1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "VPlanPredicator.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/SizeOpts.h" 140 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 141 #include <algorithm> 142 #include <cassert> 143 #include <cstdint> 144 #include <cstdlib> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <memory> 149 #include <string> 150 #include <tuple> 151 #include <utility> 152 #include <vector> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 /// @{ 160 /// Metadata attribute names 161 static const char *const LLVMLoopVectorizeFollowupAll = 162 "llvm.loop.vectorize.followup_all"; 163 static const char *const LLVMLoopVectorizeFollowupVectorized = 164 "llvm.loop.vectorize.followup_vectorized"; 165 static const char *const LLVMLoopVectorizeFollowupEpilogue = 166 "llvm.loop.vectorize.followup_epilogue"; 167 /// @} 168 169 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 171 172 /// Loops with a known constant trip count below this number are vectorized only 173 /// if no scalar iteration overheads are incurred. 174 static cl::opt<unsigned> TinyTripCountVectorThreshold( 175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 176 cl::desc("Loops with a constant trip count that is smaller than this " 177 "value are vectorized only if no scalar iteration overheads " 178 "are incurred.")); 179 180 // Indicates that an epilogue is undesired, predication is preferred. 181 // This means that the vectorizer will try to fold the loop-tail (epilogue) 182 // into the loop and predicate the loop body accordingly. 183 static cl::opt<bool> PreferPredicateOverEpilog( 184 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 185 cl::desc("Indicate that an epilogue is undesired, predication should be " 186 "used instead.")); 187 188 static cl::opt<bool> MaximizeBandwidth( 189 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 190 cl::desc("Maximize bandwidth when selecting vectorization factor which " 191 "will be determined by the smallest type in loop.")); 192 193 static cl::opt<bool> EnableInterleavedMemAccesses( 194 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 195 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 196 197 /// An interleave-group may need masking if it resides in a block that needs 198 /// predication, or in order to mask away gaps. 199 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 200 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 201 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 202 203 /// We don't interleave loops with a known constant trip count below this 204 /// number. 205 static const unsigned TinyTripCountInterleaveThreshold = 128; 206 207 static cl::opt<unsigned> ForceTargetNumScalarRegs( 208 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 209 cl::desc("A flag that overrides the target's number of scalar registers.")); 210 211 static cl::opt<unsigned> ForceTargetNumVectorRegs( 212 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 213 cl::desc("A flag that overrides the target's number of vector registers.")); 214 215 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 216 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 217 cl::desc("A flag that overrides the target's max interleave factor for " 218 "scalar loops.")); 219 220 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 221 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 222 cl::desc("A flag that overrides the target's max interleave factor for " 223 "vectorized loops.")); 224 225 static cl::opt<unsigned> ForceTargetInstructionCost( 226 "force-target-instruction-cost", cl::init(0), cl::Hidden, 227 cl::desc("A flag that overrides the target's expected cost for " 228 "an instruction to a single constant value. Mostly " 229 "useful for getting consistent testing.")); 230 231 static cl::opt<unsigned> SmallLoopCost( 232 "small-loop-cost", cl::init(20), cl::Hidden, 233 cl::desc( 234 "The cost of a loop that is considered 'small' by the interleaver.")); 235 236 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 237 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 238 cl::desc("Enable the use of the block frequency analysis to access PGO " 239 "heuristics minimizing code growth in cold regions and being more " 240 "aggressive in hot regions.")); 241 242 // Runtime interleave loops for load/store throughput. 243 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 244 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 245 cl::desc( 246 "Enable runtime interleaving until load/store ports are saturated")); 247 248 /// The number of stores in a loop that are allowed to need predication. 249 static cl::opt<unsigned> NumberOfStoresToPredicate( 250 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 251 cl::desc("Max number of stores to be predicated behind an if.")); 252 253 static cl::opt<bool> EnableIndVarRegisterHeur( 254 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 255 cl::desc("Count the induction variable only once when interleaving")); 256 257 static cl::opt<bool> EnableCondStoresVectorization( 258 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 259 cl::desc("Enable if predication of stores during vectorization.")); 260 261 static cl::opt<unsigned> MaxNestedScalarReductionIC( 262 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 263 cl::desc("The maximum interleave count to use when interleaving a scalar " 264 "reduction in a nested loop.")); 265 266 cl::opt<bool> EnableVPlanNativePath( 267 "enable-vplan-native-path", cl::init(false), cl::Hidden, 268 cl::desc("Enable VPlan-native vectorization path with " 269 "support for outer loop vectorization.")); 270 271 // FIXME: Remove this switch once we have divergence analysis. Currently we 272 // assume divergent non-backedge branches when this switch is true. 273 cl::opt<bool> EnableVPlanPredication( 274 "enable-vplan-predication", cl::init(false), cl::Hidden, 275 cl::desc("Enable VPlan-native vectorization path predicator with " 276 "support for outer loop vectorization.")); 277 278 // This flag enables the stress testing of the VPlan H-CFG construction in the 279 // VPlan-native vectorization path. It must be used in conjuction with 280 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 281 // verification of the H-CFGs built. 282 static cl::opt<bool> VPlanBuildStressTest( 283 "vplan-build-stress-test", cl::init(false), cl::Hidden, 284 cl::desc( 285 "Build VPlan for every supported loop nest in the function and bail " 286 "out right after the build (stress test the VPlan H-CFG construction " 287 "in the VPlan-native vectorization path).")); 288 289 cl::opt<bool> llvm::EnableLoopInterleaving( 290 "interleave-loops", cl::init(true), cl::Hidden, 291 cl::desc("Enable loop interleaving in Loop vectorization passes")); 292 cl::opt<bool> llvm::EnableLoopVectorization( 293 "vectorize-loops", cl::init(true), cl::Hidden, 294 cl::desc("Run the Loop vectorization passes")); 295 296 /// A helper function for converting Scalar types to vector types. 297 /// If the incoming type is void, we return void. If the VF is 1, we return 298 /// the scalar type. 299 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 300 if (Scalar->isVoidTy() || VF == 1) 301 return Scalar; 302 return VectorType::get(Scalar, VF); 303 } 304 305 /// A helper function that returns the type of loaded or stored value. 306 static Type *getMemInstValueType(Value *I) { 307 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 308 "Expected Load or Store instruction"); 309 if (auto *LI = dyn_cast<LoadInst>(I)) 310 return LI->getType(); 311 return cast<StoreInst>(I)->getValueOperand()->getType(); 312 } 313 314 /// A helper function that returns true if the given type is irregular. The 315 /// type is irregular if its allocated size doesn't equal the store size of an 316 /// element of the corresponding vector type at the given vectorization factor. 317 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 318 // Determine if an array of VF elements of type Ty is "bitcast compatible" 319 // with a <VF x Ty> vector. 320 if (VF > 1) { 321 auto *VectorTy = VectorType::get(Ty, VF); 322 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 323 } 324 325 // If the vectorization factor is one, we just check if an array of type Ty 326 // requires padding between elements. 327 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 328 } 329 330 /// A helper function that returns the reciprocal of the block probability of 331 /// predicated blocks. If we return X, we are assuming the predicated block 332 /// will execute once for every X iterations of the loop header. 333 /// 334 /// TODO: We should use actual block probability here, if available. Currently, 335 /// we always assume predicated blocks have a 50% chance of executing. 336 static unsigned getReciprocalPredBlockProb() { return 2; } 337 338 /// A helper function that adds a 'fast' flag to floating-point operations. 339 static Value *addFastMathFlag(Value *V) { 340 if (isa<FPMathOperator>(V)) 341 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 342 return V; 343 } 344 345 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 346 if (isa<FPMathOperator>(V)) 347 cast<Instruction>(V)->setFastMathFlags(FMF); 348 return V; 349 } 350 351 /// A helper function that returns an integer or floating-point constant with 352 /// value C. 353 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 354 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 355 : ConstantFP::get(Ty, C); 356 } 357 358 /// Returns "best known" trip count for the specified loop \p L as defined by 359 /// the following procedure: 360 /// 1) Returns exact trip count if it is known. 361 /// 2) Returns expected trip count according to profile data if any. 362 /// 3) Returns upper bound estimate if it is known. 363 /// 4) Returns None if all of the above failed. 364 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 365 // Check if exact trip count is known. 366 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 367 return ExpectedTC; 368 369 // Check if there is an expected trip count available from profile data. 370 if (LoopVectorizeWithBlockFrequency) 371 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 372 return EstimatedTC; 373 374 // Check if upper bound estimate is known. 375 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 376 return ExpectedTC; 377 378 return None; 379 } 380 381 namespace llvm { 382 383 /// InnerLoopVectorizer vectorizes loops which contain only one basic 384 /// block to a specified vectorization factor (VF). 385 /// This class performs the widening of scalars into vectors, or multiple 386 /// scalars. This class also implements the following features: 387 /// * It inserts an epilogue loop for handling loops that don't have iteration 388 /// counts that are known to be a multiple of the vectorization factor. 389 /// * It handles the code generation for reduction variables. 390 /// * Scalarization (implementation using scalars) of un-vectorizable 391 /// instructions. 392 /// InnerLoopVectorizer does not perform any vectorization-legality 393 /// checks, and relies on the caller to check for the different legality 394 /// aspects. The InnerLoopVectorizer relies on the 395 /// LoopVectorizationLegality class to provide information about the induction 396 /// and reduction variables that were found to a given vectorization factor. 397 class InnerLoopVectorizer { 398 public: 399 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 400 LoopInfo *LI, DominatorTree *DT, 401 const TargetLibraryInfo *TLI, 402 const TargetTransformInfo *TTI, AssumptionCache *AC, 403 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 404 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 405 LoopVectorizationCostModel *CM) 406 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 407 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 408 Builder(PSE.getSE()->getContext()), 409 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 410 virtual ~InnerLoopVectorizer() = default; 411 412 /// Create a new empty loop. Unlink the old loop and connect the new one. 413 /// Return the pre-header block of the new loop. 414 BasicBlock *createVectorizedLoopSkeleton(); 415 416 /// Widen a single instruction within the innermost loop. 417 void widenInstruction(Instruction &I); 418 419 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 420 void fixVectorizedLoop(); 421 422 // Return true if any runtime check is added. 423 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 424 425 /// A type for vectorized values in the new loop. Each value from the 426 /// original loop, when vectorized, is represented by UF vector values in the 427 /// new unrolled loop, where UF is the unroll factor. 428 using VectorParts = SmallVector<Value *, 2>; 429 430 /// Vectorize a single PHINode in a block. This method handles the induction 431 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 432 /// arbitrary length vectors. 433 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 434 435 /// A helper function to scalarize a single Instruction in the innermost loop. 436 /// Generates a sequence of scalar instances for each lane between \p MinLane 437 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 438 /// inclusive.. 439 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 440 bool IfPredicateInstr); 441 442 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 443 /// is provided, the integer induction variable will first be truncated to 444 /// the corresponding type. 445 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 446 447 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 448 /// vector or scalar value on-demand if one is not yet available. When 449 /// vectorizing a loop, we visit the definition of an instruction before its 450 /// uses. When visiting the definition, we either vectorize or scalarize the 451 /// instruction, creating an entry for it in the corresponding map. (In some 452 /// cases, such as induction variables, we will create both vector and scalar 453 /// entries.) Then, as we encounter uses of the definition, we derive values 454 /// for each scalar or vector use unless such a value is already available. 455 /// For example, if we scalarize a definition and one of its uses is vector, 456 /// we build the required vector on-demand with an insertelement sequence 457 /// when visiting the use. Otherwise, if the use is scalar, we can use the 458 /// existing scalar definition. 459 /// 460 /// Return a value in the new loop corresponding to \p V from the original 461 /// loop at unroll index \p Part. If the value has already been vectorized, 462 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 463 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 464 /// a new vector value on-demand by inserting the scalar values into a vector 465 /// with an insertelement sequence. If the value has been neither vectorized 466 /// nor scalarized, it must be loop invariant, so we simply broadcast the 467 /// value into a vector. 468 Value *getOrCreateVectorValue(Value *V, unsigned Part); 469 470 /// Return a value in the new loop corresponding to \p V from the original 471 /// loop at unroll and vector indices \p Instance. If the value has been 472 /// vectorized but not scalarized, the necessary extractelement instruction 473 /// will be generated. 474 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 475 476 /// Construct the vector value of a scalarized value \p V one lane at a time. 477 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 478 479 /// Try to vectorize the interleaved access group that \p Instr belongs to, 480 /// optionally masking the vector operations if \p BlockInMask is non-null. 481 void vectorizeInterleaveGroup(Instruction *Instr, 482 VectorParts *BlockInMask = nullptr); 483 484 /// Vectorize Load and Store instructions, optionally masking the vector 485 /// operations if \p BlockInMask is non-null. 486 void vectorizeMemoryInstruction(Instruction *Instr, 487 VectorParts *BlockInMask = nullptr); 488 489 /// Set the debug location in the builder using the debug location in 490 /// the instruction. 491 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 492 493 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 494 void fixNonInductionPHIs(void); 495 496 protected: 497 friend class LoopVectorizationPlanner; 498 499 /// A small list of PHINodes. 500 using PhiVector = SmallVector<PHINode *, 4>; 501 502 /// A type for scalarized values in the new loop. Each value from the 503 /// original loop, when scalarized, is represented by UF x VF scalar values 504 /// in the new unrolled loop, where UF is the unroll factor and VF is the 505 /// vectorization factor. 506 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 507 508 /// Set up the values of the IVs correctly when exiting the vector loop. 509 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 510 Value *CountRoundDown, Value *EndValue, 511 BasicBlock *MiddleBlock); 512 513 /// Create a new induction variable inside L. 514 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 515 Value *Step, Instruction *DL); 516 517 /// Handle all cross-iteration phis in the header. 518 void fixCrossIterationPHIs(); 519 520 /// Fix a first-order recurrence. This is the second phase of vectorizing 521 /// this phi node. 522 void fixFirstOrderRecurrence(PHINode *Phi); 523 524 /// Fix a reduction cross-iteration phi. This is the second phase of 525 /// vectorizing this phi node. 526 void fixReduction(PHINode *Phi); 527 528 /// The Loop exit block may have single value PHI nodes with some 529 /// incoming value. While vectorizing we only handled real values 530 /// that were defined inside the loop and we should have one value for 531 /// each predecessor of its parent basic block. See PR14725. 532 void fixLCSSAPHIs(); 533 534 /// Iteratively sink the scalarized operands of a predicated instruction into 535 /// the block that was created for it. 536 void sinkScalarOperands(Instruction *PredInst); 537 538 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 539 /// represented as. 540 void truncateToMinimalBitwidths(); 541 542 /// Insert the new loop to the loop hierarchy and pass manager 543 /// and update the analysis passes. 544 void updateAnalysis(); 545 546 /// Create a broadcast instruction. This method generates a broadcast 547 /// instruction (shuffle) for loop invariant values and for the induction 548 /// value. If this is the induction variable then we extend it to N, N+1, ... 549 /// this is needed because each iteration in the loop corresponds to a SIMD 550 /// element. 551 virtual Value *getBroadcastInstrs(Value *V); 552 553 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 554 /// to each vector element of Val. The sequence starts at StartIndex. 555 /// \p Opcode is relevant for FP induction variable. 556 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 557 Instruction::BinaryOps Opcode = 558 Instruction::BinaryOpsEnd); 559 560 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 561 /// variable on which to base the steps, \p Step is the size of the step, and 562 /// \p EntryVal is the value from the original loop that maps to the steps. 563 /// Note that \p EntryVal doesn't have to be an induction variable - it 564 /// can also be a truncate instruction. 565 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 566 const InductionDescriptor &ID); 567 568 /// Create a vector induction phi node based on an existing scalar one. \p 569 /// EntryVal is the value from the original loop that maps to the vector phi 570 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 571 /// truncate instruction, instead of widening the original IV, we widen a 572 /// version of the IV truncated to \p EntryVal's type. 573 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 574 Value *Step, Instruction *EntryVal); 575 576 /// Returns true if an instruction \p I should be scalarized instead of 577 /// vectorized for the chosen vectorization factor. 578 bool shouldScalarizeInstruction(Instruction *I) const; 579 580 /// Returns true if we should generate a scalar version of \p IV. 581 bool needsScalarInduction(Instruction *IV) const; 582 583 /// If there is a cast involved in the induction variable \p ID, which should 584 /// be ignored in the vectorized loop body, this function records the 585 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 586 /// cast. We had already proved that the casted Phi is equal to the uncasted 587 /// Phi in the vectorized loop (under a runtime guard), and therefore 588 /// there is no need to vectorize the cast - the same value can be used in the 589 /// vector loop for both the Phi and the cast. 590 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 591 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 592 /// 593 /// \p EntryVal is the value from the original loop that maps to the vector 594 /// phi node and is used to distinguish what is the IV currently being 595 /// processed - original one (if \p EntryVal is a phi corresponding to the 596 /// original IV) or the "newly-created" one based on the proof mentioned above 597 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 598 /// latter case \p EntryVal is a TruncInst and we must not record anything for 599 /// that IV, but it's error-prone to expect callers of this routine to care 600 /// about that, hence this explicit parameter. 601 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 602 const Instruction *EntryVal, 603 Value *VectorLoopValue, 604 unsigned Part, 605 unsigned Lane = UINT_MAX); 606 607 /// Generate a shuffle sequence that will reverse the vector Vec. 608 virtual Value *reverseVector(Value *Vec); 609 610 /// Returns (and creates if needed) the original loop trip count. 611 Value *getOrCreateTripCount(Loop *NewLoop); 612 613 /// Returns (and creates if needed) the trip count of the widened loop. 614 Value *getOrCreateVectorTripCount(Loop *NewLoop); 615 616 /// Returns a bitcasted value to the requested vector type. 617 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 618 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 619 const DataLayout &DL); 620 621 /// Emit a bypass check to see if the vector trip count is zero, including if 622 /// it overflows. 623 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 624 625 /// Emit a bypass check to see if all of the SCEV assumptions we've 626 /// had to make are correct. 627 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 628 629 /// Emit bypass checks to check any memory assumptions we may have made. 630 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Compute the transformed value of Index at offset StartValue using step 633 /// StepValue. 634 /// For integer induction, returns StartValue + Index * StepValue. 635 /// For pointer induction, returns StartValue[Index * StepValue]. 636 /// FIXME: The newly created binary instructions should contain nsw/nuw 637 /// flags, which can be found from the original scalar operations. 638 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 639 const DataLayout &DL, 640 const InductionDescriptor &ID) const; 641 642 /// Add additional metadata to \p To that was not present on \p Orig. 643 /// 644 /// Currently this is used to add the noalias annotations based on the 645 /// inserted memchecks. Use this for instructions that are *cloned* into the 646 /// vector loop. 647 void addNewMetadata(Instruction *To, const Instruction *Orig); 648 649 /// Add metadata from one instruction to another. 650 /// 651 /// This includes both the original MDs from \p From and additional ones (\see 652 /// addNewMetadata). Use this for *newly created* instructions in the vector 653 /// loop. 654 void addMetadata(Instruction *To, Instruction *From); 655 656 /// Similar to the previous function but it adds the metadata to a 657 /// vector of instructions. 658 void addMetadata(ArrayRef<Value *> To, Instruction *From); 659 660 /// The original loop. 661 Loop *OrigLoop; 662 663 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 664 /// dynamic knowledge to simplify SCEV expressions and converts them to a 665 /// more usable form. 666 PredicatedScalarEvolution &PSE; 667 668 /// Loop Info. 669 LoopInfo *LI; 670 671 /// Dominator Tree. 672 DominatorTree *DT; 673 674 /// Alias Analysis. 675 AliasAnalysis *AA; 676 677 /// Target Library Info. 678 const TargetLibraryInfo *TLI; 679 680 /// Target Transform Info. 681 const TargetTransformInfo *TTI; 682 683 /// Assumption Cache. 684 AssumptionCache *AC; 685 686 /// Interface to emit optimization remarks. 687 OptimizationRemarkEmitter *ORE; 688 689 /// LoopVersioning. It's only set up (non-null) if memchecks were 690 /// used. 691 /// 692 /// This is currently only used to add no-alias metadata based on the 693 /// memchecks. The actually versioning is performed manually. 694 std::unique_ptr<LoopVersioning> LVer; 695 696 /// The vectorization SIMD factor to use. Each vector will have this many 697 /// vector elements. 698 unsigned VF; 699 700 /// The vectorization unroll factor to use. Each scalar is vectorized to this 701 /// many different vector instructions. 702 unsigned UF; 703 704 /// The builder that we use 705 IRBuilder<> Builder; 706 707 // --- Vectorization state --- 708 709 /// The vector-loop preheader. 710 BasicBlock *LoopVectorPreHeader; 711 712 /// The scalar-loop preheader. 713 BasicBlock *LoopScalarPreHeader; 714 715 /// Middle Block between the vector and the scalar. 716 BasicBlock *LoopMiddleBlock; 717 718 /// The ExitBlock of the scalar loop. 719 BasicBlock *LoopExitBlock; 720 721 /// The vector loop body. 722 BasicBlock *LoopVectorBody; 723 724 /// The scalar loop body. 725 BasicBlock *LoopScalarBody; 726 727 /// A list of all bypass blocks. The first block is the entry of the loop. 728 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 729 730 /// The new Induction variable which was added to the new block. 731 PHINode *Induction = nullptr; 732 733 /// The induction variable of the old basic block. 734 PHINode *OldInduction = nullptr; 735 736 /// Maps values from the original loop to their corresponding values in the 737 /// vectorized loop. A key value can map to either vector values, scalar 738 /// values or both kinds of values, depending on whether the key was 739 /// vectorized and scalarized. 740 VectorizerValueMap VectorLoopValueMap; 741 742 /// Store instructions that were predicated. 743 SmallVector<Instruction *, 4> PredicatedInstructions; 744 745 /// Trip count of the original loop. 746 Value *TripCount = nullptr; 747 748 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 749 Value *VectorTripCount = nullptr; 750 751 /// The legality analysis. 752 LoopVectorizationLegality *Legal; 753 754 /// The profitablity analysis. 755 LoopVectorizationCostModel *Cost; 756 757 // Record whether runtime checks are added. 758 bool AddedSafetyChecks = false; 759 760 // Holds the end values for each induction variable. We save the end values 761 // so we can later fix-up the external users of the induction variables. 762 DenseMap<PHINode *, Value *> IVEndValues; 763 764 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 765 // fixed up at the end of vector code generation. 766 SmallVector<PHINode *, 8> OrigPHIsToFix; 767 }; 768 769 class InnerLoopUnroller : public InnerLoopVectorizer { 770 public: 771 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 772 LoopInfo *LI, DominatorTree *DT, 773 const TargetLibraryInfo *TLI, 774 const TargetTransformInfo *TTI, AssumptionCache *AC, 775 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 776 LoopVectorizationLegality *LVL, 777 LoopVectorizationCostModel *CM) 778 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 779 UnrollFactor, LVL, CM) {} 780 781 private: 782 Value *getBroadcastInstrs(Value *V) override; 783 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 784 Instruction::BinaryOps Opcode = 785 Instruction::BinaryOpsEnd) override; 786 Value *reverseVector(Value *Vec) override; 787 }; 788 789 } // end namespace llvm 790 791 /// Look for a meaningful debug location on the instruction or it's 792 /// operands. 793 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 794 if (!I) 795 return I; 796 797 DebugLoc Empty; 798 if (I->getDebugLoc() != Empty) 799 return I; 800 801 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 802 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 803 if (OpInst->getDebugLoc() != Empty) 804 return OpInst; 805 } 806 807 return I; 808 } 809 810 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 811 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 812 const DILocation *DIL = Inst->getDebugLoc(); 813 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 814 !isa<DbgInfoIntrinsic>(Inst)) { 815 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 816 if (NewDIL) 817 B.SetCurrentDebugLocation(NewDIL.getValue()); 818 else 819 LLVM_DEBUG(dbgs() 820 << "Failed to create new discriminator: " 821 << DIL->getFilename() << " Line: " << DIL->getLine()); 822 } 823 else 824 B.SetCurrentDebugLocation(DIL); 825 } else 826 B.SetCurrentDebugLocation(DebugLoc()); 827 } 828 829 /// Write a record \p DebugMsg about vectorization failure to the debug 830 /// output stream. If \p I is passed, it is an instruction that prevents 831 /// vectorization. 832 #ifndef NDEBUG 833 static void debugVectorizationFailure(const StringRef DebugMsg, 834 Instruction *I) { 835 dbgs() << "LV: Not vectorizing: " << DebugMsg; 836 if (I != nullptr) 837 dbgs() << " " << *I; 838 else 839 dbgs() << '.'; 840 dbgs() << '\n'; 841 } 842 #endif 843 844 /// Create an analysis remark that explains why vectorization failed 845 /// 846 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 847 /// RemarkName is the identifier for the remark. If \p I is passed it is an 848 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 849 /// the location of the remark. \return the remark object that can be 850 /// streamed to. 851 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 852 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 853 Value *CodeRegion = TheLoop->getHeader(); 854 DebugLoc DL = TheLoop->getStartLoc(); 855 856 if (I) { 857 CodeRegion = I->getParent(); 858 // If there is no debug location attached to the instruction, revert back to 859 // using the loop's. 860 if (I->getDebugLoc()) 861 DL = I->getDebugLoc(); 862 } 863 864 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 865 R << "loop not vectorized: "; 866 return R; 867 } 868 869 namespace llvm { 870 871 void reportVectorizationFailure(const StringRef DebugMsg, 872 const StringRef OREMsg, const StringRef ORETag, 873 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 874 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 875 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 876 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 877 ORETag, TheLoop, I) << OREMsg); 878 } 879 880 } // end namespace llvm 881 882 #ifndef NDEBUG 883 /// \return string containing a file name and a line # for the given loop. 884 static std::string getDebugLocString(const Loop *L) { 885 std::string Result; 886 if (L) { 887 raw_string_ostream OS(Result); 888 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 889 LoopDbgLoc.print(OS); 890 else 891 // Just print the module name. 892 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 893 OS.flush(); 894 } 895 return Result; 896 } 897 #endif 898 899 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 900 const Instruction *Orig) { 901 // If the loop was versioned with memchecks, add the corresponding no-alias 902 // metadata. 903 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 904 LVer->annotateInstWithNoAlias(To, Orig); 905 } 906 907 void InnerLoopVectorizer::addMetadata(Instruction *To, 908 Instruction *From) { 909 propagateMetadata(To, From); 910 addNewMetadata(To, From); 911 } 912 913 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 914 Instruction *From) { 915 for (Value *V : To) { 916 if (Instruction *I = dyn_cast<Instruction>(V)) 917 addMetadata(I, From); 918 } 919 } 920 921 namespace llvm { 922 923 // Loop vectorization cost-model hints how the scalar epilogue loop should be 924 // lowered. 925 enum ScalarEpilogueLowering { 926 927 // The default: allowing scalar epilogues. 928 CM_ScalarEpilogueAllowed, 929 930 // Vectorization with OptForSize: don't allow epilogues. 931 CM_ScalarEpilogueNotAllowedOptSize, 932 933 // A special case of vectorisation with OptForSize: loops with a very small 934 // trip count are considered for vectorization under OptForSize, thereby 935 // making sure the cost of their loop body is dominant, free of runtime 936 // guards and scalar iteration overheads. 937 CM_ScalarEpilogueNotAllowedLowTripLoop, 938 939 // Loop hint predicate indicating an epilogue is undesired. 940 CM_ScalarEpilogueNotNeededUsePredicate 941 }; 942 943 /// LoopVectorizationCostModel - estimates the expected speedups due to 944 /// vectorization. 945 /// In many cases vectorization is not profitable. This can happen because of 946 /// a number of reasons. In this class we mainly attempt to predict the 947 /// expected speedup/slowdowns due to the supported instruction set. We use the 948 /// TargetTransformInfo to query the different backends for the cost of 949 /// different operations. 950 class LoopVectorizationCostModel { 951 public: 952 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 953 PredicatedScalarEvolution &PSE, LoopInfo *LI, 954 LoopVectorizationLegality *Legal, 955 const TargetTransformInfo &TTI, 956 const TargetLibraryInfo *TLI, DemandedBits *DB, 957 AssumptionCache *AC, 958 OptimizationRemarkEmitter *ORE, const Function *F, 959 const LoopVectorizeHints *Hints, 960 InterleavedAccessInfo &IAI) 961 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 962 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 963 Hints(Hints), InterleaveInfo(IAI) {} 964 965 /// \return An upper bound for the vectorization factor, or None if 966 /// vectorization and interleaving should be avoided up front. 967 Optional<unsigned> computeMaxVF(); 968 969 /// \return True if runtime checks are required for vectorization, and false 970 /// otherwise. 971 bool runtimeChecksRequired(); 972 973 /// \return The most profitable vectorization factor and the cost of that VF. 974 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 975 /// then this vectorization factor will be selected if vectorization is 976 /// possible. 977 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 978 979 /// Setup cost-based decisions for user vectorization factor. 980 void selectUserVectorizationFactor(unsigned UserVF) { 981 collectUniformsAndScalars(UserVF); 982 collectInstsToScalarize(UserVF); 983 } 984 985 /// \return The size (in bits) of the smallest and widest types in the code 986 /// that needs to be vectorized. We ignore values that remain scalar such as 987 /// 64 bit loop indices. 988 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 989 990 /// \return The desired interleave count. 991 /// If interleave count has been specified by metadata it will be returned. 992 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 993 /// are the selected vectorization factor and the cost of the selected VF. 994 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 995 996 /// Memory access instruction may be vectorized in more than one way. 997 /// Form of instruction after vectorization depends on cost. 998 /// This function takes cost-based decisions for Load/Store instructions 999 /// and collects them in a map. This decisions map is used for building 1000 /// the lists of loop-uniform and loop-scalar instructions. 1001 /// The calculated cost is saved with widening decision in order to 1002 /// avoid redundant calculations. 1003 void setCostBasedWideningDecision(unsigned VF); 1004 1005 /// A struct that represents some properties of the register usage 1006 /// of a loop. 1007 struct RegisterUsage { 1008 /// Holds the number of loop invariant values that are used in the loop. 1009 unsigned LoopInvariantRegs; 1010 1011 /// Holds the maximum number of concurrent live intervals in the loop. 1012 unsigned MaxLocalUsers; 1013 }; 1014 1015 /// \return Returns information about the register usages of the loop for the 1016 /// given vectorization factors. 1017 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1018 1019 /// Collect values we want to ignore in the cost model. 1020 void collectValuesToIgnore(); 1021 1022 /// \returns The smallest bitwidth each instruction can be represented with. 1023 /// The vector equivalents of these instructions should be truncated to this 1024 /// type. 1025 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1026 return MinBWs; 1027 } 1028 1029 /// \returns True if it is more profitable to scalarize instruction \p I for 1030 /// vectorization factor \p VF. 1031 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1032 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1033 1034 // Cost model is not run in the VPlan-native path - return conservative 1035 // result until this changes. 1036 if (EnableVPlanNativePath) 1037 return false; 1038 1039 auto Scalars = InstsToScalarize.find(VF); 1040 assert(Scalars != InstsToScalarize.end() && 1041 "VF not yet analyzed for scalarization profitability"); 1042 return Scalars->second.find(I) != Scalars->second.end(); 1043 } 1044 1045 /// Returns true if \p I is known to be uniform after vectorization. 1046 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1047 if (VF == 1) 1048 return true; 1049 1050 // Cost model is not run in the VPlan-native path - return conservative 1051 // result until this changes. 1052 if (EnableVPlanNativePath) 1053 return false; 1054 1055 auto UniformsPerVF = Uniforms.find(VF); 1056 assert(UniformsPerVF != Uniforms.end() && 1057 "VF not yet analyzed for uniformity"); 1058 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1059 } 1060 1061 /// Returns true if \p I is known to be scalar after vectorization. 1062 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1063 if (VF == 1) 1064 return true; 1065 1066 // Cost model is not run in the VPlan-native path - return conservative 1067 // result until this changes. 1068 if (EnableVPlanNativePath) 1069 return false; 1070 1071 auto ScalarsPerVF = Scalars.find(VF); 1072 assert(ScalarsPerVF != Scalars.end() && 1073 "Scalar values are not calculated for VF"); 1074 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1075 } 1076 1077 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1078 /// for vectorization factor \p VF. 1079 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1080 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1081 !isProfitableToScalarize(I, VF) && 1082 !isScalarAfterVectorization(I, VF); 1083 } 1084 1085 /// Decision that was taken during cost calculation for memory instruction. 