleaveLoop = false; 10496 } else if (IC == 1 && UserIC <= 1) { 10497 // Tell the user interleaving is not beneficial. 10498 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10499 IntDiagMsg = std::make_pair( 10500 "InterleavingNotBeneficial", 10501 "the cost-model indicates that interleaving is not beneficial"); 10502 InterleaveLoop = false; 10503 if (UserIC == 1) { 10504 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10505 IntDiagMsg.second += 10506 " and is explicitly disabled or interleave count is set to 1"; 10507 } 10508 } else if (IC > 1 && UserIC == 1) { 10509 // Tell the user interleaving is beneficial, but it explicitly disabled. 10510 LLVM_DEBUG( 10511 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10512 IntDiagMsg = std::make_pair( 10513 "InterleavingBeneficialButDisabled", 10514 "the cost-model indicates that interleaving is beneficial " 10515 "but is explicitly disabled or interleave count is set to 1"); 10516 InterleaveLoop = false; 10517 } 10518 10519 // Override IC if user provided an interleave count. 10520 IC = UserIC > 0 ? UserIC : IC; 10521 10522 // Emit diagnostic messages, if any. 10523 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10524 if (!VectorizeLoop && !InterleaveLoop) { 10525 // Do not vectorize or interleaving the loop. 10526 ORE->emit([&]() { 10527 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10528 L->getStartLoc(), L->getHeader()) 10529 << VecDiagMsg.second; 10530 }); 10531 ORE->emit([&]() { 10532 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10533 L->getStartLoc(), L->getHeader()) 10534 << IntDiagMsg.second; 10535 }); 10536 return false; 10537 } else if (!VectorizeLoop && InterleaveLoop) { 10538 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10539 ORE->emit([&]() { 10540 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10541 L->getStartLoc(), L->getHeader()) 10542 << VecDiagMsg.second; 10543 }); 10544 } else if (VectorizeLoop && !InterleaveLoop) { 10545 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10546 << ") in " << DebugLocStr << '\n'); 10547 ORE->emit([&]() { 10548 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10549 L->getStartLoc(), L->getHeader()) 10550 << IntDiagMsg.second; 10551 }); 10552 } else if (VectorizeLoop && InterleaveLoop) { 10553 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10554 << ") in " << DebugLocStr << '\n'); 10555 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10556 } 10557 10558 bool DisableRuntimeUnroll = false; 10559 MDNode *OrigLoopID = L->getLoopID(); 10560 { 10561 // Optimistically generate runtime checks. Drop them if they turn out to not 10562 // be profitable. Limit the scope of Checks, so the cleanup happens 10563 // immediately after vector codegeneration is done. 10564 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10565 F->getParent()->getDataLayout()); 10566 if (!VF.Width.isScalar() || IC > 1) 10567 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10568 10569 using namespace ore; 10570 if (!VectorizeLoop) { 10571 assert(IC > 1 && "interleave count should not be 1 or 0"); 10572 // If we decided that it is not legal to vectorize the loop, then 10573 // interleave it. 10574 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10575 &CM, BFI, PSI, Checks); 10576 10577 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10578 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10579 10580 ORE->emit([&]() { 10581 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10582 L->getHeader()) 10583 << "interleaved loop (interleaved count: " 10584 << NV("InterleaveCount", IC) << ")"; 10585 }); 10586 } else { 10587 // If we decided that it is *legal* to vectorize the loop, then do it. 10588 10589 // Consider vectorizing the epilogue too if it's profitable. 10590 VectorizationFactor EpilogueVF = 10591 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10592 if (EpilogueVF.Width.isVector()) { 10593 10594 // The first pass vectorizes the main loop and creates a scalar epilogue 10595 // to be vectorized by executing the plan (potentially with a different 10596 // factor) again shortly afterwards. 10597 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10598 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10599 EPI, &LVL, &CM, BFI, PSI, Checks); 10600 10601 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10602 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10603 DT); 10604 ++LoopsVectorized; 10605 10606 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10607 formLCSSARecursively(*L, *DT, LI, SE); 10608 10609 // Second pass vectorizes the epilogue and adjusts the control flow 10610 // edges from the first pass. 10611 EPI.MainLoopVF = EPI.EpilogueVF; 10612 EPI.MainLoopUF = EPI.EpilogueUF; 10613 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10614 ORE, EPI, &LVL, &CM, BFI, PSI, 10615 Checks); 10616 10617 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10618 10619 // Ensure that the start values for any VPReductionPHIRecipes are 10620 // updated before vectorising the epilogue loop. 10621 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10622 for (VPRecipeBase &R : Header->phis()) { 10623 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10624 if (auto *Resume = MainILV.getReductionResumeValue( 10625 ReductionPhi->getRecurrenceDescriptor())) { 10626 VPValue *StartVal = new VPValue(Resume); 10627 BestEpiPlan.addExternalDef(StartVal); 10628 ReductionPhi->setOperand(0, StartVal); 10629 } 10630 } 10631 } 10632 10633 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10634 DT); 10635 ++LoopsEpilogueVectorized; 10636 10637 if (!MainILV.areSafetyChecksAdded()) 10638 DisableRuntimeUnroll = true; 10639 } else { 10640 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10641 &LVL, &CM, BFI, PSI, Checks); 10642 10643 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10644 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10645 ++LoopsVectorized; 10646 10647 // Add metadata to disable runtime unrolling a scalar loop when there 10648 // are no runtime checks about strides and memory. A scalar loop that is 10649 // rarely used is not worth unrolling. 