1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 AnalysisKey ShouldRunExtraVectorPasses::Key;
432 
433 /// InnerLoopVectorizer vectorizes loops which contain only one basic
434 /// block to a specified vectorization factor (VF).
435 /// This class performs the widening of scalars into vectors, or multiple
436 /// scalars. This class also implements the following features:
437 /// * It inserts an epilogue loop for handling loops that don't have iteration
438 ///   counts that are known to be a multiple of the vectorization factor.
439 /// * It handles the code generation for reduction variables.
440 /// * Scalarization (implementation using scalars) of un-vectorizable
441 ///   instructions.
442 /// InnerLoopVectorizer does not perform any vectorization-legality
443 /// checks, and relies on the caller to check for the different legality
444 /// aspects. The InnerLoopVectorizer relies on the
445 /// LoopVectorizationLegality class to provide information about the induction
446 /// and reduction variables that were found to a given vectorization factor.
447 class InnerLoopVectorizer {
448 public:
449   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
450                       LoopInfo *LI, DominatorTree *DT,
451                       const TargetLibraryInfo *TLI,
452                       const TargetTransformInfo *TTI, AssumptionCache *AC,
453                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
454                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
455                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
456                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
457       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
458         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
459         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
460         PSI(PSI), RTChecks(RTChecks) {
461     // Query this against the original loop and save it here because the profile
462     // of the original loop header may change as the transformation happens.
463     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
464         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   }
466 
467   virtual ~InnerLoopVectorizer() = default;
468 
469   /// Create a new empty loop that will contain vectorized instructions later
470   /// on, while the old loop will be used as the scalar remainder. Control flow
471   /// is generated around the vectorized (and scalar epilogue) loops consisting
472   /// of various checks and bypasses. Return the pre-header block of the new
473   /// loop and the start value for the canonical induction, if it is != 0. The
474   /// latter is the case when vectorizing the epilogue loop. In the case of
475   /// epilogue vectorization, this function is overriden to handle the more
476   /// complex control flow around the loops.
477   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
478 
479   /// Widen a single call instruction within the innermost loop.
480   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
481                             VPTransformState &State);
482 
483   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
484   void fixVectorizedLoop(VPTransformState &State);
485 
486   // Return true if any runtime check is added.
487   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
488 
489   /// A type for vectorized values in the new loop. Each value from the
490   /// original loop, when vectorized, is represented by UF vector values in the
491   /// new unrolled loop, where UF is the unroll factor.
492   using VectorParts = SmallVector<Value *, 2>;
493 
494   /// Vectorize a single first-order recurrence or pointer induction PHINode in
495   /// a block. This method handles the induction variable canonicalization. It
496   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
497   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
498                            VPTransformState &State);
499 
500   /// A helper function to scalarize a single Instruction in the innermost loop.
501   /// Generates a sequence of scalar instances for each lane between \p MinLane
502   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
503   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
504   /// Instr's operands.
505   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
506                             const VPIteration &Instance, bool IfPredicateInstr,
507                             VPTransformState &State);
508 
509   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
510   /// is provided, the integer induction variable will first be truncated to
511   /// the corresponding type. \p CanonicalIV is the scalar value generated for
512   /// the canonical induction variable.
513   void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def,
514                              VPTransformState &State, Value *CanonicalIV);
515 
516   /// Construct the vector value of a scalarized value \p V one lane at a time.
517   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
518                                  VPTransformState &State);
519 
520   /// Try to vectorize interleaved access group \p Group with the base address
521   /// given in \p Addr, optionally masking the vector operations if \p
522   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
523   /// values in the vectorized loop.
524   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
525                                 ArrayRef<VPValue *> VPDefs,
526                                 VPTransformState &State, VPValue *Addr,
527                                 ArrayRef<VPValue *> StoredValues,
528                                 VPValue *BlockInMask = nullptr);
529 
530   /// Set the debug location in the builder \p Ptr using the debug location in
531   /// \p V. If \p Ptr is None then it uses the class member's Builder.
532   void setDebugLocFromInst(const Value *V,
533                            Optional<IRBuilder<> *> CustomBuilder = None);
534 
535   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
536   void fixNonInductionPHIs(VPTransformState &State);
537 
538   /// Returns true if the reordering of FP operations is not allowed, but we are
539   /// able to vectorize with strict in-order reductions for the given RdxDesc.
540   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
541 
542   /// Create a broadcast instruction. This method generates a broadcast
543   /// instruction (shuffle) for loop invariant values and for the induction
544   /// value. If this is the induction variable then we extend it to N, N+1, ...
545   /// this is needed because each iteration in the loop corresponds to a SIMD
546   /// element.
547   virtual Value *getBroadcastInstrs(Value *V);
548 
549   /// Add metadata from one instruction to another.
550   ///
551   /// This includes both the original MDs from \p From and additional ones (\see
552   /// addNewMetadata).  Use this for *newly created* instructions in the vector
553   /// loop.
554   void addMetadata(Instruction *To, Instruction *From);
555 
556   /// Similar to the previous function but it adds the metadata to a
557   /// vector of instructions.
558   void addMetadata(ArrayRef<Value *> To, Instruction *From);
559 
560   // Returns the resume value (bc.merge.rdx) for a reduction as
561   // generated by fixReduction.
562   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
563 
564 protected:
565   friend class LoopVectorizationPlanner;
566 
567   /// A small list of PHINodes.
568   using PhiVector = SmallVector<PHINode *, 4>;
569 
570   /// A type for scalarized values in the new loop. Each value from the
571   /// original loop, when scalarized, is represented by UF x VF scalar values
572   /// in the new unrolled loop, where UF is the unroll factor and VF is the
573   /// vectorization factor.
574   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
575 
576   /// Set up the values of the IVs correctly when exiting the vector loop.
577   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
578                     Value *CountRoundDown, Value *EndValue,
579                     BasicBlock *MiddleBlock);
580 
581   /// Introduce a conditional branch (on true, condition to be set later) at the
582   /// end of the header=latch connecting it to itself (across the backedge) and
583   /// to the exit block of \p L.
584   void createHeaderBranch(Loop *L);
585 
586   /// Handle all cross-iteration phis in the header.
587   void fixCrossIterationPHIs(VPTransformState &State);
588 
589   /// Create the exit value of first order recurrences in the middle block and
590   /// update their users.
591   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
592                                VPTransformState &State);
593 
594   /// Create code for the loop exit value of the reduction.
595   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
596 
597   /// Clear NSW/NUW flags from reduction instructions if necessary.
598   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
599                                VPTransformState &State);
600 
601   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
602   /// means we need to add the appropriate incoming value from the middle
603   /// block as exiting edges from the scalar epilogue loop (if present) are
604   /// already in place, and we exit the vector loop exclusively to the middle
605   /// block.
606   void fixLCSSAPHIs(VPTransformState &State);
607 
608   /// Iteratively sink the scalarized operands of a predicated instruction into
609   /// the block that was created for it.
610   void sinkScalarOperands(Instruction *PredInst);
611 
612   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
613   /// represented as.
614   void truncateToMinimalBitwidths(VPTransformState &State);
615 
616   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
617   /// variable on which to base the steps, \p Step is the size of the step, and
618   /// \p EntryVal is the value from the original loop that maps to the steps.
619   /// Note that \p EntryVal doesn't have to be an induction variable - it
620   /// can also be a truncate instruction.
621   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
622                         const InductionDescriptor &ID, VPValue *Def,
623                         VPTransformState &State);
624 
625   /// Create a vector induction phi node based on an existing scalar one. \p
626   /// EntryVal is the value from the original loop that maps to the vector phi
627   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
628   /// truncate instruction, instead of widening the original IV, we widen a
629   /// version of the IV truncated to \p EntryVal's type.
630   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
631                                        Value *Step, Value *Start,
632                                        Instruction *EntryVal, VPValue *Def,
633                                        VPTransformState &State);
634 
635   /// Returns (and creates if needed) the original loop trip count.
636   Value *getOrCreateTripCount(Loop *NewLoop);
637 
638   /// Returns (and creates if needed) the trip count of the widened loop.
639   Value *getOrCreateVectorTripCount(Loop *NewLoop);
640 
641   /// Returns a bitcasted value to the requested vector type.
642   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
643   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
644                                 const DataLayout &DL);
645 
646   /// Emit a bypass check to see if the vector trip count is zero, including if
647   /// it overflows.
648   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
649 
650   /// Emit a bypass check to see if all of the SCEV assumptions we've
651   /// had to make are correct. Returns the block containing the checks or
652   /// nullptr if no checks have been added.
653   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
654 
655   /// Emit bypass checks to check any memory assumptions we may have made.
656   /// Returns the block containing the checks or nullptr if no checks have been
657   /// added.
658   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
659 
660   /// Compute the transformed value of Index at offset StartValue using step
661   /// StepValue.
662   /// For integer induction, returns StartValue + Index * StepValue.
663   /// For pointer induction, returns StartValue[Index * StepValue].
664   /// FIXME: The newly created binary instructions should contain nsw/nuw
665   /// flags, which can be found from the original scalar operations.
666   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
667                               const DataLayout &DL,
668                               const InductionDescriptor &ID,
669                               BasicBlock *VectorHeader) const;
670 
671   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
672   /// vector loop preheader, middle block and scalar preheader. Also
673   /// allocate a loop object for the new vector loop and return it.
674   Loop *createVectorLoopSkeleton(StringRef Prefix);
675 
676   /// Create new phi nodes for the induction variables to resume iteration count
677   /// in the scalar epilogue, from where the vectorized loop left off.
678   /// In cases where the loop skeleton is more complicated (eg. epilogue
679   /// vectorization) and the resume values can come from an additional bypass
680   /// block, the \p AdditionalBypass pair provides information about the bypass
681   /// block and the end value on the edge from bypass to this loop.
682   void createInductionResumeValues(
683       Loop *L,
684       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
685 
686   /// Complete the loop skeleton by adding debug MDs, creating appropriate
687   /// conditional branches in the middle block, preparing the builder and
688   /// running the verifier. Take in the vector loop \p L as argument, and return
689   /// the preheader of the completed vector loop.
690   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
691 
692   /// Add additional metadata to \p To that was not present on \p Orig.
693   ///
694   /// Currently this is used to add the noalias annotations based on the
695   /// inserted memchecks.  Use this for instructions that are *cloned* into the
696   /// vector loop.
697   void addNewMetadata(Instruction *To, const Instruction *Orig);
698 
699   /// Collect poison-generating recipes that may generate a poison value that is
700   /// used after vectorization, even when their operands are not poison. Those
701   /// recipes meet the following conditions:
702   ///  * Contribute to the address computation of a recipe generating a widen
703   ///    memory load/store (VPWidenMemoryInstructionRecipe or
704   ///    VPInterleaveRecipe).
705   ///  * Such a widen memory load/store has at least one underlying Instruction
706   ///    that is in a basic block that needs predication and after vectorization
707   ///    the generated instruction won't be predicated.
708   void collectPoisonGeneratingRecipes(VPTransformState &State);
709 
710   /// Allow subclasses to override and print debug traces before/after vplan
711   /// execution, when trace information is requested.
712   virtual void printDebugTracesAtStart(){};
713   virtual void printDebugTracesAtEnd(){};
714 
715   /// The original loop.
716   Loop *OrigLoop;
717 
718   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
719   /// dynamic knowledge to simplify SCEV expressions and converts them to a
720   /// more usable form.
721   PredicatedScalarEvolution &PSE;
722 
723   /// Loop Info.
724   LoopInfo *LI;
725 
726   /// Dominator Tree.
727   DominatorTree *DT;
728 
729   /// Alias Analysis.
730   AAResults *AA;
731 
732   /// Target Library Info.
733   const TargetLibraryInfo *TLI;
734 
735   /// Target Transform Info.
736   const TargetTransformInfo *TTI;
737 
738   /// Assumption Cache.
739   AssumptionCache *AC;
740 
741   /// Interface to emit optimization remarks.
742   OptimizationRemarkEmitter *ORE;
743 
744   /// LoopVersioning.  It's only set up (non-null) if memchecks were
745   /// used.
746   ///
747   /// This is currently only used to add no-alias metadata based on the
748   /// memchecks.  The actually versioning is performed manually.
749   std::unique_ptr<LoopVersioning> LVer;
750 
751   /// The vectorization SIMD factor to use. Each vector will have this many
752   /// vector elements.
753   ElementCount VF;
754 
755   /// The vectorization unroll factor to use. Each scalar is vectorized to this
756   /// many different vector instructions.
757   unsigned UF;
758 
759   /// The builder that we use
760   IRBuilder<> Builder;
761 
762   // --- Vectorization state ---
763 
764   /// The vector-loop preheader.
765   BasicBlock *LoopVectorPreHeader;
766 
767   /// The scalar-loop preheader.
768   BasicBlock *LoopScalarPreHeader;
769 
770   /// Middle Block between the vector and the scalar.
771   BasicBlock *LoopMiddleBlock;
772 
773   /// The unique ExitBlock of the scalar loop if one exists.  Note that
774   /// there can be multiple exiting edges reaching this block.
775   BasicBlock *LoopExitBlock;
776 
777   /// The vector loop body.
778   BasicBlock *LoopVectorBody;
779 
780   /// The scalar loop body.
781   BasicBlock *LoopScalarBody;
782 
783   /// A list of all bypass blocks. The first block is the entry of the loop.
784   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
785 
786   /// Store instructions that were predicated.
787   SmallVector<Instruction *, 4> PredicatedInstructions;
788 
789   /// Trip count of the original loop.
790   Value *TripCount = nullptr;
791 
792   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
793   Value *VectorTripCount = nullptr;
794 
795   /// The legality analysis.
796   LoopVectorizationLegality *Legal;
797 
798   /// The profitablity analysis.
799   LoopVectorizationCostModel *Cost;
800 
801   // Record whether runtime checks are added.
802   bool AddedSafetyChecks = false;
803 
804   // Holds the end values for each induction variable. We save the end values
805   // so we can later fix-up the external users of the induction variables.
806   DenseMap<PHINode *, Value *> IVEndValues;
807 
808   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
809   // fixed up at the end of vector code generation.
810   SmallVector<PHINode *, 8> OrigPHIsToFix;
811 
812   /// BFI and PSI are used to check for profile guided size optimizations.
813   BlockFrequencyInfo *BFI;
814   ProfileSummaryInfo *PSI;
815 
816   // Whether this loop should be optimized for size based on profile guided size
817   // optimizatios.
818   bool OptForSizeBasedOnProfile;
819 
820   /// Structure to hold information about generated runtime checks, responsible
821   /// for cleaning the checks, if vectorization turns out unprofitable.
822   GeneratedRTChecks &RTChecks;
823 
824   // Holds the resume values for reductions in the loops, used to set the
825   // correct start value of reduction PHIs when vectorizing the epilogue.
826   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
827       ReductionResumeValues;
828 };
829 
830 class InnerLoopUnroller : public InnerLoopVectorizer {
831 public:
832   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
833                     LoopInfo *LI, DominatorTree *DT,
834                     const TargetLibraryInfo *TLI,
835                     const TargetTransformInfo *TTI, AssumptionCache *AC,
836                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
837                     LoopVectorizationLegality *LVL,
838                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
839                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
840       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
841                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
842                             BFI, PSI, Check) {}
843 
844 private:
845   Value *getBroadcastInstrs(Value *V) override;
846 };
847 
848 /// Encapsulate information regarding vectorization of a loop and its epilogue.
849 /// This information is meant to be updated and used across two stages of
850 /// epilogue vectorization.
851 struct EpilogueLoopVectorizationInfo {
852   ElementCount MainLoopVF = ElementCount::getFixed(0);
853   unsigned MainLoopUF = 0;
854   ElementCount EpilogueVF = ElementCount::getFixed(0);
855   unsigned EpilogueUF = 0;
856   BasicBlock *MainLoopIterationCountCheck = nullptr;
857   BasicBlock *EpilogueIterationCountCheck = nullptr;
858   BasicBlock *SCEVSafetyCheck = nullptr;
859   BasicBlock *MemSafetyCheck = nullptr;
860   Value *TripCount = nullptr;
861   Value *VectorTripCount = nullptr;
862 
863   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
864                                 ElementCount EVF, unsigned EUF)
865       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
866     assert(EUF == 1 &&
867            "A high UF for the epilogue loop is likely not beneficial.");
868   }
869 };
870 
871 /// An extension of the inner loop vectorizer that creates a skeleton for a
872 /// vectorized loop that has its epilogue (residual) also vectorized.
873 /// The idea is to run the vplan on a given loop twice, firstly to setup the
874 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
875 /// from the first step and vectorize the epilogue.  This is achieved by
876 /// deriving two concrete strategy classes from this base class and invoking
877 /// them in succession from the loop vectorizer planner.
878 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
879 public:
880   InnerLoopAndEpilogueVectorizer(
881       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
882       DominatorTree *DT, const TargetLibraryInfo *TLI,
883       const TargetTransformInfo *TTI, AssumptionCache *AC,
884       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
885       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
886       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
887       GeneratedRTChecks &Checks)
888       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
889                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
890                             Checks),
891         EPI(EPI) {}
892 
893   // Override this function to handle the more complex control flow around the
894   // three loops.
895   std::pair<BasicBlock *, Value *>
896   createVectorizedLoopSkeleton() final override {
897     return createEpilogueVectorizedLoopSkeleton();
898   }
899 
900   /// The interface for creating a vectorized skeleton using one of two
901   /// different strategies, each corresponding to one execution of the vplan
902   /// as described above.
903   virtual std::pair<BasicBlock *, Value *>
904   createEpilogueVectorizedLoopSkeleton() = 0;
905 
906   /// Holds and updates state information required to vectorize the main loop
907   /// and its epilogue in two separate passes. This setup helps us avoid
908   /// regenerating and recomputing runtime safety checks. It also helps us to
909   /// shorten the iteration-count-check path length for the cases where the
910   /// iteration count of the loop is so small that the main vector loop is
911   /// completely skipped.
912   EpilogueLoopVectorizationInfo &EPI;
913 };
914 
915 /// A specialized derived class of inner loop vectorizer that performs
916 /// vectorization of *main* loops in the process of vectorizing loops and their
917 /// epilogues.
918 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
919 public:
920   EpilogueVectorizerMainLoop(
921       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
922       DominatorTree *DT, const TargetLibraryInfo *TLI,
923       const TargetTransformInfo *TTI, AssumptionCache *AC,
924       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
925       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
926       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
927       GeneratedRTChecks &Check)
928       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
929                                        EPI, LVL, CM, BFI, PSI, Check) {}
930   /// Implements the interface for creating a vectorized skeleton using the
931   /// *main loop* strategy (ie the first pass of vplan execution).
932   std::pair<BasicBlock *, Value *>
933   createEpilogueVectorizedLoopSkeleton() final override;
934 
935 protected:
936   /// Emits an iteration count bypass check once for the main loop (when \p
937   /// ForEpilogue is false) and once for the epilogue loop (when \p
938   /// ForEpilogue is true).
939   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
940                                              bool ForEpilogue);
941   void printDebugTracesAtStart() override;
942   void printDebugTracesAtEnd() override;
943 };
944 
945 // A specialized derived class of inner loop vectorizer that performs
946 // vectorization of *epilogue* loops in the process of vectorizing loops and
947 // their epilogues.
948 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
949 public:
950   EpilogueVectorizerEpilogueLoop(
951       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
952       DominatorTree *DT, const TargetLibraryInfo *TLI,
953       const TargetTransformInfo *TTI, AssumptionCache *AC,
954       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
955       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
956       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
957       GeneratedRTChecks &Checks)
958       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
959                                        EPI, LVL, CM, BFI, PSI, Checks) {}
960   /// Implements the interface for creating a vectorized skeleton using the
961   /// *epilogue loop* strategy (ie the second pass of vplan execution).
962   std::pair<BasicBlock *, Value *>
963   createEpilogueVectorizedLoopSkeleton() final override;
964 
965 protected:
966   /// Emits an iteration count bypass check after the main vector loop has
967   /// finished to see if there are any iterations left to execute by either
968   /// the vector epilogue or the scalar epilogue.
969   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
970                                                       BasicBlock *Bypass,
971                                                       BasicBlock *Insert);
972   void printDebugTracesAtStart() override;
973   void printDebugTracesAtEnd() override;
974 };
975 } // end namespace llvm
976 
977 /// Look for a meaningful debug location on the instruction or it's
978 /// operands.
979 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
980   if (!I)
981     return I;
982 
983   DebugLoc Empty;
984   if (I->getDebugLoc() != Empty)
985     return I;
986 
987   for (Use &Op : I->operands()) {
988     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
989       if (OpInst->getDebugLoc() != Empty)
990         return OpInst;
991   }
992 
993   return I;
994 }
995 
996 void InnerLoopVectorizer::setDebugLocFromInst(
997     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
998   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
999   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1000     const DILocation *DIL = Inst->getDebugLoc();
1001 
1002     // When a FSDiscriminator is enabled, we don't need to add the multiply
1003     // factors to the discriminators.
1004     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1005         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1006       // FIXME: For scalable vectors, assume vscale=1.
1007       auto NewDIL =
1008           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1009       if (NewDIL)
1010         B->SetCurrentDebugLocation(NewDIL.getValue());
1011       else
1012         LLVM_DEBUG(dbgs()
1013                    << "Failed to create new discriminator: "
1014                    << DIL->getFilename() << " Line: " << DIL->getLine());
1015     } else
1016       B->SetCurrentDebugLocation(DIL);
1017   } else
1018     B->SetCurrentDebugLocation(DebugLoc());
1019 }
1020 
1021 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1022 /// is passed, the message relates to that particular instruction.
1023 #ifndef NDEBUG
1024 static void debugVectorizationMessage(const StringRef Prefix,
1025                                       const StringRef DebugMsg,
1026                                       Instruction *I) {
1027   dbgs() << "LV: " << Prefix << DebugMsg;
1028   if (I != nullptr)
1029     dbgs() << " " << *I;
1030   else
1031     dbgs() << '.';
1032   dbgs() << '\n';
1033 }
1034 #endif
1035 
1036 /// Create an analysis remark that explains why vectorization failed
1037 ///
1038 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1039 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1040 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1041 /// the location of the remark.  \return the remark object that can be
1042 /// streamed to.
1043 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1044     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1045   Value *CodeRegion = TheLoop->getHeader();
1046   DebugLoc DL = TheLoop->getStartLoc();
1047 
1048   if (I) {
1049     CodeRegion = I->getParent();
1050     // If there is no debug location attached to the instruction, revert back to
1051     // using the loop's.
1052     if (I->getDebugLoc())
1053       DL = I->getDebugLoc();
1054   }
1055 
1056   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1057 }
1058 
1059 namespace llvm {
1060 
1061 /// Return a value for Step multiplied by VF.
1062 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1063                        int64_t Step) {
1064   assert(Ty->isIntegerTy() && "Expected an integer step");
1065   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1066   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1067 }
1068 
1069 /// Return the runtime value for VF.
1070 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1071   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1072   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1073 }
1074 
1075 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1076   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1077   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1078   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1079   return B.CreateUIToFP(RuntimeVF, FTy);
1080 }
1081 
1082 void reportVectorizationFailure(const StringRef DebugMsg,
1083                                 const StringRef OREMsg, const StringRef ORETag,
1084                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1085                                 Instruction *I) {
1086   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1087   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1088   ORE->emit(
1089       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1090       << "loop not vectorized: " << OREMsg);
1091 }
1092 
1093 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1094                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1095                              Instruction *I) {
1096   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1097   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1098   ORE->emit(
1099       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1100       << Msg);
1101 }
1102 
1103 } // end namespace llvm
1104 
1105 #ifndef NDEBUG
1106 /// \return string containing a file name and a line # for the given loop.
1107 static std::string getDebugLocString(const Loop *L) {
1108   std::string Result;
1109   if (L) {
1110     raw_string_ostream OS(Result);
1111     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1112       LoopDbgLoc.print(OS);
1113     else
1114       // Just print the module name.
1115       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1116     OS.flush();
1117   }
1118   return Result;
1119 }
1120 #endif
1121 
1122 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1123                                          const Instruction *Orig) {
1124   // If the loop was versioned with memchecks, add the corresponding no-alias
1125   // metadata.
1126   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1127     LVer->annotateInstWithNoAlias(To, Orig);
1128 }
1129 
1130 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1131     VPTransformState &State) {
1132 
1133   // Collect recipes in the backward slice of `Root` that may generate a poison
1134   // value that is used after vectorization.
1135   SmallPtrSet<VPRecipeBase *, 16> Visited;
1136   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1137     SmallVector<VPRecipeBase *, 16> Worklist;
1138     Worklist.push_back(Root);
1139 
1140     // Traverse the backward slice of Root through its use-def chain.
1141     while (!Worklist.empty()) {
1142       VPRecipeBase *CurRec = Worklist.back();
1143       Worklist.pop_back();
1144 
1145       if (!Visited.insert(CurRec).second)
1146         continue;
1147 
1148       // Prune search if we find another recipe generating a widen memory
1149       // instruction. Widen memory instructions involved in address computation
1150       // will lead to gather/scatter instructions, which don't need to be
1151       // handled.
1152       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1153           isa<VPInterleaveRecipe>(CurRec) ||
1154           isa<VPCanonicalIVPHIRecipe>(CurRec))
1155         continue;
1156 
1157       // This recipe contributes to the address computation of a widen
1158       // load/store. Collect recipe if its underlying instruction has
1159       // poison-generating flags.
1160       Instruction *Instr = CurRec->getUnderlyingInstr();
1161       if (Instr && Instr->hasPoisonGeneratingFlags())
1162         State.MayGeneratePoisonRecipes.insert(CurRec);
1163 
1164       // Add new definitions to the worklist.
1165       for (VPValue *operand : CurRec->operands())
1166         if (VPDef *OpDef = operand->getDef())
1167           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1168     }
1169   });
1170 
1171   // Traverse all the recipes in the VPlan and collect the poison-generating
1172   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1173   // VPInterleaveRecipe.
1174   auto Iter = depth_first(
1175       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1176   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1177     for (VPRecipeBase &Recipe : *VPBB) {
1178       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1179         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1180         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1181         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1182             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1183           collectPoisonGeneratingInstrsInBackwardSlice(
1184               cast<VPRecipeBase>(AddrDef));
1185       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1186         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1187         if (AddrDef) {
1188           // Check if any member of the interleave group needs predication.
1189           const InterleaveGroup<Instruction> *InterGroup =
1190               InterleaveRec->getInterleaveGroup();
1191           bool NeedPredication = false;
1192           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1193                I < NumMembers; ++I) {
1194             Instruction *Member = InterGroup->getMember(I);
1195             if (Member)
1196               NeedPredication |=
1197                   Legal->blockNeedsPredication(Member->getParent());
1198           }
1199 
1200           if (NeedPredication)
1201             collectPoisonGeneratingInstrsInBackwardSlice(
1202                 cast<VPRecipeBase>(AddrDef));
1203         }
1204       }
1205     }
1206   }
1207 }
1208 
1209 void InnerLoopVectorizer::addMetadata(Instruction *To,
1210                                       Instruction *From) {
1211   propagateMetadata(To, From);
1212   addNewMetadata(To, From);
1213 }
1214 
1215 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1216                                       Instruction *From) {
1217   for (Value *V : To) {
1218     if (Instruction *I = dyn_cast<Instruction>(V))
1219       addMetadata(I, From);
1220   }
1221 }
1222 
1223 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1224     const RecurrenceDescriptor &RdxDesc) {
1225   auto It = ReductionResumeValues.find(&RdxDesc);
1226   assert(It != ReductionResumeValues.end() &&
1227          "Expected to find a resume value for the reduction.");
1228   return It->second;
1229 }
1230 
1231 namespace llvm {
1232 
1233 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1234 // lowered.
1235 enum ScalarEpilogueLowering {
1236 
1237   // The default: allowing scalar epilogues.
1238   CM_ScalarEpilogueAllowed,
1239 
1240   // Vectorization with OptForSize: don't allow epilogues.
1241   CM_ScalarEpilogueNotAllowedOptSize,
1242 
1243   // A special case of vectorisation with OptForSize: loops with a very small
1244   // trip count are considered for vectorization under OptForSize, thereby
1245   // making sure the cost of their loop body is dominant, free of runtime
1246   // guards and scalar iteration overheads.
1247   CM_ScalarEpilogueNotAllowedLowTripLoop,
1248 
1249   // Loop hint predicate indicating an epilogue is undesired.
1250   CM_ScalarEpilogueNotNeededUsePredicate,
1251 
1252   // Directive indicating we must either tail fold or not vectorize
1253   CM_ScalarEpilogueNotAllowedUsePredicate
1254 };
1255 
1256 /// ElementCountComparator creates a total ordering for ElementCount
1257 /// for the purposes of using it in a set structure.
1258 struct ElementCountComparator {
1259   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1260     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1261            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1262   }
1263 };
1264 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1265 
1266 /// LoopVectorizationCostModel - estimates the expected speedups due to
1267 /// vectorization.
1268 /// In many cases vectorization is not profitable. This can happen because of
1269 /// a number of reasons. In this class we mainly attempt to predict the
1270 /// expected speedup/slowdowns due to the supported instruction set. We use the
1271 /// TargetTransformInfo to query the different backends for the cost of
1272 /// different operations.
1273 class LoopVectorizationCostModel {
1274 public:
1275   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1276                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1277                              LoopVectorizationLegality *Legal,
1278                              const TargetTransformInfo &TTI,
1279                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1280                              AssumptionCache *AC,
1281                              OptimizationRemarkEmitter *ORE, const Function *F,
1282                              const LoopVectorizeHints *Hints,
1283                              InterleavedAccessInfo &IAI)
1284       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1285         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1286         Hints(Hints), InterleaveInfo(IAI) {}
1287 
1288   /// \return An upper bound for the vectorization factors (both fixed and
1289   /// scalable). If the factors are 0, vectorization and interleaving should be
1290   /// avoided up front.
1291   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1292 
1293   /// \return True if runtime checks are required for vectorization, and false
1294   /// otherwise.
1295   bool runtimeChecksRequired();
1296 
1297   /// \return The most profitable vectorization factor and the cost of that VF.
1298   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1299   /// then this vectorization factor will be selected if vectorization is
1300   /// possible.
1301   VectorizationFactor
1302   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1303 
1304   VectorizationFactor
1305   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1306                                     const LoopVectorizationPlanner &LVP);
1307 
1308   /// Setup cost-based decisions for user vectorization factor.
1309   /// \return true if the UserVF is a feasible VF to be chosen.
1310   bool selectUserVectorizationFactor(ElementCount UserVF) {
1311     collectUniformsAndScalars(UserVF);
1312     collectInstsToScalarize(UserVF);
1313     return expectedCost(UserVF).first.isValid();
1314   }
1315 
1316   /// \return The size (in bits) of the smallest and widest types in the code
1317   /// that needs to be vectorized. We ignore values that remain scalar such as
1318   /// 64 bit loop indices.
1319   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1320 
1321   /// \return The desired interleave count.
1322   /// If interleave count has been specified by metadata it will be returned.
1323   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1324   /// are the selected vectorization factor and the cost of the selected VF.
1325   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1326 
1327   /// Memory access instruction may be vectorized in more than one way.
1328   /// Form of instruction after vectorization depends on cost.
1329   /// This function takes cost-based decisions for Load/Store instructions
1330   /// and collects them in a map. This decisions map is used for building
1331   /// the lists of loop-uniform and loop-scalar instructions.
1332   /// The calculated cost is saved with widening decision in order to
1333   /// avoid redundant calculations.
1334   void setCostBasedWideningDecision(ElementCount VF);
1335 
1336   /// A struct that represents some properties of the register usage
1337   /// of a loop.
1338   struct RegisterUsage {
1339     /// Holds the number of loop invariant values that are used in the loop.
1340     /// The key is ClassID of target-provided register class.
1341     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1342     /// Holds the maximum number of concurrent live intervals in the loop.
1343     /// The key is ClassID of target-provided register class.
1344     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1345   };
1346 
1347   /// \return Returns information about the register usages of the loop for the
1348   /// given vectorization factors.
1349   SmallVector<RegisterUsage, 8>
1350   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1351 
1352   /// Collect values we want to ignore in the cost model.
1353   void collectValuesToIgnore();
1354 
1355   /// Collect all element types in the loop for which widening is needed.
1356   void collectElementTypesForWidening();
1357 
1358   /// Split reductions into those that happen in the loop, and those that happen
1359   /// outside. In loop reductions are collected into InLoopReductionChains.
1360   void collectInLoopReductions();
1361 
1362   /// Returns true if we should use strict in-order reductions for the given
1363   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1364   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1365   /// of FP operations.
1366   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1367     return !Hints->allowReordering() && RdxDesc.isOrdered();
1368   }
1369 
1370   /// \returns The smallest bitwidth each instruction can be represented with.
1371   /// The vector equivalents of these instructions should be truncated to this
1372   /// type.
1373   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1374     return MinBWs;
1375   }
1376 
1377   /// \returns True if it is more profitable to scalarize instruction \p I for
1378   /// vectorization factor \p VF.
1379   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1380     assert(VF.isVector() &&
1381            "Profitable to scalarize relevant only for VF > 1.");
1382 
1383     // Cost model is not run in the VPlan-native path - return conservative
1384     // result until this changes.
1385     if (EnableVPlanNativePath)
1386       return false;
1387 
1388     auto Scalars = InstsToScalarize.find(VF);
1389     assert(Scalars != InstsToScalarize.end() &&
1390            "VF not yet analyzed for scalarization profitability");
1391     return Scalars->second.find(I) != Scalars->second.end();
1392   }
1393 
1394   /// Returns true if \p I is known to be uniform after vectorization.
1395   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1396     if (VF.isScalar())
1397       return true;
1398 
1399     // Cost model is not run in the VPlan-native path - return conservative
1400     // result until this changes.
1401     if (EnableVPlanNativePath)
1402       return false;
1403 
1404     auto UniformsPerVF = Uniforms.find(VF);
1405     assert(UniformsPerVF != Uniforms.end() &&
1406            "VF not yet analyzed for uniformity");
1407     return UniformsPerVF->second.count(I);
1408   }
1409 
1410   /// Returns true if \p I is known to be scalar after vectorization.
1411   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1412     if (VF.isScalar())
1413       return true;
1414 
1415     // Cost model is not run in the VPlan-native path - return conservative
1416     // result until this changes.
1417     if (EnableVPlanNativePath)
1418       return false;
1419 
1420     auto ScalarsPerVF = Scalars.find(VF);
1421     assert(ScalarsPerVF != Scalars.end() &&
1422            "Scalar values are not calculated for VF");
1423     return ScalarsPerVF->second.count(I);
1424   }
1425 
1426   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1427   /// for vectorization factor \p VF.
1428   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1429     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1430            !isProfitableToScalarize(I, VF) &&
1431            !isScalarAfterVectorization(I, VF);
1432   }
1433 
1434   /// Decision that was taken during cost calculation for memory instruction.
1435   enum InstWidening {
1436     CM_Unknown,
1437     CM_Widen,         // For consecutive accesses with stride +1.
1438     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1439     CM_Interleave,
1440     CM_GatherScatter,
1441     CM_Scalarize
1442   };
1443 
1444   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1445   /// instruction \p I and vector width \p VF.
1446   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1447                            InstructionCost Cost) {
1448     assert(VF.isVector() && "Expected VF >=2");
1449     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1450   }
1451 
1452   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1453   /// interleaving group \p Grp and vector width \p VF.
1454   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1455                            ElementCount VF, InstWidening W,
1456                            InstructionCost Cost) {
1457     assert(VF.isVector() && "Expected VF >=2");
1458     /// Broadcast this decicion to all instructions inside the group.
1459     /// But the cost will be assigned to one instruction only.
1460     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1461       if (auto *I = Grp->getMember(i)) {
1462         if (Grp->getInsertPos() == I)
1463           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1464         else
1465           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1466       }
1467     }
1468   }
1469 
1470   /// Return the cost model decision for the given instruction \p I and vector
1471   /// width \p VF. Return CM_Unknown if this instruction did not pass
1472   /// through the cost modeling.
1473   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1474     assert(VF.isVector() && "Expected VF to be a vector VF");
1475     // Cost model is not run in the VPlan-native path - return conservative
1476     // result until this changes.
1477     if (EnableVPlanNativePath)
1478       return CM_GatherScatter;
1479 
1480     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1481     auto Itr = WideningDecisions.find(InstOnVF);
1482     if (Itr == WideningDecisions.end())
1483       return CM_Unknown;
1484     return Itr->second.first;
1485   }
1486 
1487   /// Return the vectorization cost for the given instruction \p I and vector
1488   /// width \p VF.
1489   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1490     assert(VF.isVector() && "Expected VF >=2");
1491     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1492     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1493            "The cost is not calculated");
1494     return WideningDecisions[InstOnVF].second;
1495   }
1496 
1497   /// Return True if instruction \p I is an optimizable truncate whose operand
1498   /// is an induction variable. Such a truncate will be removed by adding a new
1499   /// induction variable with the destination type.
1500   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1501     // If the instruction is not a truncate, return false.
1502     auto *Trunc = dyn_cast<TruncInst>(I);
1503     if (!Trunc)
1504       return false;
1505 
1506     // Get the source and destination types of the truncate.
1507     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1508     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1509 
1510     // If the truncate is free for the given types, return false. Replacing a
1511     // free truncate with an induction variable would add an induction variable
1512     // update instruction to each iteration of the loop. We exclude from this
1513     // check the primary induction variable since it will need an update
1514     // instruction regardless.
1515     Value *Op = Trunc->getOperand(0);
1516     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1517       return false;
1518 
1519     // If the truncated value is not an induction variable, return false.
1520     return Legal->isInductionPhi(Op);
1521   }
1522 
1523   /// Collects the instructions to scalarize for each predicated instruction in
1524   /// the loop.
1525   void collectInstsToScalarize(ElementCount VF);
1526 
1527   /// Collect Uniform and Scalar values for the given \p VF.
1528   /// The sets depend on CM decision for Load/Store instructions
1529   /// that may be vectorized as interleave, gather-scatter or scalarized.
1530   void collectUniformsAndScalars(ElementCount VF) {
1531     // Do the analysis once.
1532     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1533       return;
1534     setCostBasedWideningDecision(VF);
1535     collectLoopUniforms(VF);
1536     collectLoopScalars(VF);
1537   }
1538 
1539   /// Returns true if the target machine supports masked store operation
1540   /// for the given \p DataType and kind of access to \p Ptr.
1541   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1542     return Legal->isConsecutivePtr(DataType, Ptr) &&
1543            TTI.isLegalMaskedStore(DataType, Alignment);
1544   }
1545 
1546   /// Returns true if the target machine supports masked load operation
1547   /// for the given \p DataType and kind of access to \p Ptr.
1548   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1549     return Legal->isConsecutivePtr(DataType, Ptr) &&
1550            TTI.isLegalMaskedLoad(DataType, Alignment);
1551   }
1552 
1553   /// Returns true if the target machine can represent \p V as a masked gather
1554   /// or scatter operation.
1555   bool isLegalGatherOrScatter(Value *V,
1556                               ElementCount VF = ElementCount::getFixed(1)) {
1557     bool LI = isa<LoadInst>(V);
1558     bool SI = isa<StoreInst>(V);
1559     if (!LI && !SI)
1560       return false;
1561     auto *Ty = getLoadStoreType(V);
1562     Align Align = getLoadStoreAlignment(V);
1563     if (VF.isVector())
1564       Ty = VectorType::get(Ty, VF);
1565     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1566            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1567   }
1568 
1569   /// Returns true if the target machine supports all of the reduction
1570   /// variables found for the given VF.
1571   bool canVectorizeReductions(ElementCount VF) const {
1572     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1573       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1574       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1575     }));
1576   }
1577 
1578   /// Returns true if \p I is an instruction that will be scalarized with
1579   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1580   /// instructions include conditional stores and instructions that may divide
1581   /// by zero.
1582   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1583 
1584   // Returns true if \p I is an instruction that will be predicated either
1585   // through scalar predication or masked load/store or masked gather/scatter.
1586   // \p VF is the vectorization factor that will be used to vectorize \p I.
1587   // Superset of instructions that return true for isScalarWithPredication.
1588   bool isPredicatedInst(Instruction *I, ElementCount VF,
1589                         bool IsKnownUniform = false) {
1590     // When we know the load is uniform and the original scalar loop was not
1591     // predicated we don't need to mark it as a predicated instruction. Any
1592     // vectorised blocks created when tail-folding are something artificial we
1593     // have introduced and we know there is always at least one active lane.
1594     // That's why we call Legal->blockNeedsPredication here because it doesn't
1595     // query tail-folding.
1596     if (IsKnownUniform && isa<LoadInst>(I) &&
1597         !Legal->blockNeedsPredication(I->getParent()))
1598       return false;
1599     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1600       return false;
1601     // Loads and stores that need some form of masked operation are predicated
1602     // instructions.
1603     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1604       return Legal->isMaskRequired(I);
1605     return isScalarWithPredication(I, VF);
1606   }
1607 
1608   /// Returns true if \p I is a memory instruction with consecutive memory
1609   /// access that can be widened.
1610   bool
1611   memoryInstructionCanBeWidened(Instruction *I,
1612                                 ElementCount VF = ElementCount::getFixed(1));
1613 
1614   /// Returns true if \p I is a memory instruction in an interleaved-group
1615   /// of memory accesses that can be vectorized with wide vector loads/stores
1616   /// and shuffles.
1617   bool
1618   interleavedAccessCanBeWidened(Instruction *I,
1619                                 ElementCount VF = ElementCount::getFixed(1));
1620 
1621   /// Check if \p Instr belongs to any interleaved access group.
1622   bool isAccessInterleaved(Instruction *Instr) {
1623     return InterleaveInfo.isInterleaved(Instr);
1624   }
1625 
1626   /// Get the interleaved access group that \p Instr belongs to.
1627   const InterleaveGroup<Instruction> *
1628   getInterleavedAccessGroup(Instruction *Instr) {
1629     return InterleaveInfo.getInterleaveGroup(Instr);
1630   }
1631 
1632   /// Returns true if we're required to use a scalar epilogue for at least
1633   /// the final iteration of the original loop.
1634   bool requiresScalarEpilogue(ElementCount VF) const {
1635     if (!isScalarEpilogueAllowed())
1636       return false;
1637     // If we might exit from anywhere but the latch, must run the exiting
1638     // iteration in scalar form.
1639     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1640       return true;
1641     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1642   }
1643 
1644   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1645   /// loop hint annotation.
1646   bool isScalarEpilogueAllowed() const {
1647     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1648   }
1649 
1650   /// Returns true if all loop blocks should be masked to fold tail loop.
1651   bool foldTailByMasking() const { return FoldTailByMasking; }
1652 
1653   /// Returns true if the instructions in this block requires predication
1654   /// for any reason, e.g. because tail folding now requires a predicate
1655   /// or because the block in the original loop was predicated.
1656   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1657     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1658   }
1659 
1660   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1661   /// nodes to the chain of instructions representing the reductions. Uses a
1662   /// MapVector to ensure deterministic iteration order.
1663   using ReductionChainMap =
1664       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1665 
1666   /// Return the chain of instructions representing an inloop reduction.