1086 enum InstWidening { 1087 CM_Unknown, 1088 CM_Widen, // For consecutive accesses with stride +1. 1089 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1090 CM_Interleave, 1091 CM_GatherScatter, 1092 CM_Scalarize 1093 }; 1094 1095 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1096 /// instruction \p I and vector width \p VF. 1097 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1098 unsigned Cost) { 1099 assert(VF >= 2 && "Expected VF >=2"); 1100 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1101 } 1102 1103 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1104 /// interleaving group \p Grp and vector width \p VF. 1105 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1106 InstWidening W, unsigned Cost) { 1107 assert(VF >= 2 && "Expected VF >=2"); 1108 /// Broadcast this decicion to all instructions inside the group. 1109 /// But the cost will be assigned to one instruction only. 1110 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1111 if (auto *I = Grp->getMember(i)) { 1112 if (Grp->getInsertPos() == I) 1113 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1114 else 1115 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1116 } 1117 } 1118 } 1119 1120 /// Return the cost model decision for the given instruction \p I and vector 1121 /// width \p VF. Return CM_Unknown if this instruction did not pass 1122 /// through the cost modeling. 1123 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1124 assert(VF >= 2 && "Expected VF >=2"); 1125 1126 // Cost model is not run in the VPlan-native path - return conservative 1127 // result until this changes. 1128 if (EnableVPlanNativePath) 1129 return CM_GatherScatter; 1130 1131 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1132 auto Itr = WideningDecisions.find(InstOnVF); 1133 if (Itr == WideningDecisions.end()) 1134 return CM_Unknown; 1135 return Itr->second.first; 1136 } 1137 1138 /// Return the vectorization cost for the given instruction \p I and vector 1139 /// width \p VF. 1140 unsigned getWideningCost(Instruction *I, unsigned VF) { 1141 assert(VF >= 2 && "Expected VF >=2"); 1142 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1143 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1144 "The cost is not calculated"); 1145 return WideningDecisions[InstOnVF].second; 1146 } 1147 1148 /// Return True if instruction \p I is an optimizable truncate whose operand 1149 /// is an induction variable. Such a truncate will be removed by adding a new 1150 /// induction variable with the destination type. 1151 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1152 // If the instruction is not a truncate, return false. 1153 auto *Trunc = dyn_cast<TruncInst>(I); 1154 if (!Trunc) 1155 return false; 1156 1157 // Get the source and destination types of the truncate. 1158 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1159 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1160 1161 // If the truncate is free for the given types, return false. Replacing a 1162 // free truncate with an induction variable would add an induction variable 1163 // update instruction to each iteration of the loop. We exclude from this 1164 // check the primary induction variable since it will need an update 1165 // instruction regardless. 1166 Value *Op = Trunc->getOperand(0); 1167 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1168 return false; 1169 1170 // If the truncated value is not an induction variable, return false. 1171 return Legal->isInductionPhi(Op); 1172 } 1173 1174 /// Collects the instructions to scalarize for each predicated instruction in 1175 /// the loop. 1176 void collectInstsToScalarize(unsigned VF); 1177 1178 /// Collect Uniform and Scalar values for the given \p VF. 1179 /// The sets depend on CM decision for Load/Store instructions 1180 /// that may be vectorized as interleave, gather-scatter or scalarized. 1181 void collectUniformsAndScalars(unsigned VF) { 1182 // Do the analysis once. 1183 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1184 return; 1185 setCostBasedWideningDecision(VF); 1186 collectLoopUniforms(VF); 1187 collectLoopScalars(VF); 1188 } 1189 1190 /// Returns true if the target machine supports masked store operation 1191 /// for the given \p DataType and kind of access to \p Ptr. 1192 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1193 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1194 } 1195 1196 /// Returns true if the target machine supports masked load operation 1197 /// for the given \p DataType and kind of access to \p Ptr. 1198 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1199 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1200 } 1201 1202 /// Returns true if the target machine supports masked scatter operation 1203 /// for the given \p DataType. 1204 bool isLegalMaskedScatter(Type *DataType) { 1205 return TTI.isLegalMaskedScatter(DataType); 1206 } 1207 1208 /// Returns true if the target machine supports masked gather operation 1209 /// for the given \p DataType. 1210 bool isLegalMaskedGather(Type *DataType) { 1211 return TTI.isLegalMaskedGather(DataType); 1212 } 1213 1214 /// Returns true if the target machine can represent \p V as a masked gather 1215 /// or scatter operation. 1216 bool isLegalGatherOrScatter(Value *V) { 1217 bool LI = isa<LoadInst>(V); 1218 bool SI = isa<StoreInst>(V); 1219 if (!LI && !SI) 1220 return false; 1221 auto *Ty = getMemInstValueType(V); 1222 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1223 } 1224 1225 /// Returns true if \p I is an instruction that will be scalarized with 1226 /// predication. Such instructions include conditional stores and 1227 /// instructions that may divide by zero. 1228 /// If a non-zero VF has been calculated, we check if I will be scalarized 1229 /// predication for that VF. 1230 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1231 1232 // Returns true if \p I is an instruction that will be predicated either 1233 // through scalar predication or masked load/store or masked gather/scatter. 1234 // Superset of instructions that return true for isScalarWithPredication. 1235 bool isPredicatedInst(Instruction *I) { 1236 if (!blockNeedsPredication(I->getParent())) 1237 return false; 1238 // Loads and stores that need some form of masked operation are predicated 1239 // instructions. 1240 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1241 return Legal->isMaskRequired(I); 1242 return isScalarWithPredication(I); 1243 } 1244 1245 /// Returns true if \p I is a memory instruction with consecutive memory 1246 /// access that can be widened. 1247 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1248 1249 /// Returns true if \p I is a memory instruction in an interleaved-group 1250 /// of memory accesses that can be vectorized with wide vector loads/stores 1251 /// and shuffles. 1252 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1253 1254 /// Check if \p Instr belongs to any interleaved access group. 1255 bool isAccessInterleaved(Instruction *Instr) { 1256 return InterleaveInfo.isInterleaved(Instr); 1257 } 1258 1259 /// Get the interleaved access group that \p Instr belongs to. 1260 const InterleaveGroup<Instruction> * 1261 getInterleavedAccessGroup(Instruction *Instr) { 1262 return InterleaveInfo.getInterleaveGroup(Instr); 1263 } 1264 1265 /// Returns true if an interleaved group requires a scalar iteration 1266 /// to handle accesses with gaps, and there is nothing preventing us from 1267 /// creating a scalar epilogue. 1268 bool requiresScalarEpilogue() const { 1269 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1270 } 1271 1272 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1273 /// loop hint annotation. 1274 bool isScalarEpilogueAllowed() const { 1275 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1276 } 1277 1278 /// Returns true if all loop blocks should be masked to fold tail loop. 1279 bool foldTailByMasking() const { return FoldTailByMasking; } 1280 1281 bool blockNeedsPredication(BasicBlock *BB) { 1282 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1283 } 1284 1285 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1286 /// with factor VF. Return the cost of the instruction, including 1287 /// scalarization overhead if it's needed. 1288 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1289 1290 /// Estimate cost of a call instruction CI if it were vectorized with factor 1291 /// VF. Return the cost of the instruction, including scalarization overhead 1292 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1293 /// scalarized - 1294 /// i.e. either vector version isn't available, or is too expensive. 1295 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1296 1297 private: 1298 unsigned NumPredStores = 0; 1299 1300 /// \return An upper bound for the vectorization factor, larger than zero. 1301 /// One is returned if vectorization should best be avoided due to cost. 1302 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1303 1304 /// The vectorization cost is a combination of the cost itself and a boolean 1305 /// indicating whether any of the contributing operations will actually 1306 /// operate on 1307 /// vector values after type legalization in the backend. If this latter value 1308 /// is 1309 /// false, then all operations will be scalarized (i.e. no vectorization has 1310 /// actually taken place). 1311 using VectorizationCostTy = std::pair<unsigned, bool>; 1312 1313 /// Returns the expected execution cost. The unit of the cost does 1314 /// not matter because we use the 'cost' units to compare different 1315 /// vector widths. The cost that is returned is *not* normalized by 1316 /// the factor width. 1317 VectorizationCostTy expectedCost(unsigned VF); 1318 1319 /// Returns the execution time cost of an instruction for a given vector 1320 /// width. Vector width of one means scalar. 1321 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1322 1323 /// The cost-computation logic from getInstructionCost which provides 1324 /// the vector type as an output parameter. 1325 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1326 1327 /// Calculate vectorization cost of memory instruction \p I. 1328 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1329 1330 /// The cost computation for scalarized memory instruction. 1331 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1332 1333 /// The cost computation for interleaving group of memory instructions. 1334 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1335 1336 /// The cost computation for Gather/Scatter instruction. 1337 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1338 1339 /// The cost computation for widening instruction \p I with consecutive 1340 /// memory access. 1341 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1342 1343 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1344 /// Load: scalar load + broadcast. 1345 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1346 /// element) 1347 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1348 1349 /// Estimate the overhead of scalarizing an instruction. This is a 1350 /// convenience wrapper for the type-based getScalarizationOverhead API. 1351 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1352 1353 /// Returns whether the instruction is a load or store and will be a emitted 1354 /// as a vector operation. 1355 bool isConsecutiveLoadOrStore(Instruction *I); 1356 1357 /// Returns true if an artificially high cost for emulated masked memrefs 1358 /// should be used. 1359 bool useEmulatedMaskMemRefHack(Instruction *I); 1360 1361 /// Map of scalar integer values to the smallest bitwidth they can be legally 1362 /// represented as. The vector equivalents of these values should be truncated 1363 /// to this type. 1364 MapVector<Instruction *, uint64_t> MinBWs; 1365 1366 /// A type representing the costs for instructions if they were to be 1367 /// scalarized rather than vectorized. The entries are Instruction-Cost 1368 /// pairs. 1369 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1370 1371 /// A set containing all BasicBlocks that are known to present after 1372 /// vectorization as a predicated block. 1373 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1374 1375 /// Records whether it is allowed to have the original scalar loop execute at 1376 /// least once. This may be needed as a fallback loop in case runtime 1377 /// aliasing/dependence checks fail, or to handle the tail/remainder 1378 /// iterations when the trip count is unknown or doesn't divide by the VF, 1379 /// or as a peel-loop to handle gaps in interleave-groups. 1380 /// Under optsize and when the trip count is very small we don't allow any 1381 /// iterations to execute in the scalar loop. 1382 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1383 1384 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1385 bool FoldTailByMasking = false; 1386 1387 /// A map holding scalar costs for different vectorization factors. The 1388 /// presence of a cost for an instruction in the mapping indicates that the 1389 /// instruction will be scalarized when vectorizing with the associated 1390 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1391 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1392 1393 /// Holds the instructions known to be uniform after vectorization. 1394 /// The data is collected per VF. 1395 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1396 1397 /// Holds the instructions known to be scalar after vectorization. 1398 /// The data is collected per VF. 1399 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1400 1401 /// Holds the instructions (address computations) that are forced to be 1402 /// scalarized. 1403 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1404 1405 /// Returns the expected difference in cost from scalarizing the expression 1406 /// feeding a predicated instruction \p PredInst. The instructions to 1407 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1408 /// non-negative return value implies the expression will be scalarized. 1409 /// Currently, only single-use chains are considered for scalarization. 1410 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1411 unsigned VF); 1412 1413 /// Collect the instructions that are uniform after vectorization. An 1414 /// instruction is uniform if we represent it with a single scalar value in 1415 /// the vectorized loop corresponding to each vector iteration. Examples of 1416 /// uniform instructions include pointer operands of consecutive or 1417 /// interleaved memory accesses. Note that although uniformity implies an 1418 /// instruction will be scalar, the reverse is not true. In general, a 1419 /// scalarized instruction will be represented by VF scalar values in the 1420 /// vectorized loop, each corresponding to an iteration of the original 1421 /// scalar loop. 1422 void collectLoopUniforms(unsigned VF); 1423 1424 /// Collect the instructions that are scalar after vectorization. An 1425 /// instruction is scalar if it is known to be uniform or will be scalarized 1426 /// during vectorization. Non-uniform scalarized instructions will be 1427 /// represented by VF values in the vectorized loop, each corresponding to an 1428 /// iteration of the original scalar loop. 1429 void collectLoopScalars(unsigned VF); 1430 1431 /// Keeps cost model vectorization decision and cost for instructions. 1432 /// Right now it is used for memory instructions only. 1433 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1434 std::pair<InstWidening, unsigned>>; 1435 1436 DecisionList WideningDecisions; 1437 1438 /// Returns true if \p V is expected to be vectorized and it needs to be 1439 /// extracted. 1440 bool needsExtract(Value *V, unsigned VF) const { 1441 Instruction *I = dyn_cast<Instruction>(V); 1442 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1443 return false; 1444 1445 // Assume we can vectorize V (and hence we need extraction) if the 1446 // scalars are not computed yet. This can happen, because it is called 1447 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1448 // the scalars are collected. That should be a safe assumption in most 1449 // cases, because we check if the operands have vectorizable types 1450 // beforehand in LoopVectorizationLegality. 1451 return Scalars.find(VF) == Scalars.end() || 1452 !isScalarAfterVectorization(I, VF); 1453 }; 1454 1455 /// Returns a range containing only operands needing to be extracted. 1456 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1457 unsigned VF) { 1458 return SmallVector<Value *, 4>(make_filter_range( 1459 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1460 } 1461 1462 public: 1463 /// The loop that we evaluate. 1464 Loop *TheLoop; 1465 1466 /// Predicated scalar evolution analysis. 1467 PredicatedScalarEvolution &PSE; 1468 1469 /// Loop Info analysis. 1470 LoopInfo *LI; 1471 1472 /// Vectorization legality. 1473 LoopVectorizationLegality *Legal; 1474 1475 /// Vector target information. 1476 const TargetTransformInfo &TTI; 1477 1478 /// Target Library Info. 1479 const TargetLibraryInfo *TLI; 1480 1481 /// Demanded bits analysis. 1482 DemandedBits *DB; 1483 1484 /// Assumption cache. 1485 AssumptionCache *AC; 1486 1487 /// Interface to emit optimization remarks. 1488 OptimizationRemarkEmitter *ORE; 1489 1490 const Function *TheFunction; 1491 1492 /// Loop Vectorize Hint. 1493 const LoopVectorizeHints *Hints; 1494 1495 /// The interleave access information contains groups of interleaved accesses 1496 /// with the same stride and close to each other. 1497 InterleavedAccessInfo &InterleaveInfo; 1498 1499 /// Values to ignore in the cost model. 1500 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1501 1502 /// Values to ignore in the cost model when VF > 1. 1503 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1504 }; 1505 1506 } // end namespace llvm 1507 1508 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1509 // vectorization. The loop needs to be annotated with #pragma omp simd 1510 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1511 // vector length information is not provided, vectorization is not considered 1512 // explicit. Interleave hints are not allowed either. These limitations will be 1513 // relaxed in the future. 1514 // Please, note that we are currently forced to abuse the pragma 'clang 1515 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1516 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1517 // provides *explicit vectorization hints* (LV can bypass legal checks and 1518 // assume that vectorization is legal). However, both hints are implemented 1519 // using the same metadata (llvm.loop.vectorize, processed by 1520 // LoopVectorizeHints). This will be fixed in the future when the native IR 1521 // representation for pragma 'omp simd' is introduced. 1522 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1523 OptimizationRemarkEmitter *ORE) { 1524 assert(!OuterLp->empty() && "This is not an outer loop"); 1525 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1526 1527 // Only outer loops with an explicit vectorization hint are supported. 1528 // Unannotated outer loops are ignored. 1529 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1530 return false; 1531 1532 Function *Fn = OuterLp->getHeader()->getParent(); 1533 if (!Hints.allowVectorization(Fn, OuterLp, 1534 true /*VectorizeOnlyWhenForced*/)) { 1535 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1536 return false; 1537 } 1538 1539 if (Hints.getInterleave() > 1) { 1540 // TODO: Interleave support is future work. 1541 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1542 "outer loops.\n"); 1543 Hints.emitRemarkWithHints(); 1544 return false; 1545 } 1546 1547 return true; 1548 } 1549 1550 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1551 OptimizationRemarkEmitter *ORE, 1552 SmallVectorImpl<Loop *> &V) { 1553 // Collect inner loops and outer loops without irreducible control flow. For 1554 // now, only collect outer loops that have explicit vectorization hints. If we 1555 // are stress testing the VPlan H-CFG construction, we collect the outermost 1556 // loop of every loop nest. 1557 if (L.empty() || VPlanBuildStressTest || 1558 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1559 LoopBlocksRPO RPOT(&L); 1560 RPOT.perform(LI); 1561 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1562 V.push_back(&L); 1563 // TODO: Collect inner loops inside marked outer loops in case 1564 // vectorization fails for the outer loop. Do not invoke 1565 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1566 // already known to be reducible. We can use an inherited attribute for 1567 // that. 1568 return; 1569 } 1570 } 1571 for (Loop *InnerL : L) 1572 collectSupportedLoops(*InnerL, LI, ORE, V); 1573 } 1574 1575 namespace { 1576 1577 /// The LoopVectorize Pass. 1578 struct LoopVectorize : public FunctionPass { 1579 /// Pass identification, replacement for typeid 1580 static char ID; 1581 1582 LoopVectorizePass Impl; 1583 1584 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1585 bool VectorizeOnlyWhenForced = false) 1586 : FunctionPass(ID) { 1587 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1588 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1589 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1590 } 1591 1592 bool runOnFunction(Function &F) override { 1593 if (skipFunction(F)) 1594 return false; 1595 1596 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1597 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1598 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1599 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1600 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1601 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1602 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1603 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1604 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1605 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1606 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1607 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1608 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1609 1610 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1611 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1612 1613 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1614 GetLAA, *ORE, PSI); 1615 } 1616 1617 void getAnalysisUsage(AnalysisUsage &AU) const override { 1618 AU.addRequired<AssumptionCacheTracker>(); 1619 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1620 AU.addRequired<DominatorTreeWrapperPass>(); 1621 AU.addRequired<LoopInfoWrapperPass>(); 1622 AU.addRequired<ScalarEvolutionWrapperPass>(); 1623 AU.addRequired<TargetTransformInfoWrapperPass>(); 1624 AU.addRequired<AAResultsWrapperPass>(); 1625 AU.addRequired<LoopAccessLegacyAnalysis>(); 1626 AU.addRequired<DemandedBitsWrapperPass>(); 1627 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1628 1629 // We currently do not preserve loopinfo/dominator analyses with outer loop 1630 // vectorization. Until this is addressed, mark these analyses as preserved 1631 // only for non-VPlan-native path. 1632 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1633 if (!EnableVPlanNativePath) { 1634 AU.addPreserved<LoopInfoWrapperPass>(); 1635 AU.addPreserved<DominatorTreeWrapperPass>(); 1636 } 1637 1638 AU.addPreserved<BasicAAWrapperPass>(); 1639 AU.addPreserved<GlobalsAAWrapperPass>(); 1640 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1641 } 1642 }; 1643 1644 } // end anonymous namespace 1645 1646 //===----------------------------------------------------------------------===// 1647 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1648 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1649 //===----------------------------------------------------------------------===// 1650 1651 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1652 // We need to place the broadcast of invariant variables outside the loop, 1653 // but only if it's proven safe to do so. Else, broadcast will be inside 1654 // vector loop body. 1655 Instruction *Instr = dyn_cast<Instruction>(V); 1656 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1657 (!Instr || 1658 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1659 // Place the code for broadcasting invariant variables in the new preheader. 1660 IRBuilder<>::InsertPointGuard Guard(Builder); 1661 if (SafeToHoist) 1662 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1663 1664 // Broadcast the scalar into all locations in the vector. 1665 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1666 1667 return Shuf; 1668 } 1669 1670 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1671 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1672 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1673 "Expected either an induction phi-node or a truncate of it!"); 1674 Value *Start = II.getStartValue(); 1675 1676 // Construct the initial value of the vector IV in the vector loop preheader 1677 auto CurrIP = Builder.saveIP(); 1678 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1679 if (isa<TruncInst>(EntryVal)) { 1680 assert(Start->getType()->isIntegerTy() && 1681 "Truncation requires an integer type"); 1682 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1683 Step = Builder.CreateTrunc(Step, TruncType); 1684 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1685 } 1686 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1687 Value *SteppedStart = 1688 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1689 1690 // We create vector phi nodes for both integer and floating-point induction 1691 // variables. Here, we determine the kind of arithmetic we will perform. 1692 Instruction::BinaryOps AddOp; 1693 Instruction::BinaryOps MulOp; 1694 if (Step->getType()->isIntegerTy()) { 1695 AddOp = Instruction::Add; 1696 MulOp = Instruction::Mul; 1697 } else { 1698 AddOp = II.getInductionOpcode(); 1699 MulOp = Instruction::FMul; 1700 } 1701 1702 // Multiply the vectorization factor by the step using integer or 1703 // floating-point arithmetic as appropriate. 1704 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1705 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1706 1707 // Create a vector splat to use in the induction update. 1708 // 1709 // FIXME: If the step is non-constant, we create the vector splat with 1710 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1711 // handle a constant vector splat. 1712 Value *SplatVF = isa<Constant>(Mul) 1713 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1714 : Builder.CreateVectorSplat(VF, Mul); 1715 Builder.restoreIP(CurrIP); 1716 1717 // We may need to add the step a number of times, depending on the unroll 1718 // factor. The last of those goes into the PHI. 1719 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1720 &*LoopVectorBody->getFirstInsertionPt()); 1721 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1722 Instruction *LastInduction = VecInd; 1723 for (unsigned Part = 0; Part < UF; ++Part) { 1724 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1725 1726 if (isa<TruncInst>(EntryVal)) 1727 addMetadata(LastInduction, EntryVal); 1728 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1729 1730 LastInduction = cast<Instruction>(addFastMathFlag( 1731 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1732 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1733 } 1734 1735 // Move the last step to the end of the latch block. This ensures consistent 1736 // placement of all induction updates. 1737 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1738 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1739 auto *ICmp = cast<Instruction>(Br->getCondition()); 1740 LastInduction->moveBefore(ICmp); 1741 LastInduction->setName("vec.ind.next"); 1742 1743 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1744 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1745 } 1746 1747 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1748 return Cost->isScalarAfterVectorization(I, VF) || 1749 Cost->isProfitableToScalarize(I, VF); 1750 } 1751 1752 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1753 if (shouldScalarizeInstruction(IV)) 1754 return true; 1755 auto isScalarInst = [&](User *U) -> bool { 1756 auto *I = cast<Instruction>(U); 1757 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1758 }; 1759 return llvm::any_of(IV->users(), isScalarInst); 1760 } 1761 1762 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1763 const InductionDescriptor &ID, const Instruction *EntryVal, 1764 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1765 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1766 "Expected either an induction phi-node or a truncate of it!"); 1767 1768 // This induction variable is not the phi from the original loop but the 1769 // newly-created IV based on the proof that casted Phi is equal to the 1770 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1771 // re-uses the same InductionDescriptor that original IV uses but we don't 1772 // have to do any recording in this case - that is done when original IV is 1773 // processed. 1774 if (isa<TruncInst>(EntryVal)) 1775 return; 1776 1777 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1778 if (Casts.empty()) 1779 return; 1780 // Only the first Cast instruction in the Casts vector is of interest. 1781 // The rest of the Casts (if exist) have no uses outside the 1782 // induction update chain itself. 1783 Instruction *CastInst = *Casts.begin(); 1784 if (Lane < UINT_MAX) 1785 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1786 else 1787 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1788 } 1789 1790 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1791 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1792 "Primary induction variable must have an integer type"); 1793 1794 auto II = Legal->getInductionVars()->find(IV); 1795 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1796 1797 auto ID = II->second; 1798 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1799 1800 // The scalar value to broadcast. This will be derived from the canonical 1801 // induction variable. 1802 Value *ScalarIV = nullptr; 1803 1804 // The value from the original loop to which we are mapping the new induction 1805 // variable. 1806 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1807 1808 // True if we have vectorized the induction variable. 1809 auto VectorizedIV = false; 1810 1811 // Determine if we want a scalar version of the induction variable. This is 1812 // true if the induction variable itself is not widened, or if it has at 1813 // least one user in the loop that is not widened. 1814 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1815 1816 // Generate code for the induction step. Note that induction steps are 1817 // required to be loop-invariant 1818 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1819 "Induction step should be loop invariant"); 1820 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1821 Value *Step = nullptr; 1822 if (PSE.getSE()->isSCEVable(IV->getType())) { 1823 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1824 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1825 LoopVectorPreHeader->getTerminator()); 1826 } else { 1827 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1828 } 1829 1830 // Try to create a new independent vector induction variable. If we can't 1831 // create the phi node, we will splat the scalar induction variable in each 1832 // loop iteration. 1833 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1834 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1835 VectorizedIV = true; 1836 } 1837 1838 // If we haven't yet vectorized the induction variable, or if we will create 1839 // a scalar one, we need to define the scalar induction variable and step 1840 // values. If we were given a truncation type, truncate the canonical 1841 // induction variable and step. Otherwise, derive these values from the 1842 // induction descriptor. 1843 if (!VectorizedIV || NeedsScalarIV) { 1844 ScalarIV = Induction; 1845 if (IV != OldInduction) { 1846 ScalarIV = IV->getType()->isIntegerTy() 1847 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1848 : Builder.CreateCast(Instruction::SIToFP, Induction, 1849 IV->getType()); 1850 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1851 ScalarIV->setName("offset.idx"); 1852 } 1853 if (Trunc) { 1854 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1855 assert(Step->getType()->isIntegerTy() && 1856 "Truncation requires an integer step"); 1857 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1858 Step = Builder.CreateTrunc(Step, TruncType); 1859 } 1860 } 1861 1862 // If we haven't yet vectorized the induction variable, splat the scalar 1863 // induction variable, and build the necessary step vectors. 1864 // TODO: Don't do it unless the vectorized IV is really required. 1865 if (!VectorizedIV) { 1866 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1867 for (unsigned Part = 0; Part < UF; ++Part) { 1868 Value *EntryPart = 1869 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1870 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1871 if (Trunc) 1872 addMetadata(EntryPart, Trunc); 1873 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1874 } 1875 } 1876 1877 // If an induction variable is only used for counting loop iterations or 1878 // calculating addresses, it doesn't need to be widened. Create scalar steps 1879 // that can be used by instructions we will later scalarize. Note that the 1880 // addition of the scalar steps will not increase the number of instructions 1881 // in the loop in the common case prior to InstCombine. We will be trading 1882 // one vector extract for each scalar step. 1883 if (NeedsScalarIV) 1884 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1885 } 1886 1887 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1888 Instruction::BinaryOps BinOp) { 1889 // Create and check the types. 1890 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1891 int VLen = Val->getType()->getVectorNumElements(); 1892 1893 Type *STy = Val->getType()->getScalarType(); 1894 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1895 "Induction Step must be an integer or FP"); 1896 assert(Step->getType() == STy && "Step has wrong type"); 1897 1898 SmallVector<Constant *, 8> Indices; 1899 1900 if (STy->isIntegerTy()) { 1901 // Create a vector of consecutive numbers from zero to VF. 1902 for (int i = 0; i < VLen; ++i) 1903 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1904 1905 // Add the consecutive indices to the vector value. 1906 Constant *Cv = ConstantVector::get(Indices); 1907 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1908 Step = Builder.CreateVectorSplat(VLen, Step); 1909 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1910 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1911 // which can be found from the original scalar operations. 1912 Step = Builder.CreateMul(Cv, Step); 1913 return Builder.CreateAdd(Val, Step, "induction"); 1914 } 1915 1916 // Floating point induction. 1917 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1918 "Binary Opcode should be specified for FP induction"); 1919 // Create a vector of consecutive numbers from zero to VF. 1920 for (int i = 0; i < VLen; ++i) 1921 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1922 1923 // Add the consecutive indices to the vector value. 1924 Constant *Cv = ConstantVector::get(Indices); 1925 1926 Step = Builder.CreateVectorSplat(VLen, Step); 1927 1928 // Floating point operations had to be 'fast' to enable the induction. 1929 FastMathFlags Flags; 1930 Flags.setFast(); 1931 1932 Value *MulOp = Builder.CreateFMul(Cv, Step); 1933 if (isa<Instruction>(MulOp)) 1934 // Have to check, MulOp may be a constant 1935 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1936 1937 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1938 if (isa<Instruction>(BOp)) 1939 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1940 return BOp; 1941 } 1942 1943 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1944 Instruction *EntryVal, 1945 const InductionDescriptor &ID) { 1946 // We shouldn't have to build scalar steps if we aren't vectorizing. 1947 assert(VF > 1 && "VF should be greater than one"); 1948 1949 // Get the value type and ensure it and the step have the same integer type. 1950 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1951 assert(ScalarIVTy == Step->getType() && 1952 "Val and Step should have the same type"); 1953 1954 // We build scalar steps for both integer and floating-point induction 1955 // variables. Here, we determine the kind of arithmetic we will perform. 1956 Instruction::BinaryOps AddOp; 1957 Instruction::BinaryOps MulOp; 1958 if (ScalarIVTy->isIntegerTy()) { 1959 AddOp = Instruction::Add; 1960 MulOp = Instruction::Mul; 1961 } else { 1962 AddOp = ID.getInductionOpcode(); 1963 MulOp = Instruction::FMul; 1964 } 1965 1966 // Determine the number of scalars we need to generate for each unroll 1967 // iteration. If EntryVal is uniform, we only need to generate the first 1968 // lane. Otherwise, we generate all VF values. 1969 unsigned Lanes = 1970 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1971 : VF; 1972 // Compute the scalar steps and save the results in VectorLoopValueMap. 1973 for (unsigned Part = 0; Part < UF; ++Part) { 1974 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1975 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1976 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1977 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1978 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1979 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1980 } 1981 } 1982 } 1983 1984 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1985 assert(V != Induction && "The new induction variable should not be used."); 1986 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1987 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1988 1989 // If we have a stride that is replaced by one, do it here. Defer this for 1990 // the VPlan-native path until we start running Legal checks in that path. 1991 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1992 V = ConstantInt::get(V->getType(), 1); 1993 1994 // If we have a vector mapped to this value, return it. 1995 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1996 return VectorLoopValueMap.getVectorValue(V, Part); 1997 1998 // If the value has not been vectorized, check if it has been scalarized 1999 // instead. If it has been scalarized, and we actually need the value in 2000 // vector form, we will construct the vector values on demand. 