10650 if (!LB.areSafetyChecksAdded()) 10651 DisableRuntimeUnroll = true; 10652 } 10653 // Report the vectorization decision. 10654 ORE->emit([&]() { 10655 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10656 L->getHeader()) 10657 << "vectorized loop (vectorization width: " 10658 << NV("VectorizationFactor", VF.Width) 10659 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10660 }); 10661 } 10662 10663 if (ORE->allowExtraAnalysis(LV_NAME)) 10664 checkMixedPrecision(L, ORE); 10665 } 10666 10667 Optional<MDNode *> RemainderLoopID = 10668 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10669 LLVMLoopVectorizeFollowupEpilogue}); 10670 if (RemainderLoopID.hasValue()) { 10671 L->setLoopID(RemainderLoopID.getValue()); 10672 } else { 10673 if (DisableRuntimeUnroll) 10674 AddRuntimeUnrollDisableMetaData(L); 10675 10676 // Mark the loop as already vectorized to avoid vectorizing again. 10677 Hints.setAlreadyVectorized(); 10678 } 10679 10680 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10681 return true; 10682 } 10683 10684 LoopVectorizeResult LoopVectorizePass::runImpl( 10685 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10686 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10687 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10688 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10689 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10690 SE = &SE_; 10691 LI = &LI_; 10692 TTI = &TTI_; 10693 DT = &DT_; 10694 BFI = &BFI_; 10695 TLI = TLI_; 10696 AA = &AA_; 10697 AC = &AC_; 10698 GetLAA = &GetLAA_; 10699 DB = &DB_; 10700 ORE = &ORE_; 10701 PSI = PSI_; 10702 10703 // Don't attempt if 10704 // 1. the target claims to have no vector registers, and 10705 // 2. interleaving won't help ILP. 10706 // 10707 // The second condition is necessary because, even if the target has no 10708 // vector registers, loop vectorization may still enable scalar 10709 // interleaving. 10710 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10711 TTI->getMaxInterleaveFactor(1) < 2) 10712 return LoopVectorizeResult(false, false); 10713 10714 bool Changed = false, CFGChanged = false; 10715 10716 // The vectorizer requires loops to be in simplified form. 10717 // Since simplification may add new inner loops, it has to run before the 10718 // legality and profitability checks. This means running the loop vectorizer 10719 // will simplify all loops, regardless of whether anything end up being 10720 // vectorized. 10721 for (auto &L : *LI) 10722 Changed |= CFGChanged |= 10723 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10724 10725 // Build up a worklist of inner-loops to vectorize. This is necessary as 10726 // the act of vectorizing or partially unrolling a loop creates new loops 10727 // and can invalidate iterators across the loops. 10728 SmallVector<Loop *, 8> Worklist; 10729 10730 for (Loop *L : *LI) 10731 collectSupportedLoops(*L, LI, ORE, Worklist); 10732 10733 LoopsAnalyzed += Worklist.size(); 10734 10735 // Now walk the identified inner loops. 10736 while (!Worklist.empty()) { 10737 Loop *L = Worklist.pop_back_val(); 10738 10739 // For the inner loops we actually process, form LCSSA to simplify the 10740 // transform. 10741 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10742 10743 Changed |= CFGChanged |= processLoop(L); 10744 } 10745 10746 // Process each loop nest in the function. 10747 return LoopVectorizeResult(Changed, CFGChanged); 10748 } 10749 10750 PreservedAnalyses LoopVectorizePass::run(Function &F, 10751 FunctionAnalysisManager &AM) { 10752 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10753 auto &LI = AM.getResult<LoopAnalysis>(F); 10754 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10755 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10756 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10757 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10758 auto &AA = AM.getResult<AAManager>(F); 10759 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10760 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10761 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10762 10763 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10764 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10765 [&](Loop &L) -> const LoopAccessInfo & { 10766 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10767 TLI, TTI, nullptr, nullptr, nullptr}; 10768 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10769 }; 10770 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10771 ProfileSummaryInfo *PSI = 10772 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10773 LoopVectorizeResult Result = 10774 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10775 if (!Result.MadeAnyChange) 10776 return PreservedAnalyses::all(); 10777 PreservedAnalyses PA; 10778 10779 // We currently do not preserve loopinfo/dominator analyses with outer loop 10780 // vectorization. Until this is addressed, mark these analyses as preserved 10781 // only for non-VPlan-native path. 10782 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10783 if (!EnableVPlanNativePath) { 10784 PA.preserve<LoopAnalysis>(); 10785 PA.preserve<DominatorTreeAnalysis>(); 10786 } 10787 10788 if (Result.MadeCFGChange) { 10789 // Making CFG changes likely means a loop got vectorized. Indicate that 10790 // extra simplification passes should be run. 10791 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10792 // be run if runtime checks have been added. 10793 AM.getResult<ShouldRunExtraVectorPasses>(F); 10794 PA.preserve<ShouldRunExtraVectorPasses>(); 10795 } else { 10796 PA.preserveSet<CFGAnalyses>(); 10797 } 10798 return PA; 10799 } 10800 10801 void LoopVectorizePass::printPipeline( 10802 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10803 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10804 OS, MapClassName2PassName); 10805 10806 OS << "<"; 10807 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10808 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10809 OS << ">"; 10810 } 10811