1667   const ReductionChainMap &getInLoopReductionChains() const {
1668     return InLoopReductionChains;
1669   }
1670 
1671   /// Returns true if the Phi is part of an inloop reduction.
1672   bool isInLoopReduction(PHINode *Phi) const {
1673     return InLoopReductionChains.count(Phi);
1674   }
1675 
1676   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1677   /// with factor VF.  Return the cost of the instruction, including
1678   /// scalarization overhead if it's needed.
1679   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1680 
1681   /// Estimate cost of a call instruction CI if it were vectorized with factor
1682   /// VF. Return the cost of the instruction, including scalarization overhead
1683   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1684   /// scalarized -
1685   /// i.e. either vector version isn't available, or is too expensive.
1686   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1687                                     bool &NeedToScalarize) const;
1688 
1689   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1690   /// that of B.
1691   bool isMoreProfitable(const VectorizationFactor &A,
1692                         const VectorizationFactor &B) const;
1693 
1694   /// Invalidates decisions already taken by the cost model.
1695   void invalidateCostModelingDecisions() {
1696     WideningDecisions.clear();
1697     Uniforms.clear();
1698     Scalars.clear();
1699   }
1700 
1701 private:
1702   unsigned NumPredStores = 0;
1703 
1704   /// Convenience function that returns the value of vscale_range iff
1705   /// vscale_range.min == vscale_range.max or otherwise returns the value
1706   /// returned by the corresponding TLI method.
1707   Optional<unsigned> getVScaleForTuning() const;
1708 
1709   /// \return An upper bound for the vectorization factors for both
1710   /// fixed and scalable vectorization, where the minimum-known number of
1711   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1712   /// disabled or unsupported, then the scalable part will be equal to
1713   /// ElementCount::getScalable(0).
1714   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1715                                            ElementCount UserVF,
1716                                            bool FoldTailByMasking);
1717 
1718   /// \return the maximized element count based on the targets vector
1719   /// registers and the loop trip-count, but limited to a maximum safe VF.
1720   /// This is a helper function of computeFeasibleMaxVF.
1721   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1722   /// issue that occurred on one of the buildbots which cannot be reproduced
1723   /// without having access to the properietary compiler (see comments on
1724   /// D98509). The issue is currently under investigation and this workaround
1725   /// will be removed as soon as possible.
1726   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1727                                        unsigned SmallestType,
1728                                        unsigned WidestType,
1729                                        const ElementCount &MaxSafeVF,
1730                                        bool FoldTailByMasking);
1731 
1732   /// \return the maximum legal scalable VF, based on the safe max number
1733   /// of elements.
1734   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1735 
1736   /// The vectorization cost is a combination of the cost itself and a boolean
1737   /// indicating whether any of the contributing operations will actually
1738   /// operate on vector values after type legalization in the backend. If this
1739   /// latter value is false, then all operations will be scalarized (i.e. no
1740   /// vectorization has actually taken place).
1741   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1742 
1743   /// Returns the expected execution cost. The unit of the cost does
1744   /// not matter because we use the 'cost' units to compare different
1745   /// vector widths. The cost that is returned is *not* normalized by
1746   /// the factor width. If \p Invalid is not nullptr, this function
1747   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1748   /// each instruction that has an Invalid cost for the given VF.
1749   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1750   VectorizationCostTy
1751   expectedCost(ElementCount VF,
1752                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1753 
1754   /// Returns the execution time cost of an instruction for a given vector
1755   /// width. Vector width of one means scalar.
1756   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1757 
1758   /// The cost-computation logic from getInstructionCost which provides
1759   /// the vector type as an output parameter.
1760   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1761                                      Type *&VectorTy);
1762 
1763   /// Return the cost of instructions in an inloop reduction pattern, if I is
1764   /// part of that pattern.
1765   Optional<InstructionCost>
1766   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1767                           TTI::TargetCostKind CostKind);
1768 
1769   /// Calculate vectorization cost of memory instruction \p I.
1770   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1771 
1772   /// The cost computation for scalarized memory instruction.
1773   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1774 
1775   /// The cost computation for interleaving group of memory instructions.
1776   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1777 
1778   /// The cost computation for Gather/Scatter instruction.
1779   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1780 
1781   /// The cost computation for widening instruction \p I with consecutive
1782   /// memory access.
1783   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1784 
1785   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1786   /// Load: scalar load + broadcast.
1787   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1788   /// element)
1789   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1790 
1791   /// Estimate the overhead of scalarizing an instruction. This is a
1792   /// convenience wrapper for the type-based getScalarizationOverhead API.
1793   InstructionCost getScalarizationOverhead(Instruction *I,
1794                                            ElementCount VF) const;
1795 
1796   /// Returns whether the instruction is a load or store and will be a emitted
1797   /// as a vector operation.
1798   bool isConsecutiveLoadOrStore(Instruction *I);
1799 
1800   /// Returns true if an artificially high cost for emulated masked memrefs
1801   /// should be used.
1802   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1803 
1804   /// Map of scalar integer values to the smallest bitwidth they can be legally
1805   /// represented as. The vector equivalents of these values should be truncated
1806   /// to this type.
1807   MapVector<Instruction *, uint64_t> MinBWs;
1808 
1809   /// A type representing the costs for instructions if they were to be
1810   /// scalarized rather than vectorized. The entries are Instruction-Cost
1811   /// pairs.
1812   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1813 
1814   /// A set containing all BasicBlocks that are known to present after
1815   /// vectorization as a predicated block.
1816   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1817 
1818   /// Records whether it is allowed to have the original scalar loop execute at
1819   /// least once. This may be needed as a fallback loop in case runtime
1820   /// aliasing/dependence checks fail, or to handle the tail/remainder
1821   /// iterations when the trip count is unknown or doesn't divide by the VF,
1822   /// or as a peel-loop to handle gaps in interleave-groups.
1823   /// Under optsize and when the trip count is very small we don't allow any
1824   /// iterations to execute in the scalar loop.
1825   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1826 
1827   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1828   bool FoldTailByMasking = false;
1829 
1830   /// A map holding scalar costs for different vectorization factors. The
1831   /// presence of a cost for an instruction in the mapping indicates that the
1832   /// instruction will be scalarized when vectorizing with the associated
1833   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1834   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1835 
1836   /// Holds the instructions known to be uniform after vectorization.
1837   /// The data is collected per VF.
1838   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1839 
1840   /// Holds the instructions known to be scalar after vectorization.
1841   /// The data is collected per VF.
1842   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1843 
1844   /// Holds the instructions (address computations) that are forced to be
1845   /// scalarized.
1846   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1847 
1848   /// PHINodes of the reductions that should be expanded in-loop along with
1849   /// their associated chains of reduction operations, in program order from top
1850   /// (PHI) to bottom
1851   ReductionChainMap InLoopReductionChains;
1852 
1853   /// A Map of inloop reduction operations and their immediate chain operand.
1854   /// FIXME: This can be removed once reductions can be costed correctly in
1855   /// vplan. This was added to allow quick lookup to the inloop operations,
1856   /// without having to loop through InLoopReductionChains.
1857   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1858 
1859   /// Returns the expected difference in cost from scalarizing the expression
1860   /// feeding a predicated instruction \p PredInst. The instructions to
1861   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1862   /// non-negative return value implies the expression will be scalarized.
1863   /// Currently, only single-use chains are considered for scalarization.
1864   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1865                               ElementCount VF);
1866 
1867   /// Collect the instructions that are uniform after vectorization. An
1868   /// instruction is uniform if we represent it with a single scalar value in
1869   /// the vectorized loop corresponding to each vector iteration. Examples of
1870   /// uniform instructions include pointer operands of consecutive or
1871   /// interleaved memory accesses. Note that although uniformity implies an
1872   /// instruction will be scalar, the reverse is not true. In general, a
1873   /// scalarized instruction will be represented by VF scalar values in the
1874   /// vectorized loop, each corresponding to an iteration of the original
1875   /// scalar loop.
1876   void collectLoopUniforms(ElementCount VF);
1877 
1878   /// Collect the instructions that are scalar after vectorization. An
1879   /// instruction is scalar if it is known to be uniform or will be scalarized
1880   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1881   /// to the list if they are used by a load/store instruction that is marked as
1882   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1883   /// VF values in the vectorized loop, each corresponding to an iteration of
1884   /// the original scalar loop.
1885   void collectLoopScalars(ElementCount VF);
1886 
1887   /// Keeps cost model vectorization decision and cost for instructions.
1888   /// Right now it is used for memory instructions only.
1889   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1890                                 std::pair<InstWidening, InstructionCost>>;
1891 
1892   DecisionList WideningDecisions;
1893 
1894   /// Returns true if \p V is expected to be vectorized and it needs to be
1895   /// extracted.
1896   bool needsExtract(Value *V, ElementCount VF) const {
1897     Instruction *I = dyn_cast<Instruction>(V);
1898     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1899         TheLoop->isLoopInvariant(I))
1900       return false;
1901 
1902     // Assume we can vectorize V (and hence we need extraction) if the
1903     // scalars are not computed yet. This can happen, because it is called
1904     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1905     // the scalars are collected. That should be a safe assumption in most
1906     // cases, because we check if the operands have vectorizable types
1907     // beforehand in LoopVectorizationLegality.
1908     return Scalars.find(VF) == Scalars.end() ||
1909            !isScalarAfterVectorization(I, VF);
1910   };
1911 
1912   /// Returns a range containing only operands needing to be extracted.
1913   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1914                                                    ElementCount VF) const {
1915     return SmallVector<Value *, 4>(make_filter_range(
1916         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1917   }
1918 
1919   /// Determines if we have the infrastructure to vectorize loop \p L and its
1920   /// epilogue, assuming the main loop is vectorized by \p VF.
1921   bool isCandidateForEpilogueVectorization(const Loop &L,
1922                                            const ElementCount VF) const;
1923 
1924   /// Returns true if epilogue vectorization is considered profitable, and
1925   /// false otherwise.
1926   /// \p VF is the vectorization factor chosen for the original loop.
1927   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1928 
1929 public:
1930   /// The loop that we evaluate.
1931   Loop *TheLoop;
1932 
1933   /// Predicated scalar evolution analysis.
1934   PredicatedScalarEvolution &PSE;
1935 
1936   /// Loop Info analysis.
1937   LoopInfo *LI;
1938 
1939   /// Vectorization legality.
1940   LoopVectorizationLegality *Legal;
1941 
1942   /// Vector target information.
1943   const TargetTransformInfo &TTI;
1944 
1945   /// Target Library Info.
1946   const TargetLibraryInfo *TLI;
1947 
1948   /// Demanded bits analysis.
1949   DemandedBits *DB;
1950 
1951   /// Assumption cache.
1952   AssumptionCache *AC;
1953 
1954   /// Interface to emit optimization remarks.
1955   OptimizationRemarkEmitter *ORE;
1956 
1957   const Function *TheFunction;
1958 
1959   /// Loop Vectorize Hint.
1960   const LoopVectorizeHints *Hints;
1961 
1962   /// The interleave access information contains groups of interleaved accesses
1963   /// with the same stride and close to each other.
1964   InterleavedAccessInfo &InterleaveInfo;
1965 
1966   /// Values to ignore in the cost model.
1967   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1968 
1969   /// Values to ignore in the cost model when VF > 1.
1970   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1971 
1972   /// All element types found in the loop.
1973   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1974 
1975   /// Profitable vector factors.
1976   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1977 };
1978 } // end namespace llvm
1979 
1980 /// Helper struct to manage generating runtime checks for vectorization.
1981 ///
1982 /// The runtime checks are created up-front in temporary blocks to allow better
1983 /// estimating the cost and un-linked from the existing IR. After deciding to
1984 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1985 /// temporary blocks are completely removed.
1986 class GeneratedRTChecks {
1987   /// Basic block which contains the generated SCEV checks, if any.
1988   BasicBlock *SCEVCheckBlock = nullptr;
1989 
1990   /// The value representing the result of the generated SCEV checks. If it is
1991   /// nullptr, either no SCEV checks have been generated or they have been used.
1992   Value *SCEVCheckCond = nullptr;
1993 
1994   /// Basic block which contains the generated memory runtime checks, if any.
1995   BasicBlock *MemCheckBlock = nullptr;
1996 
1997   /// The value representing the result of the generated memory runtime checks.
1998   /// If it is nullptr, either no memory runtime checks have been generated or
1999   /// they have been used.
2000   Value *MemRuntimeCheckCond = nullptr;
2001 
2002   DominatorTree *DT;
2003   LoopInfo *LI;
2004 
2005   SCEVExpander SCEVExp;
2006   SCEVExpander MemCheckExp;
2007 
2008 public:
2009   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
2010                     const DataLayout &DL)
2011       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
2012         MemCheckExp(SE, DL, "scev.check") {}
2013 
2014   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
2015   /// accurately estimate the cost of the runtime checks. The blocks are
2016   /// un-linked from the IR and is added back during vector code generation. If
2017   /// there is no vector code generation, the check blocks are removed
2018   /// completely.
2019   void Create(Loop *L, const LoopAccessInfo &LAI,
2020               const SCEVUnionPredicate &UnionPred) {
2021 
2022     BasicBlock *LoopHeader = L->getHeader();
2023     BasicBlock *Preheader = L->getLoopPreheader();
2024 
2025     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2026     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2027     // may be used by SCEVExpander. The blocks will be un-linked from their
2028     // predecessors and removed from LI & DT at the end of the function.
2029     if (!UnionPred.isAlwaysTrue()) {
2030       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2031                                   nullptr, "vector.scevcheck");
2032 
2033       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2034           &UnionPred, SCEVCheckBlock->getTerminator());
2035     }
2036 
2037     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2038     if (RtPtrChecking.Need) {
2039       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2040       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2041                                  "vector.memcheck");
2042 
2043       MemRuntimeCheckCond =
2044           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2045                            RtPtrChecking.getChecks(), MemCheckExp);
2046       assert(MemRuntimeCheckCond &&
2047              "no RT checks generated although RtPtrChecking "
2048              "claimed checks are required");
2049     }
2050 
2051     if (!MemCheckBlock && !SCEVCheckBlock)
2052       return;
2053 
2054     // Unhook the temporary block with the checks, update various places
2055     // accordingly.
2056     if (SCEVCheckBlock)
2057       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2058     if (MemCheckBlock)
2059       MemCheckBlock->replaceAllUsesWith(Preheader);
2060 
2061     if (SCEVCheckBlock) {
2062       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2063       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2064       Preheader->getTerminator()->eraseFromParent();
2065     }
2066     if (MemCheckBlock) {
2067       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2068       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2069       Preheader->getTerminator()->eraseFromParent();
2070     }
2071 
2072     DT->changeImmediateDominator(LoopHeader, Preheader);
2073     if (MemCheckBlock) {
2074       DT->eraseNode(MemCheckBlock);
2075       LI->removeBlock(MemCheckBlock);
2076     }
2077     if (SCEVCheckBlock) {
2078       DT->eraseNode(SCEVCheckBlock);
2079       LI->removeBlock(SCEVCheckBlock);
2080     }
2081   }
2082 
2083   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2084   /// unused.
2085   ~GeneratedRTChecks() {
2086     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2087     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2088     if (!SCEVCheckCond)
2089       SCEVCleaner.markResultUsed();
2090 
2091     if (!MemRuntimeCheckCond)
2092       MemCheckCleaner.markResultUsed();
2093 
2094     if (MemRuntimeCheckCond) {
2095       auto &SE = *MemCheckExp.getSE();
2096       // Memory runtime check generation creates compares that use expanded
2097       // values. Remove them before running the SCEVExpanderCleaners.
2098       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2099         if (MemCheckExp.isInsertedInstruction(&I))
2100           continue;
2101         SE.forgetValue(&I);
2102         I.eraseFromParent();
2103       }
2104     }
2105     MemCheckCleaner.cleanup();
2106     SCEVCleaner.cleanup();
2107 
2108     if (SCEVCheckCond)
2109       SCEVCheckBlock->eraseFromParent();
2110     if (MemRuntimeCheckCond)
2111       MemCheckBlock->eraseFromParent();
2112   }
2113 
2114   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2115   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2116   /// depending on the generated condition.
2117   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2118                              BasicBlock *LoopVectorPreHeader,
2119                              BasicBlock *LoopExitBlock) {
2120     if (!SCEVCheckCond)
2121       return nullptr;
2122     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2123       if (C->isZero())
2124         return nullptr;
2125 
2126     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2127 
2128     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2129     // Create new preheader for vector loop.
2130     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2131       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2132 
2133     SCEVCheckBlock->getTerminator()->eraseFromParent();
2134     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2135     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2136                                                 SCEVCheckBlock);
2137 
2138     DT->addNewBlock(SCEVCheckBlock, Pred);
2139     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2140 
2141     ReplaceInstWithInst(
2142         SCEVCheckBlock->getTerminator(),
2143         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2144     // Mark the check as used, to prevent it from being removed during cleanup.
2145     SCEVCheckCond = nullptr;
2146     return SCEVCheckBlock;
2147   }
2148 
2149   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2150   /// the branches to branch to the vector preheader or \p Bypass, depending on
2151   /// the generated condition.
2152   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2153                                    BasicBlock *LoopVectorPreHeader) {
2154     // Check if we generated code that checks in runtime if arrays overlap.
2155     if (!MemRuntimeCheckCond)
2156       return nullptr;
2157 
2158     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2159     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2160                                                 MemCheckBlock);
2161 
2162     DT->addNewBlock(MemCheckBlock, Pred);
2163     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2164     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2165 
2166     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2167       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2168 
2169     ReplaceInstWithInst(
2170         MemCheckBlock->getTerminator(),
2171         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2172     MemCheckBlock->getTerminator()->setDebugLoc(
2173         Pred->getTerminator()->getDebugLoc());
2174 
2175     // Mark the check as used, to prevent it from being removed during cleanup.
2176     MemRuntimeCheckCond = nullptr;
2177     return MemCheckBlock;
2178   }
2179 };
2180 
2181 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2182 // vectorization. The loop needs to be annotated with #pragma omp simd
2183 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2184 // vector length information is not provided, vectorization is not considered
2185 // explicit. Interleave hints are not allowed either. These limitations will be
2186 // relaxed in the future.
2187 // Please, note that we are currently forced to abuse the pragma 'clang
2188 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2189 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2190 // provides *explicit vectorization hints* (LV can bypass legal checks and
2191 // assume that vectorization is legal). However, both hints are implemented
2192 // using the same metadata (llvm.loop.vectorize, processed by
2193 // LoopVectorizeHints). This will be fixed in the future when the native IR
2194 // representation for pragma 'omp simd' is introduced.
2195 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2196                                    OptimizationRemarkEmitter *ORE) {
2197   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2198   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2199 
2200   // Only outer loops with an explicit vectorization hint are supported.
2201   // Unannotated outer loops are ignored.
2202   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2203     return false;
2204 
2205   Function *Fn = OuterLp->getHeader()->getParent();
2206   if (!Hints.allowVectorization(Fn, OuterLp,
2207                                 true /*VectorizeOnlyWhenForced*/)) {
2208     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2209     return false;
2210   }
2211 
2212   if (Hints.getInterleave() > 1) {
2213     // TODO: Interleave support is future work.
2214     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2215                          "outer loops.\n");
2216     Hints.emitRemarkWithHints();
2217     return false;
2218   }
2219 
2220   return true;
2221 }
2222 
2223 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2224                                   OptimizationRemarkEmitter *ORE,
2225                                   SmallVectorImpl<Loop *> &V) {
2226   // Collect inner loops and outer loops without irreducible control flow. For
2227   // now, only collect outer loops that have explicit vectorization hints. If we
2228   // are stress testing the VPlan H-CFG construction, we collect the outermost
2229   // loop of every loop nest.
2230   if (L.isInnermost() || VPlanBuildStressTest ||
2231       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2232     LoopBlocksRPO RPOT(&L);
2233     RPOT.perform(LI);
2234     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2235       V.push_back(&L);
2236       // TODO: Collect inner loops inside marked outer loops in case
2237       // vectorization fails for the outer loop. Do not invoke
2238       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2239       // already known to be reducible. We can use an inherited attribute for
2240       // that.
2241       return;
2242     }
2243   }
2244   for (Loop *InnerL : L)
2245     collectSupportedLoops(*InnerL, LI, ORE, V);
2246 }
2247 
2248 namespace {
2249 
2250 /// The LoopVectorize Pass.
2251 struct LoopVectorize : public FunctionPass {
2252   /// Pass identification, replacement for typeid
2253   static char ID;
2254 
2255   LoopVectorizePass Impl;
2256 
2257   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2258                          bool VectorizeOnlyWhenForced = false)
2259       : FunctionPass(ID),
2260         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2261     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2262   }
2263 
2264   bool runOnFunction(Function &F) override {
2265     if (skipFunction(F))
2266       return false;
2267 
2268     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2269     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2270     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2271     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2272     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2273     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2274     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2275     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2276     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2277     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2278     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2279     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2280     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2281 
2282     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2283         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2284 
2285     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2286                         GetLAA, *ORE, PSI).MadeAnyChange;
2287   }
2288 
2289   void getAnalysisUsage(AnalysisUsage &AU) const override {
2290     AU.addRequired<AssumptionCacheTracker>();
2291     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2292     AU.addRequired<DominatorTreeWrapperPass>();
2293     AU.addRequired<LoopInfoWrapperPass>();
2294     AU.addRequired<ScalarEvolutionWrapperPass>();
2295     AU.addRequired<TargetTransformInfoWrapperPass>();
2296     AU.addRequired<AAResultsWrapperPass>();
2297     AU.addRequired<LoopAccessLegacyAnalysis>();
2298     AU.addRequired<DemandedBitsWrapperPass>();
2299     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2300     AU.addRequired<InjectTLIMappingsLegacy>();
2301 
2302     // We currently do not preserve loopinfo/dominator analyses with outer loop
2303     // vectorization. Until this is addressed, mark these analyses as preserved
2304     // only for non-VPlan-native path.
2305     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2306     if (!EnableVPlanNativePath) {
2307       AU.addPreserved<LoopInfoWrapperPass>();
2308       AU.addPreserved<DominatorTreeWrapperPass>();
2309     }
2310 
2311     AU.addPreserved<BasicAAWrapperPass>();
2312     AU.addPreserved<GlobalsAAWrapperPass>();
2313     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2314   }
2315 };
2316 
2317 } // end anonymous namespace
2318 
2319 //===----------------------------------------------------------------------===//
2320 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2321 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2322 //===----------------------------------------------------------------------===//
2323 
2324 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2325   // We need to place the broadcast of invariant variables outside the loop,
2326   // but only if it's proven safe to do so. Else, broadcast will be inside
2327   // vector loop body.
2328   Instruction *Instr = dyn_cast<Instruction>(V);
2329   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2330                      (!Instr ||
2331                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2332   // Place the code for broadcasting invariant variables in the new preheader.
2333   IRBuilder<>::InsertPointGuard Guard(Builder);
2334   if (SafeToHoist)
2335     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2336 
2337   // Broadcast the scalar into all locations in the vector.
2338   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2339 
2340   return Shuf;
2341 }
2342 
2343 /// This function adds
2344 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2345 /// to each vector element of Val. The sequence starts at StartIndex.
2346 /// \p Opcode is relevant for FP induction variable.
2347 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2348                             Instruction::BinaryOps BinOp, ElementCount VF,
2349                             IRBuilder<> &Builder) {
2350   assert(VF.isVector() && "only vector VFs are supported");
2351 
2352   // Create and check the types.
2353   auto *ValVTy = cast<VectorType>(Val->getType());
2354   ElementCount VLen = ValVTy->getElementCount();
2355 
2356   Type *STy = Val->getType()->getScalarType();
2357   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2358          "Induction Step must be an integer or FP");
2359   assert(Step->getType() == STy && "Step has wrong type");
2360 
2361   SmallVector<Constant *, 8> Indices;
2362 
2363   // Create a vector of consecutive numbers from zero to VF.
2364   VectorType *InitVecValVTy = ValVTy;
2365   Type *InitVecValSTy = STy;
2366   if (STy->isFloatingPointTy()) {
2367     InitVecValSTy =
2368         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2369     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2370   }
2371   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2372 
2373   // Splat the StartIdx
2374   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2375 
2376   if (STy->isIntegerTy()) {
2377     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2378     Step = Builder.CreateVectorSplat(VLen, Step);
2379     assert(Step->getType() == Val->getType() && "Invalid step vec");
2380     // FIXME: The newly created binary instructions should contain nsw/nuw
2381     // flags, which can be found from the original scalar operations.
2382     Step = Builder.CreateMul(InitVec, Step);
2383     return Builder.CreateAdd(Val, Step, "induction");
2384   }
2385 
2386   // Floating point induction.
2387   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2388          "Binary Opcode should be specified for FP induction");
2389   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2390   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2391 
2392   Step = Builder.CreateVectorSplat(VLen, Step);
2393   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2394   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2395 }
2396 
2397 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2398     const InductionDescriptor &II, Value *Step, Value *Start,
2399     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2400   IRBuilder<> &Builder = State.Builder;
2401   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2402          "Expected either an induction phi-node or a truncate of it!");
2403 
2404   // Construct the initial value of the vector IV in the vector loop preheader
2405   auto CurrIP = Builder.saveIP();
2406   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2407   if (isa<TruncInst>(EntryVal)) {
2408     assert(Start->getType()->isIntegerTy() &&
2409            "Truncation requires an integer type");
2410     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2411     Step = Builder.CreateTrunc(Step, TruncType);
2412     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2413   }
2414 
2415   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2416   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2417   Value *SteppedStart = getStepVector(
2418       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2419 
2420   // We create vector phi nodes for both integer and floating-point induction
2421   // variables. Here, we determine the kind of arithmetic we will perform.
2422   Instruction::BinaryOps AddOp;
2423   Instruction::BinaryOps MulOp;
2424   if (Step->getType()->isIntegerTy()) {
2425     AddOp = Instruction::Add;
2426     MulOp = Instruction::Mul;
2427   } else {
2428     AddOp = II.getInductionOpcode();
2429     MulOp = Instruction::FMul;
2430   }
2431 
2432   // Multiply the vectorization factor by the step using integer or
2433   // floating-point arithmetic as appropriate.
2434   Type *StepType = Step->getType();
2435   Value *RuntimeVF;
2436   if (Step->getType()->isFloatingPointTy())
2437     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2438   else
2439     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2440   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2441 
2442   // Create a vector splat to use in the induction update.
2443   //
2444   // FIXME: If the step is non-constant, we create the vector splat with
2445   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2446   //        handle a constant vector splat.
2447   Value *SplatVF = isa<Constant>(Mul)
2448                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2449                        : Builder.CreateVectorSplat(State.VF, Mul);
2450   Builder.restoreIP(CurrIP);
2451 
2452   // We may need to add the step a number of times, depending on the unroll
2453   // factor. The last of those goes into the PHI.
2454   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2455                                     &*LoopVectorBody->getFirstInsertionPt());
2456   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2457   Instruction *LastInduction = VecInd;
2458   for (unsigned Part = 0; Part < UF; ++Part) {
2459     State.set(Def, LastInduction, Part);
2460 
2461     if (isa<TruncInst>(EntryVal))
2462       addMetadata(LastInduction, EntryVal);
2463 
2464     LastInduction = cast<Instruction>(
2465         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2466     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2467   }
2468 
2469   // Move the last step to the end of the latch block. This ensures consistent
2470   // placement of all induction updates.
2471   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2472   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2473   LastInduction->moveBefore(Br);
2474   LastInduction->setName("vec.ind.next");
2475 
2476   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2477   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2478 }
2479 
2480 void InnerLoopVectorizer::widenIntOrFpInduction(
2481     PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State,
2482     Value *CanonicalIV) {
2483   Value *Start = Def->getStartValue()->getLiveInIRValue();
2484   const InductionDescriptor &ID = Def->getInductionDescriptor();
2485   TruncInst *Trunc = Def->getTruncInst();
2486   IRBuilder<> &Builder = State.Builder;
2487   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2488   assert(!State.VF.isZero() && "VF must be non-zero");
2489 
2490   // The value from the original loop to which we are mapping the new induction
2491   // variable.
2492   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2493 
2494   auto &DL = EntryVal->getModule()->getDataLayout();
2495 
2496   // Generate code for the induction step. Note that induction steps are
2497   // required to be loop-invariant
2498   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2499     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2500            "Induction step should be loop invariant");
2501     if (PSE.getSE()->isSCEVable(IV->getType())) {
2502       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2503       return Exp.expandCodeFor(Step, Step->getType(),
2504                                State.CFG.VectorPreHeader->getTerminator());
2505     }
2506     return cast<SCEVUnknown>(Step)->getValue();
2507   };
2508 
2509   // The scalar value to broadcast. This is derived from the canonical
2510   // induction variable. If a truncation type is given, truncate the canonical
2511   // induction variable and step. Otherwise, derive these values from the
2512   // induction descriptor.
2513   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2514     Value *ScalarIV = CanonicalIV;
2515     Type *NeededType = IV->getType();
2516     if (!Def->isCanonical() || ScalarIV->getType() != NeededType) {
2517       ScalarIV =
2518           NeededType->isIntegerTy()
2519               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2520               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2521       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID,
2522                                       State.CFG.PrevBB);
2523       ScalarIV->setName("offset.idx");
2524     }
2525     if (Trunc) {
2526       auto *TruncType = cast<IntegerType>(Trunc->getType());
2527       assert(Step->getType()->isIntegerTy() &&
2528              "Truncation requires an integer step");
2529       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2530       Step = Builder.CreateTrunc(Step, TruncType);
2531     }
2532     return ScalarIV;
2533   };
2534 
2535   // Fast-math-flags propagate from the original induction instruction.
2536   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2537   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2538     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2539 
2540   // Now do the actual transformations, and start with creating the step value.
2541   Value *Step = CreateStepValue(ID.getStep());
2542   if (State.VF.isScalar()) {
2543     Value *ScalarIV = CreateScalarIV(Step);
2544     Type *ScalarTy = IntegerType::get(ScalarIV->getContext(),
2545                                       Step->getType()->getScalarSizeInBits());
2546 
2547     Instruction::BinaryOps IncOp = ID.getInductionOpcode();
2548     if (IncOp == Instruction::BinaryOpsEnd)
2549       IncOp = Instruction::Add;
2550     for (unsigned Part = 0; Part < UF; ++Part) {
2551       Value *StartIdx = ConstantInt::get(ScalarTy, Part);
2552       Instruction::BinaryOps MulOp = Instruction::Mul;
2553       if (Step->getType()->isFloatingPointTy()) {
2554         StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType());
2555         MulOp = Instruction::FMul;
2556       }
2557 
2558       Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2559       Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction");
2560       State.set(Def, EntryPart, Part);
2561       if (Trunc) {
2562         assert(!Step->getType()->isFloatingPointTy() &&
2563                "fp inductions shouldn't be truncated");
2564         addMetadata(EntryPart, Trunc);
2565       }
2566     }
2567     return;
2568   }
2569 
2570   // Create a new independent vector induction variable, if one is needed.
2571   if (Def->needsVectorIV())
2572     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2573 
2574   if (Def->needsScalarIV()) {
2575     // Create scalar steps that can be used by instructions we will later
2576     // scalarize. Note that the addition of the scalar steps will not increase
2577     // the number of instructions in the loop in the common case prior to
2578     // InstCombine. We will be trading one vector extract for each scalar step.
2579     Value *ScalarIV = CreateScalarIV(Step);
2580     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2581   }
2582 }
2583 
2584 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2585                                            Instruction *EntryVal,
2586                                            const InductionDescriptor &ID,
2587                                            VPValue *Def,
2588                                            VPTransformState &State) {
2589   IRBuilder<> &Builder = State.Builder;
2590   // We shouldn't have to build scalar steps if we aren't vectorizing.
2591   assert(State.VF.isVector() && "VF should be greater than one");
2592   // Get the value type and ensure it and the step have the same integer type.
2593   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2594   assert(ScalarIVTy == Step->getType() &&
2595          "Val and Step should have the same type");
2596 
2597   // We build scalar steps for both integer and floating-point induction
2598   // variables. Here, we determine the kind of arithmetic we will perform.
2599   Instruction::BinaryOps AddOp;
2600   Instruction::BinaryOps MulOp;
2601   if (ScalarIVTy->isIntegerTy()) {
2602     AddOp = Instruction::Add;
2603     MulOp = Instruction::Mul;
2604   } else {
2605     AddOp = ID.getInductionOpcode();
2606     MulOp = Instruction::FMul;
2607   }
2608 
2609   // Determine the number of scalars we need to generate for each unroll
2610   // iteration.
2611   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2612   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2613   // Compute the scalar steps and save the results in State.
2614   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2615                                      ScalarIVTy->getScalarSizeInBits());
2616   Type *VecIVTy = nullptr;
2617   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2618   if (!FirstLaneOnly && State.VF.isScalable()) {
2619     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2620     UnitStepVec =
2621         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2622     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2623     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2624   }
2625 
2626   for (unsigned Part = 0; Part < State.UF; ++Part) {
2627     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2628 
2629     if (!FirstLaneOnly && State.VF.isScalable()) {
2630       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2631       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2632       if (ScalarIVTy->isFloatingPointTy())
2633         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2634       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2635       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2636       State.set(Def, Add, Part);
2637       // It's useful to record the lane values too for the known minimum number
2638       // of elements so we do those below. This improves the code quality when
2639       // trying to extract the first element, for example.
2640     }
2641 
2642     if (ScalarIVTy->isFloatingPointTy())
2643       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2644 
2645     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2646       Value *StartIdx = Builder.CreateBinOp(
2647           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2648       // The step returned by `createStepForVF` is a runtime-evaluated value
2649       // when VF is scalable. Otherwise, it should be folded into a Constant.
2650       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2651              "Expected StartIdx to be folded to a constant when VF is not "
2652              "scalable");
2653       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2654       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2655       State.set(Def, Add, VPIteration(Part, Lane));
2656     }
2657   }
2658 }
2659 
2660 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2661                                                     const VPIteration &Instance,
2662                                                     VPTransformState &State) {
2663   Value *ScalarInst = State.get(Def, Instance);
2664   Value *VectorValue = State.get(Def, Instance.Part);
2665   VectorValue = Builder.CreateInsertElement(
2666       VectorValue, ScalarInst,
2667       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2668   State.set(Def, VectorValue, Instance.Part);
2669 }
2670 
2671 // Return whether we allow using masked interleave-groups (for dealing with
2672 // strided loads/stores that reside in predicated blocks, or for dealing
2673 // with gaps).
2674 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2675   // If an override option has been passed in for interleaved accesses, use it.
2676   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2677     return EnableMaskedInterleavedMemAccesses;
2678 
2679   return TTI.enableMaskedInterleavedAccessVectorization();
2680 }
2681 
2682 // Try to vectorize the interleave group that \p Instr belongs to.
2683 //
2684 // E.g. Translate following interleaved load group (factor = 3):
2685 //   for (i = 0; i < N; i+=3) {
2686 //     R = Pic[i];             // Member of index 0
2687 //     G = Pic[i+1];           // Member of index 1
2688 //     B = Pic[i+2];           // Member of index 2
2689 //     ... // do something to R, G, B
2690 //   }
2691 // To:
2692 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2693 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2694 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2695 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2696 //
2697 // Or translate following interleaved store group (factor = 3):
2698 //   for (i = 0; i < N; i+=3) {
2699 //     ... do something to R, G, B
2700 //     Pic[i]   = R;           // Member of index 0
2701 //     Pic[i+1] = G;           // Member of index 1
2702 //     Pic[i+2] = B;           // Member of index 2
2703 //   }
2704 // To:
2705 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2706 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2707 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2708 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2709 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2710 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2711     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2712     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2713     VPValue *BlockInMask) {
2714   Instruction *Instr = Group->getInsertPos();
2715   const DataLayout &DL = Instr->getModule()->getDataLayout();
2716 
2717   // Prepare for the vector type of the interleaved load/store.
2718   Type *ScalarTy = getLoadStoreType(Instr);
2719   unsigned InterleaveFactor = Group->getFactor();
2720   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2721   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2722 
2723   // Prepare for the new pointers.
2724   SmallVector<Value *, 2> AddrParts;
2725   unsigned Index = Group->getIndex(Instr);
2726 
2727   // TODO: extend the masked interleaved-group support to reversed access.
2728   assert((!BlockInMask || !Group->isReverse()) &&
2729          "Reversed masked interleave-group not supported.");
2730 
2731   // If the group is reverse, adjust the index to refer to the last vector lane
2732   // instead of the first. We adjust the index from the first vector lane,
2733   // rather than directly getting the pointer for lane VF - 1, because the
2734   // pointer operand of the interleaved access is supposed to be uniform. For
2735   // uniform instructions, we're only required to generate a value for the
2736   // first vector lane in each unroll iteration.
2737   if (Group->isReverse())
2738     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2739 
2740   for (unsigned Part = 0; Part < UF; Part++) {
2741     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2742     setDebugLocFromInst(AddrPart);
2743 
2744     // Notice current instruction could be any index. Need to adjust the address
2745     // to the member of index 0.
2746     //
2747     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2748     //       b = A[i];       // Member of index 0
2749     // Current pointer is pointed to A[i+1], adjust it to A[i].
2750     //
2751     // E.g.  A[i+1] = a;     // Member of index 1
2752     //       A[i]   = b;     // Member of index 0
2753     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2754     // Current pointer is pointed to A[i+2], adjust it to A[i].
2755 
2756     bool InBounds = false;
2757     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2758       InBounds = gep->isInBounds();
2759     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2760     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2761 
2762     // Cast to the vector pointer type.
2763     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2764     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2765     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2766   }
2767 
2768   setDebugLocFromInst(Instr);
2769   Value *PoisonVec = PoisonValue::get(VecTy);
2770 
2771   Value *MaskForGaps = nullptr;
2772   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2773     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2774     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2775   }
2776 
2777   // Vectorize the interleaved load group.
2778   if (isa<LoadInst>(Instr)) {
2779     // For each unroll part, create a wide load for the group.
2780     SmallVector<Value *, 2> NewLoads;
2781     for (unsigned Part = 0; Part < UF; Part++) {
2782       Instruction *NewLoad;
2783       if (BlockInMask || MaskForGaps) {
2784         assert(useMaskedInterleavedAccesses(*TTI) &&
2785                "masked interleaved groups are not allowed.");
2786         Value *GroupMask = MaskForGaps;
2787         if (BlockInMask) {
2788           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2789           Value *ShuffledMask = Builder.CreateShuffleVector(
2790               BlockInMaskPart,
2791               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2792               "interleaved.mask");
2793           GroupMask = MaskForGaps
2794                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2795                                                 MaskForGaps)
2796                           : ShuffledMask;
2797         }
2798         NewLoad =
2799             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2800                                      GroupMask, PoisonVec, "wide.masked.vec");
2801       }
2802       else
2803         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2804                                             Group->getAlign(), "wide.vec");
2805       Group->addMetadata(NewLoad);
2806       NewLoads.push_back(NewLoad);
2807     }
2808 
2809     // For each member in the group, shuffle out the appropriate data from the
2810     // wide loads.
2811     unsigned J = 0;
2812     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2813       Instruction *Member = Group->getMember(I);
2814 
2815       // Skip the gaps in the group.
2816       if (!Member)
2817         continue;
2818 
2819       auto StrideMask =
2820           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2821       for (unsigned Part = 0; Part < UF; Part++) {
2822         Value *StridedVec = Builder.CreateShuffleVector(
2823             NewLoads[Part], StrideMask, "strided.vec");
2824 
2825         // If this member has different type, cast the result type.
2826         if (Member->getType() != ScalarTy) {
2827           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2828           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2829           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2830         }
2831 
2832         if (Group->isReverse())
2833           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2834 
2835         State.set(VPDefs[J], StridedVec, Part);
2836       }
2837       ++J;
2838     }
2839     return;
2840   }
2841 
2842   // The sub vector type for current instruction.
2843   auto *SubVT = VectorType::get(ScalarTy, VF);
2844 
2845   // Vectorize the interleaved store group.
2846   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2847   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2848          "masked interleaved groups are not allowed.");
2849   assert((!MaskForGaps || !VF.isScalable()) &&
2850          "masking gaps for scalable vectors is not yet supported.");
2851   for (unsigned Part = 0; Part < UF; Part++) {
2852     // Collect the stored vector from each member.
2853     SmallVector<Value *, 4> StoredVecs;
2854     for (unsigned i = 0; i < InterleaveFactor; i++) {
2855       assert((Group->getMember(i) || MaskForGaps) &&
2856              "Fail to get a member from an interleaved store group");
2857       Instruction *Member = Group->getMember(i);
2858 
2859       // Skip the gaps in the group.
2860       if (!Member) {
2861         Value *Undef = PoisonValue::get(SubVT);
2862         StoredVecs.push_back(Undef);
2863         continue;
2864       }
2865 
2866       Value *StoredVec = State.get(StoredValues[i], Part);
2867 
2868       if (Group->isReverse())
2869         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2870 
2871       // If this member has different type, cast it to a unified type.
2872 
2873       if (StoredVec->getType() != SubVT)
2874         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2875 
2876       StoredVecs.push_back(StoredVec);
2877     }
2878 
2879     // Concatenate all vectors into a wide vector.
2880     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2881 
2882     // Interleave the elements in the wide vector.
2883     Value *IVec = Builder.CreateShuffleVector(
2884         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2885         "interleaved.vec");
2886 
2887     Instruction *NewStoreInstr;
2888     if (BlockInMask || MaskForGaps) {
2889       Value *GroupMask = MaskForGaps;
2890       if (BlockInMask) {
2891         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2892         Value *ShuffledMask = Builder.CreateShuffleVector(
2893             BlockInMaskPart,
2894             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2895             "interleaved.mask");
2896         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2897                                                       ShuffledMask, MaskForGaps)
2898                                 : ShuffledMask;
2899       }
2900       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2901                                                 Group->getAlign(), GroupMask);
2902     } else
2903       NewStoreInstr =
2904           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2905 
2906     Group->addMetadata(NewStoreInstr);
2907   }
2908 }
2909 
2910 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2911                                                VPReplicateRecipe *RepRecipe,
2912                                                const VPIteration &Instance,
2913                                                bool IfPredicateInstr,
2914                                                VPTransformState &State) {
2915   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2916 
2917   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2918   // the first lane and part.
2919   if (isa<NoAliasScopeDeclInst>(Instr))
2920     if (!Instance.isFirstIteration())
2921       return;
2922 
2923   setDebugLocFromInst(Instr);
2924 
2925   // Does this instruction return a value ?
2926   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2927 
2928   Instruction *Cloned = Instr->clone();
2929   if (!IsVoidRetTy)
2930     Cloned->setName(Instr->getName() + ".cloned");
2931 
2932   // If the scalarized instruction contributes to the address computation of a
2933   // widen masked load/store which was in a basic block that needed predication
2934   // and is not predicated after vectorization, we can't propagate
2935   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2936   // instruction could feed a poison value to the base address of the widen
2937   // load/store.
2938   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2939     Cloned->dropPoisonGeneratingFlags();
2940 
2941   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2942                                Builder.GetInsertPoint());
2943   // Replace the operands of the cloned instructions with their scalar
2944   // equivalents in the new loop.