2001 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2002 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2003 2004 // If we've scalarized a value, that value should be an instruction. 2005 auto *I = cast<Instruction>(V); 2006 2007 // If we aren't vectorizing, we can just copy the scalar map values over to 2008 // the vector map. 2009 if (VF == 1) { 2010 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2011 return ScalarValue; 2012 } 2013 2014 // Get the last scalar instruction we generated for V and Part. If the value 2015 // is known to be uniform after vectorization, this corresponds to lane zero 2016 // of the Part unroll iteration. Otherwise, the last instruction is the one 2017 // we created for the last vector lane of the Part unroll iteration. 2018 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2019 auto *LastInst = cast<Instruction>( 2020 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2021 2022 // Set the insert point after the last scalarized instruction. This ensures 2023 // the insertelement sequence will directly follow the scalar definitions. 2024 auto OldIP = Builder.saveIP(); 2025 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2026 Builder.SetInsertPoint(&*NewIP); 2027 2028 // However, if we are vectorizing, we need to construct the vector values. 2029 // If the value is known to be uniform after vectorization, we can just 2030 // broadcast the scalar value corresponding to lane zero for each unroll 2031 // iteration. Otherwise, we construct the vector values using insertelement 2032 // instructions. Since the resulting vectors are stored in 2033 // VectorLoopValueMap, we will only generate the insertelements once. 2034 Value *VectorValue = nullptr; 2035 if (Cost->isUniformAfterVectorization(I, VF)) { 2036 VectorValue = getBroadcastInstrs(ScalarValue); 2037 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2038 } else { 2039 // Initialize packing with insertelements to start from undef. 2040 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2041 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2042 for (unsigned Lane = 0; Lane < VF; ++Lane) 2043 packScalarIntoVectorValue(V, {Part, Lane}); 2044 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2045 } 2046 Builder.restoreIP(OldIP); 2047 return VectorValue; 2048 } 2049 2050 // If this scalar is unknown, assume that it is a constant or that it is 2051 // loop invariant. Broadcast V and save the value for future uses. 2052 Value *B = getBroadcastInstrs(V); 2053 VectorLoopValueMap.setVectorValue(V, Part, B); 2054 return B; 2055 } 2056 2057 Value * 2058 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2059 const VPIteration &Instance) { 2060 // If the value is not an instruction contained in the loop, it should 2061 // already be scalar. 2062 if (OrigLoop->isLoopInvariant(V)) 2063 return V; 2064 2065 assert(Instance.Lane > 0 2066 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2067 : true && "Uniform values only have lane zero"); 2068 2069 // If the value from the original loop has not been vectorized, it is 2070 // represented by UF x VF scalar values in the new loop. Return the requested 2071 // scalar value. 2072 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2073 return VectorLoopValueMap.getScalarValue(V, Instance); 2074 2075 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2076 // for the given unroll part. If this entry is not a vector type (i.e., the 2077 // vectorization factor is one), there is no need to generate an 2078 // extractelement instruction. 2079 auto *U = getOrCreateVectorValue(V, Instance.Part); 2080 if (!U->getType()->isVectorTy()) { 2081 assert(VF == 1 && "Value not scalarized has non-vector type"); 2082 return U; 2083 } 2084 2085 // Otherwise, the value from the original loop has been vectorized and is 2086 // represented by UF vector values. Extract and return the requested scalar 2087 // value from the appropriate vector lane. 2088 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2089 } 2090 2091 void InnerLoopVectorizer::packScalarIntoVectorValue( 2092 Value *V, const VPIteration &Instance) { 2093 assert(V != Induction && "The new induction variable should not be used."); 2094 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2095 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2096 2097 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2098 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2099 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2100 Builder.getInt32(Instance.Lane)); 2101 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2102 } 2103 2104 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2105 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2106 SmallVector<Constant *, 8> ShuffleMask; 2107 for (unsigned i = 0; i < VF; ++i) 2108 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2109 2110 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2111 ConstantVector::get(ShuffleMask), 2112 "reverse"); 2113 } 2114 2115 // Return whether we allow using masked interleave-groups (for dealing with 2116 // strided loads/stores that reside in predicated blocks, or for dealing 2117 // with gaps). 2118 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2119 // If an override option has been passed in for interleaved accesses, use it. 2120 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2121 return EnableMaskedInterleavedMemAccesses; 2122 2123 return TTI.enableMaskedInterleavedAccessVectorization(); 2124 } 2125 2126 // Try to vectorize the interleave group that \p Instr belongs to. 2127 // 2128 // E.g. Translate following interleaved load group (factor = 3): 2129 // for (i = 0; i < N; i+=3) { 2130 // R = Pic[i]; // Member of index 0 2131 // G = Pic[i+1]; // Member of index 1 2132 // B = Pic[i+2]; // Member of index 2 2133 // ... // do something to R, G, B 2134 // } 2135 // To: 2136 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2137 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2138 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2139 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2140 // 2141 // Or translate following interleaved store group (factor = 3): 2142 // for (i = 0; i < N; i+=3) { 2143 // ... do something to R, G, B 2144 // Pic[i] = R; // Member of index 0 2145 // Pic[i+1] = G; // Member of index 1 2146 // Pic[i+2] = B; // Member of index 2 2147 // } 2148 // To: 2149 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2150 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2151 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2152 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2153 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2154 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2155 VectorParts *BlockInMask) { 2156 const InterleaveGroup<Instruction> *Group = 2157 Cost->getInterleavedAccessGroup(Instr); 2158 assert(Group && "Fail to get an interleaved access group."); 2159 2160 // Skip if current instruction is not the insert position. 2161 if (Instr != Group->getInsertPos()) 2162 return; 2163 2164 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2165 Value *Ptr = getLoadStorePointerOperand(Instr); 2166 2167 // Prepare for the vector type of the interleaved load/store. 2168 Type *ScalarTy = getMemInstValueType(Instr); 2169 unsigned InterleaveFactor = Group->getFactor(); 2170 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2171 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2172 2173 // Prepare for the new pointers. 2174 setDebugLocFromInst(Builder, Ptr); 2175 SmallVector<Value *, 2> NewPtrs; 2176 unsigned Index = Group->getIndex(Instr); 2177 2178 VectorParts Mask; 2179 bool IsMaskForCondRequired = BlockInMask; 2180 if (IsMaskForCondRequired) { 2181 Mask = *BlockInMask; 2182 // TODO: extend the masked interleaved-group support to reversed access. 2183 assert(!Group->isReverse() && "Reversed masked interleave-group " 2184 "not supported."); 2185 } 2186 2187 // If the group is reverse, adjust the index to refer to the last vector lane 2188 // instead of the first. We adjust the index from the first vector lane, 2189 // rather than directly getting the pointer for lane VF - 1, because the 2190 // pointer operand of the interleaved access is supposed to be uniform. For 2191 // uniform instructions, we're only required to generate a value for the 2192 // first vector lane in each unroll iteration. 2193 if (Group->isReverse()) 2194 Index += (VF - 1) * Group->getFactor(); 2195 2196 bool InBounds = false; 2197 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2198 InBounds = gep->isInBounds(); 2199 2200 for (unsigned Part = 0; Part < UF; Part++) { 2201 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2202 2203 // Notice current instruction could be any index. Need to adjust the address 2204 // to the member of index 0. 2205 // 2206 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2207 // b = A[i]; // Member of index 0 2208 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2209 // 2210 // E.g. A[i+1] = a; // Member of index 1 2211 // A[i] = b; // Member of index 0 2212 // A[i+2] = c; // Member of index 2 (Current instruction) 2213 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2214 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2215 if (InBounds) 2216 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2217 2218 // Cast to the vector pointer type. 2219 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2220 } 2221 2222 setDebugLocFromInst(Builder, Instr); 2223 Value *UndefVec = UndefValue::get(VecTy); 2224 2225 Value *MaskForGaps = nullptr; 2226 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2227 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2228 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2229 } 2230 2231 // Vectorize the interleaved load group. 2232 if (isa<LoadInst>(Instr)) { 2233 // For each unroll part, create a wide load for the group. 2234 SmallVector<Value *, 2> NewLoads; 2235 for (unsigned Part = 0; Part < UF; Part++) { 2236 Instruction *NewLoad; 2237 if (IsMaskForCondRequired || MaskForGaps) { 2238 assert(useMaskedInterleavedAccesses(*TTI) && 2239 "masked interleaved groups are not allowed."); 2240 Value *GroupMask = MaskForGaps; 2241 if (IsMaskForCondRequired) { 2242 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2243 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2244 Value *ShuffledMask = Builder.CreateShuffleVector( 2245 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2246 GroupMask = MaskForGaps 2247 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2248 MaskForGaps) 2249 : ShuffledMask; 2250 } 2251 NewLoad = 2252 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2253 GroupMask, UndefVec, "wide.masked.vec"); 2254 } 2255 else 2256 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2257 Group->getAlignment(), "wide.vec"); 2258 Group->addMetadata(NewLoad); 2259 NewLoads.push_back(NewLoad); 2260 } 2261 2262 // For each member in the group, shuffle out the appropriate data from the 2263 // wide loads. 2264 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2265 Instruction *Member = Group->getMember(I); 2266 2267 // Skip the gaps in the group. 2268 if (!Member) 2269 continue; 2270 2271 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2272 for (unsigned Part = 0; Part < UF; Part++) { 2273 Value *StridedVec = Builder.CreateShuffleVector( 2274 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2275 2276 // If this member has different type, cast the result type. 2277 if (Member->getType() != ScalarTy) { 2278 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2279 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2280 } 2281 2282 if (Group->isReverse()) 2283 StridedVec = reverseVector(StridedVec); 2284 2285 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2286 } 2287 } 2288 return; 2289 } 2290 2291 // The sub vector type for current instruction. 2292 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2293 2294 // Vectorize the interleaved store group. 2295 for (unsigned Part = 0; Part < UF; Part++) { 2296 // Collect the stored vector from each member. 2297 SmallVector<Value *, 4> StoredVecs; 2298 for (unsigned i = 0; i < InterleaveFactor; i++) { 2299 // Interleaved store group doesn't allow a gap, so each index has a member 2300 Instruction *Member = Group->getMember(i); 2301 assert(Member && "Fail to get a member from an interleaved store group"); 2302 2303 Value *StoredVec = getOrCreateVectorValue( 2304 cast<StoreInst>(Member)->getValueOperand(), Part); 2305 if (Group->isReverse()) 2306 StoredVec = reverseVector(StoredVec); 2307 2308 // If this member has different type, cast it to a unified type. 2309 2310 if (StoredVec->getType() != SubVT) 2311 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2312 2313 StoredVecs.push_back(StoredVec); 2314 } 2315 2316 // Concatenate all vectors into a wide vector. 2317 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2318 2319 // Interleave the elements in the wide vector. 2320 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2321 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2322 "interleaved.vec"); 2323 2324 Instruction *NewStoreInstr; 2325 if (IsMaskForCondRequired) { 2326 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2327 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2328 Value *ShuffledMask = Builder.CreateShuffleVector( 2329 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2330 NewStoreInstr = Builder.CreateMaskedStore( 2331 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2332 } 2333 else 2334 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2335 Group->getAlignment()); 2336 2337 Group->addMetadata(NewStoreInstr); 2338 } 2339 } 2340 2341 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2342 VectorParts *BlockInMask) { 2343 // Attempt to issue a wide load. 2344 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2345 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2346 2347 assert((LI || SI) && "Invalid Load/Store instruction"); 2348 2349 LoopVectorizationCostModel::InstWidening Decision = 2350 Cost->getWideningDecision(Instr, VF); 2351 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2352 "CM decision should be taken at this point"); 2353 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2354 return vectorizeInterleaveGroup(Instr); 2355 2356 Type *ScalarDataTy = getMemInstValueType(Instr); 2357 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2358 Value *Ptr = getLoadStorePointerOperand(Instr); 2359 unsigned Alignment = getLoadStoreAlignment(Instr); 2360 // An alignment of 0 means target abi alignment. We need to use the scalar's 2361 // target abi alignment in such a case. 2362 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2363 if (!Alignment) 2364 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2365 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2366 2367 // Determine if the pointer operand of the access is either consecutive or 2368 // reverse consecutive. 2369 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2370 bool ConsecutiveStride = 2371 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2372 bool CreateGatherScatter = 2373 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2374 2375 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2376 // gather/scatter. Otherwise Decision should have been to Scalarize. 2377 assert((ConsecutiveStride || CreateGatherScatter) && 2378 "The instruction should be scalarized"); 2379 2380 // Handle consecutive loads/stores. 2381 if (ConsecutiveStride) 2382 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2383 2384 VectorParts Mask; 2385 bool isMaskRequired = BlockInMask; 2386 if (isMaskRequired) 2387 Mask = *BlockInMask; 2388 2389 bool InBounds = false; 2390 if (auto *gep = dyn_cast<GetElementPtrInst>( 2391 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2392 InBounds = gep->isInBounds(); 2393 2394 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2395 // Calculate the pointer for the specific unroll-part. 2396 GetElementPtrInst *PartPtr = nullptr; 2397 2398 if (Reverse) { 2399 // If the address is consecutive but reversed, then the 2400 // wide store needs to start at the last vector element. 2401 PartPtr = cast<GetElementPtrInst>( 2402 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2403 PartPtr->setIsInBounds(InBounds); 2404 PartPtr = cast<GetElementPtrInst>( 2405 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2406 PartPtr->setIsInBounds(InBounds); 2407 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2408 Mask[Part] = reverseVector(Mask[Part]); 2409 } else { 2410 PartPtr = cast<GetElementPtrInst>( 2411 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2412 PartPtr->setIsInBounds(InBounds); 2413 } 2414 2415 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2416 }; 2417 2418 // Handle Stores: 2419 if (SI) { 2420 setDebugLocFromInst(Builder, SI); 2421 2422 for (unsigned Part = 0; Part < UF; ++Part) { 2423 Instruction *NewSI = nullptr; 2424 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2425 if (CreateGatherScatter) { 2426 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2427 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2428 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2429 MaskPart); 2430 } else { 2431 if (Reverse) { 2432 // If we store to reverse consecutive memory locations, then we need 2433 // to reverse the order of elements in the stored value. 2434 StoredVal = reverseVector(StoredVal); 2435 // We don't want to update the value in the map as it might be used in 2436 // another expression. So don't call resetVectorValue(StoredVal). 2437 } 2438 auto *VecPtr = CreateVecPtr(Part, Ptr); 2439 if (isMaskRequired) 2440 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2441 Mask[Part]); 2442 else 2443 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2444 } 2445 addMetadata(NewSI, SI); 2446 } 2447 return; 2448 } 2449 2450 // Handle loads. 2451 assert(LI && "Must have a load instruction"); 2452 setDebugLocFromInst(Builder, LI); 2453 for (unsigned Part = 0; Part < UF; ++Part) { 2454 Value *NewLI; 2455 if (CreateGatherScatter) { 2456 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2457 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2458 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2459 nullptr, "wide.masked.gather"); 2460 addMetadata(NewLI, LI); 2461 } else { 2462 auto *VecPtr = CreateVecPtr(Part, Ptr); 2463 if (isMaskRequired) 2464 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2465 UndefValue::get(DataTy), 2466 "wide.masked.load"); 2467 else 2468 NewLI = 2469 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2470 2471 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2472 addMetadata(NewLI, LI); 2473 if (Reverse) 2474 NewLI = reverseVector(NewLI); 2475 } 2476 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2477 } 2478 } 2479 2480 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2481 const VPIteration &Instance, 2482 bool IfPredicateInstr) { 2483 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2484 2485 setDebugLocFromInst(Builder, Instr); 2486 2487 // Does this instruction return a value ? 2488 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2489 2490 Instruction *Cloned = Instr->clone(); 2491 if (!IsVoidRetTy) 2492 Cloned->setName(Instr->getName() + ".cloned"); 2493 2494 // Replace the operands of the cloned instructions with their scalar 2495 // equivalents in the new loop. 2496 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2497 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2498 Cloned->setOperand(op, NewOp); 2499 } 2500 addNewMetadata(Cloned, Instr); 2501 2502 // Place the cloned scalar in the new loop. 2503 Builder.Insert(Cloned); 2504 2505 // Add the cloned scalar to the scalar map entry. 2506 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2507 2508 // If we just cloned a new assumption, add it the assumption cache. 2509 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2510 if (II->getIntrinsicID() == Intrinsic::assume) 2511 AC->registerAssumption(II); 2512 2513 // End if-block. 2514 if (IfPredicateInstr) 2515 PredicatedInstructions.push_back(Cloned); 2516 } 2517 2518 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2519 Value *End, Value *Step, 2520 Instruction *DL) { 2521 BasicBlock *Header = L->getHeader(); 2522 BasicBlock *Latch = L->getLoopLatch(); 2523 // As we're just creating this loop, it's possible no latch exists 2524 // yet. If so, use the header as this will be a single block loop. 2525 if (!Latch) 2526 Latch = Header; 2527 2528 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2529 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2530 setDebugLocFromInst(Builder, OldInst); 2531 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2532 2533 Builder.SetInsertPoint(Latch->getTerminator()); 2534 setDebugLocFromInst(Builder, OldInst); 2535 2536 // Create i+1 and fill the PHINode. 2537 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2538 Induction->addIncoming(Start, L->getLoopPreheader()); 2539 Induction->addIncoming(Next, Latch); 2540 // Create the compare. 2541 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2542 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2543 2544 // Now we have two terminators. Remove the old one from the block. 2545 Latch->getTerminator()->eraseFromParent(); 2546 2547 return Induction; 2548 } 2549 2550 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2551 if (TripCount) 2552 return TripCount; 2553 2554 assert(L && "Create Trip Count for null loop."); 2555 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2556 // Find the loop boundaries. 2557 ScalarEvolution *SE = PSE.getSE(); 2558 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2559 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2560 "Invalid loop count"); 2561 2562 Type *IdxTy = Legal->getWidestInductionType(); 2563 assert(IdxTy && "No type for induction"); 2564 2565 // The exit count might have the type of i64 while the phi is i32. This can 2566 // happen if we have an induction variable that is sign extended before the 2567 // compare. The only way that we get a backedge taken count is that the 2568 // induction variable was signed and as such will not overflow. In such a case 2569 // truncation is legal. 2570 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2571 IdxTy->getPrimitiveSizeInBits()) 2572 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2573 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2574 2575 // Get the total trip count from the count by adding 1. 2576 const SCEV *ExitCount = SE->getAddExpr( 2577 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2578 2579 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2580 2581 // Expand the trip count and place the new instructions in the preheader. 2582 // Notice that the pre-header does not change, only the loop body. 2583 SCEVExpander Exp(*SE, DL, "induction"); 2584 2585 // Count holds the overall loop count (N). 2586 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2587 L->getLoopPreheader()->getTerminator()); 2588 2589 if (TripCount->getType()->isPointerTy()) 2590 TripCount = 2591 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2592 L->getLoopPreheader()->getTerminator()); 2593 2594 return TripCount; 2595 } 2596 2597 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2598 if (VectorTripCount) 2599 return VectorTripCount; 2600 2601 Value *TC = getOrCreateTripCount(L); 2602 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2603 2604 Type *Ty = TC->getType(); 2605 Constant *Step = ConstantInt::get(Ty, VF * UF); 2606 2607 // If the tail is to be folded by masking, round the number of iterations N 2608 // up to a multiple of Step instead of rounding down. This is done by first 2609 // adding Step-1 and then rounding down. Note that it's ok if this addition 2610 // overflows: the vector induction variable will eventually wrap to zero given 2611 // that it starts at zero and its Step is a power of two; the loop will then 2612 // exit, with the last early-exit vector comparison also producing all-true. 2613 if (Cost->foldTailByMasking()) { 2614 assert(isPowerOf2_32(VF * UF) && 2615 "VF*UF must be a power of 2 when folding tail by masking"); 2616 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2617 } 2618 2619 // Now we need to generate the expression for the part of the loop that the 2620 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2621 // iterations are not required for correctness, or N - Step, otherwise. Step 2622 // is equal to the vectorization factor (number of SIMD elements) times the 2623 // unroll factor (number of SIMD instructions). 2624 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2625 2626 // If there is a non-reversed interleaved group that may speculatively access 2627 // memory out-of-bounds, we need to ensure that there will be at least one 2628 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2629 // the trip count, we set the remainder to be equal to the step. If the step 2630 // does not evenly divide the trip count, no adjustment is necessary since 2631 // there will already be scalar iterations. Note that the minimum iterations 2632 // check ensures that N >= Step. 2633 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2634 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2635 R = Builder.CreateSelect(IsZero, Step, R); 2636 } 2637 2638 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2639 2640 return VectorTripCount; 2641 } 2642 2643 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2644 const DataLayout &DL) { 2645 // Verify that V is a vector type with same number of elements as DstVTy. 2646 unsigned VF = DstVTy->getNumElements(); 2647 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2648 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2649 Type *SrcElemTy = SrcVecTy->getElementType(); 2650 Type *DstElemTy = DstVTy->getElementType(); 2651 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2652 "Vector elements must have same size"); 2653 2654 // Do a direct cast if element types are castable. 2655 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2656 return Builder.CreateBitOrPointerCast(V, DstVTy); 2657 } 2658 // V cannot be directly casted to desired vector type. 2659 // May happen when V is a floating point vector but DstVTy is a vector of 2660 // pointers or vice-versa. Handle this using a two-step bitcast using an 2661 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2662 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2663 "Only one type should be a pointer type"); 2664 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2665 "Only one type should be a floating point type"); 2666 Type *IntTy = 2667 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2668 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2669 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2670 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2671 } 2672 2673 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2674 BasicBlock *Bypass) { 2675 Value *Count = getOrCreateTripCount(L); 2676 BasicBlock *BB = L->getLoopPreheader(); 2677 IRBuilder<> Builder(BB->getTerminator()); 2678 2679 // Generate code to check if the loop's trip count is less than VF * UF, or 2680 // equal to it in case a scalar epilogue is required; this implies that the 2681 // vector trip count is zero. This check also covers the case where adding one 2682 // to the backedge-taken count overflowed leading to an incorrect trip count 2683 // of zero. In this case we will also jump to the scalar loop. 2684 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2685 : ICmpInst::ICMP_ULT; 2686 2687 // If tail is to be folded, vector loop takes care of all iterations. 2688 Value *CheckMinIters = Builder.getFalse(); 2689 if (!Cost->foldTailByMasking()) 2690 CheckMinIters = Builder.CreateICmp( 2691 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2692 "min.iters.check"); 2693 2694 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2695 // Update dominator tree immediately if the generated block is a 2696 // LoopBypassBlock because SCEV expansions to generate loop bypass 2697 // checks may query it before the current function is finished. 2698 DT->addNewBlock(NewBB, BB); 2699 if (L->getParentLoop()) 2700 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2701 ReplaceInstWithInst(BB->getTerminator(), 2702 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2703 LoopBypassBlocks.push_back(BB); 2704 } 2705 2706 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2707 BasicBlock *BB = L->getLoopPreheader(); 2708 2709 // Generate the code to check that the SCEV assumptions that we made. 2710 // We want the new basic block to start at the first instruction in a 2711 // sequence of instructions that form a check. 2712 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2713 "scev.check"); 2714 Value *SCEVCheck = 2715 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2716 2717 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2718 if (C->isZero()) 2719 return; 2720 2721 assert(!BB->getParent()->hasOptSize() && 2722 "Cannot SCEV check stride or overflow when optimizing for size"); 2723 2724 // Create a new block containing the stride check. 2725 BB->setName("vector.scevcheck"); 2726 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2727 // Update dominator tree immediately if the generated block is a 2728 // LoopBypassBlock because SCEV expansions to generate loop bypass 2729 // checks may query it before the current function is finished. 2730 DT->addNewBlock(NewBB, BB); 2731 if (L->getParentLoop()) 2732 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2733 ReplaceInstWithInst(BB->getTerminator(), 2734 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2735 LoopBypassBlocks.push_back(BB); 2736 AddedSafetyChecks = true; 2737 } 2738 2739 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2740 // VPlan-native path does not do any analysis for runtime checks currently. 2741 if (EnableVPlanNativePath) 2742 return; 2743 2744 BasicBlock *BB = L->getLoopPreheader(); 2745 2746 // Generate the code that checks in runtime if arrays overlap. We put the 2747 // checks into a separate block to make the more common case of few elements 2748 // faster. 2749 Instruction *FirstCheckInst; 2750 Instruction *MemRuntimeCheck; 2751 std::tie(FirstCheckInst, MemRuntimeCheck) = 2752 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2753 if (!MemRuntimeCheck) 2754 return; 2755 2756 if (BB->getParent()->hasOptSize()) { 2757 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2758 "Cannot emit memory checks when optimizing for size, unless forced " 2759 "to vectorize."); 2760 ORE->emit([&]() { 2761 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2762 L->getStartLoc(), L->getHeader()) 2763 << "Code-size may be reduced by not forcing " 2764 "vectorization, or by source-code modifications " 2765 "eliminating the need for runtime checks " 2766 "(e.g., adding 'restrict')."; 2767 }); 2768 } 2769 2770 // Create a new block containing the memory check. 2771 BB->setName("vector.memcheck"); 2772 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2773 // Update dominator tree immediately if the generated block is a 2774 // LoopBypassBlock because SCEV expansions to generate loop bypass 2775 // checks may query it before the current function is finished. 2776 DT->addNewBlock(NewBB, BB); 2777 if (L->getParentLoop()) 2778 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2779 ReplaceInstWithInst(BB->getTerminator(), 2780 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2781 LoopBypassBlocks.push_back(BB); 2782 AddedSafetyChecks = true; 2783 2784 // We currently don't use LoopVersioning for the actual loop cloning but we 2785 // still use it to add the noalias metadata. 2786 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2787 PSE.getSE()); 2788 LVer->prepareNoAliasMetadata(); 2789 } 2790 2791 Value *InnerLoopVectorizer::emitTransformedIndex( 2792 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2793 const InductionDescriptor &ID) const { 2794 2795 SCEVExpander Exp(*SE, DL, "induction"); 2796 auto Step = ID.getStep(); 2797 auto StartValue = ID.getStartValue(); 2798 assert(Index->getType() == Step->getType() && 2799 "Index type does not match StepValue type"); 2800 2801 // Note: the IR at this point is broken. We cannot use SE to create any new 2802 // SCEV and then expand it, hoping that SCEV's simplification will give us 2803 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2804 // lead to various SCEV crashes. So all we can do is to use builder and rely 2805 // on InstCombine for future simplifications. Here we handle some trivial 2806 // cases only. 2807 auto CreateAdd = [&B](Value *X, Value *Y) { 2808 assert(X->getType() == Y->getType() && "Types don't match!"); 2809 if (auto *CX = dyn_cast<ConstantInt>(X)) 2810 if (CX->isZero()) 2811 return Y; 2812 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2813 if (CY->isZero()) 2814 return X; 2815 return B.CreateAdd(X, Y); 2816 }; 2817 2818 auto CreateMul = [&B](Value *X, Value *Y) { 2819 assert(X->getType() == Y->getType() && "Types don't match!"); 2820 if (auto *CX = dyn_cast<ConstantInt>(X)) 2821 if (CX->isOne()) 2822 return Y; 2823 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2824 if (CY->isOne()) 2825 return X; 2826 return B.CreateMul(X, Y); 2827 }; 2828 2829 switch (ID.getKind()) { 2830 case InductionDescriptor::IK_IntInduction: { 2831 assert(Index->getType() == StartValue->getType() && 2832 "Index type does not match StartValue type"); 2833 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2834 return B.CreateSub(StartValue, Index); 2835 auto *Offset = CreateMul( 2836 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2837 return CreateAdd(StartValue, Offset); 2838 } 2839 case InductionDescriptor::IK_PtrInduction: { 2840 assert(isa<SCEVConstant>(Step) && 2841 "Expected constant step for pointer induction"); 2842 return B.CreateGEP( 2843 StartValue->getType()->getPointerElementType(), StartValue, 2844 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2845 &*B.GetInsertPoint()))); 2846 } 2847 case InductionDescriptor::IK_FpInduction: { 2848 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2849 auto InductionBinOp = ID.getInductionBinOp(); 2850 assert(InductionBinOp && 2851 (InductionBinOp->getOpcode() == Instruction::FAdd || 2852 InductionBinOp->getOpcode() == Instruction::FSub) && 2853 "Original bin op should be defined for FP induction"); 2854 2855 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2856 2857 // Floating point operations had to be 'fast' to enable the induction. 2858 FastMathFlags Flags; 2859 Flags.setFast(); 2860 2861 Value *MulExp = B.CreateFMul(StepValue, Index); 2862 if (isa<Instruction>(MulExp)) 2863 // We have to check, the MulExp may be a constant. 2864 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2865 2866 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2867 "induction"); 2868 if (isa<Instruction>(BOp)) 2869 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2870 2871 return BOp; 2872 } 2873 case InductionDescriptor::IK_NoInduction: 2874 return nullptr; 2875 } 2876 llvm_unreachable("invalid enum"); 2877 } 2878 2879 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2880 /* 2881 In this function we generate a new loop. The new loop will contain 2882 the vectorized instructions while the old loop will continue to run the 2883 scalar remainder. 2884 2885 [ ] <-- loop iteration number check. 2886 / | 2887 / v 2888 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2889 | / | 2890 | / v 2891 || [ ] <-- vector pre header. 2892 |/ | 2893 | v 2894 | [ ] \ 2895 | [ ]_| <-- vector loop. 2896 | | 2897 | v 2898 | -[ ] <--- middle-block. 2899 | / | 2900 | / v 2901 -|- >[ ] <--- new preheader. 2902 | | 2903 | v 2904 | [ ] \ 2905 | [ ]_| <-- old scalar loop to handle remainder. 2906 \ | 2907 \ v 2908 >[ ] <-- exit block. 2909 ... 2910 */ 2911 2912 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2913 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2914 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2915 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2916 assert(VectorPH && "Invalid loop structure"); 2917 assert(ExitBlock && "Must have an exit block"); 2918 2919 // Some loops have a single integer induction variable, while other loops 2920 // don't. One example is c++ iterators that often have multiple pointer 2921 // induction variables. In the code below we also support a case where we 2922 // don't have a single induction variable. 2923 // 2924 // We try to obtain an induction variable from the original loop as hard 2925 // as possible. However if we don't find one that: 2926 // - is an integer 2927 // - counts from zero, stepping by one 2928 // - is the size of the widest induction variable type 2929 // then we create a new one. 2930 OldInduction = Legal->getPrimaryInduction(); 2931 Type *IdxTy = Legal->getWidestInductionType(); 2932 2933 // Split the single block loop into the two loop structure described above. 2934 BasicBlock *VecBody = 2935 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2936 BasicBlock *MiddleBlock = 2937 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2938 BasicBlock *ScalarPH = 2939 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2940 2941 // Create and register the new vector loop. 2942 Loop *Lp = LI->AllocateLoop(); 2943 Loop *ParentLoop = OrigLoop->getParentLoop(); 2944 2945 // Insert the new loop into the loop nest and register the new basic blocks 2946 // before calling any utilities such as SCEV that require valid LoopInfo. 2947 if (ParentLoop) { 2948 ParentLoop->addChildLoop(Lp); 2949 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2950 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2951 } else { 2952 LI->addTopLevelLoop(Lp); 2953 } 2954 Lp->addBasicBlockToLoop(VecBody, *LI); 2955 2956 // Find the loop boundaries. 2957 Value *Count = getOrCreateTripCount(Lp); 2958 2959 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2960 2961 // Now, compare the new count to zero. If it is zero skip the vector loop and 2962 // jump to the scalar loop. This check also covers the case where the 2963 // backedge-taken count is uint##_max: adding one to it will overflow leading 2964 // to an incorrect trip count of zero. In this (rare) case we will also jump 2965 // to the scalar loop. 2966 emitMinimumIterationCountCheck(Lp, ScalarPH); 2967 2968 // Generate the code to check any assumptions that we've made for SCEV 2969 // expressions. 