2945   for (auto &I : enumerate(RepRecipe->operands())) {
2946     auto InputInstance = Instance;
2947     VPValue *Operand = I.value();
2948     if (State.Plan->isUniformAfterVectorization(Operand))
2949       InputInstance.Lane = VPLane::getFirstLane();
2950     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2951   }
2952   addNewMetadata(Cloned, Instr);
2953 
2954   // Place the cloned scalar in the new loop.
2955   Builder.Insert(Cloned);
2956 
2957   State.set(RepRecipe, Cloned, Instance);
2958 
2959   // If we just cloned a new assumption, add it the assumption cache.
2960   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2961     AC->registerAssumption(II);
2962 
2963   // End if-block.
2964   if (IfPredicateInstr)
2965     PredicatedInstructions.push_back(Cloned);
2966 }
2967 
2968 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
2969   BasicBlock *Header = L->getHeader();
2970   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
2971 
2972   IRBuilder<> B(Header->getTerminator());
2973   Instruction *OldInst =
2974       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
2975   setDebugLocFromInst(OldInst, &B);
2976 
2977   // Connect the header to the exit and header blocks and replace the old
2978   // terminator.
2979   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
2980 
2981   // Now we have two terminators. Remove the old one from the block.
2982   Header->getTerminator()->eraseFromParent();
2983 }
2984 
2985 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2986   if (TripCount)
2987     return TripCount;
2988 
2989   assert(L && "Create Trip Count for null loop.");
2990   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2991   // Find the loop boundaries.
2992   ScalarEvolution *SE = PSE.getSE();
2993   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2994   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2995          "Invalid loop count");
2996 
2997   Type *IdxTy = Legal->getWidestInductionType();
2998   assert(IdxTy && "No type for induction");
2999 
3000   // The exit count might have the type of i64 while the phi is i32. This can
3001   // happen if we have an induction variable that is sign extended before the
3002   // compare. The only way that we get a backedge taken count is that the
3003   // induction variable was signed and as such will not overflow. In such a case
3004   // truncation is legal.
3005   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3006       IdxTy->getPrimitiveSizeInBits())
3007     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3008   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3009 
3010   // Get the total trip count from the count by adding 1.
3011   const SCEV *ExitCount = SE->getAddExpr(
3012       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3013 
3014   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3015 
3016   // Expand the trip count and place the new instructions in the preheader.
3017   // Notice that the pre-header does not change, only the loop body.
3018   SCEVExpander Exp(*SE, DL, "induction");
3019 
3020   // Count holds the overall loop count (N).
3021   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3022                                 L->getLoopPreheader()->getTerminator());
3023 
3024   if (TripCount->getType()->isPointerTy())
3025     TripCount =
3026         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3027                                     L->getLoopPreheader()->getTerminator());
3028 
3029   return TripCount;
3030 }
3031 
3032 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3033   if (VectorTripCount)
3034     return VectorTripCount;
3035 
3036   Value *TC = getOrCreateTripCount(L);
3037   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3038 
3039   Type *Ty = TC->getType();
3040   // This is where we can make the step a runtime constant.
3041   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3042 
3043   // If the tail is to be folded by masking, round the number of iterations N
3044   // up to a multiple of Step instead of rounding down. This is done by first
3045   // adding Step-1 and then rounding down. Note that it's ok if this addition
3046   // overflows: the vector induction variable will eventually wrap to zero given
3047   // that it starts at zero and its Step is a power of two; the loop will then
3048   // exit, with the last early-exit vector comparison also producing all-true.
3049   if (Cost->foldTailByMasking()) {
3050     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3051            "VF*UF must be a power of 2 when folding tail by masking");
3052     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3053     TC = Builder.CreateAdd(
3054         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3055   }
3056 
3057   // Now we need to generate the expression for the part of the loop that the
3058   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3059   // iterations are not required for correctness, or N - Step, otherwise. Step
3060   // is equal to the vectorization factor (number of SIMD elements) times the
3061   // unroll factor (number of SIMD instructions).
3062   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3063 
3064   // There are cases where we *must* run at least one iteration in the remainder
3065   // loop.  See the cost model for when this can happen.  If the step evenly
3066   // divides the trip count, we set the remainder to be equal to the step. If
3067   // the step does not evenly divide the trip count, no adjustment is necessary
3068   // since there will already be scalar iterations. Note that the minimum
3069   // iterations check ensures that N >= Step.
3070   if (Cost->requiresScalarEpilogue(VF)) {
3071     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3072     R = Builder.CreateSelect(IsZero, Step, R);
3073   }
3074 
3075   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3076 
3077   return VectorTripCount;
3078 }
3079 
3080 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3081                                                    const DataLayout &DL) {
3082   // Verify that V is a vector type with same number of elements as DstVTy.
3083   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3084   unsigned VF = DstFVTy->getNumElements();
3085   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3086   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3087   Type *SrcElemTy = SrcVecTy->getElementType();
3088   Type *DstElemTy = DstFVTy->getElementType();
3089   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3090          "Vector elements must have same size");
3091 
3092   // Do a direct cast if element types are castable.
3093   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3094     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3095   }
3096   // V cannot be directly casted to desired vector type.
3097   // May happen when V is a floating point vector but DstVTy is a vector of
3098   // pointers or vice-versa. Handle this using a two-step bitcast using an
3099   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3100   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3101          "Only one type should be a pointer type");
3102   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3103          "Only one type should be a floating point type");
3104   Type *IntTy =
3105       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3106   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3107   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3108   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3109 }
3110 
3111 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3112                                                          BasicBlock *Bypass) {
3113   Value *Count = getOrCreateTripCount(L);
3114   // Reuse existing vector loop preheader for TC checks.
3115   // Note that new preheader block is generated for vector loop.
3116   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3117   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3118 
3119   // Generate code to check if the loop's trip count is less than VF * UF, or
3120   // equal to it in case a scalar epilogue is required; this implies that the
3121   // vector trip count is zero. This check also covers the case where adding one
3122   // to the backedge-taken count overflowed leading to an incorrect trip count
3123   // of zero. In this case we will also jump to the scalar loop.
3124   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3125                                             : ICmpInst::ICMP_ULT;
3126 
3127   // If tail is to be folded, vector loop takes care of all iterations.
3128   Value *CheckMinIters = Builder.getFalse();
3129   if (!Cost->foldTailByMasking()) {
3130     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3131     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3132   }
3133   // Create new preheader for vector loop.
3134   LoopVectorPreHeader =
3135       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3136                  "vector.ph");
3137 
3138   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3139                                DT->getNode(Bypass)->getIDom()) &&
3140          "TC check is expected to dominate Bypass");
3141 
3142   // Update dominator for Bypass & LoopExit (if needed).
3143   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3144   if (!Cost->requiresScalarEpilogue(VF))
3145     // If there is an epilogue which must run, there's no edge from the
3146     // middle block to exit blocks  and thus no need to update the immediate
3147     // dominator of the exit blocks.
3148     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3149 
3150   ReplaceInstWithInst(
3151       TCCheckBlock->getTerminator(),
3152       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3153   LoopBypassBlocks.push_back(TCCheckBlock);
3154 }
3155 
3156 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3157 
3158   BasicBlock *const SCEVCheckBlock =
3159       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3160   if (!SCEVCheckBlock)
3161     return nullptr;
3162 
3163   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3164            (OptForSizeBasedOnProfile &&
3165             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3166          "Cannot SCEV check stride or overflow when optimizing for size");
3167 
3168 
3169   // Update dominator only if this is first RT check.
3170   if (LoopBypassBlocks.empty()) {
3171     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3172     if (!Cost->requiresScalarEpilogue(VF))
3173       // If there is an epilogue which must run, there's no edge from the
3174       // middle block to exit blocks  and thus no need to update the immediate
3175       // dominator of the exit blocks.
3176       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3177   }
3178 
3179   LoopBypassBlocks.push_back(SCEVCheckBlock);
3180   AddedSafetyChecks = true;
3181   return SCEVCheckBlock;
3182 }
3183 
3184 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3185                                                       BasicBlock *Bypass) {
3186   // VPlan-native path does not do any analysis for runtime checks currently.
3187   if (EnableVPlanNativePath)
3188     return nullptr;
3189 
3190   BasicBlock *const MemCheckBlock =
3191       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3192 
3193   // Check if we generated code that checks in runtime if arrays overlap. We put
3194   // the checks into a separate block to make the more common case of few
3195   // elements faster.
3196   if (!MemCheckBlock)
3197     return nullptr;
3198 
3199   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3200     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3201            "Cannot emit memory checks when optimizing for size, unless forced "
3202            "to vectorize.");
3203     ORE->emit([&]() {
3204       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3205                                         L->getStartLoc(), L->getHeader())
3206              << "Code-size may be reduced by not forcing "
3207                 "vectorization, or by source-code modifications "
3208                 "eliminating the need for runtime checks "
3209                 "(e.g., adding 'restrict').";
3210     });
3211   }
3212 
3213   LoopBypassBlocks.push_back(MemCheckBlock);
3214 
3215   AddedSafetyChecks = true;
3216 
3217   // We currently don't use LoopVersioning for the actual loop cloning but we
3218   // still use it to add the noalias metadata.
3219   LVer = std::make_unique<LoopVersioning>(
3220       *Legal->getLAI(),
3221       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3222       DT, PSE.getSE());
3223   LVer->prepareNoAliasMetadata();
3224   return MemCheckBlock;
3225 }
3226 
3227 Value *InnerLoopVectorizer::emitTransformedIndex(
3228     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3229     const InductionDescriptor &ID, BasicBlock *VectorHeader) const {
3230 
3231   SCEVExpander Exp(*SE, DL, "induction");
3232   auto Step = ID.getStep();
3233   auto StartValue = ID.getStartValue();
3234   assert(Index->getType()->getScalarType() == Step->getType() &&
3235          "Index scalar type does not match StepValue type");
3236 
3237   // Note: the IR at this point is broken. We cannot use SE to create any new
3238   // SCEV and then expand it, hoping that SCEV's simplification will give us
3239   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3240   // lead to various SCEV crashes. So all we can do is to use builder and rely
3241   // on InstCombine for future simplifications. Here we handle some trivial
3242   // cases only.
3243   auto CreateAdd = [&B](Value *X, Value *Y) {
3244     assert(X->getType() == Y->getType() && "Types don't match!");
3245     if (auto *CX = dyn_cast<ConstantInt>(X))
3246       if (CX->isZero())
3247         return Y;
3248     if (auto *CY = dyn_cast<ConstantInt>(Y))
3249       if (CY->isZero())
3250         return X;
3251     return B.CreateAdd(X, Y);
3252   };
3253 
3254   // We allow X to be a vector type, in which case Y will potentially be
3255   // splatted into a vector with the same element count.
3256   auto CreateMul = [&B](Value *X, Value *Y) {
3257     assert(X->getType()->getScalarType() == Y->getType() &&
3258            "Types don't match!");
3259     if (auto *CX = dyn_cast<ConstantInt>(X))
3260       if (CX->isOne())
3261         return Y;
3262     if (auto *CY = dyn_cast<ConstantInt>(Y))
3263       if (CY->isOne())
3264         return X;
3265     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3266     if (XVTy && !isa<VectorType>(Y->getType()))
3267       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3268     return B.CreateMul(X, Y);
3269   };
3270 
3271   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3272   // loop, choose the end of the vector loop header (=VectorHeader), because
3273   // the DomTree is not kept up-to-date for additional blocks generated in the
3274   // vector loop. By using the header as insertion point, we guarantee that the
3275   // expanded instructions dominate all their uses.
3276   auto GetInsertPoint = [this, &B, VectorHeader]() {
3277     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3278     if (InsertBB != LoopVectorBody &&
3279         LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB))
3280       return VectorHeader->getTerminator();
3281     return &*B.GetInsertPoint();
3282   };
3283 
3284   switch (ID.getKind()) {
3285   case InductionDescriptor::IK_IntInduction: {
3286     assert(!isa<VectorType>(Index->getType()) &&
3287            "Vector indices not supported for integer inductions yet");
3288     assert(Index->getType() == StartValue->getType() &&
3289            "Index type does not match StartValue type");
3290     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3291       return B.CreateSub(StartValue, Index);
3292     auto *Offset = CreateMul(
3293         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3294     return CreateAdd(StartValue, Offset);
3295   }
3296   case InductionDescriptor::IK_PtrInduction: {
3297     assert(isa<SCEVConstant>(Step) &&
3298            "Expected constant step for pointer induction");
3299     return B.CreateGEP(
3300         ID.getElementType(), StartValue,
3301         CreateMul(Index,
3302                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3303                                     GetInsertPoint())));
3304   }
3305   case InductionDescriptor::IK_FpInduction: {
3306     assert(!isa<VectorType>(Index->getType()) &&
3307            "Vector indices not supported for FP inductions yet");
3308     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3309     auto InductionBinOp = ID.getInductionBinOp();
3310     assert(InductionBinOp &&
3311            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3312             InductionBinOp->getOpcode() == Instruction::FSub) &&
3313            "Original bin op should be defined for FP induction");
3314 
3315     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3316     Value *MulExp = B.CreateFMul(StepValue, Index);
3317     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3318                          "induction");
3319   }
3320   case InductionDescriptor::IK_NoInduction:
3321     return nullptr;
3322   }
3323   llvm_unreachable("invalid enum");
3324 }
3325 
3326 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3327   LoopScalarBody = OrigLoop->getHeader();
3328   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3329   assert(LoopVectorPreHeader && "Invalid loop structure");
3330   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3331   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3332          "multiple exit loop without required epilogue?");
3333 
3334   LoopMiddleBlock =
3335       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3336                  LI, nullptr, Twine(Prefix) + "middle.block");
3337   LoopScalarPreHeader =
3338       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3339                  nullptr, Twine(Prefix) + "scalar.ph");
3340 
3341   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3342 
3343   // Set up the middle block terminator.  Two cases:
3344   // 1) If we know that we must execute the scalar epilogue, emit an
3345   //    unconditional branch.
3346   // 2) Otherwise, we must have a single unique exit block (due to how we
3347   //    implement the multiple exit case).  In this case, set up a conditonal
3348   //    branch from the middle block to the loop scalar preheader, and the
3349   //    exit block.  completeLoopSkeleton will update the condition to use an
3350   //    iteration check, if required to decide whether to execute the remainder.
3351   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3352     BranchInst::Create(LoopScalarPreHeader) :
3353     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3354                        Builder.getTrue());
3355   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3356   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3357 
3358   // We intentionally don't let SplitBlock to update LoopInfo since
3359   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3360   // LoopVectorBody is explicitly added to the correct place few lines later.
3361   LoopVectorBody =
3362       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3363                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3364 
3365   // Update dominator for loop exit.
3366   if (!Cost->requiresScalarEpilogue(VF))
3367     // If there is an epilogue which must run, there's no edge from the
3368     // middle block to exit blocks  and thus no need to update the immediate
3369     // dominator of the exit blocks.
3370     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3371 
3372   // Create and register the new vector loop.
3373   Loop *Lp = LI->AllocateLoop();
3374   Loop *ParentLoop = OrigLoop->getParentLoop();
3375 
3376   // Insert the new loop into the loop nest and register the new basic blocks
3377   // before calling any utilities such as SCEV that require valid LoopInfo.
3378   if (ParentLoop) {
3379     ParentLoop->addChildLoop(Lp);
3380   } else {
3381     LI->addTopLevelLoop(Lp);
3382   }
3383   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3384   return Lp;
3385 }
3386 
3387 void InnerLoopVectorizer::createInductionResumeValues(
3388     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3389   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3390           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3391          "Inconsistent information about additional bypass.");
3392 
3393   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3394   assert(VectorTripCount && L && "Expected valid arguments");
3395   // We are going to resume the execution of the scalar loop.
3396   // Go over all of the induction variables that we found and fix the
3397   // PHIs that are left in the scalar version of the loop.
3398   // The starting values of PHI nodes depend on the counter of the last
3399   // iteration in the vectorized loop.
3400   // If we come from a bypass edge then we need to start from the original
3401   // start value.
3402   Instruction *OldInduction = Legal->getPrimaryInduction();
3403   for (auto &InductionEntry : Legal->getInductionVars()) {
3404     PHINode *OrigPhi = InductionEntry.first;
3405     InductionDescriptor II = InductionEntry.second;
3406 
3407     // Create phi nodes to merge from the  backedge-taken check block.
3408     PHINode *BCResumeVal =
3409         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3410                         LoopScalarPreHeader->getTerminator());
3411     // Copy original phi DL over to the new one.
3412     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3413     Value *&EndValue = IVEndValues[OrigPhi];
3414     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3415     if (OrigPhi == OldInduction) {
3416       // We know what the end value is.
3417       EndValue = VectorTripCount;
3418     } else {
3419       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3420 
3421       // Fast-math-flags propagate from the original induction instruction.
3422       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3423         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3424 
3425       Type *StepType = II.getStep()->getType();
3426       Instruction::CastOps CastOp =
3427           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3428       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3429       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3430       EndValue =
3431           emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3432       EndValue->setName("ind.end");
3433 
3434       // Compute the end value for the additional bypass (if applicable).
3435       if (AdditionalBypass.first) {
3436         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3437         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3438                                          StepType, true);
3439         CRD =
3440             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3441         EndValueFromAdditionalBypass =
3442             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3443         EndValueFromAdditionalBypass->setName("ind.end");
3444       }
3445     }
3446     // The new PHI merges the original incoming value, in case of a bypass,
3447     // or the value at the end of the vectorized loop.
3448     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3449 
3450     // Fix the scalar body counter (PHI node).
3451     // The old induction's phi node in the scalar body needs the truncated
3452     // value.
3453     for (BasicBlock *BB : LoopBypassBlocks)
3454       BCResumeVal->addIncoming(II.getStartValue(), BB);
3455 
3456     if (AdditionalBypass.first)
3457       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3458                                             EndValueFromAdditionalBypass);
3459 
3460     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3461   }
3462 }
3463 
3464 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3465                                                       MDNode *OrigLoopID) {
3466   assert(L && "Expected valid loop.");
3467 
3468   // The trip counts should be cached by now.
3469   Value *Count = getOrCreateTripCount(L);
3470   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3471 
3472   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3473 
3474   // Add a check in the middle block to see if we have completed
3475   // all of the iterations in the first vector loop.  Three cases:
3476   // 1) If we require a scalar epilogue, there is no conditional branch as
3477   //    we unconditionally branch to the scalar preheader.  Do nothing.
3478   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3479   //    Thus if tail is to be folded, we know we don't need to run the
3480   //    remainder and we can use the previous value for the condition (true).
3481   // 3) Otherwise, construct a runtime check.
3482   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3483     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3484                                         Count, VectorTripCount, "cmp.n",
3485                                         LoopMiddleBlock->getTerminator());
3486 
3487     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3488     // of the corresponding compare because they may have ended up with
3489     // different line numbers and we want to avoid awkward line stepping while
3490     // debugging. Eg. if the compare has got a line number inside the loop.
3491     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3492     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3493   }
3494 
3495   // Get ready to start creating new instructions into the vectorized body.
3496   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3497          "Inconsistent vector loop preheader");
3498   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3499 
3500 #ifdef EXPENSIVE_CHECKS
3501   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3502   LI->verify(*DT);
3503 #endif
3504 
3505   return LoopVectorPreHeader;
3506 }
3507 
3508 std::pair<BasicBlock *, Value *>
3509 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3510   /*
3511    In this function we generate a new loop. The new loop will contain
3512    the vectorized instructions while the old loop will continue to run the
3513    scalar remainder.
3514 
3515        [ ] <-- loop iteration number check.
3516     /   |
3517    /    v
3518   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3519   |  /  |
3520   | /   v
3521   ||   [ ]     <-- vector pre header.
3522   |/    |
3523   |     v
3524   |    [  ] \
3525   |    [  ]_|   <-- vector loop.
3526   |     |
3527   |     v
3528   \   -[ ]   <--- middle-block.
3529    \/   |
3530    /\   v
3531    | ->[ ]     <--- new preheader.
3532    |    |
3533  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3534    |   [ ] \
3535    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3536     \   |
3537      \  v
3538       >[ ]     <-- exit block(s).
3539    ...
3540    */
3541 
3542   // Get the metadata of the original loop before it gets modified.
3543   MDNode *OrigLoopID = OrigLoop->getLoopID();
3544 
3545   // Workaround!  Compute the trip count of the original loop and cache it
3546   // before we start modifying the CFG.  This code has a systemic problem
3547   // wherein it tries to run analysis over partially constructed IR; this is
3548   // wrong, and not simply for SCEV.  The trip count of the original loop
3549   // simply happens to be prone to hitting this in practice.  In theory, we
3550   // can hit the same issue for any SCEV, or ValueTracking query done during
3551   // mutation.  See PR49900.
3552   getOrCreateTripCount(OrigLoop);
3553 
3554   // Create an empty vector loop, and prepare basic blocks for the runtime
3555   // checks.
3556   Loop *Lp = createVectorLoopSkeleton("");
3557 
3558   // Now, compare the new count to zero. If it is zero skip the vector loop and
3559   // jump to the scalar loop. This check also covers the case where the
3560   // backedge-taken count is uint##_max: adding one to it will overflow leading
3561   // to an incorrect trip count of zero. In this (rare) case we will also jump
3562   // to the scalar loop.
3563   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3564 
3565   // Generate the code to check any assumptions that we've made for SCEV
3566   // expressions.
3567   emitSCEVChecks(Lp, LoopScalarPreHeader);
3568 
3569   // Generate the code that checks in runtime if arrays overlap. We put the
3570   // checks into a separate block to make the more common case of few elements
3571   // faster.
3572   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3573 
3574   createHeaderBranch(Lp);
3575 
3576   // Emit phis for the new starting index of the scalar loop.
3577   createInductionResumeValues(Lp);
3578 
3579   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3580 }
3581 
3582 // Fix up external users of the induction variable. At this point, we are
3583 // in LCSSA form, with all external PHIs that use the IV having one input value,
3584 // coming from the remainder loop. We need those PHIs to also have a correct
3585 // value for the IV when arriving directly from the middle block.
3586 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3587                                        const InductionDescriptor &II,
3588                                        Value *CountRoundDown, Value *EndValue,
3589                                        BasicBlock *MiddleBlock) {
3590   // There are two kinds of external IV usages - those that use the value
3591   // computed in the last iteration (the PHI) and those that use the penultimate
3592   // value (the value that feeds into the phi from the loop latch).
3593   // We allow both, but they, obviously, have different values.
3594 
3595   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3596 
3597   DenseMap<Value *, Value *> MissingVals;
3598 
3599   // An external user of the last iteration's value should see the value that
3600   // the remainder loop uses to initialize its own IV.
3601   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3602   for (User *U : PostInc->users()) {
3603     Instruction *UI = cast<Instruction>(U);
3604     if (!OrigLoop->contains(UI)) {
3605       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3606       MissingVals[UI] = EndValue;
3607     }
3608   }
3609 
3610   // An external user of the penultimate value need to see EndValue - Step.
3611   // The simplest way to get this is to recompute it from the constituent SCEVs,
3612   // that is Start + (Step * (CRD - 1)).
3613   for (User *U : OrigPhi->users()) {
3614     auto *UI = cast<Instruction>(U);
3615     if (!OrigLoop->contains(UI)) {
3616       const DataLayout &DL =
3617           OrigLoop->getHeader()->getModule()->getDataLayout();
3618       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3619 
3620       IRBuilder<> B(MiddleBlock->getTerminator());
3621 
3622       // Fast-math-flags propagate from the original induction instruction.
3623       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3624         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3625 
3626       Value *CountMinusOne = B.CreateSub(
3627           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3628       Value *CMO =
3629           !II.getStep()->getType()->isIntegerTy()
3630               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3631                              II.getStep()->getType())
3632               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3633       CMO->setName("cast.cmo");
3634       Value *Escape =
3635           emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody);
3636       Escape->setName("ind.escape");
3637       MissingVals[UI] = Escape;
3638     }
3639   }
3640 
3641   for (auto &I : MissingVals) {
3642     PHINode *PHI = cast<PHINode>(I.first);
3643     // One corner case we have to handle is two IVs "chasing" each-other,
3644     // that is %IV2 = phi [...], [ %IV1, %latch ]
3645     // In this case, if IV1 has an external use, we need to avoid adding both
3646     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3647     // don't already have an incoming value for the middle block.
3648     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3649       PHI->addIncoming(I.second, MiddleBlock);
3650   }
3651 }
3652 
3653 namespace {
3654 
3655 struct CSEDenseMapInfo {
3656   static bool canHandle(const Instruction *I) {
3657     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3658            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3659   }
3660 
3661   static inline Instruction *getEmptyKey() {
3662     return DenseMapInfo<Instruction *>::getEmptyKey();
3663   }
3664 
3665   static inline Instruction *getTombstoneKey() {
3666     return DenseMapInfo<Instruction *>::getTombstoneKey();
3667   }
3668 
3669   static unsigned getHashValue(const Instruction *I) {
3670     assert(canHandle(I) && "Unknown instruction!");
3671     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3672                                                            I->value_op_end()));
3673   }
3674 
3675   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3676     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3677         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3678       return LHS == RHS;
3679     return LHS->isIdenticalTo(RHS);
3680   }
3681 };
3682 
3683 } // end anonymous namespace
3684 
3685 ///Perform cse of induction variable instructions.
3686 static void cse(BasicBlock *BB) {
3687   // Perform simple cse.
3688   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3689   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3690     if (!CSEDenseMapInfo::canHandle(&In))
3691       continue;
3692 
3693     // Check if we can replace this instruction with any of the
3694     // visited instructions.
3695     if (Instruction *V = CSEMap.lookup(&In)) {
3696       In.replaceAllUsesWith(V);
3697       In.eraseFromParent();
3698       continue;
3699     }
3700 
3701     CSEMap[&In] = &In;
3702   }
3703 }
3704 
3705 InstructionCost
3706 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3707                                               bool &NeedToScalarize) const {
3708   Function *F = CI->getCalledFunction();
3709   Type *ScalarRetTy = CI->getType();
3710   SmallVector<Type *, 4> Tys, ScalarTys;
3711   for (auto &ArgOp : CI->args())
3712     ScalarTys.push_back(ArgOp->getType());
3713 
3714   // Estimate cost of scalarized vector call. The source operands are assumed
3715   // to be vectors, so we need to extract individual elements from there,
3716   // execute VF scalar calls, and then gather the result into the vector return
3717   // value.
3718   InstructionCost ScalarCallCost =
3719       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3720   if (VF.isScalar())
3721     return ScalarCallCost;
3722 
3723   // Compute corresponding vector type for return value and arguments.
3724   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3725   for (Type *ScalarTy : ScalarTys)
3726     Tys.push_back(ToVectorTy(ScalarTy, VF));
3727 
3728   // Compute costs of unpacking argument values for the scalar calls and
3729   // packing the return values to a vector.
3730   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3731 
3732   InstructionCost Cost =
3733       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3734 
3735   // If we can't emit a vector call for this function, then the currently found
3736   // cost is the cost we need to return.
3737   NeedToScalarize = true;
3738   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3739   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3740 
3741   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3742     return Cost;
3743 
3744   // If the corresponding vector cost is cheaper, return its cost.
3745   InstructionCost VectorCallCost =
3746       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3747   if (VectorCallCost < Cost) {
3748     NeedToScalarize = false;
3749     Cost = VectorCallCost;
3750   }
3751   return Cost;
3752 }
3753 
3754 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3755   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3756     return Elt;
3757   return VectorType::get(Elt, VF);
3758 }
3759 
3760 InstructionCost
3761 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3762                                                    ElementCount VF) const {
3763   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3764   assert(ID && "Expected intrinsic call!");
3765   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3766   FastMathFlags FMF;
3767   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3768     FMF = FPMO->getFastMathFlags();
3769 
3770   SmallVector<const Value *> Arguments(CI->args());
3771   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3772   SmallVector<Type *> ParamTys;
3773   std::transform(FTy->param_begin(), FTy->param_end(),
3774                  std::back_inserter(ParamTys),
3775                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3776 
3777   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3778                                     dyn_cast<IntrinsicInst>(CI));
3779   return TTI.getIntrinsicInstrCost(CostAttrs,
3780                                    TargetTransformInfo::TCK_RecipThroughput);
3781 }
3782 
3783 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3784   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3785   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3786   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3787 }
3788 
3789 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3790   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3791   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3792   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3793 }
3794 
3795 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3796   // For every instruction `I` in MinBWs, truncate the operands, create a
3797   // truncated version of `I` and reextend its result. InstCombine runs
3798   // later and will remove any ext/trunc pairs.
3799   SmallPtrSet<Value *, 4> Erased;
3800   for (const auto &KV : Cost->getMinimalBitwidths()) {
3801     // If the value wasn't vectorized, we must maintain the original scalar
3802     // type. The absence of the value from State indicates that it
3803     // wasn't vectorized.
3804     // FIXME: Should not rely on getVPValue at this point.
3805     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3806     if (!State.hasAnyVectorValue(Def))
3807       continue;
3808     for (unsigned Part = 0; Part < UF; ++Part) {
3809       Value *I = State.get(Def, Part);
3810       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3811         continue;
3812       Type *OriginalTy = I->getType();
3813       Type *ScalarTruncatedTy =
3814           IntegerType::get(OriginalTy->getContext(), KV.second);
3815       auto *TruncatedTy = VectorType::get(
3816           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3817       if (TruncatedTy == OriginalTy)
3818         continue;
3819 
3820       IRBuilder<> B(cast<Instruction>(I));
3821       auto ShrinkOperand = [&](Value *V) -> Value * {
3822         if (auto *ZI = dyn_cast<ZExtInst>(V))
3823           if (ZI->getSrcTy() == TruncatedTy)
3824             return ZI->getOperand(0);
3825         return B.CreateZExtOrTrunc(V, TruncatedTy);
3826       };
3827 
3828       // The actual instruction modification depends on the instruction type,
3829       // unfortunately.
3830       Value *NewI = nullptr;
3831       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3832         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3833                              ShrinkOperand(BO->getOperand(1)));
3834 
3835         // Any wrapping introduced by shrinking this operation shouldn't be
3836         // considered undefined behavior. So, we can't unconditionally copy
3837         // arithmetic wrapping flags to NewI.
3838         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3839       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3840         NewI =
3841             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3842                          ShrinkOperand(CI->getOperand(1)));
3843       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3844         NewI = B.CreateSelect(SI->getCondition(),
3845                               ShrinkOperand(SI->getTrueValue()),
3846                               ShrinkOperand(SI->getFalseValue()));
3847       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3848         switch (CI->getOpcode()) {
3849         default:
3850           llvm_unreachable("Unhandled cast!");
3851         case Instruction::Trunc:
3852           NewI = ShrinkOperand(CI->getOperand(0));
3853           break;
3854         case Instruction::SExt:
3855           NewI = B.CreateSExtOrTrunc(
3856               CI->getOperand(0),
3857               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3858           break;
3859         case Instruction::ZExt:
3860           NewI = B.CreateZExtOrTrunc(
3861               CI->getOperand(0),
3862               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3863           break;
3864         }
3865       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3866         auto Elements0 =
3867             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3868         auto *O0 = B.CreateZExtOrTrunc(
3869             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3870         auto Elements1 =
3871             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3872         auto *O1 = B.CreateZExtOrTrunc(
3873             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3874 
3875         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3876       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3877         // Don't do anything with the operands, just extend the result.
3878         continue;
3879       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3880         auto Elements =
3881             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3882         auto *O0 = B.CreateZExtOrTrunc(
3883             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3884         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3885         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3886       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3887         auto Elements =
3888             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3889         auto *O0 = B.CreateZExtOrTrunc(
3890             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3891         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3892       } else {
3893         // If we don't know what to do, be conservative and don't do anything.
3894         continue;
3895       }
3896 
3897       // Lastly, extend the result.
3898       NewI->takeName(cast<Instruction>(I));
3899       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3900       I->replaceAllUsesWith(Res);
3901       cast<Instruction>(I)->eraseFromParent();
3902       Erased.insert(I);
3903       State.reset(Def, Res, Part);
3904     }
3905   }
3906 
3907   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3908   for (const auto &KV : Cost->getMinimalBitwidths()) {
3909     // If the value wasn't vectorized, we must maintain the original scalar
3910     // type. The absence of the value from State indicates that it
3911     // wasn't vectorized.
3912     // FIXME: Should not rely on getVPValue at this point.
3913     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3914     if (!State.hasAnyVectorValue(Def))
3915       continue;
3916     for (unsigned Part = 0; Part < UF; ++Part) {
3917       Value *I = State.get(Def, Part);
3918       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3919       if (Inst && Inst->use_empty()) {
3920         Value *NewI = Inst->getOperand(0);
3921         Inst->eraseFromParent();
3922         State.reset(Def, NewI, Part);
3923       }
3924     }
3925   }
3926 }
3927 
3928 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3929   // Insert truncates and extends for any truncated instructions as hints to
3930   // InstCombine.
3931   if (VF.isVector())
3932     truncateToMinimalBitwidths(State);
3933 
3934   // Fix widened non-induction PHIs by setting up the PHI operands.
3935   if (OrigPHIsToFix.size()) {
3936     assert(EnableVPlanNativePath &&
3937            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3938     fixNonInductionPHIs(State);
3939   }
3940 
3941   // At this point every instruction in the original loop is widened to a
3942   // vector form. Now we need to fix the recurrences in the loop. These PHI
3943   // nodes are currently empty because we did not want to introduce cycles.
3944   // This is the second stage of vectorizing recurrences.
3945   fixCrossIterationPHIs(State);
3946 
3947   // Forget the original basic block.
3948   PSE.getSE()->forgetLoop(OrigLoop);
3949 
3950   // If we inserted an edge from the middle block to the unique exit block,
3951   // update uses outside the loop (phis) to account for the newly inserted
3952   // edge.
3953   if (!Cost->requiresScalarEpilogue(VF)) {
3954     // Fix-up external users of the induction variables.
3955     for (auto &Entry : Legal->getInductionVars())
3956       fixupIVUsers(Entry.first, Entry.second,
3957                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3958                    IVEndValues[Entry.first], LoopMiddleBlock);
3959 
3960     fixLCSSAPHIs(State);
3961   }
3962 
3963   for (Instruction *PI : PredicatedInstructions)
3964     sinkScalarOperands(&*PI);
3965 
3966   // Remove redundant induction instructions.
3967   cse(LoopVectorBody);
3968 
3969   // Set/update profile weights for the vector and remainder loops as original
3970   // loop iterations are now distributed among them. Note that original loop
3971   // represented by LoopScalarBody becomes remainder loop after vectorization.
3972   //
3973   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3974   // end up getting slightly roughened result but that should be OK since
3975   // profile is not inherently precise anyway. Note also possible bypass of
3976   // vector code caused by legality checks is ignored, assigning all the weight
3977   // to the vector loop, optimistically.
3978   //
3979   // For scalable vectorization we can't know at compile time how many iterations
3980   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3981   // vscale of '1'.
3982   setProfileInfoAfterUnrolling(
3983       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3984       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3985 }
3986 
3987 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3988   // In order to support recurrences we need to be able to vectorize Phi nodes.
3989   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3990   // stage #2: We now need to fix the recurrences by adding incoming edges to
3991   // the currently empty PHI nodes. At this point every instruction in the
3992   // original loop is widened to a vector form so we can use them to construct
3993   // the incoming edges.
3994   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
3995   for (VPRecipeBase &R : Header->phis()) {
3996     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3997       fixReduction(ReductionPhi, State);
3998     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3999       fixFirstOrderRecurrence(FOR, State);
4000   }
4001 }
4002 
4003 void InnerLoopVectorizer::fixFirstOrderRecurrence(
4004     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
4005   // This is the second phase of vectorizing first-order recurrences. An
4006   // overview of the transformation is described below. Suppose we have the
4007   // following loop.
4008   //
4009   //   for (int i = 0; i < n; ++i)
4010   //     b[i] = a[i] - a[i - 1];
4011   //
4012   // There is a first-order recurrence on "a". For this loop, the shorthand
4013   // scalar IR looks like:
4014   //
4015   //   scalar.ph:
4016   //     s_init = a[-1]
4017   //     br scalar.body
4018   //
4019   //   scalar.body:
4020   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4021   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4022   //     s2 = a[i]
4023   //     b[i] = s2 - s1
4024   //     br cond, scalar.body, ...
4025   //
4026   // In this example, s1 is a recurrence because it's value depends on the
4027   // previous iteration. In the first phase of vectorization, we created a
4028   // vector phi v1 for s1. We now complete the vectorization and produce the
4029   // shorthand vector IR shown below (for VF = 4, UF = 1).
4030   //
4031   //   vector.ph:
4032   //     v_init = vector(..., ..., ..., a[-1])
4033   //     br vector.body
4034   //
4035   //   vector.body
4036   //     i = phi [0, vector.ph], [i+4, vector.body]
4037   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4038   //     v2 = a[i, i+1, i+2, i+3];
4039   //     v3 = vector(v1(3), v2(0, 1, 2))
4040   //     b[i, i+1, i+2, i+3] = v2 - v3
4041   //     br cond, vector.body, middle.block
4042   //
4043   //   middle.block:
4044   //     x = v2(3)
4045   //     br scalar.ph
4046   //
4047   //   scalar.ph:
4048   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4049   //     br scalar.body
4050   //
4051   // After execution completes the vector loop, we extract the next value of
4052   // the recurrence (x) to use as the initial value in the scalar loop.
4053 
4054   // Extract the last vector element in the middle block. This will be the
4055   // initial value for the recurrence when jumping to the scalar loop.
4056   VPValue *PreviousDef = PhiR->getBackedgeValue();
4057   Value *Incoming = State.get(PreviousDef, UF - 1);
4058   auto *ExtractForScalar = Incoming;
4059   auto *IdxTy = Builder.getInt32Ty();
4060   if (VF.isVector()) {
4061     auto *One = ConstantInt::get(IdxTy, 1);
4062     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4063     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4064     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4065     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4066                                                     "vector.recur.extract");
4067   }
4068   // Extract the second last element in the middle block if the
4069   // Phi is used outside the loop. We need to extract the phi itself
4070   // and not the last element (the phi update in the current iteration). This
4071   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4072   // when the scalar loop is not run at all.
4073   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4074   if (VF.isVector()) {
4075     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4076     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4077     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4078         Incoming, Idx, "vector.recur.extract.for.phi");
4079   } else if (UF > 1)
4080     // When loop is unrolled without vectorizing, initialize
4081     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4082     // of `Incoming`. This is analogous to the vectorized case above: extracting
4083     // the second last element when VF > 1.
4084     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4085 
4086   // Fix the initial value of the original recurrence in the scalar loop.
4087   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4088   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4089   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4090   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4091   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4092     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4093     Start->addIncoming(Incoming, BB);
4094   }
4095 
4096   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4097   Phi->setName("scalar.recur");
4098 
4099   // Finally, fix users of the recurrence outside the loop. The users will need
4100   // either the last value of the scalar recurrence or the last value of the
4101   // vector recurrence we extracted in the middle block. Since the loop is in
4102   // LCSSA form, we just need to find all the phi nodes for the original scalar
4103   // recurrence in the exit block, and then add an edge for the middle block.
4104   // Note that LCSSA does not imply single entry when the original scalar loop
4105   // had multiple exiting edges (as we always run the last iteration in the
4106   // scalar epilogue); in that case, there is no edge from middle to exit and
4107   // and thus no phis which needed updated.
4108   if (!Cost->requiresScalarEpilogue(VF))
4109     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4110       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4111         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4112 }
4113 
4114 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4115                                        VPTransformState &State) {
4116   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4117   // Get it's reduction variable descriptor.
4118   assert(Legal->isReductionVariable(OrigPhi) &&
4119          "Unable to find the reduction variable");
4120   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4121 
4122   RecurKind RK = RdxDesc.getRecurrenceKind();
4123   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4124   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4125   setDebugLocFromInst(ReductionStartValue);
4126 
4127   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4128   // This is the vector-clone of the value that leaves the loop.
4129   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4130 
4131   // Wrap flags are in general invalid after vectorization, clear them.
4132   clearReductionWrapFlags(RdxDesc, State);
4133 
4134   // Before each round, move the insertion point right between
4135   // the PHIs and the values we are going to write.
4136   // This allows us to write both PHINodes and the extractelement
4137   // instructions.
4138   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4139 
4140   setDebugLocFromInst(LoopExitInst);
4141 
4142   Type *PhiTy = OrigPhi->getType();
4143   // If tail is folded by masking, the vector value to leave the loop should be
4144   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4145   // instead of the former. For an inloop reduction the reduction will already
4146   // be predicated, and does not need to be handled here.
4147   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4148     for (unsigned Part = 0; Part < UF; ++Part) {
4149       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4150       Value *Sel = nullptr;
4151       for (User *U : VecLoopExitInst->users()) {
4152         if (isa<SelectInst>(U)) {
4153           assert(!Sel && "Reduction exit feeding two selects");
4154           Sel = U;
4155         } else
4156           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4157       }
4158       assert(Sel && "Reduction exit feeds no select");
4159       State.reset(LoopExitInstDef, Sel, Part);
4160 
4161       // If the target can create a predicated operator for the reduction at no
4162       // extra cost in the loop (for example a predicated vadd), it can be
4163       // cheaper for the select to remain in the loop than be sunk out of it,
4164       // and so use the select value for the phi instead of the old
4165       // LoopExitValue.
4166       if (PreferPredicatedReductionSelect ||
4167           TTI->preferPredicatedReductionSelect(
4168               RdxDesc.getOpcode(), PhiTy,
4169               TargetTransformInfo::ReductionFlags())) {
4170         auto *VecRdxPhi =
4171             cast<PHINode>(State.get(PhiR, Part));
4172         VecRdxPhi->setIncomingValueForBlock(
4173             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4174       }
4175     }
4176   }
4177 
4178   // If the vector reduction can be performed in a smaller type, we truncate
4179   // then extend the loop exit value to enable InstCombine to evaluate the
4180   // entire expression in the smaller type.
4181   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4182     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4183     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4184     Builder.SetInsertPoint(
4185         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4186     VectorParts RdxParts(UF);
4187     for (unsigned Part = 0; Part < UF; ++Part) {
4188       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4189       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4190       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4191                                         : Builder.CreateZExt(Trunc, VecTy);
4192       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4193         if (U != Trunc) {
4194           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4195           RdxParts[Part] = Extnd;
4196         }
4197     }
4198     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4199     for (unsigned Part = 0; Part < UF; ++Part) {
4200       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4201       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4202     }
4203   }
4204 
4205   // Reduce all of the unrolled parts into a single vector.
4206   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4207   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4208 
4209   // The middle block terminator has already been assigned a DebugLoc here (the
4210   // OrigLoop's single latch terminator). We want the whole middle block to
4211   // appear to execute on this line because: (a) it is all compiler generated,
4212   // (b) these instructions are always executed after evaluating the latch
4213   // conditional branch, and (c) other passes may add new predecessors which
4214   // terminate on this line. This is the easiest way to ensure we don't
4215   // accidentally cause an extra step back into the loop while debugging.
4216   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4217   if (PhiR->isOrdered())
4218     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4219   else {
4220     // Floating-point operations should have some FMF to enable the reduction.
4221     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4222     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4223     for (unsigned Part = 1; Part < UF; ++Part) {
4224       Value *RdxPart = State.get(LoopExitInstDef, Part);
4225       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4226         ReducedPartRdx = Builder.CreateBinOp(
4227             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4228       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4229         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4230                                            ReducedPartRdx, RdxPart);
4231       else
4232         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4233     }
4234   }
4235 
4236   // Create the reduction after the loop. Note that inloop reductions create the
4237   // target reduction in the loop using a Reduction recipe.
4238   if (VF.isVector() && !PhiR->isInLoop()) {
4239     ReducedPartRdx =
4240         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4241     // If the reduction can be performed in a smaller type, we need to extend
4242     // the reduction to the wider type before we branch to the original loop.
4243     if (PhiTy != RdxDesc.getRecurrenceType())
4244       ReducedPartRdx = RdxDesc.isSigned()
4245                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4246                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4247   }
4248 
4249   PHINode *ResumePhi =
4250       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4251 
4252   // Create a phi node that merges control-flow from the backedge-taken check
4253   // block and the middle block.
4254   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4255                                         LoopScalarPreHeader->getTerminator());
4256 
4257   // If we are fixing reductions in the epilogue loop then we should already
4258   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4259   // we carry over the incoming values correctly.
4260   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4261     if (Incoming == LoopMiddleBlock)
4262       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4263     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4264       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4265                               Incoming);
4266     else
4267       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4268   }
4269 
4270   // Set the resume value for this reduction
4271   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4272 
4273   // Now, we need to fix the users of the reduction variable
4274   // inside and outside of the scalar remainder loop.
4275 
4276   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4277   // in the exit blocks.  See comment on analogous loop in
4278   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4279   if (!Cost->requiresScalarEpilogue(VF))
4280     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4281       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4282         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4283 
4284   // Fix the scalar loop reduction variable with the incoming reduction sum
4285   // from the vector body and from the backedge value.
4286   int IncomingEdgeBlockIdx =
4287       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4288   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4289   // Pick the other block.
4290   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4291   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4292   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4293 }
4294 
4295 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4296                                                   VPTransformState &State) {
4297   RecurKind RK = RdxDesc.getRecurrenceKind();
4298   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4299     return;
4300 
4301   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4302   assert(LoopExitInstr && "null loop exit instruction");
4303   SmallVector<Instruction *, 8> Worklist;
4304   SmallPtrSet<Instruction *, 8> Visited;
4305   Worklist.push_back(LoopExitInstr);
4306   Visited.insert(LoopExitInstr);
4307 
4308   while (!Worklist.empty()) {
4309     Instruction *Cur = Worklist.pop_back_val();
4310     if (isa<OverflowingBinaryOperator>(Cur))
4311       for (unsigned Part = 0; Part < UF; ++Part) {
4312         // FIXME: Should not rely on getVPValue at this point.
4313         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4314         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4315       }
4316 
4317     for (User *U : Cur->users()) {
4318       Instruction *UI = cast<Instruction>(U);
4319       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4320           Visited.insert(UI).second)
4321         Worklist.push_back(UI);
4322     }
4323   }
4324 }
4325 
4326 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4327   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4328     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4329       // Some phis were already hand updated by the reduction and recurrence
4330       // code above, leave them alone.
4331       continue;
4332 
4333     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4334     // Non-instruction incoming values will have only one value.
4335 
4336     VPLane Lane = VPLane::getFirstLane();
4337     if (isa<Instruction>(IncomingValue) &&
4338         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4339                                            VF))
4340       Lane = VPLane::getLastLaneForVF(VF);
4341 
4342     // Can be a loop invariant incoming value or the last scalar value to be
4343     // extracted from the vectorized loop.
4344     // FIXME: Should not rely on getVPValue at this point.
4345     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4346     Value *lastIncomingValue =
4347         OrigLoop->isLoopInvariant(IncomingValue)
4348             ? IncomingValue
4349             : State.get(State.Plan->getVPValue(IncomingValue, true),
4350                         VPIteration(UF - 1, Lane));
4351     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4352   }
4353 }
4354 
4355 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4356   // The basic block and loop containing the predicated instruction.
4357   auto *PredBB = PredInst->getParent();
4358   auto *VectorLoop = LI->getLoopFor(PredBB);
4359 
4360   // Initialize a worklist with the operands of the predicated instruction.
4361   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4362 
4363   // Holds instructions that we need to analyze again. An instruction may be
4364   // reanalyzed if we don't yet know if we can sink it or not.
4365   SmallVector<Instruction *, 8> InstsToReanalyze;
4366 
4367   // Returns true if a given use occurs in the predicated block. Phi nodes use
4368   // their operands in their corresponding predecessor blocks.
4369   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4370     auto *I = cast<Instruction>(U.getUser());
4371     BasicBlock *BB = I->getParent();
4372     if (auto *Phi = dyn_cast<PHINode>(I))
4373       BB = Phi->getIncomingBlock(
4374           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4375     return BB == PredBB;
4376   };
4377 
4378   // Iteratively sink the scalarized operands of the predicated instruction
4379   // into the block we created for it. When an instruction is sunk, it's
4380   // operands are then added to the worklist. The algorithm ends after one pass
4381   // through the worklist doesn't sink a single instruction.
4382   bool Changed;
4383   do {
4384     // Add the instructions that need to be reanalyzed to the worklist, and
4385     // reset the changed indicator.
4386     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4387     InstsToReanalyze.clear();
4388     Changed = false;
4389 
4390     while (!Worklist.empty()) {
4391       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4392 
4393       // We can't sink an instruction if it is a phi node, is not in the loop,
4394       // or may have side effects.
4395       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4396           I->mayHaveSideEffects())
4397         continue;
4398 
4399       // If the instruction is already in PredBB, check if we can sink its
4400       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4401       // sinking the scalar instruction I, hence it appears in PredBB; but it
4402       // may have failed to sink I's operands (recursively), which we try
4403       // (again) here.
4404       if (I->getParent() == PredBB) {
4405         Worklist.insert(I->op_begin(), I->op_end());
4406         continue;
4407       }
4408 
4409       // It's legal to sink the instruction if all its uses occur in the
4410       // predicated block. Otherwise, there's nothing to do yet, and we may
4411       // need to reanalyze the instruction.
4412       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4413         InstsToReanalyze.push_back(I);
4414         continue;
4415       }
4416 
4417       // Move the instruction to the beginning of the predicated block, and add
4418       // it's operands to the worklist.
4419       I->moveBefore(&*PredBB->getFirstInsertionPt());
4420       Worklist.insert(I->op_begin(), I->op_end());
4421 
4422       // The sinking may have enabled other instructions to be sunk, so we will
4423       // need to iterate.
4424       Changed = true;
4425     }
4426   } while (Changed);
4427 }
4428 
4429 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4430   for (PHINode *OrigPhi : OrigPHIsToFix) {
4431     VPWidenPHIRecipe *VPPhi =
4432         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4433     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4434     // Make sure the builder has a valid insert point.
4435     Builder.SetInsertPoint(NewPhi);
4436     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4437       VPValue *Inc = VPPhi->getIncomingValue(i);
4438       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4439       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4440     }
4441   }
4442 }
4443 
4444 bool InnerLoopVectorizer::useOrderedReductions(
4445     const RecurrenceDescriptor &RdxDesc) {
4446   return Cost->useOrderedReductions(RdxDesc);
4447 }
4448 
4449 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4450                                               VPWidenPHIRecipe *PhiR,
4451                                               VPTransformState &State) {
4452   PHINode *P = cast<PHINode>(PN);
4453   if (EnableVPlanNativePath) {
4454     // Currently we enter here in the VPlan-native path for non-induction
4455     // PHIs where all control flow is uniform. We simply widen these PHIs.
4456     // Create a vector phi with no operands - the vector phi operands will be
4457     // set at the end of vector code generation.
4458     Type *VecTy = (State.VF.isScalar())
4459                       ? PN->getType()
4460                       : VectorType::get(PN->getType(), State.VF);
4461     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4462     State.set(PhiR, VecPhi, 0);
4463     OrigPHIsToFix.push_back(P);
4464 
4465     return;
4466   }
4467 
4468   assert(PN->getParent() == OrigLoop->getHeader() &&
4469          "Non-header phis should have been handled elsewhere");
4470 
4471   // In order to support recurrences we need to be able to vectorize Phi nodes.
4472   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4473   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4474   // this value when we vectorize all of the instructions that use the PHI.
4475 
4476   assert(!Legal->isReductionVariable(P) &&
4477          "reductions should be handled elsewhere");
4478 
4479   setDebugLocFromInst(P);
4480 
4481   // This PHINode must be an induction variable.
4482   // Make sure that we know about it.
4483   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4484 
4485   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4486   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4487 
4488   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4489   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4490 
4491   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4492   // which can be found from the original scalar operations.
4493   switch (II.getKind()) {
4494   case InductionDescriptor::IK_NoInduction:
4495     llvm_unreachable("Unknown induction");
4496   case InductionDescriptor::IK_IntInduction:
4497   case InductionDescriptor::IK_FpInduction:
4498     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4499   case InductionDescriptor::IK_PtrInduction: {
4500     // Handle the pointer induction variable case.
4501     assert(P->getType()->isPointerTy() && "Unexpected type.");
4502 
4503     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4504       // This is the normalized GEP that starts counting at zero.
4505       Value *PtrInd =
4506           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4507       // Determine the number of scalars we need to generate for each unroll
4508       // iteration. If the instruction is uniform, we only need to generate the
4509       // first lane. Otherwise, we generate all VF values.
4510       bool IsUniform = vputils::onlyFirstLaneUsed(PhiR);
4511       assert((IsUniform || !State.VF.isScalable()) &&
4512              "Cannot scalarize a scalable VF");
4513       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4514 
4515       for (unsigned Part = 0; Part < UF; ++Part) {
4516         Value *PartStart =
4517             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4518 
4519         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4520           Value *Idx = Builder.CreateAdd(
4521               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4522           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4523           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(),
4524                                                 DL, II, State.CFG.PrevBB);
4525           SclrGep->setName("next.gep");
4526           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4527         }
4528       }
4529       return;
4530     }
4531     assert(isa<SCEVConstant>(II.getStep()) &&
4532            "Induction step not a SCEV constant!");
4533     Type *PhiType = II.getStep()->getType();
4534 
4535     // Build a pointer phi
4536     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4537     Type *ScStValueType = ScalarStartValue->getType();
4538     PHINode *NewPointerPhi =
4539         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4540     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4541 
4542     // A pointer induction, performed by using a gep
4543     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4544     Instruction *InductionLoc = LoopLatch->getTerminator();
4545     const SCEV *ScalarStep = II.getStep();
4546     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4547     Value *ScalarStepValue =
4548         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4549     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4550     Value *NumUnrolledElems =
4551         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4552     Value *InductionGEP = GetElementPtrInst::Create(
4553         II.getElementType(), NewPointerPhi,
4554         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4555         InductionLoc);
4556     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4557 
4558     // Create UF many actual address geps that use the pointer
4559     // phi as base and a vectorized version of the step value
4560     // (<step*0, ..., step*N>) as offset.
4561     for (unsigned Part = 0; Part < State.UF; ++Part) {
4562       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4563       Value *StartOffsetScalar =
4564           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4565       Value *StartOffset =
4566           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4567       // Create a vector of consecutive numbers from zero to VF.
4568       StartOffset =
4569           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4570 
4571       Value *GEP = Builder.CreateGEP(
4572           II.getElementType(), NewPointerPhi,
4573           Builder.CreateMul(
4574               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4575               "vector.gep"));
4576       State.set(PhiR, GEP, Part);
4577     }
4578   }
4579   }
4580 }
4581 
4582 /// A helper function for checking whether an integer division-related
4583 /// instruction may divide by zero (in which case it must be predicated if
4584 /// executed conditionally in the scalar code).
4585 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4586 /// Non-zero divisors that are non compile-time constants will not be
4587 /// converted into multiplication, so we will still end up scalarizing
4588 /// the division, but can do so w/o predication.
4589 static bool mayDivideByZero(Instruction &I) {
4590   assert((I.getOpcode() == Instruction::UDiv ||
4591           I.getOpcode() == Instruction::SDiv ||
4592           I.getOpcode() == Instruction::URem ||
4593           I.getOpcode() == Instruction::SRem) &&
4594          "Unexpected instruction");
4595   Value *Divisor = I.getOperand(1);
4596   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4597   return !CInt || CInt->isZero();
4598 }
4599 
4600 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4601                                                VPUser &ArgOperands,
4602                                                VPTransformState &State) {
4603   assert(!isa<DbgInfoIntrinsic>(I) &&
4604          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4605   setDebugLocFromInst(&I);
4606 
4607   Module *M = I.getParent()->getParent()->getParent();
4608   auto *CI = cast<CallInst>(&I);
4609 
4610   SmallVector<Type *, 4> Tys;
4611   for (Value *ArgOperand : CI->args())
4612     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4613 
4614   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4615 
4616   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4617   // version of the instruction.
4618   // Is it beneficial to perform intrinsic call compared to lib call?
4619   bool NeedToScalarize = false;
4620   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4621   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4622   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4623   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4624          "Instruction should be scalarized elsewhere.");
4625   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4626          "Either the intrinsic cost or vector call cost must be valid");
4627 
4628   for (unsigned Part = 0; Part < UF; ++Part) {
4629     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4630     SmallVector<Value *, 4> Args;
4631     for (auto &I : enumerate(ArgOperands.operands())) {
4632       // Some intrinsics have a scalar argument - don't replace it with a
4633       // vector.
4634       Value *Arg;
4635       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4636         Arg = State.get(I.value(), Part);
4637       else {
4638         Arg = State.get(I.value(), VPIteration(0, 0));
4639         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4640           TysForDecl.push_back(Arg->getType());
4641       }
4642       Args.push_back(Arg);
4643     }
4644 
4645     Function *VectorF;
4646     if (UseVectorIntrinsic) {
4647       // Use vector version of the intrinsic.
4648       if (VF.isVector())
4649         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4650       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4651       assert(VectorF && "Can't retrieve vector intrinsic.");
4652     } else {
4653       // Use vector version of the function call.
4654       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4655 #ifndef NDEBUG
4656       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4657              "Can't create vector function.");
4658 #endif
4659         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4660     }
4661       SmallVector<OperandBundleDef, 1> OpBundles;
4662       CI->getOperandBundlesAsDefs(OpBundles);
4663       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4664 
4665       if (isa<FPMathOperator>(V))
4666         V->copyFastMathFlags(CI);
4667 
4668       State.set(Def, V, Part);
4669       addMetadata(V, &I);
4670   }
4671 }
4672 
4673 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4674   // We should not collect Scalars more than once per VF. Right now, this
4675   // function is called from collectUniformsAndScalars(), which already does
4676   // this check. Collecting Scalars for VF=1 does not make any sense.
4677   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4678          "This function should not be visited twice for the same VF");
4679 
4680   SmallSetVector<Instruction *, 8> Worklist;
4681 
4682   // These sets are used to seed the analysis with pointers used by memory
4683   // accesses that will remain scalar.
4684   SmallSetVector<Instruction *, 8> ScalarPtrs;
4685   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4686   auto *Latch = TheLoop->getLoopLatch();
4687 
4688   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4689   // The pointer operands of loads and stores will be scalar as long as the
4690   // memory access is not a gather or scatter operation. The value operand of a
4691   // store will remain scalar if the store is scalarized.
4692   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4693     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4694     assert(WideningDecision != CM_Unknown &&
4695            "Widening decision should be ready at this moment");
4696     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4697       if (Ptr == Store->getValueOperand())
4698         return WideningDecision == CM_Scalarize;
4699     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4700            "Ptr is neither a value or pointer operand");
4701     return WideningDecision != CM_GatherScatter;
4702   };
4703 
4704   // A helper that returns true if the given value is a bitcast or
4705   // getelementptr instruction contained in the loop.
4706   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4707     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4708             isa<GetElementPtrInst>(V)) &&
4709            !TheLoop->isLoopInvariant(V);
4710   };
4711 
4712   // A helper that evaluates a memory access's use of a pointer. If the use will
4713   // be a scalar use and the pointer is only used by memory accesses, we place
4714   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4715   // PossibleNonScalarPtrs.
4716   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4717     // We only care about bitcast and getelementptr instructions contained in
4718     // the loop.
4719     if (!isLoopVaryingBitCastOrGEP(Ptr))
4720       return;
4721 
4722     // If the pointer has already been identified as scalar (e.g., if it was
4723     // also identified as uniform), there's nothing to do.
4724     auto *I = cast<Instruction>(Ptr);
4725     if (Worklist.count(I))
4726       return;
4727 
4728     // If the use of the pointer will be a scalar use, and all users of the
4729     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4730     // place the pointer in PossibleNonScalarPtrs.
4731     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4732           return isa<LoadInst>(U) || isa<StoreInst>(U);
4733         }))
4734       ScalarPtrs.insert(I);
4735     else
4736       PossibleNonScalarPtrs.insert(I);
4737   };
4738 
4739   // We seed the scalars analysis with three classes of instructions: (1)
4740   // instructions marked uniform-after-vectorization and (2) bitcast,
4741   // getelementptr and (pointer) phi instructions used by memory accesses
4742   // requiring a scalar use.
4743   //
4744   // (1) Add to the worklist all instructions that have been identified as
4745   // uniform-after-vectorization.
4746   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4747 
4748   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4749   // memory accesses requiring a scalar use. The pointer operands of loads and
4750   // stores will be scalar as long as the memory accesses is not a gather or
4751   // scatter operation. The value operand of a store will remain scalar if the
4752   // store is scalarized.
4753   for (auto *BB : TheLoop->blocks())
4754     for (auto &I : *BB) {
4755       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4756         evaluatePtrUse(Load, Load->getPointerOperand());
4757       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4758         evaluatePtrUse(Store, Store->getPointerOperand());
4759         evaluatePtrUse(Store, Store->getValueOperand());
4760       }
4761     }
4762   for (auto *I : ScalarPtrs)
4763     if (!PossibleNonScalarPtrs.count(I)) {
4764       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4765       Worklist.insert(I);
4766     }
4767 
4768   // Insert the forced scalars.
4769   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4770   // induction variable when the PHI user is scalarized.
4771   auto ForcedScalar = ForcedScalars.find(VF);
4772   if (ForcedScalar != ForcedScalars.end())
4773     for (auto *I : ForcedScalar->second)
4774       Worklist.insert(I);
4775 
4776   // Expand the worklist by looking through any bitcasts and getelementptr
4777   // instructions we've already identified as scalar. This is similar to the
4778   // expansion step in collectLoopUniforms(); however, here we're only
4779   // expanding to include additional bitcasts and getelementptr instructions.
4780   unsigned Idx = 0;
4781   while (Idx != Worklist.size()) {
4782     Instruction *Dst = Worklist[Idx++];
4783     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4784       continue;
4785     auto *Src = cast<Instruction>(Dst->getOperand(0));
4786     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4787           auto *J = cast<Instruction>(U);
4788           return !TheLoop->contains(J) || Worklist.count(J) ||
4789                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4790                   isScalarUse(J, Src));
4791         })) {
4792       Worklist.insert(Src);
4793       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4794     }
4795   }
4796 
4797   // An induction variable will remain scalar if all users of the induction
4798   // variable and induction variable update remain scalar.
4799   for (auto &Induction : Legal->getInductionVars()) {
4800     auto *Ind = Induction.first;
4801     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4802 
4803     // If tail-folding is applied, the primary induction variable will be used
4804     // to feed a vector compare.
4805     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4806       continue;
4807 
4808     // Returns true if \p Indvar is a pointer induction that is used directly by
4809     // load/store instruction \p I.
4810     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4811                                               Instruction *I) {
4812       return Induction.second.getKind() ==
4813                  InductionDescriptor::IK_PtrInduction &&
4814              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4815              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4816     };
4817 
4818     // Determine if all users of the induction variable are scalar after
4819     // vectorization.
4820     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4821       auto *I = cast<Instruction>(U);
4822       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4823              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4824     });
4825     if (!ScalarInd)
4826       continue;
4827 
4828     // Determine if all users of the induction variable update instruction are
4829     // scalar after vectorization.
4830     auto ScalarIndUpdate =
4831         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4832           auto *I = cast<Instruction>(U);
4833           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4834                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4835         });
4836     if (!ScalarIndUpdate)
4837       continue;
4838 
4839     // The induction variable and its update instruction will remain scalar.
4840     Worklist.insert(Ind);
4841     Worklist.insert(IndUpdate);
4842     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4843     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4844                       << "\n");
4845   }
4846 
4847   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4848 }
4849 
4850 bool LoopVectorizationCostModel::isScalarWithPredication(
4851     Instruction *I, ElementCount VF) const {
4852   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4853     return false;
4854   switch(I->getOpcode()) {
4855   default:
4856     break;
4857   case Instruction::Load:
4858   case Instruction::Store: {
4859     if (!Legal->isMaskRequired(I))
4860       return false;
4861     auto *Ptr = getLoadStorePointerOperand(I);
4862     auto *Ty = getLoadStoreType(I);
4863     Type *VTy = Ty;
4864     if (VF.isVector())
4865       VTy = VectorType::get(Ty, VF);
4866     const Align Alignment = getLoadStoreAlignment(I);
4867     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4868                                 TTI.isLegalMaskedGather(VTy, Alignment))
4869                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4870                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4871   }
4872   case Instruction::UDiv:
4873   case Instruction::SDiv:
4874   case Instruction::SRem:
4875   case Instruction::URem:
4876     return mayDivideByZero(*I);
4877   }
4878   return false;
4879 }
4880 
4881 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4882     Instruction *I, ElementCount VF) {
4883   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4884   assert(getWideningDecision(I, VF) == CM_Unknown &&
4885          "Decision should not be set yet.");
4886   auto *Group = getInterleavedAccessGroup(I);
4887   assert(Group && "Must have a group.");
4888 
4889   // If the instruction's allocated size doesn't equal it's type size, it
4890   // requires padding and will be scalarized.
4891   auto &DL = I->getModule()->getDataLayout();
4892   auto *ScalarTy = getLoadStoreType(I);
4893   if (hasIrregularType(ScalarTy, DL))
4894     return false;
4895 
4896   // Check if masking is required.
4897   // A Group may need masking for one of two reasons: it resides in a block that
4898   // needs predication, or it was decided to use masking to deal with gaps
4899   // (either a gap at the end of a load-access that may result in a speculative
4900   // load, or any gaps in a store-access).
4901   bool PredicatedAccessRequiresMasking =
4902       blockNeedsPredicationForAnyReason(I->getParent()) &&
4903       Legal->isMaskRequired(I);
4904   bool LoadAccessWithGapsRequiresEpilogMasking =
4905       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4906       !isScalarEpilogueAllowed();
4907   bool StoreAccessWithGapsRequiresMasking =
4908       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4909   if (!PredicatedAccessRequiresMasking &&
4910       !LoadAccessWithGapsRequiresEpilogMasking &&
4911       !StoreAccessWithGapsRequiresMasking)
4912     return true;
4913 
4914   // If masked interleaving is required, we expect that the user/target had
4915   // enabled it, because otherwise it either wouldn't have been created or
4916   // it should have been invalidated by the CostModel.
4917   assert(useMaskedInterleavedAccesses(TTI) &&
4918          "Masked interleave-groups for predicated accesses are not enabled.");
4919 
4920   if (Group->isReverse())
4921     return false;
4922 
4923   auto *Ty = getLoadStoreType(I);
4924   const Align Alignment = getLoadStoreAlignment(I);
4925   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4926                           : TTI.isLegalMaskedStore(Ty, Alignment);
4927 }
4928 
4929 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4930     Instruction *I, ElementCount VF) {
4931   // Get and ensure we have a valid memory instruction.
4932   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4933 
4934   auto *Ptr = getLoadStorePointerOperand(I);
4935   auto *ScalarTy = getLoadStoreType(I);
4936 
4937   // In order to be widened, the pointer should be consecutive, first of all.
4938   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4939     return false;
4940 
4941   // If the instruction is a store located in a predicated block, it will be
4942   // scalarized.
4943   if (isScalarWithPredication(I, VF))
4944     return false;
4945 
4946   // If the instruction's allocated size doesn't equal it's type size, it
4947   // requires padding and will be scalarized.
4948   auto &DL = I->getModule()->getDataLayout();
4949   if (hasIrregularType(ScalarTy, DL))
4950     return false;
4951 
4952   return true;
4953 }
4954 
4955 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4956   // We should not collect Uniforms more than once per VF. Right now,
4957   // this function is called from collectUniformsAndScalars(), which
4958   // already does this check. Collecting Uniforms for VF=1 does not make any
4959   // sense.
4960 
4961   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4962          "This function should not be visited twice for the same VF");
4963 
4964   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4965   // not analyze again.  Uniforms.count(VF) will return 1.
4966   Uniforms[VF].clear();
4967 
4968   // We now know that the loop is vectorizable!
4969   // Collect instructions inside the loop that will remain uniform after
4970   // vectorization.
4971 
4972   // Global values, params and instructions outside of current loop are out of
4973   // scope.
4974   auto isOutOfScope = [&](Value *V) -> bool {
4975     Instruction *I = dyn_cast<Instruction>(V);
4976     return (!I || !TheLoop->contains(I));
4977   };
4978 
4979   // Worklist containing uniform instructions demanding lane 0.
4980   SetVector<Instruction *> Worklist;
4981   BasicBlock *Latch = TheLoop->getLoopLatch();
4982 
4983   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4984   // that are scalar with predication must not be considered uniform after
4985   // vectorization, because that would create an erroneous replicating region
4986   // where only a single instance out of VF should be formed.
4987   // TODO: optimize such seldom cases if found important, see PR40816.
4988   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4989     if (isOutOfScope(I)) {
4990       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4991                         << *I << "\n");
4992       return;
4993     }
4994     if (isScalarWithPredication(I, VF)) {
4995       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4996                         << *I << "\n");
4997       return;
4998     }
4999     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5000     Worklist.insert(I);
5001   };
5002 
5003   // Start with the conditional branch. If the branch condition is an
5004   // instruction contained in the loop that is only used by the branch, it is
5005   // uniform.
5006   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5007   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5008     addToWorklistIfAllowed(Cmp);
5009 
5010   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5011     InstWidening WideningDecision = getWideningDecision(I, VF);
5012     assert(WideningDecision != CM_Unknown &&
5013            "Widening decision should be ready at this moment");
5014 
5015     // A uniform memory op is itself uniform.  We exclude uniform stores
5016     // here as they demand the last lane, not the first one.
5017     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5018       assert(WideningDecision == CM_Scalarize);
5019       return true;
5020     }
5021 
5022     return (WideningDecision == CM_Widen ||
5023             WideningDecision == CM_Widen_Reverse ||
5024             WideningDecision == CM_Interleave);
5025   };
5026 
5027 
5028   // Returns true if Ptr is the pointer operand of a memory access instruction
5029   // I, and I is known to not require scalarization.
5030   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5031     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5032   };
5033 
5034   // Holds a list of values which are known to have at least one uniform use.
5035   // Note that there may be other uses which aren't uniform.  A "uniform use"
5036   // here is something which only demands lane 0 of the unrolled iterations;
5037   // it does not imply that all lanes produce the same value (e.g. this is not
5038   // the usual meaning of uniform)
5039   SetVector<Value *> HasUniformUse;
5040 
5041   // Scan the loop for instructions which are either a) known to have only
5042   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5043   for (auto *BB : TheLoop->blocks())
5044     for (auto &I : *BB) {
5045       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5046         switch (II->getIntrinsicID()) {
5047         case Intrinsic::sideeffect:
5048         case Intrinsic::experimental_noalias_scope_decl:
5049         case Intrinsic::assume:
5050         case Intrinsic::lifetime_start:
5051         case Intrinsic::lifetime_end:
5052           if (TheLoop->hasLoopInvariantOperands(&I))
5053             addToWorklistIfAllowed(&I);
5054           break;
5055         default:
5056           break;
5057         }
5058       }
5059 
5060       // ExtractValue instructions must be uniform, because the operands are
5061       // known to be loop-invariant.
5062       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5063         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5064                "Expected aggregate value to be loop invariant");
5065         addToWorklistIfAllowed(EVI);
5066         continue;
5067       }
5068 
5069       // If there's no pointer operand, there's nothing to do.
5070       auto *Ptr = getLoadStorePointerOperand(&I);
5071       if (!Ptr)
5072         continue;
5073 
5074       // A uniform memory op is itself uniform.  We exclude uniform stores
5075       // here as they demand the last lane, not the first one.
5076       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5077         addToWorklistIfAllowed(&I);
5078 
5079       if (isUniformDecision(&I, VF)) {
5080         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5081         HasUniformUse.insert(Ptr);
5082       }
5083     }
5084 
5085   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5086   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5087   // disallows uses outside the loop as well.
5088   for (auto *V : HasUniformUse) {
5089     if (isOutOfScope(V))
5090       continue;
5091     auto *I = cast<Instruction>(V);
5092     auto UsersAreMemAccesses =
5093       llvm::all_of(I->users(), [&](User *U) -> bool {
5094         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5095       });
5096     if (UsersAreMemAccesses)
5097       addToWorklistIfAllowed(I);
5098   }
5099 
5100   // Expand Worklist in topological order: whenever a new instruction
5101   // is added , its users should be already inside Worklist.  It ensures
5102   // a uniform instruction will only be used by uniform instructions.
5103   unsigned idx = 0;
5104   while (idx != Worklist.size()) {
5105     Instruction *I = Worklist[idx++];
5106 
5107     for (auto OV : I->operand_values()) {
5108       // isOutOfScope operands cannot be uniform instructions.
5109       if (isOutOfScope(OV))
5110         continue;
5111       // First order recurrence Phi's should typically be considered
5112       // non-uniform.
5113       auto *OP = dyn_cast<PHINode>(OV);
5114       if (OP && Legal->isFirstOrderRecurrence(OP))
5115         continue;
5116       // If all the users of the operand are uniform, then add the
5117       // operand into the uniform worklist.
5118       auto *OI = cast<Instruction>(OV);
5119       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5120             auto *J = cast<Instruction>(U);
5121             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5122           }))
5123         addToWorklistIfAllowed(OI);
5124     }
5125   }
5126 
5127   // For an instruction to be added into Worklist above, all its users inside
5128   // the loop should also be in Worklist. However, this condition cannot be
5129   // true for phi nodes that form a cyclic dependence. We must process phi
5130   // nodes separately. An induction variable will remain uniform if all users
5131   // of the induction variable and induction variable update remain uniform.
5132   // The code below handles both pointer and non-pointer induction variables.
5133   for (auto &Induction : Legal->getInductionVars()) {
5134     auto *Ind = Induction.first;
5135     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5136 
5137     // Determine if all users of the induction variable are uniform after
5138     // vectorization.
5139     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5140       auto *I = cast<Instruction>(U);
5141       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5142              isVectorizedMemAccessUse(I, Ind);
5143     });
5144     if (!UniformInd)
5145       continue;
5146 
5147     // Determine if all users of the induction variable update instruction are
5148     // uniform after vectorization.
5149     auto UniformIndUpdate =
5150         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5151           auto *I = cast<Instruction>(U);
5152           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5153                  isVectorizedMemAccessUse(I, IndUpdate);
5154         });
5155     if (!UniformIndUpdate)
5156       continue;
5157 
5158     // The induction variable and its update instruction will remain uniform.
5159     addToWorklistIfAllowed(Ind);
5160     addToWorklistIfAllowed(IndUpdate);
5161   }
5162 
5163   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5164 }
5165 
5166 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5167   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5168 
5169   if (Legal->getRuntimePointerChecking()->Need) {
5170     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5171         "runtime pointer checks needed. Enable vectorization of this "
5172         "loop with '#pragma clang loop vectorize(enable)' when "
5173         "compiling with -Os/-Oz",
5174         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5175     return true;
5176   }
5177 
5178   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5179     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5180         "runtime SCEV checks needed. Enable vectorization of this "
5181         "loop with '#pragma clang loop vectorize(enable)' when "
5182         "compiling with -Os/-Oz",
5183         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5184     return true;
5185   }
5186 
5187   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5188   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5189     reportVectorizationFailure("Runtime stride check for small trip count",
5190         "runtime stride == 1 checks needed. Enable vectorization of "
5191         "this loop without such check by compiling with -Os/-Oz",
5192         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5193     return true;
5194   }
5195 
5196   return false;
5197 }
5198 
5199 ElementCount
5200 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5201   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5202     return ElementCount::getScalable(0);
5203 
5204   if (Hints->isScalableVectorizationDisabled()) {
5205     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5206                             "ScalableVectorizationDisabled", ORE, TheLoop);
5207     return ElementCount::getScalable(0);
5208   }
5209 
5210   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5211 
5212   auto MaxScalableVF = ElementCount::getScalable(
5213       std::numeric_limits<ElementCount::ScalarTy>::max());
5214 
5215   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5216   // FIXME: While for scalable vectors this is currently sufficient, this should
5217   // be replaced by a more detailed mechanism that filters out specific VFs,
5218   // instead of invalidating vectorization for a whole set of VFs based on the
5219   // MaxVF.
5220 
5221   // Disable scalable vectorization if the loop contains unsupported reductions.
5222   if (!canVectorizeReductions(MaxScalableVF)) {
5223     reportVectorizationInfo(
5224         "Scalable vectorization not supported for the reduction "
5225         "operations found in this loop.",
5226         "ScalableVFUnfeasible", ORE, TheLoop);
5227     return ElementCount::getScalable(0);
5228   }
5229 
5230   // Disable scalable vectorization if the loop contains any instructions
5231   // with element types not supported for scalable vectors.
5232   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5233         return !Ty->isVoidTy() &&
5234                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5235       })) {
5236     reportVectorizationInfo("Scalable vectorization is not supported "
5237                             "for all element types found in this loop.",
5238                             "ScalableVFUnfeasible", ORE, TheLoop);
5239     return ElementCount::getScalable(0);
5240   }
5241 
5242   if (Legal->isSafeForAnyVectorWidth())
5243     return MaxScalableVF;
5244 
5245   // Limit MaxScalableVF by the maximum safe dependence distance.
5246   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5247   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5248     MaxVScale =
5249         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5250   MaxScalableVF = ElementCount::getScalable(
5251       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5252   if (!MaxScalableVF)
5253     reportVectorizationInfo(
5254         "Max legal vector width too small, scalable vectorization "
5255         "unfeasible.",
5256         "ScalableVFUnfeasible", ORE, TheLoop);
5257 
5258   return MaxScalableVF;
5259 }
5260 
5261 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5262     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5263   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5264   unsigned SmallestType, WidestType;
5265   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5266 
5267   // Get the maximum safe dependence distance in bits computed by LAA.
5268   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5269   // the memory accesses that is most restrictive (involved in the smallest
5270   // dependence distance).
5271   unsigned MaxSafeElements =
5272       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5273 
5274   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5275   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5276 
5277   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5278                     << ".\n");
5279   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5280                     << ".\n");
5281 
5282   // First analyze the UserVF, fall back if the UserVF should be ignored.
5283   if (UserVF) {
5284     auto MaxSafeUserVF =
5285         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5286 
5287     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5288       // If `VF=vscale x N` is safe, then so is `VF=N`
5289       if (UserVF.isScalable())
5290         return FixedScalableVFPair(
5291             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5292       else
5293         return UserVF;
5294     }
5295 
5296     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5297 
5298     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5299     // is better to ignore the hint and let the compiler choose a suitable VF.
5300     if (!UserVF.isScalable()) {
5301       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5302                         << " is unsafe, clamping to max safe VF="
5303                         << MaxSafeFixedVF << ".\n");
5304       ORE->emit([&]() {
5305         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5306                                           TheLoop->getStartLoc(),
5307                                           TheLoop->getHeader())
5308                << "User-specified vectorization factor "
5309                << ore::NV("UserVectorizationFactor", UserVF)
5310                << " is unsafe, clamping to maximum safe vectorization factor "
5311                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5312       });
5313       return MaxSafeFixedVF;
5314     }
5315 
5316     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5317       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5318                         << " is ignored because scalable vectors are not "
5319                            "available.\n");
5320       ORE->emit([&]() {
5321         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5322                                           TheLoop->getStartLoc(),
5323                                           TheLoop->getHeader())
5324                << "User-specified vectorization factor "
5325                << ore::NV("UserVectorizationFactor", UserVF)
5326                << " is ignored because the target does not support scalable "
5327                   "vectors. The compiler will pick a more suitable value.";
5328       });
5329     } else {
5330       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5331                         << " is unsafe. Ignoring scalable UserVF.\n");
5332       ORE->emit([&]() {
5333         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5334                                           TheLoop->getStartLoc(),
5335                                           TheLoop->getHeader())
5336                << "User-specified vectorization factor "
5337                << ore::NV("UserVectorizationFactor", UserVF)
5338                << " is unsafe. Ignoring the hint to let the compiler pick a "
5339                   "more suitable value.";
5340       });
5341     }
5342   }
5343 
5344   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5345                     << " / " << WidestType << " bits.\n");
5346 
5347   FixedScalableVFPair Result(ElementCount::getFixed(1),
5348                              ElementCount::getScalable(0));
5349   if (auto MaxVF =
5350           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5351                                   MaxSafeFixedVF, FoldTailByMasking))
5352     Result.FixedVF = MaxVF;
5353 
5354   if (auto MaxVF =
5355           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5356                                   MaxSafeScalableVF, FoldTailByMasking))
5357     if (MaxVF.isScalable()) {
5358       Result.ScalableVF = MaxVF;
5359       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5360                         << "\n");
5361     }
5362 
5363   return Result;
5364 }
5365 
5366 FixedScalableVFPair
5367 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5368   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5369     // TODO: It may by useful to do since it's still likely to be dynamically
5370     // uniform if the target can skip.
5371     reportVectorizationFailure(
5372         "Not inserting runtime ptr check for divergent target",
5373         "runtime pointer checks needed. Not enabled for divergent target",
5374         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5375     return FixedScalableVFPair::getNone();
5376   }
5377 
5378   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5379   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5380   if (TC == 1) {
5381     reportVectorizationFailure("Single iteration (non) loop",
5382         "loop trip count is one, irrelevant for vectorization",
5383         "SingleIterationLoop", ORE, TheLoop);
5384     return FixedScalableVFPair::getNone();
5385   }
5386 
5387   switch (ScalarEpilogueStatus) {
5388   case CM_ScalarEpilogueAllowed:
5389     return computeFeasibleMaxVF(TC, UserVF, false);
5390   case CM_ScalarEpilogueNotAllowedUsePredicate:
5391     LLVM_FALLTHROUGH;
5392   case CM_ScalarEpilogueNotNeededUsePredicate:
5393     LLVM_DEBUG(
5394         dbgs() << "LV: vector predicate hint/switch found.\n"
5395                << "LV: Not allowing scalar epilogue, creating predicated "
5396                << "vector loop.\n");
5397     break;
5398   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5399     // fallthrough as a special case of OptForSize
5400   case CM_ScalarEpilogueNotAllowedOptSize:
5401     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5402       LLVM_DEBUG(
5403           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5404     else
5405       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5406                         << "count.\n");
5407 
5408     // Bail if runtime checks are required, which are not good when optimising
5409     // for size.
5410     if (runtimeChecksRequired())
5411       return FixedScalableVFPair::getNone();
5412 
5413     break;
5414   }
5415 
5416   // The only loops we can vectorize without a scalar epilogue, are loops with
5417   // a bottom-test and a single exiting block. We'd have to handle the fact
5418   // that not every instruction executes on the last iteration.  This will
5419   // require a lane mask which varies through the vector loop body.  (TODO)
5420   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5421     // If there was a tail-folding hint/switch, but we can't fold the tail by
5422     // masking, fallback to a vectorization with a scalar epilogue.
5423     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5424       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5425                            "scalar epilogue instead.\n");
5426       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5427       return computeFeasibleMaxVF(TC, UserVF, false);
5428     }
5429     return FixedScalableVFPair::getNone();
5430   }
5431 
5432   // Now try the tail folding
5433 
5434   // Invalidate interleave groups that require an epilogue if we can't mask
5435   // the interleave-group.
5436   if (!useMaskedInterleavedAccesses(TTI)) {
5437     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5438            "No decisions should have been taken at this point");
5439     // Note: There is no need to invalidate any cost modeling decisions here, as
5440     // non where taken so far.
5441     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5442   }
5443 
5444   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5445   // Avoid tail folding if the trip count is known to be a multiple of any VF
5446   // we chose.
5447   // FIXME: The condition below pessimises the case for fixed-width vectors,
5448   // when scalable VFs are also candidates for vectorization.
5449   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5450     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5451     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5452            "MaxFixedVF must be a power of 2");
5453     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5454                                    : MaxFixedVF.getFixedValue();
5455     ScalarEvolution *SE = PSE.getSE();
5456     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5457     const SCEV *ExitCount = SE->getAddExpr(
5458         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5459     const SCEV *Rem = SE->getURemExpr(
5460         SE->applyLoopGuards(ExitCount, TheLoop),
5461         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5462     if (Rem->isZero()) {
5463       // Accept MaxFixedVF if we do not have a tail.
5464       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5465       return MaxFactors;
5466     }
5467   }
5468 
5469   // For scalable vectors don't use tail folding for low trip counts or
5470   // optimizing for code size. We only permit this if the user has explicitly
5471   // requested it.
5472   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5473       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5474       MaxFactors.ScalableVF.isVector())
5475     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5476 
5477   // If we don't know the precise trip count, or if the trip count that we
5478   // found modulo the vectorization factor is not zero, try to fold the tail
5479   // by masking.
5480   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5481   if (Legal->prepareToFoldTailByMasking()) {
5482     FoldTailByMasking = true;
5483     return MaxFactors;
5484   }
5485 
5486   // If there was a tail-folding hint/switch, but we can't fold the tail by
5487   // masking, fallback to a vectorization with a scalar epilogue.
5488   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5489     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5490                          "scalar epilogue instead.\n");
5491     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5492     return MaxFactors;
5493   }
5494 
5495   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5496     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5497     return FixedScalableVFPair::getNone();
5498   }
5499 
5500   if (TC == 0) {
5501     reportVectorizationFailure(
5502         "Unable to calculate the loop count due to complex control flow",
5503         "unable to calculate the loop count due to complex control flow",
5504         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5505     return FixedScalableVFPair::getNone();
5506   }
5507 
5508   reportVectorizationFailure(
5509       "Cannot optimize for size and vectorize at the same time.",
5510       "cannot optimize for size and vectorize at the same time. "
5511       "Enable vectorization of this loop with '#pragma clang loop "
5512       "vectorize(enable)' when compiling with -Os/-Oz",
5513       "NoTailLoopWithOptForSize", ORE, TheLoop);
5514   return FixedScalableVFPair::getNone();
5515 }
5516 
5517 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5518     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5519     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5520   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5521   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5522       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5523                            : TargetTransformInfo::RGK_FixedWidthVector);
5524 
5525   // Convenience function to return the minimum of two ElementCounts.
5526   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5527     assert((LHS.isScalable() == RHS.isScalable()) &&
5528            "Scalable flags must match");
5529     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5530   };
5531 
5532   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5533   // Note that both WidestRegister and WidestType may not be a powers of 2.