2970 emitSCEVChecks(Lp, ScalarPH); 2971 2972 // Generate the code that checks in runtime if arrays overlap. We put the 2973 // checks into a separate block to make the more common case of few elements 2974 // faster. 2975 emitMemRuntimeChecks(Lp, ScalarPH); 2976 2977 // Generate the induction variable. 2978 // The loop step is equal to the vectorization factor (num of SIMD elements) 2979 // times the unroll factor (num of SIMD instructions). 2980 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2981 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2982 Induction = 2983 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2984 getDebugLocFromInstOrOperands(OldInduction)); 2985 2986 // We are going to resume the execution of the scalar loop. 2987 // Go over all of the induction variables that we found and fix the 2988 // PHIs that are left in the scalar version of the loop. 2989 // The starting values of PHI nodes depend on the counter of the last 2990 // iteration in the vectorized loop. 2991 // If we come from a bypass edge then we need to start from the original 2992 // start value. 2993 2994 // This variable saves the new starting index for the scalar loop. It is used 2995 // to test if there are any tail iterations left once the vector loop has 2996 // completed. 2997 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2998 for (auto &InductionEntry : *List) { 2999 PHINode *OrigPhi = InductionEntry.first; 3000 InductionDescriptor II = InductionEntry.second; 3001 3002 // Create phi nodes to merge from the backedge-taken check block. 3003 PHINode *BCResumeVal = PHINode::Create( 3004 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3005 // Copy original phi DL over to the new one. 3006 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3007 Value *&EndValue = IVEndValues[OrigPhi]; 3008 if (OrigPhi == OldInduction) { 3009 // We know what the end value is. 3010 EndValue = CountRoundDown; 3011 } else { 3012 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3013 Type *StepType = II.getStep()->getType(); 3014 Instruction::CastOps CastOp = 3015 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3016 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3017 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3018 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3019 EndValue->setName("ind.end"); 3020 } 3021 3022 // The new PHI merges the original incoming value, in case of a bypass, 3023 // or the value at the end of the vectorized loop. 3024 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3025 3026 // Fix the scalar body counter (PHI node). 3027 // The old induction's phi node in the scalar body needs the truncated 3028 // value. 3029 for (BasicBlock *BB : LoopBypassBlocks) 3030 BCResumeVal->addIncoming(II.getStartValue(), BB); 3031 OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal); 3032 } 3033 3034 // We need the OrigLoop (scalar loop part) latch terminator to help 3035 // produce correct debug info for the middle block BB instructions. 3036 // The legality check stage guarantees that the loop will have a single 3037 // latch. 3038 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3039 "Scalar loop latch terminator isn't a branch"); 3040 BranchInst *ScalarLatchBr = 3041 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3042 3043 // Add a check in the middle block to see if we have completed 3044 // all of the iterations in the first vector loop. 3045 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3046 // If tail is to be folded, we know we don't need to run the remainder. 3047 Value *CmpN = Builder.getTrue(); 3048 if (!Cost->foldTailByMasking()) { 3049 CmpN = 3050 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3051 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3052 3053 // Here we use the same DebugLoc as the scalar loop latch branch instead 3054 // of the corresponding compare because they may have ended up with 3055 // different line numbers and we want to avoid awkward line stepping while 3056 // debugging. Eg. if the compare has got a line number inside the loop. 3057 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3058 } 3059 3060 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 3061 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3062 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 3063 3064 // Get ready to start creating new instructions into the vectorized body. 3065 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3066 3067 // Save the state. 3068 LoopVectorPreHeader = Lp->getLoopPreheader(); 3069 LoopScalarPreHeader = ScalarPH; 3070 LoopMiddleBlock = MiddleBlock; 3071 LoopExitBlock = ExitBlock; 3072 LoopVectorBody = VecBody; 3073 LoopScalarBody = OldBasicBlock; 3074 3075 Optional<MDNode *> VectorizedLoopID = 3076 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3077 LLVMLoopVectorizeFollowupVectorized}); 3078 if (VectorizedLoopID.hasValue()) { 3079 Lp->setLoopID(VectorizedLoopID.getValue()); 3080 3081 // Do not setAlreadyVectorized if loop attributes have been defined 3082 // explicitly. 3083 return LoopVectorPreHeader; 3084 } 3085 3086 // Keep all loop hints from the original loop on the vector loop (we'll 3087 // replace the vectorizer-specific hints below). 3088 if (MDNode *LID = OrigLoop->getLoopID()) 3089 Lp->setLoopID(LID); 3090 3091 LoopVectorizeHints Hints(Lp, true, *ORE); 3092 Hints.setAlreadyVectorized(); 3093 3094 return LoopVectorPreHeader; 3095 } 3096 3097 // Fix up external users of the induction variable. At this point, we are 3098 // in LCSSA form, with all external PHIs that use the IV having one input value, 3099 // coming from the remainder loop. We need those PHIs to also have a correct 3100 // value for the IV when arriving directly from the middle block. 3101 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3102 const InductionDescriptor &II, 3103 Value *CountRoundDown, Value *EndValue, 3104 BasicBlock *MiddleBlock) { 3105 // There are two kinds of external IV usages - those that use the value 3106 // computed in the last iteration (the PHI) and those that use the penultimate 3107 // value (the value that feeds into the phi from the loop latch). 3108 // We allow both, but they, obviously, have different values. 3109 3110 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3111 3112 DenseMap<Value *, Value *> MissingVals; 3113 3114 // An external user of the last iteration's value should see the value that 3115 // the remainder loop uses to initialize its own IV. 3116 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3117 for (User *U : PostInc->users()) { 3118 Instruction *UI = cast<Instruction>(U); 3119 if (!OrigLoop->contains(UI)) { 3120 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3121 MissingVals[UI] = EndValue; 3122 } 3123 } 3124 3125 // An external user of the penultimate value need to see EndValue - Step. 3126 // The simplest way to get this is to recompute it from the constituent SCEVs, 3127 // that is Start + (Step * (CRD - 1)). 3128 for (User *U : OrigPhi->users()) { 3129 auto *UI = cast<Instruction>(U); 3130 if (!OrigLoop->contains(UI)) { 3131 const DataLayout &DL = 3132 OrigLoop->getHeader()->getModule()->getDataLayout(); 3133 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3134 3135 IRBuilder<> B(MiddleBlock->getTerminator()); 3136 Value *CountMinusOne = B.CreateSub( 3137 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3138 Value *CMO = 3139 !II.getStep()->getType()->isIntegerTy() 3140 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3141 II.getStep()->getType()) 3142 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3143 CMO->setName("cast.cmo"); 3144 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3145 Escape->setName("ind.escape"); 3146 MissingVals[UI] = Escape; 3147 } 3148 } 3149 3150 for (auto &I : MissingVals) { 3151 PHINode *PHI = cast<PHINode>(I.first); 3152 // One corner case we have to handle is two IVs "chasing" each-other, 3153 // that is %IV2 = phi [...], [ %IV1, %latch ] 3154 // In this case, if IV1 has an external use, we need to avoid adding both 3155 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3156 // don't already have an incoming value for the middle block. 3157 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3158 PHI->addIncoming(I.second, MiddleBlock); 3159 } 3160 } 3161 3162 namespace { 3163 3164 struct CSEDenseMapInfo { 3165 static bool canHandle(const Instruction *I) { 3166 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3167 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3168 } 3169 3170 static inline Instruction *getEmptyKey() { 3171 return DenseMapInfo<Instruction *>::getEmptyKey(); 3172 } 3173 3174 static inline Instruction *getTombstoneKey() { 3175 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3176 } 3177 3178 static unsigned getHashValue(const Instruction *I) { 3179 assert(canHandle(I) && "Unknown instruction!"); 3180 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3181 I->value_op_end())); 3182 } 3183 3184 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3185 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3186 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3187 return LHS == RHS; 3188 return LHS->isIdenticalTo(RHS); 3189 } 3190 }; 3191 3192 } // end anonymous namespace 3193 3194 ///Perform cse of induction variable instructions. 3195 static void cse(BasicBlock *BB) { 3196 // Perform simple cse. 3197 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3198 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3199 Instruction *In = &*I++; 3200 3201 if (!CSEDenseMapInfo::canHandle(In)) 3202 continue; 3203 3204 // Check if we can replace this instruction with any of the 3205 // visited instructions. 3206 if (Instruction *V = CSEMap.lookup(In)) { 3207 In->replaceAllUsesWith(V); 3208 In->eraseFromParent(); 3209 continue; 3210 } 3211 3212 CSEMap[In] = In; 3213 } 3214 } 3215 3216 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3217 unsigned VF, 3218 bool &NeedToScalarize) { 3219 Function *F = CI->getCalledFunction(); 3220 StringRef FnName = CI->getCalledFunction()->getName(); 3221 Type *ScalarRetTy = CI->getType(); 3222 SmallVector<Type *, 4> Tys, ScalarTys; 3223 for (auto &ArgOp : CI->arg_operands()) 3224 ScalarTys.push_back(ArgOp->getType()); 3225 3226 // Estimate cost of scalarized vector call. The source operands are assumed 3227 // to be vectors, so we need to extract individual elements from there, 3228 // execute VF scalar calls, and then gather the result into the vector return 3229 // value. 3230 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3231 if (VF == 1) 3232 return ScalarCallCost; 3233 3234 // Compute corresponding vector type for return value and arguments. 3235 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3236 for (Type *ScalarTy : ScalarTys) 3237 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3238 3239 // Compute costs of unpacking argument values for the scalar calls and 3240 // packing the return values to a vector. 3241 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3242 3243 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3244 3245 // If we can't emit a vector call for this function, then the currently found 3246 // cost is the cost we need to return. 3247 NeedToScalarize = true; 3248 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3249 return Cost; 3250 3251 // If the corresponding vector cost is cheaper, return its cost. 3252 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3253 if (VectorCallCost < Cost) { 3254 NeedToScalarize = false; 3255 return VectorCallCost; 3256 } 3257 return Cost; 3258 } 3259 3260 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3261 unsigned VF) { 3262 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3263 assert(ID && "Expected intrinsic call!"); 3264 3265 FastMathFlags FMF; 3266 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3267 FMF = FPMO->getFastMathFlags(); 3268 3269 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3270 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3271 } 3272 3273 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3274 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3275 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3276 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3277 } 3278 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3279 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3280 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3281 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3282 } 3283 3284 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3285 // For every instruction `I` in MinBWs, truncate the operands, create a 3286 // truncated version of `I` and reextend its result. InstCombine runs 3287 // later and will remove any ext/trunc pairs. 3288 SmallPtrSet<Value *, 4> Erased; 3289 for (const auto &KV : Cost->getMinimalBitwidths()) { 3290 // If the value wasn't vectorized, we must maintain the original scalar 3291 // type. The absence of the value from VectorLoopValueMap indicates that it 3292 // wasn't vectorized. 3293 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3294 continue; 3295 for (unsigned Part = 0; Part < UF; ++Part) { 3296 Value *I = getOrCreateVectorValue(KV.first, Part); 3297 if (Erased.find(I) != Erased.end() || I->use_empty() || 3298 !isa<Instruction>(I)) 3299 continue; 3300 Type *OriginalTy = I->getType(); 3301 Type *ScalarTruncatedTy = 3302 IntegerType::get(OriginalTy->getContext(), KV.second); 3303 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3304 OriginalTy->getVectorNumElements()); 3305 if (TruncatedTy == OriginalTy) 3306 continue; 3307 3308 IRBuilder<> B(cast<Instruction>(I)); 3309 auto ShrinkOperand = [&](Value *V) -> Value * { 3310 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3311 if (ZI->getSrcTy() == TruncatedTy) 3312 return ZI->getOperand(0); 3313 return B.CreateZExtOrTrunc(V, TruncatedTy); 3314 }; 3315 3316 // The actual instruction modification depends on the instruction type, 3317 // unfortunately. 3318 Value *NewI = nullptr; 3319 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3320 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3321 ShrinkOperand(BO->getOperand(1))); 3322 3323 // Any wrapping introduced by shrinking this operation shouldn't be 3324 // considered undefined behavior. So, we can't unconditionally copy 3325 // arithmetic wrapping flags to NewI. 3326 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3327 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3328 NewI = 3329 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3330 ShrinkOperand(CI->getOperand(1))); 3331 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3332 NewI = B.CreateSelect(SI->getCondition(), 3333 ShrinkOperand(SI->getTrueValue()), 3334 ShrinkOperand(SI->getFalseValue())); 3335 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3336 switch (CI->getOpcode()) { 3337 default: 3338 llvm_unreachable("Unhandled cast!"); 3339 case Instruction::Trunc: 3340 NewI = ShrinkOperand(CI->getOperand(0)); 3341 break; 3342 case Instruction::SExt: 3343 NewI = B.CreateSExtOrTrunc( 3344 CI->getOperand(0), 3345 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3346 break; 3347 case Instruction::ZExt: 3348 NewI = B.CreateZExtOrTrunc( 3349 CI->getOperand(0), 3350 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3351 break; 3352 } 3353 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3354 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3355 auto *O0 = B.CreateZExtOrTrunc( 3356 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3357 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3358 auto *O1 = B.CreateZExtOrTrunc( 3359 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3360 3361 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3362 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3363 // Don't do anything with the operands, just extend the result. 3364 continue; 3365 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3366 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3367 auto *O0 = B.CreateZExtOrTrunc( 3368 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3369 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3370 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3371 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3372 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3373 auto *O0 = B.CreateZExtOrTrunc( 3374 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3375 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3376 } else { 3377 // If we don't know what to do, be conservative and don't do anything. 3378 continue; 3379 } 3380 3381 // Lastly, extend the result. 3382 NewI->takeName(cast<Instruction>(I)); 3383 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3384 I->replaceAllUsesWith(Res); 3385 cast<Instruction>(I)->eraseFromParent(); 3386 Erased.insert(I); 3387 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3388 } 3389 } 3390 3391 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3392 for (const auto &KV : Cost->getMinimalBitwidths()) { 3393 // If the value wasn't vectorized, we must maintain the original scalar 3394 // type. The absence of the value from VectorLoopValueMap indicates that it 3395 // wasn't vectorized. 3396 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3397 continue; 3398 for (unsigned Part = 0; Part < UF; ++Part) { 3399 Value *I = getOrCreateVectorValue(KV.first, Part); 3400 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3401 if (Inst && Inst->use_empty()) { 3402 Value *NewI = Inst->getOperand(0); 3403 Inst->eraseFromParent(); 3404 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3405 } 3406 } 3407 } 3408 } 3409 3410 void InnerLoopVectorizer::fixVectorizedLoop() { 3411 // Insert truncates and extends for any truncated instructions as hints to 3412 // InstCombine. 3413 if (VF > 1) 3414 truncateToMinimalBitwidths(); 3415 3416 // Fix widened non-induction PHIs by setting up the PHI operands. 3417 if (OrigPHIsToFix.size()) { 3418 assert(EnableVPlanNativePath && 3419 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3420 fixNonInductionPHIs(); 3421 } 3422 3423 // At this point every instruction in the original loop is widened to a 3424 // vector form. Now we need to fix the recurrences in the loop. These PHI 3425 // nodes are currently empty because we did not want to introduce cycles. 3426 // This is the second stage of vectorizing recurrences. 3427 fixCrossIterationPHIs(); 3428 3429 // Update the dominator tree. 3430 // 3431 // FIXME: After creating the structure of the new loop, the dominator tree is 3432 // no longer up-to-date, and it remains that way until we update it 3433 // here. An out-of-date dominator tree is problematic for SCEV, 3434 // because SCEVExpander uses it to guide code generation. The 3435 // vectorizer use SCEVExpanders in several places. Instead, we should 3436 // keep the dominator tree up-to-date as we go. 3437 updateAnalysis(); 3438 3439 // Fix-up external users of the induction variables. 3440 for (auto &Entry : *Legal->getInductionVars()) 3441 fixupIVUsers(Entry.first, Entry.second, 3442 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3443 IVEndValues[Entry.first], LoopMiddleBlock); 3444 3445 fixLCSSAPHIs(); 3446 for (Instruction *PI : PredicatedInstructions) 3447 sinkScalarOperands(&*PI); 3448 3449 // Remove redundant induction instructions. 3450 cse(LoopVectorBody); 3451 } 3452 3453 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3454 // In order to support recurrences we need to be able to vectorize Phi nodes. 3455 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3456 // stage #2: We now need to fix the recurrences by adding incoming edges to 3457 // the currently empty PHI nodes. At this point every instruction in the 3458 // original loop is widened to a vector form so we can use them to construct 3459 // the incoming edges. 3460 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3461 // Handle first-order recurrences and reductions that need to be fixed. 3462 if (Legal->isFirstOrderRecurrence(&Phi)) 3463 fixFirstOrderRecurrence(&Phi); 3464 else if (Legal->isReductionVariable(&Phi)) 3465 fixReduction(&Phi); 3466 } 3467 } 3468 3469 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3470 // This is the second phase of vectorizing first-order recurrences. An 3471 // overview of the transformation is described below. Suppose we have the 3472 // following loop. 3473 // 3474 // for (int i = 0; i < n; ++i) 3475 // b[i] = a[i] - a[i - 1]; 3476 // 3477 // There is a first-order recurrence on "a". For this loop, the shorthand 3478 // scalar IR looks like: 3479 // 3480 // scalar.ph: 3481 // s_init = a[-1] 3482 // br scalar.body 3483 // 3484 // scalar.body: 3485 // i = phi [0, scalar.ph], [i+1, scalar.body] 3486 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3487 // s2 = a[i] 3488 // b[i] = s2 - s1 3489 // br cond, scalar.body, ... 3490 // 3491 // In this example, s1 is a recurrence because it's value depends on the 3492 // previous iteration. In the first phase of vectorization, we created a 3493 // temporary value for s1. We now complete the vectorization and produce the 3494 // shorthand vector IR shown below (for VF = 4, UF = 1). 3495 // 3496 // vector.ph: 3497 // v_init = vector(..., ..., ..., a[-1]) 3498 // br vector.body 3499 // 3500 // vector.body 3501 // i = phi [0, vector.ph], [i+4, vector.body] 3502 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3503 // v2 = a[i, i+1, i+2, i+3]; 3504 // v3 = vector(v1(3), v2(0, 1, 2)) 3505 // b[i, i+1, i+2, i+3] = v2 - v3 3506 // br cond, vector.body, middle.block 3507 // 3508 // middle.block: 3509 // x = v2(3) 3510 // br scalar.ph 3511 // 3512 // scalar.ph: 3513 // s_init = phi [x, middle.block], [a[-1], otherwise] 3514 // br scalar.body 3515 // 3516 // After execution completes the vector loop, we extract the next value of 3517 // the recurrence (x) to use as the initial value in the scalar loop. 3518 3519 // Get the original loop preheader and single loop latch. 3520 auto *Preheader = OrigLoop->getLoopPreheader(); 3521 auto *Latch = OrigLoop->getLoopLatch(); 3522 3523 // Get the initial and previous values of the scalar recurrence. 3524 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3525 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3526 3527 // Create a vector from the initial value. 3528 auto *VectorInit = ScalarInit; 3529 if (VF > 1) { 3530 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3531 VectorInit = Builder.CreateInsertElement( 3532 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3533 Builder.getInt32(VF - 1), "vector.recur.init"); 3534 } 3535 3536 // We constructed a temporary phi node in the first phase of vectorization. 3537 // This phi node will eventually be deleted. 3538 Builder.SetInsertPoint( 3539 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3540 3541 // Create a phi node for the new recurrence. The current value will either be 3542 // the initial value inserted into a vector or loop-varying vector value. 3543 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3544 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3545 3546 // Get the vectorized previous value of the last part UF - 1. It appears last 3547 // among all unrolled iterations, due to the order of their construction. 3548 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3549 3550 // Set the insertion point after the previous value if it is an instruction. 3551 // Note that the previous value may have been constant-folded so it is not 3552 // guaranteed to be an instruction in the vector loop. Also, if the previous 3553 // value is a phi node, we should insert after all the phi nodes to avoid 3554 // breaking basic block verification. 3555 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3556 isa<PHINode>(PreviousLastPart)) 3557 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3558 else 3559 Builder.SetInsertPoint( 3560 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3561 3562 // We will construct a vector for the recurrence by combining the values for 3563 // the current and previous iterations. This is the required shuffle mask. 3564 SmallVector<Constant *, 8> ShuffleMask(VF); 3565 ShuffleMask[0] = Builder.getInt32(VF - 1); 3566 for (unsigned I = 1; I < VF; ++I) 3567 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3568 3569 // The vector from which to take the initial value for the current iteration 3570 // (actual or unrolled). Initially, this is the vector phi node. 3571 Value *Incoming = VecPhi; 3572 3573 // Shuffle the current and previous vector and update the vector parts. 3574 for (unsigned Part = 0; Part < UF; ++Part) { 3575 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3576 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3577 auto *Shuffle = 3578 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3579 ConstantVector::get(ShuffleMask)) 3580 : Incoming; 3581 PhiPart->replaceAllUsesWith(Shuffle); 3582 cast<Instruction>(PhiPart)->eraseFromParent(); 3583 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3584 Incoming = PreviousPart; 3585 } 3586 3587 // Fix the latch value of the new recurrence in the vector loop. 3588 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3589 3590 // Extract the last vector element in the middle block. This will be the 3591 // initial value for the recurrence when jumping to the scalar loop. 3592 auto *ExtractForScalar = Incoming; 3593 if (VF > 1) { 3594 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3595 ExtractForScalar = Builder.CreateExtractElement( 3596 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3597 } 3598 // Extract the second last element in the middle block if the 3599 // Phi is used outside the loop. We need to extract the phi itself 3600 // and not the last element (the phi update in the current iteration). This 3601 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3602 // when the scalar loop is not run at all. 3603 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3604 if (VF > 1) 3605 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3606 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3607 // When loop is unrolled without vectorizing, initialize 3608 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3609 // `Incoming`. This is analogous to the vectorized case above: extracting the 3610 // second last element when VF > 1. 3611 else if (UF > 1) 3612 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3613 3614 // Fix the initial value of the original recurrence in the scalar loop. 3615 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3616 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3617 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3618 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3619 Start->addIncoming(Incoming, BB); 3620 } 3621 3622 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3623 Phi->setName("scalar.recur"); 3624 3625 // Finally, fix users of the recurrence outside the loop. The users will need 3626 // either the last value of the scalar recurrence or the last value of the 3627 // vector recurrence we extracted in the middle block. Since the loop is in 3628 // LCSSA form, we just need to find all the phi nodes for the original scalar 3629 // recurrence in the exit block, and then add an edge for the middle block. 3630 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3631 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3632 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3633 } 3634 } 3635 } 3636 3637 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3638 Constant *Zero = Builder.getInt32(0); 3639 3640 // Get it's reduction variable descriptor. 3641 assert(Legal->isReductionVariable(Phi) && 3642 "Unable to find the reduction variable"); 3643 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3644 3645 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3646 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3647 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3648 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3649 RdxDesc.getMinMaxRecurrenceKind(); 3650 setDebugLocFromInst(Builder, ReductionStartValue); 3651 3652 // We need to generate a reduction vector from the incoming scalar. 3653 // To do so, we need to generate the 'identity' vector and override 3654 // one of the elements with the incoming scalar reduction. We need 3655 // to do it in the vector-loop preheader. 3656 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3657 3658 // This is the vector-clone of the value that leaves the loop. 3659 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3660 3661 // Find the reduction identity variable. Zero for addition, or, xor, 3662 // one for multiplication, -1 for And. 3663 Value *Identity; 3664 Value *VectorStart; 3665 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3666 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3667 // MinMax reduction have the start value as their identify. 3668 if (VF == 1) { 3669 VectorStart = Identity = ReductionStartValue; 3670 } else { 3671 VectorStart = Identity = 3672 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3673 } 3674 } else { 3675 // Handle other reduction kinds: 3676 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3677 RK, VecTy->getScalarType()); 3678 if (VF == 1) { 3679 Identity = Iden; 3680 // This vector is the Identity vector where the first element is the 3681 // incoming scalar reduction. 3682 VectorStart = ReductionStartValue; 3683 } else { 3684 Identity = ConstantVector::getSplat(VF, Iden); 3685 3686 // This vector is the Identity vector where the first element is the 3687 // incoming scalar reduction. 3688 VectorStart = 3689 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3690 } 3691 } 3692 3693 // Fix the vector-loop phi. 3694 3695 // Reductions do not have to start at zero. They can start with 3696 // any loop invariant values. 3697 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3698 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3699 for (unsigned Part = 0; Part < UF; ++Part) { 3700 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3701 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3702 // Make sure to add the reduction stat value only to the 3703 // first unroll part. 3704 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3705 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3706 cast<PHINode>(VecRdxPhi) 3707 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3708 } 3709 3710 // Before each round, move the insertion point right between 3711 // the PHIs and the values we are going to write. 3712 // This allows us to write both PHINodes and the extractelement 3713 // instructions. 3714 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3715 3716 setDebugLocFromInst(Builder, LoopExitInst); 3717 3718 // If tail is folded by masking, the vector value to leave the loop should be 3719 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3720 // instead of the former. 3721 if (Cost->foldTailByMasking()) { 3722 for (unsigned Part = 0; Part < UF; ++Part) { 3723 Value *VecLoopExitInst = 3724 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3725 Value *Sel = nullptr; 3726 for (User *U : VecLoopExitInst->users()) { 3727 if (isa<SelectInst>(U)) { 3728 assert(!Sel && "Reduction exit feeding two selects"); 3729 Sel = U; 3730 } else 3731 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3732 } 3733 assert(Sel && "Reduction exit feeds no select"); 3734 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3735 } 3736 } 3737 3738 // If the vector reduction can be performed in a smaller type, we truncate 3739 // then extend the loop exit value to enable InstCombine to evaluate the 3740 // entire expression in the smaller type. 3741 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3742 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3743 Builder.SetInsertPoint( 3744 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3745 VectorParts RdxParts(UF); 3746 for (unsigned Part = 0; Part < UF; ++Part) { 3747 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3748 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3749 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3750 : Builder.CreateZExt(Trunc, VecTy); 3751 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3752 UI != RdxParts[Part]->user_end();) 3753 if (*UI != Trunc) { 3754 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3755 RdxParts[Part] = Extnd; 3756 } else { 3757 ++UI; 3758 } 3759 } 3760 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3761 for (unsigned Part = 0; Part < UF; ++Part) { 3762 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3763 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3764 } 3765 } 3766 3767 // Reduce all of the unrolled parts into a single vector. 3768 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3769 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3770 3771 // The middle block terminator has already been assigned a DebugLoc here (the 3772 // OrigLoop's single latch terminator). We want the whole middle block to 3773 // appear to execute on this line because: (a) it is all compiler generated, 3774 // (b) these instructions are always executed after evaluating the latch 3775 // conditional branch, and (c) other passes may add new predecessors which 3776 // terminate on this line. This is the easiest way to ensure we don't 3777 // accidentally cause an extra step back into the loop while debugging. 3778 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3779 for (unsigned Part = 1; Part < UF; ++Part) { 3780 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3781 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3782 // Floating point operations had to be 'fast' to enable the reduction. 3783 ReducedPartRdx = addFastMathFlag( 3784 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3785 ReducedPartRdx, "bin.rdx"), 3786 RdxDesc.getFastMathFlags()); 3787 else 3788 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3789 RdxPart); 3790 } 3791 3792 if (VF > 1) { 3793 bool NoNaN = Legal->hasFunNoNaNAttr(); 3794 ReducedPartRdx = 3795 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3796 // If the reduction can be performed in a smaller type, we need to extend 3797 // the reduction to the wider type before we branch to the original loop. 3798 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3799 ReducedPartRdx = 3800 RdxDesc.isSigned() 3801 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3802 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3803 } 3804 3805 // Create a phi node that merges control-flow from the backedge-taken check 3806 // block and the middle block. 3807 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3808 LoopScalarPreHeader->getTerminator()); 3809 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3810 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3811 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3812 3813 // Now, we need to fix the users of the reduction variable 3814 // inside and outside of the scalar remainder loop. 3815 // We know that the loop is in LCSSA form. We need to update the 3816 // PHI nodes in the exit blocks. 3817 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3818 // All PHINodes need to have a single entry edge, or two if 3819 // we already fixed them. 3820 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3821 3822 // We found a reduction value exit-PHI. Update it with the 3823 // incoming bypass edge. 3824 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3825 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3826 } // end of the LCSSA phi scan. 3827 3828 // Fix the scalar loop reduction variable with the incoming reduction sum 3829 // from the vector body and from the backedge value. 3830 int IncomingEdgeBlockIdx = 3831 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3832 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3833 // Pick the other block. 3834 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3835 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3836 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3837 } 3838 3839 void InnerLoopVectorizer::fixLCSSAPHIs() { 3840 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3841 if (LCSSAPhi.getNumIncomingValues() == 1) { 3842 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3843 // Non-instruction incoming values will have only one value. 3844 unsigned LastLane = 0; 3845 if (isa<Instruction>(IncomingValue)) 3846 LastLane = Cost->isUniformAfterVectorization( 3847 cast<Instruction>(IncomingValue), VF) 3848 ? 0 3849 : VF - 1; 3850 // Can be a loop invariant incoming value or the last scalar value to be 3851 // extracted from the vectorized loop. 3852 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3853 Value *lastIncomingValue = 3854 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3855 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3856 } 3857 } 3858 } 3859 3860 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3861 // The basic block and loop containing the predicated instruction. 3862 auto *PredBB = PredInst->getParent(); 3863 auto *VectorLoop = LI->getLoopFor(PredBB); 3864 3865 // Initialize a worklist with the operands of the predicated instruction. 3866 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3867 3868 // Holds instructions that we need to analyze again. An instruction may be 3869 // reanalyzed if we don't yet know if we can sink it or not. 3870 SmallVector<Instruction *, 8> InstsToReanalyze; 3871 3872 // Returns true if a given use occurs in the predicated block. Phi nodes use 3873 // their operands in their corresponding predecessor blocks. 3874 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3875 auto *I = cast<Instruction>(U.getUser()); 3876 BasicBlock *BB = I->getParent(); 3877 if (auto *Phi = dyn_cast<PHINode>(I)) 3878 BB = Phi->getIncomingBlock( 3879 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3880 return BB == PredBB; 3881 }; 3882 3883 // Iteratively sink the scalarized operands of the predicated instruction 3884 // into the block we created for it. When an instruction is sunk, it's 3885 // operands are then added to the worklist. The algorithm ends after one pass 3886 // through the worklist doesn't sink a single instruction. 3887 bool Changed; 3888 do { 3889 // Add the instructions that need to be reanalyzed to the worklist, and 3890 // reset the changed indicator. 3891 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3892 InstsToReanalyze.clear(); 3893 Changed = false; 3894 3895 while (!Worklist.empty()) { 3896 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3897 3898 // We can't sink an instruction if it is a phi node, is already in the 3899 // predicated block, is not in the loop, or may have side effects. 3900 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3901 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3902 continue; 3903 3904 // It's legal to sink the instruction if all its uses occur in the 3905 // predicated block. Otherwise, there's nothing to do yet, and we may 3906 // need to reanalyze the instruction. 3907 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3908 InstsToReanalyze.push_back(I); 3909 continue; 3910 } 3911 3912 // Move the instruction to the beginning of the predicated block, and add 3913 // it's operands to the worklist. 3914 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3915 Worklist.insert(I->op_begin(), I->op_end()); 3916 3917 // The sinking may have enabled other instructions to be sunk, so we will 3918 // need to iterate. 3919 Changed = true; 3920 } 3921 } while (Changed); 3922 } 3923 3924 void InnerLoopVectorizer::fixNonInductionPHIs() { 3925 for (PHINode *OrigPhi : OrigPHIsToFix) { 3926 PHINode *NewPhi = 3927 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3928 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3929 3930 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3931 predecessors(OrigPhi->getParent())); 3932 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3933 predecessors(NewPhi->getParent())); 3934 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3935 "Scalar and Vector BB should have the same number of predecessors"); 3936 3937 // The insertion point in Builder may be invalidated by the time we get 3938 // here. Force the Builder insertion point to something valid so that we do 3939 // not run into issues during insertion point restore in 3940 // getOrCreateVectorValue calls below. 3941 Builder.SetInsertPoint(NewPhi); 3942 3943 // The predecessor order is preserved and we can rely on mapping between 3944 // scalar and vector block predecessors. 3945 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3946 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3947 3948 // When looking up the new scalar/vector values to fix up, use incoming 3949 // values from original phi. 3950 Value *ScIncV = 3951 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3952 3953 // Scalar incoming value may need a broadcast 3954 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3955 NewPhi->addIncoming(NewIncV, NewPredBB); 3956 } 3957 } 3958 } 3959 3960 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3961 unsigned VF) { 3962 PHINode *P = cast<PHINode>(PN); 3963 if (EnableVPlanNativePath) { 3964 // Currently we enter here in the VPlan-native path for non-induction 3965 // PHIs where all control flow is uniform. We simply widen these PHIs. 3966 // Create a vector phi with no operands - the vector phi operands will be 3967 // set at the end of vector code generation. 3968 Type *VecTy = 3969 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3970 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3971 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3972 OrigPHIsToFix.push_back(P); 3973 3974 return; 3975 } 3976 3977 assert(PN->getParent() == OrigLoop->getHeader() && 3978 "Non-header phis should have been handled elsewhere"); 3979 3980 // In order to support recurrences we need to be able to vectorize Phi nodes. 3981 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3982 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3983 // this value when we vectorize all of the instructions that use the PHI. 3984 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3985 for (unsigned Part = 0; Part < UF; ++Part) { 3986 // This is phase one of vectorizing PHIs. 3987 Type *VecTy = 3988 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3989 Value *EntryPart = PHINode::Create( 3990 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3991 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3992 } 3993 return; 3994 } 3995 3996 setDebugLocFromInst(Builder, P); 3997 3998 // This PHINode must be an induction variable. 3999 // Make sure that we know about it. 4000 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4001 4002 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4003 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4004 4005 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4006 // which can be found from the original scalar operations. 4007 switch (II.getKind()) { 4008 case InductionDescriptor::IK_NoInduction: 4009 llvm_unreachable("Unknown induction"); 4010 case InductionDescriptor::IK_IntInduction: 4011 case InductionDescriptor::IK_FpInduction: 4012 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4013 case InductionDescriptor::IK_PtrInduction: { 4014 // Handle the pointer induction variable case. 4015 assert(P->getType()->isPointerTy() && "Unexpected type."); 4016 // This is the normalized GEP that starts counting at zero. 4017 Value *PtrInd = Induction; 4018 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4019 // Determine the number of scalars we need to generate for each unroll 4020 // iteration. If the instruction is uniform, we only need to generate the 4021 // first lane. Otherwise, we generate all VF values. 4022 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4023 // These are the scalar results. Notice that we don't generate vector GEPs 4024 // because scalar GEPs result in better code. 4025 for (unsigned Part = 0; Part < UF; ++Part) { 4026 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4027 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4028 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4029 Value *SclrGep = 4030 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4031 SclrGep->setName("next.gep"); 4032 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4033 } 4034 } 4035 return; 4036 } 4037 } 4038 } 4039 4040 /// A helper function for checking whether an integer division-related 4041 /// instruction may divide by zero (in which case it must be predicated if 4042 /// executed conditionally in the scalar code). 4043 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4044 /// Non-zero divisors that are non compile-time constants will not be 4045 /// converted into multiplication, so we will still end up scalarizing 4046 /// the division, but can do so w/o predication. 4047 static bool mayDivideByZero(Instruction &I) { 4048 assert((I.getOpcode() == Instruction::UDiv || 4049 I.getOpcode() == Instruction::SDiv || 4050 I.getOpcode() == Instruction::URem || 4051 I.getOpcode() == Instruction::SRem) && 4052 "Unexpected instruction"); 4053 Value *Divisor = I.getOperand(1); 4054 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4055 return !CInt || CInt->isZero(); 4056 } 4057 4058 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4059 switch (I.getOpcode()) { 4060 case Instruction::Br: 4061 case Instruction::PHI: 4062 llvm_unreachable("This instruction is handled by a different recipe."); 4063 case Instruction::GetElementPtr: { 4064 // Construct a vector GEP by widening the operands of the scalar GEP as 4065 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4066 // results in a vector of pointers when at least one operand of the GEP 4067 // is vector-typed. Thus, to keep the representation compact, we only use 4068 // vector-typed operands for loop-varying values. 4069 auto *GEP = cast<GetElementPtrInst>(&I); 4070 4071 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4072 // If we are vectorizing, but the GEP has only loop-invariant operands, 4073 // the GEP we build (by only using vector-typed operands for 4074 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4075 // produce a vector of pointers, we need to either arbitrarily pick an 4076 // operand to broadcast, or broadcast a clone of the original GEP. 4077 // Here, we broadcast a clone of the original. 4078 // 4079 // TODO: If at some point we decide to scalarize instructions having 4080 // loop-invariant operands, this special case will no longer be 4081 // required. We would add the scalarization decision to 4082 // collectLoopScalars() and teach getVectorValue() to broadcast 4083 // the lane-zero scalar value. 4084 auto *Clone = Builder.Insert(GEP->clone()); 4085 for (unsigned Part = 0; Part < UF; ++Part) { 4086 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4087 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4088 addMetadata(EntryPart, GEP); 4089 } 4090 } else { 4091 // If the GEP has at least one loop-varying operand, we are sure to 4092 // produce a vector of pointers. But if we are only unrolling, we want 4093 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4094 // produce with the code below will be scalar (if VF == 1) or vector 4095 // (otherwise). Note that for the unroll-only case, we still maintain 4096 // values in the vector mapping with initVector, as we do for other 4097 // instructions. 4098 for (unsigned Part = 0; Part < UF; ++Part) { 4099 // The pointer operand of the new GEP. If it's loop-invariant, we 4100 // won't broadcast it. 4101 auto *Ptr = 4102 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4103 ? GEP->getPointerOperand() 4104 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4105 4106 // Collect all the indices for the new GEP. If any index is 4107 // loop-invariant, we won't broadcast it. 4108 SmallVector<Value *, 4> Indices; 4109 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4110 if (OrigLoop->isLoopInvariant(U.get())) 4111 Indices.push_back(U.get()); 4112 else 4113 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4114 } 4115 4116 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4117 // but it should be a vector, otherwise. 4118 auto *NewGEP = 4119 GEP->isInBounds() 4120 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4121 Indices) 4122 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4123 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4124 "NewGEP is not a pointer vector"); 4125 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4126 addMetadata(NewGEP, GEP); 4127 } 4128 } 4129 4130 break; 4131 } 4132 case Instruction::UDiv: 4133 case Instruction::SDiv: 4134 case Instruction::SRem: 4135 case Instruction::URem: 4136 case Instruction::Add: 4137 case Instruction::FAdd: 4138 case Instruction::Sub: 4139 case Instruction::FSub: 4140 case Instruction::FNeg: 4141 case Instruction::Mul: 4142 case Instruction::FMul: 4143 case Instruction::FDiv: 4144 case Instruction::FRem: 4145 case Instruction::Shl: 4146 case Instruction::LShr: 4147 case Instruction::AShr: 4148 case Instruction::And: 4149 case Instruction::Or: 4150 case Instruction::Xor: { 4151 // Just widen unops and binops. 4152 setDebugLocFromInst(Builder, &I); 4153 4154 for (unsigned Part = 0; Part < UF; ++Part) { 4155 SmallVector<Value *, 2> Ops; 4156 for (Value *Op : I.operands()) 4157 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4158 4159 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4160 4161 if (auto *VecOp = dyn_cast<Instruction>(V)) 4162 VecOp->copyIRFlags(&I); 4163 4164 // Use this vector value for all users of the original instruction. 4165 VectorLoopValueMap.setVectorValue(&I, Part, V); 4166 addMetadata(V, &I); 4167 } 4168 4169 break; 4170 } 4171 case Instruction::Select: { 4172 // Widen selects. 4173 // If the selector is loop invariant we can create a select 4174 // instruction with a scalar condition. Otherwise, use vector-select. 4175 auto *SE = PSE.getSE(); 4176 bool InvariantCond = 4177 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4178 setDebugLocFromInst(Builder, &I); 4179 4180 // The condition can be loop invariant but still defined inside the 4181 // loop. This means that we can't just use the original 'cond' value. 4182 // We have to take the 'vectorized' value and pick the first lane. 4183 // Instcombine will make this a no-op. 4184 4185 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4186 4187 for (unsigned Part = 0; Part < UF; ++Part) { 4188 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4189 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4190 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4191 Value *Sel = 4192 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4193 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4194 addMetadata(Sel, &I); 4195 } 4196 4197 break; 4198 } 4199 4200 case Instruction::ICmp: 4201 case Instruction::FCmp: { 4202 // Widen compares. Generate vector compares. 4203 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4204 auto *Cmp = cast<CmpInst>(&I); 4205 setDebugLocFromInst(Builder, Cmp); 4206 for (unsigned Part = 0; Part < UF; ++Part) { 4207 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4208 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4209 Value *C = nullptr; 4210 if (FCmp) { 4211 // Propagate fast math flags. 4212 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4213 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4214 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4215 } else { 4216 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4217 } 4218 VectorLoopValueMap.setVectorValue(&I, Part, C); 4219 addMetadata(C, &I); 4220 } 4221 4222 break; 4223 } 4224 4225 case Instruction::ZExt: 4226 case Instruction::SExt: 4227 case Instruction::FPToUI: 4228 case Instruction::FPToSI: 4229 case Instruction::FPExt: 4230 case Instruction::PtrToInt: 4231 case Instruction::IntToPtr: 4232 case Instruction::SIToFP: 4233 case Instruction::UIToFP: 4234 case Instruction::Trunc: 4235 case Instruction::FPTrunc: 4236 case Instruction::BitCast: { 4237 auto *CI = cast<CastInst>(&I); 4238 setDebugLocFromInst(Builder, CI); 4239 4240 /// Vectorize casts. 4241 Type *DestTy = 4242 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4243 4244 for (unsigned Part = 0; Part < UF; ++Part) { 4245 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4246 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4247 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4248 addMetadata(Cast, &I); 4249 } 4250 break; 4251 } 4252 4253 case Instruction::Call: { 4254 // Ignore dbg intrinsics. 4255 if (isa<DbgInfoIntrinsic>(I)) 4256 break; 4257 setDebugLocFromInst(Builder, &I); 4258 4259 Module *M = I.getParent()->getParent()->getParent(); 4260 auto *CI = cast<CallInst>(&I); 4261 4262 StringRef FnName = CI->getCalledFunction()->getName(); 4263 Function *F = CI->getCalledFunction(); 4264 Type *RetTy = ToVectorTy(CI->getType(), VF); 4265 SmallVector<Type *, 4> Tys; 4266 for (Value *ArgOperand : CI->arg_operands()) 4267 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4268 4269 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4270 4271 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4272 // version of the instruction. 4273 // Is it beneficial to perform intrinsic call compared to lib call? 4274 bool NeedToScalarize; 4275 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4276 bool UseVectorIntrinsic = 4277 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4278 assert((UseVectorIntrinsic || !NeedToScalarize) && 4279 "Instruction should be scalarized elsewhere."); 4280 4281 for (unsigned Part = 0; Part < UF; ++Part) { 4282 SmallVector<Value *, 4> Args; 4283 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4284 Value *Arg = CI->getArgOperand(i); 4285 // Some intrinsics have a scalar argument - don't replace it with a 4286 // vector. 4287 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4288 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4289 Args.push_back(Arg); 4290 } 4291 4292 Function *VectorF; 4293 if (UseVectorIntrinsic) { 4294 // Use vector version of the intrinsic. 4295 Type *TysForDecl[] = {CI->getType()}; 4296 if (VF > 1) 4297 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4298 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4299 } else { 4300 // Use vector version of the library call. 4301 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4302 assert(!VFnName.empty() && "Vector function name is empty."); 4303 VectorF = M->getFunction(VFnName); 4304 if (!VectorF) { 4305 // Generate a declaration 4306 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4307 VectorF = 4308 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4309 VectorF->copyAttributesFrom(F); 4310 } 4311 } 4312 assert(VectorF && "Can't create vector function."); 4313 4314 SmallVector<OperandBundleDef, 1> OpBundles; 4315 CI->getOperandBundlesAsDefs(OpBundles); 4316 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4317 4318 if (isa<FPMathOperator>(V)) 4319 V->copyFastMathFlags(CI); 4320 4321 VectorLoopValueMap.setVectorValue(&I, Part, V); 4322 addMetadata(V, &I); 4323 } 4324 4325 break; 4326 } 4327 4328 default: 4329 // This instruction is not vectorized by simple widening. 4330 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4331 llvm_unreachable("Unhandled instruction!"); 4332 } // end of switch. 4333 } 4334 4335 void InnerLoopVectorizer::updateAnalysis() { 4336 // Forget the original basic block. 4337 PSE.getSE()->forgetLoop(OrigLoop); 4338 4339 // DT is not kept up-to-date for outer loop vectorization 4340 if (EnableVPlanNativePath) 4341 return; 4342 4343 // Update the dominator tree information. 4344 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4345 "Entry does not dominate exit."); 4346 4347 DT->addNewBlock(LoopMiddleBlock, 4348 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4349 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4350 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4351 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4352 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4353 } 4354 4355 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4356 // We should not collect Scalars more than once per VF. Right now, this 4357 // function is called from collectUniformsAndScalars(), which already does 4358 // this check. Collecting Scalars for VF=1 does not make any sense. 4359 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4360 "This function should not be visited twice for the same VF"); 4361 4362 SmallSetVector<Instruction *, 8> Worklist; 4363 4364 // These sets are used to seed the analysis with pointers used by memory 4365 // accesses that will remain scalar. 4366 SmallSetVector<Instruction *, 8> ScalarPtrs; 4367 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4368 4369 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4370 // The pointer operands of loads and stores will be scalar as long as the 4371 // memory access is not a gather or scatter operation. The value operand of a 4372 // store will remain scalar if the store is scalarized. 4373 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4374 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4375 assert(WideningDecision != CM_Unknown && 4376 "Widening decision should be ready at this moment"); 4377 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4378 if (Ptr == Store->getValueOperand()) 4379 return WideningDecision == CM_Scalarize; 4380 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4381 "Ptr is neither a value or pointer operand"); 4382 return WideningDecision != CM_GatherScatter; 4383 }; 4384 4385 // A helper that returns true if the given value is a bitcast or 4386 // getelementptr instruction contained in the loop. 4387 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4388 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4389 isa<GetElementPtrInst>(V)) && 4390 !TheLoop->isLoopInvariant(V); 4391 }; 4392 4393 // A helper that evaluates a memory access's use of a pointer. If the use 4394 // will be a scalar use, and the pointer is only used by memory accesses, we 4395 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4396 // PossibleNonScalarPtrs. 4397 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4398 // We only care about bitcast and getelementptr instructions contained in 4399 // the loop. 4400 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4401 return; 4402 4403 // If the pointer has already been identified as scalar (e.g., if it was 4404 // also identified as uniform), there's nothing to do. 4405 auto *I = cast<Instruction>(Ptr); 4406 if (Worklist.count(I)) 4407 return; 4408 4409 // If the use of the pointer will be a scalar use, and all users of the 4410 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4411 // place the pointer in PossibleNonScalarPtrs. 4412 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4413 return isa<LoadInst>(U) || isa<StoreInst>(U); 4414 })) 4415 ScalarPtrs.insert(I); 4416 else 4417 PossibleNonScalarPtrs.insert(I); 4418 }; 4419 4420 // We seed the scalars analysis with three classes of instructions: (1) 4421 // instructions marked uniform-after-vectorization, (2) bitcast and 4422 // getelementptr instructions used by memory accesses requiring a scalar use, 4423 // and (3) pointer induction variables and their update instructions (we 4424 // currently only scalarize these). 4425 // 4426 // (1) Add to the worklist all instructions that have been identified as 4427 // uniform-after-vectorization. 4428 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4429 4430 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4431 // memory accesses requiring a scalar use. The pointer operands of loads and 4432 // stores will be scalar as long as the memory accesses is not a gather or 4433 // scatter operation. The value operand of a store will remain scalar if the 4434 // store is scalarized. 4435 for (auto *BB : TheLoop->blocks()) 4436 for (auto &I : *BB) { 4437 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4438 evaluatePtrUse(Load, Load->getPointerOperand()); 4439 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4440 evaluatePtrUse(Store, Store->getPointerOperand()); 4441 evaluatePtrUse(Store, Store->getValueOperand()); 4442 } 4443 } 4444 for (auto *I : ScalarPtrs) 4445 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4446 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4447 Worklist.insert(I); 4448 } 4449 4450 // (3) Add to the worklist all pointer induction variables and their update 4451 // instructions. 4452 // 4453 // TODO: Once we are able to vectorize pointer induction variables we should 4454 // no longer insert them into the worklist here. 4455 auto *Latch = TheLoop->getLoopLatch(); 4456 for (auto &Induction : *Legal->getInductionVars()) { 4457 auto *Ind = Induction.first; 4458 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4459 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4460 continue; 4461 Worklist.insert(Ind); 4462 Worklist.insert(IndUpdate); 4463 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4464 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4465 << "\n"); 4466 } 4467 4468 // Insert the forced scalars. 4469 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4470 // induction variable when the PHI user is scalarized. 4471 auto ForcedScalar = ForcedScalars.find(VF); 4472 if (ForcedScalar != ForcedScalars.end()) 4473 for (auto *I : ForcedScalar->second) 4474 Worklist.insert(I); 4475 4476 // Expand the worklist by looking through any bitcasts and getelementptr 4477 // instructions we've already identified as scalar. This is similar to the 4478 // expansion step in collectLoopUniforms(); however, here we're only 4479 // expanding to include additional bitcasts and getelementptr instructions. 4480 unsigned Idx = 0; 4481 while (Idx != Worklist.size()) { 4482 Instruction *Dst = Worklist[Idx++]; 4483 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4484 continue; 4485 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4486 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4487 auto *J = cast<Instruction>(U); 4488 return !TheLoop->contains(J) || Worklist.count(J) || 4489 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4490 isScalarUse(J, Src)); 4491 })) { 4492 Worklist.insert(Src); 4493 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4494 } 4495 } 4496 4497 // An induction variable will remain scalar if all users of the induction 4498 // variable and induction variable update remain scalar. 4499 for (auto &Induction : *Legal->getInductionVars()) { 4500 auto *Ind = Induction.first; 4501 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4502 4503 // We already considered pointer induction variables, so there's no reason 4504 // to look at their users again. 4505 // 4506 // TODO: Once we are able to vectorize pointer induction variables we 4507 // should no longer skip over them here. 4508 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4509 continue; 4510 4511 // Determine if all users of the induction variable are scalar after 4512 // vectorization. 4513 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4514 auto *I = cast<Instruction>(U); 4515 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4516 }); 4517 if (!ScalarInd) 4518 continue; 4519 4520 // Determine if all users of the induction variable update instruction are 4521 // scalar after vectorization. 4522 auto ScalarIndUpdate = 4523 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4524 auto *I = cast<Instruction>(U); 4525 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4526 }); 4527 if (!ScalarIndUpdate) 4528 continue; 4529 4530 // The induction variable and its update instruction will remain scalar. 4531 Worklist.insert(Ind); 4532 Worklist.insert(IndUpdate); 4533 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4534 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4535 << "\n"); 4536 } 4537 4538 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4539 } 4540 4541 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4542 if (!blockNeedsPredication(I->getParent())) 4543 return false; 4544 switch(I->getOpcode()) { 4545 default: 4546 break; 4547 case Instruction::Load: 4548 case Instruction::Store: { 4549 if (!Legal->isMaskRequired(I)) 4550 return false; 4551 auto *Ptr = getLoadStorePointerOperand(I); 4552 auto *Ty = getMemInstValueType(I); 4553 // We have already decided how to vectorize this instruction, get that 4554 // result. 4555 if (VF > 1) { 4556 InstWidening WideningDecision = getWideningDecision(I, VF); 4557 assert(WideningDecision != CM_Unknown && 4558 "Widening decision should be ready at this moment"); 4559 return WideningDecision == CM_Scalarize; 4560 } 4561 return isa<LoadInst>(I) ? 4562 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4563 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4564 } 4565 case Instruction::UDiv: 4566 case Instruction::SDiv: 4567 case Instruction::SRem: 4568 case Instruction::URem: 4569 return mayDivideByZero(*I); 4570 } 4571 return false; 4572 } 4573 4574 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4575 unsigned VF) { 4576 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4577 assert(getWideningDecision(I, VF) == CM_Unknown && 4578 "Decision should not be set yet."); 4579 auto *Group = getInterleavedAccessGroup(I); 4580 assert(Group && "Must have a group."); 4581 4582 // If the instruction's allocated size doesn't equal it's type size, it 4583 // requires padding and will be scalarized. 4584 auto &DL = I->getModule()->getDataLayout(); 4585 auto *ScalarTy = getMemInstValueType(I); 4586 if (hasIrregularType(ScalarTy, DL, VF)) 4587 return false; 4588 4589 // Check if masking is required. 4590 // A Group may need masking for one of two reasons: it resides in a block that 4591 // needs predication, or it was decided to use masking to deal with gaps. 4592 bool PredicatedAccessRequiresMasking = 4593 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4594 bool AccessWithGapsRequiresMasking = 4595 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4596 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4597 return true; 4598 4599 // If masked interleaving is required, we expect that the user/target had 4600 // enabled it, because otherwise it either wouldn't have been created or 4601 // it should have been invalidated by the CostModel. 4602 assert(useMaskedInterleavedAccesses(TTI) && 4603 "Masked interleave-groups for predicated accesses are not enabled."); 4604 4605 auto *Ty = getMemInstValueType(I); 4606 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4607 : TTI.isLegalMaskedStore(Ty); 4608 } 4609 4610 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4611 unsigned VF) { 4612 // Get and ensure we have a valid memory instruction. 4613 LoadInst *LI = dyn_cast<LoadInst>(I); 4614 StoreInst *SI = dyn_cast<StoreInst>(I); 4615 assert((LI || SI) && "Invalid memory instruction"); 4616 4617 auto *Ptr = getLoadStorePointerOperand(I); 4618 4619 // In order to be widened, the pointer should be consecutive, first of all. 4620 if (!Legal->isConsecutivePtr(Ptr)) 4621 return false; 4622 4623 // If the instruction is a store located in a predicated block, it will be 4624 // scalarized. 4625 if (isScalarWithPredication(I)) 4626 return false; 4627 4628 // If the instruction's allocated size doesn't equal it's type size, it 4629 // requires padding and will be scalarized. 4630 auto &DL = I->getModule()->getDataLayout(); 4631 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4632 if (hasIrregularType(ScalarTy, DL, VF)) 4633 return false; 4634 4635 return true; 4636 } 4637 4638 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4639 // We should not collect Uniforms more than once per VF. Right now, 4640 // this function is called from collectUniformsAndScalars(), which 4641 // already does this check. Collecting Uniforms for VF=1 does not make any 4642 // sense. 4643 4644 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4645 "This function should not be visited twice for the same VF"); 4646 4647 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4648 // not analyze again. Uniforms.count(VF) will return 1. 4649 Uniforms[VF].clear(); 4650 4651 // We now know that the loop is vectorizable! 4652 // Collect instructions inside the loop that will remain uniform after 4653 // vectorization. 4654 4655 // Global values, params and instructions outside of current loop are out of 4656 // scope. 4657 auto isOutOfScope = [&](Value *V) -> bool { 4658 Instruction *I = dyn_cast<Instruction>(V); 4659 return (!I || !TheLoop->contains(I)); 4660 }; 4661 4662 SetVector<Instruction *> Worklist; 4663 BasicBlock *Latch = TheLoop->getLoopLatch(); 4664 4665 // Start with the conditional branch. If the branch condition is an 4666 // instruction contained in the loop that is only used by the branch, it is 4667 // uniform. 4668 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4669 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4670 Worklist.insert(Cmp); 4671 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4672 } 4673 4674 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4675 // are pointers that are treated like consecutive pointers during 4676 // vectorization. The pointer operands of interleaved accesses are an 4677 // example. 4678 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4679 4680 // Holds pointer operands of instructions that are possibly non-uniform. 4681 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4682 4683 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4684 InstWidening WideningDecision = getWideningDecision(I, VF); 4685 assert(WideningDecision != CM_Unknown && 4686 "Widening decision should be ready at this moment"); 4687 4688 return (WideningDecision == CM_Widen || 4689 WideningDecision == CM_Widen_Reverse || 4690 WideningDecision == CM_Interleave); 4691 }; 4692 // Iterate over the instructions in the loop, and collect all 4693 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4694 // that a consecutive-like pointer operand will be scalarized, we collect it 4695 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4696 // getelementptr instruction can be used by both vectorized and scalarized 4697 // memory instructions. For example, if a loop loads and stores from the same 4698 // location, but the store is conditional, the store will be scalarized, and 4699 // the getelementptr won't remain uniform. 4700 for (auto *BB : TheLoop->blocks()) 4701 for (auto &I : *BB) { 4702 // If there's no pointer operand, there's nothing to do. 4703 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4704 if (!Ptr) 4705 continue; 4706 4707 // True if all users of Ptr are memory accesses that have Ptr as their 4708 // pointer operand. 4709 auto UsersAreMemAccesses = 4710 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4711 return getLoadStorePointerOperand(U) == Ptr; 4712 }); 4713 4714 // Ensure the memory instruction will not be scalarized or used by 4715 // gather/scatter, making its pointer operand non-uniform. If the pointer 4716 // operand is used by any instruction other than a memory access, we 4717 // conservatively assume the pointer operand may be non-uniform. 4718 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4719 PossibleNonUniformPtrs.insert(Ptr); 4720 4721 // If the memory instruction will be vectorized and its pointer operand 4722 // is consecutive-like, or interleaving - the pointer operand should 4723 // remain uniform. 4724 else 4725 ConsecutiveLikePtrs.insert(Ptr); 4726 } 4727 4728 // Add to the Worklist all consecutive and consecutive-like pointers that 4729 // aren't also identified as possibly non-uniform. 4730 for (auto *V : ConsecutiveLikePtrs) 4731 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4732 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4733 Worklist.insert(V); 4734 } 4735 4736 // Expand Worklist in topological order: whenever a new instruction 4737 // is added , its users should be already inside Worklist. It ensures 4738 // a uniform instruction will only be used by uniform instructions. 4739 unsigned idx = 0; 4740 while (idx != Worklist.size()) { 4741 Instruction *I = Worklist[idx++]; 4742 4743 for (auto OV : I->operand_values()) { 4744 // isOutOfScope operands cannot be uniform instructions. 4745 if (isOutOfScope(OV)) 4746 continue; 4747 // First order recurrence Phi's should typically be considered 4748 // non-uniform. 4749 auto *OP = dyn_cast<PHINode>(OV); 4750 if (OP && Legal->isFirstOrderRecurrence(OP)) 4751 continue; 4752 // If all the users of the operand are uniform, then add the 4753 // operand into the uniform worklist. 4754 auto *OI = cast<Instruction>(OV); 4755 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4756 auto *J = cast<Instruction>(U); 4757 return Worklist.count(J) || 4758 (OI == getLoadStorePointerOperand(J) && 4759 isUniformDecision(J, VF)); 4760 })) { 4761 Worklist.insert(OI); 4762 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4763 } 4764 } 4765 } 4766 4767 // Returns true if Ptr is the pointer operand of a memory access instruction 4768 // I, and I is known to not require scalarization. 4769 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4770 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4771 }; 4772 4773 // For an instruction to be added into Worklist above, all its users inside 4774 // the loop should also be in Worklist. However, this condition cannot be 4775 // true for phi nodes that form a cyclic dependence. We must process phi 4776 // nodes separately. An induction variable will remain uniform if all users 4777 // of the induction variable and induction variable update remain uniform. 4778 // The code below handles both pointer and non-pointer induction variables. 4779 for (auto &Induction : *Legal->getInductionVars()) { 4780 auto *Ind = Induction.first; 4781 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4782 4783 // Determine if all users of the induction variable are uniform after 4784 // vectorization. 4785 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4786 auto *I = cast<Instruction>(U); 4787 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4788 isVectorizedMemAccessUse(I, Ind); 4789 }); 4790 if (!UniformInd) 4791 continue; 4792 4793 // Determine if all users of the induction variable update instruction are 4794 // uniform after vectorization. 4795 auto UniformIndUpdate = 4796 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4797 auto *I = cast<Instruction>(U); 4798 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4799 isVectorizedMemAccessUse(I, IndUpdate); 4800 }); 4801 if (!UniformIndUpdate) 4802 continue; 4803 4804 // The induction variable and its update instruction will remain uniform. 4805 Worklist.insert(Ind); 4806 Worklist.insert(IndUpdate); 4807 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4808 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4809 << "\n"); 4810 } 4811 4812 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4813 } 4814 4815 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4816 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4817 4818 if (Legal->getRuntimePointerChecking()->Need) { 4819 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4820 "runtime pointer checks needed. Enable vectorization of this " 4821 "loop with '#pragma clang loop vectorize(enable)' when " 4822 "compiling with -Os/-Oz", 4823 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4824 return true; 4825 } 4826 4827 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4828 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4829 "runtime SCEV checks needed. Enable vectorization of this " 4830 "loop with '#pragma clang loop vectorize(enable)' when " 4831 "compiling with -Os/-Oz", 4832 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4833 return true; 4834 } 4835 4836 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4837 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4838 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4839 "runtime stride == 1 checks needed. Enable vectorization of " 4840 "this loop with '#pragma clang loop vectorize(enable)' when " 4841 "compiling with -Os/-Oz", 4842 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4843 return true; 4844 } 4845 4846 return false; 4847 } 4848 4849 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4850 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4851 // TODO: It may by useful to do since it's still likely to be dynamically 4852 // uniform if the target can skip. 4853 reportVectorizationFailure( 4854 "Not inserting runtime ptr check for divergent target", 4855 "runtime pointer checks needed. Not enabled for divergent target", 4856 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4857 return None; 4858 } 4859 4860 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4861 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4862 if (TC == 1) { 4863 reportVectorizationFailure("Single iteration (non) loop", 4864 "loop trip count is one, irrelevant for vectorization", 4865 "SingleIterationLoop", ORE, TheLoop); 4866 return None; 4867 } 4868 4869 switch (ScalarEpilogueStatus) { 4870 case CM_ScalarEpilogueAllowed: 4871 return computeFeasibleMaxVF(TC); 4872 case CM_ScalarEpilogueNotNeededUsePredicate: 4873 LLVM_DEBUG( 4874 dbgs() << "LV: vector predicate hint/switch found.