5534   auto MaxVectorElementCount = ElementCount::get(
5535       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5536       ComputeScalableMaxVF);
5537   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5538   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5539                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5540 
5541   if (!MaxVectorElementCount) {
5542     LLVM_DEBUG(dbgs() << "LV: The target has no "
5543                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5544                       << " vector registers.\n");
5545     return ElementCount::getFixed(1);
5546   }
5547 
5548   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5549   if (ConstTripCount &&
5550       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5551       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5552     // If loop trip count (TC) is known at compile time there is no point in
5553     // choosing VF greater than TC (as done in the loop below). Select maximum
5554     // power of two which doesn't exceed TC.
5555     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5556     // when the TC is less than or equal to the known number of lanes.
5557     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5558     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5559                          "exceeding the constant trip count: "
5560                       << ClampedConstTripCount << "\n");
5561     return ElementCount::getFixed(ClampedConstTripCount);
5562   }
5563 
5564   ElementCount MaxVF = MaxVectorElementCount;
5565   if (TTI.shouldMaximizeVectorBandwidth() ||
5566       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5567     auto MaxVectorElementCountMaxBW = ElementCount::get(
5568         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5569         ComputeScalableMaxVF);
5570     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5571 
5572     // Collect all viable vectorization factors larger than the default MaxVF
5573     // (i.e. MaxVectorElementCount).
5574     SmallVector<ElementCount, 8> VFs;
5575     for (ElementCount VS = MaxVectorElementCount * 2;
5576          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5577       VFs.push_back(VS);
5578 
5579     // For each VF calculate its register usage.
5580     auto RUs = calculateRegisterUsage(VFs);
5581 
5582     // Select the largest VF which doesn't require more registers than existing
5583     // ones.
5584     for (int i = RUs.size() - 1; i >= 0; --i) {
5585       bool Selected = true;
5586       for (auto &pair : RUs[i].MaxLocalUsers) {
5587         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5588         if (pair.second > TargetNumRegisters)
5589           Selected = false;
5590       }
5591       if (Selected) {
5592         MaxVF = VFs[i];
5593         break;
5594       }
5595     }
5596     if (ElementCount MinVF =
5597             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5598       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5599         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5600                           << ") with target's minimum: " << MinVF << '\n');
5601         MaxVF = MinVF;
5602       }
5603     }
5604   }
5605   return MaxVF;
5606 }
5607 
5608 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5609   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5610     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5611     auto Min = Attr.getVScaleRangeMin();
5612     auto Max = Attr.getVScaleRangeMax();
5613     if (Max && Min == Max)
5614       return Max;
5615   }
5616 
5617   return TTI.getVScaleForTuning();
5618 }
5619 
5620 bool LoopVectorizationCostModel::isMoreProfitable(
5621     const VectorizationFactor &A, const VectorizationFactor &B) const {
5622   InstructionCost CostA = A.Cost;
5623   InstructionCost CostB = B.Cost;
5624 
5625   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5626 
5627   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5628       MaxTripCount) {
5629     // If we are folding the tail and the trip count is a known (possibly small)
5630     // constant, the trip count will be rounded up to an integer number of
5631     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5632     // which we compare directly. When not folding the tail, the total cost will
5633     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5634     // approximated with the per-lane cost below instead of using the tripcount
5635     // as here.
5636     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5637     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5638     return RTCostA < RTCostB;
5639   }
5640 
5641   // Improve estimate for the vector width if it is scalable.
5642   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5643   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5644   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5645     if (A.Width.isScalable())
5646       EstimatedWidthA *= VScale.getValue();
5647     if (B.Width.isScalable())
5648       EstimatedWidthB *= VScale.getValue();
5649   }
5650 
5651   // Assume vscale may be larger than 1 (or the value being tuned for),
5652   // so that scalable vectorization is slightly favorable over fixed-width
5653   // vectorization.
5654   if (A.Width.isScalable() && !B.Width.isScalable())
5655     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5656 
5657   // To avoid the need for FP division:
5658   //      (CostA / A.Width) < (CostB / B.Width)
5659   // <=>  (CostA * B.Width) < (CostB * A.Width)
5660   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5661 }
5662 
5663 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5664     const ElementCountSet &VFCandidates) {
5665   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5666   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5667   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5668   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5669          "Expected Scalar VF to be a candidate");
5670 
5671   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5672   VectorizationFactor ChosenFactor = ScalarCost;
5673 
5674   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5675   if (ForceVectorization && VFCandidates.size() > 1) {
5676     // Ignore scalar width, because the user explicitly wants vectorization.
5677     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5678     // evaluation.
5679     ChosenFactor.Cost = InstructionCost::getMax();
5680   }
5681 
5682   SmallVector<InstructionVFPair> InvalidCosts;
5683   for (const auto &i : VFCandidates) {
5684     // The cost for scalar VF=1 is already calculated, so ignore it.
5685     if (i.isScalar())
5686       continue;
5687 
5688     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5689     VectorizationFactor Candidate(i, C.first);
5690 
5691 #ifndef NDEBUG
5692     unsigned AssumedMinimumVscale = 1;
5693     if (Optional<unsigned> VScale = getVScaleForTuning())
5694       AssumedMinimumVscale = VScale.getValue();
5695     unsigned Width =
5696         Candidate.Width.isScalable()
5697             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5698             : Candidate.Width.getFixedValue();
5699     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5700                       << " costs: " << (Candidate.Cost / Width));
5701     if (i.isScalable())
5702       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5703                         << AssumedMinimumVscale << ")");
5704     LLVM_DEBUG(dbgs() << ".\n");
5705 #endif
5706 
5707     if (!C.second && !ForceVectorization) {
5708       LLVM_DEBUG(
5709           dbgs() << "LV: Not considering vector loop of width " << i
5710                  << " because it will not generate any vector instructions.\n");
5711       continue;
5712     }
5713 
5714     // If profitable add it to ProfitableVF list.
5715     if (isMoreProfitable(Candidate, ScalarCost))
5716       ProfitableVFs.push_back(Candidate);
5717 
5718     if (isMoreProfitable(Candidate, ChosenFactor))
5719       ChosenFactor = Candidate;
5720   }
5721 
5722   // Emit a report of VFs with invalid costs in the loop.
5723   if (!InvalidCosts.empty()) {
5724     // Group the remarks per instruction, keeping the instruction order from
5725     // InvalidCosts.
5726     std::map<Instruction *, unsigned> Numbering;
5727     unsigned I = 0;
5728     for (auto &Pair : InvalidCosts)
5729       if (!Numbering.count(Pair.first))
5730         Numbering[Pair.first] = I++;
5731 
5732     // Sort the list, first on instruction(number) then on VF.
5733     llvm::sort(InvalidCosts,
5734                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5735                  if (Numbering[A.first] != Numbering[B.first])
5736                    return Numbering[A.first] < Numbering[B.first];
5737                  ElementCountComparator ECC;
5738                  return ECC(A.second, B.second);
5739                });
5740 
5741     // For a list of ordered instruction-vf pairs:
5742     //   [(load, vf1), (load, vf2), (store, vf1)]
5743     // Group the instructions together to emit separate remarks for:
5744     //   load  (vf1, vf2)
5745     //   store (vf1)
5746     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5747     auto Subset = ArrayRef<InstructionVFPair>();
5748     do {
5749       if (Subset.empty())
5750         Subset = Tail.take_front(1);
5751 
5752       Instruction *I = Subset.front().first;
5753 
5754       // If the next instruction is different, or if there are no other pairs,
5755       // emit a remark for the collated subset. e.g.
5756       //   [(load, vf1), (load, vf2))]
5757       // to emit:
5758       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5759       if (Subset == Tail || Tail[Subset.size()].first != I) {
5760         std::string OutString;
5761         raw_string_ostream OS(OutString);
5762         assert(!Subset.empty() && "Unexpected empty range");
5763         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5764         for (auto &Pair : Subset)
5765           OS << (Pair.second == Subset.front().second ? "" : ", ")
5766              << Pair.second;
5767         OS << "):";
5768         if (auto *CI = dyn_cast<CallInst>(I))
5769           OS << " call to " << CI->getCalledFunction()->getName();
5770         else
5771           OS << " " << I->getOpcodeName();
5772         OS.flush();
5773         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5774         Tail = Tail.drop_front(Subset.size());
5775         Subset = {};
5776       } else
5777         // Grow the subset by one element
5778         Subset = Tail.take_front(Subset.size() + 1);
5779     } while (!Tail.empty());
5780   }
5781 
5782   if (!EnableCondStoresVectorization && NumPredStores) {
5783     reportVectorizationFailure("There are conditional stores.",
5784         "store that is conditionally executed prevents vectorization",
5785         "ConditionalStore", ORE, TheLoop);
5786     ChosenFactor = ScalarCost;
5787   }
5788 
5789   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5790                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5791              << "LV: Vectorization seems to be not beneficial, "
5792              << "but was forced by a user.\n");
5793   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5794   return ChosenFactor;
5795 }
5796 
5797 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5798     const Loop &L, ElementCount VF) const {
5799   // Cross iteration phis such as reductions need special handling and are
5800   // currently unsupported.
5801   if (any_of(L.getHeader()->phis(),
5802              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5803     return false;
5804 
5805   // Phis with uses outside of the loop require special handling and are
5806   // currently unsupported.
5807   for (auto &Entry : Legal->getInductionVars()) {
5808     // Look for uses of the value of the induction at the last iteration.
5809     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5810     for (User *U : PostInc->users())
5811       if (!L.contains(cast<Instruction>(U)))
5812         return false;
5813     // Look for uses of penultimate value of the induction.
5814     for (User *U : Entry.first->users())
5815       if (!L.contains(cast<Instruction>(U)))
5816         return false;
5817   }
5818 
5819   // Induction variables that are widened require special handling that is
5820   // currently not supported.
5821   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5822         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5823                  this->isProfitableToScalarize(Entry.first, VF));
5824       }))
5825     return false;
5826 
5827   // Epilogue vectorization code has not been auditted to ensure it handles
5828   // non-latch exits properly.  It may be fine, but it needs auditted and
5829   // tested.
5830   if (L.getExitingBlock() != L.getLoopLatch())
5831     return false;
5832 
5833   return true;
5834 }
5835 
5836 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5837     const ElementCount VF) const {
5838   // FIXME: We need a much better cost-model to take different parameters such
5839   // as register pressure, code size increase and cost of extra branches into
5840   // account. For now we apply a very crude heuristic and only consider loops
5841   // with vectorization factors larger than a certain value.
5842   // We also consider epilogue vectorization unprofitable for targets that don't
5843   // consider interleaving beneficial (eg. MVE).
5844   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5845     return false;
5846   // FIXME: We should consider changing the threshold for scalable
5847   // vectors to take VScaleForTuning into account.
5848   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5849     return true;
5850   return false;
5851 }
5852 
5853 VectorizationFactor
5854 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5855     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5856   VectorizationFactor Result = VectorizationFactor::Disabled();
5857   if (!EnableEpilogueVectorization) {
5858     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5859     return Result;
5860   }
5861 
5862   if (!isScalarEpilogueAllowed()) {
5863     LLVM_DEBUG(
5864         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5865                   "allowed.\n";);
5866     return Result;
5867   }
5868 
5869   // Not really a cost consideration, but check for unsupported cases here to
5870   // simplify the logic.
5871   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5872     LLVM_DEBUG(
5873         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5874                   "not a supported candidate.\n";);
5875     return Result;
5876   }
5877 
5878   if (EpilogueVectorizationForceVF > 1) {
5879     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5880     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5881     if (LVP.hasPlanWithVF(ForcedEC))
5882       return {ForcedEC, 0};
5883     else {
5884       LLVM_DEBUG(
5885           dbgs()
5886               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5887       return Result;
5888     }
5889   }
5890 
5891   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5892       TheLoop->getHeader()->getParent()->hasMinSize()) {
5893     LLVM_DEBUG(
5894         dbgs()
5895             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5896     return Result;
5897   }
5898 
5899   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5900     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5901                          "this loop\n");
5902     return Result;
5903   }
5904 
5905   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5906   // the main loop handles 8 lanes per iteration. We could still benefit from
5907   // vectorizing the epilogue loop with VF=4.
5908   ElementCount EstimatedRuntimeVF = MainLoopVF;
5909   if (MainLoopVF.isScalable()) {
5910     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5911     if (Optional<unsigned> VScale = getVScaleForTuning())
5912       EstimatedRuntimeVF *= VScale.getValue();
5913   }
5914 
5915   for (auto &NextVF : ProfitableVFs)
5916     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5917           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5918          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5919         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5920         LVP.hasPlanWithVF(NextVF.Width))
5921       Result = NextVF;
5922 
5923   if (Result != VectorizationFactor::Disabled())
5924     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5925                       << Result.Width << "\n";);
5926   return Result;
5927 }
5928 
5929 std::pair<unsigned, unsigned>
5930 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5931   unsigned MinWidth = -1U;
5932   unsigned MaxWidth = 8;
5933   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5934   // For in-loop reductions, no element types are added to ElementTypesInLoop
5935   // if there are no loads/stores in the loop. In this case, check through the
5936   // reduction variables to determine the maximum width.
5937   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5938     // Reset MaxWidth so that we can find the smallest type used by recurrences
5939     // in the loop.
5940     MaxWidth = -1U;
5941     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5942       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5943       // When finding the min width used by the recurrence we need to account
5944       // for casts on the input operands of the recurrence.
5945       MaxWidth = std::min<unsigned>(
5946           MaxWidth, std::min<unsigned>(
5947                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5948                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5949     }
5950   } else {
5951     for (Type *T : ElementTypesInLoop) {
5952       MinWidth = std::min<unsigned>(
5953           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5954       MaxWidth = std::max<unsigned>(
5955           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5956     }
5957   }
5958   return {MinWidth, MaxWidth};
5959 }
5960 
5961 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5962   ElementTypesInLoop.clear();
5963   // For each block.
5964   for (BasicBlock *BB : TheLoop->blocks()) {
5965     // For each instruction in the loop.
5966     for (Instruction &I : BB->instructionsWithoutDebug()) {
5967       Type *T = I.getType();
5968 
5969       // Skip ignored values.
5970       if (ValuesToIgnore.count(&I))
5971         continue;
5972 
5973       // Only examine Loads, Stores and PHINodes.
5974       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5975         continue;
5976 
5977       // Examine PHI nodes that are reduction variables. Update the type to
5978       // account for the recurrence type.
5979       if (auto *PN = dyn_cast<PHINode>(&I)) {
5980         if (!Legal->isReductionVariable(PN))
5981           continue;
5982         const RecurrenceDescriptor &RdxDesc =
5983             Legal->getReductionVars().find(PN)->second;
5984         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5985             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5986                                       RdxDesc.getRecurrenceType(),
5987                                       TargetTransformInfo::ReductionFlags()))
5988           continue;
5989         T = RdxDesc.getRecurrenceType();
5990       }
5991 
5992       // Examine the stored values.
5993       if (auto *ST = dyn_cast<StoreInst>(&I))
5994         T = ST->getValueOperand()->getType();
5995 
5996       assert(T->isSized() &&
5997              "Expected the load/store/recurrence type to be sized");
5998 
5999       ElementTypesInLoop.insert(T);
6000     }
6001   }
6002 }
6003 
6004 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6005                                                            unsigned LoopCost) {
6006   // -- The interleave heuristics --
6007   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6008   // There are many micro-architectural considerations that we can't predict
6009   // at this level. For example, frontend pressure (on decode or fetch) due to
6010   // code size, or the number and capabilities of the execution ports.
6011   //
6012   // We use the following heuristics to select the interleave count:
6013   // 1. If the code has reductions, then we interleave to break the cross
6014   // iteration dependency.
6015   // 2. If the loop is really small, then we interleave to reduce the loop
6016   // overhead.
6017   // 3. We don't interleave if we think that we will spill registers to memory
6018   // due to the increased register pressure.
6019 
6020   if (!isScalarEpilogueAllowed())
6021     return 1;
6022 
6023   // We used the distance for the interleave count.
6024   if (Legal->getMaxSafeDepDistBytes() != -1U)
6025     return 1;
6026 
6027   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6028   const bool HasReductions = !Legal->getReductionVars().empty();
6029   // Do not interleave loops with a relatively small known or estimated trip
6030   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6031   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6032   // because with the above conditions interleaving can expose ILP and break
6033   // cross iteration dependences for reductions.
6034   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6035       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6036     return 1;
6037 
6038   RegisterUsage R = calculateRegisterUsage({VF})[0];
6039   // We divide by these constants so assume that we have at least one
6040   // instruction that uses at least one register.
6041   for (auto& pair : R.MaxLocalUsers) {
6042     pair.second = std::max(pair.second, 1U);
6043   }
6044 
6045   // We calculate the interleave count using the following formula.
6046   // Subtract the number of loop invariants from the number of available
6047   // registers. These registers are used by all of the interleaved instances.
6048   // Next, divide the remaining registers by the number of registers that is
6049   // required by the loop, in order to estimate how many parallel instances
6050   // fit without causing spills. All of this is rounded down if necessary to be
6051   // a power of two. We want power of two interleave count to simplify any
6052   // addressing operations or alignment considerations.
6053   // We also want power of two interleave counts to ensure that the induction
6054   // variable of the vector loop wraps to zero, when tail is folded by masking;
6055   // this currently happens when OptForSize, in which case IC is set to 1 above.
6056   unsigned IC = UINT_MAX;
6057 
6058   for (auto& pair : R.MaxLocalUsers) {
6059     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6060     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6061                       << " registers of "
6062                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6063     if (VF.isScalar()) {
6064       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6065         TargetNumRegisters = ForceTargetNumScalarRegs;
6066     } else {
6067       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6068         TargetNumRegisters = ForceTargetNumVectorRegs;
6069     }
6070     unsigned MaxLocalUsers = pair.second;
6071     unsigned LoopInvariantRegs = 0;
6072     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6073       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6074 
6075     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6076     // Don't count the induction variable as interleaved.
6077     if (EnableIndVarRegisterHeur) {
6078       TmpIC =
6079           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6080                         std::max(1U, (MaxLocalUsers - 1)));
6081     }
6082 
6083     IC = std::min(IC, TmpIC);
6084   }
6085 
6086   // Clamp the interleave ranges to reasonable counts.
6087   unsigned MaxInterleaveCount =
6088       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6089 
6090   // Check if the user has overridden the max.
6091   if (VF.isScalar()) {
6092     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6093       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6094   } else {
6095     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6096       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6097   }
6098 
6099   // If trip count is known or estimated compile time constant, limit the
6100   // interleave count to be less than the trip count divided by VF, provided it
6101   // is at least 1.
6102   //
6103   // For scalable vectors we can't know if interleaving is beneficial. It may
6104   // not be beneficial for small loops if none of the lanes in the second vector
6105   // iterations is enabled. However, for larger loops, there is likely to be a
6106   // similar benefit as for fixed-width vectors. For now, we choose to leave
6107   // the InterleaveCount as if vscale is '1', although if some information about
6108   // the vector is known (e.g. min vector size), we can make a better decision.
6109   if (BestKnownTC) {
6110     MaxInterleaveCount =
6111         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6112     // Make sure MaxInterleaveCount is greater than 0.
6113     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6114   }
6115 
6116   assert(MaxInterleaveCount > 0 &&
6117          "Maximum interleave count must be greater than 0");
6118 
6119   // Clamp the calculated IC to be between the 1 and the max interleave count
6120   // that the target and trip count allows.
6121   if (IC > MaxInterleaveCount)
6122     IC = MaxInterleaveCount;
6123   else
6124     // Make sure IC is greater than 0.
6125     IC = std::max(1u, IC);
6126 
6127   assert(IC > 0 && "Interleave count must be greater than 0.");
6128 
6129   // If we did not calculate the cost for VF (because the user selected the VF)
6130   // then we calculate the cost of VF here.
6131   if (LoopCost == 0) {
6132     InstructionCost C = expectedCost(VF).first;
6133     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6134     LoopCost = *C.getValue();
6135   }
6136 
6137   assert(LoopCost && "Non-zero loop cost expected");
6138 
6139   // Interleave if we vectorized this loop and there is a reduction that could
6140   // benefit from interleaving.
6141   if (VF.isVector() && HasReductions) {
6142     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6143     return IC;
6144   }
6145 
6146   // Note that if we've already vectorized the loop we will have done the
6147   // runtime check and so interleaving won't require further checks.
6148   bool InterleavingRequiresRuntimePointerCheck =
6149       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6150 
6151   // We want to interleave small loops in order to reduce the loop overhead and
6152   // potentially expose ILP opportunities.
6153   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6154                     << "LV: IC is " << IC << '\n'
6155                     << "LV: VF is " << VF << '\n');
6156   const bool AggressivelyInterleaveReductions =
6157       TTI.enableAggressiveInterleaving(HasReductions);
6158   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6159     // We assume that the cost overhead is 1 and we use the cost model
6160     // to estimate the cost of the loop and interleave until the cost of the
6161     // loop overhead is about 5% of the cost of the loop.
6162     unsigned SmallIC =
6163         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6164 
6165     // Interleave until store/load ports (estimated by max interleave count) are
6166     // saturated.
6167     unsigned NumStores = Legal->getNumStores();
6168     unsigned NumLoads = Legal->getNumLoads();
6169     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6170     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6171 
6172     // There is little point in interleaving for reductions containing selects
6173     // and compares when VF=1 since it may just create more overhead than it's
6174     // worth for loops with small trip counts. This is because we still have to
6175     // do the final reduction after the loop.
6176     bool HasSelectCmpReductions =
6177         HasReductions &&
6178         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6179           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6180           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6181               RdxDesc.getRecurrenceKind());
6182         });
6183     if (HasSelectCmpReductions) {
6184       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6185       return 1;
6186     }
6187 
6188     // If we have a scalar reduction (vector reductions are already dealt with
6189     // by this point), we can increase the critical path length if the loop
6190     // we're interleaving is inside another loop. For tree-wise reductions
6191     // set the limit to 2, and for ordered reductions it's best to disable
6192     // interleaving entirely.
6193     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6194       bool HasOrderedReductions =
6195           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6196             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6197             return RdxDesc.isOrdered();
6198           });
6199       if (HasOrderedReductions) {
6200         LLVM_DEBUG(
6201             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6202         return 1;
6203       }
6204 
6205       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6206       SmallIC = std::min(SmallIC, F);
6207       StoresIC = std::min(StoresIC, F);
6208       LoadsIC = std::min(LoadsIC, F);
6209     }
6210 
6211     if (EnableLoadStoreRuntimeInterleave &&
6212         std::max(StoresIC, LoadsIC) > SmallIC) {
6213       LLVM_DEBUG(
6214           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6215       return std::max(StoresIC, LoadsIC);
6216     }
6217 
6218     // If there are scalar reductions and TTI has enabled aggressive
6219     // interleaving for reductions, we will interleave to expose ILP.
6220     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6221         AggressivelyInterleaveReductions) {
6222       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6223       // Interleave no less than SmallIC but not as aggressive as the normal IC
6224       // to satisfy the rare situation when resources are too limited.
6225       return std::max(IC / 2, SmallIC);
6226     } else {
6227       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6228       return SmallIC;
6229     }
6230   }
6231 
6232   // Interleave if this is a large loop (small loops are already dealt with by
6233   // this point) that could benefit from interleaving.
6234   if (AggressivelyInterleaveReductions) {
6235     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6236     return IC;
6237   }
6238 
6239   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6240   return 1;
6241 }
6242 
6243 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6244 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6245   // This function calculates the register usage by measuring the highest number
6246   // of values that are alive at a single location. Obviously, this is a very
6247   // rough estimation. We scan the loop in a topological order in order and
6248   // assign a number to each instruction. We use RPO to ensure that defs are
6249   // met before their users. We assume that each instruction that has in-loop
6250   // users starts an interval. We record every time that an in-loop value is
6251   // used, so we have a list of the first and last occurrences of each
6252   // instruction. Next, we transpose this data structure into a multi map that
6253   // holds the list of intervals that *end* at a specific location. This multi
6254   // map allows us to perform a linear search. We scan the instructions linearly
6255   // and record each time that a new interval starts, by placing it in a set.
6256   // If we find this value in the multi-map then we remove it from the set.
6257   // The max register usage is the maximum size of the set.
6258   // We also search for instructions that are defined outside the loop, but are
6259   // used inside the loop. We need this number separately from the max-interval
6260   // usage number because when we unroll, loop-invariant values do not take
6261   // more register.
6262   LoopBlocksDFS DFS(TheLoop);
6263   DFS.perform(LI);
6264 
6265   RegisterUsage RU;
6266 
6267   // Each 'key' in the map opens a new interval. The values
6268   // of the map are the index of the 'last seen' usage of the
6269   // instruction that is the key.
6270   using IntervalMap = DenseMap<Instruction *, unsigned>;
6271 
6272   // Maps instruction to its index.
6273   SmallVector<Instruction *, 64> IdxToInstr;
6274   // Marks the end of each interval.
6275   IntervalMap EndPoint;
6276   // Saves the list of instruction indices that are used in the loop.
6277   SmallPtrSet<Instruction *, 8> Ends;
6278   // Saves the list of values that are used in the loop but are
6279   // defined outside the loop, such as arguments and constants.
6280   SmallPtrSet<Value *, 8> LoopInvariants;
6281 
6282   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6283     for (Instruction &I : BB->instructionsWithoutDebug()) {
6284       IdxToInstr.push_back(&I);
6285 
6286       // Save the end location of each USE.
6287       for (Value *U : I.operands()) {
6288         auto *Instr = dyn_cast<Instruction>(U);
6289 
6290         // Ignore non-instruction values such as arguments, constants, etc.
6291         if (!Instr)
6292           continue;
6293 
6294         // If this instruction is outside the loop then record it and continue.
6295         if (!TheLoop->contains(Instr)) {
6296           LoopInvariants.insert(Instr);
6297           continue;
6298         }
6299 
6300         // Overwrite previous end points.
6301         EndPoint[Instr] = IdxToInstr.size();
6302         Ends.insert(Instr);
6303       }
6304     }
6305   }
6306 
6307   // Saves the list of intervals that end with the index in 'key'.
6308   using InstrList = SmallVector<Instruction *, 2>;
6309   DenseMap<unsigned, InstrList> TransposeEnds;
6310 
6311   // Transpose the EndPoints to a list of values that end at each index.
6312   for (auto &Interval : EndPoint)
6313     TransposeEnds[Interval.second].push_back(Interval.first);
6314 
6315   SmallPtrSet<Instruction *, 8> OpenIntervals;
6316   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6317   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6318 
6319   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6320 
6321   // A lambda that gets the register usage for the given type and VF.
6322   const auto &TTICapture = TTI;
6323   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6324     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6325       return 0;
6326     InstructionCost::CostType RegUsage =
6327         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6328     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6329            "Nonsensical values for register usage.");
6330     return RegUsage;
6331   };
6332 
6333   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6334     Instruction *I = IdxToInstr[i];
6335 
6336     // Remove all of the instructions that end at this location.
6337     InstrList &List = TransposeEnds[i];
6338     for (Instruction *ToRemove : List)
6339       OpenIntervals.erase(ToRemove);
6340 
6341     // Ignore instructions that are never used within the loop.
6342     if (!Ends.count(I))
6343       continue;
6344 
6345     // Skip ignored values.
6346     if (ValuesToIgnore.count(I))
6347       continue;
6348 
6349     // For each VF find the maximum usage of registers.
6350     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6351       // Count the number of live intervals.
6352       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6353 
6354       if (VFs[j].isScalar()) {
6355         for (auto Inst : OpenIntervals) {
6356           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6357           if (RegUsage.find(ClassID) == RegUsage.end())
6358             RegUsage[ClassID] = 1;
6359           else
6360             RegUsage[ClassID] += 1;
6361         }
6362       } else {
6363         collectUniformsAndScalars(VFs[j]);
6364         for (auto Inst : OpenIntervals) {
6365           // Skip ignored values for VF > 1.
6366           if (VecValuesToIgnore.count(Inst))
6367             continue;
6368           if (isScalarAfterVectorization(Inst, VFs[j])) {
6369             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6370             if (RegUsage.find(ClassID) == RegUsage.end())
6371               RegUsage[ClassID] = 1;
6372             else
6373               RegUsage[ClassID] += 1;
6374           } else {
6375             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6376             if (RegUsage.find(ClassID) == RegUsage.end())
6377               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6378             else
6379               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6380           }
6381         }
6382       }
6383 
6384       for (auto& pair : RegUsage) {
6385         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6386           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6387         else
6388           MaxUsages[j][pair.first] = pair.second;
6389       }
6390     }
6391 
6392     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6393                       << OpenIntervals.size() << '\n');
6394 
6395     // Add the current instruction to the list of open intervals.
6396     OpenIntervals.insert(I);
6397   }
6398 
6399   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6400     SmallMapVector<unsigned, unsigned, 4> Invariant;
6401 
6402     for (auto Inst : LoopInvariants) {
6403       unsigned Usage =
6404           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6405       unsigned ClassID =
6406           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6407       if (Invariant.find(ClassID) == Invariant.end())
6408         Invariant[ClassID] = Usage;
6409       else
6410         Invariant[ClassID] += Usage;
6411     }
6412 
6413     LLVM_DEBUG({
6414       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6415       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6416              << " item\n";
6417       for (const auto &pair : MaxUsages[i]) {
6418         dbgs() << "LV(REG): RegisterClass: "
6419                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6420                << " registers\n";
6421       }
6422       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6423              << " item\n";
6424       for (const auto &pair : Invariant) {
6425         dbgs() << "LV(REG): RegisterClass: "
6426                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6427                << " registers\n";
6428       }
6429     });
6430 
6431     RU.LoopInvariantRegs = Invariant;
6432     RU.MaxLocalUsers = MaxUsages[i];
6433     RUs[i] = RU;
6434   }
6435 
6436   return RUs;
6437 }
6438 
6439 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6440                                                            ElementCount VF) {
6441   // TODO: Cost model for emulated masked load/store is completely
6442   // broken. This hack guides the cost model to use an artificially
6443   // high enough value to practically disable vectorization with such
6444   // operations, except where previously deployed legality hack allowed
6445   // using very low cost values. This is to avoid regressions coming simply
6446   // from moving "masked load/store" check from legality to cost model.
6447   // Masked Load/Gather emulation was previously never allowed.
6448   // Limited number of Masked Store/Scatter emulation was allowed.
6449   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6450   return isa<LoadInst>(I) ||
6451          (isa<StoreInst>(I) &&
6452           NumPredStores > NumberOfStoresToPredicate);
6453 }
6454 
6455 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6456   // If we aren't vectorizing the loop, or if we've already collected the
6457   // instructions to scalarize, there's nothing to do. Collection may already
6458   // have occurred if we have a user-selected VF and are now computing the
6459   // expected cost for interleaving.
6460   if (VF.isScalar() || VF.isZero() ||
6461       InstsToScalarize.find(VF) != InstsToScalarize.end())
6462     return;
6463 
6464   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6465   // not profitable to scalarize any instructions, the presence of VF in the
6466   // map will indicate that we've analyzed it already.
6467   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6468 
6469   // Find all the instructions that are scalar with predication in the loop and
6470   // determine if it would be better to not if-convert the blocks they are in.
6471   // If so, we also record the instructions to scalarize.
6472   for (BasicBlock *BB : TheLoop->blocks()) {
6473     if (!blockNeedsPredicationForAnyReason(BB))
6474       continue;
6475     for (Instruction &I : *BB)
6476       if (isScalarWithPredication(&I, VF)) {
6477         ScalarCostsTy ScalarCosts;
6478         // Do not apply discount if scalable, because that would lead to
6479         // invalid scalarization costs.
6480         // Do not apply discount logic if hacked cost is needed
6481         // for emulated masked memrefs.
6482         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6483             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6484           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6485         // Remember that BB will remain after vectorization.
6486         PredicatedBBsAfterVectorization.insert(BB);
6487       }
6488   }
6489 }
6490 
6491 int LoopVectorizationCostModel::computePredInstDiscount(
6492     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6493   assert(!isUniformAfterVectorization(PredInst, VF) &&
6494          "Instruction marked uniform-after-vectorization will be predicated");
6495 
6496   // Initialize the discount to zero, meaning that the scalar version and the
6497   // vector version cost the same.
6498   InstructionCost Discount = 0;
6499 
6500   // Holds instructions to analyze. The instructions we visit are mapped in
6501   // ScalarCosts. Those instructions are the ones that would be scalarized if
6502   // we find that the scalar version costs less.
6503   SmallVector<Instruction *, 8> Worklist;
6504 
6505   // Returns true if the given instruction can be scalarized.
6506   auto canBeScalarized = [&](Instruction *I) -> bool {
6507     // We only attempt to scalarize instructions forming a single-use chain
6508     // from the original predicated block that would otherwise be vectorized.
6509     // Although not strictly necessary, we give up on instructions we know will
6510     // already be scalar to avoid traversing chains that are unlikely to be
6511     // beneficial.
6512     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6513         isScalarAfterVectorization(I, VF))
6514       return false;
6515 
6516     // If the instruction is scalar with predication, it will be analyzed
6517     // separately. We ignore it within the context of PredInst.
6518     if (isScalarWithPredication(I, VF))
6519       return false;
6520 
6521     // If any of the instruction's operands are uniform after vectorization,
6522     // the instruction cannot be scalarized. This prevents, for example, a
6523     // masked load from being scalarized.
6524     //
6525     // We assume we will only emit a value for lane zero of an instruction
6526     // marked uniform after vectorization, rather than VF identical values.
6527     // Thus, if we scalarize an instruction that uses a uniform, we would
6528     // create uses of values corresponding to the lanes we aren't emitting code
6529     // for. This behavior can be changed by allowing getScalarValue to clone
6530     // the lane zero values for uniforms rather than asserting.
6531     for (Use &U : I->operands())
6532       if (auto *J = dyn_cast<Instruction>(U.get()))
6533         if (isUniformAfterVectorization(J, VF))
6534           return false;
6535 
6536     // Otherwise, we can scalarize the instruction.
6537     return true;
6538   };
6539 
6540   // Compute the expected cost discount from scalarizing the entire expression
6541   // feeding the predicated instruction. We currently only consider expressions
6542   // that are single-use instruction chains.
6543   Worklist.push_back(PredInst);
6544   while (!Worklist.empty()) {
6545     Instruction *I = Worklist.pop_back_val();
6546 
6547     // If we've already analyzed the instruction, there's nothing to do.
6548     if (ScalarCosts.find(I) != ScalarCosts.end())
6549       continue;
6550 
6551     // Compute the cost of the vector instruction. Note that this cost already
6552     // includes the scalarization overhead of the predicated instruction.
6553     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6554 
6555     // Compute the cost of the scalarized instruction. This cost is the cost of
6556     // the instruction as if it wasn't if-converted and instead remained in the
6557     // predicated block. We will scale this cost by block probability after
6558     // computing the scalarization overhead.
6559     InstructionCost ScalarCost =
6560         VF.getFixedValue() *
6561         getInstructionCost(I, ElementCount::getFixed(1)).first;
6562 
6563     // Compute the scalarization overhead of needed insertelement instructions
6564     // and phi nodes.
6565     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6566       ScalarCost += TTI.getScalarizationOverhead(
6567           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6568           APInt::getAllOnes(VF.getFixedValue()), true, false);
6569       ScalarCost +=
6570           VF.getFixedValue() *
6571           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6572     }
6573 
6574     // Compute the scalarization overhead of needed extractelement
6575     // instructions. For each of the instruction's operands, if the operand can
6576     // be scalarized, add it to the worklist; otherwise, account for the
6577     // overhead.
6578     for (Use &U : I->operands())
6579       if (auto *J = dyn_cast<Instruction>(U.get())) {
6580         assert(VectorType::isValidElementType(J->getType()) &&
6581                "Instruction has non-scalar type");
6582         if (canBeScalarized(J))
6583           Worklist.push_back(J);
6584         else if (needsExtract(J, VF)) {
6585           ScalarCost += TTI.getScalarizationOverhead(
6586               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6587               APInt::getAllOnes(VF.getFixedValue()), false, true);
6588         }
6589       }
6590 
6591     // Scale the total scalar cost by block probability.
6592     ScalarCost /= getReciprocalPredBlockProb();
6593 
6594     // Compute the discount. A non-negative discount means the vector version
6595     // of the instruction costs more, and scalarizing would be beneficial.
6596     Discount += VectorCost - ScalarCost;
6597     ScalarCosts[I] = ScalarCost;
6598   }
6599 
6600   return *Discount.getValue();
6601 }
6602 
6603 LoopVectorizationCostModel::VectorizationCostTy
6604 LoopVectorizationCostModel::expectedCost(
6605     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6606   VectorizationCostTy Cost;
6607 
6608   // For each block.
6609   for (BasicBlock *BB : TheLoop->blocks()) {
6610     VectorizationCostTy BlockCost;
6611 
6612     // For each instruction in the old loop.
6613     for (Instruction &I : BB->instructionsWithoutDebug()) {
6614       // Skip ignored values.
6615       if (ValuesToIgnore.count(&I) ||
6616           (VF.isVector() && VecValuesToIgnore.count(&I)))
6617         continue;
6618 
6619       VectorizationCostTy C = getInstructionCost(&I, VF);
6620 
6621       // Check if we should override the cost.
6622       if (C.first.isValid() &&
6623           ForceTargetInstructionCost.getNumOccurrences() > 0)
6624         C.first = InstructionCost(ForceTargetInstructionCost);
6625 
6626       // Keep a list of instructions with invalid costs.
6627       if (Invalid && !C.first.isValid())
6628         Invalid->emplace_back(&I, VF);
6629 
6630       BlockCost.first += C.first;
6631       BlockCost.second |= C.second;
6632       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6633                         << " for VF " << VF << " For instruction: " << I
6634                         << '\n');
6635     }
6636 
6637     // If we are vectorizing a predicated block, it will have been
6638     // if-converted. This means that the block's instructions (aside from
6639     // stores and instructions that may divide by zero) will now be
6640     // unconditionally executed. For the scalar case, we may not always execute
6641     // the predicated block, if it is an if-else block. Thus, scale the block's
6642     // cost by the probability of executing it. blockNeedsPredication from
6643     // Legal is used so as to not include all blocks in tail folded loops.
6644     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6645       BlockCost.first /= getReciprocalPredBlockProb();
6646 
6647     Cost.first += BlockCost.first;
6648     Cost.second |= BlockCost.second;
6649   }
6650 
6651   return Cost;
6652 }
6653 
6654 /// Gets Address Access SCEV after verifying that the access pattern
6655 /// is loop invariant except the induction variable dependence.
6656 ///
6657 /// This SCEV can be sent to the Target in order to estimate the address
6658 /// calculation cost.
6659 static const SCEV *getAddressAccessSCEV(
6660               Value *Ptr,
6661               LoopVectorizationLegality *Legal,
6662               PredicatedScalarEvolution &PSE,
6663               const Loop *TheLoop) {
6664 
6665   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6666   if (!Gep)
6667     return nullptr;
6668 
6669   // We are looking for a gep with all loop invariant indices except for one
6670   // which should be an induction variable.
6671   auto SE = PSE.getSE();
6672   unsigned NumOperands = Gep->getNumOperands();
6673   for (unsigned i = 1; i < NumOperands; ++i) {
6674     Value *Opd = Gep->getOperand(i);
6675     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6676         !Legal->isInductionVariable(Opd))
6677       return nullptr;
6678   }
6679 
6680   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6681   return PSE.getSCEV(Ptr);
6682 }
6683 
6684 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6685   return Legal->hasStride(I->getOperand(0)) ||
6686          Legal->hasStride(I->getOperand(1));
6687 }
6688 
6689 InstructionCost
6690 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6691                                                         ElementCount VF) {
6692   assert(VF.isVector() &&
6693          "Scalarization cost of instruction implies vectorization.");
6694   if (VF.isScalable())
6695     return InstructionCost::getInvalid();
6696 
6697   Type *ValTy = getLoadStoreType(I);
6698   auto SE = PSE.getSE();
6699 
6700   unsigned AS = getLoadStoreAddressSpace(I);
6701   Value *Ptr = getLoadStorePointerOperand(I);
6702   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6703   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6704   //       that it is being called from this specific place.
6705 
6706   // Figure out whether the access is strided and get the stride value
6707   // if it's known in compile time
6708   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6709 
6710   // Get the cost of the scalar memory instruction and address computation.
6711   InstructionCost Cost =
6712       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6713 
6714   // Don't pass *I here, since it is scalar but will actually be part of a
6715   // vectorized loop where the user of it is a vectorized instruction.
6716   const Align Alignment = getLoadStoreAlignment(I);
6717   Cost += VF.getKnownMinValue() *
6718           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6719                               AS, TTI::TCK_RecipThroughput);
6720 
6721   // Get the overhead of the extractelement and insertelement instructions
6722   // we might create due to scalarization.
6723   Cost += getScalarizationOverhead(I, VF);
6724 
6725   // If we have a predicated load/store, it will need extra i1 extracts and
6726   // conditional branches, but may not be executed for each vector lane. Scale
6727   // the cost by the probability of executing the predicated block.
6728   if (isPredicatedInst(I, VF)) {
6729     Cost /= getReciprocalPredBlockProb();
6730 
6731     // Add the cost of an i1 extract and a branch
6732     auto *Vec_i1Ty =
6733         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6734     Cost += TTI.getScalarizationOverhead(
6735         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6736         /*Insert=*/false, /*Extract=*/true);
6737     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6738 
6739     if (useEmulatedMaskMemRefHack(I, VF))
6740       // Artificially setting to a high enough value to practically disable
6741       // vectorization with such operations.
6742       Cost = 3000000;
6743   }
6744 
6745   return Cost;
6746 }
6747 
6748 InstructionCost
6749 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6750                                                     ElementCount VF) {
6751   Type *ValTy = getLoadStoreType(I);
6752   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6753   Value *Ptr = getLoadStorePointerOperand(I);
6754   unsigned AS = getLoadStoreAddressSpace(I);
6755   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6756   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6757 
6758   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6759          "Stride should be 1 or -1 for consecutive memory access");
6760   const Align Alignment = getLoadStoreAlignment(I);
6761   InstructionCost Cost = 0;
6762   if (Legal->isMaskRequired(I))
6763     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6764                                       CostKind);
6765   else
6766     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6767                                 CostKind, I);
6768 
6769   bool Reverse = ConsecutiveStride < 0;
6770   if (Reverse)
6771     Cost +=
6772         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6773   return Cost;
6774 }
6775 
6776 InstructionCost
6777 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6778                                                 ElementCount VF) {
6779   assert(Legal->isUniformMemOp(*I));
6780 
6781   Type *ValTy = getLoadStoreType(I);
6782   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6783   const Align Alignment = getLoadStoreAlignment(I);
6784   unsigned AS = getLoadStoreAddressSpace(I);
6785   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6786   if (isa<LoadInst>(I)) {
6787     return TTI.getAddressComputationCost(ValTy) +
6788            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6789                                CostKind) +
6790            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6791   }
6792   StoreInst *SI = cast<StoreInst>(I);
6793 
6794   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6795   return TTI.getAddressComputationCost(ValTy) +
6796          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6797                              CostKind) +
6798          (isLoopInvariantStoreValue
6799               ? 0
6800               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6801                                        VF.getKnownMinValue() - 1));
6802 }
6803 
6804 InstructionCost
6805 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6806                                                  ElementCount VF) {
6807   Type *ValTy = getLoadStoreType(I);
6808   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6809   const Align Alignment = getLoadStoreAlignment(I);
6810   const Value *Ptr = getLoadStorePointerOperand(I);
6811 
6812   return TTI.getAddressComputationCost(VectorTy) +
6813          TTI.getGatherScatterOpCost(
6814              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6815              TargetTransformInfo::TCK_RecipThroughput, I);
6816 }
6817 
6818 InstructionCost
6819 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6820                                                    ElementCount VF) {
6821   // TODO: Once we have support for interleaving with scalable vectors
6822   // we can calculate the cost properly here.