\n" 4875 << "LV: Not allowing scalar epilogue, creating predicated " 4876 << "vector loop.\n"); 4877 break; 4878 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4879 // fallthrough as a special case of OptForSize 4880 case CM_ScalarEpilogueNotAllowedOptSize: 4881 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4882 LLVM_DEBUG( 4883 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4884 else 4885 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4886 << "count.\n"); 4887 4888 // Bail if runtime checks are required, which are not good when optimising 4889 // for size. 4890 if (runtimeChecksRequired()) 4891 return None; 4892 break; 4893 } 4894 4895 // Now try the tail folding 4896 4897 // Invalidate interleave groups that require an epilogue if we can't mask 4898 // the interleave-group. 4899 if (!useMaskedInterleavedAccesses(TTI)) 4900 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4901 4902 unsigned MaxVF = computeFeasibleMaxVF(TC); 4903 if (TC > 0 && TC % MaxVF == 0) { 4904 // Accept MaxVF if we do not have a tail. 4905 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4906 return MaxVF; 4907 } 4908 4909 // If we don't know the precise trip count, or if the trip count that we 4910 // found modulo the vectorization factor is not zero, try to fold the tail 4911 // by masking. 4912 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4913 if (Legal->prepareToFoldTailByMasking()) { 4914 FoldTailByMasking = true; 4915 return MaxVF; 4916 } 4917 4918 if (TC == 0) { 4919 reportVectorizationFailure( 4920 "Unable to calculate the loop count due to complex control flow", 4921 "unable to calculate the loop count due to complex control flow", 4922 "UnknownLoopCountComplexCFG", ORE, TheLoop); 4923 return None; 4924 } 4925 4926 reportVectorizationFailure( 4927 "Cannot optimize for size and vectorize at the same time.", 4928 "cannot optimize for size and vectorize at the same time. " 4929 "Enable vectorization of this loop with '#pragma clang loop " 4930 "vectorize(enable)' when compiling with -Os/-Oz", 4931 "NoTailLoopWithOptForSize", ORE, TheLoop); 4932 return None; 4933 } 4934 4935 unsigned 4936 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 4937 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4938 unsigned SmallestType, WidestType; 4939 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4940 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4941 4942 // Get the maximum safe dependence distance in bits computed by LAA. 4943 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4944 // the memory accesses that is most restrictive (involved in the smallest 4945 // dependence distance). 4946 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4947 4948 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4949 4950 unsigned MaxVectorSize = WidestRegister / WidestType; 4951 4952 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4953 << " / " << WidestType << " bits.\n"); 4954 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4955 << WidestRegister << " bits.\n"); 4956 4957 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4958 " into one vector!"); 4959 if (MaxVectorSize == 0) { 4960 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4961 MaxVectorSize = 1; 4962 return MaxVectorSize; 4963 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4964 isPowerOf2_32(ConstTripCount)) { 4965 // We need to clamp the VF to be the ConstTripCount. There is no point in 4966 // choosing a higher viable VF as done in the loop below. 4967 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4968 << ConstTripCount << "\n"); 4969 MaxVectorSize = ConstTripCount; 4970 return MaxVectorSize; 4971 } 4972 4973 unsigned MaxVF = MaxVectorSize; 4974 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 4975 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 4976 // Collect all viable vectorization factors larger than the default MaxVF 4977 // (i.e. MaxVectorSize). 4978 SmallVector<unsigned, 8> VFs; 4979 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4980 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4981 VFs.push_back(VS); 4982 4983 // For each VF calculate its register usage. 4984 auto RUs = calculateRegisterUsage(VFs); 4985 4986 // Select the largest VF which doesn't require more registers than existing 4987 // ones. 4988 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4989 for (int i = RUs.size() - 1; i >= 0; --i) { 4990 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4991 MaxVF = VFs[i]; 4992 break; 4993 } 4994 } 4995 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4996 if (MaxVF < MinVF) { 4997 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4998 << ") with target's minimum: " << MinVF << '\n'); 4999 MaxVF = MinVF; 5000 } 5001 } 5002 } 5003 return MaxVF; 5004 } 5005 5006 VectorizationFactor 5007 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5008 float Cost = expectedCost(1).first; 5009 const float ScalarCost = Cost; 5010 unsigned Width = 1; 5011 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5012 5013 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5014 if (ForceVectorization && MaxVF > 1) { 5015 // Ignore scalar width, because the user explicitly wants vectorization. 5016 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5017 // evaluation. 5018 Cost = std::numeric_limits<float>::max(); 5019 } 5020 5021 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5022 // Notice that the vector loop needs to be executed less times, so 5023 // we need to divide the cost of the vector loops by the width of 5024 // the vector elements. 5025 VectorizationCostTy C = expectedCost(i); 5026 float VectorCost = C.first / (float)i; 5027 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5028 << " costs: " << (int)VectorCost << ".\n"); 5029 if (!C.second && !ForceVectorization) { 5030 LLVM_DEBUG( 5031 dbgs() << "LV: Not considering vector loop of width " << i 5032 << " because it will not generate any vector instructions.\n"); 5033 continue; 5034 } 5035 if (VectorCost < Cost) { 5036 Cost = VectorCost; 5037 Width = i; 5038 } 5039 } 5040 5041 if (!EnableCondStoresVectorization && NumPredStores) { 5042 reportVectorizationFailure("There are conditional stores.", 5043 "store that is conditionally executed prevents vectorization", 5044 "ConditionalStore", ORE, TheLoop); 5045 Width = 1; 5046 Cost = ScalarCost; 5047 } 5048 5049 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5050 << "LV: Vectorization seems to be not beneficial, " 5051 << "but was forced by a user.\n"); 5052 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5053 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5054 return Factor; 5055 } 5056 5057 std::pair<unsigned, unsigned> 5058 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5059 unsigned MinWidth = -1U; 5060 unsigned MaxWidth = 8; 5061 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5062 5063 // For each block. 5064 for (BasicBlock *BB : TheLoop->blocks()) { 5065 // For each instruction in the loop. 5066 for (Instruction &I : BB->instructionsWithoutDebug()) { 5067 Type *T = I.getType(); 5068 5069 // Skip ignored values. 5070 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5071 continue; 5072 5073 // Only examine Loads, Stores and PHINodes. 5074 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5075 continue; 5076 5077 // Examine PHI nodes that are reduction variables. Update the type to 5078 // account for the recurrence type. 5079 if (auto *PN = dyn_cast<PHINode>(&I)) { 5080 if (!Legal->isReductionVariable(PN)) 5081 continue; 5082 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5083 T = RdxDesc.getRecurrenceType(); 5084 } 5085 5086 // Examine the stored values. 5087 if (auto *ST = dyn_cast<StoreInst>(&I)) 5088 T = ST->getValueOperand()->getType(); 5089 5090 // Ignore loaded pointer types and stored pointer types that are not 5091 // vectorizable. 5092 // 5093 // FIXME: The check here attempts to predict whether a load or store will 5094 // be vectorized. We only know this for certain after a VF has 5095 // been selected. Here, we assume that if an access can be 5096 // vectorized, it will be. We should also look at extending this 5097 // optimization to non-pointer types. 5098 // 5099 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5100 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5101 continue; 5102 5103 MinWidth = std::min(MinWidth, 5104 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5105 MaxWidth = std::max(MaxWidth, 5106 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5107 } 5108 } 5109 5110 return {MinWidth, MaxWidth}; 5111 } 5112 5113 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5114 unsigned LoopCost) { 5115 // -- The interleave heuristics -- 5116 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5117 // There are many micro-architectural considerations that we can't predict 5118 // at this level. For example, frontend pressure (on decode or fetch) due to 5119 // code size, or the number and capabilities of the execution ports. 5120 // 5121 // We use the following heuristics to select the interleave count: 5122 // 1. If the code has reductions, then we interleave to break the cross 5123 // iteration dependency. 5124 // 2. If the loop is really small, then we interleave to reduce the loop 5125 // overhead. 5126 // 3. We don't interleave if we think that we will spill registers to memory 5127 // due to the increased register pressure. 5128 5129 if (!isScalarEpilogueAllowed()) 5130 return 1; 5131 5132 // We used the distance for the interleave count. 5133 if (Legal->getMaxSafeDepDistBytes() != -1U) 5134 return 1; 5135 5136 // Do not interleave loops with a relatively small trip count. 5137 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5138 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5139 return 1; 5140 5141 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5142 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5143 << " registers\n"); 5144 5145 if (VF == 1) { 5146 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5147 TargetNumRegisters = ForceTargetNumScalarRegs; 5148 } else { 5149 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5150 TargetNumRegisters = ForceTargetNumVectorRegs; 5151 } 5152 5153 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5154 // We divide by these constants so assume that we have at least one 5155 // instruction that uses at least one register. 5156 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5157 5158 // We calculate the interleave count using the following formula. 5159 // Subtract the number of loop invariants from the number of available 5160 // registers. These registers are used by all of the interleaved instances. 5161 // Next, divide the remaining registers by the number of registers that is 5162 // required by the loop, in order to estimate how many parallel instances 5163 // fit without causing spills. All of this is rounded down if necessary to be 5164 // a power of two. We want power of two interleave count to simplify any 5165 // addressing operations or alignment considerations. 5166 // We also want power of two interleave counts to ensure that the induction 5167 // variable of the vector loop wraps to zero, when tail is folded by masking; 5168 // this currently happens when OptForSize, in which case IC is set to 1 above. 5169 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5170 R.MaxLocalUsers); 5171 5172 // Don't count the induction variable as interleaved. 5173 if (EnableIndVarRegisterHeur) 5174 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5175 std::max(1U, (R.MaxLocalUsers - 1))); 5176 5177 // Clamp the interleave ranges to reasonable counts. 5178 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5179 5180 // Check if the user has overridden the max. 5181 if (VF == 1) { 5182 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5183 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5184 } else { 5185 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5186 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5187 } 5188 5189 // If the trip count is constant, limit the interleave count to be less than 5190 // the trip count divided by VF. 5191 if (TC > 0) { 5192 assert(TC >= VF && "VF exceeds trip count?"); 5193 if ((TC / VF) < MaxInterleaveCount) 5194 MaxInterleaveCount = (TC / VF); 5195 } 5196 5197 // If we did not calculate the cost for VF (because the user selected the VF) 5198 // then we calculate the cost of VF here. 5199 if (LoopCost == 0) 5200 LoopCost = expectedCost(VF).first; 5201 5202 assert(LoopCost && "Non-zero loop cost expected"); 5203 5204 // Clamp the calculated IC to be between the 1 and the max interleave count 5205 // that the target and trip count allows. 5206 if (IC > MaxInterleaveCount) 5207 IC = MaxInterleaveCount; 5208 else if (IC < 1) 5209 IC = 1; 5210 5211 // Interleave if we vectorized this loop and there is a reduction that could 5212 // benefit from interleaving. 5213 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5214 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5215 return IC; 5216 } 5217 5218 // Note that if we've already vectorized the loop we will have done the 5219 // runtime check and so interleaving won't require further checks. 5220 bool InterleavingRequiresRuntimePointerCheck = 5221 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5222 5223 // We want to interleave small loops in order to reduce the loop overhead and 5224 // potentially expose ILP opportunities. 5225 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5226 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5227 // We assume that the cost overhead is 1 and we use the cost model 5228 // to estimate the cost of the loop and interleave until the cost of the 5229 // loop overhead is about 5% of the cost of the loop. 5230 unsigned SmallIC = 5231 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5232 5233 // Interleave until store/load ports (estimated by max interleave count) are 5234 // saturated. 5235 unsigned NumStores = Legal->getNumStores(); 5236 unsigned NumLoads = Legal->getNumLoads(); 5237 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5238 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5239 5240 // If we have a scalar reduction (vector reductions are already dealt with 5241 // by this point), we can increase the critical path length if the loop 5242 // we're interleaving is inside another loop. Limit, by default to 2, so the 5243 // critical path only gets increased by one reduction operation. 5244 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5245 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5246 SmallIC = std::min(SmallIC, F); 5247 StoresIC = std::min(StoresIC, F); 5248 LoadsIC = std::min(LoadsIC, F); 5249 } 5250 5251 if (EnableLoadStoreRuntimeInterleave && 5252 std::max(StoresIC, LoadsIC) > SmallIC) { 5253 LLVM_DEBUG( 5254 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5255 return std::max(StoresIC, LoadsIC); 5256 } 5257 5258 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5259 return SmallIC; 5260 } 5261 5262 // Interleave if this is a large loop (small loops are already dealt with by 5263 // this point) that could benefit from interleaving. 5264 bool HasReductions = !Legal->getReductionVars()->empty(); 5265 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5266 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5267 return IC; 5268 } 5269 5270 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5271 return 1; 5272 } 5273 5274 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5275 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5276 // This function calculates the register usage by measuring the highest number 5277 // of values that are alive at a single location. Obviously, this is a very 5278 // rough estimation. We scan the loop in a topological order in order and 5279 // assign a number to each instruction. We use RPO to ensure that defs are 5280 // met before their users. We assume that each instruction that has in-loop 5281 // users starts an interval. We record every time that an in-loop value is 5282 // used, so we have a list of the first and last occurrences of each 5283 // instruction. Next, we transpose this data structure into a multi map that 5284 // holds the list of intervals that *end* at a specific location. This multi 5285 // map allows us to perform a linear search. We scan the instructions linearly 5286 // and record each time that a new interval starts, by placing it in a set. 5287 // If we find this value in the multi-map then we remove it from the set. 5288 // The max register usage is the maximum size of the set. 5289 // We also search for instructions that are defined outside the loop, but are 5290 // used inside the loop. We need this number separately from the max-interval 5291 // usage number because when we unroll, loop-invariant values do not take 5292 // more register. 5293 LoopBlocksDFS DFS(TheLoop); 5294 DFS.perform(LI); 5295 5296 RegisterUsage RU; 5297 5298 // Each 'key' in the map opens a new interval. The values 5299 // of the map are the index of the 'last seen' usage of the 5300 // instruction that is the key. 5301 using IntervalMap = DenseMap<Instruction *, unsigned>; 5302 5303 // Maps instruction to its index. 5304 SmallVector<Instruction *, 64> IdxToInstr; 5305 // Marks the end of each interval. 5306 IntervalMap EndPoint; 5307 // Saves the list of instruction indices that are used in the loop. 5308 SmallPtrSet<Instruction *, 8> Ends; 5309 // Saves the list of values that are used in the loop but are 5310 // defined outside the loop, such as arguments and constants. 5311 SmallPtrSet<Value *, 8> LoopInvariants; 5312 5313 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5314 for (Instruction &I : BB->instructionsWithoutDebug()) { 5315 IdxToInstr.push_back(&I); 5316 5317 // Save the end location of each USE. 5318 for (Value *U : I.operands()) { 5319 auto *Instr = dyn_cast<Instruction>(U); 5320 5321 // Ignore non-instruction values such as arguments, constants, etc. 5322 if (!Instr) 5323 continue; 5324 5325 // If this instruction is outside the loop then record it and continue. 5326 if (!TheLoop->contains(Instr)) { 5327 LoopInvariants.insert(Instr); 5328 continue; 5329 } 5330 5331 // Overwrite previous end points. 5332 EndPoint[Instr] = IdxToInstr.size(); 5333 Ends.insert(Instr); 5334 } 5335 } 5336 } 5337 5338 // Saves the list of intervals that end with the index in 'key'. 5339 using InstrList = SmallVector<Instruction *, 2>; 5340 DenseMap<unsigned, InstrList> TransposeEnds; 5341 5342 // Transpose the EndPoints to a list of values that end at each index. 5343 for (auto &Interval : EndPoint) 5344 TransposeEnds[Interval.second].push_back(Interval.first); 5345 5346 SmallPtrSet<Instruction *, 8> OpenIntervals; 5347 5348 // Get the size of the widest register. 5349 unsigned MaxSafeDepDist = -1U; 5350 if (Legal->getMaxSafeDepDistBytes() != -1U) 5351 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5352 unsigned WidestRegister = 5353 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5354 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5355 5356 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5357 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5358 5359 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5360 5361 // A lambda that gets the register usage for the given type and VF. 5362 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5363 if (Ty->isTokenTy()) 5364 return 0U; 5365 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5366 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5367 }; 5368 5369 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5370 Instruction *I = IdxToInstr[i]; 5371 5372 // Remove all of the instructions that end at this location. 5373 InstrList &List = TransposeEnds[i]; 5374 for (Instruction *ToRemove : List) 5375 OpenIntervals.erase(ToRemove); 5376 5377 // Ignore instructions that are never used within the loop. 5378 if (Ends.find(I) == Ends.end()) 5379 continue; 5380 5381 // Skip ignored values. 5382 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5383 continue; 5384 5385 // For each VF find the maximum usage of registers. 5386 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5387 if (VFs[j] == 1) { 5388 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5389 continue; 5390 } 5391 collectUniformsAndScalars(VFs[j]); 5392 // Count the number of live intervals. 5393 unsigned RegUsage = 0; 5394 for (auto Inst : OpenIntervals) { 5395 // Skip ignored values for VF > 1. 5396 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5397 isScalarAfterVectorization(Inst, VFs[j])) 5398 continue; 5399 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5400 } 5401 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5402 } 5403 5404 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5405 << OpenIntervals.size() << '\n'); 5406 5407 // Add the current instruction to the list of open intervals. 5408 OpenIntervals.insert(I); 5409 } 5410 5411 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5412 unsigned Invariant = 0; 5413 if (VFs[i] == 1) 5414 Invariant = LoopInvariants.size(); 5415 else { 5416 for (auto Inst : LoopInvariants) 5417 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5418 } 5419 5420 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5421 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5422 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5423 << '\n'); 5424 5425 RU.LoopInvariantRegs = Invariant; 5426 RU.MaxLocalUsers = MaxUsages[i]; 5427 RUs[i] = RU; 5428 } 5429 5430 return RUs; 5431 } 5432 5433 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5434 // TODO: Cost model for emulated masked load/store is completely 5435 // broken. This hack guides the cost model to use an artificially 5436 // high enough value to practically disable vectorization with such 5437 // operations, except where previously deployed legality hack allowed 5438 // using very low cost values. This is to avoid regressions coming simply 5439 // from moving "masked load/store" check from legality to cost model. 5440 // Masked Load/Gather emulation was previously never allowed. 5441 // Limited number of Masked Store/Scatter emulation was allowed. 5442 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5443 return isa<LoadInst>(I) || 5444 (isa<StoreInst>(I) && 5445 NumPredStores > NumberOfStoresToPredicate); 5446 } 5447 5448 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5449 // If we aren't vectorizing the loop, or if we've already collected the 5450 // instructions to scalarize, there's nothing to do. Collection may already 5451 // have occurred if we have a user-selected VF and are now computing the 5452 // expected cost for interleaving. 5453 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5454 return; 5455 5456 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5457 // not profitable to scalarize any instructions, the presence of VF in the 5458 // map will indicate that we've analyzed it already. 5459 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5460 5461 // Find all the instructions that are scalar with predication in the loop and 5462 // determine if it would be better to not if-convert the blocks they are in. 5463 // If so, we also record the instructions to scalarize. 5464 for (BasicBlock *BB : TheLoop->blocks()) { 5465 if (!blockNeedsPredication(BB)) 5466 continue; 5467 for (Instruction &I : *BB) 5468 if (isScalarWithPredication(&I)) { 5469 ScalarCostsTy ScalarCosts; 5470 // Do not apply discount logic if hacked cost is needed 5471 // for emulated masked memrefs. 5472 if (!useEmulatedMaskMemRefHack(&I) && 5473 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5474 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5475 // Remember that BB will remain after vectorization. 5476 PredicatedBBsAfterVectorization.insert(BB); 5477 } 5478 } 5479 } 5480 5481 int LoopVectorizationCostModel::computePredInstDiscount( 5482 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5483 unsigned VF) { 5484 assert(!isUniformAfterVectorization(PredInst, VF) && 5485 "Instruction marked uniform-after-vectorization will be predicated"); 5486 5487 // Initialize the discount to zero, meaning that the scalar version and the 5488 // vector version cost the same. 5489 int Discount = 0; 5490 5491 // Holds instructions to analyze. The instructions we visit are mapped in 5492 // ScalarCosts. Those instructions are the ones that would be scalarized if 5493 // we find that the scalar version costs less. 5494 SmallVector<Instruction *, 8> Worklist; 5495 5496 // Returns true if the given instruction can be scalarized. 5497 auto canBeScalarized = [&](Instruction *I) -> bool { 5498 // We only attempt to scalarize instructions forming a single-use chain 5499 // from the original predicated block that would otherwise be vectorized. 5500 // Although not strictly necessary, we give up on instructions we know will 5501 // already be scalar to avoid traversing chains that are unlikely to be 5502 // beneficial. 5503 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5504 isScalarAfterVectorization(I, VF)) 5505 return false; 5506 5507 // If the instruction is scalar with predication, it will be analyzed 5508 // separately. We ignore it within the context of PredInst. 5509 if (isScalarWithPredication(I)) 5510 return false; 5511 5512 // If any of the instruction's operands are uniform after vectorization, 5513 // the instruction cannot be scalarized. This prevents, for example, a 5514 // masked load from being scalarized. 5515 // 5516 // We assume we will only emit a value for lane zero of an instruction 5517 // marked uniform after vectorization, rather than VF identical values. 5518 // Thus, if we scalarize an instruction that uses a uniform, we would 5519 // create uses of values corresponding to the lanes we aren't emitting code 5520 // for. This behavior can be changed by allowing getScalarValue to clone 5521 // the lane zero values for uniforms rather than asserting. 5522 for (Use &U : I->operands()) 5523 if (auto *J = dyn_cast<Instruction>(U.get())) 5524 if (isUniformAfterVectorization(J, VF)) 5525 return false; 5526 5527 // Otherwise, we can scalarize the instruction. 5528 return true; 5529 }; 5530 5531 // Compute the expected cost discount from scalarizing the entire expression 5532 // feeding the predicated instruction. We currently only consider expressions 5533 // that are single-use instruction chains. 5534 Worklist.push_back(PredInst); 5535 while (!Worklist.empty()) { 5536 Instruction *I = Worklist.pop_back_val(); 5537 5538 // If we've already analyzed the instruction, there's nothing to do. 5539 if (ScalarCosts.find(I) != ScalarCosts.end()) 5540 continue; 5541 5542 // Compute the cost of the vector instruction. Note that this cost already 5543 // includes the scalarization overhead of the predicated instruction. 5544 unsigned VectorCost = getInstructionCost(I, VF).first; 5545 5546 // Compute the cost of the scalarized instruction. This cost is the cost of 5547 // the instruction as if it wasn't if-converted and instead remained in the 5548 // predicated block. We will scale this cost by block probability after 5549 // computing the scalarization overhead. 5550 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5551 5552 // Compute the scalarization overhead of needed insertelement instructions 5553 // and phi nodes. 5554 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5555 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5556 true, false); 5557 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5558 } 5559 5560 // Compute the scalarization overhead of needed extractelement 5561 // instructions. For each of the instruction's operands, if the operand can 5562 // be scalarized, add it to the worklist; otherwise, account for the 5563 // overhead. 5564 for (Use &U : I->operands()) 5565 if (auto *J = dyn_cast<Instruction>(U.get())) { 5566 assert(VectorType::isValidElementType(J->getType()) && 5567 "Instruction has non-scalar type"); 5568 if (canBeScalarized(J)) 5569 Worklist.push_back(J); 5570 else if (needsExtract(J, VF)) 5571 ScalarCost += TTI.getScalarizationOverhead( 5572 ToVectorTy(J->getType(),VF), false, true); 5573 } 5574 5575 // Scale the total scalar cost by block probability. 5576 ScalarCost /= getReciprocalPredBlockProb(); 5577 5578 // Compute the discount. A non-negative discount means the vector version 5579 // of the instruction costs more, and scalarizing would be beneficial. 5580 Discount += VectorCost - ScalarCost; 5581 ScalarCosts[I] = ScalarCost; 5582 } 5583 5584 return Discount; 5585 } 5586 5587 LoopVectorizationCostModel::VectorizationCostTy 5588 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5589 VectorizationCostTy Cost; 5590 5591 // For each block. 5592 for (BasicBlock *BB : TheLoop->blocks()) { 5593 VectorizationCostTy BlockCost; 5594 5595 // For each instruction in the old loop. 5596 for (Instruction &I : BB->instructionsWithoutDebug()) { 5597 // Skip ignored values. 5598 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5599 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5600 continue; 5601 5602 VectorizationCostTy C = getInstructionCost(&I, VF); 5603 5604 // Check if we should override the cost. 5605 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5606 C.first = ForceTargetInstructionCost; 5607 5608 BlockCost.first += C.first; 5609 BlockCost.second |= C.second; 5610 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5611 << " for VF " << VF << " For instruction: " << I 5612 << '\n'); 5613 } 5614 5615 // If we are vectorizing a predicated block, it will have been 5616 // if-converted. This means that the block's instructions (aside from 5617 // stores and instructions that may divide by zero) will now be 5618 // unconditionally executed. For the scalar case, we may not always execute 5619 // the predicated block. Thus, scale the block's cost by the probability of 5620 // executing it. 5621 if (VF == 1 && blockNeedsPredication(BB)) 5622 BlockCost.first /= getReciprocalPredBlockProb(); 5623 5624 Cost.first += BlockCost.first; 5625 Cost.second |= BlockCost.second; 5626 } 5627 5628 return Cost; 5629 } 5630 5631 /// Gets Address Access SCEV after verifying that the access pattern 5632 /// is loop invariant except the induction variable dependence. 5633 /// 5634 /// This SCEV can be sent to the Target in order to estimate the address 5635 /// calculation cost. 5636 static const SCEV *getAddressAccessSCEV( 5637 Value *Ptr, 5638 LoopVectorizationLegality *Legal, 5639 PredicatedScalarEvolution &PSE, 5640 const Loop *TheLoop) { 5641 5642 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5643 if (!Gep) 5644 return nullptr; 5645 5646 // We are looking for a gep with all loop invariant indices except for one 5647 // which should be an induction variable. 5648 auto SE = PSE.getSE(); 5649 unsigned NumOperands = Gep->getNumOperands(); 5650 for (unsigned i = 1; i < NumOperands; ++i) { 5651 Value *Opd = Gep->getOperand(i); 5652 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5653 !Legal->isInductionVariable(Opd)) 5654 return nullptr; 5655 } 5656 5657 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5658 return PSE.getSCEV(Ptr); 5659 } 5660 5661 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5662 return Legal->hasStride(I->getOperand(0)) || 5663 Legal->hasStride(I->getOperand(1)); 5664 } 5665 5666 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5667 unsigned VF) { 5668 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5669 Type *ValTy = getMemInstValueType(I); 5670 auto SE = PSE.getSE(); 5671 5672 unsigned Alignment = getLoadStoreAlignment(I); 5673 unsigned AS = getLoadStoreAddressSpace(I); 5674 Value *Ptr = getLoadStorePointerOperand(I); 5675 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5676 5677 // Figure out whether the access is strided and get the stride value 5678 // if it's known in compile time 5679 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5680 5681 // Get the cost of the scalar memory instruction and address computation. 5682 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5683 5684 // Don't pass *I here, since it is scalar but will actually be part of a 5685 // vectorized loop where the user of it is a vectorized instruction. 5686 Cost += VF * 5687 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5688 AS); 5689 5690 // Get the overhead of the extractelement and insertelement instructions 5691 // we might create due to scalarization. 5692 Cost += getScalarizationOverhead(I, VF); 5693 5694 // If we have a predicated store, it may not be executed for each vector 5695 // lane. Scale the cost by the probability of executing the predicated 5696 // block. 5697 if (isPredicatedInst(I)) { 5698 Cost /= getReciprocalPredBlockProb(); 5699 5700 if (useEmulatedMaskMemRefHack(I)) 5701 // Artificially setting to a high enough value to practically disable 5702 // vectorization with such operations. 5703 Cost = 3000000; 5704 } 5705 5706 return Cost; 5707 } 5708 5709 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5710 unsigned VF) { 5711 Type *ValTy = getMemInstValueType(I); 5712 Type *VectorTy = ToVectorTy(ValTy, VF); 5713 unsigned Alignment = getLoadStoreAlignment(I); 5714 Value *Ptr = getLoadStorePointerOperand(I); 5715 unsigned AS = getLoadStoreAddressSpace(I); 5716 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5717 5718 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5719 "Stride should be 1 or -1 for consecutive memory access"); 5720 unsigned Cost = 0; 5721 if (Legal->isMaskRequired(I)) 5722 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5723 else 5724 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5725 5726 bool Reverse = ConsecutiveStride < 0; 5727 if (Reverse) 5728 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5729 return Cost; 5730 } 5731 5732 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5733 unsigned VF) { 5734 Type *ValTy = getMemInstValueType(I); 5735 Type *VectorTy = ToVectorTy(ValTy, VF); 5736 unsigned Alignment = getLoadStoreAlignment(I); 5737 unsigned AS = getLoadStoreAddressSpace(I); 5738 if (isa<LoadInst>(I)) { 5739 return TTI.getAddressComputationCost(ValTy) + 5740 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5741 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5742 } 5743 StoreInst *SI = cast<StoreInst>(I); 5744 5745 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5746 return TTI.getAddressComputationCost(ValTy) + 5747 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5748 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5749 Instruction::ExtractElement, 5750 VectorTy, VF - 1)); 5751 } 5752 5753 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5754 unsigned VF) { 5755 Type *ValTy = getMemInstValueType(I); 5756 Type *VectorTy = ToVectorTy(ValTy, VF); 5757 unsigned Alignment = getLoadStoreAlignment(I); 5758 Value *Ptr = getLoadStorePointerOperand(I); 5759 5760 return TTI.getAddressComputationCost(VectorTy) + 5761 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5762 Legal->isMaskRequired(I), Alignment); 5763 } 5764 5765 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5766 unsigned VF) { 5767 Type *ValTy = getMemInstValueType(I); 5768 Type *VectorTy = ToVectorTy(ValTy, VF); 5769 unsigned AS = getLoadStoreAddressSpace(I); 5770 5771 auto Group = getInterleavedAccessGroup(I); 5772 assert(Group && "Fail to get an interleaved access group."); 5773 5774 unsigned InterleaveFactor = Group->getFactor(); 5775 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5776 5777 // Holds the indices of existing members in an interleaved load group. 5778 // An interleaved store group doesn't need this as it doesn't allow gaps. 5779 SmallVector<unsigned, 4> Indices; 5780 if (isa<LoadInst>(I)) { 5781 for (unsigned i = 0; i < InterleaveFactor; i++) 5782 if (Group->getMember(i)) 5783 Indices.push_back(i); 5784 } 5785 5786 // Calculate the cost of the whole interleaved group. 5787 bool UseMaskForGaps = 5788 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5789 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5790 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5791 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5792 5793 if (Group->isReverse()) { 5794 // TODO: Add support for reversed masked interleaved access. 5795 assert(!Legal->isMaskRequired(I) && 5796 "Reverse masked interleaved access not supported."); 5797 Cost += Group->getNumMembers() * 5798 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5799 } 5800 return Cost; 5801 } 5802 5803 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5804 unsigned VF) { 5805 // Calculate scalar cost only. Vectorization cost should be ready at this 5806 // moment. 5807 if (VF == 1) { 5808 Type *ValTy = getMemInstValueType(I); 5809 unsigned Alignment = getLoadStoreAlignment(I); 5810 unsigned AS = getLoadStoreAddressSpace(I); 5811 5812 return TTI.getAddressComputationCost(ValTy) + 5813 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5814 } 5815 return getWideningCost(I, VF); 5816 } 5817 5818 LoopVectorizationCostModel::VectorizationCostTy 5819 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5820 // If we know that this instruction will remain uniform, check the cost of 5821 // the scalar version. 5822 if (isUniformAfterVectorization(I, VF)) 5823 VF = 1; 5824 5825 if (VF > 1 && isProfitableToScalarize(I, VF)) 5826 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5827 5828 // Forced scalars do not have any scalarization overhead. 5829 auto ForcedScalar = ForcedScalars.find(VF); 5830 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5831 auto InstSet = ForcedScalar->second; 5832 if (InstSet.find(I) != InstSet.end()) 5833 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5834 } 5835 5836 Type *VectorTy; 5837 unsigned C = getInstructionCost(I, VF, VectorTy); 5838 5839 bool TypeNotScalarized = 5840 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5841 return VectorizationCostTy(C, TypeNotScalarized); 5842 } 5843 5844 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5845 unsigned VF) { 5846 5847 if (VF == 1) 5848 return 0; 5849 5850 unsigned Cost = 0; 5851 Type *RetTy = ToVectorTy(I->getType(), VF); 5852 if (!RetTy->isVoidTy() && 5853 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5854 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5855 5856 // Some targets keep addresses scalar. 