6823   if (VF.isScalable())
6824     return InstructionCost::getInvalid();
6825 
6826   Type *ValTy = getLoadStoreType(I);
6827   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6828   unsigned AS = getLoadStoreAddressSpace(I);
6829 
6830   auto Group = getInterleavedAccessGroup(I);
6831   assert(Group && "Fail to get an interleaved access group.");
6832 
6833   unsigned InterleaveFactor = Group->getFactor();
6834   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6835 
6836   // Holds the indices of existing members in the interleaved group.
6837   SmallVector<unsigned, 4> Indices;
6838   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6839     if (Group->getMember(IF))
6840       Indices.push_back(IF);
6841 
6842   // Calculate the cost of the whole interleaved group.
6843   bool UseMaskForGaps =
6844       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6845       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6846   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6847       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6848       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6849 
6850   if (Group->isReverse()) {
6851     // TODO: Add support for reversed masked interleaved access.
6852     assert(!Legal->isMaskRequired(I) &&
6853            "Reverse masked interleaved access not supported.");
6854     Cost +=
6855         Group->getNumMembers() *
6856         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6857   }
6858   return Cost;
6859 }
6860 
6861 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6862     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6863   using namespace llvm::PatternMatch;
6864   // Early exit for no inloop reductions
6865   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6866     return None;
6867   auto *VectorTy = cast<VectorType>(Ty);
6868 
6869   // We are looking for a pattern of, and finding the minimal acceptable cost:
6870   //  reduce(mul(ext(A), ext(B))) or
6871   //  reduce(mul(A, B)) or
6872   //  reduce(ext(A)) or
6873   //  reduce(A).
6874   // The basic idea is that we walk down the tree to do that, finding the root
6875   // reduction instruction in InLoopReductionImmediateChains. From there we find
6876   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6877   // of the components. If the reduction cost is lower then we return it for the
6878   // reduction instruction and 0 for the other instructions in the pattern. If
6879   // it is not we return an invalid cost specifying the orignal cost method
6880   // should be used.
6881   Instruction *RetI = I;
6882   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6883     if (!RetI->hasOneUser())
6884       return None;
6885     RetI = RetI->user_back();
6886   }
6887   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6888       RetI->user_back()->getOpcode() == Instruction::Add) {
6889     if (!RetI->hasOneUser())
6890       return None;
6891     RetI = RetI->user_back();
6892   }
6893 
6894   // Test if the found instruction is a reduction, and if not return an invalid
6895   // cost specifying the parent to use the original cost modelling.
6896   if (!InLoopReductionImmediateChains.count(RetI))
6897     return None;
6898 
6899   // Find the reduction this chain is a part of and calculate the basic cost of
6900   // the reduction on its own.
6901   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6902   Instruction *ReductionPhi = LastChain;
6903   while (!isa<PHINode>(ReductionPhi))
6904     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6905 
6906   const RecurrenceDescriptor &RdxDesc =
6907       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6908 
6909   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6910       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6911 
6912   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6913   // normal fmul instruction to the cost of the fadd reduction.
6914   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6915     BaseCost +=
6916         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6917 
6918   // If we're using ordered reductions then we can just return the base cost
6919   // here, since getArithmeticReductionCost calculates the full ordered
6920   // reduction cost when FP reassociation is not allowed.
6921   if (useOrderedReductions(RdxDesc))
6922     return BaseCost;
6923 
6924   // Get the operand that was not the reduction chain and match it to one of the
6925   // patterns, returning the better cost if it is found.
6926   Instruction *RedOp = RetI->getOperand(1) == LastChain
6927                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6928                            : dyn_cast<Instruction>(RetI->getOperand(1));
6929 
6930   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6931 
6932   Instruction *Op0, *Op1;
6933   if (RedOp &&
6934       match(RedOp,
6935             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6936       match(Op0, m_ZExtOrSExt(m_Value())) &&
6937       Op0->getOpcode() == Op1->getOpcode() &&
6938       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6939       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6940       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6941 
6942     // Matched reduce(ext(mul(ext(A), ext(B)))
6943     // Note that the extend opcodes need to all match, or if A==B they will have
6944     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6945     // which is equally fine.
6946     bool IsUnsigned = isa<ZExtInst>(Op0);
6947     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6948     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6949 
6950     InstructionCost ExtCost =
6951         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6952                              TTI::CastContextHint::None, CostKind, Op0);
6953     InstructionCost MulCost =
6954         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6955     InstructionCost Ext2Cost =
6956         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6957                              TTI::CastContextHint::None, CostKind, RedOp);
6958 
6959     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6960         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6961         CostKind);
6962 
6963     if (RedCost.isValid() &&
6964         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6965       return I == RetI ? RedCost : 0;
6966   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6967              !TheLoop->isLoopInvariant(RedOp)) {
6968     // Matched reduce(ext(A))
6969     bool IsUnsigned = isa<ZExtInst>(RedOp);
6970     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6971     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6972         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6973         CostKind);
6974 
6975     InstructionCost ExtCost =
6976         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6977                              TTI::CastContextHint::None, CostKind, RedOp);
6978     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6979       return I == RetI ? RedCost : 0;
6980   } else if (RedOp &&
6981              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6982     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6983         Op0->getOpcode() == Op1->getOpcode() &&
6984         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6985       bool IsUnsigned = isa<ZExtInst>(Op0);
6986       Type *Op0Ty = Op0->getOperand(0)->getType();
6987       Type *Op1Ty = Op1->getOperand(0)->getType();
6988       Type *LargestOpTy =
6989           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6990                                                                     : Op0Ty;
6991       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6992 
6993       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6994       // different sizes. We take the largest type as the ext to reduce, and add
6995       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6996       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6997           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6998           TTI::CastContextHint::None, CostKind, Op0);
6999       InstructionCost ExtCost1 = TTI.getCastInstrCost(
7000           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
7001           TTI::CastContextHint::None, CostKind, Op1);
7002       InstructionCost MulCost =
7003           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7004 
7005       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7006           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7007           CostKind);
7008       InstructionCost ExtraExtCost = 0;
7009       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
7010         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
7011         ExtraExtCost = TTI.getCastInstrCost(
7012             ExtraExtOp->getOpcode(), ExtType,
7013             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
7014             TTI::CastContextHint::None, CostKind, ExtraExtOp);
7015       }
7016 
7017       if (RedCost.isValid() &&
7018           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
7019         return I == RetI ? RedCost : 0;
7020     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7021       // Matched reduce(mul())
7022       InstructionCost MulCost =
7023           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7024 
7025       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7026           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7027           CostKind);
7028 
7029       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7030         return I == RetI ? RedCost : 0;
7031     }
7032   }
7033 
7034   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7035 }
7036 
7037 InstructionCost
7038 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7039                                                      ElementCount VF) {
7040   // Calculate scalar cost only. Vectorization cost should be ready at this
7041   // moment.
7042   if (VF.isScalar()) {
7043     Type *ValTy = getLoadStoreType(I);
7044     const Align Alignment = getLoadStoreAlignment(I);
7045     unsigned AS = getLoadStoreAddressSpace(I);
7046 
7047     return TTI.getAddressComputationCost(ValTy) +
7048            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7049                                TTI::TCK_RecipThroughput, I);
7050   }
7051   return getWideningCost(I, VF);
7052 }
7053 
7054 LoopVectorizationCostModel::VectorizationCostTy
7055 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7056                                                ElementCount VF) {
7057   // If we know that this instruction will remain uniform, check the cost of
7058   // the scalar version.
7059   if (isUniformAfterVectorization(I, VF))
7060     VF = ElementCount::getFixed(1);
7061 
7062   if (VF.isVector() && isProfitableToScalarize(I, VF))
7063     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7064 
7065   // Forced scalars do not have any scalarization overhead.
7066   auto ForcedScalar = ForcedScalars.find(VF);
7067   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7068     auto InstSet = ForcedScalar->second;
7069     if (InstSet.count(I))
7070       return VectorizationCostTy(
7071           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7072            VF.getKnownMinValue()),
7073           false);
7074   }
7075 
7076   Type *VectorTy;
7077   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7078 
7079   bool TypeNotScalarized = false;
7080   if (VF.isVector() && VectorTy->isVectorTy()) {
7081     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7082     if (NumParts)
7083       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7084     else
7085       C = InstructionCost::getInvalid();
7086   }
7087   return VectorizationCostTy(C, TypeNotScalarized);
7088 }
7089 
7090 InstructionCost
7091 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7092                                                      ElementCount VF) const {
7093 
7094   // There is no mechanism yet to create a scalable scalarization loop,
7095   // so this is currently Invalid.
7096   if (VF.isScalable())
7097     return InstructionCost::getInvalid();
7098 
7099   if (VF.isScalar())
7100     return 0;
7101 
7102   InstructionCost Cost = 0;
7103   Type *RetTy = ToVectorTy(I->getType(), VF);
7104   if (!RetTy->isVoidTy() &&
7105       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7106     Cost += TTI.getScalarizationOverhead(
7107         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7108         false);
7109 
7110   // Some targets keep addresses scalar.
7111   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7112     return Cost;
7113 
7114   // Some targets support efficient element stores.
7115   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7116     return Cost;
7117 
7118   // Collect operands to consider.
7119   CallInst *CI = dyn_cast<CallInst>(I);
7120   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7121 
7122   // Skip operands that do not require extraction/scalarization and do not incur
7123   // any overhead.
7124   SmallVector<Type *> Tys;
7125   for (auto *V : filterExtractingOperands(Ops, VF))
7126     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7127   return Cost + TTI.getOperandsScalarizationOverhead(
7128                     filterExtractingOperands(Ops, VF), Tys);
7129 }
7130 
7131 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7132   if (VF.isScalar())
7133     return;
7134   NumPredStores = 0;
7135   for (BasicBlock *BB : TheLoop->blocks()) {
7136     // For each instruction in the old loop.
7137     for (Instruction &I : *BB) {
7138       Value *Ptr =  getLoadStorePointerOperand(&I);
7139       if (!Ptr)
7140         continue;
7141 
7142       // TODO: We should generate better code and update the cost model for
7143       // predicated uniform stores. Today they are treated as any other
7144       // predicated store (see added test cases in
7145       // invariant-store-vectorization.ll).
7146       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
7147         NumPredStores++;
7148 
7149       if (Legal->isUniformMemOp(I)) {
7150         // TODO: Avoid replicating loads and stores instead of
7151         // relying on instcombine to remove them.
7152         // Load: Scalar load + broadcast
7153         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7154         InstructionCost Cost;
7155         if (isa<StoreInst>(&I) && VF.isScalable() &&
7156             isLegalGatherOrScatter(&I, VF)) {
7157           Cost = getGatherScatterCost(&I, VF);
7158           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7159         } else {
7160           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7161                  "Cannot yet scalarize uniform stores");
7162           Cost = getUniformMemOpCost(&I, VF);
7163           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7164         }
7165         continue;
7166       }
7167 
7168       // We assume that widening is the best solution when possible.
7169       if (memoryInstructionCanBeWidened(&I, VF)) {
7170         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7171         int ConsecutiveStride = Legal->isConsecutivePtr(
7172             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7173         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7174                "Expected consecutive stride.");
7175         InstWidening Decision =
7176             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7177         setWideningDecision(&I, VF, Decision, Cost);
7178         continue;
7179       }
7180 
7181       // Choose between Interleaving, Gather/Scatter or Scalarization.
7182       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7183       unsigned NumAccesses = 1;
7184       if (isAccessInterleaved(&I)) {
7185         auto Group = getInterleavedAccessGroup(&I);
7186         assert(Group && "Fail to get an interleaved access group.");
7187 
7188         // Make one decision for the whole group.
7189         if (getWideningDecision(&I, VF) != CM_Unknown)
7190           continue;
7191 
7192         NumAccesses = Group->getNumMembers();
7193         if (interleavedAccessCanBeWidened(&I, VF))
7194           InterleaveCost = getInterleaveGroupCost(&I, VF);
7195       }
7196 
7197       InstructionCost GatherScatterCost =
7198           isLegalGatherOrScatter(&I, VF)
7199               ? getGatherScatterCost(&I, VF) * NumAccesses
7200               : InstructionCost::getInvalid();
7201 
7202       InstructionCost ScalarizationCost =
7203           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7204 
7205       // Choose better solution for the current VF,
7206       // write down this decision and use it during vectorization.
7207       InstructionCost Cost;
7208       InstWidening Decision;
7209       if (InterleaveCost <= GatherScatterCost &&
7210           InterleaveCost < ScalarizationCost) {
7211         Decision = CM_Interleave;
7212         Cost = InterleaveCost;
7213       } else if (GatherScatterCost < ScalarizationCost) {
7214         Decision = CM_GatherScatter;
7215         Cost = GatherScatterCost;
7216       } else {
7217         Decision = CM_Scalarize;
7218         Cost = ScalarizationCost;
7219       }
7220       // If the instructions belongs to an interleave group, the whole group
7221       // receives the same decision. The whole group receives the cost, but
7222       // the cost will actually be assigned to one instruction.
7223       if (auto Group = getInterleavedAccessGroup(&I))
7224         setWideningDecision(Group, VF, Decision, Cost);
7225       else
7226         setWideningDecision(&I, VF, Decision, Cost);
7227     }
7228   }
7229 
7230   // Make sure that any load of address and any other address computation
7231   // remains scalar unless there is gather/scatter support. This avoids
7232   // inevitable extracts into address registers, and also has the benefit of
7233   // activating LSR more, since that pass can't optimize vectorized
7234   // addresses.
7235   if (TTI.prefersVectorizedAddressing())
7236     return;
7237 
7238   // Start with all scalar pointer uses.
7239   SmallPtrSet<Instruction *, 8> AddrDefs;
7240   for (BasicBlock *BB : TheLoop->blocks())
7241     for (Instruction &I : *BB) {
7242       Instruction *PtrDef =
7243         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7244       if (PtrDef && TheLoop->contains(PtrDef) &&
7245           getWideningDecision(&I, VF) != CM_GatherScatter)
7246         AddrDefs.insert(PtrDef);
7247     }
7248 
7249   // Add all instructions used to generate the addresses.
7250   SmallVector<Instruction *, 4> Worklist;
7251   append_range(Worklist, AddrDefs);
7252   while (!Worklist.empty()) {
7253     Instruction *I = Worklist.pop_back_val();
7254     for (auto &Op : I->operands())
7255       if (auto *InstOp = dyn_cast<Instruction>(Op))
7256         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7257             AddrDefs.insert(InstOp).second)
7258           Worklist.push_back(InstOp);
7259   }
7260 
7261   for (auto *I : AddrDefs) {
7262     if (isa<LoadInst>(I)) {
7263       // Setting the desired widening decision should ideally be handled in
7264       // by cost functions, but since this involves the task of finding out
7265       // if the loaded register is involved in an address computation, it is
7266       // instead changed here when we know this is the case.
7267       InstWidening Decision = getWideningDecision(I, VF);
7268       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7269         // Scalarize a widened load of address.
7270         setWideningDecision(
7271             I, VF, CM_Scalarize,
7272             (VF.getKnownMinValue() *
7273              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7274       else if (auto Group = getInterleavedAccessGroup(I)) {
7275         // Scalarize an interleave group of address loads.
7276         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7277           if (Instruction *Member = Group->getMember(I))
7278             setWideningDecision(
7279                 Member, VF, CM_Scalarize,
7280                 (VF.getKnownMinValue() *
7281                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7282         }
7283       }
7284     } else
7285       // Make sure I gets scalarized and a cost estimate without
7286       // scalarization overhead.
7287       ForcedScalars[VF].insert(I);
7288   }
7289 }
7290 
7291 InstructionCost
7292 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7293                                                Type *&VectorTy) {
7294   Type *RetTy = I->getType();
7295   if (canTruncateToMinimalBitwidth(I, VF))
7296     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7297   auto SE = PSE.getSE();
7298   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7299 
7300   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7301                                                 ElementCount VF) -> bool {
7302     if (VF.isScalar())
7303       return true;
7304 
7305     auto Scalarized = InstsToScalarize.find(VF);
7306     assert(Scalarized != InstsToScalarize.end() &&
7307            "VF not yet analyzed for scalarization profitability");
7308     return !Scalarized->second.count(I) &&
7309            llvm::all_of(I->users(), [&](User *U) {
7310              auto *UI = cast<Instruction>(U);
7311              return !Scalarized->second.count(UI);
7312            });
7313   };
7314   (void) hasSingleCopyAfterVectorization;
7315 
7316   if (isScalarAfterVectorization(I, VF)) {
7317     // With the exception of GEPs and PHIs, after scalarization there should
7318     // only be one copy of the instruction generated in the loop. This is
7319     // because the VF is either 1, or any instructions that need scalarizing
7320     // have already been dealt with by the the time we get here. As a result,
7321     // it means we don't have to multiply the instruction cost by VF.
7322     assert(I->getOpcode() == Instruction::GetElementPtr ||
7323            I->getOpcode() == Instruction::PHI ||
7324            (I->getOpcode() == Instruction::BitCast &&
7325             I->getType()->isPointerTy()) ||
7326            hasSingleCopyAfterVectorization(I, VF));
7327     VectorTy = RetTy;
7328   } else
7329     VectorTy = ToVectorTy(RetTy, VF);
7330 
7331   // TODO: We need to estimate the cost of intrinsic calls.
7332   switch (I->getOpcode()) {
7333   case Instruction::GetElementPtr:
7334     // We mark this instruction as zero-cost because the cost of GEPs in
7335     // vectorized code depends on whether the corresponding memory instruction
7336     // is scalarized or not. Therefore, we handle GEPs with the memory
7337     // instruction cost.
7338     return 0;
7339   case Instruction::Br: {
7340     // In cases of scalarized and predicated instructions, there will be VF
7341     // predicated blocks in the vectorized loop. Each branch around these
7342     // blocks requires also an extract of its vector compare i1 element.
7343     bool ScalarPredicatedBB = false;
7344     BranchInst *BI = cast<BranchInst>(I);
7345     if (VF.isVector() && BI->isConditional() &&
7346         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7347          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7348       ScalarPredicatedBB = true;
7349 
7350     if (ScalarPredicatedBB) {
7351       // Not possible to scalarize scalable vector with predicated instructions.
7352       if (VF.isScalable())
7353         return InstructionCost::getInvalid();
7354       // Return cost for branches around scalarized and predicated blocks.
7355       auto *Vec_i1Ty =
7356           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7357       return (
7358           TTI.getScalarizationOverhead(
7359               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7360           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7361     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7362       // The back-edge branch will remain, as will all scalar branches.
7363       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7364     else
7365       // This branch will be eliminated by if-conversion.
7366       return 0;
7367     // Note: We currently assume zero cost for an unconditional branch inside
7368     // a predicated block since it will become a fall-through, although we
7369     // may decide in the future to call TTI for all branches.
7370   }
7371   case Instruction::PHI: {
7372     auto *Phi = cast<PHINode>(I);
7373 
7374     // First-order recurrences are replaced by vector shuffles inside the loop.
7375     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7376     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7377       return TTI.getShuffleCost(
7378           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7379           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7380 
7381     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7382     // converted into select instructions. We require N - 1 selects per phi
7383     // node, where N is the number of incoming values.
7384     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7385       return (Phi->getNumIncomingValues() - 1) *
7386              TTI.getCmpSelInstrCost(
7387                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7388                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7389                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7390 
7391     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7392   }
7393   case Instruction::UDiv:
7394   case Instruction::SDiv:
7395   case Instruction::URem:
7396   case Instruction::SRem:
7397     // If we have a predicated instruction, it may not be executed for each
7398     // vector lane. Get the scalarization cost and scale this amount by the
7399     // probability of executing the predicated block. If the instruction is not
7400     // predicated, we fall through to the next case.
7401     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7402       InstructionCost Cost = 0;
7403 
7404       // These instructions have a non-void type, so account for the phi nodes
7405       // that we will create. This cost is likely to be zero. The phi node
7406       // cost, if any, should be scaled by the block probability because it
7407       // models a copy at the end of each predicated block.
7408       Cost += VF.getKnownMinValue() *
7409               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7410 
7411       // The cost of the non-predicated instruction.
7412       Cost += VF.getKnownMinValue() *
7413               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7414 
7415       // The cost of insertelement and extractelement instructions needed for
7416       // scalarization.
7417       Cost += getScalarizationOverhead(I, VF);
7418 
7419       // Scale the cost by the probability of executing the predicated blocks.
7420       // This assumes the predicated block for each vector lane is equally
7421       // likely.
7422       return Cost / getReciprocalPredBlockProb();
7423     }
7424     LLVM_FALLTHROUGH;
7425   case Instruction::Add:
7426   case Instruction::FAdd:
7427   case Instruction::Sub:
7428   case Instruction::FSub:
7429   case Instruction::Mul:
7430   case Instruction::FMul:
7431   case Instruction::FDiv:
7432   case Instruction::FRem:
7433   case Instruction::Shl:
7434   case Instruction::LShr:
7435   case Instruction::AShr:
7436   case Instruction::And:
7437   case Instruction::Or:
7438   case Instruction::Xor: {
7439     // Since we will replace the stride by 1 the multiplication should go away.
7440     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7441       return 0;
7442 
7443     // Detect reduction patterns
7444     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7445       return *RedCost;
7446 
7447     // Certain instructions can be cheaper to vectorize if they have a constant
7448     // second vector operand. One example of this are shifts on x86.
7449     Value *Op2 = I->getOperand(1);
7450     TargetTransformInfo::OperandValueProperties Op2VP;
7451     TargetTransformInfo::OperandValueKind Op2VK =
7452         TTI.getOperandInfo(Op2, Op2VP);
7453     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7454       Op2VK = TargetTransformInfo::OK_UniformValue;
7455 
7456     SmallVector<const Value *, 4> Operands(I->operand_values());
7457     return TTI.getArithmeticInstrCost(
7458         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7459         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7460   }
7461   case Instruction::FNeg: {
7462     return TTI.getArithmeticInstrCost(
7463         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7464         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7465         TargetTransformInfo::OP_None, I->getOperand(0), I);
7466   }
7467   case Instruction::Select: {
7468     SelectInst *SI = cast<SelectInst>(I);
7469     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7470     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7471 
7472     const Value *Op0, *Op1;
7473     using namespace llvm::PatternMatch;
7474     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7475                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7476       // select x, y, false --> x & y
7477       // select x, true, y --> x | y
7478       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7479       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7480       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7481       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7482       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7483               Op1->getType()->getScalarSizeInBits() == 1);
7484 
7485       SmallVector<const Value *, 2> Operands{Op0, Op1};
7486       return TTI.getArithmeticInstrCost(
7487           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7488           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7489     }
7490 
7491     Type *CondTy = SI->getCondition()->getType();
7492     if (!ScalarCond)
7493       CondTy = VectorType::get(CondTy, VF);
7494 
7495     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7496     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7497       Pred = Cmp->getPredicate();
7498     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7499                                   CostKind, I);
7500   }
7501   case Instruction::ICmp:
7502   case Instruction::FCmp: {
7503     Type *ValTy = I->getOperand(0)->getType();
7504     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7505     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7506       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7507     VectorTy = ToVectorTy(ValTy, VF);
7508     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7509                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7510                                   I);
7511   }
7512   case Instruction::Store:
7513   case Instruction::Load: {
7514     ElementCount Width = VF;
7515     if (Width.isVector()) {
7516       InstWidening Decision = getWideningDecision(I, Width);
7517       assert(Decision != CM_Unknown &&
7518              "CM decision should be taken at this point");
7519       if (Decision == CM_Scalarize)
7520         Width = ElementCount::getFixed(1);
7521     }
7522     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7523     return getMemoryInstructionCost(I, VF);
7524   }
7525   case Instruction::BitCast:
7526     if (I->getType()->isPointerTy())
7527       return 0;
7528     LLVM_FALLTHROUGH;
7529   case Instruction::ZExt:
7530   case Instruction::SExt:
7531   case Instruction::FPToUI:
7532   case Instruction::FPToSI:
7533   case Instruction::FPExt:
7534   case Instruction::PtrToInt:
7535   case Instruction::IntToPtr:
7536   case Instruction::SIToFP:
7537   case Instruction::UIToFP:
7538   case Instruction::Trunc:
7539   case Instruction::FPTrunc: {
7540     // Computes the CastContextHint from a Load/Store instruction.
7541     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7542       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7543              "Expected a load or a store!");
7544 
7545       if (VF.isScalar() || !TheLoop->contains(I))
7546         return TTI::CastContextHint::Normal;
7547 
7548       switch (getWideningDecision(I, VF)) {
7549       case LoopVectorizationCostModel::CM_GatherScatter:
7550         return TTI::CastContextHint::GatherScatter;
7551       case LoopVectorizationCostModel::CM_Interleave:
7552         return TTI::CastContextHint::Interleave;
7553       case LoopVectorizationCostModel::CM_Scalarize:
7554       case LoopVectorizationCostModel::CM_Widen:
7555         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7556                                         : TTI::CastContextHint::Normal;
7557       case LoopVectorizationCostModel::CM_Widen_Reverse:
7558         return TTI::CastContextHint::Reversed;
7559       case LoopVectorizationCostModel::CM_Unknown:
7560         llvm_unreachable("Instr did not go through cost modelling?");
7561       }
7562 
7563       llvm_unreachable("Unhandled case!");
7564     };
7565 
7566     unsigned Opcode = I->getOpcode();
7567     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7568     // For Trunc, the context is the only user, which must be a StoreInst.
7569     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7570       if (I->hasOneUse())
7571         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7572           CCH = ComputeCCH(Store);
7573     }
7574     // For Z/Sext, the context is the operand, which must be a LoadInst.
7575     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7576              Opcode == Instruction::FPExt) {
7577       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7578         CCH = ComputeCCH(Load);
7579     }
7580 
7581     // We optimize the truncation of induction variables having constant
7582     // integer steps. The cost of these truncations is the same as the scalar
7583     // operation.
7584     if (isOptimizableIVTruncate(I, VF)) {
7585       auto *Trunc = cast<TruncInst>(I);
7586       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7587                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7588     }
7589 
7590     // Detect reduction patterns
7591     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7592       return *RedCost;
7593 
7594     Type *SrcScalarTy = I->getOperand(0)->getType();
7595     Type *SrcVecTy =
7596         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7597     if (canTruncateToMinimalBitwidth(I, VF)) {
7598       // This cast is going to be shrunk. This may remove the cast or it might
7599       // turn it into slightly different cast. For example, if MinBW == 16,
7600       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7601       //
7602       // Calculate the modified src and dest types.
7603       Type *MinVecTy = VectorTy;
7604       if (Opcode == Instruction::Trunc) {
7605         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7606         VectorTy =
7607             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7608       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7609         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7610         VectorTy =
7611             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7612       }
7613     }
7614 
7615     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7616   }
7617   case Instruction::Call: {
7618     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7619       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7620         return *RedCost;
7621     bool NeedToScalarize;
7622     CallInst *CI = cast<CallInst>(I);
7623     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7624     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7625       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7626       return std::min(CallCost, IntrinsicCost);
7627     }
7628     return CallCost;
7629   }
7630   case Instruction::ExtractValue:
7631     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7632   case Instruction::Alloca:
7633     // We cannot easily widen alloca to a scalable alloca, as
7634     // the result would need to be a vector of pointers.
7635     if (VF.isScalable())
7636       return InstructionCost::getInvalid();
7637     LLVM_FALLTHROUGH;
7638   default:
7639     // This opcode is unknown. Assume that it is the same as 'mul'.
7640     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7641   } // end of switch.
7642 }
7643 
7644 char LoopVectorize::ID = 0;
7645 
7646 static const char lv_name[] = "Loop Vectorization";
7647 
7648 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7649 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7650 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7651 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7652 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7653 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7654 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7655 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7656 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7657 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7658 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7659 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7660 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7661 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7662 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7663 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7664 
7665 namespace llvm {
7666 
7667 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7668 
7669 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7670                               bool VectorizeOnlyWhenForced) {
7671   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7672 }
7673 
7674 } // end namespace llvm
7675 
7676 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7677   // Check if the pointer operand of a load or store instruction is
7678   // consecutive.
7679   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7680     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7681   return false;
7682 }
7683 
7684 void LoopVectorizationCostModel::collectValuesToIgnore() {
7685   // Ignore ephemeral values.
7686   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7687 
7688   // Ignore type-promoting instructions we identified during reduction
7689   // detection.
7690   for (auto &Reduction : Legal->getReductionVars()) {
7691     const RecurrenceDescriptor &RedDes = Reduction.second;
7692     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7693     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7694   }
7695   // Ignore type-casting instructions we identified during induction
7696   // detection.
7697   for (auto &Induction : Legal->getInductionVars()) {
7698     const InductionDescriptor &IndDes = Induction.second;
7699     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7700     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7701   }
7702 }
7703 
7704 void LoopVectorizationCostModel::collectInLoopReductions() {
7705   for (auto &Reduction : Legal->getReductionVars()) {
7706     PHINode *Phi = Reduction.first;
7707     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7708 
7709     // We don't collect reductions that are type promoted (yet).
7710     if (RdxDesc.getRecurrenceType() != Phi->getType())
7711       continue;
7712 
7713     // If the target would prefer this reduction to happen "in-loop", then we
7714     // want to record it as such.
7715     unsigned Opcode = RdxDesc.getOpcode();
7716     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7717         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7718                                    TargetTransformInfo::ReductionFlags()))
7719       continue;
7720 
7721     // Check that we can correctly put the reductions into the loop, by
7722     // finding the chain of operations that leads from the phi to the loop
7723     // exit value.
7724     SmallVector<Instruction *, 4> ReductionOperations =
7725         RdxDesc.getReductionOpChain(Phi, TheLoop);
7726     bool InLoop = !ReductionOperations.empty();
7727     if (InLoop) {
7728       InLoopReductionChains[Phi] = ReductionOperations;
7729       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7730       Instruction *LastChain = Phi;
7731       for (auto *I : ReductionOperations) {
7732         InLoopReductionImmediateChains[I] = LastChain;
7733         LastChain = I;
7734       }
7735     }
7736     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7737                       << " reduction for phi: " << *Phi << "\n");
7738   }
7739 }
7740 
7741 // TODO: we could return a pair of values that specify the max VF and
7742 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7743 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7744 // doesn't have a cost model that can choose which plan to execute if
7745 // more than one is generated.
7746 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7747                                  LoopVectorizationCostModel &CM) {
7748   unsigned WidestType;
7749   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7750   return WidestVectorRegBits / WidestType;
7751 }
7752 
7753 VectorizationFactor
7754 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7755   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7756   ElementCount VF = UserVF;
7757   // Outer loop handling: They may require CFG and instruction level
7758   // transformations before even evaluating whether vectorization is profitable.
7759   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7760   // the vectorization pipeline.
7761   if (!OrigLoop->isInnermost()) {
7762     // If the user doesn't provide a vectorization factor, determine a
7763     // reasonable one.
7764     if (UserVF.isZero()) {
7765       VF = ElementCount::getFixed(determineVPlanVF(
7766           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7767               .getFixedSize(),
7768           CM));
7769       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7770 
7771       // Make sure we have a VF > 1 for stress testing.
7772       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7773         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7774                           << "overriding computed VF.\n");
7775         VF = ElementCount::getFixed(4);
7776       }
7777     }
7778     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7779     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7780            "VF needs to be a power of two");
7781     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7782                       << "VF " << VF << " to build VPlans.\n");
7783     buildVPlans(VF, VF);
7784 
7785     // For VPlan build stress testing, we bail out after VPlan construction.
7786     if (VPlanBuildStressTest)
7787       return VectorizationFactor::Disabled();
7788 
7789     return {VF, 0 /*Cost*/};
7790   }
7791 
7792   LLVM_DEBUG(
7793       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7794                 "VPlan-native path.\n");
7795   return VectorizationFactor::Disabled();
7796 }
7797 
7798 Optional<VectorizationFactor>
7799 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7800   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7801   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7802   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7803     return None;
7804 
7805   // Invalidate interleave groups if all blocks of loop will be predicated.
7806   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7807       !useMaskedInterleavedAccesses(*TTI)) {
7808     LLVM_DEBUG(
7809         dbgs()
7810         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7811            "which requires masked-interleaved support.\n");
7812     if (CM.InterleaveInfo.invalidateGroups())
7813       // Invalidating interleave groups also requires invalidating all decisions
7814       // based on them, which includes widening decisions and uniform and scalar
7815       // values.
7816       CM.invalidateCostModelingDecisions();
7817   }
7818 
7819   ElementCount MaxUserVF =
7820       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7821   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7822   if (!UserVF.isZero() && UserVFIsLegal) {
7823     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7824            "VF needs to be a power of two");
7825     // Collect the instructions (and their associated costs) that will be more
7826     // profitable to scalarize.
7827     if (CM.selectUserVectorizationFactor(UserVF)) {
7828       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7829       CM.collectInLoopReductions();
7830       buildVPlansWithVPRecipes(UserVF, UserVF);
7831       LLVM_DEBUG(printPlans(dbgs()));
7832       return {{UserVF, 0}};
7833     } else
7834       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7835                               "InvalidCost", ORE, OrigLoop);
7836   }
7837 
7838   // Populate the set of Vectorization Factor Candidates.
7839   ElementCountSet VFCandidates;
7840   for (auto VF = ElementCount::getFixed(1);
7841        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7842     VFCandidates.insert(VF);
7843   for (auto VF = ElementCount::getScalable(1);
7844        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7845     VFCandidates.insert(VF);
7846 
7847   for (const auto &VF : VFCandidates) {
7848     // Collect Uniform and Scalar instructions after vectorization with VF.
7849     CM.collectUniformsAndScalars(VF);
7850 
7851     // Collect the instructions (and their associated costs) that will be more
7852     // profitable to scalarize.
7853     if (VF.isVector())
7854       CM.collectInstsToScalarize(VF);
7855   }
7856 
7857   CM.collectInLoopReductions();
7858   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7859   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7860 
7861   LLVM_DEBUG(printPlans(dbgs()));
7862   if (!MaxFactors.hasVector())
7863     return VectorizationFactor::Disabled();
7864 
7865   // Select the optimal vectorization factor.
7866   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7867 
7868   // Check if it is profitable to vectorize with runtime checks.
7869   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7870   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7871     bool PragmaThresholdReached =
7872         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7873     bool ThresholdReached =
7874         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7875     if ((ThresholdReached && !Hints.allowReordering()) ||
7876         PragmaThresholdReached) {
7877       ORE->emit([&]() {
7878         return OptimizationRemarkAnalysisAliasing(
7879                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7880                    OrigLoop->getHeader())
7881                << "loop not vectorized: cannot prove it is safe to reorder "
7882                   "memory operations";
7883       });
7884       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7885       Hints.emitRemarkWithHints();
7886       return VectorizationFactor::Disabled();
7887     }
7888   }
7889   return SelectedVF;
7890 }
7891 
7892 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7893   assert(count_if(VPlans,
7894                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7895              1 &&
7896          "Best VF has not a single VPlan.");
7897 
7898   for (const VPlanPtr &Plan : VPlans) {
7899     if (Plan->hasVF(VF))
7900       return *Plan.get();
7901   }
7902   llvm_unreachable("No plan found!");
7903 }
7904 
7905 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7906   SmallVector<Metadata *, 4> MDs;
7907   // Reserve first location for self reference to the LoopID metadata node.
7908   MDs.push_back(nullptr);
7909   bool IsUnrollMetadata = false;
7910   MDNode *LoopID = L->getLoopID();
7911   if (LoopID) {
7912     // First find existing loop unrolling disable metadata.
7913     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7914       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7915       if (MD) {
7916         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7917         IsUnrollMetadata =
7918             S && S->getString().startswith("llvm.loop.unroll.disable");
7919       }
7920       MDs.push_back(LoopID->getOperand(i));
7921     }
7922   }
7923 
7924   if (!IsUnrollMetadata) {
7925     // Add runtime unroll disable metadata.
7926     LLVMContext &Context = L->getHeader()->getContext();
7927     SmallVector<Metadata *, 1> DisableOperands;
7928     DisableOperands.push_back(
7929         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7930     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7931     MDs.push_back(DisableNode);
7932     MDNode *NewLoopID = MDNode::get(Context, MDs);
7933     // Set operand 0 to refer to the loop id itself.
7934     NewLoopID->replaceOperandWith(0, NewLoopID);
7935     L->setLoopID(NewLoopID);
7936   }
7937 }
7938 
7939 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7940                                            VPlan &BestVPlan,
7941                                            InnerLoopVectorizer &ILV,
7942                                            DominatorTree *DT) {
7943   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7944                     << '\n');
7945 
7946   // Perform the actual loop transformation.
7947 
7948   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7949   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7950   Value *CanonicalIVStartValue;
7951   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7952       ILV.createVectorizedLoopSkeleton();
7953   ILV.collectPoisonGeneratingRecipes(State);
7954 
7955   ILV.printDebugTracesAtStart();
7956 
7957   //===------------------------------------------------===//
7958   //
7959   // Notice: any optimization or new instruction that go
7960   // into the code below should also be implemented in
7961   // the cost-model.
7962   //
7963   //===------------------------------------------------===//
7964 
7965   // 2. Copy and widen instructions from the old loop into the new loop.
7966   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7967                              ILV.getOrCreateVectorTripCount(nullptr),
7968                              CanonicalIVStartValue, State);
7969   BestVPlan.execute(&State);
7970 
7971   // Keep all loop hints from the original loop on the vector loop (we'll
7972   // replace the vectorizer-specific hints below).
7973   MDNode *OrigLoopID = OrigLoop->getLoopID();
7974 
7975   Optional<MDNode *> VectorizedLoopID =
7976       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7977                                       LLVMLoopVectorizeFollowupVectorized});
7978 
7979   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7980   if (VectorizedLoopID.hasValue())
7981     L->setLoopID(VectorizedLoopID.getValue());
7982   else {
7983     // Keep all loop hints from the original loop on the vector loop (we'll
7984     // replace the vectorizer-specific hints below).
7985     if (MDNode *LID = OrigLoop->getLoopID())
7986       L->setLoopID(LID);
7987 
7988     LoopVectorizeHints Hints(L, true, *ORE);
7989     Hints.setAlreadyVectorized();
7990   }
7991   // Disable runtime unrolling when vectorizing the epilogue loop.
7992   if (CanonicalIVStartValue)
7993     AddRuntimeUnrollDisableMetaData(L);
7994 
7995   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7996   //    predication, updating analyses.
7997   ILV.fixVectorizedLoop(State);
7998 
7999   ILV.printDebugTracesAtEnd();
8000 }
8001 
8002 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8003 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8004   for (const auto &Plan : VPlans)
8005     if (PrintVPlansInDotFormat)
8006       Plan->printDOT(O);
8007     else
8008       Plan->print(O);
8009 }
8010 #endif
8011 
8012 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8013     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8014 
8015   // We create new control-flow for the vectorized loop, so the original exit
8016   // conditions will be dead after vectorization if it's only used by the
8017   // terminator
8018   SmallVector<BasicBlock*> ExitingBlocks;
8019   OrigLoop->getExitingBlocks(ExitingBlocks);
8020   for (auto *BB : ExitingBlocks) {
8021     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8022     if (!Cmp || !Cmp->hasOneUse())
8023       continue;
8024 
8025     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8026     if (!DeadInstructions.insert(Cmp).second)
8027       continue;
8028 
8029     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8030     // TODO: can recurse through operands in general
8031     for (Value *Op : Cmp->operands()) {
8032       if (isa<TruncInst>(Op) && Op->hasOneUse())
8033           DeadInstructions.insert(cast<Instruction>(Op));
8034     }
8035   }
8036 
8037   // We create new "steps" for induction variable updates to which the original
8038   // induction variables map. An original update instruction will be dead if
8039   // all its users except the induction variable are dead.
8040   auto *Latch = OrigLoop->getLoopLatch();
8041   for (auto &Induction : Legal->getInductionVars()) {
8042     PHINode *Ind = Induction.first;
8043     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8044 
8045     // If the tail is to be folded by masking, the primary induction variable,
8046     // if exists, isn't dead: it will be used for masking. Don't kill it.
8047     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8048       continue;
8049 
8050     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8051           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8052         }))
8053       DeadInstructions.insert(IndUpdate);
8054   }
8055 }
8056 
8057 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8058 
8059 //===--------------------------------------------------------------------===//
8060 // EpilogueVectorizerMainLoop
8061 //===--------------------------------------------------------------------===//
8062 
8063 /// This function is partially responsible for generating the control flow
8064 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8065 std::pair<BasicBlock *, Value *>
8066 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8067   MDNode *OrigLoopID = OrigLoop->getLoopID();
8068   Loop *Lp = createVectorLoopSkeleton("");
8069 
8070   // Generate the code to check the minimum iteration count of the vector
8071   // epilogue (see below).
8072   EPI.EpilogueIterationCountCheck =
8073       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8074   EPI.EpilogueIterationCountCheck->setName("iter.check");
8075 
8076   // Generate the code to check any assumptions that we've made for SCEV
8077   // expressions.
8078   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8079 
8080   // Generate the code that checks at runtime if arrays overlap. We put the
8081   // checks into a separate block to make the more common case of few elements
8082   // faster.
8083   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8084 
8085   // Generate the iteration count check for the main loop, *after* the check
8086   // for the epilogue loop, so that the path-length is shorter for the case
8087   // that goes directly through the vector epilogue. The longer-path length for
8088   // the main loop is compensated for, by the gain from vectorizing the larger
8089   // trip count. Note: the branch will get updated later on when we vectorize
8090   // the epilogue.
8091   EPI.MainLoopIterationCountCheck =
8092       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8093 
8094   // Generate the induction variable.
8095   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8096   EPI.VectorTripCount = CountRoundDown;
8097   createHeaderBranch(Lp);
8098 
8099   // Skip induction resume value creation here because they will be created in
8100   // the second pass. If we created them here, they wouldn't be used anyway,
8101   // because the vplan in the second pass still contains the inductions from the
8102   // original loop.
8103 
8104   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8105 }
8106 
8107 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8108   LLVM_DEBUG({
8109     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8110            << "Main Loop VF:" << EPI.MainLoopVF
8111            << ", Main Loop UF:" << EPI.MainLoopUF
8112            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8113            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8114   });
8115 }
8116 
8117 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8118   DEBUG_WITH_TYPE(VerboseDebug, {
8119     dbgs() << "intermediate fn:\n"
8120            << *OrigLoop->getHeader()->getParent() << "\n";
8121   });
8122 }
8123 
8124 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8125     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8126   assert(L && "Expected valid Loop.");
8127   assert(Bypass && "Expected valid bypass basic block.");
8128   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8129   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8130   Value *Count = getOrCreateTripCount(L);
8131   // Reuse existing vector loop preheader for TC checks.