5857 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5858 return Cost; 5859 5860 // Some targets support efficient element stores. 5861 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5862 return Cost; 5863 5864 // Collect operands to consider. 5865 CallInst *CI = dyn_cast<CallInst>(I); 5866 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 5867 5868 // Skip operands that do not require extraction/scalarization and do not incur 5869 // any overhead. 5870 return Cost + TTI.getOperandsScalarizationOverhead( 5871 filterExtractingOperands(Ops, VF), VF); 5872 } 5873 5874 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5875 if (VF == 1) 5876 return; 5877 NumPredStores = 0; 5878 for (BasicBlock *BB : TheLoop->blocks()) { 5879 // For each instruction in the old loop. 5880 for (Instruction &I : *BB) { 5881 Value *Ptr = getLoadStorePointerOperand(&I); 5882 if (!Ptr) 5883 continue; 5884 5885 // TODO: We should generate better code and update the cost model for 5886 // predicated uniform stores. Today they are treated as any other 5887 // predicated store (see added test cases in 5888 // invariant-store-vectorization.ll). 5889 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5890 NumPredStores++; 5891 5892 if (Legal->isUniform(Ptr) && 5893 // Conditional loads and stores should be scalarized and predicated. 5894 // isScalarWithPredication cannot be used here since masked 5895 // gather/scatters are not considered scalar with predication. 5896 !Legal->blockNeedsPredication(I.getParent())) { 5897 // TODO: Avoid replicating loads and stores instead of 5898 // relying on instcombine to remove them. 5899 // Load: Scalar load + broadcast 5900 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5901 unsigned Cost = getUniformMemOpCost(&I, VF); 5902 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5903 continue; 5904 } 5905 5906 // We assume that widening is the best solution when possible. 5907 if (memoryInstructionCanBeWidened(&I, VF)) { 5908 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5909 int ConsecutiveStride = 5910 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5911 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5912 "Expected consecutive stride."); 5913 InstWidening Decision = 5914 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5915 setWideningDecision(&I, VF, Decision, Cost); 5916 continue; 5917 } 5918 5919 // Choose between Interleaving, Gather/Scatter or Scalarization. 5920 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5921 unsigned NumAccesses = 1; 5922 if (isAccessInterleaved(&I)) { 5923 auto Group = getInterleavedAccessGroup(&I); 5924 assert(Group && "Fail to get an interleaved access group."); 5925 5926 // Make one decision for the whole group. 5927 if (getWideningDecision(&I, VF) != CM_Unknown) 5928 continue; 5929 5930 NumAccesses = Group->getNumMembers(); 5931 if (interleavedAccessCanBeWidened(&I, VF)) 5932 InterleaveCost = getInterleaveGroupCost(&I, VF); 5933 } 5934 5935 unsigned GatherScatterCost = 5936 isLegalGatherOrScatter(&I) 5937 ? getGatherScatterCost(&I, VF) * NumAccesses 5938 : std::numeric_limits<unsigned>::max(); 5939 5940 unsigned ScalarizationCost = 5941 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5942 5943 // Choose better solution for the current VF, 5944 // write down this decision and use it during vectorization. 5945 unsigned Cost; 5946 InstWidening Decision; 5947 if (InterleaveCost <= GatherScatterCost && 5948 InterleaveCost < ScalarizationCost) { 5949 Decision = CM_Interleave; 5950 Cost = InterleaveCost; 5951 } else if (GatherScatterCost < ScalarizationCost) { 5952 Decision = CM_GatherScatter; 5953 Cost = GatherScatterCost; 5954 } else { 5955 Decision = CM_Scalarize; 5956 Cost = ScalarizationCost; 5957 } 5958 // If the instructions belongs to an interleave group, the whole group 5959 // receives the same decision. The whole group receives the cost, but 5960 // the cost will actually be assigned to one instruction. 5961 if (auto Group = getInterleavedAccessGroup(&I)) 5962 setWideningDecision(Group, VF, Decision, Cost); 5963 else 5964 setWideningDecision(&I, VF, Decision, Cost); 5965 } 5966 } 5967 5968 // Make sure that any load of address and any other address computation 5969 // remains scalar unless there is gather/scatter support. This avoids 5970 // inevitable extracts into address registers, and also has the benefit of 5971 // activating LSR more, since that pass can't optimize vectorized 5972 // addresses. 5973 if (TTI.prefersVectorizedAddressing()) 5974 return; 5975 5976 // Start with all scalar pointer uses. 5977 SmallPtrSet<Instruction *, 8> AddrDefs; 5978 for (BasicBlock *BB : TheLoop->blocks()) 5979 for (Instruction &I : *BB) { 5980 Instruction *PtrDef = 5981 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5982 if (PtrDef && TheLoop->contains(PtrDef) && 5983 getWideningDecision(&I, VF) != CM_GatherScatter) 5984 AddrDefs.insert(PtrDef); 5985 } 5986 5987 // Add all instructions used to generate the addresses. 5988 SmallVector<Instruction *, 4> Worklist; 5989 for (auto *I : AddrDefs) 5990 Worklist.push_back(I); 5991 while (!Worklist.empty()) { 5992 Instruction *I = Worklist.pop_back_val(); 5993 for (auto &Op : I->operands()) 5994 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5995 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5996 AddrDefs.insert(InstOp).second) 5997 Worklist.push_back(InstOp); 5998 } 5999 6000 for (auto *I : AddrDefs) { 6001 if (isa<LoadInst>(I)) { 6002 // Setting the desired widening decision should ideally be handled in 6003 // by cost functions, but since this involves the task of finding out 6004 // if the loaded register is involved in an address computation, it is 6005 // instead changed here when we know this is the case. 6006 InstWidening Decision = getWideningDecision(I, VF); 6007 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6008 // Scalarize a widened load of address. 6009 setWideningDecision(I, VF, CM_Scalarize, 6010 (VF * getMemoryInstructionCost(I, 1))); 6011 else if (auto Group = getInterleavedAccessGroup(I)) { 6012 // Scalarize an interleave group of address loads. 6013 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6014 if (Instruction *Member = Group->getMember(I)) 6015 setWideningDecision(Member, VF, CM_Scalarize, 6016 (VF * getMemoryInstructionCost(Member, 1))); 6017 } 6018 } 6019 } else 6020 // Make sure I gets scalarized and a cost estimate without 6021 // scalarization overhead. 6022 ForcedScalars[VF].insert(I); 6023 } 6024 } 6025 6026 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6027 unsigned VF, 6028 Type *&VectorTy) { 6029 Type *RetTy = I->getType(); 6030 if (canTruncateToMinimalBitwidth(I, VF)) 6031 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6032 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6033 auto SE = PSE.getSE(); 6034 6035 // TODO: We need to estimate the cost of intrinsic calls. 6036 switch (I->getOpcode()) { 6037 case Instruction::GetElementPtr: 6038 // We mark this instruction as zero-cost because the cost of GEPs in 6039 // vectorized code depends on whether the corresponding memory instruction 6040 // is scalarized or not. Therefore, we handle GEPs with the memory 6041 // instruction cost. 6042 return 0; 6043 case Instruction::Br: { 6044 // In cases of scalarized and predicated instructions, there will be VF 6045 // predicated blocks in the vectorized loop. Each branch around these 6046 // blocks requires also an extract of its vector compare i1 element. 6047 bool ScalarPredicatedBB = false; 6048 BranchInst *BI = cast<BranchInst>(I); 6049 if (VF > 1 && BI->isConditional() && 6050 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6051 PredicatedBBsAfterVectorization.end() || 6052 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6053 PredicatedBBsAfterVectorization.end())) 6054 ScalarPredicatedBB = true; 6055 6056 if (ScalarPredicatedBB) { 6057 // Return cost for branches around scalarized and predicated blocks. 6058 Type *Vec_i1Ty = 6059 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6060 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6061 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6062 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6063 // The back-edge branch will remain, as will all scalar branches. 6064 return TTI.getCFInstrCost(Instruction::Br); 6065 else 6066 // This branch will be eliminated by if-conversion. 6067 return 0; 6068 // Note: We currently assume zero cost for an unconditional branch inside 6069 // a predicated block since it will become a fall-through, although we 6070 // may decide in the future to call TTI for all branches. 6071 } 6072 case Instruction::PHI: { 6073 auto *Phi = cast<PHINode>(I); 6074 6075 // First-order recurrences are replaced by vector shuffles inside the loop. 6076 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6077 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6078 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6079 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 6080 6081 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6082 // converted into select instructions. We require N - 1 selects per phi 6083 // node, where N is the number of incoming values. 6084 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6085 return (Phi->getNumIncomingValues() - 1) * 6086 TTI.getCmpSelInstrCost( 6087 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6088 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6089 6090 return TTI.getCFInstrCost(Instruction::PHI); 6091 } 6092 case Instruction::UDiv: 6093 case Instruction::SDiv: 6094 case Instruction::URem: 6095 case Instruction::SRem: 6096 // If we have a predicated instruction, it may not be executed for each 6097 // vector lane. Get the scalarization cost and scale this amount by the 6098 // probability of executing the predicated block. If the instruction is not 6099 // predicated, we fall through to the next case. 6100 if (VF > 1 && isScalarWithPredication(I)) { 6101 unsigned Cost = 0; 6102 6103 // These instructions have a non-void type, so account for the phi nodes 6104 // that we will create. This cost is likely to be zero. The phi node 6105 // cost, if any, should be scaled by the block probability because it 6106 // models a copy at the end of each predicated block. 6107 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6108 6109 // The cost of the non-predicated instruction. 6110 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6111 6112 // The cost of insertelement and extractelement instructions needed for 6113 // scalarization. 6114 Cost += getScalarizationOverhead(I, VF); 6115 6116 // Scale the cost by the probability of executing the predicated blocks. 6117 // This assumes the predicated block for each vector lane is equally 6118 // likely. 6119 return Cost / getReciprocalPredBlockProb(); 6120 } 6121 LLVM_FALLTHROUGH; 6122 case Instruction::Add: 6123 case Instruction::FAdd: 6124 case Instruction::Sub: 6125 case Instruction::FSub: 6126 case Instruction::Mul: 6127 case Instruction::FMul: 6128 case Instruction::FDiv: 6129 case Instruction::FRem: 6130 case Instruction::Shl: 6131 case Instruction::LShr: 6132 case Instruction::AShr: 6133 case Instruction::And: 6134 case Instruction::Or: 6135 case Instruction::Xor: { 6136 // Since we will replace the stride by 1 the multiplication should go away. 6137 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6138 return 0; 6139 // Certain instructions can be cheaper to vectorize if they have a constant 6140 // second vector operand. One example of this are shifts on x86. 6141 Value *Op2 = I->getOperand(1); 6142 TargetTransformInfo::OperandValueProperties Op2VP; 6143 TargetTransformInfo::OperandValueKind Op2VK = 6144 TTI.getOperandInfo(Op2, Op2VP); 6145 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6146 Op2VK = TargetTransformInfo::OK_UniformValue; 6147 6148 SmallVector<const Value *, 4> Operands(I->operand_values()); 6149 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6150 return N * TTI.getArithmeticInstrCost( 6151 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6152 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 6153 } 6154 case Instruction::FNeg: { 6155 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6156 return N * TTI.getArithmeticInstrCost( 6157 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6158 TargetTransformInfo::OK_AnyValue, 6159 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6160 I->getOperand(0)); 6161 } 6162 case Instruction::Select: { 6163 SelectInst *SI = cast<SelectInst>(I); 6164 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6165 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6166 Type *CondTy = SI->getCondition()->getType(); 6167 if (!ScalarCond) 6168 CondTy = VectorType::get(CondTy, VF); 6169 6170 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6171 } 6172 case Instruction::ICmp: 6173 case Instruction::FCmp: { 6174 Type *ValTy = I->getOperand(0)->getType(); 6175 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6176 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6177 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6178 VectorTy = ToVectorTy(ValTy, VF); 6179 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6180 } 6181 case Instruction::Store: 6182 case Instruction::Load: { 6183 unsigned Width = VF; 6184 if (Width > 1) { 6185 InstWidening Decision = getWideningDecision(I, Width); 6186 assert(Decision != CM_Unknown && 6187 "CM decision should be taken at this point"); 6188 if (Decision == CM_Scalarize) 6189 Width = 1; 6190 } 6191 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6192 return getMemoryInstructionCost(I, VF); 6193 } 6194 case Instruction::ZExt: 6195 case Instruction::SExt: 6196 case Instruction::FPToUI: 6197 case Instruction::FPToSI: 6198 case Instruction::FPExt: 6199 case Instruction::PtrToInt: 6200 case Instruction::IntToPtr: 6201 case Instruction::SIToFP: 6202 case Instruction::UIToFP: 6203 case Instruction::Trunc: 6204 case Instruction::FPTrunc: 6205 case Instruction::BitCast: { 6206 // We optimize the truncation of induction variables having constant 6207 // integer steps. The cost of these truncations is the same as the scalar 6208 // operation. 6209 if (isOptimizableIVTruncate(I, VF)) { 6210 auto *Trunc = cast<TruncInst>(I); 6211 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6212 Trunc->getSrcTy(), Trunc); 6213 } 6214 6215 Type *SrcScalarTy = I->getOperand(0)->getType(); 6216 Type *SrcVecTy = 6217 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6218 if (canTruncateToMinimalBitwidth(I, VF)) { 6219 // This cast is going to be shrunk. This may remove the cast or it might 6220 // turn it into slightly different cast. For example, if MinBW == 16, 6221 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6222 // 6223 // Calculate the modified src and dest types. 6224 Type *MinVecTy = VectorTy; 6225 if (I->getOpcode() == Instruction::Trunc) { 6226 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6227 VectorTy = 6228 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6229 } else if (I->getOpcode() == Instruction::ZExt || 6230 I->getOpcode() == Instruction::SExt) { 6231 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6232 VectorTy = 6233 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6234 } 6235 } 6236 6237 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6238 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6239 } 6240 case Instruction::Call: { 6241 bool NeedToScalarize; 6242 CallInst *CI = cast<CallInst>(I); 6243 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6244 if (getVectorIntrinsicIDForCall(CI, TLI)) 6245 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6246 return CallCost; 6247 } 6248 default: 6249 // The cost of executing VF copies of the scalar instruction. This opcode 6250 // is unknown. Assume that it is the same as 'mul'. 6251 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6252 getScalarizationOverhead(I, VF); 6253 } // end of switch. 6254 } 6255 6256 char LoopVectorize::ID = 0; 6257 6258 static const char lv_name[] = "Loop Vectorization"; 6259 6260 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6261 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6262 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6263 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6264 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6265 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6266 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6267 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6268 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6269 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6270 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6271 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6272 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6273 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6274 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6275 6276 namespace llvm { 6277 6278 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6279 6280 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6281 bool VectorizeOnlyWhenForced) { 6282 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6283 } 6284 6285 } // end namespace llvm 6286 6287 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6288 // Check if the pointer operand of a load or store instruction is 6289 // consecutive. 6290 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6291 return Legal->isConsecutivePtr(Ptr); 6292 return false; 6293 } 6294 6295 void LoopVectorizationCostModel::collectValuesToIgnore() { 6296 // Ignore ephemeral values. 6297 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6298 6299 // Ignore type-promoting instructions we identified during reduction 6300 // detection. 6301 for (auto &Reduction : *Legal->getReductionVars()) { 6302 RecurrenceDescriptor &RedDes = Reduction.second; 6303 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6304 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6305 } 6306 // Ignore type-casting instructions we identified during induction 6307 // detection. 6308 for (auto &Induction : *Legal->getInductionVars()) { 6309 InductionDescriptor &IndDes = Induction.second; 6310 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6311 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6312 } 6313 } 6314 6315 // TODO: we could return a pair of values that specify the max VF and 6316 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6317 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6318 // doesn't have a cost model that can choose which plan to execute if 6319 // more than one is generated. 6320 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6321 LoopVectorizationCostModel &CM) { 6322 unsigned WidestType; 6323 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6324 return WidestVectorRegBits / WidestType; 6325 } 6326 6327 VectorizationFactor 6328 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6329 unsigned VF = UserVF; 6330 // Outer loop handling: They may require CFG and instruction level 6331 // transformations before even evaluating whether vectorization is profitable. 6332 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6333 // the vectorization pipeline. 6334 if (!OrigLoop->empty()) { 6335 // If the user doesn't provide a vectorization factor, determine a 6336 // reasonable one. 6337 if (!UserVF) { 6338 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6339 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6340 6341 // Make sure we have a VF > 1 for stress testing. 6342 if (VPlanBuildStressTest && VF < 2) { 6343 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6344 << "overriding computed VF.\n"); 6345 VF = 4; 6346 } 6347 } 6348 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6349 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6350 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6351 << " to build VPlans.\n"); 6352 buildVPlans(VF, VF); 6353 6354 // For VPlan build stress testing, we bail out after VPlan construction. 6355 if (VPlanBuildStressTest) 6356 return VectorizationFactor::Disabled(); 6357 6358 return {VF, 0}; 6359 } 6360 6361 LLVM_DEBUG( 6362 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6363 "VPlan-native path.\n"); 6364 return VectorizationFactor::Disabled(); 6365 } 6366 6367 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6368 assert(OrigLoop->empty() && "Inner loop expected."); 6369 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6370 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6371 return None; 6372 6373 // Invalidate interleave groups if all blocks of loop will be predicated. 6374 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6375 !useMaskedInterleavedAccesses(*TTI)) { 6376 LLVM_DEBUG( 6377 dbgs() 6378 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6379 "which requires masked-interleaved support.\n"); 6380 CM.InterleaveInfo.reset(); 6381 } 6382 6383 if (UserVF) { 6384 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6385 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6386 // Collect the instructions (and their associated costs) that will be more 6387 // profitable to scalarize. 6388 CM.selectUserVectorizationFactor(UserVF); 6389 buildVPlansWithVPRecipes(UserVF, UserVF); 6390 LLVM_DEBUG(printPlans(dbgs())); 6391 return {{UserVF, 0}}; 6392 } 6393 6394 unsigned MaxVF = MaybeMaxVF.getValue(); 6395 assert(MaxVF != 0 && "MaxVF is zero."); 6396 6397 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6398 // Collect Uniform and Scalar instructions after vectorization with VF. 6399 CM.collectUniformsAndScalars(VF); 6400 6401 // Collect the instructions (and their associated costs) that will be more 6402 // profitable to scalarize. 6403 if (VF > 1) 6404 CM.collectInstsToScalarize(VF); 6405 } 6406 6407 buildVPlansWithVPRecipes(1, MaxVF); 6408 LLVM_DEBUG(printPlans(dbgs())); 6409 if (MaxVF == 1) 6410 return VectorizationFactor::Disabled(); 6411 6412 // Select the optimal vectorization factor. 6413 return CM.selectVectorizationFactor(MaxVF); 6414 } 6415 6416 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6417 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6418 << '\n'); 6419 BestVF = VF; 6420 BestUF = UF; 6421 6422 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6423 return !Plan->hasVF(VF); 6424 }); 6425 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6426 } 6427 6428 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6429 DominatorTree *DT) { 6430 // Perform the actual loop transformation. 6431 6432 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6433 VPCallbackILV CallbackILV(ILV); 6434 6435 VPTransformState State{BestVF, BestUF, LI, 6436 DT, ILV.Builder, ILV.VectorLoopValueMap, 6437 &ILV, CallbackILV}; 6438 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6439 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6440 6441 //===------------------------------------------------===// 6442 // 6443 // Notice: any optimization or new instruction that go 6444 // into the code below should also be implemented in 6445 // the cost-model. 6446 // 6447 //===------------------------------------------------===// 6448 6449 // 2. Copy and widen instructions from the old loop into the new loop. 6450 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6451 VPlans.front()->execute(&State); 6452 6453 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6454 // predication, updating analyses. 6455 ILV.fixVectorizedLoop(); 6456 } 6457 6458 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6459 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6460 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6461 6462 // We create new control-flow for the vectorized loop, so the original 6463 // condition will be dead after vectorization if it's only used by the 6464 // branch. 6465 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6466 if (Cmp && Cmp->hasOneUse()) 6467 DeadInstructions.insert(Cmp); 6468 6469 // We create new "steps" for induction variable updates to which the original 6470 // induction variables map. An original update instruction will be dead if 6471 // all its users except the induction variable are dead. 6472 for (auto &Induction : *Legal->getInductionVars()) { 6473 PHINode *Ind = Induction.first; 6474 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6475 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6476 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6477 DeadInstructions.end(); 6478 })) 6479 DeadInstructions.insert(IndUpdate); 6480 6481 // We record as "Dead" also the type-casting instructions we had identified 6482 // during induction analysis. We don't need any handling for them in the 6483 // vectorized loop because we have proven that, under a proper runtime 6484 // test guarding the vectorized loop, the value of the phi, and the casted 6485 // value of the phi, are the same. The last instruction in this casting chain 6486 // will get its scalar/vector/widened def from the scalar/vector/widened def 6487 // of the respective phi node. Any other casts in the induction def-use chain 6488 // have no other uses outside the phi update chain, and will be ignored. 6489 InductionDescriptor &IndDes = Induction.second; 6490 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6491 DeadInstructions.insert(Casts.begin(), Casts.end()); 6492 } 6493 } 6494 6495 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6496 6497 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6498 6499 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6500 Instruction::BinaryOps BinOp) { 6501 // When unrolling and the VF is 1, we only need to add a simple scalar. 6502 Type *Ty = Val->getType(); 6503 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6504 6505 if (Ty->isFloatingPointTy()) { 6506 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6507 6508 // Floating point operations had to be 'fast' to enable the unrolling. 6509 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6510 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6511 } 6512 Constant *C = ConstantInt::get(Ty, StartIdx); 6513 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6514 } 6515 6516 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6517 SmallVector<Metadata *, 4> MDs; 6518 // Reserve first location for self reference to the LoopID metadata node. 6519 MDs.push_back(nullptr); 6520 bool IsUnrollMetadata = false; 6521 MDNode *LoopID = L->getLoopID(); 6522 if (LoopID) { 6523 // First find existing loop unrolling disable metadata. 6524 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6525 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6526 if (MD) { 6527 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6528 IsUnrollMetadata = 6529 S && S->getString().startswith("llvm.loop.unroll.disable"); 6530 } 6531 MDs.push_back(LoopID->getOperand(i)); 6532 } 6533 } 6534 6535 if (!IsUnrollMetadata) { 6536 // Add runtime unroll disable metadata. 6537 LLVMContext &Context = L->getHeader()->getContext(); 6538 SmallVector<Metadata *, 1> DisableOperands; 6539 DisableOperands.push_back( 6540 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6541 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6542 MDs.push_back(DisableNode); 6543 MDNode *NewLoopID = MDNode::get(Context, MDs); 6544 // Set operand 0 to refer to the loop id itself. 6545 NewLoopID->replaceOperandWith(0, NewLoopID); 6546 L->setLoopID(NewLoopID); 6547 } 6548 } 6549 6550 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6551 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6552 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6553 bool PredicateAtRangeStart = Predicate(Range.Start); 6554 6555 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6556 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6557 Range.End = TmpVF; 6558 break; 6559 } 6560 6561 return PredicateAtRangeStart; 6562 } 6563 6564 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6565 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6566 /// of VF's starting at a given VF and extending it as much as possible. Each 6567 /// vectorization decision can potentially shorten this sub-range during 6568 /// buildVPlan(). 6569 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6570 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6571 VFRange SubRange = {VF, MaxVF + 1}; 6572 VPlans.push_back(buildVPlan(SubRange)); 6573 VF = SubRange.End; 6574 } 6575 } 6576 6577 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6578 VPlanPtr &Plan) { 6579 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6580 6581 // Look for cached value. 6582 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6583 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6584 if (ECEntryIt != EdgeMaskCache.end()) 6585 return ECEntryIt->second; 6586 6587 VPValue *SrcMask = createBlockInMask(Src, Plan); 6588 6589 // The terminator has to be a branch inst! 6590 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6591 assert(BI && "Unexpected terminator found"); 6592 6593 if (!BI->isConditional()) 6594 return EdgeMaskCache[Edge] = SrcMask; 6595 6596 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6597 assert(EdgeMask && "No Edge Mask found for condition"); 6598 6599 if (BI->getSuccessor(0) != Dst) 6600 EdgeMask = Builder.createNot(EdgeMask); 6601 6602 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6603 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6604 6605 return EdgeMaskCache[Edge] = EdgeMask; 6606 } 6607 6608 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6609 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6610 6611 // Look for cached value. 6612 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6613 if (BCEntryIt != BlockMaskCache.end()) 6614 return BCEntryIt->second; 6615 6616 // All-one mask is modelled as no-mask following the convention for masked 6617 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6618 VPValue *BlockMask = nullptr; 6619 6620 if (OrigLoop->getHeader() == BB) { 6621 if (!CM.blockNeedsPredication(BB)) 6622 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6623 6624 // Introduce the early-exit compare IV <= BTC to form header block mask. 6625 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6626 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6627 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6628 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6629 return BlockMaskCache[BB] = BlockMask; 6630 } 6631 6632 // This is the block mask. We OR all incoming edges. 6633 for (auto *Predecessor : predecessors(BB)) { 6634 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6635 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6636 return BlockMaskCache[BB] = EdgeMask; 6637 6638 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6639 BlockMask = EdgeMask; 6640 continue; 6641 } 6642 6643 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6644 } 6645 6646 return BlockMaskCache[BB] = BlockMask; 6647 } 6648 6649 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6650 VFRange &Range, 6651 VPlanPtr &Plan) { 6652 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6653 if (!IG) 6654 return nullptr; 6655 6656 // Now check if IG is relevant for VF's in the given range. 6657 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6658 return [=](unsigned VF) -> bool { 6659 return (VF >= 2 && // Query is illegal for VF == 1 6660 CM.getWideningDecision(I, VF) == 6661 LoopVectorizationCostModel::CM_Interleave); 6662 }; 6663 }; 6664 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6665 return nullptr; 6666 6667 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6668 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6669 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6670 assert(I == IG->getInsertPos() && 6671 "Generating a recipe for an adjunct member of an interleave group"); 6672 6673 VPValue *Mask = nullptr; 6674 if (Legal->isMaskRequired(I)) 6675 Mask = createBlockInMask(I->getParent(), Plan); 6676 6677 return new VPInterleaveRecipe(IG, Mask); 6678 } 6679 6680 VPWidenMemoryInstructionRecipe * 6681 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6682 VPlanPtr &Plan) { 6683 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6684 return nullptr; 6685 6686 auto willWiden = [&](unsigned VF) -> bool { 6687 if (VF == 1) 6688 return false; 6689 if (CM.isScalarAfterVectorization(I, VF) || 6690 CM.isProfitableToScalarize(I, VF)) 6691 return false; 6692 LoopVectorizationCostModel::InstWidening Decision = 6693 CM.getWideningDecision(I, VF); 6694 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6695 "CM decision should be taken at this point."); 6696 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6697 "Interleave memory opportunity should be caught earlier."); 6698 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6699 }; 6700 6701 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6702 return nullptr; 6703 6704 VPValue *Mask = nullptr; 6705 if (Legal->isMaskRequired(I)) 6706 Mask = createBlockInMask(I->getParent(), Plan); 6707 6708 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6709 } 6710 6711 VPWidenIntOrFpInductionRecipe * 6712 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6713 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6714 // Check if this is an integer or fp induction. If so, build the recipe that 6715 // produces its scalar and vector values. 6716 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6717 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6718 II.getKind() == InductionDescriptor::IK_FpInduction) 6719 return new VPWidenIntOrFpInductionRecipe(Phi); 6720 6721 return nullptr; 6722 } 6723 6724 // Optimize the special case where the source is a constant integer 6725 // induction variable. Notice that we can only optimize the 'trunc' case 6726 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6727 // (c) other casts depend on pointer size. 6728 6729 // Determine whether \p K is a truncation based on an induction variable that 6730 // can be optimized. 6731 auto isOptimizableIVTruncate = 6732 [&](Instruction *K) -> std::function<bool(unsigned)> { 6733 return 6734 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6735 }; 6736 6737 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6738 isOptimizableIVTruncate(I), Range)) 6739 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6740 cast<TruncInst>(I)); 6741 return nullptr; 6742 } 6743 6744 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6745 PHINode *Phi = dyn_cast<PHINode>(I); 6746 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6747 return nullptr; 6748 6749 // We know that all PHIs in non-header blocks are converted into selects, so 6750 // we don't have to worry about the insertion order and we can just use the 6751 // builder. At this point we generate the predication tree. There may be 6752 // duplications since this is a simple recursive scan, but future 6753 // optimizations will clean it up. 6754 6755 SmallVector<VPValue *, 2> Masks; 6756 unsigned NumIncoming = Phi->getNumIncomingValues(); 6757 for (unsigned In = 0; In < NumIncoming; In++) { 6758 VPValue *EdgeMask = 6759 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6760 assert((EdgeMask || NumIncoming == 1) && 6761 "Multiple predecessors with one having a full mask"); 6762 if (EdgeMask) 6763 Masks.push_back(EdgeMask); 6764 } 6765 return new VPBlendRecipe(Phi, Masks); 6766 } 6767 6768 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6769 VFRange &Range) { 6770 6771 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6772 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6773 6774 if (IsPredicated) 6775 return false; 6776 6777 auto IsVectorizableOpcode = [](unsigned Opcode) { 6778 switch (Opcode) { 6779 case Instruction::Add: 6780 case Instruction::And: 6781 case Instruction::AShr: 6782 case Instruction::BitCast: 6783 case Instruction::Br: 6784 case Instruction::Call: 6785 case Instruction::FAdd: 6786 case Instruction::FCmp: 6787 case Instruction::FDiv: 6788 case Instruction::FMul: 6789 case Instruction::FNeg: 6790 case Instruction::FPExt: 6791 case Instruction::FPToSI: 6792 case Instruction::FPToUI: 6793 case Instruction::FPTrunc: 6794 case Instruction::FRem: 6795 case Instruction::FSub: 6796 case Instruction::GetElementPtr: 6797 case Instruction::ICmp: 6798 case Instruction::IntToPtr: 6799 case Instruction::Load: 6800 case Instruction::LShr: 6801 case Instruction::Mul: 6802 case Instruction::Or: 6803 case Instruction::PHI: 6804 case Instruction::PtrToInt: 6805 case Instruction::SDiv: 6806 case Instruction::Select: 6807 case Instruction::SExt: 6808 case Instruction::Shl: 6809 case Instruction::SIToFP: 6810 case Instruction::SRem: 6811 case Instruction::Store: 6812 case Instruction::Sub: 6813 case Instruction::Trunc: 6814 case Instruction::UDiv: 6815 case Instruction::UIToFP: 6816 case Instruction::URem: 6817 case Instruction::Xor: 6818 case Instruction::ZExt: 6819 return true; 6820 } 6821 return false; 6822 }; 6823 6824 if (!IsVectorizableOpcode(I->getOpcode())) 6825 return false; 6826 6827 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6828 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6829 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6830 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6831 return false; 6832 } 6833 6834 auto willWiden = [&](unsigned VF) -> bool { 6835 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6836 CM.isProfitableToScalarize(I, VF))) 6837 return false; 6838 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6839 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6840 // The following case may be scalarized depending on the VF. 6841 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6842 // version of the instruction. 6843 // Is it beneficial to perform intrinsic call compared to lib call? 6844 bool NeedToScalarize; 6845 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6846 bool UseVectorIntrinsic = 6847 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6848 return UseVectorIntrinsic || !NeedToScalarize; 6849 } 6850 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6851 assert(CM.getWideningDecision(I, VF) == 6852 LoopVectorizationCostModel::CM_Scalarize && 6853 "Memory widening decisions should have been taken care by now"); 6854 return false; 6855 } 6856 return true; 6857 }; 6858 6859 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6860 return false; 6861 6862 // Success: widen this instruction. We optimize the common case where 6863 // consecutive instructions can be represented by a single recipe. 