8132   // Note that new preheader block is generated for vector loop.
8133   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8134   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8135 
8136   // Generate code to check if the loop's trip count is less than VF * UF of the
8137   // main vector loop.
8138   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8139       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8140 
8141   Value *CheckMinIters = Builder.CreateICmp(
8142       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8143       "min.iters.check");
8144 
8145   if (!ForEpilogue)
8146     TCCheckBlock->setName("vector.main.loop.iter.check");
8147 
8148   // Create new preheader for vector loop.
8149   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8150                                    DT, LI, nullptr, "vector.ph");
8151 
8152   if (ForEpilogue) {
8153     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8154                                  DT->getNode(Bypass)->getIDom()) &&
8155            "TC check is expected to dominate Bypass");
8156 
8157     // Update dominator for Bypass & LoopExit.
8158     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8159     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8160       // For loops with multiple exits, there's no edge from the middle block
8161       // to exit blocks (as the epilogue must run) and thus no need to update
8162       // the immediate dominator of the exit blocks.
8163       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8164 
8165     LoopBypassBlocks.push_back(TCCheckBlock);
8166 
8167     // Save the trip count so we don't have to regenerate it in the
8168     // vec.epilog.iter.check. This is safe to do because the trip count
8169     // generated here dominates the vector epilog iter check.
8170     EPI.TripCount = Count;
8171   }
8172 
8173   ReplaceInstWithInst(
8174       TCCheckBlock->getTerminator(),
8175       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8176 
8177   return TCCheckBlock;
8178 }
8179 
8180 //===--------------------------------------------------------------------===//
8181 // EpilogueVectorizerEpilogueLoop
8182 //===--------------------------------------------------------------------===//
8183 
8184 /// This function is partially responsible for generating the control flow
8185 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8186 std::pair<BasicBlock *, Value *>
8187 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8188   MDNode *OrigLoopID = OrigLoop->getLoopID();
8189   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8190 
8191   // Now, compare the remaining count and if there aren't enough iterations to
8192   // execute the vectorized epilogue skip to the scalar part.
8193   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8194   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8195   LoopVectorPreHeader =
8196       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8197                  LI, nullptr, "vec.epilog.ph");
8198   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8199                                           VecEpilogueIterationCountCheck);
8200 
8201   // Adjust the control flow taking the state info from the main loop
8202   // vectorization into account.
8203   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8204          "expected this to be saved from the previous pass.");
8205   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8206       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8207 
8208   DT->changeImmediateDominator(LoopVectorPreHeader,
8209                                EPI.MainLoopIterationCountCheck);
8210 
8211   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8212       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8213 
8214   if (EPI.SCEVSafetyCheck)
8215     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8216         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8217   if (EPI.MemSafetyCheck)
8218     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8219         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8220 
8221   DT->changeImmediateDominator(
8222       VecEpilogueIterationCountCheck,
8223       VecEpilogueIterationCountCheck->getSinglePredecessor());
8224 
8225   DT->changeImmediateDominator(LoopScalarPreHeader,
8226                                EPI.EpilogueIterationCountCheck);
8227   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8228     // If there is an epilogue which must run, there's no edge from the
8229     // middle block to exit blocks  and thus no need to update the immediate
8230     // dominator of the exit blocks.
8231     DT->changeImmediateDominator(LoopExitBlock,
8232                                  EPI.EpilogueIterationCountCheck);
8233 
8234   // Keep track of bypass blocks, as they feed start values to the induction
8235   // phis in the scalar loop preheader.
8236   if (EPI.SCEVSafetyCheck)
8237     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8238   if (EPI.MemSafetyCheck)
8239     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8240   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8241 
8242   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8243   // merge control-flow from the latch block and the middle block. Update the
8244   // incoming values here and move the Phi into the preheader.
8245   SmallVector<PHINode *, 4> PhisInBlock;
8246   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8247     PhisInBlock.push_back(&Phi);
8248 
8249   for (PHINode *Phi : PhisInBlock) {
8250     Phi->replaceIncomingBlockWith(
8251         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8252         VecEpilogueIterationCountCheck);
8253     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8254     if (EPI.SCEVSafetyCheck)
8255       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8256     if (EPI.MemSafetyCheck)
8257       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8258     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8259   }
8260 
8261   // Generate a resume induction for the vector epilogue and put it in the
8262   // vector epilogue preheader
8263   Type *IdxTy = Legal->getWidestInductionType();
8264   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8265                                          LoopVectorPreHeader->getFirstNonPHI());
8266   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8267   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8268                            EPI.MainLoopIterationCountCheck);
8269 
8270   // Generate the induction variable.
8271   createHeaderBranch(Lp);
8272 
8273   // Generate induction resume values. These variables save the new starting
8274   // indexes for the scalar loop. They are used to test if there are any tail
8275   // iterations left once the vector loop has completed.
8276   // Note that when the vectorized epilogue is skipped due to iteration count
8277   // check, then the resume value for the induction variable comes from
8278   // the trip count of the main vector loop, hence passing the AdditionalBypass
8279   // argument.
8280   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8281                                    EPI.VectorTripCount} /* AdditionalBypass */);
8282 
8283   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8284 }
8285 
8286 BasicBlock *
8287 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8288     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8289 
8290   assert(EPI.TripCount &&
8291          "Expected trip count to have been safed in the first pass.");
8292   assert(
8293       (!isa<Instruction>(EPI.TripCount) ||
8294        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8295       "saved trip count does not dominate insertion point.");
8296   Value *TC = EPI.TripCount;
8297   IRBuilder<> Builder(Insert->getTerminator());
8298   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8299 
8300   // Generate code to check if the loop's trip count is less than VF * UF of the
8301   // vector epilogue loop.
8302   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8303       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8304 
8305   Value *CheckMinIters =
8306       Builder.CreateICmp(P, Count,
8307                          createStepForVF(Builder, Count->getType(),
8308                                          EPI.EpilogueVF, EPI.EpilogueUF),
8309                          "min.epilog.iters.check");
8310 
8311   ReplaceInstWithInst(
8312       Insert->getTerminator(),
8313       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8314 
8315   LoopBypassBlocks.push_back(Insert);
8316   return Insert;
8317 }
8318 
8319 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8320   LLVM_DEBUG({
8321     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8322            << "Epilogue Loop VF:" << EPI.EpilogueVF
8323            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8324   });
8325 }
8326 
8327 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8328   DEBUG_WITH_TYPE(VerboseDebug, {
8329     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8330   });
8331 }
8332 
8333 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8334     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8335   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8336   bool PredicateAtRangeStart = Predicate(Range.Start);
8337 
8338   for (ElementCount TmpVF = Range.Start * 2;
8339        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8340     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8341       Range.End = TmpVF;
8342       break;
8343     }
8344 
8345   return PredicateAtRangeStart;
8346 }
8347 
8348 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8349 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8350 /// of VF's starting at a given VF and extending it as much as possible. Each
8351 /// vectorization decision can potentially shorten this sub-range during
8352 /// buildVPlan().
8353 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8354                                            ElementCount MaxVF) {
8355   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8356   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8357     VFRange SubRange = {VF, MaxVFPlusOne};
8358     VPlans.push_back(buildVPlan(SubRange));
8359     VF = SubRange.End;
8360   }
8361 }
8362 
8363 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8364                                          VPlanPtr &Plan) {
8365   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8366 
8367   // Look for cached value.
8368   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8369   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8370   if (ECEntryIt != EdgeMaskCache.end())
8371     return ECEntryIt->second;
8372 
8373   VPValue *SrcMask = createBlockInMask(Src, Plan);
8374 
8375   // The terminator has to be a branch inst!
8376   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8377   assert(BI && "Unexpected terminator found");
8378 
8379   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8380     return EdgeMaskCache[Edge] = SrcMask;
8381 
8382   // If source is an exiting block, we know the exit edge is dynamically dead
8383   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8384   // adding uses of an otherwise potentially dead instruction.
8385   if (OrigLoop->isLoopExiting(Src))
8386     return EdgeMaskCache[Edge] = SrcMask;
8387 
8388   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8389   assert(EdgeMask && "No Edge Mask found for condition");
8390 
8391   if (BI->getSuccessor(0) != Dst)
8392     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8393 
8394   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8395     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8396     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8397     // The select version does not introduce new UB if SrcMask is false and
8398     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8399     VPValue *False = Plan->getOrAddVPValue(
8400         ConstantInt::getFalse(BI->getCondition()->getType()));
8401     EdgeMask =
8402         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8403   }
8404 
8405   return EdgeMaskCache[Edge] = EdgeMask;
8406 }
8407 
8408 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8409   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8410 
8411   // Look for cached value.
8412   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8413   if (BCEntryIt != BlockMaskCache.end())
8414     return BCEntryIt->second;
8415 
8416   // All-one mask is modelled as no-mask following the convention for masked
8417   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8418   VPValue *BlockMask = nullptr;
8419 
8420   if (OrigLoop->getHeader() == BB) {
8421     if (!CM.blockNeedsPredicationForAnyReason(BB))
8422       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8423 
8424     // Introduce the early-exit compare IV <= BTC to form header block mask.
8425     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8426     // constructing the desired canonical IV in the header block as its first
8427     // non-phi instructions.
8428     assert(CM.foldTailByMasking() && "must fold the tail");
8429     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8430     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8431     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8432     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8433 
8434     VPBuilder::InsertPointGuard Guard(Builder);
8435     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8436     if (CM.TTI.emitGetActiveLaneMask()) {
8437       VPValue *TC = Plan->getOrCreateTripCount();
8438       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8439     } else {
8440       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8441       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8442     }
8443     return BlockMaskCache[BB] = BlockMask;
8444   }
8445 
8446   // This is the block mask. We OR all incoming edges.
8447   for (auto *Predecessor : predecessors(BB)) {
8448     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8449     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8450       return BlockMaskCache[BB] = EdgeMask;
8451 
8452     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8453       BlockMask = EdgeMask;
8454       continue;
8455     }
8456 
8457     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8458   }
8459 
8460   return BlockMaskCache[BB] = BlockMask;
8461 }
8462 
8463 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8464                                                 ArrayRef<VPValue *> Operands,
8465                                                 VFRange &Range,
8466                                                 VPlanPtr &Plan) {
8467   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8468          "Must be called with either a load or store");
8469 
8470   auto willWiden = [&](ElementCount VF) -> bool {
8471     if (VF.isScalar())
8472       return false;
8473     LoopVectorizationCostModel::InstWidening Decision =
8474         CM.getWideningDecision(I, VF);
8475     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8476            "CM decision should be taken at this point.");
8477     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8478       return true;
8479     if (CM.isScalarAfterVectorization(I, VF) ||
8480         CM.isProfitableToScalarize(I, VF))
8481       return false;
8482     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8483   };
8484 
8485   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8486     return nullptr;
8487 
8488   VPValue *Mask = nullptr;
8489   if (Legal->isMaskRequired(I))
8490     Mask = createBlockInMask(I->getParent(), Plan);
8491 
8492   // Determine if the pointer operand of the access is either consecutive or
8493   // reverse consecutive.
8494   LoopVectorizationCostModel::InstWidening Decision =
8495       CM.getWideningDecision(I, Range.Start);
8496   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8497   bool Consecutive =
8498       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8499 
8500   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8501     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8502                                               Consecutive, Reverse);
8503 
8504   StoreInst *Store = cast<StoreInst>(I);
8505   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8506                                             Mask, Consecutive, Reverse);
8507 }
8508 
8509 static VPWidenIntOrFpInductionRecipe *
8510 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8511                            VPValue *Start, const InductionDescriptor &IndDesc,
8512                            LoopVectorizationCostModel &CM, Loop &OrigLoop,
8513                            VFRange &Range) {
8514   // Returns true if an instruction \p I should be scalarized instead of
8515   // vectorized for the chosen vectorization factor.
8516   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8517     return CM.isScalarAfterVectorization(I, VF) ||
8518            CM.isProfitableToScalarize(I, VF);
8519   };
8520 
8521   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8522       [&](ElementCount VF) {
8523         // Returns true if we should generate a scalar version of \p IV.
8524         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8525           return true;
8526         auto isScalarInst = [&](User *U) -> bool {
8527           auto *I = cast<Instruction>(U);
8528           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8529         };
8530         return any_of(PhiOrTrunc->users(), isScalarInst);
8531       },
8532       Range);
8533   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8534       [&](ElementCount VF) {
8535         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8536       },
8537       Range);
8538   assert(IndDesc.getStartValue() ==
8539          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8540   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8541     return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI,
8542                                              NeedsScalarIV, !NeedsScalarIVOnly);
8543   }
8544   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8545   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8546                                            !NeedsScalarIVOnly);
8547 }
8548 
8549 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8550     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8551 
8552   // Check if this is an integer or fp induction. If so, build the recipe that
8553   // produces its scalar and vector values.
8554   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8555     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop,
8556                                       Range);
8557 
8558   return nullptr;
8559 }
8560 
8561 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8562     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8563     VPlan &Plan) const {
8564   // Optimize the special case where the source is a constant integer
8565   // induction variable. Notice that we can only optimize the 'trunc' case
8566   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8567   // (c) other casts depend on pointer size.
8568 
8569   // Determine whether \p K is a truncation based on an induction variable that
8570   // can be optimized.
8571   auto isOptimizableIVTruncate =
8572       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8573     return [=](ElementCount VF) -> bool {
8574       return CM.isOptimizableIVTruncate(K, VF);
8575     };
8576   };
8577 
8578   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8579           isOptimizableIVTruncate(I), Range)) {
8580 
8581     auto *Phi = cast<PHINode>(I->getOperand(0));
8582     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8583     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8584     return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range);
8585   }
8586   return nullptr;
8587 }
8588 
8589 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8590                                                 ArrayRef<VPValue *> Operands,
8591                                                 VPlanPtr &Plan) {
8592   // If all incoming values are equal, the incoming VPValue can be used directly
8593   // instead of creating a new VPBlendRecipe.
8594   VPValue *FirstIncoming = Operands[0];
8595   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8596         return FirstIncoming == Inc;
8597       })) {
8598     return Operands[0];
8599   }
8600 
8601   // We know that all PHIs in non-header blocks are converted into selects, so
8602   // we don't have to worry about the insertion order and we can just use the
8603   // builder. At this point we generate the predication tree. There may be
8604   // duplications since this is a simple recursive scan, but future
8605   // optimizations will clean it up.
8606   SmallVector<VPValue *, 2> OperandsWithMask;
8607   unsigned NumIncoming = Phi->getNumIncomingValues();
8608 
8609   for (unsigned In = 0; In < NumIncoming; In++) {
8610     VPValue *EdgeMask =
8611       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8612     assert((EdgeMask || NumIncoming == 1) &&
8613            "Multiple predecessors with one having a full mask");
8614     OperandsWithMask.push_back(Operands[In]);
8615     if (EdgeMask)
8616       OperandsWithMask.push_back(EdgeMask);
8617   }
8618   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8619 }
8620 
8621 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8622                                                    ArrayRef<VPValue *> Operands,
8623                                                    VFRange &Range) const {
8624 
8625   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8626       [this, CI](ElementCount VF) {
8627         return CM.isScalarWithPredication(CI, VF);
8628       },
8629       Range);
8630 
8631   if (IsPredicated)
8632     return nullptr;
8633 
8634   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8635   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8636              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8637              ID == Intrinsic::pseudoprobe ||
8638              ID == Intrinsic::experimental_noalias_scope_decl))
8639     return nullptr;
8640 
8641   auto willWiden = [&](ElementCount VF) -> bool {
8642     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8643     // The following case may be scalarized depending on the VF.
8644     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8645     // version of the instruction.
8646     // Is it beneficial to perform intrinsic call compared to lib call?
8647     bool NeedToScalarize = false;
8648     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8649     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8650     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8651     return UseVectorIntrinsic || !NeedToScalarize;
8652   };
8653 
8654   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8655     return nullptr;
8656 
8657   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8658   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8659 }
8660 
8661 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8662   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8663          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8664   // Instruction should be widened, unless it is scalar after vectorization,
8665   // scalarization is profitable or it is predicated.
8666   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8667     return CM.isScalarAfterVectorization(I, VF) ||
8668            CM.isProfitableToScalarize(I, VF) ||
8669            CM.isScalarWithPredication(I, VF);
8670   };
8671   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8672                                                              Range);
8673 }
8674 
8675 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8676                                            ArrayRef<VPValue *> Operands) const {
8677   auto IsVectorizableOpcode = [](unsigned Opcode) {
8678     switch (Opcode) {
8679     case Instruction::Add:
8680     case Instruction::And:
8681     case Instruction::AShr:
8682     case Instruction::BitCast:
8683     case Instruction::FAdd:
8684     case Instruction::FCmp:
8685     case Instruction::FDiv:
8686     case Instruction::FMul:
8687     case Instruction::FNeg:
8688     case Instruction::FPExt:
8689     case Instruction::FPToSI:
8690     case Instruction::FPToUI:
8691     case Instruction::FPTrunc:
8692     case Instruction::FRem:
8693     case Instruction::FSub:
8694     case Instruction::ICmp:
8695     case Instruction::IntToPtr:
8696     case Instruction::LShr:
8697     case Instruction::Mul:
8698     case Instruction::Or:
8699     case Instruction::PtrToInt:
8700     case Instruction::SDiv:
8701     case Instruction::Select:
8702     case Instruction::SExt:
8703     case Instruction::Shl:
8704     case Instruction::SIToFP:
8705     case Instruction::SRem:
8706     case Instruction::Sub:
8707     case Instruction::Trunc:
8708     case Instruction::UDiv:
8709     case Instruction::UIToFP:
8710     case Instruction::URem:
8711     case Instruction::Xor:
8712     case Instruction::ZExt:
8713       return true;
8714     }
8715     return false;
8716   };
8717 
8718   if (!IsVectorizableOpcode(I->getOpcode()))
8719     return nullptr;
8720 
8721   // Success: widen this instruction.
8722   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8723 }
8724 
8725 void VPRecipeBuilder::fixHeaderPhis() {
8726   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8727   for (VPHeaderPHIRecipe *R : PhisToFix) {
8728     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8729     VPRecipeBase *IncR =
8730         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8731     R->addOperand(IncR->getVPSingleValue());
8732   }
8733 }
8734 
8735 VPBasicBlock *VPRecipeBuilder::handleReplication(
8736     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8737     VPlanPtr &Plan) {
8738   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8739       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8740       Range);
8741 
8742   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8743       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8744       Range);
8745 
8746   // Even if the instruction is not marked as uniform, there are certain
8747   // intrinsic calls that can be effectively treated as such, so we check for
8748   // them here. Conservatively, we only do this for scalable vectors, since
8749   // for fixed-width VFs we can always fall back on full scalarization.
8750   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8751     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8752     case Intrinsic::assume:
8753     case Intrinsic::lifetime_start:
8754     case Intrinsic::lifetime_end:
8755       // For scalable vectors if one of the operands is variant then we still
8756       // want to mark as uniform, which will generate one instruction for just
8757       // the first lane of the vector. We can't scalarize the call in the same
8758       // way as for fixed-width vectors because we don't know how many lanes
8759       // there are.
8760       //
8761       // The reasons for doing it this way for scalable vectors are:
8762       //   1. For the assume intrinsic generating the instruction for the first
8763       //      lane is still be better than not generating any at all. For
8764       //      example, the input may be a splat across all lanes.
8765       //   2. For the lifetime start/end intrinsics the pointer operand only
8766       //      does anything useful when the input comes from a stack object,
8767       //      which suggests it should always be uniform. For non-stack objects
8768       //      the effect is to poison the object, which still allows us to
8769       //      remove the call.
8770       IsUniform = true;
8771       break;
8772     default:
8773       break;
8774     }
8775   }
8776 
8777   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8778                                        IsUniform, IsPredicated);
8779   setRecipe(I, Recipe);
8780   Plan->addVPValue(I, Recipe);
8781 
8782   // Find if I uses a predicated instruction. If so, it will use its scalar
8783   // value. Avoid hoisting the insert-element which packs the scalar value into
8784   // a vector value, as that happens iff all users use the vector value.
8785   for (VPValue *Op : Recipe->operands()) {
8786     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8787     if (!PredR)
8788       continue;
8789     auto *RepR =
8790         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8791     assert(RepR->isPredicated() &&
8792            "expected Replicate recipe to be predicated");
8793     RepR->setAlsoPack(false);
8794   }
8795 
8796   // Finalize the recipe for Instr, first if it is not predicated.
8797   if (!IsPredicated) {
8798     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8799     VPBB->appendRecipe(Recipe);
8800     return VPBB;
8801   }
8802   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8803 
8804   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8805   assert(SingleSucc && "VPBB must have a single successor when handling "
8806                        "predicated replication.");
8807   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8808   // Record predicated instructions for above packing optimizations.
8809   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8810   VPBlockUtils::insertBlockAfter(Region, VPBB);
8811   auto *RegSucc = new VPBasicBlock();
8812   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8813   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8814   return RegSucc;
8815 }
8816 
8817 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8818                                                       VPRecipeBase *PredRecipe,
8819                                                       VPlanPtr &Plan) {
8820   // Instructions marked for predication are replicated and placed under an
8821   // if-then construct to prevent side-effects.
8822 
8823   // Generate recipes to compute the block mask for this region.
8824   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8825 
8826   // Build the triangular if-then region.
8827   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8828   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8829   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8830   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8831   auto *PHIRecipe = Instr->getType()->isVoidTy()
8832                         ? nullptr
8833                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8834   if (PHIRecipe) {
8835     Plan->removeVPValueFor(Instr);
8836     Plan->addVPValue(Instr, PHIRecipe);
8837   }
8838   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8839   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8840   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8841 
8842   // Note: first set Entry as region entry and then connect successors starting
8843   // from it in order, to propagate the "parent" of each VPBasicBlock.
8844   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8845   VPBlockUtils::connectBlocks(Pred, Exit);
8846 
8847   return Region;
8848 }
8849 
8850 VPRecipeOrVPValueTy
8851 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8852                                         ArrayRef<VPValue *> Operands,
8853                                         VFRange &Range, VPlanPtr &Plan) {
8854   // First, check for specific widening recipes that deal with calls, memory
8855   // operations, inductions and Phi nodes.
8856   if (auto *CI = dyn_cast<CallInst>(Instr))
8857     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8858 
8859   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8860     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8861 
8862   VPRecipeBase *Recipe;
8863   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8864     if (Phi->getParent() != OrigLoop->getHeader())
8865       return tryToBlend(Phi, Operands, Plan);
8866     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8867       return toVPRecipeResult(Recipe);
8868 
8869     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8870     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8871       VPValue *StartV = Operands[0];
8872       if (Legal->isReductionVariable(Phi)) {
8873         const RecurrenceDescriptor &RdxDesc =
8874             Legal->getReductionVars().find(Phi)->second;
8875         assert(RdxDesc.getRecurrenceStartValue() ==
8876                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8877         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8878                                              CM.isInLoopReduction(Phi),
8879                                              CM.useOrderedReductions(RdxDesc));
8880       } else {
8881         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8882       }
8883 
8884       // Record the incoming value from the backedge, so we can add the incoming
8885       // value from the backedge after all recipes have been created.
8886       recordRecipeOf(cast<Instruction>(
8887           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8888       PhisToFix.push_back(PhiRecipe);
8889     } else {
8890       // TODO: record backedge value for remaining pointer induction phis.
8891       assert(Phi->getType()->isPointerTy() &&
8892              "only pointer phis should be handled here");
8893       assert(Legal->getInductionVars().count(Phi) &&
8894              "Not an induction variable");
8895       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8896       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8897       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8898     }
8899 
8900     return toVPRecipeResult(PhiRecipe);
8901   }
8902 
8903   if (isa<TruncInst>(Instr) &&
8904       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8905                                                Range, *Plan)))
8906     return toVPRecipeResult(Recipe);
8907 
8908   if (!shouldWiden(Instr, Range))
8909     return nullptr;
8910 
8911   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8912     return toVPRecipeResult(new VPWidenGEPRecipe(
8913         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8914 
8915   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8916     bool InvariantCond =
8917         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8918     return toVPRecipeResult(new VPWidenSelectRecipe(
8919         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8920   }
8921 
8922   return toVPRecipeResult(tryToWiden(Instr, Operands));
8923 }
8924 
8925 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8926                                                         ElementCount MaxVF) {
8927   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8928 
8929   // Collect instructions from the original loop that will become trivially dead
8930   // in the vectorized loop. We don't need to vectorize these instructions. For
8931   // example, original induction update instructions can become dead because we
8932   // separately emit induction "steps" when generating code for the new loop.
8933   // Similarly, we create a new latch condition when setting up the structure
8934   // of the new loop, so the old one can become dead.
8935   SmallPtrSet<Instruction *, 4> DeadInstructions;
8936   collectTriviallyDeadInstructions(DeadInstructions);
8937 
8938   // Add assume instructions we need to drop to DeadInstructions, to prevent
8939   // them from being added to the VPlan.
8940   // TODO: We only need to drop assumes in blocks that get flattend. If the
8941   // control flow is preserved, we should keep them.
8942   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8943   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8944 
8945   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8946   // Dead instructions do not need sinking. Remove them from SinkAfter.
8947   for (Instruction *I : DeadInstructions)
8948     SinkAfter.erase(I);
8949 
8950   // Cannot sink instructions after dead instructions (there won't be any
8951   // recipes for them). Instead, find the first non-dead previous instruction.
8952   for (auto &P : Legal->getSinkAfter()) {
8953     Instruction *SinkTarget = P.second;
8954     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8955     (void)FirstInst;
8956     while (DeadInstructions.contains(SinkTarget)) {
8957       assert(
8958           SinkTarget != FirstInst &&
8959           "Must find a live instruction (at least the one feeding the "
8960           "first-order recurrence PHI) before reaching beginning of the block");
8961       SinkTarget = SinkTarget->getPrevNode();
8962       assert(SinkTarget != P.first &&
8963              "sink source equals target, no sinking required");
8964     }
8965     P.second = SinkTarget;
8966   }
8967 
8968   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8969   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8970     VFRange SubRange = {VF, MaxVFPlusOne};
8971     VPlans.push_back(
8972         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8973     VF = SubRange.End;
8974   }
8975 }
8976 
8977 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8978 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8979 // BranchOnCount VPInstruction to the latch.
8980 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8981                                   bool HasNUW, bool IsVPlanNative) {
8982   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8983   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8984 
8985   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8986   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8987   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8988   if (IsVPlanNative)
8989     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8990   Header->insert(CanonicalIVPHI, Header->begin());
8991 
8992   auto *CanonicalIVIncrement =
8993       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8994                                : VPInstruction::CanonicalIVIncrement,
8995                         {CanonicalIVPHI}, DL);
8996   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8997 
8998   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8999   if (IsVPlanNative) {
9000     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
9001     EB->setCondBit(nullptr);
9002   }
9003   EB->appendRecipe(CanonicalIVIncrement);
9004 
9005   auto *BranchOnCount =
9006       new VPInstruction(VPInstruction::BranchOnCount,
9007                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
9008   EB->appendRecipe(BranchOnCount);
9009 }
9010 
9011 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9012     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9013     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9014 
9015   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9016 
9017   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9018 
9019   // ---------------------------------------------------------------------------
9020   // Pre-construction: record ingredients whose recipes we'll need to further
9021   // process after constructing the initial VPlan.
9022   // ---------------------------------------------------------------------------
9023 
9024   // Mark instructions we'll need to sink later and their targets as
9025   // ingredients whose recipe we'll need to record.
9026   for (auto &Entry : SinkAfter) {
9027     RecipeBuilder.recordRecipeOf(Entry.first);
9028     RecipeBuilder.recordRecipeOf(Entry.second);
9029   }
9030   for (auto &Reduction : CM.getInLoopReductionChains()) {
9031     PHINode *Phi = Reduction.first;
9032     RecurKind Kind =
9033         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
9034     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9035 
9036     RecipeBuilder.recordRecipeOf(Phi);
9037     for (auto &R : ReductionOperations) {
9038       RecipeBuilder.recordRecipeOf(R);
9039       // For min/max reducitons, where we have a pair of icmp/select, we also
9040       // need to record the ICmp recipe, so it can be removed later.
9041       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9042              "Only min/max recurrences allowed for inloop reductions");
9043       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9044         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9045     }
9046   }
9047 
9048   // For each interleave group which is relevant for this (possibly trimmed)
9049   // Range, add it to the set of groups to be later applied to the VPlan and add
9050   // placeholders for its members' Recipes which we'll be replacing with a
9051   // single VPInterleaveRecipe.
9052   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9053     auto applyIG = [IG, this](ElementCount VF) -> bool {
9054       return (VF.isVector() && // Query is illegal for VF == 1
9055               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9056                   LoopVectorizationCostModel::CM_Interleave);
9057     };
9058     if (!getDecisionAndClampRange(applyIG, Range))
9059       continue;
9060     InterleaveGroups.insert(IG);
9061     for (unsigned i = 0; i < IG->getFactor(); i++)
9062       if (Instruction *Member = IG->getMember(i))
9063         RecipeBuilder.recordRecipeOf(Member);
9064   };
9065 
9066   // ---------------------------------------------------------------------------
9067   // Build initial VPlan: Scan the body of the loop in a topological order to
9068   // visit each basic block after having visited its predecessor basic blocks.
9069   // ---------------------------------------------------------------------------
9070 
9071   // Create initial VPlan skeleton, with separate header and latch blocks.
9072   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9073   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9074   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9075   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9076   auto Plan = std::make_unique<VPlan>(TopRegion);
9077 
9078   Instruction *DLInst =
9079       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9080   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9081                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9082                         !CM.foldTailByMasking(), false);
9083 
9084   // Scan the body of the loop in a topological order to visit each basic block
9085   // after having visited its predecessor basic blocks.
9086   LoopBlocksDFS DFS(OrigLoop);
9087   DFS.perform(LI);
9088 
9089   VPBasicBlock *VPBB = HeaderVPBB;
9090   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9091   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9092     // Relevant instructions from basic block BB will be grouped into VPRecipe
9093     // ingredients and fill a new VPBasicBlock.
9094     unsigned VPBBsForBB = 0;
9095     VPBB->setName(BB->getName());
9096     Builder.setInsertPoint(VPBB);
9097 
9098     // Introduce each ingredient into VPlan.
9099     // TODO: Model and preserve debug instrinsics in VPlan.
9100     for (Instruction &I : BB->instructionsWithoutDebug()) {
9101       Instruction *Instr = &I;
9102 
9103       // First filter out irrelevant instructions, to ensure no recipes are
9104       // built for them.
9105       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9106         continue;
9107 
9108       SmallVector<VPValue *, 4> Operands;
9109       auto *Phi = dyn_cast<PHINode>(Instr);
9110       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9111         Operands.push_back(Plan->getOrAddVPValue(
9112             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9113       } else {
9114         auto OpRange = Plan->mapToVPValues(Instr->operands());
9115         Operands = {OpRange.begin(), OpRange.end()};
9116       }
9117       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9118               Instr, Operands, Range, Plan)) {
9119         // If Instr can be simplified to an existing VPValue, use it.
9120         if (RecipeOrValue.is<VPValue *>()) {
9121           auto *VPV = RecipeOrValue.get<VPValue *>();
9122           Plan->addVPValue(Instr, VPV);
9123           // If the re-used value is a recipe, register the recipe for the
9124           // instruction, in case the recipe for Instr needs to be recorded.
9125           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9126             RecipeBuilder.setRecipe(Instr, R);
9127           continue;
9128         }
9129         // Otherwise, add the new recipe.
9130         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9131         for (auto *Def : Recipe->definedValues()) {
9132           auto *UV = Def->getUnderlyingValue();
9133           Plan->addVPValue(UV, Def);
9134         }
9135 
9136         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9137             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9138           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9139           // of the header block. That can happen for truncates of induction
9140           // variables. Those recipes are moved to the phi section of the header
9141           // block after applying SinkAfter, which relies on the original
9142           // position of the trunc.
9143           assert(isa<TruncInst>(Instr));
9144           InductionsToMove.push_back(
9145               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9146         }
9147         RecipeBuilder.setRecipe(Instr, Recipe);
9148         VPBB->appendRecipe(Recipe);
9149         continue;
9150       }
9151 
9152       // Otherwise, if all widening options failed, Instruction is to be
9153       // replicated. This may create a successor for VPBB.
9154       VPBasicBlock *NextVPBB =
9155           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9156       if (NextVPBB != VPBB) {
9157         VPBB = NextVPBB;
9158         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9159                                     : "");
9160       }
9161     }
9162 
9163     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9164     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9165   }
9166 
9167   // Fold the last, empty block into its predecessor.
9168   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9169   assert(VPBB && "expected to fold last (empty) block");
9170   // After here, VPBB should not be used.
9171   VPBB = nullptr;
9172 
9173   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9174          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9175          "entry block must be set to a VPRegionBlock having a non-empty entry "
9176          "VPBasicBlock");
9177   RecipeBuilder.fixHeaderPhis();
9178 
9179   // ---------------------------------------------------------------------------
9180   // Transform initial VPlan: Apply previously taken decisions, in order, to
9181   // bring the VPlan to its final state.
9182   // ---------------------------------------------------------------------------
9183 
9184   // Apply Sink-After legal constraints.
9185   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9186     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9187     if (Region && Region->isReplicator()) {
9188       assert(Region->getNumSuccessors() == 1 &&
9189              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9190       assert(R->getParent()->size() == 1 &&
9191              "A recipe in an original replicator region must be the only "
9192              "recipe in its block");
9193       return Region;
9194     }
9195     return nullptr;
9196   };
9197   for (auto &Entry : SinkAfter) {
9198     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9199     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9200 
9201     auto *TargetRegion = GetReplicateRegion(Target);
9202     auto *SinkRegion = GetReplicateRegion(Sink);
9203     if (!SinkRegion) {
9204       // If the sink source is not a replicate region, sink the recipe directly.
9205       if (TargetRegion) {
9206         // The target is in a replication region, make sure to move Sink to
9207         // the block after it, not into the replication region itself.
9208         VPBasicBlock *NextBlock =
9209             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9210         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9211       } else
9212         Sink->moveAfter(Target);
9213       continue;
9214     }
9215 
9216     // The sink source is in a replicate region. Unhook the region from the CFG.
9217     auto *SinkPred = SinkRegion->getSinglePredecessor();
9218     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9219     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9220     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9221     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9222 
9223     if (TargetRegion) {
9224       // The target recipe is also in a replicate region, move the sink region
9225       // after the target region.
9226       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9227       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9228       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9229       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9230     } else {
9231       // The sink source is in a replicate region, we need to move the whole
9232       // replicate region, which should only contain a single recipe in the
9233       // main block.
9234       auto *SplitBlock =
9235           Target->getParent()->splitAt(std::next(Target->getIterator()));
9236 
9237       auto *SplitPred = SplitBlock->getSinglePredecessor();
9238 
9239       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9240       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9241       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9242     }
9243   }
9244 
9245   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9246   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9247 
9248   // Now that sink-after is done, move induction recipes for optimized truncates
9249   // to the phi section of the header block.
9250   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9251     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9252 
9253   // Adjust the recipes for any inloop reductions.
9254   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9255                              RecipeBuilder, Range.Start);
9256 
9257   // Introduce a recipe to combine the incoming and previous values of a
9258   // first-order recurrence.
9259   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9260     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9261     if (!RecurPhi)
9262       continue;
9263 
9264     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9265     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9266     auto *Region = GetReplicateRegion(PrevRecipe);
9267     if (Region)
9268       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9269     if (Region || PrevRecipe->isPhi())
9270       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9271     else
9272       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9273 
9274     auto *RecurSplice = cast<VPInstruction>(
9275         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9276                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9277 
9278     RecurPhi->replaceAllUsesWith(RecurSplice);
9279     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9280     // all users.
9281     RecurSplice->setOperand(0, RecurPhi);
9282   }
9283 
9284   // Interleave memory: for each Interleave Group we marked earlier as relevant
9285   // for this VPlan, replace the Recipes widening its memory instructions with a
9286   // single VPInterleaveRecipe at its insertion point.
9287   for (auto IG : InterleaveGroups) {
9288     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9289         RecipeBuilder.getRecipe(IG->getInsertPos()));
9290     SmallVector<VPValue *, 4> StoredValues;
9291     for (unsigned i = 0; i < IG->getFactor(); ++i)
9292       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9293         auto *StoreR =
9294             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9295         StoredValues.push_back(StoreR->getStoredValue());
9296       }
9297 
9298     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9299                                         Recipe->getMask());
9300     VPIG->insertBefore(Recipe);
9301     unsigned J = 0;
9302     for (unsigned i = 0; i < IG->getFactor(); ++i)
9303       if (Instruction *Member = IG->getMember(i)) {
9304         if (!Member->getType()->isVoidTy()) {
9305           VPValue *OriginalV = Plan->getVPValue(Member);
9306           Plan->removeVPValueFor(Member);
9307           Plan->addVPValue(Member, VPIG->getVPValue(J));
9308           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9309           J++;
9310         }
9311         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9312       }
9313   }
9314 
9315   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9316   // in ways that accessing values using original IR values is incorrect.
9317   Plan->disableValue2VPValue();
9318 
9319   VPlanTransforms::sinkScalarOperands(*Plan);
9320   VPlanTransforms::mergeReplicateRegions(*Plan);
9321 
9322   std::string PlanName;
9323   raw_string_ostream RSO(PlanName);
9324   ElementCount VF = Range.Start;
9325   Plan->addVF(VF);
9326   RSO << "Initial VPlan for VF={" << VF;
9327   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9328     Plan->addVF(VF);
9329     RSO << "," << VF;
9330   }
9331   RSO << "},UF>=1";
9332   RSO.flush();
9333   Plan->setName(PlanName);
9334 
9335   // Fold Exit block into its predecessor if possible.
9336   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9337   // VPBasicBlock as exit.
9338   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9339 
9340   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9341   return Plan;
9342 }
9343 
9344 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9345   // Outer loop handling: They may require CFG and instruction level
9346   // transformations before even evaluating whether vectorization is profitable.
9347   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9348   // the vectorization pipeline.
9349   assert(!OrigLoop->isInnermost());
9350   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9351 
9352   // Create new empty VPlan
9353   auto Plan = std::make_unique<VPlan>();
9354 
9355   // Build hierarchical CFG
9356   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9357   HCFGBuilder.buildHierarchicalCFG();
9358 
9359   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9360        VF *= 2)
9361     Plan->addVF(VF);
9362 
9363   if (EnableVPlanPredication) {
9364     VPlanPredicator VPP(*Plan);
9365     VPP.predicate();
9366 
9367     // Avoid running transformation to recipes until masked code generation in
9368     // VPlan-native path is in place.
9369     return Plan;
9370   }
9371 
9372   SmallPtrSet<Instruction *, 1> DeadInstructions;
9373   VPlanTransforms::VPInstructionsToVPRecipes(
9374       OrigLoop, Plan,
9375       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9376       DeadInstructions, *PSE.getSE());
9377 
9378   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9379                         true, true);
9380   return Plan;
9381 }
9382 
9383 // Adjust the recipes for reductions. For in-loop reductions the chain of
9384 // instructions leading from the loop exit instr to the phi need to be converted
9385 // to reductions, with one operand being vector and the other being the scalar
9386 // reduction chain. For other reductions, a select is introduced between the phi
9387 // and live-out recipes when folding the tail.
9388 void LoopVectorizationPlanner::adjustRecipesForReductions(
9389     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9390     ElementCount MinVF) {
9391   for (auto &Reduction : CM.getInLoopReductionChains()) {
9392     PHINode *Phi = Reduction.first;
9393     const RecurrenceDescriptor &RdxDesc =
9394         Legal->getReductionVars().find(Phi)->second;
9395     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9396 
9397     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9398       continue;
9399 
9400     // ReductionOperations are orders top-down from the phi's use to the
9401     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9402     // which of the two operands will remain scalar and which will be reduced.
9403     // For minmax the chain will be the select instructions.
9404     Instruction *Chain = Phi;
9405     for (Instruction *R : ReductionOperations) {
9406       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9407       RecurKind Kind = RdxDesc.getRecurrenceKind();
9408 
9409       VPValue *ChainOp = Plan->getVPValue(Chain);
9410       unsigned FirstOpId;
9411       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9412              "Only min/max recurrences allowed for inloop reductions");
9413       // Recognize a call to the llvm.fmuladd intrinsic.
9414       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9415       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9416              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9417       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9418         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9419                "Expected to replace a VPWidenSelectSC");
9420         FirstOpId = 1;
9421       } else {
9422         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9423                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9424                "Expected to replace a VPWidenSC");
9425         FirstOpId = 0;
9426       }
9427       unsigned VecOpId =
9428           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9429       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9430 
9431       auto *CondOp = CM.foldTailByMasking()
9432                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9433                          : nullptr;
9434 
9435       if (IsFMulAdd) {
9436         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9437         // need to create an fmul recipe to use as the vector operand for the
9438         // fadd reduction.
9439         VPInstruction *FMulRecipe = new VPInstruction(
9440             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9441         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9442         WidenRecipe->getParent()->insert(FMulRecipe,
9443                                          WidenRecipe->getIterator());
9444         VecOp = FMulRecipe;
9445       }
9446       VPReductionRecipe *RedRecipe =
9447           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9448       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9449       Plan->removeVPValueFor(R);
9450       Plan->addVPValue(R, RedRecipe);
9451       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9452       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9453       WidenRecipe->eraseFromParent();
9454 
9455       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9456         VPRecipeBase *CompareRecipe =
9457             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9458         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9459                "Expected to replace a VPWidenSC");
9460         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9461                "Expected no remaining users");
9462         CompareRecipe->eraseFromParent();
9463       }
9464       Chain = R;
9465     }
9466   }
9467 
9468   // If tail is folded by masking, introduce selects between the phi
9469   // and the live-out instruction of each reduction, at the beginning of the
9470   // dedicated latch block.
9471   if (CM.foldTailByMasking()) {
9472     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9473     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9474       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9475       if (!PhiR || PhiR->isInLoop())
9476         continue;
9477       VPValue *Cond =
9478           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9479       VPValue *Red = PhiR->getBackedgeValue();
9480       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9481              "reduction recipe must be defined before latch");
9482       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9483     }
9484   }
9485 }
9486 
9487 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9488 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9489                                VPSlotTracker &SlotTracker) const {
9490   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9491   IG->getInsertPos()->printAsOperand(O, false);
9492   O << ", ";
9493   getAddr()->printAsOperand(O, SlotTracker);
9494   VPValue *Mask = getMask();
9495   if (Mask) {
9496     O << ", ";
9497     Mask->printAsOperand(O, SlotTracker);
9498   }
9499 
9500   unsigned OpIdx = 0;
9501   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9502     if (!IG->getMember(i))
9503       continue;
9504     if (getNumStoreOperands() > 0) {
9505       O << "\n" << Indent << "  store ";
9506       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9507       O << " to index " << i;
9508     } else {
9509       O << "\n" << Indent << "  ";
9510       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9511       O << " = load from index " << i;
9512     }
9513     ++OpIdx;
9514   }
9515 }
9516 #endif
9517 
9518 void VPWidenCallRecipe::execute(VPTransformState &State) {
9519   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9520                                   *this, State);
9521 }
9522 
9523 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9524   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9525   State.ILV->setDebugLocFromInst(&I);
9526 
9527   // The condition can be loop invariant  but still defined inside the
9528   // loop. This means that we can't just use the original 'cond' value.
9529   // We have to take the 'vectorized' value and pick the first lane.
9530   // Instcombine will make this a no-op.
9531   auto *InvarCond =
9532       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9533 
9534   for (unsigned Part = 0; Part < State.UF; ++Part) {
9535     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9536     Value *Op0 = State.get(getOperand(1), Part);
9537     Value *Op1 = State.get(getOperand(2), Part);
9538     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9539     State.set(this, Sel, Part);
9540     State.ILV->addMetadata(Sel, &I);
9541   }
9542 }
9543 
9544 void VPWidenRecipe::execute(VPTransformState &State) {
9545   auto &I = *cast<Instruction>(getUnderlyingValue());
9546   auto &Builder = State.Builder;
9547   switch (I.getOpcode()) {
9548   case Instruction::Call:
9549   case Instruction::Br:
9550   case Instruction::PHI:
9551   case Instruction::GetElementPtr:
9552   case Instruction::Select:
9553     llvm_unreachable("This instruction is handled by a different recipe.");
9554   case Instruction::UDiv:
9555   case Instruction::SDiv:
9556   case Instruction::SRem:
9557   case Instruction::URem:
9558   case Instruction::Add:
9559   case Instruction::FAdd:
9560   case Instruction::Sub:
9561   case Instruction::FSub:
9562   case Instruction::FNeg:
9563   case Instruction::Mul:
9564   case Instruction::FMul:
9565   case Instruction::FDiv:
9566   case Instruction::FRem:
9567   case Instruction::Shl:
9568   case Instruction::LShr:
9569   case Instruction::AShr:
9570   case Instruction::And:
9571   case Instruction::Or:
9572   case Instruction::Xor: {
9573     // Just widen unops and binops.
9574     State.ILV->setDebugLocFromInst(&I);
9575 
9576     for (unsigned Part = 0; Part < State.UF; ++Part) {
9577       SmallVector<Value *, 2> Ops;
9578       for (VPValue *VPOp : operands())
9579         Ops.push_back(State.get(VPOp, Part));
9580 
9581       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9582 
9583       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9584         VecOp->copyIRFlags(&I);
9585 
9586         // If the instruction is vectorized and was in a basic block that needed
9587         // predication, we can't propagate poison-generating flags (nuw/nsw,
9588         // exact, etc.). The control flow has been linearized and the
9589         // instruction is no longer guarded by the predicate, which could make
9590         // the flag properties to no longer hold.
9591         if (State.MayGeneratePoisonRecipes.contains(this))
9592           VecOp->dropPoisonGeneratingFlags();
9593       }
9594 
9595       // Use this vector value for all users of the original instruction.
9596       State.set(this, V, Part);
9597       State.ILV->addMetadata(V, &I);
9598     }
9599 
9600     break;
9601   }
9602   case Instruction::ICmp:
9603   case Instruction::FCmp: {
9604     // Widen compares. Generate vector compares.
9605     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9606     auto *Cmp = cast<CmpInst>(&I);
9607     State.ILV->setDebugLocFromInst(Cmp);
9608     for (unsigned Part = 0; Part < State.UF; ++Part) {
9609       Value *A = State.get(getOperand(0), Part);
9610       Value *B = State.get(getOperand(1), Part);
9611       Value *C = nullptr;
9612       if (FCmp) {
9613         // Propagate fast math flags.
9614         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9615         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9616         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9617       } else {
9618         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9619       }
9620       State.set(this, C, Part);
9621       State.ILV->addMetadata(C, &I);
9622     }
9623 
9624     break;
9625   }
9626 
9627   case Instruction::ZExt:
9628   case Instruction::SExt:
9629   case Instruction::FPToUI:
9630   case Instruction::FPToSI:
9631   case Instruction::FPExt:
9632   case Instruction::PtrToInt:
9633   case Instruction::IntToPtr:
9634   case Instruction::SIToFP:
9635   case Instruction::UIToFP:
9636   case Instruction::Trunc:
9637   case Instruction::FPTrunc:
9638   case Instruction::BitCast: {
9639     auto *CI = cast<CastInst>(&I);
9640     State.ILV->setDebugLocFromInst(CI);
9641 
9642     /// Vectorize casts.
9643     Type *DestTy = (State.VF.isScalar())
9644                        ? CI->getType()
9645                        : VectorType::get(CI->getType(), State.VF);
9646 
9647     for (unsigned Part = 0; Part < State.UF; ++Part) {
9648       Value *A = State.get(getOperand(0), Part);
9649       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9650       State.set(this, Cast, Part);
9651       State.ILV->addMetadata(Cast, &I);
9652     }
9653     break;
9654   }
9655   default:
9656     // This instruction is not vectorized by simple widening.
9657     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9658     llvm_unreachable("Unhandled instruction!");
9659   } // end of switch.
9660 }
9661 
9662 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9663   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9664   // Construct a vector GEP by widening the operands of the scalar GEP as
9665   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9666   // results in a vector of pointers when at least one operand of the GEP
9667   // is vector-typed. Thus, to keep the representation compact, we only use
9668   // vector-typed operands for loop-varying values.
9669 
9670   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9671     // If we are vectorizing, but the GEP has only loop-invariant operands,
9672     // the GEP we build (by only using vector-typed operands for
9673     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9674     // produce a vector of pointers, we need to either arbitrarily pick an
9675     // operand to broadcast, or broadcast a clone of the original GEP.
9676     // Here, we broadcast a clone of the original.
9677     //
9678     // TODO: If at some point we decide to scalarize instructions having
9679     //       loop-invariant operands, this special case will no longer be
9680     //       required. We would add the scalarization decision to
9681     //       collectLoopScalars() and teach getVectorValue() to broadcast
9682     //       the lane-zero scalar value.
9683     auto *Clone = State.Builder.Insert(GEP->clone());
9684     for (unsigned Part = 0; Part < State.UF; ++Part) {
9685       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9686       State.set(this, EntryPart, Part);
9687       State.ILV->addMetadata(EntryPart, GEP);
9688     }
9689   } else {
9690     // If the GEP has at least one loop-varying operand, we are sure to
9691     // produce a vector of pointers. But if we are only unrolling, we want
9692     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9693     // produce with the code below will be scalar (if VF == 1) or vector
9694     // (otherwise). Note that for the unroll-only case, we still maintain
9695     // values in the vector mapping with initVector, as we do for other
9696     // instructions.
9697     for (unsigned Part = 0; Part < State.UF; ++Part) {
9698       // The pointer operand of the new GEP. If it's loop-invariant, we
9699       // won't broadcast it.
9700       auto *Ptr = IsPtrLoopInvariant
9701                       ? State.get(getOperand(0), VPIteration(0, 0))
9702                       : State.get(getOperand(0), Part);
9703 
9704       // Collect all the indices for the new GEP. If any index is
9705       // loop-invariant, we won't broadcast it.
9706       SmallVector<Value *, 4> Indices;
9707       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9708         VPValue *Operand = getOperand(I);
9709         if (IsIndexLoopInvariant[I - 1])
9710           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9711         else
9712           Indices.push_back(State.get(Operand, Part));
9713       }
9714 
9715       // If the GEP instruction is vectorized and was in a basic block that
9716       // needed predication, we can't propagate the poison-generating 'inbounds'
9717       // flag. The control flow has been linearized and the GEP is no longer
9718       // guarded by the predicate, which could make the 'inbounds' properties to
9719       // no longer hold.
9720       bool IsInBounds =
9721           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9722 
9723       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9724       // but it should be a vector, otherwise.
9725       auto *NewGEP = IsInBounds
9726                          ? State.Builder.CreateInBoundsGEP(
9727                                GEP->getSourceElementType(), Ptr, Indices)
9728                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9729                                                    Ptr, Indices);
9730       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9731              "NewGEP is not a pointer vector");
9732       State.set(this, NewGEP, Part);
9733       State.ILV->addMetadata(NewGEP, GEP);
9734     }
9735   }
9736 }
9737 
9738 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9739   assert(!State.Instance && "Int or FP induction being replicated.");
9740   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9741   State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV);
9742 }
9743 
9744 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9745   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9746                                  State);
9747 }
9748 
9749 void VPBlendRecipe::execute(VPTransformState &State) {
9750   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9751   // We know that all PHIs in non-header blocks are converted into
9752   // selects, so we don't have to worry about the insertion order and we
9753   // can just use the builder.
9754   // At this point we generate the predication tree. There may be
9755   // duplications since this is a simple recursive scan, but future
9756   // optimizations will clean it up.
9757 
9758   unsigned NumIncoming = getNumIncomingValues();
9759 
9760   // Generate a sequence of selects of the form:
9761   // SELECT(Mask3, In3,
9762   //        SELECT(Mask2, In2,
9763   //               SELECT(Mask1, In1,
9764   //                      In0)))
9765   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9766   // are essentially undef are taken from In0.
9767   InnerLoopVectorizer::VectorParts Entry(State.UF);
9768   for (unsigned In = 0; In < NumIncoming; ++In) {
9769     for (unsigned Part = 0; Part < State.UF; ++Part) {
9770       // We might have single edge PHIs (blocks) - use an identity
9771       // 'select' for the first PHI operand.
9772       Value *In0 = State.get(getIncomingValue(In), Part);
9773       if (In == 0)
9774         Entry[Part] = In0; // Initialize with the first incoming value.
9775       else {
9776         // Select between the current value and the previous incoming edge
9777         // based on the incoming mask.
9778         Value *Cond = State.get(getMask(In), Part);
9779         Entry[Part] =
9780             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9781       }
9782     }
9783   }
9784   for (unsigned Part = 0; Part < State.UF; ++Part)
9785     State.set(this, Entry[Part], Part);
9786 }
9787 
9788 void VPInterleaveRecipe::execute(VPTransformState &State) {
9789   assert(!State.Instance && "Interleave group being replicated.");
9790   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9791                                       getStoredValues(), getMask());
9792 }
9793 
9794 void VPReductionRecipe::execute(VPTransformState &State) {
9795   assert(!State.Instance && "Reduction being replicated.");
9796   Value *PrevInChain = State.get(getChainOp(), 0);
9797   RecurKind Kind = RdxDesc->getRecurrenceKind();
9798   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9799   // Propagate the fast-math flags carried by the underlying instruction.
9800   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9801   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9802   for (unsigned Part = 0; Part < State.UF; ++Part) {
9803     Value *NewVecOp = State.get(getVecOp(), Part);
9804     if (VPValue *Cond = getCondOp()) {
9805       Value *NewCond = State.get(Cond, Part);
9806       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9807       Value *Iden = RdxDesc->getRecurrenceIdentity(
9808           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9809       Value *IdenVec =
9810           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9811       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9812       NewVecOp = Select;
9813     }
9814     Value *NewRed;
9815     Value *NextInChain;
9816     if (IsOrdered) {
9817       if (State.VF.isVector())
9818         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9819                                         PrevInChain);
9820       else
9821         NewRed = State.Builder.CreateBinOp(
9822             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9823             NewVecOp);
9824       PrevInChain = NewRed;
9825     } else {
9826       PrevInChain = State.get(getChainOp(), Part);
9827       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9828     }
9829     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9830       NextInChain =
9831           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9832                          NewRed, PrevInChain);
9833     } else if (IsOrdered)
9834       NextInChain = NewRed;
9835     else
9836       NextInChain = State.Builder.CreateBinOp(
9837           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9838           PrevInChain);
9839     State.set(this, NextInChain, Part);
9840   }
9841 }
9842 
9843 void VPReplicateRecipe::execute(VPTransformState &State) {
9844   if (State.Instance) { // Generate a single instance.
9845     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9846     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9847                                     IsPredicated, State);
9848     // Insert scalar instance packing it into a vector.
9849     if (AlsoPack && State.VF.isVector()) {
9850       // If we're constructing lane 0, initialize to start from poison.
9851       if (State.Instance->Lane.isFirstLane()) {
9852         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9853         Value *Poison = PoisonValue::get(
9854             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9855         State.set(this, Poison, State.Instance->Part);
9856       }
9857       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9858     }
9859     return;
9860   }
9861 
9862   // Generate scalar instances for all VF lanes of all UF parts, unless the
9863   // instruction is uniform inwhich case generate only the first lane for each
9864   // of the UF parts.
9865   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9866   assert((!State.VF.isScalable() || IsUniform) &&
9867          "Can't scalarize a scalable vector");
9868   for (unsigned Part = 0; Part < State.UF; ++Part)
9869     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9870       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9871                                       VPIteration(Part, Lane), IsPredicated,
9872                                       State);
9873 }
9874 
9875 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9876   assert(State.Instance && "Branch on Mask works only on single instance.");
9877 
9878   unsigned Part = State.Instance->Part;
9879   unsigned Lane = State.Instance->Lane.getKnownLane();
9880 
9881   Value *ConditionBit = nullptr;
9882   VPValue *BlockInMask = getMask();
9883   if (BlockInMask) {
9884     ConditionBit = State.get(BlockInMask, Part);
9885     if (ConditionBit->getType()->isVectorTy())
9886       ConditionBit = State.Builder.CreateExtractElement(
9887           ConditionBit, State.Builder.getInt32(Lane));
9888   } else // Block in mask is all-one.
9889     ConditionBit = State.Builder.getTrue();
9890 
9891   // Replace the temporary unreachable terminator with a new conditional branch,
9892   // whose two destinations will be set later when they are created.
9893   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9894   assert(isa<UnreachableInst>(CurrentTerminator) &&
9895          "Expected to replace unreachable terminator with conditional branch.");
9896   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9897   CondBr->setSuccessor(0, nullptr);
9898   ReplaceInstWithInst(CurrentTerminator, CondBr);
9899 }
9900 
9901 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9902   assert(State.Instance && "Predicated instruction PHI works per instance.");
9903   Instruction *ScalarPredInst =
9904       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9905   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9906   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9907   assert(PredicatingBB && "Predicated block has no single predecessor.");
9908   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9909          "operand must be VPReplicateRecipe");
9910 
9911   // By current pack/unpack logic we need to generate only a single phi node: if
9912   // a vector value for the predicated instruction exists at this point it means
9913   // the instruction has vector users only, and a phi for the vector value is
9914   // needed. In this case the recipe of the predicated instruction is marked to
9915   // also do that packing, thereby "hoisting" the insert-element sequence.
9916   // Otherwise, a phi node for the scalar value is needed.
9917   unsigned Part = State.Instance->Part;
9918   if (State.hasVectorValue(getOperand(0), Part)) {
9919     Value *VectorValue = State.get(getOperand(0), Part);
9920     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9921     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9922     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9923     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9924     if (State.hasVectorValue(this, Part))
9925       State.reset(this, VPhi, Part);
9926     else
9927       State.set(this, VPhi, Part);
9928     // NOTE: Currently we need to update the value of the operand, so the next
9929     // predicated iteration inserts its generated value in the correct vector.
9930     State.reset(getOperand(0), VPhi, Part);
9931   } else {
9932     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9933     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9934     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9935                      PredicatingBB);
9936     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9937     if (State.hasScalarValue(this, *State.Instance))
9938       State.reset(this, Phi, *State.Instance);
9939     else
9940       State.set(this, Phi, *State.Instance);
9941     // NOTE: Currently we need to update the value of the operand, so the next
9942     // predicated iteration inserts its generated value in the correct vector.
9943     State.reset(getOperand(0), Phi, *State.Instance);
9944   }
9945 }
9946 
9947 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9948   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9949 
9950   // Attempt to issue a wide load.
9951   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9952   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9953 
9954   assert((LI || SI) && "Invalid Load/Store instruction");
9955   assert((!SI || StoredValue) && "No stored value provided for widened store");
9956   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9957 
9958   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9959 
9960   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9961   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9962   bool CreateGatherScatter = !Consecutive;
9963 
9964   auto &Builder = State.Builder;
9965   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9966   bool isMaskRequired = getMask();
9967   if (isMaskRequired)
9968     for (unsigned Part = 0; Part < State.UF; ++Part)
9969       BlockInMaskParts[Part] = State.get(getMask(), Part);
9970 
9971   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9972     // Calculate the pointer for the specific unroll-part.
9973     GetElementPtrInst *PartPtr = nullptr;
9974 
9975     bool InBounds = false;
9976     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9977       InBounds = gep->isInBounds();
9978     if (Reverse) {
9979       // If the address is consecutive but reversed, then the
9980       // wide store needs to start at the last vector element.
9981       // RunTimeVF =  VScale * VF.getKnownMinValue()
9982       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9983       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9984       // NumElt = -Part * RunTimeVF
9985       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9986       // LastLane = 1 - RunTimeVF
9987       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9988       PartPtr =
9989           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9990       PartPtr->setIsInBounds(InBounds);
9991       PartPtr = cast<GetElementPtrInst>(
9992           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9993       PartPtr->setIsInBounds(InBounds);
9994       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9995         BlockInMaskParts[Part] =
9996             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9997     } else {
9998       Value *Increment =
9999           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
10000       PartPtr = cast<GetElementPtrInst>(
10001           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
10002       PartPtr->setIsInBounds(InBounds);
10003     }
10004 
10005     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
10006     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
10007   };
10008 
10009   // Handle Stores:
10010   if (SI) {
10011     State.ILV->setDebugLocFromInst(SI);
10012 
10013     for (unsigned Part = 0; Part < State.UF; ++Part) {
10014       Instruction *NewSI = nullptr;
10015       Value *StoredVal = State.get(StoredValue, Part);
10016       if (CreateGatherScatter) {
10017         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10018         Value *VectorGep = State.get(getAddr(), Part);
10019         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
10020                                             MaskPart);
10021       } else {
10022         if (Reverse) {
10023           // If we store to reverse consecutive memory locations, then we need
10024           // to reverse the order of elements in the stored value.
10025           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10026           // We don't want to update the value in the map as it might be used in
10027           // another expression. So don't call resetVectorValue(StoredVal).
10028         }
10029         auto *VecPtr =
10030             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10031         if (isMaskRequired)
10032           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10033                                             BlockInMaskParts[Part]);
10034         else
10035           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10036       }
10037       State.ILV->addMetadata(NewSI, SI);
10038     }
10039     return;
10040   }
10041 
10042   // Handle loads.
10043   assert(LI && "Must have a load instruction");
10044   State.ILV->setDebugLocFromInst(LI);
10045   for (unsigned Part = 0; Part < State.UF; ++Part) {
10046     Value *NewLI;
10047     if (CreateGatherScatter) {
10048       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10049       Value *VectorGep = State.get(getAddr(), Part);
10050       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10051                                          nullptr, "wide.masked.gather");
10052       State.ILV->addMetadata(NewLI, LI);
10053     } else {
10054       auto *VecPtr =
10055           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10056       if (isMaskRequired)
10057         NewLI = Builder.CreateMaskedLoad(
10058             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10059             PoisonValue::get(DataTy), "wide.masked.load");
10060       else
10061         NewLI =
10062             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10063 
10064       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10065       State.ILV->addMetadata(NewLI, LI);
10066       if (Reverse)
10067         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10068     }
10069 
10070     State.set(this, NewLI, Part);
10071   }
10072 }
10073 
10074 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10075 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10076 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10077 // for predication.
10078 static ScalarEpilogueLowering getScalarEpilogueLowering(
10079     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10080     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10081     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10082     LoopVectorizationLegality &LVL) {
10083   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10084   // don't look at hints or options, and don't request a scalar epilogue.
10085   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10086   // LoopAccessInfo (due to code dependency and not being able to reliably get
10087   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10088   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10089   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10090   // back to the old way and vectorize with versioning when forced. See D81345.)
10091   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10092                                                       PGSOQueryType::IRPass) &&
10093                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10094     return CM_ScalarEpilogueNotAllowedOptSize;
10095 
10096   // 2) If set, obey the directives
10097   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10098     switch (PreferPredicateOverEpilogue) {
10099     case PreferPredicateTy::ScalarEpilogue:
10100       return CM_ScalarEpilogueAllowed;
10101     case PreferPredicateTy::PredicateElseScalarEpilogue:
10102       return CM_ScalarEpilogueNotNeededUsePredicate;
10103     case PreferPredicateTy::PredicateOrDontVectorize:
10104       return CM_ScalarEpilogueNotAllowedUsePredicate;
10105     };
10106   }
10107 
10108   // 3) If set, obey the hints
10109   switch (Hints.getPredicate()) {
10110   case LoopVectorizeHints::FK_Enabled:
10111     return CM_ScalarEpilogueNotNeededUsePredicate;
10112   case LoopVectorizeHints::FK_Disabled:
10113     return CM_ScalarEpilogueAllowed;
10114   };
10115 
10116   // 4) if the TTI hook indicates this is profitable, request predication.
10117   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10118                                        LVL.getLAI()))
10119     return CM_ScalarEpilogueNotNeededUsePredicate;
10120 
10121   return CM_ScalarEpilogueAllowed;
10122 }
10123 
10124 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10125   // If Values have been set for this Def return the one relevant for \p Part.
10126   if (hasVectorValue(Def, Part))
10127     return Data.PerPartOutput[Def][Part];
10128 
10129   if (!hasScalarValue(Def, {Part, 0})) {
10130     Value *IRV = Def->getLiveInIRValue();
10131     Value *B = ILV->getBroadcastInstrs(IRV);
10132     set(Def, B, Part);
10133     return B;
10134   }
10135 
10136   Value *ScalarValue = get(Def, {Part, 0});
10137   // If we aren't vectorizing, we can just copy the scalar map values over
10138   // to the vector map.
10139   if (VF.isScalar()) {
10140     set(Def, ScalarValue, Part);
10141     return ScalarValue;
10142   }
10143 
10144   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10145   bool IsUniform = RepR && RepR->isUniform();
10146 
10147   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10148   // Check if there is a scalar value for the selected lane.
10149   if (!hasScalarValue(Def, {Part, LastLane})) {
10150     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10151     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10152            "unexpected recipe found to be invariant");
10153     IsUniform = true;
10154     LastLane = 0;
10155   }
10156 
10157   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10158   // Set the insert point after the last scalarized instruction or after the
10159   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10160   // will directly follow the scalar definitions.
10161   auto OldIP = Builder.saveIP();
10162   auto NewIP =
10163       isa<PHINode>(LastInst)
10164           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10165           : std::next(BasicBlock::iterator(LastInst));
10166   Builder.SetInsertPoint(&*NewIP);
10167 
10168   // However, if we are vectorizing, we need to construct the vector values.
10169   // If the value is known to be uniform after vectorization, we can just
10170   // broadcast the scalar value corresponding to lane zero for each unroll
10171   // iteration. Otherwise, we construct the vector values using
10172   // insertelement instructions. Since the resulting vectors are stored in
10173   // State, we will only generate the insertelements once.
10174   Value *VectorValue = nullptr;
10175   if (IsUniform) {
10176     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10177     set(Def, VectorValue, Part);
10178   } else {
10179     // Initialize packing with insertelements to start from undef.
10180     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10181     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10182     set(Def, Undef, Part);
10183     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10184       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10185     VectorValue = get(Def, Part);
10186   }
10187   Builder.restoreIP(OldIP);
10188   return VectorValue;
10189 }
10190 
10191 // Process the loop in the VPlan-native vectorization path. This path builds
10192 // VPlan upfront in the vectorization pipeline, which allows to apply
10193 // VPlan-to-VPlan transformations from the very beginning without modifying the
10194 // input LLVM IR.
10195 static bool processLoopInVPlanNativePath(
10196     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10197     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10198     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10199     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10200     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10201     LoopVectorizationRequirements &Requirements) {
10202 
10203   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10204     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10205     return false;
10206   }
10207   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10208   Function *F = L->getHeader()->getParent();
10209   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10210 
10211   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10212       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10213 
10214   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10215                                 &Hints, IAI);
10216   // Use the planner for outer loop vectorization.
10217   // TODO: CM is not used at this point inside the planner. Turn CM into an
10218   // optional argument if we don't need it in the future.
10219   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10220                                Requirements, ORE);
10221 
10222   // Get user vectorization factor.
10223   ElementCount UserVF = Hints.getWidth();
10224 
10225   CM.collectElementTypesForWidening();
10226 
10227   // Plan how to best vectorize, return the best VF and its cost.
10228   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10229 
10230   // If we are stress testing VPlan builds, do not attempt to generate vector
10231   // code. Masked vector code generation support will follow soon.
10232   // Also, do not attempt to vectorize if no vector code will be produced.
10233   if (VPlanBuildStressTest || EnableVPlanPredication ||
10234       VectorizationFactor::Disabled() == VF)
10235     return false;
10236 
10237   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10238 
10239   {
10240     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10241                              F->getParent()->getDataLayout());
10242     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10243                            &CM, BFI, PSI, Checks);
10244     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10245                       << L->getHeader()->getParent()->getName() << "\"\n");
10246     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10247   }
10248 
10249   // Mark the loop as already vectorized to avoid vectorizing again.
10250   Hints.setAlreadyVectorized();
10251   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10252   return true;
10253 }
10254 
10255 // Emit a remark if there are stores to floats that required a floating point
10256 // extension. If the vectorized loop was generated with floating point there
10257 // will be a performance penalty from the conversion overhead and the change in
10258 // the vector width.
10259 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10260   SmallVector<Instruction *, 4> Worklist;
10261   for (BasicBlock *BB : L->getBlocks()) {
10262     for (Instruction &Inst : *BB) {
10263       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10264         if (S->getValueOperand()->getType()->isFloatTy())
10265           Worklist.push_back(S);
10266       }
10267     }
10268   }
10269 
10270   // Traverse the floating point stores upwards searching, for floating point
10271   // conversions.
10272   SmallPtrSet<const Instruction *, 4> Visited;
10273   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10274   while (!Worklist.empty()) {
10275     auto *I = Worklist.pop_back_val();
10276     if (!L->contains(I))
10277       continue;
10278     if (!Visited.insert(I).second)
10279       continue;
10280 
10281     // Emit a remark if the floating point store required a floating
10282     // point conversion.
10283     // TODO: More work could be done to identify the root cause such as a
10284     // constant or a function return type and point the user to it.
10285     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10286       ORE->emit([&]() {
10287         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10288                                           I->getDebugLoc(), L->getHeader())
10289                << "floating point conversion changes vector width. "
10290                << "Mixed floating point precision requires an up/down "
10291                << "cast that will negatively impact performance.";
10292       });
10293 
10294     for (Use &Op : I->operands())
10295       if (auto *OpI = dyn_cast<Instruction>(Op))
10296         Worklist.push_back(OpI);
10297   }
10298 }
10299 
10300 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10301     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10302                                !EnableLoopInterleaving),
10303       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10304                               !EnableLoopVectorization) {}
10305 
10306 bool LoopVectorizePass::processLoop(Loop *L) {
10307   assert((EnableVPlanNativePath || L->isInnermost()) &&
10308          "VPlan-native path is not enabled. Only process inner loops.");
10309 
10310 #ifndef NDEBUG
10311   const std::string DebugLocStr = getDebugLocString(L);
10312 #endif /* NDEBUG */
10313 
10314   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10315                     << L->getHeader()->getParent()->getName() << "\" from "
10316                     << DebugLocStr << "\n");
10317 
10318   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10319 
10320   LLVM_DEBUG(
10321       dbgs() << "LV: Loop hints:"
10322              << " force="
10323              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10324                      ? "disabled"
10325                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10326                             ? "enabled"
10327                             : "?"))
10328              << " width=" << Hints.getWidth()
10329              << " interleave=" << Hints.getInterleave() << "\n");
10330 
10331   // Function containing loop
10332   Function *F = L->getHeader()->getParent();
10333 
10334   // Looking at the diagnostic output is the only way to determine if a loop
10335   // was vectorized (other than looking at the IR or machine code), so it
10336   // is important to generate an optimization remark for each loop. Most of
10337   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10338   // generated as OptimizationRemark and OptimizationRemarkMissed are
10339   // less verbose reporting vectorized loops and unvectorized loops that may
10340   // benefit from vectorization, respectively.
10341 
10342   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10343     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10344     return false;
10345   }
10346 
10347   PredicatedScalarEvolution PSE(*SE, *L);
10348 
10349   // Check if it is legal to vectorize the loop.
10350   LoopVectorizationRequirements Requirements;
10351   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10352                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10353   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10354     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10355     Hints.emitRemarkWithHints();
10356     return false;
10357   }
10358 
10359   // Check the function attributes and profiles to find out if this function
10360   // should be optimized for size.
10361   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10362       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10363 
10364   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10365   // here. They may require CFG and instruction level transformations before
10366   // even evaluating whether vectorization is profitable. Since we cannot modify
10367   // the incoming IR, we need to build VPlan upfront in the vectorization
10368   // pipeline.
10369   if (!L->isInnermost())
10370     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10371                                         ORE, BFI, PSI, Hints, Requirements);
10372 
10373   assert(L->isInnermost() && "Inner loop expected.");
10374 
10375   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10376   // count by optimizing for size, to minimize overheads.
10377   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10378   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10379     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10380                       << "This loop is worth vectorizing only if no scalar "
10381                       << "iteration overheads are incurred.");
10382     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10383       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10384     else {
10385       LLVM_DEBUG(dbgs() << "\n");
10386       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10387     }
10388   }
10389 
10390   // Check the function attributes to see if implicit floats are allowed.
10391   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10392   // an integer loop and the vector instructions selected are purely integer
10393   // vector instructions?
10394   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10395     reportVectorizationFailure(
10396         "Can't vectorize when the NoImplicitFloat attribute is used",
10397         "loop not vectorized due to NoImplicitFloat attribute",
10398         "NoImplicitFloat", ORE, L);
10399     Hints.emitRemarkWithHints();
10400     return false;
10401   }
10402 
10403   // Check if the target supports potentially unsafe FP vectorization.
10404   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10405   // for the target we're vectorizing for, to make sure none of the
10406   // additional fp-math flags can help.
10407   if (Hints.isPotentiallyUnsafe() &&
10408       TTI->isFPVectorizationPotentiallyUnsafe()) {
10409     reportVectorizationFailure(
10410         "Potentially unsafe FP op prevents vectorization",
10411         "loop not vectorized due to unsafe FP support.",
10412         "UnsafeFP", ORE, L);
10413     Hints.emitRemarkWithHints();
10414     return false;
10415   }
10416 
10417   bool AllowOrderedReductions;
10418   // If the flag is set, use that instead and override the TTI behaviour.
10419   if (ForceOrderedReductions.getNumOccurrences() > 0)
10420     AllowOrderedReductions = ForceOrderedReductions;
10421   else
10422     AllowOrderedReductions = TTI->enableOrderedReductions();
10423   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10424     ORE->emit([&]() {
10425       auto *ExactFPMathInst = Requirements.getExactFPInst();
10426       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10427                                                  ExactFPMathInst->getDebugLoc(),
10428                                                  ExactFPMathInst->getParent())
10429              << "loop not vectorized: cannot prove it is safe to reorder "
10430                 "floating-point operations";
10431     });
10432     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10433                          "reorder floating-point operations\n");
10434     Hints.emitRemarkWithHints();
10435     return false;
10436   }
10437 
10438   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10439   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10440 
10441   // If an override option has been passed in for interleaved accesses, use it.
10442   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10443     UseInterleaved = EnableInterleavedMemAccesses;
10444 
10445   // Analyze interleaved memory accesses.
10446   if (UseInterleaved) {
10447     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10448   }
10449 
10450   // Use the cost model.
10451   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10452                                 F, &Hints, IAI);
10453   CM.collectValuesToIgnore();
10454   CM.collectElementTypesForWidening();
10455 
10456   // Use the planner for vectorization.
10457   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10458                                Requirements, ORE);
10459 
10460   // Get user vectorization factor and interleave count.
10461   ElementCount UserVF = Hints.getWidth();
10462   unsigned UserIC = Hints.getInterleave();
10463 
10464   // Plan how to best vectorize, return the best VF and its cost.
10465   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10466 
10467   VectorizationFactor VF = VectorizationFactor::Disabled();
10468   unsigned IC = 1;
10469 
10470   if (MaybeVF) {
10471     VF = *MaybeVF;
10472     // Select the interleave count.
10473     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10474   }
10475 
10476   // Identify the diagnostic messages that should be produced.
10477   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10478   bool VectorizeLoop = true, InterleaveLoop = true;
10479   if (VF.Width.isScalar()) {
10480     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10481     VecDiagMsg = std::make_pair(
10482         "VectorizationNotBeneficial",
10483         "the cost-model indicates that vectorization is not beneficial");
10484     VectorizeLoop = false;
10485   }
10486 
10487   if (!MaybeVF && UserIC > 1) {
10488     // Tell the user interleaving was avoided up-front, despite being explicitly
10489     // requested.
10490     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10491                          "interleaving should be avoided up front\n");
10492     IntDiagMsg = std::make_pair(
10493         "InterleavingAvoided",
10494         "Ignoring UserIC, because interleaving was avoided up front");
10495     InterleaveLoop = false;
10496   } else if (IC == 1 && UserIC <= 1) {
10497     // Tell the user interleaving is not beneficial.
10498     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10499     IntDiagMsg = std::make_pair(
10500         "InterleavingNotBeneficial",
10501         "the cost-model indicates that interleaving is not beneficial");
10502     InterleaveLoop = false;
10503     if (UserIC == 1) {
10504       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10505       IntDiagMsg.second +=
10506           " and is explicitly disabled or interleave count is set to 1";
10507     }
10508   } else if (IC > 1 && UserIC == 1) {
10509     // Tell the user interleaving is beneficial, but it explicitly disabled.
10510     LLVM_DEBUG(
10511         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10512     IntDiagMsg = std::make_pair(
10513         "InterleavingBeneficialButDisabled",
10514         "the cost-model indicates that interleaving is beneficial "
10515         "but is explicitly disabled or interleave count is set to 1");
10516     InterleaveLoop = false;
10517   }
10518 
10519   // Override IC if user provided an interleave count.
10520   IC = UserIC > 0 ? UserIC : IC;
10521 
10522   // Emit diagnostic messages, if any.
10523   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10524   if (!VectorizeLoop && !InterleaveLoop) {
10525     // Do not vectorize or interleaving the loop.
10526     ORE->emit([&]() {
10527       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10528                                       L->getStartLoc(), L->getHeader())
10529              << VecDiagMsg.second;
10530     });
10531     ORE->emit([&]() {
10532       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10533                                       L->getStartLoc(), L->getHeader())
10534              << IntDiagMsg.second;
10535     });
10536     return false;
10537   } else if (!VectorizeLoop && InterleaveLoop) {
10538     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10539     ORE->emit([&]() {
10540       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10541                                         L->getStartLoc(), L->getHeader())
10542              << VecDiagMsg.second;
10543     });
10544   } else if (VectorizeLoop && !InterleaveLoop) {
10545     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10546                       << ") in " << DebugLocStr << '\n');
10547     ORE->emit([&]() {
10548       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10549                                         L->getStartLoc(), L->getHeader())
10550              << IntDiagMsg.second;
10551     });
10552   } else if (VectorizeLoop && InterleaveLoop) {
10553     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10554                       << ") in " << DebugLocStr << '\n');
10555     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10556   }
10557 
10558   bool DisableRuntimeUnroll = false;
10559   MDNode *OrigLoopID = L->getLoopID();
10560   {
10561     // Optimistically generate runtime checks. Drop them if they turn out to not
10562     // be profitable. Limit the scope of Checks, so the cleanup happens
10563     // immediately after vector codegeneration is done.
10564     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10565                              F->getParent()->getDataLayout());
10566     if (!VF.Width.isScalar() || IC > 1)
10567       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10568 
10569     using namespace ore;
10570     if (!VectorizeLoop) {
10571       assert(IC > 1 && "interleave count should not be 1 or 0");
10572       // If we decided that it is not legal to vectorize the loop, then
10573       // interleave it.
10574       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10575                                  &CM, BFI, PSI, Checks);
10576 
10577       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10578       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10579 
10580       ORE->emit([&]() {
10581         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10582                                   L->getHeader())
10583                << "interleaved loop (interleaved count: "
10584                << NV("InterleaveCount", IC) << ")";
10585       });
10586     } else {
10587       // If we decided that it is *legal* to vectorize the loop, then do it.
10588 
10589       // Consider vectorizing the epilogue too if it's profitable.
10590       VectorizationFactor EpilogueVF =
10591           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10592       if (EpilogueVF.Width.isVector()) {
10593 
10594         // The first pass vectorizes the main loop and creates a scalar epilogue
10595         // to be vectorized by executing the plan (potentially with a different
10596         // factor) again shortly afterwards.
10597         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10598         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10599                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10600 
10601         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10602         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10603                         DT);
10604         ++LoopsVectorized;
10605 
10606         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10607         formLCSSARecursively(*L, *DT, LI, SE);
10608 
10609         // Second pass vectorizes the epilogue and adjusts the control flow
10610         // edges from the first pass.
10611         EPI.MainLoopVF = EPI.EpilogueVF;
10612         EPI.MainLoopUF = EPI.EpilogueUF;
10613         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10614                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10615                                                  Checks);
10616 
10617         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10618 
10619         // Ensure that the start values for any VPReductionPHIRecipes are
10620         // updated before vectorising the epilogue loop.
10621         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10622         for (VPRecipeBase &R : Header->phis()) {
10623           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10624             if (auto *Resume = MainILV.getReductionResumeValue(
10625                     ReductionPhi->getRecurrenceDescriptor())) {
10626               VPValue *StartVal = new VPValue(Resume);
10627               BestEpiPlan.addExternalDef(StartVal);
10628               ReductionPhi->setOperand(0, StartVal);
10629             }
10630           }
10631         }
10632 
10633         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10634                         DT);
10635         ++LoopsEpilogueVectorized;
10636 
10637         if (!MainILV.areSafetyChecksAdded())
10638           DisableRuntimeUnroll = true;
10639       } else {
10640         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10641                                &LVL, &CM, BFI, PSI, Checks);
10642 
10643         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10644         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10645         ++LoopsVectorized;
10646 
10647         // Add metadata to disable runtime unrolling a scalar loop when there
10648         // are no runtime checks about strides and memory. A scalar loop that is
10649         // rarely used is not worth unrolling.
10650         if (!LB.areSafetyChecksAdded())
10651           DisableRuntimeUnroll = true;
10652       }
10653       // Report the vectorization decision.
10654       ORE->emit([&]() {
10655         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10656                                   L->getHeader())
10657                << "vectorized loop (vectorization width: "
10658                << NV("VectorizationFactor", VF.Width)
10659                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10660       });
10661     }
10662 
10663     if (ORE->allowExtraAnalysis(LV_NAME))
10664       checkMixedPrecision(L, ORE);
10665   }
10666 
10667   Optional<MDNode *> RemainderLoopID =
10668       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10669                                       LLVMLoopVectorizeFollowupEpilogue});
10670   if (RemainderLoopID.hasValue()) {
10671     L->setLoopID(RemainderLoopID.getValue());
10672   } else {
10673     if (DisableRuntimeUnroll)
10674       AddRuntimeUnrollDisableMetaData(L);
10675 
10676     // Mark the loop as already vectorized to avoid vectorizing again.
10677     Hints.setAlreadyVectorized();
10678   }
10679 
10680   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10681   return true;
10682 }
10683 
10684 LoopVectorizeResult LoopVectorizePass::runImpl(
10685     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10686     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10687     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10688     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10689     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10690   SE = &SE_;
10691   LI = &LI_;
10692   TTI = &TTI_;
10693   DT = &DT_;
10694   BFI = &BFI_;
10695   TLI = TLI_;
10696   AA = &AA_;
10697   AC = &AC_;
10698   GetLAA = &GetLAA_;
10699   DB = &DB_;
10700   ORE = &ORE_;
10701   PSI = PSI_;
10702 
10703   // Don't attempt if
10704   // 1. the target claims to have no vector registers, and
10705   // 2. interleaving won't help ILP.
10706   //
10707   // The second condition is necessary because, even if the target has no
10708   // vector registers, loop vectorization may still enable scalar
10709   // interleaving.
10710   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10711       TTI->getMaxInterleaveFactor(1) < 2)
10712     return LoopVectorizeResult(false, false);
10713 
10714   bool Changed = false, CFGChanged = false;
10715 
10716   // The vectorizer requires loops to be in simplified form.
10717   // Since simplification may add new inner loops, it has to run before the
10718   // legality and profitability checks. This means running the loop vectorizer
10719   // will simplify all loops, regardless of whether anything end up being
10720   // vectorized.
10721   for (auto &L : *LI)
10722     Changed |= CFGChanged |=
10723         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10724 
10725   // Build up a worklist of inner-loops to vectorize. This is necessary as
10726   // the act of vectorizing or partially unrolling a loop creates new loops
10727   // and can invalidate iterators across the loops.
10728   SmallVector<Loop *, 8> Worklist;
10729 
10730   for (Loop *L : *LI)
10731     collectSupportedLoops(*L, LI, ORE, Worklist);
10732 
10733   LoopsAnalyzed += Worklist.size();
10734 
10735   // Now walk the identified inner loops.
10736   while (!Worklist.empty()) {
10737     Loop *L = Worklist.pop_back_val();
10738 
10739     // For the inner loops we actually process, form LCSSA to simplify the
10740     // transform.
10741     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10742 
10743     Changed |= CFGChanged |= processLoop(L);
10744   }
10745 
10746   // Process each loop nest in the function.
10747   return LoopVectorizeResult(Changed, CFGChanged);
10748 }
10749 
10750 PreservedAnalyses LoopVectorizePass::run(Function &F,
10751                                          FunctionAnalysisManager &AM) {
10752     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10753     auto &LI = AM.getResult<LoopAnalysis>(F);
10754     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10755     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10756     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10757     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10758     auto &AA = AM.getResult<AAManager>(F);
10759     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10760     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10761     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10762 
10763     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10764     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10765         [&](Loop &L) -> const LoopAccessInfo & {
10766       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10767                                         TLI, TTI, nullptr, nullptr, nullptr};
10768       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10769     };
10770     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10771     ProfileSummaryInfo *PSI =
10772         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10773     LoopVectorizeResult Result =
10774         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10775     if (!Result.MadeAnyChange)
10776       return PreservedAnalyses::all();
10777     PreservedAnalyses PA;
10778 
10779     // We currently do not preserve loopinfo/dominator analyses with outer loop
10780     // vectorization. Until this is addressed, mark these analyses as preserved
10781     // only for non-VPlan-native path.
10782     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10783     if (!EnableVPlanNativePath) {
10784       PA.preserve<LoopAnalysis>();
10785       PA.preserve<DominatorTreeAnalysis>();
10786     }
10787 
10788     if (Result.MadeCFGChange) {
10789       // Making CFG changes likely means a loop got vectorized. Indicate that
10790       // extra simplification passes should be run.
10791       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10792       // be run if runtime checks have been added.
10793       AM.getResult<ShouldRunExtraVectorPasses>(F);
10794       PA.preserve<ShouldRunExtraVectorPasses>();
10795     } else {
10796       PA.preserveSet<CFGAnalyses>();
10797     }
10798     return PA;
10799 }
10800 
10801 void LoopVectorizePass::printPipeline(
10802     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10803   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10804       OS, MapClassName2PassName);
10805 
10806   OS << "<";
10807   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10808   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10809   OS << ">";
10810 }
10811