6864 if (!VPBB->empty()) { 6865 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6866 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6867 return true; 6868 } 6869 6870 VPBB->appendRecipe(new VPWidenRecipe(I)); 6871 return true; 6872 } 6873 6874 VPBasicBlock *VPRecipeBuilder::handleReplication( 6875 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6876 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6877 VPlanPtr &Plan) { 6878 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6879 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6880 Range); 6881 6882 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6883 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6884 6885 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6886 6887 // Find if I uses a predicated instruction. If so, it will use its scalar 6888 // value. Avoid hoisting the insert-element which packs the scalar value into 6889 // a vector value, as that happens iff all users use the vector value. 6890 for (auto &Op : I->operands()) 6891 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6892 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6893 PredInst2Recipe[PredInst]->setAlsoPack(false); 6894 6895 // Finalize the recipe for Instr, first if it is not predicated. 6896 if (!IsPredicated) { 6897 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6898 VPBB->appendRecipe(Recipe); 6899 return VPBB; 6900 } 6901 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6902 assert(VPBB->getSuccessors().empty() && 6903 "VPBB has successors when handling predicated replication."); 6904 // Record predicated instructions for above packing optimizations. 6905 PredInst2Recipe[I] = Recipe; 6906 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6907 VPBlockUtils::insertBlockAfter(Region, VPBB); 6908 auto *RegSucc = new VPBasicBlock(); 6909 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6910 return RegSucc; 6911 } 6912 6913 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6914 VPRecipeBase *PredRecipe, 6915 VPlanPtr &Plan) { 6916 // Instructions marked for predication are replicated and placed under an 6917 // if-then construct to prevent side-effects. 6918 6919 // Generate recipes to compute the block mask for this region. 6920 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6921 6922 // Build the triangular if-then region. 6923 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6924 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6925 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6926 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6927 auto *PHIRecipe = 6928 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6929 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6930 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6931 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6932 6933 // Note: first set Entry as region entry and then connect successors starting 6934 // from it in order, to propagate the "parent" of each VPBasicBlock. 6935 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6936 VPBlockUtils::connectBlocks(Pred, Exit); 6937 6938 return Region; 6939 } 6940 6941 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6942 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6943 VPRecipeBase *Recipe = nullptr; 6944 // Check if Instr should belong to an interleave memory recipe, or already 6945 // does. In the latter case Instr is irrelevant. 6946 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6947 VPBB->appendRecipe(Recipe); 6948 return true; 6949 } 6950 6951 // Check if Instr is a memory operation that should be widened. 6952 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6953 VPBB->appendRecipe(Recipe); 6954 return true; 6955 } 6956 6957 // Check if Instr should form some PHI recipe. 6958 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6959 VPBB->appendRecipe(Recipe); 6960 return true; 6961 } 6962 if ((Recipe = tryToBlend(Instr, Plan))) { 6963 VPBB->appendRecipe(Recipe); 6964 return true; 6965 } 6966 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6967 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6968 return true; 6969 } 6970 6971 // Check if Instr is to be widened by a general VPWidenRecipe, after 6972 // having first checked for specific widening recipes that deal with 6973 // Interleave Groups, Inductions and Phi nodes. 6974 if (tryToWiden(Instr, VPBB, Range)) 6975 return true; 6976 6977 return false; 6978 } 6979 6980 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6981 unsigned MaxVF) { 6982 assert(OrigLoop->empty() && "Inner loop expected."); 6983 6984 // Collect conditions feeding internal conditional branches; they need to be 6985 // represented in VPlan for it to model masking. 6986 SmallPtrSet<Value *, 1> NeedDef; 6987 6988 auto *Latch = OrigLoop->getLoopLatch(); 6989 for (BasicBlock *BB : OrigLoop->blocks()) { 6990 if (BB == Latch) 6991 continue; 6992 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6993 if (Branch && Branch->isConditional()) 6994 NeedDef.insert(Branch->getCondition()); 6995 } 6996 6997 // If the tail is to be folded by masking, the primary induction variable 6998 // needs to be represented in VPlan for it to model early-exit masking. 6999 // Also, both the Phi and the live-out instruction of each reduction are 7000 // required in order to introduce a select between them in VPlan. 7001 if (CM.foldTailByMasking()) { 7002 NeedDef.insert(Legal->getPrimaryInduction()); 7003 for (auto &Reduction : *Legal->getReductionVars()) { 7004 NeedDef.insert(Reduction.first); 7005 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7006 } 7007 } 7008 7009 // Collect instructions from the original loop that will become trivially dead 7010 // in the vectorized loop. We don't need to vectorize these instructions. For 7011 // example, original induction update instructions can become dead because we 7012 // separately emit induction "steps" when generating code for the new loop. 7013 // Similarly, we create a new latch condition when setting up the structure 7014 // of the new loop, so the old one can become dead. 7015 SmallPtrSet<Instruction *, 4> DeadInstructions; 7016 collectTriviallyDeadInstructions(DeadInstructions); 7017 7018 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7019 VFRange SubRange = {VF, MaxVF + 1}; 7020 VPlans.push_back( 7021 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 7022 VF = SubRange.End; 7023 } 7024 } 7025 7026 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7027 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7028 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7029 // Hold a mapping from predicated instructions to their recipes, in order to 7030 // fix their AlsoPack behavior if a user is determined to replicate and use a 7031 // scalar instead of vector value. 7032 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7033 7034 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7035 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 7036 7037 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7038 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7039 auto Plan = std::make_unique<VPlan>(VPBB); 7040 7041 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 7042 // Represent values that will have defs inside VPlan. 7043 for (Value *V : NeedDef) 7044 Plan->addVPValue(V); 7045 7046 // Scan the body of the loop in a topological order to visit each basic block 7047 // after having visited its predecessor basic blocks. 7048 LoopBlocksDFS DFS(OrigLoop); 7049 DFS.perform(LI); 7050 7051 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7052 // Relevant instructions from basic block BB will be grouped into VPRecipe 7053 // ingredients and fill a new VPBasicBlock. 7054 unsigned VPBBsForBB = 0; 7055 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7056 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7057 VPBB = FirstVPBBForBB; 7058 Builder.setInsertPoint(VPBB); 7059 7060 std::vector<Instruction *> Ingredients; 7061 7062 // Organize the ingredients to vectorize from current basic block in the 7063 // right order. 7064 for (Instruction &I : BB->instructionsWithoutDebug()) { 7065 Instruction *Instr = &I; 7066 7067 // First filter out irrelevant instructions, to ensure no recipes are 7068 // built for them. 7069 if (isa<BranchInst>(Instr) || 7070 DeadInstructions.find(Instr) != DeadInstructions.end()) 7071 continue; 7072 7073 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 7074 // member of the IG, do not construct any Recipe for it. 7075 const InterleaveGroup<Instruction> *IG = 7076 CM.getInterleavedAccessGroup(Instr); 7077 if (IG && Instr != IG->getInsertPos() && 7078 Range.Start >= 2 && // Query is illegal for VF == 1 7079 CM.getWideningDecision(Instr, Range.Start) == 7080 LoopVectorizationCostModel::CM_Interleave) { 7081 auto SinkCandidate = SinkAfterInverse.find(Instr); 7082 if (SinkCandidate != SinkAfterInverse.end()) 7083 Ingredients.push_back(SinkCandidate->second); 7084 continue; 7085 } 7086 7087 // Move instructions to handle first-order recurrences, step 1: avoid 7088 // handling this instruction until after we've handled the instruction it 7089 // should follow. 7090 auto SAIt = SinkAfter.find(Instr); 7091 if (SAIt != SinkAfter.end()) { 7092 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 7093 << *SAIt->second 7094 << " to vectorize a 1st order recurrence.\n"); 7095 SinkAfterInverse[SAIt->second] = Instr; 7096 continue; 7097 } 7098 7099 Ingredients.push_back(Instr); 7100 7101 // Move instructions to handle first-order recurrences, step 2: push the 7102 // instruction to be sunk at its insertion point. 7103 auto SAInvIt = SinkAfterInverse.find(Instr); 7104 if (SAInvIt != SinkAfterInverse.end()) 7105 Ingredients.push_back(SAInvIt->second); 7106 } 7107 7108 // Introduce each ingredient into VPlan. 7109 for (Instruction *Instr : Ingredients) { 7110 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7111 continue; 7112 7113 // Otherwise, if all widening options failed, Instruction is to be 7114 // replicated. This may create a successor for VPBB. 7115 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7116 Instr, Range, VPBB, PredInst2Recipe, Plan); 7117 if (NextVPBB != VPBB) { 7118 VPBB = NextVPBB; 7119 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7120 : ""); 7121 } 7122 } 7123 } 7124 7125 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7126 // may also be empty, such as the last one VPBB, reflecting original 7127 // basic-blocks with no recipes. 7128 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7129 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7130 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7131 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7132 delete PreEntry; 7133 7134 // Finally, if tail is folded by masking, introduce selects between the phi 7135 // and the live-out instruction of each reduction, at the end of the latch. 7136 if (CM.foldTailByMasking()) { 7137 Builder.setInsertPoint(VPBB); 7138 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7139 for (auto &Reduction : *Legal->getReductionVars()) { 7140 VPValue *Phi = Plan->getVPValue(Reduction.first); 7141 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7142 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7143 } 7144 } 7145 7146 std::string PlanName; 7147 raw_string_ostream RSO(PlanName); 7148 unsigned VF = Range.Start; 7149 Plan->addVF(VF); 7150 RSO << "Initial VPlan for VF={" << VF; 7151 for (VF *= 2; VF < Range.End; VF *= 2) { 7152 Plan->addVF(VF); 7153 RSO << "," << VF; 7154 } 7155 RSO << "},UF>=1"; 7156 RSO.flush(); 7157 Plan->setName(PlanName); 7158 7159 return Plan; 7160 } 7161 7162 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7163 // Outer loop handling: They may require CFG and instruction level 7164 // transformations before even evaluating whether vectorization is profitable. 7165 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7166 // the vectorization pipeline. 7167 assert(!OrigLoop->empty()); 7168 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7169 7170 // Create new empty VPlan 7171 auto Plan = std::make_unique<VPlan>(); 7172 7173 // Build hierarchical CFG 7174 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7175 HCFGBuilder.buildHierarchicalCFG(); 7176 7177 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7178 Plan->addVF(VF); 7179 7180 if (EnableVPlanPredication) { 7181 VPlanPredicator VPP(*Plan); 7182 VPP.predicate(); 7183 7184 // Avoid running transformation to recipes until masked code generation in 7185 // VPlan-native path is in place. 7186 return Plan; 7187 } 7188 7189 SmallPtrSet<Instruction *, 1> DeadInstructions; 7190 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 7191 Plan, Legal->getInductionVars(), DeadInstructions); 7192 7193 return Plan; 7194 } 7195 7196 Value* LoopVectorizationPlanner::VPCallbackILV:: 7197 getOrCreateVectorValues(Value *V, unsigned Part) { 7198 return ILV.getOrCreateVectorValue(V, Part); 7199 } 7200 7201 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7202 O << " +\n" 7203 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7204 IG->getInsertPos()->printAsOperand(O, false); 7205 if (User) { 7206 O << ", "; 7207 User->getOperand(0)->printAsOperand(O); 7208 } 7209 O << "\\l\""; 7210 for (unsigned i = 0; i < IG->getFactor(); ++i) 7211 if (Instruction *I = IG->getMember(i)) 7212 O << " +\n" 7213 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7214 } 7215 7216 void VPWidenRecipe::execute(VPTransformState &State) { 7217 for (auto &Instr : make_range(Begin, End)) 7218 State.ILV->widenInstruction(Instr); 7219 } 7220 7221 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7222 assert(!State.Instance && "Int or FP induction being replicated."); 7223 State.ILV->widenIntOrFpInduction(IV, Trunc); 7224 } 7225 7226 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7227 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7228 } 7229 7230 void VPBlendRecipe::execute(VPTransformState &State) { 7231 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7232 // We know that all PHIs in non-header blocks are converted into 7233 // selects, so we don't have to worry about the insertion order and we 7234 // can just use the builder. 7235 // At this point we generate the predication tree. There may be 7236 // duplications since this is a simple recursive scan, but future 7237 // optimizations will clean it up. 7238 7239 unsigned NumIncoming = Phi->getNumIncomingValues(); 7240 7241 assert((User || NumIncoming == 1) && 7242 "Multiple predecessors with predecessors having a full mask"); 7243 // Generate a sequence of selects of the form: 7244 // SELECT(Mask3, In3, 7245 // SELECT(Mask2, In2, 7246 // ( ...))) 7247 InnerLoopVectorizer::VectorParts Entry(State.UF); 7248 for (unsigned In = 0; In < NumIncoming; ++In) { 7249 for (unsigned Part = 0; Part < State.UF; ++Part) { 7250 // We might have single edge PHIs (blocks) - use an identity 7251 // 'select' for the first PHI operand. 7252 Value *In0 = 7253 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7254 if (In == 0) 7255 Entry[Part] = In0; // Initialize with the first incoming value. 7256 else { 7257 // Select between the current value and the previous incoming edge 7258 // based on the incoming mask. 7259 Value *Cond = State.get(User->getOperand(In), Part); 7260 Entry[Part] = 7261 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7262 } 7263 } 7264 } 7265 for (unsigned Part = 0; Part < State.UF; ++Part) 7266 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7267 } 7268 7269 void VPInterleaveRecipe::execute(VPTransformState &State) { 7270 assert(!State.Instance && "Interleave group being replicated."); 7271 if (!User) 7272 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7273 7274 // Last (and currently only) operand is a mask. 7275 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7276 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7277 for (unsigned Part = 0; Part < State.UF; ++Part) 7278 MaskValues[Part] = State.get(Mask, Part); 7279 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7280 } 7281 7282 void VPReplicateRecipe::execute(VPTransformState &State) { 7283 if (State.Instance) { // Generate a single instance. 7284 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7285 // Insert scalar instance packing it into a vector. 7286 if (AlsoPack && State.VF > 1) { 7287 // If we're constructing lane 0, initialize to start from undef. 7288 if (State.Instance->Lane == 0) { 7289 Value *Undef = 7290 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7291 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7292 } 7293 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7294 } 7295 return; 7296 } 7297 7298 // Generate scalar instances for all VF lanes of all UF parts, unless the 7299 // instruction is uniform inwhich case generate only the first lane for each 7300 // of the UF parts. 7301 unsigned EndLane = IsUniform ? 1 : State.VF; 7302 for (unsigned Part = 0; Part < State.UF; ++Part) 7303 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7304 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7305 } 7306 7307 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7308 assert(State.Instance && "Branch on Mask works only on single instance."); 7309 7310 unsigned Part = State.Instance->Part; 7311 unsigned Lane = State.Instance->Lane; 7312 7313 Value *ConditionBit = nullptr; 7314 if (!User) // Block in mask is all-one. 7315 ConditionBit = State.Builder.getTrue(); 7316 else { 7317 VPValue *BlockInMask = User->getOperand(0); 7318 ConditionBit = State.get(BlockInMask, Part); 7319 if (ConditionBit->getType()->isVectorTy()) 7320 ConditionBit = State.Builder.CreateExtractElement( 7321 ConditionBit, State.Builder.getInt32(Lane)); 7322 } 7323 7324 // Replace the temporary unreachable terminator with a new conditional branch, 7325 // whose two destinations will be set later when they are created. 7326 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7327 assert(isa<UnreachableInst>(CurrentTerminator) && 7328 "Expected to replace unreachable terminator with conditional branch."); 7329 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7330 CondBr->setSuccessor(0, nullptr); 7331 ReplaceInstWithInst(CurrentTerminator, CondBr); 7332 } 7333 7334 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7335 assert(State.Instance && "Predicated instruction PHI works per instance."); 7336 Instruction *ScalarPredInst = cast<Instruction>( 7337 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7338 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7339 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7340 assert(PredicatingBB && "Predicated block has no single predecessor."); 7341 7342 // By current pack/unpack logic we need to generate only a single phi node: if 7343 // a vector value for the predicated instruction exists at this point it means 7344 // the instruction has vector users only, and a phi for the vector value is 7345 // needed. In this case the recipe of the predicated instruction is marked to 7346 // also do that packing, thereby "hoisting" the insert-element sequence. 7347 // Otherwise, a phi node for the scalar value is needed. 7348 unsigned Part = State.Instance->Part; 7349 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7350 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7351 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7352 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7353 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7354 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7355 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7356 } else { 7357 Type *PredInstType = PredInst->getType(); 7358 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7359 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7360 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7361 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7362 } 7363 } 7364 7365 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7366 if (!User) 7367 return State.ILV->vectorizeMemoryInstruction(&Instr); 7368 7369 // Last (and currently only) operand is a mask. 7370 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7371 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7372 for (unsigned Part = 0; Part < State.UF; ++Part) 7373 MaskValues[Part] = State.get(Mask, Part); 7374 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7375 } 7376 7377 static ScalarEpilogueLowering 7378 getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, 7379 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 7380 ScalarEpilogueLowering SEL = CM_ScalarEpilogueAllowed; 7381 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7382 (F->hasOptSize() || 7383 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI))) 7384 SEL = CM_ScalarEpilogueNotAllowedOptSize; 7385 else if (PreferPredicateOverEpilog || Hints.getPredicate()) 7386 SEL = CM_ScalarEpilogueNotNeededUsePredicate; 7387 7388 return SEL; 7389 } 7390 7391 // Process the loop in the VPlan-native vectorization path. This path builds 7392 // VPlan upfront in the vectorization pipeline, which allows to apply 7393 // VPlan-to-VPlan transformations from the very beginning without modifying the 7394 // input LLVM IR. 7395 static bool processLoopInVPlanNativePath( 7396 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7397 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7398 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7399 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7400 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7401 7402 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7403 Function *F = L->getHeader()->getParent(); 7404 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7405 ScalarEpilogueLowering SEL = getScalarEpilogueLowering(F, L, Hints, PSI, BFI); 7406 7407 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7408 &Hints, IAI); 7409 // Use the planner for outer loop vectorization. 7410 // TODO: CM is not used at this point inside the planner. Turn CM into an 7411 // optional argument if we don't need it in the future. 7412 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7413 7414 // Get user vectorization factor. 7415 const unsigned UserVF = Hints.getWidth(); 7416 7417 // Plan how to best vectorize, return the best VF and its cost. 7418 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7419 7420 // If we are stress testing VPlan builds, do not attempt to generate vector 7421 // code. Masked vector code generation support will follow soon. 7422 // Also, do not attempt to vectorize if no vector code will be produced. 7423 if (VPlanBuildStressTest || EnableVPlanPredication || 7424 VectorizationFactor::Disabled() == VF) 7425 return false; 7426 7427 LVP.setBestPlan(VF.Width, 1); 7428 7429 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7430 &CM); 7431 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7432 << L->getHeader()->getParent()->getName() << "\"\n"); 7433 LVP.executePlan(LB, DT); 7434 7435 // Mark the loop as already vectorized to avoid vectorizing again. 7436 Hints.setAlreadyVectorized(); 7437 7438 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7439 return true; 7440 } 7441 7442 bool LoopVectorizePass::processLoop(Loop *L) { 7443 assert((EnableVPlanNativePath || L->empty()) && 7444 "VPlan-native path is not enabled. Only process inner loops."); 7445 7446 #ifndef NDEBUG 7447 const std::string DebugLocStr = getDebugLocString(L); 7448 #endif /* NDEBUG */ 7449 7450 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7451 << L->getHeader()->getParent()->getName() << "\" from " 7452 << DebugLocStr << "\n"); 7453 7454 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7455 7456 LLVM_DEBUG( 7457 dbgs() << "LV: Loop hints:" 7458 << " force=" 7459 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7460 ? "disabled" 7461 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7462 ? "enabled" 7463 : "?")) 7464 << " width=" << Hints.getWidth() 7465 << " unroll=" << Hints.getInterleave() << "\n"); 7466 7467 // Function containing loop 7468 Function *F = L->getHeader()->getParent(); 7469 7470 // Looking at the diagnostic output is the only way to determine if a loop 7471 // was vectorized (other than looking at the IR or machine code), so it 7472 // is important to generate an optimization remark for each loop. Most of 7473 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7474 // generated as OptimizationRemark and OptimizationRemarkMissed are 7475 // less verbose reporting vectorized loops and unvectorized loops that may 7476 // benefit from vectorization, respectively. 7477 7478 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7479 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7480 return false; 7481 } 7482 7483 PredicatedScalarEvolution PSE(*SE, *L); 7484 7485 // Check if it is legal to vectorize the loop. 7486 LoopVectorizationRequirements Requirements(*ORE); 7487 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7488 &Requirements, &Hints, DB, AC); 7489 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7490 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7491 Hints.emitRemarkWithHints(); 7492 return false; 7493 } 7494 7495 // Check the function attributes and profiles to find out if this function 7496 // should be optimized for size. 7497 ScalarEpilogueLowering SEL = getScalarEpilogueLowering(F, L, Hints, PSI, BFI); 7498 7499 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7500 // here. They may require CFG and instruction level transformations before 7501 // even evaluating whether vectorization is profitable. Since we cannot modify 7502 // the incoming IR, we need to build VPlan upfront in the vectorization 7503 // pipeline. 7504 if (!L->empty()) 7505 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7506 ORE, BFI, PSI, Hints); 7507 7508 assert(L->empty() && "Inner loop expected."); 7509 7510 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7511 // count by optimizing for size, to minimize overheads. 7512 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7513 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7514 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7515 << "This loop is worth vectorizing only if no scalar " 7516 << "iteration overheads are incurred."); 7517 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7518 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7519 else { 7520 LLVM_DEBUG(dbgs() << "\n"); 7521 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7522 } 7523 } 7524 7525 // Check the function attributes to see if implicit floats are allowed. 7526 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7527 // an integer loop and the vector instructions selected are purely integer 7528 // vector instructions? 7529 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7530 reportVectorizationFailure( 7531 "Can't vectorize when the NoImplicitFloat attribute is used", 7532 "loop not vectorized due to NoImplicitFloat attribute", 7533 "NoImplicitFloat", ORE, L); 7534 Hints.emitRemarkWithHints(); 7535 return false; 7536 } 7537 7538 // Check if the target supports potentially unsafe FP vectorization. 7539 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7540 // for the target we're vectorizing for, to make sure none of the 7541 // additional fp-math flags can help. 7542 if (Hints.isPotentiallyUnsafe() && 7543 TTI->isFPVectorizationPotentiallyUnsafe()) { 7544 reportVectorizationFailure( 7545 "Potentially unsafe FP op prevents vectorization", 7546 "loop not vectorized due to unsafe FP support.", 7547 "UnsafeFP", ORE, L); 7548 Hints.emitRemarkWithHints(); 7549 return false; 7550 } 7551 7552 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7553 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7554 7555 // If an override option has been passed in for interleaved accesses, use it. 7556 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7557 UseInterleaved = EnableInterleavedMemAccesses; 7558 7559 // Analyze interleaved memory accesses. 7560 if (UseInterleaved) { 7561 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7562 } 7563 7564 // Use the cost model. 7565 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7566 F, &Hints, IAI); 7567 CM.collectValuesToIgnore(); 7568 7569 // Use the planner for vectorization. 7570 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7571 7572 // Get user vectorization factor. 7573 unsigned UserVF = Hints.getWidth(); 7574 7575 // Plan how to best vectorize, return the best VF and its cost. 7576 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7577 7578 VectorizationFactor VF = VectorizationFactor::Disabled(); 7579 unsigned IC = 1; 7580 unsigned UserIC = Hints.getInterleave(); 7581 7582 if (MaybeVF) { 7583 VF = *MaybeVF; 7584 // Select the interleave count. 7585 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7586 } 7587 7588 // Identify the diagnostic messages that should be produced. 7589 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7590 bool VectorizeLoop = true, InterleaveLoop = true; 7591 if (Requirements.doesNotMeet(F, L, Hints)) { 7592 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7593 "requirements.\n"); 7594 Hints.emitRemarkWithHints(); 7595 return false; 7596 } 7597 7598 if (VF.Width == 1) { 7599 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7600 VecDiagMsg = std::make_pair( 7601 "VectorizationNotBeneficial", 7602 "the cost-model indicates that vectorization is not beneficial"); 7603 VectorizeLoop = false; 7604 } 7605 7606 if (!MaybeVF && UserIC > 1) { 7607 // Tell the user interleaving was avoided up-front, despite being explicitly 7608 // requested. 7609 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7610 "interleaving should be avoided up front\n"); 7611 IntDiagMsg = std::make_pair( 7612 "InterleavingAvoided", 7613 "Ignoring UserIC, because interleaving was avoided up front"); 7614 InterleaveLoop = false; 7615 } else if (IC == 1 && UserIC <= 1) { 7616 // Tell the user interleaving is not beneficial. 7617 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7618 IntDiagMsg = std::make_pair( 7619 "InterleavingNotBeneficial", 7620 "the cost-model indicates that interleaving is not beneficial"); 7621 InterleaveLoop = false; 7622 if (UserIC == 1) { 7623 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7624 IntDiagMsg.second += 7625 " and is explicitly disabled or interleave count is set to 1"; 7626 } 7627 } else if (IC > 1 && UserIC == 1) { 7628 // Tell the user interleaving is beneficial, but it explicitly disabled. 7629 LLVM_DEBUG( 7630 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7631 IntDiagMsg = std::make_pair( 7632 "InterleavingBeneficialButDisabled", 7633 "the cost-model indicates that interleaving is beneficial " 7634 "but is explicitly disabled or interleave count is set to 1"); 7635 InterleaveLoop = false; 7636 } 7637 7638 // Override IC if user provided an interleave count. 7639 IC = UserIC > 0 ? UserIC : IC; 7640 7641 // Emit diagnostic messages, if any. 7642 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7643 if (!VectorizeLoop && !InterleaveLoop) { 7644 // Do not vectorize or interleaving the loop. 7645 ORE->emit([&]() { 7646 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7647 L->getStartLoc(), L->getHeader()) 7648 << VecDiagMsg.second; 7649 }); 7650 ORE->emit([&]() { 7651 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7652 L->getStartLoc(), L->getHeader()) 7653 << IntDiagMsg.second; 7654 }); 7655 return false; 7656 } else if (!VectorizeLoop && InterleaveLoop) { 7657 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7658 ORE->emit([&]() { 7659 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7660 L->getStartLoc(), L->getHeader()) 7661 << VecDiagMsg.second; 7662 }); 7663 } else if (VectorizeLoop && !InterleaveLoop) { 7664 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7665 << ") in " << DebugLocStr << '\n'); 7666 ORE->emit([&]() { 7667 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7668 L->getStartLoc(), L->getHeader()) 7669 << IntDiagMsg.second; 7670 }); 7671 } else if (VectorizeLoop && InterleaveLoop) { 7672 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7673 << ") in " << DebugLocStr << '\n'); 7674 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7675 } 7676 7677 LVP.setBestPlan(VF.Width, IC); 7678 7679 using namespace ore; 7680 bool DisableRuntimeUnroll = false; 7681 MDNode *OrigLoopID = L->getLoopID(); 7682 7683 if (!VectorizeLoop) { 7684 assert(IC > 1 && "interleave count should not be 1 or 0"); 7685 // If we decided that it is not legal to vectorize the loop, then 7686 // interleave it. 7687 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7688 &CM); 7689 LVP.executePlan(Unroller, DT); 7690 7691 ORE->emit([&]() { 7692 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7693 L->getHeader()) 7694 << "interleaved loop (interleaved count: " 7695 << NV("InterleaveCount", IC) << ")"; 7696 }); 7697 } else { 7698 // If we decided that it is *legal* to vectorize the loop, then do it. 7699 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7700 &LVL, &CM); 7701 LVP.executePlan(LB, DT); 7702 ++LoopsVectorized; 7703 7704 // Add metadata to disable runtime unrolling a scalar loop when there are 7705 // no runtime checks about strides and memory. A scalar loop that is 7706 // rarely used is not worth unrolling. 7707 if (!LB.areSafetyChecksAdded()) 7708 DisableRuntimeUnroll = true; 7709 7710 // Report the vectorization decision. 7711 ORE->emit([&]() { 7712 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7713 L->getHeader()) 7714 << "vectorized loop (vectorization width: " 7715 << NV("VectorizationFactor", VF.Width) 7716 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7717 }); 7718 } 7719 7720 Optional<MDNode *> RemainderLoopID = 7721 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7722 LLVMLoopVectorizeFollowupEpilogue}); 7723 if (RemainderLoopID.hasValue()) { 7724 L->setLoopID(RemainderLoopID.getValue()); 7725 } else { 7726 if (DisableRuntimeUnroll) 7727 AddRuntimeUnrollDisableMetaData(L); 7728 7729 // Mark the loop as already vectorized to avoid vectorizing again. 7730 Hints.setAlreadyVectorized(); 7731 } 7732 7733 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7734 return true; 7735 } 7736 7737 bool LoopVectorizePass::runImpl( 7738 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7739 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7740 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7741 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7742 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7743 SE = &SE_; 7744 LI = &LI_; 7745 TTI = &TTI_; 7746 DT = &DT_; 7747 BFI = &BFI_; 7748 TLI = TLI_; 7749 AA = &AA_; 7750 AC = &AC_; 7751 GetLAA = &GetLAA_; 7752 DB = &DB_; 7753 ORE = &ORE_; 7754 PSI = PSI_; 7755 7756 // Don't attempt if 7757 // 1. the target claims to have no vector registers, and 7758 // 2. interleaving won't help ILP. 7759 // 7760 // The second condition is necessary because, even if the target has no 7761 // vector registers, loop vectorization may still enable scalar 7762 // interleaving. 7763 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7764 return false; 7765 7766 bool Changed = false; 7767 7768 // The vectorizer requires loops to be in simplified form. 7769 // Since simplification may add new inner loops, it has to run before the 7770 // legality and profitability checks. This means running the loop vectorizer 7771 // will simplify all loops, regardless of whether anything end up being 7772 // vectorized. 7773 for (auto &L : *LI) 7774 Changed |= 7775 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7776 7777 // Build up a worklist of inner-loops to vectorize. This is necessary as 7778 // the act of vectorizing or partially unrolling a loop creates new loops 7779 // and can invalidate iterators across the loops. 7780 SmallVector<Loop *, 8> Worklist; 7781 7782 for (Loop *L : *LI) 7783 collectSupportedLoops(*L, LI, ORE, Worklist); 7784 7785 LoopsAnalyzed += Worklist.size(); 7786 7787 // Now walk the identified inner loops. 7788 while (!Worklist.empty()) { 7789 Loop *L = Worklist.pop_back_val(); 7790 7791 // For the inner loops we actually process, form LCSSA to simplify the 7792 // transform. 7793 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7794 7795 Changed |= processLoop(L); 7796 } 7797 7798 // Process each loop nest in the function. 7799 return Changed; 7800 } 7801 7802 PreservedAnalyses LoopVectorizePass::run(Function &F, 7803 FunctionAnalysisManager &AM) { 7804 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7805 auto &LI = AM.getResult<LoopAnalysis>(F); 7806 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7807 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7808 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7809 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7810 auto &AA = AM.getResult<AAManager>(F); 7811 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7812 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7813 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7814 MemorySSA *MSSA = EnableMSSALoopDependency 7815 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7816 : nullptr; 7817 7818 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7819 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7820 [&](Loop &L) -> const LoopAccessInfo & { 7821 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7822 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7823 }; 7824 const ModuleAnalysisManager &MAM = 7825 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7826 ProfileSummaryInfo *PSI = 7827 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7828 bool Changed = 7829 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7830 if (!Changed) 7831 return PreservedAnalyses::all(); 7832 PreservedAnalyses PA; 7833 7834 // We currently do not preserve loopinfo/dominator analyses with outer loop 7835 // vectorization. Until this is addressed, mark these analyses as preserved 7836 // only for non-VPlan-native path. 7837 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7838 if (!EnableVPlanNativePath) { 7839 PA.preserve<LoopAnalysis>(); 7840 PA.preserve<DominatorTreeAnalysis>(); 7841 } 7842 PA.preserve<BasicAA>(); 7843 PA.preserve<GlobalsAA>(); 7844 return PA; 7845 } 7846